WO2006135091A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2006135091A1
WO2006135091A1 PCT/JP2006/312259 JP2006312259W WO2006135091A1 WO 2006135091 A1 WO2006135091 A1 WO 2006135091A1 JP 2006312259 W JP2006312259 W JP 2006312259W WO 2006135091 A1 WO2006135091 A1 WO 2006135091A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copolymer
fluorine
laminate
group
Prior art date
Application number
PCT/JP2006/312259
Other languages
English (en)
French (fr)
Inventor
Takahiro Kitahara
Shingo Sakakibara
Takeshi Shimono
Takeshi Inaba
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06757401A priority Critical patent/EP1897686A4/en
Priority to US11/917,416 priority patent/US20090291243A1/en
Publication of WO2006135091A1 publication Critical patent/WO2006135091A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a laminate.
  • the fuel permeation resistant resin laminate is selected from the group consisting of polybutylene terephthalate [PBT], polybutylene naphthalate [PBN], polyethylene terephthalate [PET] and polyethylene naphthalate [PEN].
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a resin tube (see, for example, Patent Document 1) formed by laminating a layer containing at least one kind as a main component and a layer containing PBT as a main component, or polyphenylene sulfide [PPS] is mainly used.
  • ⁇ layer mainly composed of ⁇ layer and PBT to components including ⁇ tubes has been disclosed (e.g., see Patent Document 2.) 0
  • heat resistance, chemical resistance, solvent resistance There was a problem of insufficient sex.
  • fluorine resin As a resin having excellent heat resistance, chemical resistance, and solvent resistance, there is fluorine resin. However, fluorine resin is inferior in mechanical strength and dimensional stability, and is expensive. It is desirable to laminate them.
  • a laminate of fluorine resin and other organic materials having fuel permeation resistance includes a layer made of polyamide 12 [PA12], tetrafluoroethylene [TFE] Z perfluoro (methylvinyl). -Luether) [PMVE] copolymer layer and ethylene ZTFE copolymer [ETFE] layer composed of a three layer laminate, or PA12 layer, TFEZ hexaful
  • a three-layer laminate composed of a layer composed of a propylene [HFP] copolymer [FEP] and a layer formed by imparting conductivity to ETFE has been proposed (for example, see Patent Document 3).
  • Patent Document 3 In recent years, however, there has been a demand for higher fuel permeation resistance that cannot be obtained with these three-layer copolymers.
  • a fluorine resin layer and a fluorine-free organic material layer A laminate comprising a chlorofluoroethylene [CTFE] copolymer layer and a TFEZ perfluoro (alkyl butyl ether) [PAVE] copolymer or TF.
  • CTFE chlorofluoroethylene
  • TFEZ TFEZ perfluoro (alkyl butyl ether)
  • the CTFE copolymer layer is an intermediate layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-213655
  • Patent Document 2 JP 2002-267054 A
  • Patent Document 3 Pamphlet of International Publication No. 01Z18142
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-358959
  • an object of the present invention is a laminate having a high fuel permeation resistance.
  • An object of the present invention is to provide an excellent fuel crack resistance.
  • the present invention includes a layer (A) that also has a fluorine-containing ethylenic polymer, a layer (B) that consists of a chlorotrifluoroethylene copolymer, and a layer (C) that consists of a fluorine-free organic material (P)
  • the fluorine-containing ethylenic polymer is a layered product having the layer (
  • the laminate of the present invention comprises a layer (A) having a fluorine-containing ethylenic polymer strength, a layer (B) comprising a black-trifluoroethylene [CTFE] copolymer, and a fluorine-free organic material (P). layer(A) having a fluorine-containing ethylenic polymer strength, a layer (B) comprising a black-trifluoroethylene [CTFE] copolymer, and a fluorine-free organic material (P). layer(A) having a fluorine-containing ethylenic polymer strength, a layer (B) comprising a black-trifluoroethylene [CTFE] copolymer, and a fluorine-free organic material (P). layer(A) having a fluorine-containing ethylenic polymer strength, a layer (B) comprising a black-trifluoroethylene [CTFE] copolymer, and a fluorine-free organic material (P). layer
  • the laminate of the present invention has the layer (B) made of a CTFE copolymer.
  • the CTFE copolymer includes a black trifluoroethylene unit (CTFE unit), a CT It is composed of monomer [A] units derived from monomer [A] copolymerizable with FE (hereinafter sometimes referred to as “CTFE copolymer (1)”). Is preferred.
  • CTFE unit black trifluoroethylene unit
  • CT It is composed of monomer [A] units derived from monomer [A] copolymerizable with FE (hereinafter sometimes referred to as “CTFE copolymer (1)”). Is preferred.
  • the “unit” means a part of the molecular structure of the polymer and a part derived from the monomer.
  • CTFE unit is a part derived from CTFE in the molecular structure of CTFE copolymer [CFC1-CF-].
  • the “monomer [A] unit” is a portion formed by adhering the monomer [A] on the molecular structure of the CTFE copolymer.
  • the mol% for each monomer unit is defined as the total number of monomers derived from the monomer units constituting the molecular chain of the copolymer being 100 mol%. This is the proportion of the monomer from which each monomer unit is derived in 100 mol%.
  • the monomer [A] is not particularly limited as long as it is a monomer copolymerizable with CTFE, and may be one type or two or more types.
  • X 1 , x 3 and x 4 are the same or different and represent a hydrogen atom or a fluorine atom
  • X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer of 1 to 10 Fluoroolefin represented by
  • Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms.
  • Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • the monomer [A] is selected from the group force consisting of TFE, Et, VdF, fluoroolefin represented by the general formula (i), and PAVE represented by the general formula (ii). It is preferable that at least one of them is selected. [0015]
  • the monomer [A] is a fluororefin represented by the general formula (i), a PAVE represented by the general formula (ii), and Z or the general formula (
  • the alkyl perfluorovinyl ether derivatives represented by iii) can be used alone or in combination of two or more.
  • the fluororefin represented by the general formula (i) is not particularly limited.
  • hexafluoropropylene [HFP], perfluoro (1, 1, 2-trihydro 1) Xen), perfluoro (1, 1, 5-trihydride port 1-pentene) the following general formula (iv)
  • X 5 is H, F or CF
  • Rf 3 is a perfluoroalkyl having 1 to 10 carbon atoms.
  • perfluoro (alkyl) ethylene perfluoro (butyl) ethylene is preferred.
  • the PAVE represented by the general formula (ii) includes perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PEVE], perfluoro (propyl vinyl ether) [PPVE], perfluoro ( Butyl vinyl ether), etc. Among them, PMVE, PEVE or PPVE is more preferable.
  • H—CF CF is more preferable.
  • the unsaturated carboxylic acids are not particularly limited, and examples thereof include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, aconitic acid and the like. 6 unsaturated aliphatic carboxylic acids and the like, and may be unsaturated aliphatic polycarboxylic acids having 3 to 6 carbon atoms.
  • the unsaturated aliphatic polycarboxylic acids are not particularly limited, and examples thereof include maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, aconitic acid, and the like.
  • Maleic acid, itaconic acid, citraconic acid What can be an acid anhydride such as an acid anhydride Yes.
  • the monomer [A] may be two or more, but when one of them is VdF, PAVE and Z or HFP, itaconic acid, citraconic acid and acid anhydrides thereof It is not necessary to use it together.
  • CTFE copolymer (I) a CTFE unit 2-98 mole 0/0
  • monomer (A) units 98
  • the proportion of the monomer [A] unit in the CTFE copolymer is 19 F—N
  • the CTFE copolymer is derived from a CTFE unit, a tetrafluoroethylene unit [TFE unit], and a monomer (M) copolymerizable with CTFE and TFE. More preferred is a CTFE copolymer composed of monomer (M) units (hereinafter sometimes referred to as “CTFE copolymer ( ⁇ )”).
  • TFE unit is a portion derived from tetrafluoroethylene [one CF 1 -CF 1] in the molecular structure of the CTFE copolymer ( ⁇ ).
  • Body (M) units "
  • the monomer (M) is not particularly limited as long as it is copolymerizable with CTFE and TFE, and examples thereof include those other than TFE exemplified as the monomer [A] described above. It is done.
  • the monomer (M) is selected from the group force consisting of Et, VdF, fluorephine represented by the general formula (i), and PAVE represented by the general formula (ii).
  • Et is selected from the group force consisting of Et, VdF, fluorephine represented by the general formula (i), and PAVE represented by the general formula (ii).
  • PAVE represented by the general formula (ii).
  • the CTFE copolymer us! /, Te to (II), CTFE units and the TFE units is 90 to 99. 9 mole 0/0 in total, the monomer (M) units, 10-0. it is preferably 1 mol 0/0. If the monomer (M) unit is less than 0.1 mol%, the moldability, environmental stress crack resistance and fuel crack resistance are inferior. If it exceeds 10 mol%, the chemical solution has low permeability and heat resistance. Tend to be inferior in performance and mechanical properties. [0030] If it is the monomer (M) power SPAVE, more preferably the monomer (M) unit! /, The lower limit is 0.5 mole 0/0, and a more preferred upper limit is 5 mol 0 / 0 .
  • the ratio of the monomer (M) unit in the CTFE copolymer of the present invention is a value obtained by analysis such as 19 F-NMR. Specifically, NMR analysis, infrared spectrophotometer This value is obtained by appropriately combining [IR], elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • CTFE copolymer the CTFE copolymer (I) and the CTFE copolymer ( ⁇ ) are displaced.
  • the CTFE copolymer constituting the layer (B) may be a binary copolymer or a copolymer of three or more.
  • a binary copolymer CTFEZTFE copolymer, CTFEZPAVE copolymer, CTFEZVdF copolymer, CTFEZHFP copolymer, etc., and terpolymers of three or more include CTFEZTFEZHFP copolymer, CTFE
  • CTFEZTFEZVdFZPAVE copolymer ZPAVE copolymer, CTFEZTFEZVdFZPAVE copolymer and the like can be mentioned. Among them, CTFEZTFEZPAVE copolymer is preferable.
  • the CTFE copolymer may be a copolymer of CTFE and Et and Z or a fluorine-containing monomer, and the CTFE copolymer having the copolymer composition may be, for example, C TFEZEt copolymer, CTFEZTFEZEt copolymer, CTFEZTFEZEtZPAVE copolymer and the like.
  • the CTFE copolymer may be a polymer constituting either a resin or an elastomer, but preferably constitutes a resin.
  • the CTFE copolymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like, but industrially preferably obtained by suspension polymerization.
  • the CTFE copolymer preferably has a melting point [Tm] of 150 to 280 ° C.
  • Tm melting point
  • a more preferred lower limit is 160 ° C
  • a still more preferred lower limit is 170 ° C
  • a particularly preferred lower limit is 190 ° C
  • a more preferred upper limit is 260 ° C.
  • the Tm is the temperature corresponding to the melting peak when the differential scanning calorimeter [DSC] is used to raise the temperature at a rate of 10 ° CZ.
  • the CTFE copolymer preferably has a temperature [Tx] at which 1% by mass of the CTFE copolymer subjected to the heating test decomposes is 370 ° C or higher. A more preferred lower limit is 380 ° C, and a more preferred lower limit is 390 ° C. If the thermal decomposition temperature [Tx] is within the above range, the upper limit can be set to 450 ° C, for example.
  • the thermal decomposition temperature [Tx] is a temperature at which the mass of the CTFE copolymer subjected to the heating test decreases by 1% by mass using a differential heat / thermogravimetry apparatus [TG-DTA]. It is a value obtained by doing.
  • the difference [Tx-Tm] between the melting point [Tm] and the temperature [Tx] at which 1% by mass of the CTFE copolymer is decomposed is 130 ° C or more. Is preferred. If it is less than 130 ° C, the moldable range is too narrow, and the range of selection of molding conditions becomes small. Since the CTF E copolymer has a wide moldable temperature range as described above, a high melting point polymer can be used as a counterpart material when coextrusion molding is performed.
  • the CTFE copolymer When the CTFE copolymer is melt-molded or heat-treated at a temperature of less than 320 ° C, it preferably has an adhesive functional group.
  • the “adhesive functional group” is a part of the molecular structure of the polymer contained in the CTFE copolymer, and comprises a layer (B) and a layer (B ) Means that it can participate in adhesion to the adjacent layer.
  • the adhesion functional functional group is a concept including not only what is usually called a functional group but also a structure usually called a bond such as an ether bond as long as it can participate in such adhesion. .
  • the adhesive functional group is not particularly limited as long as it can participate in adhesion between the layer (B) and the layer adjacent to the layer (B), and examples thereof include a carbonyl group, a hydroxyl group, An amino group etc. are mentioned.
  • the carbonyl group is not particularly limited.
  • the amide group has the following general formula:
  • R 2 represents a hydrogen atom or an organic group
  • R 3 represents an organic group
  • a hydrogen atom bonded to a nitrogen atom such as the amide group, imide group, urethane bond, force rubamoyl group, force rubamoyloxy group, ureido group, or oxamoyl group is substituted with a hydrocarbon group such as an alkyl group, for example. .
  • the above-mentioned adhesive functional group is easy to introduce, and the coating film obtained has moderate heat resistance and good adhesiveness at a relatively low temperature, so that the amide group and the force rubamoyl are used.
  • a carbonate group is more preferred, among which a hydroxyl group, a hydroxyl group, a carboxyl group, and a carbonate group are preferred.
  • R represents an organic group.
  • Examples of the organic group represented by R in the above formula include an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, and preferably an alkyl group having 1 to 8 carbon atoms. And an alkyl group having 2 to 4 carbon atoms having an ether bond.
  • the CTFE copolymer may be a polymer having an adhesive functional functional group at either the main chain terminal or the side chain. It may consist of a polymer having both the main chain terminal and the side chain. If it has an adhesive functional group at the end of the main chain, it may be present at both ends of the main chain. It may have only at one end.
  • the CTFE copolymer has the above-mentioned adhesive functional group at the end of the main chain and Z or side chain, or in place of this, the adhesive functional group has a structure commonly referred to as a bond such as an ether bond. In some cases, the adhesive functional group may be present in the main chain.
  • the CTFE copolymer is composed of a polymer having an adhesive functional group at the end of the main chain because it does not significantly reduce mechanical properties and chemical resistance, or is advantageous in terms of productivity and cost. Preferred for reasons.
  • the adhesive functional functional group-containing monomer may be CTFE and the monomer [A], or It can be obtained by copolymerizing CTFE, TFE and monomer (M).
  • the above-mentioned “adhesive functional functional group-containing monomer” means a polymerizable monomer having an adhesive functional functional group.
  • the above-mentioned adhesive functional group-containing monomer may or may not have a fluorine atom, but the monomer [A] and the monomer (M) described above are:
  • the adhesive functional group has no functional group, and in this respect, it is conceptually distinguished from an adhesive functional functional group-containing monomer having an adhesive functional functional group.
  • z 1 represents a functional group having a hydroxyl group, a carbo group or an amino group
  • X 6 and Y 1 are the same or different and each represents a hydrogen atom or a fluorine atom
  • Rf 4 represents carbon
  • n represents 0 or 1).
  • the above-mentioned “functional group having a hydroxyl group, a carbonyl group or an amino group” may be a hydroxyl group, a carbonyl group or an amino group, It means that it may be a functional group having any of these adhesive functional functional groups.
  • Examples of the adhesive functional functional group-containing monomer include perfluoroacrylic acid fluoride, 1 fluoroacrylic acid fluoride, acrylic acid fluoride, and 1 trifluor when the functional group has a carbonyl group.
  • Examples of the adhesive functional group-containing monomer further include unsaturated carboxylic acids.
  • Examples of the unsaturated carboxylic acids include aliphatic unsaturated carboxylic acids and acid anhydrides thereof.
  • the aliphatic unsaturated carboxylic acid may be an aliphatic unsaturated monocarboxylic acid, or may be an aliphatic unsaturated polycarboxylic acid having two or more carboxyl groups.
  • Examples of the aliphatic unsaturated monocarboxylic acid include propionic acid, acrylic acid, methacrylic acid, crotonic acid, and acid anhydrides thereof, and aliphatic monocarboxylic acids having 3 to 20 carbon atoms. It is done.
  • Examples of the aliphatic unsaturated polycarboxylic acid include maleic acid, fumaric acid, mesaconic acid, citraconic acid [CAC], itaconic acid, aconitic acid, itaconic anhydride [IAH], and citraconic anhydride [CAH]. .
  • the unstable terminal group is usually a chain transfer agent or during polymerization.
  • the CTFE copolymer is a polymer having an adhesive functional group at the end of the main chain, and when the adhesive functional functional group is a polymer having a carbonate group, It can be obtained by a polymerization method using carbonate as a polymerization initiator. When the above method is used, introduction of a carbonate group and control of introduction are very easy, and economical aspects, quality aspects such as heat resistance, chemical resistance and the like are also preferable.
  • the peroxycarbonate is represented by the following formula:
  • R 4 and R 5 are the same or different and each represents a linear or branched monovalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a carbon number 1 having an alkoxyl group at the terminal.
  • R 6 represents a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a terminal thereof.
  • a compound represented by a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms having an alkoxyl group is preferred.
  • the CTFE copolymer is a polymer having an adhesive functional group at the end of the main chain, and when the adhesive functional functional group has a polymer strength other than a carbonate group, As in the case of introducing a group, a peroxycarbonate such as peroxycarbonate, veroxydicarbonate, peroxyester, peroxyalcohol, etc.
  • a peroxycarbonate such as peroxycarbonate, veroxydicarbonate, peroxyester, peroxyalcohol, etc.
  • an adhesive functional functional group derived from peroxide can be introduced. “Derived from peroxide” means that it is introduced directly from the functional group contained in the peroxide or indirectly by converting the functional group introduced directly from the functional group contained in the peroxide. Means that it will be introduced into
  • the amount of the above polymerization initiator such as peroxycarbonate, peroxyester, and the like varies depending on the type and composition of the fluororesin, the molecular weight, the polymerization conditions, the type of the initiator used, and the like.
  • a particularly preferred lower limit is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the resulting polymer, and an especially preferred upper limit is 1 part by mass.
  • the number of functional functional groups for adhesion is the type of the opposite material to be laminated, the shape, the purpose and application of the adhesion, the required adhesion, the layer adjacent to the layer (B) that also has CTFE copolymer strength, For example, it may be appropriately selected depending on the difference in adhesion method and the like with the layer (A) described later.
  • the number of unstable terminal groups if melt molding at a molding temperature lower than 320 ° C, it is preferably from 3 to 800 amino 1 X 10 6 per Shukusarisumi primes. If the number of main chain carbon atoms is less than 3 per 1 X 10 6 , adhesion may be reduced. A more preferred lower limit is 50, a more preferred lower limit is 80, and a particularly preferred lower limit is 120. In the case of melt molding at a molding temperature of less than 320 ° C, the upper limit of the number of unstable terminal groups can be set to 500, for example, from the viewpoint of productivity, provided that the number is within the above range.
  • the number of unstable terminal groups is the thickness obtained by compression-molding the CTFE copolymer powder at a molding temperature 50 ° C higher than the melting point and a molding pressure of 5 MPa.
  • An infrared absorption spectrum analysis of a 30 mm film sheet was performed using an infrared spectrophotometer [IR], and the type was determined by comparison with the infrared absorption spectrum of a known film. The number to be calculated.
  • Table 1 shows the correction factors for the target end groups.
  • the correction coefficient in Table 1 is a value that determines the infrared absorption spectrum force of the model compound in order to calculate the terminal group per 1 X 10 6 main chain carbon atoms.
  • the CTFE copolymer may contain an additive such as a filler, a pigment, a conductive material, a heat stabilizer, a reinforcing agent, an ultraviolet absorber, or a rubber.
  • an additive such as a filler, a pigment, a conductive material, a heat stabilizer, a reinforcing agent, an ultraviolet absorber, or a rubber.
  • additives such as a vulcanizing agent, a vulcanization accelerator and a curing catalyst.
  • the layer ( ⁇ ) can be used as an adhesion layer, and excellent fuel permeation resistance can be obtained. It has been achieved.
  • the laminate of the present invention has a layer ( ⁇ ) having a fluorine-containing ethylenic polymer strength.
  • the fluorine-containing ethylenic polymer is a polymer having at least one fluorine atom and a repeating unit derived from the fluorine-containing ethylenic monomer.
  • fluorine-containing ethylenic polymer in the present invention include polymers (III) to (V) in which the main chain of the fluorine-containing ethylenic polymer is composed of the following monomer units. it can.
  • Rf 5 represents CF or ORf 6
  • Rf 6 represents a perfluoroalkyl having 1 to 5 carbon atoms.
  • the copolymer which consists of a perfluoro monomer unit derived from the perfluoro monomer represented by this.
  • One perfluoromonomer unit may be used, or two or more perfluoromonomer units may be used.
  • the copolymer (III) is at least a copolymer having a TFE unit and a perfluoromonomer unit derived from the perfluoromonomer represented by the general formula (vi). Therefore, it is a concept that may contain the above copolymer (IV) and Z or copolymer (V).
  • the copolymer (IV) is a concept that may include a copolymer (III) and Z or a copolymer (V), and the copolymer (V) is a copolymer (III) and Z or This is a concept that may contain a copolymer (IV).
  • Examples of the copolymer ( ⁇ ) include:
  • Rf 7 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • the PAVE unit may be one type or two or more types.
  • the copolymer ( ⁇ ) is not particularly limited, and for example, one or a combination of two or more can be used.
  • TFE units 20 mol% or more forces also polymer ani Gerare, as such, for example, TFE units 20 to 80 mole 0/0, Et Examples include 20 to 80 mol% of units and 0 to 60 mol% of units derived from monomers copolymerizable therewith.
  • Examples of the copolymerizable monomer include, for example, the following general formula (viii)
  • Rf 8 represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • Rf 8 represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • the copolymer (IV) is, among others, a fluorephine unit derived from the fluorephine represented by the general formula (viii) and Z or the general formula (ix).
  • PAV fluorephine unit derived from the fluorephine represented by the general formula (viii) and Z or the general formula (ix).
  • copolymers Et units 20-80 mole 0/0 force are preferred.
  • the copolymerizable monomer in the above copolymer (IV-IV) does not contain HFP.
  • the unit derived from the copolymerizable monomer constituting the copolymer (IV) is a fluororefin derived from the fluororefin represented by the general formula (viii). It may or may not be contained in the copolymer (IV), including the unit and the PAVE unit derived from Z or the PAVE represented by the general formula (ix).
  • the copolymer as (V), for example, include VdF unit 10 mol% or more force becomes polymer, as such, for example, VdF unit. 15 to: L00 mole 0/0, TFE units 0-85 mole 0/0, and the sum 0-30 mol% Ca also copolymers of HFP units and Z or trichloroacetic port Furuoroechiren units like U,.
  • Examples of the copolymer (V) include, for example,
  • V-I vinylidene fluoride
  • PVdF polyvinylidene fluoride
  • V- II VdF units 30 to 99 mole 0/0, and, TFE units 1 to 70 mole 0/0 Power et styrenesulfonate
  • V- III VdF units 10 to 90 mole 0/0, TFE units 0-90 mole 0/0, and, trichloro port Furuo port ethylene unit 0-30 mole 0/0 force styrenesulfonate,
  • V—IV VdF unit 10-90 mol 0 /.
  • the copolymer (V-IV) is preferably a copolymer having a VdF unit of 15 to 84 mol%, a TFE unit of 15 to 84 mol%, and an HFP unit of 0 to 30 mol%.
  • any of the various copolymer units that may be 0 mol% is included in the copolymer. It may or may not be included.
  • the fluorine-containing ethylenic polymer in the layer (A) may be a CTFE copolymer. In one laminate, it is different from the CTFE copolymer in the layer (B).
  • the fluorine-containing ethylenic polymer is preferably a polymer having a TFE unit derived from TFE from the viewpoint of excellent fuel crack resistance.
  • the fluorine-containing ethylenic polymer two or more kinds can be used in combination.
  • the two or more types of fluorine-containing ethylenic polymers have good compatibility with each other, so they can be mixed by melting to form a layer without a clear boundary, resulting in delamination.
  • the mixing ratio is adjusted so that the layer as a whole has a preferable fuel permeability coefficient, preferably a melting point.
  • the layer (A) in the laminate of the present invention when two or more kinds of the above-mentioned fluorine-containing ethylenic polymer are used, is put into a co-extruder without previously mixing each type of polymer to be used.
  • the compatibility between the layers (A) can be excellent due to compatibility.
  • the fluorine-containing ethylenic polymer may have the above-mentioned adhesive functional group at the end of the main chain or at the side chain.
  • the proportion of the monomer units in the fluorine-containing ethylenic polymer of the present invention is 19 F-NM
  • This value is obtained by combining R analysis, infrared spectrophotometer [IR], elemental analysis, and fluorescent X-ray analysis as appropriate according to the type of monomer.
  • the melting point of the fluorine-containing ethylenic polymer is preferably 130 to 280 ° C.
  • the melting point of the TFE polymer is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° CZ using a differential scanning calorimeter [DSC].
  • the fluorine-containing ethylenic polymer may be a polymer constituting either a resin or an elastomer, but preferably comprises a resin.
  • the fluorinated ethylenic polymer can be obtained by a conventionally known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization or the like. Industrially, it can be obtained by suspension polymerization. preferable.
  • the layer (A) in the laminate of the present invention preferably comprises the above-mentioned fluorine-containing ethylenic polymer, and further a conductive filler.
  • the conductive filler is not particularly limited, and examples thereof include conductive simple powders or conductive single fibers such as metals and carbons; powders of conductive compounds such as zinc oxide; surface conductive powders and the like. Can be mentioned.
  • the conductive single powder or conductive single fiber is not particularly limited, and examples thereof include metal powder such as copper and nickel; metal fiber such as iron and stainless steel; carbon black, carbon fiber, and Japanese Patent Application Laid-Open No. 3-174018.
  • the carbon fibril etc. which are described in gazettes etc. are mentioned.
  • the surface conductive powder is a powder obtained by conducting a conductive treatment on the surface of a nonconductive powder such as glass beads or titanium oxide.
  • the conductive treatment method is not particularly limited, and examples thereof include metal sputtering and electroless plating.
  • carbon black is preferably used because it is advantageous from the viewpoint of preventing static charge accumulation from the economic viewpoint.
  • the conductive filler is blended with the fluorine-containing ethylenic polymer, it is preferable to prepare a pellet in advance by melt-kneading.
  • the pellet heating conditions after melt-kneading at the time of pellet preparation are generally performed at a temperature not lower than the glass transition point of the fluorine-containing ethylenic polymer and lower than the melting point of the fluorine-containing ethylenic polymer. , Preferably at 130 to 200 ° C. for 1 to 48 hours.
  • the conductive filler can be uniformly dispersed in the fluorine-containing ethylenic polymer in the resulting layer (A), and the conductivity can be imparted uniformly.
  • the amount of the conductive filler to be added is appropriately determined based on the type of the fluorine-containing ethylenic polymer, the conductive performance required for the laminate, the molding conditions, etc. 100 parts by mass of the fluorine-containing ethylenic polymer It is preferable that it is 1-30 mass parts with respect to. A more preferred lower limit is 5 parts by mass, and a more preferred upper limit is 20 parts by mass.
  • the surface resistance value of the fluorine-containing ethylenic polymer conductive composition obtained by blending the fluorine-containing ethylenic polymer with a conductive filler may be 1 X 10 to 1 X 10 9 ⁇ 'cm. I like it. A more preferred lower limit is 1 ⁇ 10 2 ⁇ ⁇ « ⁇ , and a more preferred upper limit is l X 10 8 Q -cm.
  • the "surface resistance value of the fluorine-containing ethylenic polymer conductive composition” is a pellet obtained by melt-kneading the conductive filler and the fluorine-containing ethylenic polymer. Is measured at a temperature of 200 to 400 ° C in the melt indexer and the surface resistance of the extruded strand obtained by extrusion is measured using a battery-type insulation resistance meter. This is the value obtained.
  • the layer (A) in the present invention includes, in addition to the conductive filler, a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet absorber, and a pigment as long as the object of the present invention is not impaired. It may be formed by adding various additives such as. Layer (A) is made up of such additives, Properties such as thermal stability, surface hardness, abrasion resistance, chargeability, and weather resistance can be improved.
  • the laminate of the present invention has a layer (C) made of a fluorine-free organic material (P).
  • the fluorine-free organic material (P) is an organic material that does not contain a fluorine atom! /.
  • the fluorine-free organic material (P) is preferably a resin that can be coextruded with the layer (A) and the layer (B).
  • the layer (C) and the later-described layer (D) are not excellent in fuel permeation resistance because the laminate of the present invention has the above-mentioned layer (A) and layer (B). In both cases, it is not necessary for the laminate to achieve a high level of fuel permeation, and it does not have to be excellent in fuel permeation.
  • the layer (C) contains no fluorine-containing organic material (P). In addition, it does not exclude the use of a resin having fuel permeability as a non-fluorine-containing organic material (Q) of the layer (D) described later, and it is preferable to use a resin having fuel permeability. Masashi.
  • the fuel permeation resistant resin that can be used as the fluorine-free organic material (P) preferably has a high crystallinity and is preferably a resin having a high crystallinity and a polymer power. More preferably, the resin is a resin having a polar functional group and a large intermolecular force.
  • the polar functional group is a functional group having polarity and capable of participating in adhesion between the layer (C) and the adjacent layer.
  • the polar functional group may be the same functional group as the adhesive functional functional group described above as possessed by the CTFE copolymer, or may be a different functional group.
  • the polar functional group is not particularly limited.
  • a cyano group in addition to those described above as the adhesive functional group, there may be mentioned a cyano group, a sulfide group, etc.
  • fluorine-free organic material examples include polyamide-based resins, polyolefin-based resins, ethylene-Z-butyl alcohol copolymer power resins, polyurethane resins, polyester resins, polyaramid resins, polyimides.
  • Resin polyamideimide resin, polyphenylene oxide resin, polyacetal resin, polycarbonate resin, acrylic resin, styrene resin, acrylo-tolyl / butadiene Z styrene resin [ABS], salt Bull-based resin, cellulose-based resin, polyetheretherketone resin [PEEK], polysulfone resin, polyethers Examples thereof include a ruphone resin [PES], a polyetherimide resin, and a polyphenylene sulfide resin.
  • the fluorine-free organic material (P) is preferably at least one selected from the group consisting of a resin composed of ethylene Z vinyl alcohol copolymer, a polyamide-based resin and a polyolefin-based resin.
  • polyamide-based resin a so-called nylon resin having a polymer force in which an amide bond in a molecule is bonded to an aliphatic structure or an alicyclic structure, or an amide bond in a molecule is bonded to an aromatic structure. Therefore, the polymer power is also good.
  • the nylon resin is not particularly limited.
  • nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6,66, nylon 66,12, nylon 46, meta Examples include xylylenediamine Z adipic acid copolymer and other polymers that also have polymer strength, and two or more of them can be used in combination.
  • the above-mentioned aramid resin is not particularly limited, and examples thereof include polybaraphthalene-lenterephthalamide, polymetaphenylene-isophthalamide and the like.
  • the polyamide-based resin may also have a high molecular force in which a structure having no amide bond as a repeating unit is block-copolymerized or graft-copolymerized in a part of the molecule.
  • polyamide resin include polyamide elastomer such as nylon 6Z polyester copolymer, nylon 6Z polyether copolymer, nylon 12Z polyester copolymer, nylon 12Z polyether copolymer, etc. And the like. These polyamide elastomers are obtained by block copolymerization of nylon oligomer and polyester oligomer via an ester bond, or block copolymer of a nylon oligomer and a polyether oligomer via an ether bond.
  • polyester oligomer examples include polycarba ratatoton and polyethylene adipate.
  • polyether oligomer examples include polyethylene glycol, polypropylene glycol, and polytetramethylene diary. Call etc. are mentioned.
  • polyamide elastomer nylon 6Z polytetramethylene glycol copolymer and nylon 12Z polytetramethylene glycol copolymer are preferable.
  • nylon 6 nylon 66, nylon 11, nylon 12, nylon 610 , Nylon 612, nylon 6Z66, nylon 66,12, nylon 6Z polyester copolymer, nylon 6Z polyether copolymer, nylon 12Z polyester copolymer, nylon 12Z polyether copolymer, etc.
  • nylon 6Z polyester copolymer nylon 6Z polyether copolymer
  • nylon 12Z polyester copolymer nylon 12Z polyether copolymer
  • nylon 12Z polyether copolymer nylon 12Z polyether copolymer
  • the polyolefin resin is a resin having monomer units derived from a vinyl group-containing monomer having no fluorine atom.
  • the vinyl group-containing monomer having no fluorine atom is not particularly limited.
  • the fluorine-free ethylenic monomer described above with respect to fluorine resin may be used.
  • those having the polar functional groups described above are preferred.
  • the polyolefin-based resin is not particularly limited.
  • the power of polyolefin such as polyethylene, polypropylene, and high-density polyolefin, modified polyolefin obtained by modifying the polyolefin with maleic anhydride, epoxy-modified polyolefin, etc.
  • polyolefin such as polyethylene, polypropylene, and high-density polyolefin
  • modified polyolefin obtained by modifying the polyolefin with maleic anhydride epoxy-modified polyolefin, etc.
  • the layer (C) and the later-described layer (D) in the laminate of the present invention are, for example, a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, and an ultraviolet absorber, as long as the object of the present invention is not impaired.
  • a stabilizer such as a heat stabilizer
  • a reinforcing agent such as a filler
  • an ultraviolet absorber such as ultraviolet absorber
  • Various additives such as additives and pigments may be added.
  • the layer (C) and the layer (D) described later can be improved in properties such as thermal stability, surface hardness, abrasion resistance, charging property, and weather resistance by such an additive. .
  • the amine value of the polyamide-based rosin is preferably 10 to 60 (equivalent / 10 6 g).
  • the layer (C) and the layer (C) such as a layer (B) having a chlorotrifluoroethylene copolymer force are in contact.
  • the interlayer adhesion with the layer can be made excellent.
  • the amine value is less than 10 (equivalent Zl0 6 g)
  • the interlayer adhesion between the layer (C) and the layer in contact with the layer (C) is insufficient when coextrusion is performed at a relatively low temperature. Minutes.
  • a preferred lower limit is 15 (equivalent ZlO 6 g)
  • a preferred upper limit is 50 (equivalent ZlO 6 g)
  • a more preferred upper limit is 35 (equivalent Zl 0 6 g).
  • the amine value is determined by heating and dissolving polyamide-based resin lg in 50 ml of m-taresol, and titrating this with 1Z10 normal p-toluenesulfonic acid aqueous solution using thymol blue as an indicator. Unless otherwise specified, it means the amine value of the polyamide-based resin before lamination. Of the number of amino groups in the polyamide-based resin before lamination, a part of the force is considered to be consumed for adhesion to the layer in contact with the layer (C). Since the amount is extremely small, the amine value of the polyamide-based resin before lamination described above and the amine value of the laminate of the present invention are substantially the same.
  • the laminate of the present invention may further have a layer (D) made of a fluorine-free organic material (Q) between the layer (A) and the layer (B)! / ,.
  • the fluorine-free organic material (Q) in the layer (D) may be the same type as the fluorine-free organic material (P) in the layer (C) or may be a different type, but the same More preferred is a polyamide-based rosin that is preferably of a type.
  • the layers (A), (B), (C), and (D) in the laminate of the present invention at least one of them has a fuel permeability coefficient of 0.5 g'mmZm 2 Zday or less. It is preferable that Layer (A) and layer (B) preferably have a fuel permeability coefficient of 0.4 g'mmZm 2 Zday or less.
  • the fuel permeation coefficient is defined in a fuel permeation coefficient measurement cup charged with an isooctane / toluene / ethanol mixed solvent prepared by mixing isooctane, toluene and ethanol in a volume ratio of 45:45:10. This is the value calculated for the mass change force measured at 60 ° C with a sheet obtained from the resin to be measured.
  • MFRW Melt flow rate
  • the above MFR is a value obtained by measuring the mass of CTFE copolymer flowing out per 10 minutes from a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load of 297 ° C and 5 kg using a melt indexer. is there.
  • the laminate of the present invention has a layer (A) made of the above-mentioned fluorine-containing ethylenic polymer and a layer (B) made of a CTFE copolymer, so that, for example, the fuel permeation rate is within the range described below. As described above, it is possible to easily achieve high fuel permeation resistance and to have excellent fuel crack resistance.
  • the laminate of the present invention preferably has a fuel permeation rate of 1.5 gZm 2 Zday or less.
  • the laminate of the present invention can have a high degree of fuel resistance.
  • the lower limit can be set to 0.lgZm 2 Zday, for example.
  • the preferable upper limit of the fuel permeation rate is 1. Og / mVday, the more preferable upper limit is 0.9 gZm 2 Zday, and the more preferable upper limit is 0.8 gZm 2 Zday.
  • the fuel permeation rate is the amount of fuel permeation per unit area per day, and isooctane Z mixed with isooctane, toluene and ethanol in a volume ratio of 45:45:10. This is a value obtained by measuring the permeation amount at 60 ° C according to SAE J 1737 using toluene Z ethanol mixed solvent [CE10].
  • the laminate of the present invention is preferably a laminate in which the layer (A), the layer (B) and the layer (C) are laminated in this order.
  • the laminate of the present invention may be composed of only the layer (A), the layer (B) and the layer (C), and the layer (A), the layer (B) It may also contain other layers other than layer (C).
  • the other layer is not particularly limited, and examples thereof include a protective layer, a colored layer, a marking layer, and a dielectric layer for preventing static electricity in the laminate, and the protective layer, the dielectric layer, etc. It is preferable that it is the outermost layer in the said laminated body from the function.
  • the layer (D) is The layer (A) and the layer (B) are in contact, and the layer (B) is preferably in contact with the layer (C).
  • Examples of the laminate of the present invention include a laminate in which layer (A), layer (B) and layer (C) are laminated in this order, layer (A), layer (B), layer (C) and layer.
  • (A) is a laminate in which the layers are laminated in this order, layer (A), layer (D), layer (B) and layer (C) are laminated in this order, layer (A), layer (B ), Layer (C), layer (B) and layer (A) are laminated in this order, layer (A), layer (D), layer (B), layer (C) and layer (A) Are stacked in this order.
  • Each of the layer (A), the layer (B), the layer (C), and the layer (D) may be a single layer, or may have a multilayer structure of two or more layers. Yo ...
  • the layer (A) When the layer (A) has a multilayer structure of two or more layers, the layer (A) includes, for example, a layer comprising the above-mentioned fluorine-containing ethylene conductive composition and a fluorine-containing resin containing no conductive filler. It may include a layer made of a ethylene polymer composition.
  • the boundary between the layers in contact with each other is not necessarily clear, and the surface forces in contact with the molecular chains of the polymers constituting each layer enter each other and have a concentration gradient. Even a layered structure.
  • the layer (B) is preferably in contact with the layer (A) and the layer (C).
  • the CTFE copolymer in the layer (B) has the above-mentioned adhesive functional group
  • the adhesiveness with the layer (A) and the layer (C) can be made excellent.
  • the compatibility between the CTFE copolymer and the fluorinated ethylene polymer is sufficient even if the above-mentioned adhesive functional group is not introduced.
  • the CTFE copolymer in the layer (B) has an adhesive functional functional group that preferably has an adhesive functional functional group in terms of improving the adhesiveness.
  • the fluorine-containing ethylenic polymer in the layer (A) can exhibit sufficient interlayer adhesion even if it does not have an adhesive functional group introduced.
  • the method for forming a laminate of the present invention includes, for example, (1) co-extrusion molding of each layer constituting the laminate in a molten state to thermally bond (melt bond) the layers to form a single layer
  • a method (coextrusion molding) for forming a laminated body having a structure is mentioned.
  • the method for forming the laminate of the present invention includes (2) a method in which each layer separately produced by an extruder is laminated and the layers are bonded together by thermal fusion, (3) A method of forming a laminate by extruding molten resin on the surface of a layer prepared in advance by an extruder, (4) A layer that is adjacent to the layer on the surface of a layer prepared in advance After electrostatically coating the polymer constituting the film, the obtained coating is heated entirely or from the coated side, whereby the polymer used for coating is heated and melted to form a layer, etc. Can be mentioned.
  • each cylindrical layer is separately formed by an extruder, and the layer is formed into an inner layer.
  • a polymer constituting the inner layer is electrostatically coated on the inner side of the layer in contact with the layer, and then the obtained coated product is Either put it in a heating oven and heat it entirely, or insert a rod-shaped heating device inside the cylindrical coated article and heat it from the inside, so that the polymer constituting the inner layer is melted by heat.
  • the method include molding.
  • each layer constituting the laminate of the present invention can be coextruded, it is generally formed by the coextrusion molding (1).
  • the coextrusion molding include conventionally known multilayer co-extrusion manufacturing methods such as a multi-hold method and a feed block method.
  • the contact surface of each layer with the other layer may be surface-treated for the purpose of improving interlayer adhesion.
  • surface treatment include etching treatment such as sodium etching treatment; corona treatment; plasma treatment such as low temperature plasma treatment.
  • the method (1) and the method (1) and the method (1) and the method (2) and (3) in which the surface treatment is applied and the layers are preferred are the methods (1).
  • the laminate of the present invention can be used for the following applications.
  • Fuel such as automotive fuel tubes or automotive fuel hoses Tube or fuel hose, solvent tube or solvent hose, paint tube or paint hose, automotive radiator hose, air conditioner hose, brake hose, wire covering material, food tube or food hose, gas station Underground tube or hose, subsea oil field tube or hose, etc.
  • Bottles, containers, tanks, etc . Fuel tanks for automobiles, gasoline tanks, etc. Tanks for solvents, tanks for solvents, paint tanks, chemical containers for semiconductors, tanks for food and drinks, etc.
  • the above laminate which is a tube or a hose, is also one aspect of the present invention.
  • the tube or hose may have a corrugated region in the middle thereof.
  • a corrugated region is an appropriate region in the middle of the hose body formed into a corrugated shape, a corrugated shape, a convoluted shape, or the like.
  • the tube or hose of the present invention has a region in which a plurality of corrugated folds are arranged in an annular shape, and in that region, one side of the annular shape is compressed and the other side is extended outward. Therefore, it can be easily bent at any angle without stress fatigue or delamination.
  • the method for forming the corrugated region is not limited.
  • the corrugated region can be easily formed by first forming a straight tubular tube and then molding it to obtain a predetermined corrugated shape.
  • the innermost layer of the tube or hose is preferably layer (A).
  • the innermost layer of the fuel tube is likely to accumulate static charge due to contact with flammable liquids such as gasoline, but in order to avoid igniting by this static charge, a conductive filler is added as layer (A). Those are preferred.
  • the laminate of the present invention can be suitably used for applications where there is a portion that comes into contact with the fuel when using a tube, a hose, a tank, or the like including a fuel tube.
  • the portion that comes into contact with the fuel is a layer (A ) Is preferable. Since the location in contact with the fuel is usually the inner layer, When the layer (A) is an inner layer, the layer (B) is an intermediate layer and the layer (C) is an outer layer.
  • the “inner layer”, “intermediate layer”, and “outer layer” are any of the layer (A) and the layer (C) in the shape with the concept of the inside and outside of a tube, hose, tank, etc.
  • intermediate layer is a concept indicating a layer between the inner layer and the outer layer.
  • the innermost layer may be a layer having a fluorinated ethylenic polymer conductive composition strength.
  • a multilayer structure having the innermost layer and a layer made of a fluorine-containing ethylenic polymer composition containing no conductive filler outside the innermost layer may be used.
  • the latter innermost layer may not be in contact with the layer made of the fluorine-containing ethylenic polymer composition but containing the conductive filler.
  • the chemical resistance can be further improved by using the innermost layer and the outermost layer as the layer (A).
  • the above laminate which is a fuel piping tube for automobiles, is also one aspect of the present invention.
  • the laminate of the present invention since the laminate of the present invention has excellent fuel permeation resistance and fuel crack resistance, it can be suitably used as a laminate for a fuel tube used for a fuel piping tube for an automobile. .
  • the preferred layer structure of the laminate for an automobile fuel piping tube of the present invention is not particularly limited.
  • the laminate for an automobile fuel piping tube of the present invention is not particularly limited.
  • Layer 1 A layer composed of a fluorine-containing ethylenic polymer composition (may be a conductive composition).
  • Layer 2 A layer composed of CTFE copolymer
  • Layer 3 Layer made of polyamide-based resin
  • Layer 1 Copolymer (i) Layer made of composition (may be a conductive composition! /)
  • Layer 2 Layer made of CTFE copolymer with adhesive functional group
  • Layer 3 Layer made of polyamide-based resin
  • a laminate that also has strength is preferred.
  • layer 1 a layer comprising a fluorine-containing ethylenic polymer composition (which may be a conductive composition).
  • layer 2 Polyamide Layers made of system rosin
  • Layer 4 Layer made of polyamide-based resin
  • Layer 1 Layer made of copolymer (IV) composition (may be a conductive composition! /!)
  • Layer 2 Layer made of polyamide-based resin
  • Layer 3 Layer made of CTFE copolymer with adhesive functional group
  • Layer 4 Layer made of polyamide-based resin
  • a strong laminate is preferred
  • Layer 1 Layer made of copolymer (IV-II) composition (may be a conductive composition! /!)
  • Layer 2 Layer made of polyamide-based resin
  • Layer 3 Layer made of CTFE copolymer with adhesive functional group
  • Layer 4 Layer made of polyamide-based resin
  • a laminate that also has strength is preferred.
  • Each layer of the above-described fuel tube laminate is laminated in the order of the layer number, and preferably layer 1 is the innermost layer.
  • the laminate of the present invention has the above-described configuration, it has high fuel permeability resistance and excellent fuel crack resistance.
  • a jacketed agitation polymerization tank capable of holding 174 kg of water was charged with 5 lkg of demineralized pure water, the interior space was sufficiently replaced with pure nitrogen gas, and the nitrogen gas was then removed in vacuo.
  • aqueous peroxodisulfate [APS] solution was charged to initiate the reaction.
  • the above mixed monomer was continuously fed so as to maintain 1.5 MPaG in the reaction system.
  • the stirring is stopped, the gas in the autoclave is released to normal pressure, the polymerization reaction is terminated, and the polymer solids concentration is 4.
  • a polymerization initiator As a polymerization initiator, 2.4 kg of 10 mass% APS aqueous solution was charged to initiate the polymerization reaction. After the reaction started, a 10 mass% APS aqueous solution was continuously added at a rate of 22 gZ. During the reaction, 180 g of PPVE was charged each time when the amount of the above mixed monomer reached 25%, 50% and 75% by mass of the total amount of the supplied monomer. The above mixed monomer was continuously supplied so as to maintain the pressure in the system at 4.2 MPaG. 55 minutes after the start of polymerization, the addition of the 10 mass% APS aqueous solution was stopped, the stirring was stopped, the gas in the autoclave was released to normal pressure, and the polymerization reaction was completed. A part of the obtained latex was evaporated to dryness at 200 ° C. for 1 hour, and the polymer concentration was calculated based on the obtained solid content to be 20.2% by mass.
  • the emulsified dispersion is transferred to an autoclave with a stirrer having a capacity of 3000 L, and deionized water is added while stirring to make the polymer solid content concentration 10.0 mass%.
  • 40 kg of 60% nitric acid was added, and coagulation was carried out at a stirring speed of 40 rpm. After the solid phase and the liquid phase were separated, water was removed. After washing with deionized water, water was removed from the resulting white powder in a convection air oven at 170 ° C. for 20 hours to obtain a white powder.
  • sodium carbonate Na 2 CO 3
  • pellet-shaped FEP obtained in Synthesis Example 3 91 parts by mass of pellet-shaped FEP obtained in Synthesis Example 3 and 9 parts by mass of conductive filler (acetylene black) were added at a cylinder temperature of 330 ° C. The mixture was melt-kneaded at ⁇ 350 ° C. to obtain a pellet-shaped conductive FEP composition. Next, the pellet-shaped conductive FEP composition obtained in V. was heated at 150 ° C. for 24 hours.
  • conductive filler acetylene black
  • the surface resistance value of the rod cut out from the strand obtained by melt flow rate measurement is 10 5 ⁇ 'cmZcm, and the surface resistance value of the inner layer of the three-layer tube of Example 2 using this conductive FEP composition also 10 5 ⁇ 'cmZcm.
  • melt kneading is performed at a cylinder temperature of 290 ° C using a ⁇ 50mm short shaft extruder. Got a lett.
  • the surface resistance of the bar cut out from the strand obtained by melt flow rate measurement is 10 5 ⁇ 'cmZcm.
  • the two-layer tube of Comparative Example 1 using this conductive CTFE copolymer composition was used.
  • the surface resistance of the inner layer was also 10 5 ⁇ 'cmZcm.
  • a jacketed agitation polymerization tank capable of holding 174 kg of water was charged with 52.7 kg of demineralized pure water, the interior space was sufficiently replaced with pure nitrogen gas, and the nitrogen gas was then removed in vacuo.
  • 31.5 kg of perfluorocyclobutane and 123 g of perfluoro (1, 1, 5 trihydro 1 -pentene) [H2P] were charged, and the inside of the system was kept at 20 ° C and a stirring speed of 200 rpm.
  • press-fit with tetrafluoroethylene [TFE] to 0.78 MPa then press-fit with ethylene [Et] to 0.89 MPa, then bring the system to 35 ° C, and then into cyclo.
  • TFEZEt 57Z43 mol% was continuously supplied to keep the system pressure at 1.2 OMPa.
  • Perfluoro (1, 1, 5 trihydrone 1-pentene) [H2P] was continuously charged in a total amount of 0.85 kg, and the polymerization was stopped for 20 hours continuously. After releasing the pressure to return to atmospheric pressure, the obtained TFEZEtZH2P copolymer was washed with water and dried to obtain 30 kg of powder.
  • N 500 AW / ⁇ df (a)
  • Infrared absorption spectrum analysis was performed 40 scans using a Perkin-Elmer FT-1 Spectrometer 176 OX (manufactured by PerkinElmer Co.). The resulting IR ⁇ vector Per kin- Elmer Spectrum for windows Ver. 1. to determine the Besufu Dzu down automatically Te 4C for ⁇ , the absorbance was measured at the peak of 1810 ⁇ 1815cm _1. The film thickness was measured using a micrometer.
  • copolymers of Synthesis Examples 1, 2, and 6 were determined by 19 F-NMR and chlorine elemental analysis.
  • Copolymers of Synthesis Examples 3, 4, 5, 7 and THV-500 were determined by 19 F-NMR measurement.
  • the melting peak when the temperature was raised at a rate of 10 ° CZ was recorded, and the temperature corresponding to the maximum value was defined as the melting point (Tm).
  • the copolymer pellets used for each layer of the tube-shaped laminate are placed in a 120 mm diameter mold, set in a press machine heated to 300 ° C, and melt-pressed at a pressure of about 2.9 MPa.
  • a sheet having a thickness of 0.15 mm was obtained.
  • the mass change at 60 ° C was measured up to 1000 hours.
  • the fuel permeability coefficient (g′mm / m 2 / day) was calculated from the change in mass per hour, the sheet surface area at the wetted part, and the sheet thickness.
  • interlayer adhesion strength and fuel permeation coefficient were measured by the following methods.
  • NZcm This value is a value for a portion having a weakest interlayer adhesion (between layers) for a layer structure of three or more layers.
  • CM15 a mixture of isooctane and toluene in a volume ratio of 50:50.
  • the mixed fuel was added and sealed at 60 ° C for 1000 hours, and the adhesive strength (NZcm) was measured in the same manner as in (A) above to determine the adhesive strength after the fuel was charged.
  • a 15-cm long tube-shaped laminate was cut in half and dipped in CM15. At the same time, the tube was bent to a radius of 5 cm and taken out from CM15 after 10 minutes to observe the occurrence of cracks on the surface of the innermost layer.
  • the layer (C) is polyamide 12
  • the layer (B) is synthesis example 1
  • the layer (A) is synthesis example 4, which are supplied to three extruders, respectively. 3 types, 3 layers with an inner diameter of 6mm A multilayer tube was formed.
  • the layer (C) is polyamide 12, the layer (B) is synthesis example 2, and the layer (A) is synthesis example 5, which are supplied to three extruders. Three types and three layers of multilayer tubes with an inner diameter of 6 mm were formed.
  • Layer 2 (C) is made of polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG), layer (B ) was supplied to two extruders as Synthesis Example 2, and two types and two layers of multilayer tubes (a) having an outer diameter of 8 mm and an inner diameter of 6.42 mm were molded according to the extrusion conditions shown in Table 4.
  • polyamide 12 trade name: Vestamid X7297, manufactured by Degussa Huls AG
  • layer (B ) was supplied to two extruders as Synthesis Example 2, and two types and two layers of multilayer tubes (a) having an outer diameter of 8 mm and an inner diameter of 6.42 mm were molded according to the extrusion conditions shown in Table 4.
  • ETFE of Synthesis Example 7 was used as layer (A), and a single-layer tube (b) with an outer diameter of 6.4 mm and an inner diameter of 6. Omm was applied according to the extrusion conditions shown in Table 4 using a single-layer tube extruder. Molded.
  • the outer surface of the ETFE single-layer tube was surface-treated by sodium etching treatment, and a rod-shaped heating device was inserted inside the tube.
  • a single-layer tube (b) that has been subjected to a surface treatment with a heating device inserted into the previously formed multilayer tube (a) is inserted, and a synthesis example below the melting point of Synthesis Example 7 and an intermediate layer is inserted from the inside. Heating is performed while maintaining the temperature of the heating device at 240 ° C, which is equal to or higher than the melting point of 2.
  • the heating device is pulled out and the multilayer of the three-layer structure is formed. I got a tube.
  • layer (C) and layer (D) were polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG) ), Layer (B) as synthesis example 2 and layer (A) as synthesis example 8, respectively, and supplied to four extruders, and according to the extrusion conditions shown in Table 5, 4 layers with an outer diameter of 8 mm and an inner diameter of 6 mm A multilayer tube was formed.
  • Example 6 Four extruders with layer (C) and layer (D) as polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG), layer (B) as synthesis example 2, and layer (A) as synthesis example 9.
  • layer (C) and layer (D) as polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG)
  • layer (B) as synthesis example 2
  • layer (A) as synthesis example 9.
  • Table 5 a four-layer tube having an outer diameter of 8 mm and an inner diameter of 6 mm was formed.
  • Layer 5 (C) and Layer (D) were made of polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG) using 5 types and 5 layers of tube extrusion equipment (Plastic Engineering Laboratory) equipped with a multi-hold. ), Layer (B) as synthesis example 2, layer (A) as synthesis example 8, and further using the material of synthesis example 9 for antistatic in the innermost layer and feeding them to 5 extruders. According to the extrusion conditions shown in Table 5, a five-layered tube having an outer diameter of 8 mm and an inner diameter of 6 mm was formed.
  • Layer 2 (C) is made of polyamide 12 (trade name: Vestamid X7297, manufactured by Degussa Huls AG), layer (B ) was supplied to each of two extruders as Synthesis Example 6, and two types and two layers of multilayer tubes having an outer diameter of 8 mm and an inner diameter of 6 mm were formed according to the extrusion conditions shown in Table 3.
  • polyamide 12 trade name: Vestamid X7297, manufactured by Degussa Huls AG
  • layer (B ) was supplied to each of two extruders as Synthesis Example 6, and two types and two layers of multilayer tubes having an outer diameter of 8 mm and an inner diameter of 6 mm were formed according to the extrusion conditions shown in Table 3.
  • the layer (C) is polyamide 12 and the layer (A) is synthesis example 4 and supplied to two extruders, respectively. Depending on the extrusion conditions shown in Table 3, two types of multilayers with an outer diameter of 8 mm and an inner diameter of 6 mm are provided. A tube was formed.
  • Adhesive strength after fuel filling (N / cm) 31 32 32
  • the laminate of the present invention can be suitably used for, for example, an automobile fuel tube that requires both high fuel permeation resistance and fuel crack resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、高度の耐燃料透過性を有する積層体であって、耐燃料クラック性に優れた積層体を提供する。本発明は、含フッ素エチレン性重合体からなる層(A)、クロロトリフルオロエチレン共重合体からなる層(B)及びフッ素非含有有機材料(P)からなる層(C)を有する積層体であって、上記含フッ素エチレン性重合体は、1つの上記積層体において上記層(B)における上記クロロトリフルオロエチレン共重合体とは異なるものであり、上記層(A)、上記層(B)及び上記層(C)はこの順に積層していることを特徴とする積層体である。

Description

明 細 書
積層体
技術分野
[0001] 本発明は、積層体に関する。
背景技術
[0002] ガソリン等の燃料移送配管材としては、加工性、防鲭性、軽量化、経済性等の点から 、榭脂積層体を用いることが主流になりつつあるが、燃料蒸散規制の厳格化に伴い 、耐燃料透過性の向上に対する要請が大きくなつてきた。
[0003] 耐燃料透過性の榭脂積層体としては、ポリブチレンテレフタレート〔PBT〕、ポリブチレ ンナフタレート〔PBN〕、ポリエチレンテレフタレート〔PET〕及びポリエチレンナフタレ ート〔PEN〕カゝらなる群より選ばれた少なくとも 1種類を主成分とする層と PBTを主成 分とする層とを積層してなる榭脂製チューブ (例えば、特許文献 1参照。)や、ポリフエ 二レンサルファイド〔PPS〕を主成分とする榭脂層と PBTを主成分とする榭脂層とを含 む榭脂製チューブが開示されている (例えば、特許文献 2参照。 )0しかしながら、耐 熱性、耐薬品性、耐溶剤性等が不充分という問題があった。
[0004] 耐熱性、耐薬品性、耐溶剤性に優れた榭脂としてはフッ素榭脂があるが、フッ素榭脂 は、機械的強度や寸法安定性に劣り高価であるので、他の有機材料と積層すること が望ましい。
[0005] フッ素榭脂と他の有機材料との積層体であって耐燃料透過性を有するものとしては、 ポリアミド 12〔PA12〕からなる層、テトラフルォロエチレン〔TFE〕 Zパーフルォロ(メ チルビ-ルエーテル)〔PMVE〕共重合体からなる層、及び、エチレン ZTFE共重合 体〔ETFE〕に導電性を付与してなる層からなる 3層積層体、又は、 PA12からなる層 、 TFEZへキサフルォロプロピレン〔HFP〕共重合体〔FEP〕からなる層、及び、 ETF Eに導電性を付与してなる層からなる 3層積層体が提案されている(例えば、特許文 献 3参照。 )0し力しながら、近年、これらの 3層共重合体では得ることのできないより 高度の耐燃料透過性が求められるようになってきた。
[0006] 高度の耐燃料透過性を目的として、フッ素榭脂層と、フッ素非含有有機材料層との 積層体であって、該フッ素榭脂層として、クロ口トリフルォロエチレン〔CTFE〕共重合 体層と、 TFEZパーフルォロ(アルキルビュルエーテル)〔PAVE〕共重合体又は TF
EZHFPZPAVE共重合体との積層が接着機能性官能基を導入しなくても相溶性 による層間接着性により可能であることが開示されている (例えば、特許文献 4参照。
)。しカゝしながら、この積層体は、例えば燃料移送配管材として用いる際、場合により 最内層の耐燃料クラック性に劣る不都合がある。また、この積層体において、 CTFE 共重合体層を中間層とすることは開示されて 、な 、。
特許文献 1 :特開 2002— 213655号公報
特許文献 2:特開 2002 - 267054号公報
特許文献 3 :国際公開第 01Z18142号パンフレット
特許文献 4:特開 2004— 358959号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、上記現状に鑑み、高度の耐燃料透過性を有する積層体であって
、耐燃料クラック性に優れたものを提供することにある。
課題を解決するための手段
[0008] 本発明は、含フッ素エチレン性重合体力もなる層(A)、クロ口トリフルォロエチレン共 重合体からなる層 (B)及びフッ素非含有有機材料 (P)からなる層 (C)を有する積層 体であって、上記含フッ素エチレン性重合体は、 1つの上記積層体において上記層(
B)における上記クロ口トリフルォロエチレン共重合体とは異なるものであり、上記層( A)、上記層(B)及び上記層(C)はこの順に積層していることを特徴とする積層体で ある。
以下に本発明を詳細に説明する。
[0009] 本発明の積層体は、含フッ素エチレン性重合体力もなる層(A)、クロ口トリフルォロェ チレン〔CTFE〕共重合体からなる層(B)及びフッ素非含有有機材料 (P)からなる層(
C)を有する積層体である。
[0010] 本発明の積層体は、 CTFE共重合体からなる上記層(B)を有するものである。
[0011] 上記 CTFE共重合体としては、クロ口トリフルォロエチレン単位〔CTFE単位〕と、 CT FEと共重合可能な単量体〔A〕に由来する単量体〔A〕単位とから構成されるもの(以 下、「CTFE共重合体 (1)」ということがある。)であることが好ましい。
[0012] なお、本明細書にぉ 、て、ある単量体にっ 、ての「単位」とは、重合体の分子構造の 一部分であって、その単量体に由来する部分を意味する。例えば、上記「CTFE単 位」は、 CTFE共重合体の分子構造上、 CTFEに由来する部分〔一 CFC1— CF—〕
2 であり、上記「単量体〔A〕単位」は、同様に、 CTFE共重合体の分子構造上、単量体 〔A〕が付カ卩してなる部分である。本明細書において、各単量体単位についてのモル %は、共重合体の分子鎖を構成する単量体単位が由来することとなった単量体の合 計モル数を 100モル%とし、この 100モル%中に占める、各単量体単位が由来する こととなった単量体の割合である。
[0013] 上記単量体〔A〕は、 CTFEと共重合可能な単量体であれば特に限定されず、また、 1種であってもいし 2種以上であってもよいが、テトラフルォロエチレン〔TFE〕、ェチレ ン〔Et〕、フッ化ビ-リデン〔VdF〕、下記一般式 (i)
CX^^CX' CCF ) X2 (i)
2 n
(式中、 X1、 x3及び x4は、同一若しくは異なって、水素原子又はフッ素原子を表し、 X2は、水素原子、フッ素原子又は塩素原子を表し、 nは、 1〜10の整数を表す。)で 表されるフルォロォレフイン、
下記一般式 (ii)
CF =CF— ORf1 (ii)
2
(式中、 Rf1は、炭素数 1〜8のパーフルォロアルキル基を表す。)で表されるパーフ ルォロ(アルキルビュルエーテル)〔PAVE〕、
及び、下記一般式 (iii)
CF =CF-OCH -Rf2 (iii)
2 2
(式中、 Rf2は、炭素数 1〜5のパーフルォロアルキル基)で表されるアルキルパーフ ルォロビュルエーテル誘導体等が挙げられる。
[0014] 上記単量体〔A〕としては、 TFE、 Et、 VdF、上記一般式(i)で表されるフルォロォレ フィン、及び、上記一般式 (ii)で表される PAVEよりなる群力 選ばれる少なくとも 1つ であることが好ましい。 [0015] 上記単量体〔A〕は、上記一般式 (i)で表されるフルォロォレフインとして、上記一般式 (ii)で表される PAVEとして、及び Z又は、上記一般式 (iii)で表されるアルキルパー フルォロビニルエーテル誘導体として、それぞれ 1種又は 2種以上を組み合わせて用 いることがでさる。
[0016] 上記一般式 (i)で表されるフルォロォレフインとしては特に限定されないが、例えば、 へキサフルォロプロピレン〔HFP〕、パーフルォロ(1, 1, 2—トリハイドロー 1一へキセ ン)、パーフルォロ(1, 1, 5—トリハイド口— 1—ペンテン)、下記一般式 (iv)
H C = CX5Rf3 (iv)
2
(式中、 X5は、 H、 F又は CFであり、 Rf3は、炭素数 1〜10のパーフルォロアルキル
3
基である)で表されるパーフルォロ(アルキル)エチレン等が挙げられる。
上記パーフルォロ(アルキル)エチレンとしては、パーフルォロ(ブチル)エチレンが好 ましい。
[0017] 上記一般式 (ii)で表される PAVEとしては、パーフルォロ(メチルビ-ルエーテル)〔P MVE]、パーフルォロ(ェチルビ-ルエーテル) [PEVE]、パーフルォロ(プロピルビ -ルエーテル)〔PPVE〕、パーフルォロ(ブチルビ-ルエーテル)等が挙げられ、なか でも、 PMVE、 PEVE又は PPVEがより好ましい。
[0018] 上記一般式 (iii)で表されるアルキルパーフルォロビュルエーテル誘導体としては、 R f2が炭素数 1〜3のパーフルォロアルキル基であるものが好ましぐ CF =CF— OC
2
H— CF CFがより好ましい。
2 2 3
[0019] 上記単量体〔A〕としては、また、 CTFEと共重合可能な不飽和カルボン酸類を用い てもよい。
[0020] 上記不飽和カルボン酸類としては特に限定されず、例えば、(メタ)アクリル酸、クロト ン酸、マレイン酸、フマル酸、ィタコン酸、シトラコン酸、メサコン酸、アコニット酸等の 炭素数 3〜6の不飽和脂肪族カルボン酸類等が挙げられ、炭素数 3〜6の不飽和脂 肪族ポリカルボン酸類であってもよ 、。
[0021] 上記不飽和脂肪族ポリカルボン酸類としては特に限定されず、例えば、マレイン酸、 フマル酸、ィタコン酸、シトラコン酸、メサコン酸、アコニット酸等が挙げられ、マレイン 酸、ィタコン酸、シトラコン酸等の酸無水物が可能であるものは酸無水物であってもよ い。
[0022] 上記単量体〔A〕は、 2種以上であってもよいが、そのうちの 1種が VdF、 PAVE及び Z又は HFPである場合、ィタコン酸、シトラコン酸及びそれらの酸無水物と併用しなく てもよい。
[0023] 上記 CTFE共重合体(I)としては、 CTFE単位 2〜98モル0 /0と、単量体〔A〕単位 98
〜2モル0 /0と力も構成されるものがより好ましい。
[0024] 本発明にお 、て、 CTFE共重合体における上記単量体〔A〕単位の割合は、 19F— N
MR等の分析により得られる値であり、具体的には、 NMR分析、赤外分光光度計 [I
R]、元素分析、蛍光 X線分析をモノマーの種類により適宜組み合わせて得られる値 である。
[0025] 本発明にお 、て、 CTFE共重合体は、 CTFE単位、テトラフルォロエチレン単位 [TF E単位〕、並びに、 CTFE及び TFEと共重合可能な単量体 (M)に由来する単量体( M)単位カゝら構成される CTFE共重合体 (以下、「CTFE共重合体 (Π)」と ヽぅことがあ る。)であることがより好ましい。
[0026] 本明細書にぉ 、て、上記「TFE単位」は、 CTFE共重合体 (Π)の分子構造上、テトラ フルォロエチレンに由来する部分〔一 CF -CF一〕であり、上記「単量体 (M)単位」
2 2
は、同様に、 CTFE共重合体の分子構造上、単量体 (M)が付加してなる部分である
[0027] 上記単量体 (M)は、 CTFE及び TFEと共重合性を有するものであれば特に限定さ れず、例えば、上述した単量体〔A〕として例示した TFE以外のもの等が挙げられる。
[0028] 上記単量体(M)は、 Et、 VdF、上記一般式 (i)で表されるフルォロォレフイン、及び、 上記一般式 (ii)で表される PAVEよりなる群力 選ばれる少なくとも 1つであることが 好ましい。
[0029] 上記 CTFE共重合体(II)にお!/、て、 CTFE単位及び上記 TFE単位は、合計で 90〜 99. 9モル0 /0であり、上記単量体(M)単位は、 10〜0. 1モル0 /0であることが好ましい 。上記単量体 (M)単位が 0. 1モル%未満であると、成形性、耐環境応力割れ性及 び耐燃料クラック性に劣りやすぐ 10モル%を超えると、薬液低透過性、耐熱性、機 械特性に劣る傾向にある。 [0030] 上記単量体(M)力 SPAVEである場合、上記単量体(M)単位のより好まし!/、下限は、 0. 5モル0 /0、より好ましい上限は、 5モル0 /0である。
[0031] 本発明の CTFE共重合体における上記単量体(M)単位の割合は、 19F— NMR等 の分析により得られる値であり、具体的には、 NMR分析、赤外分光光度計 [IR]、元 素分析、蛍光 X線分析をモノマーの種類により適宜組み合わせて得られる値である。
[0032] 本明細書において、(1)、(Π)の符号を付さず、単に「CTFE共重合体」という場合、 CTFE共重合体 (I)、 CTFE共重合体 (Π)の 、ずれも含む概念で用いる。
[0033] 上記層(B)を構成する CTFE共重合体としては 2元共重合体であってもよ ヽし 3元以 上の共重合体であってもよぐ例えば、 2元共重合体としては、 CTFEZTFE共重合 体、 CTFEZPAVE共重合体、 CTFEZVdF共重合体、 CTFEZHFP共重合体等 が挙げられ、 3元以上の共重合体としては、 CTFEZTFEZHFP共重合体、 CTFE
ZTFEZvdF共重合体、 CTFEZTFEZPAVE共重合体、 CTFEZTFEZHFP
ZPAVE共重合体、 CTFEZTFEZVdFZPAVE共重合体等が挙げられ、なかで も、 CTFEZTFEZPAVE共重合体が好ましい。
[0034] 上記 CTFE共重合体としては、 CTFEと、 Et及び Z又はフッ素含有単量体との共重 合体であってもよぐ該共重合体組成を有する CTFE共重合体としては、例えば、 C TFEZEt共重合体、 CTFEZTFEZEt共重合体、 CTFEZTFEZEtZPAVE共 重合体等が挙げられる。
[0035] 上記 CTFE共重合体は、榭脂、エラストマ一の何れを構成するポリマーであってもよ いが、好ましくは、榭脂を構成するものである。
[0036] 上記 CTFE共重合体は、溶液重合、乳化重合、懸濁重合等の従来公知の重合方法 により得ることができるが、工業的には、懸濁重合により得たものであることが好ましい
[0037] 上記 CTFE共重合体としては、融点〔Tm〕が 150〜280°Cであるものが好ましい。よ り好ましい下限は 160°C、更に好ましい下限は 170°C、特に好ましい下限は 190°C、 より好ましい上限は 260°Cである。
上記 Tmは、示差走査熱量計〔DSC〕を用いて 10°CZ分の速度で昇温したときの融 解ピークに対応する温度である。 [0038] 上記 CTFE共重合体としては、加熱試験に供した CTFE共重合体の 1質量%が分解 する温度〔Tx〕が 370°C以上であるものが好ましい。より好ましい下限は 380°C、更に 好ましい下限は、 390°Cである。上記熱分解温度〔Tx〕は、上記範囲内であれば、上 限を例えば 450°Cとすることができる。
[0039] 上記熱分解温度〔Tx〕は、示差熱 ·熱重量測定装置〔TG— DTA〕を用いて加熱試 験に供した CTFE共重合体の質量が 1質量%減少する時の温度を測定することによ り得られる値である。
[0040] 上記 CTFE共重合体としては、上記融点〔Tm〕と、 CTFE共重合体の 1質量%が分 解する温度〔Tx〕との差〔Tx—Tm〕が 130°C以上であることが好ましい。 130°C未満 であると、成形可能な範囲が狭すぎて成形条件の選択の幅が小さくなる。上記 CTF E共重合体は、成形可能な温度範囲が上述のように広いので、共押出成形を行う場 合、相手材として高融点ポリマーを用いることができる。
[0041] 上記 CTFE共重合体は、 320°C未満の温度にて溶融成形あるいは加熱処理をする 場合、接着機能性官能基を有するものが好ましい。本明細書において、上記「接着 機能性官能基」とは、上記 CTFE共重合体に含まれる重合体の分子構造の一部分 であって、上記 CTFE共重合体からなる層(B)と層(B)に隣接する層との接着に関 与し得るものを意味する。上記接着機能性官能基は、このような接着に関与し得るも のであれば、官能基と通常称されるもののみならず、エーテル結合等の結合と通常 称される構造をも含む概念である。
[0042] 上記接着機能性官能基としては、層 (B)と層 (B)に隣接する層との接着に関与し得 るものであれば特に限定されず、例えば、カルボニル基、ヒドロキシル基、アミノ基等 が挙げられる。
[0043] 本明細書において、上記「カルボニル基」は、炭素 酸素二重結合から構成される 炭素 2価の基であり、—C ( = 0)—で表されるものに代表される。上記カルボニル基 としては特に限定されず、例えば、カーボネート基、ハロゲノホルミル基、ホルミル基、 カルボキシル基、エステル結合 [ C ( = O) O ]、酸無水物結合 [ C ( = O) O C ( = 0)―]、イソシァネート基、アミド基、イミド基 [― C ( = 0)— NH— C ( = 0)— ]、ゥ レタン結合 [― NH— C ( = 0) 0— ]、力ルバモイル基 [NH— C ( = O) ]、カルバモ ィルォキシ基 [NH— C ( = 0) 0 ]、ウレイド基 [NH— C ( = 0)— NH ]、ォキサ
2 2
モイル基 [NH -C ( = 0) -C ( = 0) ]等の化学構造上の一部分であるもの等が
2
挙げられる。
[0044] 上記アミド基は、下記一般式
[0045] [化 1]
Figure imgf000009_0001
[0046] (式中、 R2は、水素原子又は有機基を表し、 R3は、有機基を表す。 )で表される基で ある。
[0047] 上記アミド基、イミド基、ウレタン結合、力ルバモイル基、力ルバモイルォキシ基、ウレ イド基、ォキサモイル基等の窒素原子に結合する水素原子は、例えばアルキル基等 の炭化水素基により置換されて 、てもよ 、。
[0048] 上記接着機能性官能基は、導入が容易である点、及び、得られる塗膜が適度な耐熱 性と比較的低温での良好な接着性とを有する点で、アミド基、力ルバモイル基、ヒドロ キシル基、カルボキシル基、カーボネート基が好ましぐなかでも、カーボネート基が より好まし 、。
[0049] 上記カーボネート基は、一般に [ OC ( = 0) 0 ]で表される結合を有する基であり 、— OC ( = 0) 0— R基 (式中、 Rは、有機基を表す。)で表されるものである。上記式 中の Rである有機基としては、例えば、炭素数 1〜20のアルキル基、エーテル結合を 有する炭素数 2〜20のアルキル基等が挙げられ、好ましくは炭素数 1〜8のアルキル 基、エーテル結合を有する炭素数 2〜4のアルキル基等である。上記カーボネート基 としては、例えば、 OC ( = 0) 0— CH 、 一 OC ( = 0) 0— C H 、 一 OC ( = 0) 0
3 3 7
— C H 、— OC ( = 0) 0— CH CH CH OCH CH等が挙げられる。
8 17 2 2 2 2 3
[0050] 上記 CTFE共重合体は、接着機能性官能基を有するものである場合、接着機能性 官能基を主鎖末端又は側鎖の何れかに有する重合体力 なるものであってもよいし 、主鎖末端及び側鎖の両方に有する重合体からなるものであってもよい。主鎖末端 に接着機能性官能基を有する場合は、主鎖の両方の末端に有していてもよいし、い ずれか一方の末端にのみ有していてもよい。上記 CTFE共重合体は、上記接着機 能性官能基を主鎖末端及び Z若しくは側鎖に有するとともに又はこれらに代え、接 着機能性官能基がエーテル結合等の結合と通常称される構造である場合、該接着 機能性官能基を主鎖中に有するものであってもよい。上記 CTFE共重合体は、主鎖 末端に接着機能性官能基を有する重合体からなるものが、機械特性、耐薬品性を著 しく低下させない理由で、又は、生産性、コスト面で有利である理由で好ましい。
[0051] 上記 CTFE共重合体は、側鎖に接着機能性官能基を有する重合体からなるもので ある場合、接着機能性官能基含有単量体を、 CTFEと単量体〔A〕、又は、 CTFEと T FE、単量体 (M)とを共重合させることにより得ることができる。本明細書において、上 記「接着機能性官能基含有単量体」とは、接着機能性官能基を有する重合可能な単 量体を意味する。上記接着機能性官能基含有単量体はフッ素原子を有して!/ヽてもよ いし有していなくてもよいが、上述した単量体〔A〕及び単量体 (M)は、接着機能性 官能基を有しないものであり、この点で、接着機能性官能基を有する接着機能性官 能基含有単量体とは概念上区別される。
[0052] 接着機能性官能基含有単量体としては、下記一般式 (V)
CX6 =CY1- (Rf4) — Z1 (v)
2 n
(式中、 z1は、ヒドロキシル基、カルボ-ル基又はアミノ基を有する官能基を表し、 X6 及び Y1は、同一又は異なって、水素原子若しくはフッ素原子を表し、 Rf4は、炭素数 1〜40のアルキレン基、炭素数 1〜40の含フッ素ォキシアルキレン基、エーテル結 合を有する炭素数 1〜40の含フッ素アルキレン基、又は、エーテル結合を有する炭 素数 1〜40の含フッ素ォキシアルキレン基を表し、 nは、 0又は 1を表す。)で表される 不飽和化合物が好ましい。本明細書において、上記「ヒドロキシル基、カルボニル基 又はアミノ基を有する官能基」とは、ヒドロキシル基であってもよいし、カルボニル基で あってもよいし、ァミノ基であってもよいし、これらの接着機能性官能基の何れかを有 する官能基であってもよ 、ことを意味する。
[0053] 上記接着機能性官能基含有単量体としては、例えば、カルボ二ル基を有する官能基 である場合、パーフルォロアクリル酸フルオライド、 1 フルォロアクリル酸フルオラィ ド、アクリル酸フルオライド、 1 トリフルォロメタクリル酸フルオライド、パーフルォロブ テン酸等のフッ素を有する単量体;アクリル酸クロライド、ビ-レンカーボネート等のフ ッ素を有さな 、単量体が挙げられる。
[0054] 上記接着機能性官能基含有単量体としては、更に、不飽和カルボン酸類が挙げられ る。本明細書において、上記接着機能性官能基含有単量体としての上記不飽和力 ルボン酸類とは、共重合を可能にする炭素 炭素不飽和結合 (以下、「共重合性炭 素 炭素不飽和結合」ともいう。)を 1分子中に少なくとも 1個有し、且つ、カルボニル ォキシ基 [― C ( = 0)— O ]を 1分子中に少なくとも 1個有するものが好ま 、。
[0055] 上記不飽和カルボン酸類としては、例えば、脂肪族不飽和カルボン酸及びその酸無 水物が挙げられる。上記脂肪族不飽和カルボン酸としては、脂肪族不飽和モノカル ボン酸であってもよ!/、し、カルボキシル基を 2個以上有する脂肪族不飽和ポリカルボ ン酸であってもよい。
[0056] 上記脂肪族不飽和モノカルボン酸としては、例えば、プロピオン酸、アクリル酸、メタ クリル酸、クロトン酸、それらの酸無水物等、炭素数 3〜20の脂肪族モノカルボン酸 等が挙げられる。上記脂肪族不飽和ポリカルボン酸としては、マレイン酸、フマル酸、 メサコン酸、シトラコン酸〔CAC〕、ィタコン酸、アコニット酸、無水ィタコン酸〔IAH〕及 び無水シトラコン酸〔CAH〕等が挙げられる。
[0057] 接着機能性官能基のうち主鎖末端にあるもの(以下、「不安定末端基」ということがあ る)としては、カーボネート基、 COF、 一 COOH、 一 COOCH 、 一 CONH、又は
3 2
、 一 CH OH等が挙げられる。上記不安定末端基は、通常、連鎖移動剤又は重合時
2
に用いた重合開始剤が付加したことにより主鎖末端に形成されるものであり、連鎖移 動剤又は重合開始剤の構造に由来するものである。
[0058] 上記 CTFE共重合体は、主鎖末端に接着機能性官能基を有する重合体であって、 上記接着機能性官能基がカーボネート基である重合体力 なるものである場合、パ 一ォキシカーボネートを重合開始剤として用いて重合する方法により得ることができ る。上記方法を用いると、カーボネート基の導入及び導入の制御が非常に容易であ ることや、経済性の面、耐熱性、耐薬品性等の品質面等力も好ましい。
[0059] 上記パーォキシカーボネートとしては、下記式
[0060] [化 2]
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
R—— O—— R6— O—— C—— O—— O—— C—— 0 ~~ E6-0 ~ R5
II II
o o
[0061] (式中、 R4及び R5は、同一又は異なって、炭素数 1〜15の直鎖状若しくは分岐状の 一価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数 1〜15の直鎖 状若しくは分岐状の一価飽和炭化水素基を表し、 R6は、炭素数 1〜15の直鎖状若し くは分岐状の二価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数 1 〜15の直鎖状若しくは分岐状の二価飽和炭化水素基を表す。)で表される化合物 が好ましい。
[0062] なかでも、上記パーォキシカーボネートとしては、ジイソプロピルパーォキシカーボネ ート、ジー n プロピルパーォキシジカーボネート、 t ブチルパーォキシイソプロピ ルカーボネート、ビス(4 tーブチルシクロへキシル)パーォキシジカーボネート、ジ 2—pェチルへキシルバーォキシジカーボネート等が好まし!/、。
[0063] 上記 CTFE共重合体は、主鎖末端に接着機能性官能基を有する重合体であって、 上記接着機能性官能基がカーボネート基以外である重合体力 なるものである場合 、上述のカーボネート基を導入する場合と同様に、パーォキシカーボネート、バーオ キシジカーボネート、パーォキシエステル、パーォキシアルコール等のパーォキサイ ドを重合開始剤として用いて重合することにより、パーオキサイドに由来する接着機 能性官能基を導入することができる。なお、「パーオキサイドに由来する」とは、パー オキサイドに含まれる官能基から直接導入されるか、又は、パーオキサイドに含まれ る官能基から直接導入された官能基を変換することにより間接的に導入されることを 意味する。
[0064] パーォキシカーボネート、パーォキシエステル等の上記重合開始剤の使用量は、目 的とするフッ素榭脂の種類や組成、分子量、重合条件、使用する開始剤の種類等に よって異なる力 得られる重合体 100質量部に対して 0. 05〜5質量部であることが 好ましぐ特に好ましい下限は 0. 1質量部であり、特に好ましい上限は 1質量部であ る。
[0065] 上記接着機能性官能基の数は、積層する相手材の種類、形状、接着の目的、用途、 必要とされる接着力、 CTFE共重合体力もなる層(B)と隣接する層、例えば後述する 層 (A)、との接着方法等の違いにより適宜選択されうる。
[0066] 不安定末端基数としては、 320°C未満の成形温度にて溶融成形する場合、主鎖炭 素数 1 X 106個あたり 3〜800個であることが好ましい。主鎖炭素数 1 X 106個あたり 3 個未満であると、接着性が低下することがある。より好ましい下限は 50個、更に好まし い下限は 80個、特に好ましい下限は 120個である。 320°C未満の成形温度にて溶 融成形する場合、上記不安定末端基数は、上記範囲内であれば、生産性の観点で 、上限を、例えば、 500個とすることができる。
[0067] 上記不安定末端基の数は、上記 CTFE共重合体の粉末を融点より 50°C高い成形温 度、 5MPaの成形圧力にて圧縮成形することにより得られる厚み 0. 25〜0. 30mm のフィルムシートを、赤外分光光度計 [IR]を用いて赤外吸収スペクトル分析し、既知 のフィルムの赤外吸収スペクトルと比較して種類を決定し、その差スペクトルカゝら次式 により算出する個数である。
末端基の個数 (上記炭素数 1 X 106個あたり) = (l X K) Zt
1 :吸光度
K :補正係数
t:フィルム厚 (mm) 対象となる末端基の補正係数を表 1に示す。
[0068] [表 1]
Figure imgf000014_0001
[0069] 表 1の補正係数は主鎖炭素数 1 X 106個あたりの末端基を計算するためにモデルィ匕 合物の赤外吸収スペクトル力 決定する値である。
[0070] 上記 CTFE共重合体は、充填剤、顔料、導電性材料、熱安定剤、補強剤、紫外線吸 収剤等の添加剤を含有したものであってもよいし、ゴムである場合、架橋剤、受酸剤
、加硫剤、加硫促進剤、硬化触媒等の添加剤を含有したものであってもよい。
[0071] 本発明の積層体は、層(Β)に上記 CTFE共重合体を用いているので、該層(Β)を接 着層として用いることができ、また、優れた耐燃料透過性を達成することができたもの である。
[0072] 本発明の積層体は、含フッ素エチレン性重合体力もなる層(Α)を有するものである。
[0073] 上記含フッ素エチレン性重合体は、フッ素原子を少なくとも 1つ以上有し、フッ素含有 エチレン性単量体に由来する繰り返し単位を有する重合体である。
[0074] 本発明における含フッ素エチレン性重合体の好ましい例としては、含フッ素エチレン 性重合体の主鎖が下記の単量体単位からなる重合体 (III)〜 (V)等を挙げることが できる。
(III)少なくとも、 TFE単位、及び、下記一般式 (vi)
CF =CF-Rf5 (vi)
2
(式中、 Rf5は、 CF又は ORf6を表し、 Rf6は、炭素数 1〜5のパーフルォロアルキル
3
基を表す。 )で表されるパーフルォロ単量体に由来するパーフルォロ単量体単位か らなる共重合体。上記パーフルォロ単量体単位は、 1種であってもよいし、 2種以上 であってもよい。
(IV)少なくとも、 TFE単位及びエチレン単位〔Et単位〕からなる共重合体。 (V)少なくとも、フッ化ビ-リデン単位〔VdF単位〕からなる共重合体。
[0075] なお、上記共重合体 (III)は、少なくとも、 TFE単位及び上記一般式 (vi)で表される パーフルォロ単量体に由来するパーフルォロ単量体単位を有する共重合体であれ ば、 Et単位や VdF単位を有するものであってもよぐ従って、上記共重合体 (IV)及 び Z又は共重合体 (V)を含み得る概念である。同様に、上記共重合体 (IV)は共重 合体 (III)及び Z又は共重合体 (V)を含み得る概念であり、上記共重合体 (V)は共 重合体 (III)及び Z又は共重合体 (IV)を含み得る概念である。
[0076] 上記共重合体 (ΠΙ)としては、例えば、
(III— I)TFE単位 70〜95モル0 /0、好ましくは 85〜93モル0 /0、 HFP単位 5〜30モル %、好ましくは 7〜 15モル%の共重合体、
(ΠI—Π)TFE単位70〜95モル%、下記一般式 (vii)
CF =CF— ORf7 (vii)
2
(式中、 Rf7は、炭素数 1〜5のパーフルォロアルキル基を表す。)で表されるパーフ ルォロ(アルキルビュルエーテル)単位〔PAVE単位〕の 1種又は 2種以上との合計 5 〜30モル%力 なる共重合体、
(ΠI—ΠI)TFE単位70〜95モル%、 HFP単位と上記一般式 (vii)で表される PAVE 単位の 1種又は 2種以上との合計が 5〜30モル%の共重合体、
等が挙げられる。
[0077] 上記 PAVE単位は、 1種であってよいし、 2種以上であってもよい。
上記共重合体 (ΠΙ)としては特に限定されず、例えば、 1種又は 2種以上組み合わせ て用いることができる。
[0078] 上記共重合体 (IV)としては、例えば、 TFE単位 20モル%以上力もなる重合体が挙 げられ、このようなものとしては、例えば、 TFE単位 20〜80モル0 /0、 Et単位 20〜80 モル%及びこれらと共重合可能な単量体に由来する単位 0〜60モル%力 なる共重 合体等が挙げられる。
[0079] 上記共重合可能な単量体としては、例えば、下記一般式 (viii)
CX9X10=CX7 (CF ) X8 (viii)
2 n
(式中、 x7、 x9及び x1C)は、同一若しくは異なって、水素原子又はフッ素原子を表し、 X8は、水素原子、フッ素原子又は塩素原子を表し、 nは、 1〜10の整数を表す。)で 表されるフルォロォレフイン、下記一般式 (ix)
CF =CF-ORf8 (ix)
2
(式中、 Rf8は、炭素数 1〜5のパーフルォロアルキル基を表す。)で表される PAVE、 等が挙げられ、これらの 1種又は 2種以上を用いてもょ 、。
[0080] 上記共重合体 (IV)としては、なかでも、上記一般式 (viii)で表されるフルォロォレフ インに由来するフルォロォレフイン単位及び Z又は上記一般式 (ix)で表される PAV
Eに由来する PAVE単位の合計 0〜60モル0 /0、 TFE単位 20〜80モル0 /0、並びに、
Et単位 20〜80モル0 /0力もなる共重合体が好ましい。
[0081] このような共重合体としては、例えば
(IV -I) TFE単位 30〜70モル%、 Et単位 20〜55モル%及び上記一般式 (viii)で 表されるフルォロォレフインに由来するフルォロォレフイン単位 0〜 10モル0 /0からなる 共重合体、
(IV— II)TFE単位 30〜70モル%、 Et単位 20〜55モル%、 HFP単位 1〜30モル %及びこれらと共重合可能な単量体に由来する単位 0〜: L0モル%からなる共重合 体、
(IV— m)TFE単位 30〜70モル%、 Et単位 20〜55モル%及び上記一般式(ix)で 表される PAVEに由来する PAVE単位 0〜10モル%カ なる共重合体、
等が挙げられる。上記共重合体 (IV— Π)における共重合可能な単量体は、 HFPを 含まない。
[0082] 上記共重合体 (IV)を構成する上記共重合可能な単量体に由来する単位は、上記 一般式 (viii)で表されるフルォロォレフインに由来するフルォロォレフイン単位及び Z又は上記一般式 (ix)で表される PAVEに由来する PAVE単位である場合を含め 、上記共重合体 (IV)に含まれていてもよいし、含まれていなくてもよい。
[0083] 上記共重合体 (V)としては、例えば、 VdF単位 10モル%以上力もなる重合体が挙げ られ、そのようなものとしては、例えば、 VdF単位 15〜: L00モル0 /0、 TFE単位 0〜85 モル0 /0、並びに、 HFP単位及び Z又はトリクロ口フルォロエチレン単位の合計 0〜30 モル%カもなる共重合体等が好ま U、。 [0084] 上記共重合体 (V)としては、例えば
(V-I)フッ化ビ-リデン単独重合体 (本明細書にぉ 、てポリフッ化ビ-リデン〔PVdF 〕ということがある。)、
(V— II) VdF単位 30〜99モル0 /0、及び、 TFE単位 1〜70モル0 /0力らなる共重合体
(V— III) VdF単位 10〜90モル0 /0、 TFE単位 0〜90モル0 /0、及び、トリクロ口フルォ 口エチレン単位 0〜30モル0 /0力 なる共重合体、
(V— IV) VdF単位 10〜90モル0 /。、 TFE単位 0〜90モル0 /。、及び、 HFP単位 0〜3 0モル%カ なる共重合体、
等が挙げられる。
[0085] 上記(V—IV)の共重合体としては、 VdF単位 15〜84モル%、 TFE単位 15〜84モ ル%、及び、 HFP単位 0〜30モル%力 なる共重合体が好ましい。
[0086] なお、上記共重合体 (ΠΙ)〜 (V)を構成する単量体単位のうち、各種共重合体にお いて 0モル%であり得るものは、いずれも上記共重合体に含まれていてもよいし、含ま れていなくてもよい。
[0087] 上記層(A)における含フッ素エチレン性重合体は、 CTFE共重合体であってもよ ヽ 力 1つの積層体において上記層(B)における CTFE共重合体とは異なるものである
[0088] 上記含フッ素エチレン性重合体は、耐燃料クラック性に優れる点で、 TFEに由来す る TFE単位を有する重合体であることが好ま 、。
[0089] 上記含フッ素エチレン性重合体としては、 2種以上を組み合わせて用いることができ る。 2種以上を組み合わせて用いる場合、該 2種以上の含フッ素エチレン性重合体は 相互に相溶性が良いので、溶融により混合して明確な境界がない層を形成すること ができ層間剥離が生じず、混合量比は、この層全体として好ましい燃料透過係数と 好まし 、融点とを有するように調整する。
[0090] 本発明の積層体における層(A)は、上記含フッ素エチレン性重合体を 2種以上用い る場合、用いる重合体の各種類を予め混合することなぐ共押出機に投入して積層 体を作製したり、別々に作製した層を積み重ねて熱溶融したりすることにより、上述の 接着機能性官能基を導入しなくても、相溶性によって層 (A)内の各層間接着性に優 れたちのとすることができる。
[0091] 本発明の積層体における層(A)は、上記含フッ素エチレン性重合体を 2種以上用い る場合、また、用いる重合体の各種類を予め混合してポリマーァロイを調整したのち
、形成したものであってもよい。
[0092] 上記含フッ素エチレン性重合体は、上述した接着機能性官能基を主鎖末端に有し ていてもよいし、側鎖に有していてもよい。
[0093] 本発明の含フッ素エチレン性重合体における上記単量体単位の割合は、 19F— NM
R分析、赤外分光光度計 [IR]、元素分析、蛍光 X線分析をモノマーの種類により適 宜組み合わせて得られる値である。
[0094] 上記含フッ素エチレン性重合体の融点としては、 130〜280°Cが好ましぐ上記 CTF
E共重合体と、フッ素非含有有機材料 (P)との共押出成形を容易にする観点で、 15
0〜280°Cであることがより好まし!/、。
上記 TFE系重合体の融点は、示差走査熱量計〔DSC〕を用い、 10°CZ分の速度で 昇温したときの融解ピークに対応する温度である。
[0095] 上記含フッ素エチレン性重合体は、榭脂、エラストマ一の何れを構成するポリマーで あってもよいが、好ましくは、榭脂を構成するものである。
[0096] 上記含フッ素エチレン性重合体は、溶液重合、乳化重合、懸濁重合等の従来公知 の重合方法により得ることができる力 工業的には、懸濁重合により得たものであるこ とが好ましい。
[0097] 本発明の積層体における層(A)は、上述の含フッ素エチレン性重合体と、更に、導 電性フイラ一とからなることが好ま 、。
[0098] 上記導電性フイラ一としては特に限定されず、例えば、金属、炭素等の導電性単体 粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉 末等が挙げられる。
[0099] 上記導電性単体粉末又は導電性単体繊維としては特に限定されず、例えば、銅、二 ッケル等の金属粉末;鉄、ステンレス等の金属繊維;カーボンブラック、炭素繊維、特 開平 3— 174018号公報等に記載の炭素フィブリル等が挙げられる。 [0100] 上記表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面 に導電化処理を施して得られる粉末である。上記導電化処理の方法としては特に限 定されず、例えば、金属スパッタリング、無電解メツキ等が挙げられる。上述した導電 性フイラ一のなかでもカーボンブラックは、経済性ゃ静電荷蓄積防止の観点で有利 であるので好適に用いられる。
[0101] 上記含フッ素エチレン性重合体に上記導電性フィラーを配合する場合、溶融混練し て予めペレットを作製することが好まし 、。
[0102] ペレット作製時における溶融混練後のペレット加熱条件としては、含フッ素エチレン 性重合体のガラス転移点以上、含フッ素エチレン性重合体の融点未満の温度で行う ことが一般的であり、通常、 130〜200°Cにおいて、 1〜48時間行うことが好ましい。 予めペレットを作製することにより、得られる層(A)における含フッ素エチレン性重合 体に導電性フィラーを均一に分散させ、導電性を均質に付与することができる。
[0103] 上記導電性フィラーの配合量としては、含フッ素エチレン性重合体の種類、積層体 に要求される導電性能、成形条件等に基づいて適宜決められるが含フッ素エチレン 性重合体 100質量部に対して 1〜30質量部であることが好ましい。より好ましい下限 は 5質量部、より好ましい上限は、 20質量部である。
[0104] 上記含フッ素エチレン性重合体に導電性フィラーを配合してなる含フッ素エチレン性 重合体導電性組成物の表面抵抗値は、 1 X 10〜1 X 109Ω 'cmであることが好まし い。より好ましい下限は、 1 Χ 102Ω ·«ηであり、より好ましい上限は、 l X 108 Q -cm である。
[0105] 本明細書において、上記「含フッ素エチレン性重合体導電性組成物の表面抵抗値」 は、上記導電性フィラーと含フッ素エチレン性重合体とを溶融混練して得られたペレ ットをメルトインデクサ一に投入し、上記メルトインデクサ一中で 200〜400°Cの任意 の温度で加熱して、押出して得られた押出しストランドの表面抵抗値を、電池式絶縁 抵抗計を用いて測定して得られる値である。
[0106] 本発明における層(A)は、上記導電性フィラーのほか、本発明の目的を損なわない 範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の 各種添加剤を添加してなるものであってもよい。層(A)は、このような添加剤により、 熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が向上したものとすること ができる。
[0107] 本発明の積層体は、フッ素非含有有機材料 (P)からなる層(C)を有するものである。
[0108] 上記フッ素非含有有機材料 (P)とは、フッ素原子を含まな!/、有機材料である。上記フ ッ素非含有有機材料 (P)は、層 (A)及び層 (B)と共押出可能な榭脂であることが好 ましい。
[0109] 層(C)及び後述の層(D)は、本発明の積層体が上述の層(A)及び層 (B)を有するも のであるので、耐燃料透過性に優れたものでなくとも、積層体全体として高度の耐燃 料透過性を達成することができる点で、耐燃料透過性に優れたものである必要はな いが、層 (C)のフッ素非含有有機材料 (P)及び後述の層 (D)のフッ素非含有有機材 料 (Q)として、耐燃料透過性を有する榭脂を用いることを排除するものではないし、 耐燃料透過性を有する榭脂を用いることが好まし ヽ。
[0110] 上記フッ素非含有有機材料 (P)として用い得る耐燃料透過性を有する榭脂としては 、結晶化度が高いポリマー力もなる榭脂であることが好ましぐ結晶化度が高ぐかつ 、極性官能基を有し分子間力が大きいポリマー力もなる榭脂であることがより好ましい
[0111] 上記極性官能基は、極性を有し、層 (C)と隣接する層との接着に関与し得る官能基 である。上記極性官能基は、 CTFE共重合体が有するものとして上述した接着機能 性官能基と同じ官能基であってもよ 、が、異なる官能基であってもよ 、。
上記極性官能基としては特に限定されず、例えば、接着機能性官能基として上述し たもののほか、シァノ基、スルフイド基等が挙げられ、なかでも、カルボニルォキシ基、 シァノ基、スルフイド基、ヒドロキシル基が好ましぐヒドロキシル基がより好ましい。
[0112] 上記フッ素非含有有機材料 (P)としては、ポリアミド系榭脂、ポリオレフイン系榭脂、ェ チレン Zビュルアルコール共重合体力 なる榭脂、ポリウレタン榭脂、ポリエステル榭 脂、ポリアラミド榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、ポリフエ-レンオキサイド榭 脂、ポリアセタール榭脂、ポリカーボネート榭脂、アクリル系榭脂、スチレン系榭脂、ァ クリロ-トリル/ブタジエン Zスチレン榭脂〔ABS〕、塩ィ匕ビュル系榭脂、セルロース系 榭脂、ポリエーテルエーテルケトン樹脂〔PEEK〕、ポリスルホン樹脂、ポリエーテルス ルホン樹脂〔PES〕、ポリエーテルイミド榭脂、ポリフエ-レンスルフイド榭脂等が挙げ られる。
[0113] 上記フッ素非含有有機材料 (P)は、エチレン Zビニルアルコール共重合体力 なる 榭脂、ポリアミド系榭脂及びポリオレフイン系榭脂よりなる群力 選ばれる 1種以上で あることが好ましい。
[0114] 上記ポリアミド系榭脂は、分子内に繰り返し単位としてアミド結合〔一 NH— C ( = 0) ―〕を有するポリマー力もなるものである。
上記ポリアミド系榭脂としては、分子内のアミド結合が脂肪族構造又は脂環族構造と 結合しているポリマー力もなるいわゆるナイロン榭脂、又は、分子内のアミド結合が芳 香族構造と結合して 、るポリマー力もなる 、わゆるァラミド榭脂の 、ずれであってもよ い。
[0115] 上記ナイロン榭脂としては特に限定されず、例えば、ナイロン 6、ナイロン 66、ナイ口 ン 11、ナイロン 12、ナイロン 610、ナイロン 612、ナイロン 6,66、ナイロン 66,12、 ナイロン 46、メタキシリレンジァミン Zアジピン酸共重合体等のポリマー力もなるもの が挙げられ、これらのな力から 2種以上を組み合わせて用いてもょ 、。
上記ァラミド榭脂としては特に限定されず、例えば、ポリバラフヱ-レンテレフタラミド、 ポリメタフエ-レンイソフタラミド等が挙げられる。
[0116] 上記ポリアミド系榭脂は、また、繰り返し単位としてアミド結合を有しない構造が分子 の一部にブロック共重合又はグラフト共重合されている高分子力もなるものであって もよい。このようなポリアミド系榭脂としては、例えば、ナイロン 6Zポリエステル共重合 体、ナイロン 6Zポリエーテル共重合体、ナイロン 12Zポリエステル共重合体、ナイ口 ン 12Zポリエーテル共重合体等のポリアミド系エラストマ一力もなるもの等が挙げら れる。これらのポリアミド系エラストマ一は、ナイロンオリゴマーとポリエステルオリゴマ 一がエステル結合を介してブロック共重合することにより得られたもの、又は、ナイ口 ンオリゴマーとポリエーテルオリゴマーとがエーテル結合を介してブロック共重合する ことにより得られたものである。上記ポリエステルオリゴマーとしては、例えば、ポリカブ 口ラタトン、ポリエチレンアジペート等が挙げられ、上記ポリエーテルオリゴマーとして は、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンダリ コール等が挙げられる。上記ポリアミド系エラストマ一としては、ナイロン 6Zポリテトラ メチレングリコール共重合体、ナイロン 12Zポリテトラメチレングリコール共重合体が 好ましい。
[0117] 上記ポリアミド系榭脂としては、ポリアミド系榭脂からなる層が薄層でも充分な機械的 強度が得られることから、なかでも、ナイロン 6、ナイロン 66、ナイロン 11、ナイロン 12 、ナイロン 610、ナイロン 612、ナイロン 6Z66、ナイロン 66,12、ナイロン 6Zポリェ ステル共重合体、ナイロン 6Zポリエーテル共重合体、ナイロン 12Zポリエステル共 重合体、ナイロン 12Zポリエーテル共重合体等が挙げられ、これらのなかから 2種以 上を組み合わせて用いてもょ 、。
[0118] 上記ポリオレフイン系榭脂は、フッ素原子を有しないビニル基含有単量体に由来する 単量体単位を有する榭脂である。上記フッ素原子を有しな 、ビニル基含有単量体と しては特に限定されず、例えば、フッ素榭脂に関し上述したフッ素非含有エチレン性 単量体であってもよいが、例えば層(B)等の相手材との層間接着性が求められる用 途では上述した極性官能基を有するものが好ましい。
[0119] 上記ポリオレフイン系榭脂としては特に限定されず、例えば、ポリエチレン、ポリプロピ レン、高密度ポリオレフイン等のポリオレフインのほ力、上記ポリオレフインを無水マレ イン酸等で変性した変性ポリオレフイン、エポキシ変性ポリオレフイン等が挙げられる
[0120] 本発明の積層体における層(C)及び後述の層(D)は、本発明の目的を損なわない 範囲で、例えば、熱安定剤等の安定剤、補強剤、充填剤、紫外線吸収剤、顔料等の 各種添加剤を添加してなるものであってもよい。上記層(C)及び後述の層(D)は、こ のような添加剤により、熱安定性、表面硬度、耐摩耗性、帯電性、耐候性等の特性が 向上したものとすることができる。
[0121] 上記ポリアミド系榭脂のアミン価は 10〜60 (当量/ 106g)が好ましい。ァミン価が上 記範囲内にあると、比較的低い温度で共押出する場合においても、層(C)と、クロロト リフルォロエチレン共重合体力 なる層(B)等の層(C)に接する層との層間接着力を 優れたものとすることができる。上記アミン価が 10(当量 Zl06g)未満であると、比較 的低い温度で共押出する場合に層 (C)と層 (C)に接する層との層間接着力が不充 分になる。 60 (当量 Zl06g)を超えると、得られる積層体の機械的強度が不充分であ り、また、貯蔵中に着色しやすくなりハンドリング性に劣る。好ましい下限は 15 (当量 Zl06g)であり、好ましい上限は 50 (当量 Zl06g)、より好ましい上限は 35 (当量 Z1 06g)である。
[0122] 本明細書において、上記アミン価はポリアミド系榭脂 lgを m—タレゾール 50mlに加 熱溶解し、これを 1Z10規定 p—トルエンスルホン酸水溶液を用いて、チモールブル 一を指示薬として滴定して求められる値であり、特に別の記載をしない限り、積層す る前のポリアミド系榭脂のアミン価を意味する。積層する前のポリアミド系榭脂が有す るァミノ基の数のうち、一部分は層(C)に接する層との接着に消費されると考えられる 力 その数は層(C)全体に対してごく微量であるので、上述した積層する前のポリア ミド系榭脂のアミン価と本発明の積層体におけるアミン価は、実質的に同程度となる。
[0123] 本発明の積層体は、更に、上記層 (A)と層 (B)との間にフッ素非含有有機材料 (Q) からなる層(D)を有するものであってもよ!/、。
上記層(D)におけるフッ素非含有有機材料 (Q)は、層(C)におけるフッ素非含有有 機材料 (P)と同じ種類であってもよいし、異なる種類であってもよいが、同じ種類であ ることが好ましぐポリアミド系榭脂であることがより好ましい。層(D)を設けることにより 、多層共押出成形を容易に適用することができ、し力も、ライン速度を速くすることが でき、成形性を向上することができる。層 (A)を上述の共重合体 (IV)等の非パーフ ルォロ系フッ素榭脂とした場合でも、多層共押出成形が容易であり、ライン速度を速 くすることがでさる。
[0124] 本発明の積層体における上記層(A)、層(B)、層(C)、層(D)のうち、少なくとも 1種 類は、燃料透過係数が 0. 5g'mmZm2Zday以下であることが好ましい。層(A)及 び層 (B)は、燃料透過係数が 0. 4g'mmZm2Zday以下であるものが好ましい。
[0125] 本明細書において、上記燃料透過係数は、イソオクタン、トルエン及びエタノールを 4 5 :45 : 10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒を投入し た燃料透過係数測定用カップに測定対象樹脂から得たシートを入れ、 60°Cにおい て測定した質量変化力 算出される値である。
[0126] 層(A)における含フッ素エチレン性重合体、層(B)における CTFE共重合体としては 、メルトフローレート〔MFRW 0. l〜70 (g/10分)であるものが好ましい。 MFRが 上記範囲内であると耐燃料透過性、耐燃料クラック性に優れたものとなる。上記 MF Rのより好ましい下限は、 l (g/10分)、より好ましい上限は、 50 (g/10分)である。
[0127] 上記 MFRは、メルトインデクサ一を用い、 297°C、 5kg荷重下で内径 2mm、長さ 8m mのノズルから 10分間あたりに流出する CTFE共重合体の質量を測定し得られる値 である。
[0128] 本発明の積層体は、上記含フッ素エチレン性重合体からなる層(A)、 CTFE共重合 体からなる層(B)を有することにより、例えば、燃料透過速度が後述の範囲内となるよ うな、高度の耐燃料透過性を容易に達成することができるとともに、優れた耐燃料クラ ック'性をち有するものとすることができる。
[0129] 本発明の積層体は、上記燃料透過速度が 1. 5gZm2Zday以下であるものが好まし い。
[0130] 本発明の積層体は、上記燃料透過速度が上述の範囲内であることから、高度の耐燃 料透過性を有するものとすることができる。燃料透過速度は上述の範囲内であれば 下限を例えば、 0. lgZm2Zdayとすることができる。燃料透過速度の好ましい上限 は、 1. Og/mVday,より好ましい上限は 0. 9gZm2Zdayであり、更に好ましい上 限は、 0. 8gZm2Zdayである。
[0131] 本明細書にぉ ヽて、上記燃料透過速度は、単位日数単位面積当たりの燃料透過質 量であり、イソオクタン、トルエン及びエタノールを 45 :45 : 10の容積比で混合したィ ソオクタン Zトルエン Zエタノール混合溶媒〔CE10〕を用いて、 SAE J 1737に準 じて 60°Cでの透過量を測定し得られる値である。
[0132] 本発明の積層体は、上記層(A)、上記層(B)及び上記層(C)がこの順に積層してい る積層体であることが好まし 、。
[0133] 本発明の積層体としては、層(A)、層(B)及び層 (C)のみカゝら構成されるものであつ てもよ 、し、層(A)、層(B)、層(C)以外のその他の層をも含むものであってもよ 、。 上記その他の層としては特に限定されず、例えば、上記積層体における保護層、着 色層、マーキング層、静電防止のための誘電体層等が挙げられ、保護層、誘電体層 等は、その機能から、上記積層体における最外層であることが好ましい。 [0134] 本発明の積層体が、層 (A)と層 (B)との間に、フッ素非含有有機材料 (Q)からなる層 (D)を有するものである場合、層(D)は、層(A)及び層 (B)に接しており、層(B)は、 層(C)に接していることが好ましい。
本発明の積層体としては、例えば、層(A)、層(B)及び層 (C)がこの順に積層してい る積層体、層 (A)、層(B)、層(C)及び層 (A)がこの順に積層している積層体、層 (A )、層(D)、層(B)及び層 (C)がこの順に積層している積層体、層 (A)、層(B)、層(C )、層(B)及び層 (A)がこの順に積層している積層体、層 (A)、層(D)、層(B)、層(C )及び層 (A)がこの順に積層している積層体等が挙げられる。
[0135] 上記層(A)及び層 (B)、層(C)、層(D)は、それぞれ、単層であってもよいし、 2層以 上の多層構造を有するものであってもよ 、。
層(A)が 2層以上の多層構造を有する場合、層(A)は、例えば、上述の含フッ素ェ チレン性重合体導電性組成物からなる層と、導電性フィラーを含まない含フッ素ェチ レン性重合体組成物とからなる層とを含むものであってもよい。
[0136] 本発明の積層体において、接している各層の境界は必ずしも明確である必要はなく 、各層を構成するポリマーの分子鎖同士が接している面力 相互に侵入し、濃度勾 配がある層構造であってもよ 、。
[0137] 本発明の積層体において、層(B)は、層(A)及び層 (C)に接していることが好ましい 。層(B)における CTFE共重合体が上述の接着機能性官能基を有する場合、層 (A) 及び層 (C)との接着性を優れたものとすることができる。また、層 (A)と層(B)とが接 する場合、上記接着機能性官能基を導入しなくても、 CTFE共重合体と含フッ素ェ チレン性重合体との相溶性により、充分な接着性を有することができるが、該接着性 向上の点で、層(B)における CTFE共重合体は、接着機能性官能基を有するもので あることが好ましぐ接着機能性官能基を有する CTFE共重合体を用いる場合、層( A)における含フッ素エチレン性重合体は接着機能性官能基を導入したものでなくて も充分な層間接着性を発揮することができる。
[0138] 本発明の積層体の成形方法としては、例えば、(1)積層体を構成する各層を溶融状 態で共押出成形することにより層間を熱溶融着 (溶融接着)させ 1段で多層構造の積 層体を形成する方法 (共押出成形)が挙げられる。 [0139] 本発明の積層体の成形方法としては、また上記(1)の他に、(2)押出機によりそれぞ れ別個に作製した各層を重ね合せ熱融着により層間を接着させる方法、(3)予め作 製した層の表面上に押出機により溶融榭脂を押し出すことにより積層体を形成する 方法、(4)予め作製した層の表面上に、該層に隣接することとなる層を構成する重合 体を静電塗装したのち、得られる塗装物を全体的に又は塗装した側から加熱するこ とにより、塗装に供した重合体を加熱溶融して層を成形する方法、等が挙げられる。 本発明の積層体がチューブ又はホースである場合、例えば、上記(2)に相当する方 法として、(2a)押出機により円筒状の各層をそれぞれ別個に形成し、内層となる層 に該層に接触する層を熱収縮チューブにて被膜する方法、上記(3)に相当する方法 として、(3a)先ず内層となる層を内層押出機で形成し、この外周面に、外層押出機 で該層に接触する層を形成する方法、上記 (4)に相当する方法として、(4a)内層を 構成する重合体を該層に接触する層の内側に静電塗装したのち、得られる塗装物を 加熱オーブンに入れて全体的に加熱するか、又は、円筒状の塗装物品の内側に棒 状の加熱装置を挿入して内側から加熱することにより、内層を構成する重合体をカロ 熱溶融して成形する方法、等が挙げられる。
[0140] 本発明の積層体を構成する各層が共押出可能なものであれば、上記(1)の共押出 成形によって形成することが一般的である。上記共押出成形としては、マルチマ-ホ 一ルド法、フィードブロック法等の従来公知の多層共押製造法が挙げられる。
[0141] 上記(2)及び(3)の成形方法においては、各層を形成したのち、層間接着性を高め ることを目的として、各層における他の層との接触面を表面処理してもよい。そのよう な表面処理としては、ナトリゥムエッチング処理等のエッチング処理;コロナ処理;低 温プラズマ処理等のプラズマ処理が挙げられる。
[0142] 上記成形方法としては、上記(1)、及び、上記(2)と(3)の各方法において表面処理 を施して積層させる方法が好ましぐ (1)の方法が最も好ましい。
[0143] 本発明の積層体は、以下の用途等に用いることができる。
フィルム、シート類;食品用フィルム、食品用シート、薬品用フィルム、薬品用シート、 ダイヤフラムポンプのダイヤフラムや各種パッキン等
チューブ、ホース類;自動車燃料用チューブ若しくは自動車燃料用ホース等の燃料 用チューブ又は燃料用ホース、溶剤用チューブ又は溶剤用ホース、塗料用チューブ 又は塗料用ホース、自動車のラジエーターホース、エアコンホース、ブレーキホース、 電線被覆材、飲食物用チューブ又は飲食物用ホース、ガソリンスタンド用地下埋設 チューブ若しくはホース、海底油田用チューブ若しくはホース等
ボトル、容器、タンク類;自動車のラジエータータンク、ガソリンタンク等の燃料用タン ク、溶剤用タンク、塗料用タンク、半導体用薬液容器等の薬液容器、飲食物用タンク 等
その他;キャブレターのフランジガスケット、燃料ポンプの oリング等の各種自動車用 シール、油圧機器のシール等の各種機械関係シール、ギア等
上記のなかでも特にチューブ又はホースに好適に用いることができる。
[0144] チューブ又はホースである上記積層体も本発明の 1つである。
[0145] 上記チューブ又はホースは、その途中に波形領域を有するものであってもよい。この ような波形領域とは、ホース本体途中の適宜の領域を、波形形状、蛇腹 (corrugate d)形状、渦巻き(convoluted)形状等に形成したものである。
[0146] 本発明のチューブ又はホースは、かかる波形の折り目が複数個環状に配設されてい る領域を有することにより、その領域において環状の一側を圧縮し、他側を外方に伸 張することができるので、応力疲労や層間の剥離を伴うことなく容易に任意の角度で 曲げることが可能となる。
[0147] 波形領域の形成方法は限定されないが、まず直管状のチューブを成形した後に、引 き続いてモールド成形等し、所定の波形形状等とすることにより容易に形成すること ができる。
[0148] チューブ又はホースである本発明の積層体において、チューブ又はホースの最内層 は、層(A)であることが好ましい。燃料チューブの最内層は、ガソリン等の引火性の 液体が接して静電荷が蓄積しやすいが、この静電荷によって引火することを避けるた め、層(A)として導電性フィラーを添加してなるものが好ましい。
[0149] 本発明の積層体は、燃料チューブを含むチューブ、ホース、タンク等の使用時に燃 料と接する箇所がある用途に好適に用いることができ、この場合、燃料と接する箇所 は層(A)であることが好ましい。上記燃料と接する箇所は、通常、内層であるので、 層(A)を内層とする場合、層(B)は中間層、層(C)は外層となる。本明細書において 、上記「内層」「中間層」「外層」は、チューブ、ホース、タンク等の内側'外側の概念を 伴う形状において、上記層(A)及び上記層(C)のうちどの層が内側か外側か又はこ の二者の間に位置するかを表すにすぎず、上記積層体は、上記層(B)の表面のうち 上記層 (A)との接面とは反対側の表面上、及び Z又は、上記層 (A)と上記層(B)及 び Z又は上記層(B)と上記層(C)との間、及び Z又は、上記層(C)の表面のうち上 記層(B)との接面とは反対側の表面上にそれぞれその他の層を有するものであって ちょい。
本明細書において、「中間層」という場合、上記内層と上記外層との間にある層を指 す概念である。
[0150] 本発明の積層体において燃料と接する箇所を層 (A)とする場合、層 (A)は、最内層 が含フッ素エチレン性重合体導電性組成物力もなる層であってもよ 、し、該最内層と 、該最内層よりも外側に、導電性フィラーを含まない含フッ素エチレン性重合体組成 物からなる層とを有する多層構造であってもよい。後者の最内層と導電性フィラーを 含まな 、含フッ素エチレン性重合体組成物からなる層とは接して 、てもよ 、。また、 本発明の積層体は、最内層及び最外層を層(A)とすること〖こよって、更に耐薬液性 を向上させることが可能である。
[0151] 自動車用燃料配管チューブである上記積層体も本発明の 1つである。
本発明の積層体は、上述したように、優れた耐燃料透過性と耐燃料クラック性を有す るので、自動車用燃料配管チューブに用いる燃料チューブ用積層体として好適に用 いることがでさる。
[0152] 本発明の自動車燃料配管チューブ用積層体の好ましい層構成としては特に限定さ れず、例えば、
層 1:含フッ素エチレン性重合体組成物(導電性組成物であってもよ!ヽ)からなる層 層 2: CTFE共重合体力 なる層
層 3 :ポリアミド系榭脂からなる層
カゝらなる積層体が挙げられ、なかでも、
層 1:共重合体 (ΠΙ)組成物(導電性組成物であってもよ!/、)からなる層 層 2:接着機能性官能基を有する CTFE共重合体からなる層
層 3 :ポリアミド系榭脂からなる層
力もなる積層体が好ましい。
本発明の自動車燃料配管チューブ用積層体の好ましい層構成としては、また、 層 1:含フッ素エチレン性重合体組成物(導電性組成物であってもよ!ヽ)からなる層 層 2:ポリアミド系榭脂からなる層
層 3: CTFE共重合体力 なる層
層 4:ポリアミド系榭脂からなる層
カゝらなる積層体が挙げられ、なかでも、
層 1:共重合体 (IV)組成物(導電性組成物であってもよ!/ヽ)からなる層
層 2:ポリアミド系榭脂からなる層
層 3:接着機能性官能基を有する CTFE共重合体からなる層
層 4:ポリアミド系榭脂からなる層
力 なる積層体が好ましぐとりわけ、
層 1:共重合体 (IV— II)組成物(導電性組成物であってもよ!/ヽ)からなる層 層 2:ポリアミド系榭脂からなる層
層 3:接着機能性官能基を有する CTFE共重合体からなる層
層 4:ポリアミド系榭脂からなる層
力もなる積層体が好ましい。
[0153] 上述した燃料チューブ用積層体の各層は、層の番号順に積層してなるものであり、 好ましくは層 1が最内層である。
発明の効果
[0154] 本発明の積層体は、上述の構成よりなるので、高度の耐燃料透過性を有するとともに 、耐燃料クラック'性にち優れたちのである。
発明を実施するための最良の形態
[0155] 以下に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。
[0156] 合成例 1 水 174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 5 lkgを仕 込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次い でォクタフルォロシクロブタン 40. 6kg、クロ口トリフルォロエチレン〔CTFE〕1. 3kg、 テトラフルォロエチレン〔TFE〕6. 6kg、パーフルォロ(プロピルビュルエーテル)〔PP VE] 3. 9kgを圧入し、温度を 35°Cに調節し、攪拌を開始した。ここへ重合開始剤と してジ—n—プロピルパーォキシジカーボネート〔NPP〕の 50質量0 /0メタノール溶液 を 0. 33kg添加して重合を開始した。重合中には、所望の共重合体組成と同組成に 調製した混合モノマーを、槽内圧力が 0. 8MPaを維持するように追加仕込みしなが ら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルし た純水で洗浄し、乾燥させて 19kgの粒状粉末の CTFE共重合体を得た。次いで φ 50mm短軸押出し機を用いてシリンダー温度 290°Cで溶融混練を行 、、ペレットを 得た。次 、で得られたペレット状の CTFE共重合体を 190°Cで 24時間加熱した。
[0157] 合成例 2
水 174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 5 lkgを仕 込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次い でォクタフルォロシクロブタン 40. 6kg、クロ口トリフルォロエチレン〔CTFE〕2. 4kg、 テトラフルォロエチレン〔TFE〕6. 6kg、パーフルォロ(プロピルビュルエーテル)〔PP VE] 4. 4kgを圧入し、温度を 35°Cに調節し、攪拌を開始した。ここへ重合開始剤と してジ—n—プロピルパーォキシジカーボネート〔NPP〕の 50質量0 /0メタノール溶液 を 0. 2 lkg添加して重合を開始した。重合中には、所望の共重合体組成と同組成に 調製した混合モノマーを、槽内圧力が 0. 8MPaを維持するように追加仕込みしなが ら重合した後、槽内の残存ガスを排気して生成したポリマーを取り出し、脱ミネラルし た純水で洗浄し、乾燥させて 19kgの粒状粉末の CTFE共重合体を得た。次いで φ 50mm短軸押出し機を用いてシリンダー温度 280°Cで溶融混練を行 、、ペレットを 得た。次 、で得られたペレット状の CTFE共重合体を 180°Cで 24時間加熱した。
[0158] 合成例 3
攪拌機付き横型ステンレススチール製オートクレープ (容積 1000L)を予め脱気して おき、脱イオン水 600L、 10質量%フッ素系界面活性剤(C F COONH )水溶液 1 60kgを仕込み、窒素置換及び真空脱気操作を 3回行った。その後、へキサフルォロ プロピレン〔HFP〕モノマー 100kgを仕込み、更に、テトラフルォロエチレン〔TFE〕と HFPとの混合モノマー(TFE: HFP = 86 : 14 (質量0 /0) )を仕込み、攪拌速度 200rp mにて攪拌しながら、徐々に温度を上げ、オートクレーブ内雰囲気を 95°Cとし、 1. 5 MPaGまで昇圧した。重合開始剤として 10質量%ペルォキソ二硫酸アンモ-ゥム〔A PS〕水溶液を 70kg仕込み、反応を開始させた。反応系内の 1. 5MPaGを維持する よう、上記混合モノマーを連続的に供給した。重合開始力 30分後、攪拌を停止し、 オートクレープ内のガスを常圧まで放出して重合反応を終了し、ポリマー固形分濃度 4.
Figure imgf000031_0001
別途、同様のステンレススチール製オートクレーブを予め脱気しておき、脱イオン水 6 00L、上記 2元ポリマー乳化分散体を 20kg仕込み、窒素置換及び真空脱気操作を 3回行った。その後 HFPモノマー 138kgを仕込み、その後パーフルォロ(プロピルビ -ルエーテル)〔PPVE〕4kgを仕込み、攪拌速度 200rpmにて攪拌しながら徐々に 温度を上げ、オートクレーブ内雰囲気を 95°Cにし、 TFEと HFPとの混合モノマー(T FE :HFP = 87. 3 : 13. 7 (質量%) )を圧入することにより 4. 2MPaGに昇圧した。重 合開始剤として 10質量%APS水溶液を 2. 4kg仕込み、重合反応を開始させた。反 応開始後、 10質量%APS水溶液を 22gZ分の速度で連続的に追加した。反応中、 上記混合モノマー量が供給モノマー全量の 25質量%、 50質量%及び 75質量%に 達した時点で、 PPVEを各回 180g仕込んだ。系内の圧力を 4. 2MPaGに維持する よう、上記混合モノマーを連続的に供給した。重合開始から 55分後、 10質量%APS 水溶液の追加を止め、攪拌を停止し、オートクレープ内のガスを常圧まで放出し、重 合反応を終了した。得られたラテックスの一部を 200°Cで 1時間蒸発乾固して、得ら れた固形分に基づきポリマー濃度を計算すると 20. 2質量%であった。
次にこの乳化分散体を、容量 3000Lの攪拌機付オートクレープに移し、攪拌しなが ら脱イオン水を加えてポリマー固形分濃度を 10. 0質量%にする。次いで 60%硝酸 40kgを投入し、攪拌速度 40rpmにて凝析を行い、固体相と液体相が分離したのち、 水分を取り除いた。脱イオン水を用いて洗浄後、得られた白色粉末を、 170°Cにて 2 0時間の対流空気炉の中で水分を除去して白色粉末を得た。 次いで、この白色粉末に炭酸ナトリウム (Na CO )を最終濃度 30ppmとなるよう添カロ
2 3
し、均一に分散させて、 2軸スクリュー型押出機(日本製鋼所製)にて安定化 (湿潤熱 処理)と同時に溶融ペレツトイ匕した。本押出機は、軸径 32mm、 L/D = 52. 5、原料 投入側より供給部、可塑化部、安定化処理部、ベント部、定量部各部位から構成さ れている。安定ィ匕処理部の温度を 360°C、スクリュー回転数 200rpm、 15kgZ時間 の速度で原料を供給した。空気、水をそれぞれ 0. 93kgZ時間、水 0. 6kgZ時間の 流量で供給し、反応させながらペレツトイ匕し、 TFEZHFPZPPVE共重合体〔FEP〕 を得た。
[0159] 合成例 4
サイドフィーダ一機能を装備した φ 45mmの二軸押出機を用いて、合成例 3で得ら れたペレット状の FEP91質量部と導電性フィラー(アセチレンブラック) 9質量部をシリ ンダー温度 330°C〜350°Cで溶融混練しペレット状の導電性 FEP組成物を得た。次 V、で得られたペレット状の導電性 FEP組成物を 150°Cで 24時間加熱した。
なお、メルトフローレート測定で得たストランドから切り出した棒の表面抵抗値は、 105 Ω 'cmZcmであり、この導電性 FEP組成物を用いた実施例 2の 3層チューブの内層 の表面抵抗値も 105 Ω 'cmZcmであった。
[0160] 合成例 5
174L容積のオートクレープに蒸留水 46. 5Lを投入し、充分に窒素置換を行った後 、パーフルォロ(プロピルビュルエーテル)〔PPVE〕2. 4kg、へキサフルォロプロピレ ン〔HFP〕を 49kg、仕込み、系内の温度を 35°C、攪拌速度 200rpmに保った。次い で、テトラフルォロエチレン〔TFE〕を 1. 07MPaまで圧入した後、重合開始剤ジ n —プロピルパーォキシジカーボネート〔NPP〕を 128g添カ卩して重合を開始した。重合 の進行と共に系内圧力が低下するので、 TFEを連続して供給し、系内圧力を 1. 07 MPaに保った。追加する TFEの仕込み量が 9kgに達した時点で PPVEを 0. 7kg追 加し、最終的に TFEの追加仕込み量が 21kgになった時点で重合を停止し、放圧し て大気圧に戻した後、得られた TFEZHFPZPPVE共重合体を水洗、乾燥して 20 . 2kgの粉末を得た。
次いで φ 50mm短軸押出し機を用いてシリンダー温度 290°Cで溶融混練を行い、ぺ レットを得た。次 、で得られたペレット状の TFEZHFPZPPVE共重合体〔FEP〕を
180°Cで 24時間加熱した。
[0161] 合成例 6
サイドフィーダ一機能を装備した φ 45mmの二軸押出機を用いて、合成例 1で得ら れたペレット状の CTFE共重合体 91質量部と導電性フィラー(アセチレンブラック) 9 質量部をシリンダー温度 290°Cで溶融混練し、ペレット状の導電性 CTFE共重合体 組成物を得た。次 、で得られたペレット状の導電性 CTFE共重合体組成物を 190°C で 24時間加熱した。
なお、メルトフローレート測定で得たストランドから切り出した棒の表面抵抗値は、 105 Ω 'cmZcmであり、この導電性 CTFE共重合体組成物を用いた比較例 1の 2層チュ ーブの内層の表面抵抗値も 105 Ω 'cmZcmであった。
[0162] 合成例 7
水 174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 52. 7kg を仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。 次いでパーフルォロシクロブタン 31. 5kg、パーフルォロ(1, 1, 5 トリハイドロー 1 —ペンテン) [H2P] 123gを仕込み、系内を 20°C、攪拌速度 200rpmに保った。その 後に、テトラフルォロエチレン〔TFE〕で 0. 78MPaまで圧入し、更に引き続いてェチ レン〔Et〕で 0. 89MPaまで圧入し、その後、系内を 35°Cにし、その後、シクロへキサ ンを 150gを仕込み、ジ n—プロピルパーォキシジカーボネート〔NPP〕の 50%メタ ノール溶液 200gを投入して重合を開始した。重合の進行と共に系内圧力が低下す るので、 TFEZEt= 57Z43モル%の混合ガスを連続して供給し、系内圧力を 1. 2 OMPaに保った。そして、パーフルォロ(1, 1, 5 トリハイド口一 1—ペンテン)〔H2P 〕についても合計量 0. 85kgを連続して仕込み、連続して 20時間継続し重合を停止 した。放圧して大気圧に戻した後、得られた TFEZEtZH2P共重合体を水洗、乾燥 して 30kgの粉末を得た。
次いで φ 50mm短軸押出し機を用いてシリンダー温度 290°Cで溶融混練を行い、ぺ レットを得た。次 、で得られたペレット状の TFEZEtZH2P共重合体〔ETFE〕を 18 0°Cで 24時間加熱した。 [0163] 合成例 8
オートクレープに蒸留水 380Lを投入し、充分に窒素置換を行った後、ォクタフルォ ロシクロブタン 166kg、 へキサフルォロプロピレン 83kg及びパーフルォロ(1, 1, 5— トリハイド口 1—ペンテン) 0. 3kgを仕込み、系内を 35°C、攪拌速度 200rpmに保 つた。その後、テトラフルォロエチレンを 0. 87MPaまで圧入し、更に引き続いてェチ レンを 0. 95MPaまで圧入した後、ジ n—プロピルパーォキシジカーボネート 9kg を投入して重合を開始した。重合の進行と共に系内圧力が低下するので、テトラフル ォロエチレン Zエチレン Zへキサフルォロプロピレン =46Z44Z10モル0 /0の混合 ガスを連続して供給し、系内圧力を 0. 95MPaに保った。そして、パーフルォロ(1, 1 , 5 トリハイド口 1—ペンテン)を合計量 3. 2kgとなるように連続して仕込み、 20時 間、攪拌を継続した。放圧して大気圧に戻した後、反応生成物を水洗、乾燥して 250 kgの粉末 (接着性フッ素榭脂)を得た。得られた粉末を 50mm φ短軸押し出し機で 押し出しペレットを得た。
[0164] 合成例 9
合成例 8で得られた粉末 88kgと、導電性フィラー(アセチレンブラック) 12kgとをヘン シェルミキサーで混合した後、二軸押出機にて溶融混練してペレットを得た。
[0165] 合成例 1〜9で得られた共重合体にっ ヽて以下のような物性評価を行った。
[0166] (1)カーボネート基の個数の測定
共重合体の白色粉末又は溶融押出ペレットの切断片を室温で圧縮成形し、厚さ 50 〜200 μ mのフィルムを作成した。このフィルムの赤外吸収スペクトル分析によって力 ーボネート基〔 OC ( = O) O 〕のカルボ-ル基由来のピークが 1810〜 1815cm" ' [ v (C = 0)〕の吸収波長に現れるので、その V (C = 0)ピークの吸光度を測定し、 下記式 (a)により共重合体の主鎖炭素数 106個あたりのカーボネート基の個数 Nを算 出した。
N = 500AW/ ε df (a)
八:カーボネート基〔—0じ(=0) 0—〕由来の v (c = o)ピークの吸光度
ε :カーボネート基〔― OC ( = 0) 0—〕由来の V (C = 0)ピークのモル吸光度係数。 モデル化合物から ε = 170 (l'cm_1 'mol_ 1)とした。 w:共重合体の組成から計算される単量体の平均分子量
d :フィルムの密度 (gZcm3)
f :フィルムの厚さ(mm)
なお、赤外吸収スペクトル分析は、 Perkin— Elmer FT— 1 ぺクトロメーター 176 OX (パーキンエルマ一社製)を用いて 40回スキャンした。得られた IR ^ベクトルを Per kin— Elmer Spectrum for windows Ver. 1. 4C 用 ヽて自動でベースフづ ンを判定させ、 1810〜1815cm_1のピークの吸光度を測定した。なお、フィルムの 厚さはマイクロメーターを用いて測定した。
[0167] (2)共重合体の組成の測定
合成例 1、 2、 6の共重合体は19 F— NMRおよび塩素の元素分析測定より求めた。合 成例 3、 4、 5、 7および THV— 500の共重合体は19 F— NMR測定より求めた。
[0168] (3)融点 (Tm)の測定
セイコー型示差走査熱量計〔DSC〕を用い、 10°CZ分の速度で昇温したときの融解 ピークを記録し、極大値に対応する温度を融点 (Tm)とした。
[0169] (4)フッ素榭脂のメルトフローレート(MFR)の測定
メルトインデクサ一 (東洋精機製作所社製)を用い、各測定温度において、 5kg荷重 下で内径 2mm、長さ 8mmのノズルから単位時間(10分間)あたりに流出するポリマ 一の質量 (g)を測定した。
[0170] (5)単層の燃料透過係数の測定
チューブ状の積層体の各層に用いる共重合体のペレットを、それぞれ、直径 120m mの金型に入れ、 300°Cに加熱したプレス機にセットし、約 2. 9MPaの圧力で溶融 プレスして、厚さ 0. 15mmのシートを得た。 CE10 (イソオクタンとトルエンとの容量比 50: 50の混合物にエタノール 10容量%を混合した燃料)を 18ml投入した内径 40m ιη φ、高さ 20mmの SUS316製の透過係数測定用カップに得られたシートを入れ、 60°Cにおける質量変化を 1000時間まで測定した。時間あたりの質量変化、接液部 のシートの表面積及びシートの厚さから燃料透過係数 (g 'mm/m2/day)を算出し た。
結果を表 2に示す。 〔〕0172
Figure imgf000036_0002
Figure imgf000036_0001
^ 〔〕〔〕01712 れぞれ供給して、表 3に示す押出条件により、外径 8mm、内径 6mmの 3種 3層の多 層チューブを成形した。
[0173] 得られた多層チューブについて、以下の方法により層間接着強度及び燃料透過係 数を測定した。
[0174] (A)初期接着強度の測定
チューブ状の積層体から lcm幅のテストピースを切り取り、テンシロン万能試験機を 用いて、 25mmZ分の速度で 180° 剥離試験を行い、伸び量—引張強度グラフに おける極大 5点平均を初期接着強度 (NZcm)として求めた。該値は、 3層以上の層 構成については、層間接着力が最も弱い箇所 (層と層との間)についての値である。
[0175] (B)燃料封入後の接着強度の測定
チューブ状の積層体を 40cmの長さにカットし、容量 120mlの SUS316製リザーノ 一タンクをスエージロックで取りつけ、 CM15 (イソオクタンとトルエンとの容量比 50 : 5 0の混合物)にメタノール 15容量%を混合した燃料を投入し、 60°Cで 1000時間封入 した後、上記 (A)と同様にして接着強度 (NZcm)を測定し、燃料封入後の接着強 度とした。
[0176] (C)積層体の燃料透過速度の測定
チューブ状の積層体を 40cmの長さにカットし、容量 120mlの SUS316製リザーノ 一タンクをスエージロックで取りつけ、 SAE J 1737に準じて CE10の 60°Cでの透 過量を測定し、チューブ状の積層体の肉厚より、燃料透過速度 (gZm2Zday)を算 出した。
[0177] (D)積層体の燃料浸漬後の最内層面のクラック発生試験
長さ 15cmのチューブ状の積層体を半分に縦割り後、 CM15に浸漬すると同時にチ ユーブを半径 5cmに曲げ 10分後に CM15より取り出して最内層の表面のクラック発 生を観た。
結果を表 3に示す。
[0178] 実施例 2
層(C)をポリアミド 12、層(B)を合成例 1、層(A)を合成例 4として、 3台の押出し機に それぞれ供給して、表 3に示す押出条件により、外径 8mm、内径 6mmの 3種 3層の 多層チューブを成形した。
[0179] 実施例 3
層(C)をポリアミド 12、層(B)を合成例 2、層(A)を合成例 5として、 3台の押出し機に それぞれ供給して、表 3に示す押出条件により、外径 8mm、内径 6mmの 3種 3層の 多層チューブを成形した。
[0180] 実施例 4
マルチマ-ホールドを装着した 2種 2層のチューブ押出し装置(プラスチック工学研 究所製)を用いて、層(C)をポリアミド 12 (商品名: Vestamid X7297、 Degussa Huls AG社製)、層(B)を合成例 2として、 2台の押出し機にそれぞれ供給して、表 4に示す押出条件により、外径 8mm、内径 6. 42mmの 2種 2層の多層チューブ(a) を成形した。
それとは別に、層(A)として合成例 7の ETFEを、単層チューブ押出し装置を用いて 表 4に示す押出条件により、外径 6. 4mm、内径 6. Ommの単層チューブ (b)を成形 した。
次に、この ETFEの単層チューブの外層表面をナトリウムエッチング処理により表面 処理を行った後、チューブの内側に棒状の加熱装置を挿入した。
次に、先に成形した多層チューブ (a)の内部に加熱装置を挿入した表面処理を施し た単層チューブ (b)を挿入し、内側から合成例 7の融点以下および中間層となる合成 例 2の融点以上である 240°Cに加熱装置の温度を保持し熱処理を行 、、多層チュー ブ (a)と単層チューブ (b)を接着させた後に加熱装置を抜き出して 3層構造の多層チ ユーブを得た。
[0181] 実施例 5
マルチマ-ホールドを装着した 4種 4層のチューブ押出し装置(プラスチック工学研 究所製)を用いて、層(C)及び層(D)をポリアミド 12 (商品名: Vestamid X7297、 Degussa Huls AG社製)、層(B)を合成例 2、層(A)を合成例 8として、 4台の押 出し機にそれぞれ供給して、表 5に示す押出条件により、外径 8mm、内径 6mmの 4 層の多層チューブを成形した。
[0182] 実施例 6 層(C)及び層(D)をポリアミド 12 (商品名: Vestamid X7297, Degussa Huls A G社製)、層(B)を合成例 2、層 (A)を合成例 9として、 4台の押出し機にそれぞれ供 給して、表 5に示す押出条件により、外径 8mm、内径 6mmの 4層の多層チューブを 成形した。
[0183] 実施例 7
マルチマ-ホールドを装着した 5種 5層のチューブ押出し装置(プラスチック工学研 究所製)を用いて、層(C)及び層(D)をポリアミド 12 (商品名: Vestamid X7297、 Degussa Huls AG社製)、層(B)を合成例 2、層(A)を合成例 8として、更に最内 層に静電防止のために合成例 9の材料を用い、 5台の押出し機にそれぞれ供給して 、表 5に示す押出条件により、外径 8mm、内径 6mmの 5層の多層チューブを成形し た。
[0184] 比較例 1
マルチマ-ホールドを装着した 2種 2層のチューブ押出し装置(プラスチック工学研 究所製)を用いて、層(C)をポリアミド 12 (商品名: Vestamid X7297、 Degussa Huls AG社製)、層(B)を合成例 6として、 2台の押出し機にそれぞれ供給して、表 3に示す押出条件により、外径 8mm、内径 6mmの 2種 2層の多層チューブを成形し た。
[0185] 比較例 2
層(C)をポリアミド 12、層 (A)を合成例 4として、 2台の押出し機にそれぞれ供給して 、表 3に示す押出条件により、外径 8mm、内径 6mmの 2種 2層の多層チューブを成 形した。
[0186] [表 3]
Figure imgf000040_0001
4]
実施例 4 材料 合成例 7 層 (A)
シリンダー温度(°C) 290~320 (単層押出)
ダイ温度(°c) 310 材料 合成例 2 層(B) シリンダー温度(°c) 260~290 アダプター温度 ( c) 285 材料 PA1 2 層(C) シリンダー温度(°c) 210〜245 アダプタ一温度 (°c) 245 ダイ温度 (°c) 285 層(A)/層(B)
ライン速度、 m/min) 8 2層押出条件
水温 (°c) 10 内層(mm) 0.2 チューブ (a)(b) 中間層(mm) 0.2 接着後の肉厚外層 (mm) 0.6 肉厚合計(mm) 1 初期接着強度 (N/cm) 25 燃料封入後の接着強度 (N/cm) 20 燃料透過速度 (g/m2/day) 0.8 燃料浸清によるクラック発生の有無 なし 5]
実施例 5 実施例 6 実施例 7
材料 (静電防止層) 合成例 9
シリンダ一温度 ( ) ―
(A) ― 260〜270
アダプター温度 (°c) 270
材料 合成例 8 合成例 9 合成例 8
シリンダー温度 ( ) 260~270 260〜270 260〜270
(A)
アダプター温度 (°c) 270 270 270
材料 PA1 2 PA12 PA12
シリンダー温度(°c) 210-245 21 C!〜 245 210~245
(D)
アダプター温度 (°c) 245 245 245
材料 合成例 2 合成例 2 合成例 2
シリンダー温度 (°c) 260-280 260-280 260~280
(B)
アダプター温度( ) 280 280 280
材料 PA12 PA1 2 PA1 2
シリンダー温度(°c〉 210〜245 210~245 210~245
(C)
アダプタ一温度 (°c) 245 245 245
押 ダイ温度 ( ) 280 280 280
フっノ) ¾度 (m/min ) 12 1 2 1 2
件 水温 (°c) 1 2 1 2 1 2
取内層 \rnrn) ― 一 0.05
内層 (mm) 0.1 0.1 0.05
肉 中間層 1 (mm) 0.1 0.1 0.1
厚 中間層 2 (mm) 0.2 0.2 0.2
外層 (mm) 0.6 0.6 0.6
肉厚合計(mm) 1 1 1
初期接着強度 (N/cm) 36 37 37
燃料封入後の接着強度 (N/cm) 31 32 32
燃料透過速度 (g/m2/day) 0.85 0.82 0.85
燃料浸漬によるクラック発生の有無 なし なし なし 表 3〜5に示す通り、 CTFE共重合体力 なる層(B)が内層となる比較例 1では、クラ ックが発生するが、 CTFE共重合体力 なる層(B)を中間に有する実施例 1〜7では 、クラックが発生しなレ、ことがわ力つた。また、 CTFE共重合体力もなる層(B)を有しな い比較例 2では、層間の接着強度が著しく低いことがわ力つた。
層(D)を設けた実施例 5〜7では、 4種 4層(実施例 7は 5種 5層)の共押出成形が可 能であり、ライン速度を速くすることができることがわかった。 産業上の利用可能性
本発明の積層体は、例えば、高度の耐燃料透過性と耐燃料クラック性との両立が求 められる自動車燃料チューブに好適に用いることができる。

Claims

請求の範囲
[1] 含フッ素エチレン性重合体力もなる層(A)、クロ口トリフルォロエチレン共重合体から なる層(B)及びフッ素非含有有機材料 (P)からなる層(C)を有する積層体であって、 前記含フッ素エチレン性重合体は、 1つの前記積層体において前記層(B)における 前記クロ口トリフルォロエチレン共重合体とは異なるものであり、
前記層 (A)、前記層(B)及び前記層(C)はこの順に積層している
ことを特徴とする積層体。
[2] 積層体は、更に、層 (A)と層 (B)との間にフッ素非含有有機材料 (Q)からなる層 (D) を積層してなる請求項 1記載の積層体。
[3] 層(D)は、層 (A)及び層 (B)に接しており、層(B)は、層(C)に接している請求項 2 記載の積層体。
[4] 層(B)は、層 (A)及び層 (C)に接して ヽる請求項 1記載の積層体。
[5] クロ口トリフルォロエチレン共重合体は、クロ口トリフルォロエチレン単位、テトラフルォ
重合可能な単量体 (M)に由来する単量体 (M)単位から構成される共重合体であり 前記クロ口トリフルォロエチレン単位及び前記テトラフルォロエチレン単位は、合計で 90〜99. 9モル%であり、前記単量体(M)単位は 10〜0. 1モル%である請求項 1、 2、 3又は 4記載の積層体。
[6] 含フッ素エチレン性重合体は、テトラフルォロエチレン単位 70〜95モル0 /0、及び、へ キサフルォロプロピレン単位と一般式 CF =CF— ORf (Rfは、炭素数 1〜5のパーフ
2
ルォロアルキル基を表す。)で表されるパーフルォロ(アルキルビュルエーテル)単位 の 1種又は 2種以上との合計 5〜30モル%力もなる共重合体である請求項 1、 2、 3、 4又は 5記載の積層体。
[7] 含フッ素エチレン性重合体は、下記一般式 (i)で表されるフルォロォレフインに由来 するフルォロォレフイン単位及び Z又は下記一般式 (ϋ)で表されるパーフルォロ(ァ ルキルビュルエーテル)に由来するパーフルォロ(アルキルビュルエーテル)単位の 合計 0〜60モル0 /0、テトラフルォロエチレン単位 20〜80モル0 /0、並びに、エチレン 単位 20〜80モル%力 なる共重合体である請求項 1、 2、 3、 4又は 5記載の積層体 CX^^CX' CCF ) X2 (i)
2 n
(式中、 X1、 X3及び X4は、同一若しくは異なって、水素原子又はフッ素原子を表し、 X2は、水素原子、フッ素原子又は塩素原子を表し、 nは、 1〜10の整数を表す。 ) CF =CF-ORf1 (ii)
2
(式中、 Rf1は、炭素数 1〜5のパーフルォロアルキル基を表す。)
[8] 含フッ素エチレン性重合体は、ポリフッ化ビ-リデン、又は、フッ化ビ-リデン単位 15 〜84モル0 /0、テトラフルォロエチレン単位 15〜84モル0 /0及びへキサフルォロプロピ レン単位 0〜30モル%力もなる共重合体である請求項 1、 2、 3、 4又は 5記載の積層 体。
[9] 層(A)は、含フッ素エチレン性重合体と、更に、導電性フィラーとからなる請求項 1、 2
、 3、 4、 5、 6、 7又は 8記載の積層体。
[10] フッ素非含有有機材料は、エチレン Zビニルアルコール共重合体力 なる榭脂、ポリ アミド系榭脂及びポリオレフイン系榭脂よりなる群力 選ばれる 1種以上である請求項
1、 2、 3、 4、 5、 6、 7、 8又は 9記載の積層体。
[11] チューブ又はホースである請求項 1、 2、 3、 4、 5、 6、 7、 8、 9又は 10記載の積層体。
[12] 層 (A)は、最内層である請求項 11記載の積層体。
[13] 自動車用燃料配管チューブである請求項 11又は 12記載の積層体。
PCT/JP2006/312259 2005-06-17 2006-06-19 積層体 WO2006135091A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06757401A EP1897686A4 (en) 2005-06-17 2006-06-19 MULTILAYER BODY
US11/917,416 US20090291243A1 (en) 2005-06-17 2006-06-19 Multilayer body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005178441 2005-06-17
JP2005-178441 2005-06-17
JP2005276876A JP2007015364A (ja) 2005-06-17 2005-09-22 積層体
JP2005-276876 2005-09-22

Publications (1)

Publication Number Publication Date
WO2006135091A1 true WO2006135091A1 (ja) 2006-12-21

Family

ID=37532436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312259 WO2006135091A1 (ja) 2005-06-17 2006-06-19 積層体

Country Status (5)

Country Link
US (1) US20090291243A1 (ja)
EP (1) EP1897686A4 (ja)
JP (1) JP2007015364A (ja)
KR (1) KR20080022197A (ja)
WO (1) WO2006135091A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105294A1 (en) 2008-03-27 2009-09-30 Daikin Industries, Ltd. Laminate
WO2022181841A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
WO2022181840A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006575A (ja) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd 多層ホース
WO2011099414A1 (ja) * 2010-02-09 2011-08-18 ダイキン工業株式会社 含フッ素共重合体
JP5595233B2 (ja) * 2010-11-09 2014-09-24 東海ゴム工業株式会社 燃料系ホースおよびその製法
JP2015078758A (ja) * 2013-10-18 2015-04-23 倉敷化工株式会社 燃料チューブ
US10421257B2 (en) * 2013-11-15 2019-09-24 Daikin Industries, Ltd. Laminate, method for manufacturing same, and fluororubber composition
JP6627859B2 (ja) * 2015-03-18 2020-01-08 Agc株式会社 積層体、袋体およびリチウムイオン電池
JP2019006005A (ja) * 2017-06-23 2019-01-17 株式会社アオイ グライドフレックスチューブ
JP6739797B2 (ja) * 2017-06-23 2020-08-12 株式会社アオイ 多層チューブ
WO2019214581A1 (en) * 2018-05-07 2019-11-14 Honeywell Performance Materials And Technologies (China) Co., Ltd. Poly-chlorotrifluoroethylene copolymer nanofibers, methods of manufacturing such nanofibers, and products made with such nanofibers
CN112135732B (zh) * 2018-05-14 2023-06-02 大金工业株式会社 层积体和管
EP4223520A4 (en) * 2020-09-30 2024-09-25 Daikin Ind Ltd FLUORESIN MATERIAL, LAMINATE, PIPE AND PIPE MANUFACTURING PROCESS
KR20230073308A (ko) * 2020-09-30 2023-05-25 다이킨 고교 가부시키가이샤 불소 수지, 적층체 및 튜브
EP4223518A4 (en) * 2020-09-30 2024-10-30 Daikin Ind Ltd PARTIALLY FLUORINATED RESIN, LAMINATE, AND TUBE AND METHOD FOR MANUFACTURING THE SAME
WO2022071532A1 (ja) * 2020-09-30 2022-04-07 ダイキン工業株式会社 共重合体、圧縮成形体、トランスファー成形体および被圧縮部材
JP7277842B2 (ja) * 2021-02-26 2023-05-19 ダイキン工業株式会社 含フッ素共重合体
EP4299627A1 (en) * 2021-02-26 2024-01-03 Daikin Industries, Ltd. Fluorine-containing copolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291849A (ja) * 1999-02-05 2000-10-20 Asahi Glass Co Ltd 燃料輸送用ホース
JP2002144499A (ja) * 2000-09-18 2002-05-21 Ausimont Spa フルオロポリマーと水素添加ポリマーとからなる多層組成物
JP2002210892A (ja) * 2001-01-12 2002-07-31 Tokai Rubber Ind Ltd 接着積層体及び燃料ホース
JP2002327018A (ja) * 2001-02-28 2002-11-15 Asahi Glass Co Ltd 含フッ素共重合体、組成物及び積層体
JP2002357285A (ja) * 2000-04-24 2002-12-13 Asahi Glass Co Ltd 燃料用ホース
JP2004358959A (ja) * 2003-05-12 2004-12-24 Daikin Ind Ltd 積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578705B2 (ja) * 1992-03-30 1997-02-05 東海ゴム工業株式会社 燃料配管用樹脂チューブ及びその製造法
WO2001018142A1 (fr) * 1999-09-08 2001-03-15 Daikin Industries, Ltd. Matiere adhesive fluorochimique et produit stratifie obtenu au moyen de celle-ci
EP1276604B1 (en) * 2000-04-24 2006-05-10 Asahi Glass Company, Limited Hose for fuel
US20020119319A1 (en) * 2001-02-28 2002-08-29 Asahi Glass Company, Limited Fluorine-containing copolymer, composition and laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291849A (ja) * 1999-02-05 2000-10-20 Asahi Glass Co Ltd 燃料輸送用ホース
JP2002357285A (ja) * 2000-04-24 2002-12-13 Asahi Glass Co Ltd 燃料用ホース
JP2002144499A (ja) * 2000-09-18 2002-05-21 Ausimont Spa フルオロポリマーと水素添加ポリマーとからなる多層組成物
JP2002210892A (ja) * 2001-01-12 2002-07-31 Tokai Rubber Ind Ltd 接着積層体及び燃料ホース
JP2002327018A (ja) * 2001-02-28 2002-11-15 Asahi Glass Co Ltd 含フッ素共重合体、組成物及び積層体
JP2004358959A (ja) * 2003-05-12 2004-12-24 Daikin Ind Ltd 積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1897686A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105294A1 (en) 2008-03-27 2009-09-30 Daikin Industries, Ltd. Laminate
US8530014B2 (en) 2008-03-27 2013-09-10 Daikin Industries, Ltd. Laminate
WO2022181841A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
WO2022181840A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
JP2022132224A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 含フッ素共重合体
JP2022132225A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 含フッ素共重合体
JP7265210B2 (ja) 2021-02-26 2023-04-26 ダイキン工業株式会社 含フッ素共重合体
JP7265209B2 (ja) 2021-02-26 2023-04-26 ダイキン工業株式会社 含フッ素共重合体

Also Published As

Publication number Publication date
EP1897686A4 (en) 2011-08-24
EP1897686A1 (en) 2008-03-12
US20090291243A1 (en) 2009-11-26
KR20080022197A (ko) 2008-03-10
JP2007015364A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2006135091A1 (ja) 積層体
JP3948473B2 (ja) フルオロポリマー及びその組成物
US8067075B2 (en) Multilayer tube
JP4240201B2 (ja) 含フッ素共重合体
JP5169942B2 (ja) 積層体
JP2010095575A (ja) 部分結晶性フッ素樹脂及び積層体
JP5169830B2 (ja) 燃料用タンク及びその製造方法
WO2001058686A1 (fr) Resine stratifiee
WO2001060606A1 (fr) Moulage de resine en couches et article moule multicouche
WO2004098880A1 (ja) 積層体
KR100830789B1 (ko) 다층 적층체의 제조 방법
JP2006044201A (ja) 積層構造体
EP2070693A1 (en) Blow molded body
JP4096291B2 (ja) 含フッ素共重合体
WO2009119747A1 (ja) バイオディーゼル燃料用成形体
JP5018782B2 (ja) 燃料用タンク
JP3972917B2 (ja) 積層体
JP2010095576A (ja) 部分結晶性フッ素樹脂及び積層体
JP5604820B2 (ja) 成形体及び中空成形体の製造方法
WO2011099414A1 (ja) 含フッ素共重合体
WO2006004013A1 (ja) 積層体製造方法及び積層体
WO2004069534A1 (ja) 積層樹脂成形体及びその製造方法
JP2005331101A (ja) 積層ホース
CN101171128A (zh) 层积体
CN116728931A (zh) 层积体、配管和软管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015692.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11917416

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006757401

Country of ref document: EP