WO2006129559A1 - 緑色系発光蛍光体 - Google Patents

緑色系発光蛍光体 Download PDF

Info

Publication number
WO2006129559A1
WO2006129559A1 PCT/JP2006/310526 JP2006310526W WO2006129559A1 WO 2006129559 A1 WO2006129559 A1 WO 2006129559A1 JP 2006310526 W JP2006310526 W JP 2006310526W WO 2006129559 A1 WO2006129559 A1 WO 2006129559A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
phosphor
chlorine
strontium
green light
Prior art date
Application number
PCT/JP2006/310526
Other languages
English (en)
French (fr)
Inventor
Takeshi Takahara
Yasushi Aoki
Takashi Murase
Original Assignee
Nemoto & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto & Co., Ltd. filed Critical Nemoto & Co., Ltd.
Priority to AT06756626T priority Critical patent/ATE486917T1/de
Priority to US11/661,926 priority patent/US7837898B2/en
Priority to DE602006018002T priority patent/DE602006018002D1/de
Priority to JP2007502138A priority patent/JP3981149B2/ja
Priority to EP06756626A priority patent/EP1889892B1/en
Publication of WO2006129559A1 publication Critical patent/WO2006129559A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides

Definitions

  • the present invention relates to a phosphor that absorbs visible light and ultraviolet light in a short wavelength region such as blue light and emits longer wavelength visible light such as green, and further, a light emitting diode (LED) and a laser diode (LD).
  • the present invention relates to a phosphor capable of forming a white light emitting element with improved color rendering by combining with a semiconductor light emitting element such as the above.
  • a phosphor that absorbs visible light and ultraviolet light in a short wavelength region such as blue light and converts the wavelength to visible light of longer wavelength such as red and green is combined with visible light such as white. It has been known for a long time.
  • a semiconductor light-emitting element such as a gallium nitride (GaN) blue light-emitting diode is used as a light source for visible light or ultraviolet light in the short wavelength region, and is combined with a phosphor as a wavelength conversion material, such as white.
  • GaN gallium nitride
  • the light-emitting element that emits visible light is characterized by low power consumption and long life, and has recently attracted attention as a light-emitting source for image display devices and lighting devices.
  • a phosphor as a conversion material absorbs visible light in a blue region emitted from a GaN-based blue light emitting diode, emits yellow light, and further emits blue light of the light emitting diode that is not absorbed by the phosphor. As a result, white light emission can be obtained (see Patent Document 1, for example).
  • this yellow phosphor has a problem that the luminance decreases when the temperature rises.
  • AE alkaline earth element
  • Si silicon
  • O oxygen
  • N nitrogen
  • the crystal structure of this material is composed of a combination of SiO tetrahedron and SiN tetrahedron.
  • Patent Document 1 JP-A-10-242513 (Page 2)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-134805 (Page 2, Page 6, Page 8)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-277547 (Page 2, Page 13)
  • An object of the present invention is to provide a high-brightness alkaline earth metal oxynitride phosphor in view of the above-described conventional technology.
  • the green light-emitting phosphor according to the first invention has a general formula of M Si O X N: Eu
  • M is at least one element of strontium (Sr), barium (Ba) and calcium (Ca), and X is chlorine (C1) and bromine ( Br) is at least one element, wherein a is 0.005 ⁇ a ⁇ 0.15 and n is 0.02 ⁇ n ⁇ 0.2.
  • the substitution amount is too large, so that the structure of the phosphor of the present invention, which is the object, is not obtained, and the emission luminance is lowered.
  • n is less than 0.02, the amount of substitution is insufficient, so that it is not different from conventional phosphors.
  • a is set to 0.005 ⁇ a ⁇ 0.15 and n is set to 0.002 ⁇ n ⁇ 0.2 to obtain a high-luminance green light-emitting phosphor. it can.
  • the green light-emitting phosphor according to the second invention has a general formula of Sr Si O X N: Eu.
  • X is at least one element of chlorine (CI) and bromine (Br), a is 0.005 ⁇ a ⁇ 0.15, and n is 0.02 ⁇ n ⁇ 0.2. It is characterized by being!
  • the oxygen content becomes higher. It becomes a bright green light emitting phosphor.
  • the green light-emitting phosphor according to the third invention has a general formula of (SrBa) SiOxN
  • X is at least one element of chlorine (CI) and bromine (Br), a is a
  • the substitution amount is too large, so that the structure of the phosphor of the present invention, which is the object, is not obtained, and the emission luminance is lowered.
  • n is less than 0.02, the amount of substitution is insufficient, so that it is not different from conventional phosphors.
  • a is set to 0.005 ⁇ a ⁇ 0.15
  • b is set to 0 ⁇ b ⁇ 0.761
  • n is set to 0.02 ⁇ n ⁇ 0.2.
  • a green light-emitting phosphor having a luminance can be obtained.
  • the green light-emitting phosphor according to the fourth invention has the general formula (Sr Ba Ca) Si 2 O 3
  • X N represented by Eu, where X is at least one element of chlorine (CI) and bromine (Br) n n 2 a
  • n Is characterized by 0. 02 ⁇ n ⁇ 0.2.
  • the substitution amount is too large, so that the structure of the phosphor of the present invention, which is the object, is not obtained, and the emission luminance is lowered.
  • n is less than 0.02, the amount of substitution is insufficient, so that it is not different from conventional phosphors.
  • the emission peak wavelength of the phosphor is slightly shifted, and the emission color can be adjusted. This is preferable. However, when c exceeds 0.109, or (b + c) exceeds 0.218, the emission luminance is lowered, which is not preferable.
  • a 0.005 ⁇ a ⁇ 0.15
  • c is 0 ⁇ c ⁇ 0.109
  • (b + c) is 0 ⁇ (b + c) ⁇ 0.218
  • n By setting 0.02 ⁇ n ⁇ 0.2, high brightness green light emission A light body can be obtained.
  • M is at least a of strontium (Sr), barium (Ba) and calcium (Ca)
  • X is at least one element of chlorine (C1) and bromine (Br), a is 0.005 ⁇ a ⁇ 0.15, and n is 0.02 ⁇ n
  • C1 and bromine (Br) are at least one element of chlorine (C1) and bromine (Br)
  • a is 0.005 ⁇ a ⁇ 0.15
  • n is 0.02 ⁇ n
  • the general formula is Sr Si O X N: E
  • X is at least one element of chlorine (CI) and bromine (Br), and a is 0.a
  • the general formula is (SrBa) SiO
  • X N represented by Eu, where X is at least one element of chlorine (CI) and bromine (Br) n n 2 a
  • A is set to 0.005 ⁇ a ⁇ 0.15, b is set to 0 ⁇ b ⁇ 0.761, and n is set to 0.002 ⁇ n ⁇ 0.2, so that the emission luminance is high and excellent.
  • a green light-emitting phosphor can be obtained.
  • the general formula is (Sr Ba Ca) Si l -b- c b c 1 -a 2
  • O X N represented by Eu, where X is at least one element of chlorine (CI) and bromine (Br)
  • A is 0.005 ⁇ a ⁇ 0.15, c is 0 ⁇ c ⁇ 0.109, (b + c) is 0 ⁇ (b + c) ⁇ 0.218, and n is 0
  • c is 0.005 ⁇ a ⁇ 0.15
  • c is 0 ⁇ c ⁇ 0.109
  • (b + c) is 0 ⁇ (b + c) ⁇ 0.218
  • n is 0
  • FIG. 1 is a graph showing an emission spectrum of a green light-emitting phosphor according to an embodiment of the present invention and a conventional green light-emitting phosphor when excited at 465 nm.
  • the phosphor according to the present invention can be obtained by mixing compounds containing component elements so as to have a predetermined ratio, and firing the resulting mixture under predetermined conditions.
  • cationic elements compounds such as carbonates, oxides, nitrides and fluorides containing Sr, Ca, Ba, Si and Eu (hereinafter referred to as “cationic elements”) can be used.
  • a simple compound containing one kind of cation element may be used, or a composite compound containing two or more kinds of cation elements may be used.
  • the type and mixing ratio of the starting materials are selected according to the phosphor composition to be prepared.
  • the mixed starting material is calcined under predetermined conditions.
  • the atmosphere during firing is preferably a mixed gas atmosphere of hydrogen and nitrogen.
  • the hydrogen gas concentration is preferably in the range of 1% to 5%.
  • the firing temperature is preferably 1200 ° C or higher and 1600 ° C or lower.
  • a calcination temperature of less than 1200 ° C is not preferable because the reaction rate of the solid phase reaction of the starting material becomes slow.
  • the firing temperature exceeds 1600 ° C, sintering melting becomes remarkable, which is not preferable.
  • the firing temperature is more preferably 1300 ° C or higher and 1500 ° C or lower.
  • the firing time is preferably 0.5 hours or longer. If the firing time is less than 0.5 hours, the solid phase reaction becomes insufficient, and good phosphor particles cannot be obtained, which is not preferable.
  • the firing time is more preferably 1 hour or longer.
  • the target oxynitride phosphor When fired under such conditions, the target oxynitride phosphor is obtained by a solid-phase reaction. Immediately after firing, the powder is usually in an agglomerated state. To use this as a phosphor for an LED, the synthesized powdered phosphor is passed through a dispersion process, a cleaning process, and a sieving process. Commercialize the product to have a predetermined particle size.
  • strontium carbonate (SrCO) is used as a raw material for strontium (Sr). 141. Og (Sr and
  • the phosphor of Sample 1-1 (1) is represented by the general formula: Sr Si O CI N: Eu
  • the amount of strontium chloride to be added in place of strontium carbonate is defined as the amount of chlorine (C1) n as shown in Table 1.
  • Sample 1—A phosphor was prepared under the same conditions as Sample 1— (1) except that it was changed to 0. 05, 0. 1, 0. 15, 0. 2, 0. 25. (2) to Sample 1— (7).
  • a phosphor was prepared under the same conditions as Sample 1- (1) except that no strontium chloride was added.
  • the luminance was calculated from these emission spectra by the following method. That is, if the emission intensity at each wavelength ⁇ is represented by ⁇ ( ⁇ ), the luminance ⁇ of the phosphor of the present invention was calculated using the following Equation 1.
  • V ( ⁇ ) in Equation 1 represents the standard relative luminous sensitivity
  • the integration range of the wavelength ⁇ is in the range of 470 nm to 700 nm.
  • the brightness B thus obtained is shown in Table 2 as the relative brightness when the brightness of Comparative Example 1 is 100.
  • the chromaticity x and chromaticity y were calculated in the same manner from the emission spectrum of Sample 1- (4). As a result, the chromaticity X was 0.382 and the chromaticity y was 0.589.
  • the amount n of chlorine (C1) as a halogen element is preferably in the range of 0.02 to 0.2, more preferably in the range of 0.1 to 0.15.
  • the amount a of the mouthpiece pium is 0.005 or more and 0.15 or less.
  • Sample 2- (2) to Sample 2- (6) and Sample 1-1 (5) are compared. It can be seen that the relative luminance is improved compared to Example 1, which is preferable.
  • the amount a of the amount of the europium (Eu) is preferably in the range of 0.005 to 0.15, more preferably in the range of 0.04 to 0.1.
  • silicon dioxide (SiO 2) as the raw material for silicon (Si)
  • a phosphor was prepared under the same conditions as Sample 3- (1) except that strontium chloride and barium chloride were not used, but were supplemented with strontium carbonate and barium carbonate.
  • the phosphor for comparison corresponding to Sample 3- (1) is Sr Ba Si
  • the brightness of Sample 3- (1) to Sample 3- (7) and the phosphors to be compared were measured in the same manner as in Example 1, and the results were used as the comparison targets.
  • Table 6 shows the relative luminance with respect to the phosphor. From the obtained emission spectrum, chromaticity x, chromaticity y, and emission peak wavelength were also calculated and shown in Table 6.
  • Sample 3— (1) to Sample 3— (where the barium ratio b is from 0.109 to 1 It can be seen that 7) is preferable because the relative luminance is improved compared to the phosphors not containing chlorine, which are the comparison targets. Further, Sample 3— (1) to Sample 3— (5), in which the ratio of norium b is from 0.109 to 0.761, has one emission peak and has chromaticity x, chromaticity y, From the emission peak wavelength and emission spectrum not shown? It can be seen that the luminous intensity is high, the brightness is more preferable, and the phosphor.
  • Sample 3— (6) which has a ratio of norb b exceeding 0.761 and 0.924
  • Sample 3— (7) which is 1
  • the luminous brightness tends to decrease, which is not preferable as compared with Samples 3- (1) to 3- (5).
  • the ratio b of barium to the total number of moles of strontium and barium is preferably not more than 0.761.
  • strontium carbonate was used as a raw material for strontium (Sr).
  • Si N nitride of silicon
  • strontium chloride (SrCl) as the raw material for strontium and chlorine (C1) (0.075 monolayer for Sr and 0.15 monolayer for C1) Mix well
  • This powder mixture is filled in an alumina container and placed in a 3% H + 97% N atmosphere.
  • the phosphor of Sample 4 (1) has the general formula: Sr Ba Ca Si O CI N: Eu
  • phosphors were prepared under the same conditions as Sample 4- (3), and these were prepared as Sample 4-- (1), Sample 4-- (2), Sample 4-- (4) to Sample 4- (7).
  • the luminance of Sample 4 1 (1) to Sample 4 (7) thus obtained was measured by the same method as in Example 1, and the results are shown in Table 8 as relative luminance with respect to Comparative Example 1.
  • Sample 4-1 (1) to Sample 4-1 (6) are all preferable in that the relative luminance is improved as compared with Comparative Example 1.
  • (b + c) representing the sum of the barium ratio b and the calcium ratio c is not less than 0.054 and not more than 0.218. It can be seen that the ratio of calcium c force .054 or more and 0.109 or less. Further, it can be seen that Sample 4- (1) to Sample 4- (3) in which (b + c) is not more than 0.108 are better and more preferable phosphors.
  • (b + c) representing the sum of the calcium ratio b and the norlium ratio c is in the range of more than 0 and less than 0.218.
  • the range in which the ratio c of the force lucium is more than 0 and less than or equal to 0.109 is preferable, and the range in which (b + c) is less than or equal to 0.109 is more preferable.
  • silicon dioxide SiO 2
  • Si silicon dioxide
  • Si N nitride of silicon
  • This powder mixture is filled in an alumina container and fired at 1400 ° C. for 1 hour in a 3% H + 97% N atmosphere. After firing, dispersion treatment
  • the amount n of the halogen element which is the sum of chlorine and bromine is 0.15.
  • a phosphor was prepared in the same manner as Sample 5- (2) except that no halogen element was used.
  • the phosphor of Comparative Example 2 is Sr Si ON: Eu
  • Sample 5- (5) The amount of chlorine and bromine was prepared as shown in Table 9 in the same manner as Sample 5- (2) and others. These were designated as Sample 5- (5) and Sample 5- (6).
  • the phosphor of Sample 5- (5) is Sr Ba
  • Comparative Example 3 For comparison in this case, a sample using no halogen element was prepared as Comparative Example 3.
  • the phosphor of Comparative Example 3 is represented by SrBaSiON: Eu.
  • strontium chloride SrCl
  • chlorine C1 10.7g
  • strontium and fluorine F
  • Si N silicon nitride
  • Samples 6- (1) to 6- (4) are all preferable in that the relative luminance is improved as compared with Comparative Example 1.
  • sample 6- (1) has a molar ratio of fluorine (F) to all halogen elements of 0.1
  • sample 6- (2) and sample 6- (3) have nitrogen (I) composed of all halogens.
  • the molar ratio to the element is 0.2 or less.
  • the total of fluorine and iodine is 0.127 in terms of the molar ratio to all the norogen elements.
  • the phosphor of the present invention contains a halogen element other than chlorine or bromine. It can be seen that even if the amount of dried food is included. If fluorine or iodine alone is used, there is no problem up to a molar ratio of about 0.2 to the total norogen element, but if both fluorine and iodine are included, the molar ratio to all halogen elements is about 0.13. It is a good idea that is desirable.
  • the green light-emitting phosphor of the present invention is combined with a light-emitting element that emits visible light in the short wavelength region such as blue light, and thereby emits white light by color mixing with long-wavelength visible light emitted from the phosphor.
  • a light-emitting element that emits visible light in the short wavelength region such as blue light, and thereby emits white light by color mixing with long-wavelength visible light emitted from the phosphor.
  • An element can be configured. Further, by using a light emitting diode, a laser diode, or the like as the light emitting element, an excellent white light emitting element with higher luminance can be configured.
  • These white-based visible light-emitting elements can be widely used as light-emitting sources for image display devices and illumination devices by taking advantage of the feature of low power consumption and long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Glass Compositions (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

 主に青色発光ダイオードが発する青色光による励起時に、高い発光輝度を持つ緑色系発光蛍光体を提供する。緑色系発光蛍光体は、一般式がM1-aSi2O2-1/2nXnN2:Euaで表され、Mはストロンチウム(Sr)、バリウム(Ba)及びカルシウム(Ca)の少なくとも1つ以上の元素であり、Xは塩素(Cl)及び臭素(Br)の少なくとも1つ以上の元素であり、aは0.005≦a≦0.15であり、nは0.02≦n≦0.2であることを特徴としている。母体中の酸素(O)の一部を塩素(Cl)及び臭素(Br)の少なくとも1つ以上のハロゲン元素で置換することによって、より高輝度な緑色系発光蛍光体となる。

Description

明 細 書
緑色系発光蛍光体
技術分野
[0001] 本発明は、青色光線等の短波長領域の可視光線や紫外線を吸収し、緑色等のより 長波長の可視光を発する蛍光体に関し、さらに発光ダイオード (LED)やレーザーダ ィオード (LD)等の半導体発光素子と組み合わせることにより、演色性が改善された 白色発光素子を構成することができる蛍光体に関する。
背景技術
[0002] 青色光線等の短波長領域の可視光線や紫外線を吸収し、赤色や緑色等のより長 波長の可視光に波長変換をする蛍光体を用い、これを組み合わせることで白色等の 可視光を得ることは古くから知られて 、る。
特に、短波長領域の可視光線や紫外線の光源として、半導体発光素子、例えば窒 化ガリウム (GaN)系青色発光ダイオード等を用いて、波長変換材料としての蛍光体 とを組み合わせて構成し、白色等の可視光を発光する発光素子は、消費電力が小さ く長寿命であるという特徴があり、近年画像表示装置や照明装置の発光源として注 目されている。
この発光素子は、例えば変換材料としての蛍光体が、 GaN系青色発光ダイオード の発する青色領域の可視光を吸収して黄色光を発光し、さらに蛍光体に吸収されな 力つた発光ダイオードの青色光との混色により、白色の発光が得られるものである(例 えば、特許文献 1参照。)。
[0003] し力しながら、この黄色蛍光体は温度が上昇すると輝度低下が起こるという問題が ある。
また、この温度特性の良好である蛍光体としては、窒化物蛍光体や酸窒化物系の 蛍光体が提案されている(例えば特許文献 2及び 3参照。;)。このうち、例えば特許文 献 3には、アルカリ土類元素 (AE):ケィ素(Si):酸素(O):窒素 (N) = 1: 2: 2: 2の組 成の蛍光体が良好な特性を持つと記載されて 、る。
この物質の結晶構造は SiO四面体と SiN四面体の組合せで結晶骨格が構成され ているが、この構造の蛍光体はまだ発光輝度が十分ではなぐ改良が求められてい た。
特許文献 1 :特開平 10— 242513号公報 (第 2頁)
特許文献 2 :特開 2004— 134805号公報 (第 2頁、第 6頁、第 8頁)
特許文献 3 :特開 2004— 277547号公報 (第 2頁、第 13頁)
発明の開示
[0004] 本発明は、前述の従来技術に鑑み、高輝度のアルカリ土類金属酸窒化物系蛍光 体を提供することを目的とする。
[0005] 本発明者等は、前記課題を解決すべく種々の実験を行なった結果、酸窒化物蛍光 体の母体の一部の酸素(O)をハロゲン元素に置換することにより、高輝度な蛍光体 が得られることを見出した。
第 1の発明に係る緑色系発光蛍光体は、一般式が M Si O X N :Euで
1 -a 2 2- l/2n n 2 a 表され、 Mはストロンチウム(Sr)、バリウム(Ba)及びカルシウム(Ca)の少なくとも 1つ 以上の元素であり、 Xは塩素(C1)及び臭素(Br)の少なくとも 1つ以上の元素であり、 aは 0. 005≤a≤0. 15であり、 nは 0. 02≤n≤0. 2であることを特徴として!/、る。
[0006] そして、上記のように、母体中の酸素(O)の一部を、 Xで表される塩素(C1)及び臭 素(Br)の少なくとも 1つ以上のハロゲン元素で置換することによって、より高輝度な緑 色系発光蛍光体となる。
ここで、 Xで表されるハロゲン元素の量 nが 0. 2を超える場合では、置換量が大きす ぎるために目的である本発明の蛍光体の構造とならず、発光輝度が低下する。また n が 0. 02未満の場合では、置換量が不十分なため、従来タイプの蛍光体と変わらな い。
また、付活剤としてのユウ口ピウム (Eu)の量を表す aが 0. 15を超える場合では、濃 度消光により発光輝度が低下する。一方、 aが 0. 005未満の場合では、付活剤とし ての濃度が不十分なため、やはり発光輝度が低下する。
[0007] これらのこと力ら、 aを 0. 005≤a≤0. 15とし、 nを 0. 02≤n≤0. 2とすることで、高 輝度の緑色系発光蛍光体を得ることができる。
第 2の発明に係る緑色系発光蛍光体は、一般式が Sr Si O X N :Euで
1 -a 2 2- l/2n n 2 a 表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、 aは 0. 005 ≤a≤0. 15であり、 nは 0. 02≤n≤0. 2であることを特徴として!/ヽる。
そして、上記のように、母体中の酸素(O)の一部を、 Xで表される塩素(C1)及び臭 素(Br)の少なくとも 1つ以上のハロゲン元素で置換することによって、より高輝度な緑 色系発光蛍光体となる。
[0008] ここで、 Xで表されるハロゲン元素の量 nが 0. 2を超える場合では、置換量が大きす ぎるために目的である本発明の蛍光体の構造とならず、発光輝度が低下する。また n が 0. 02未満の場合では、置換量が不十分なため、従来タイプの蛍光体と変わらな い。
また、付活剤としてのユウ口ピウム (Eu)の量を表す aが 0. 15を超える場合では、濃 度消光により発光輝度が低下する。一方、 aが 0. 005未満の場合では、付活剤とし ての濃度が不十分なため、やはり発光輝度が低下する。
これらのこと力ら、 aを 0. 005≤a≤0. 15とし、11を0. 02≤n≤0. 2とすることで、高 輝度の緑色系発光蛍光体を得ることができる。
[0009] 第 3の発明に係る緑色系発光蛍光体は、一般式が(Sr Ba ) Si O X N
1 -b b 1 -a 2 2~ l/2n n 2
: Euで表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、 aは a
0. 005≤a≤0. 15であり、 biま 0<b≤0. 761であり、 ηίま 0. 02≤η≤0. 2であるこ とを特徴としている。
そして、上記のように、母体中の酸素(Ο)の一部を、 Xで表される塩素(C1)及び臭 素(Br)の少なくとも 1つ以上のハロゲン元素で置換することによって、より高輝度な緑 色系発光蛍光体となる。
ここで、 Xで表されるハロゲン元素の量 nが 0. 2を超える場合では、置換量が大きす ぎるために目的である本発明の蛍光体の構造とならず、発光輝度が低下する。また n が 0. 02未満の場合では、置換量が不十分なため、従来タイプの蛍光体と変わらな い。
[0010] また、付活剤としてのユウ口ピウム (Eu)の量を表す aが 0. 15を超える場合では、濃 度消光により発光輝度が低下する。一方、 aが 0. 005未満の場合では、付活剤とし ての濃度が不十分なため、やはり発光輝度が低下する。 さらに、ストロンチウム(Sr)の一部をバリウム (Ba)で置換する割合を表す bを増加す ることにより、蛍光体の発光ピーク波長が長波長側に若干シフトし、色度 Xは増加、色 度 yは減少する。この性質により、 bを増加することで特に青色光線等を発光する発光 ダイオード等の半導体発光素子と組み合わせて白色系の光源を得る際に、発光色 の調整が可能となるので好ましい。しかし、 b力 . 761を超える場合、発光ピークが 2 つになり、短波長成分の色が混ざることにより視感輝度も低下するため好ましくない。
[0011] これらのこと力ら、 aを 0. 005≤a≤0. 15とし、 bを 0<b≤0. 761とし、 nを 0. 02≤ n≤0. 2とすることで、高輝度の緑色系発光蛍光体を得ることができる。
第 4の発明に係る緑色系発光蛍光体は、一般式が(Sr Ba Ca ) Si O
l -b— c b c 1 -a 2 2— 1/2
X N : Euで表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であ n n 2 a
り、 aiま 0. 005≤a≤0. 15であり、 dま 0< c≤0. 109であり、(b + c) ίま 0< (b + c)≤ 0. 218であり、 nは 0. 02≤n≤0. 2であることを特徴として!/ヽる。
[0012] そして、上記のように、母体中の酸素(O)の一部を、 Xで表される塩素(C1)及び臭 素(Br)の少なくとも 1つ以上のハロゲン元素で置換することによって、より高輝度な緑 色系発光蛍光体となる。
ここで、 Xで表されるハロゲン元素の量 nが 0. 2を超える場合では、置換量が大きす ぎるために目的である本発明の蛍光体の構造とならず、発光輝度が低下する。また n が 0. 02未満の場合では、置換量が不十分なため、従来タイプの蛍光体と変わらな い。
また、付活剤としてのユウ口ピウム (Eu)の量を表す aが 0. 15を超える場合では、濃 度消光により発光輝度が低下する。一方、 aが 0. 005未満の場合では、付活剤とし ての濃度が不十分なため、やはり発光輝度が低下する。
[0013] さらに、ストロンチウム(Sr)の一部を少なくともカルシウム(Ca)又はカルシウム及び ノ リウム (Ba)で置換することにより、蛍光体の発光ピーク波長が若干シフトし、発光 色の調整が可能となるので好ましい。しかし、 cが 0. 109を超える場合、又は (b + c) が 0. 218を超える場合、発光輝度が低下するため好ましくない。
これらのこと力ら、 aを 0. 005≤a≤0. 15とし、 cを 0< c≤0. 109とし、(b + c)を 0 < (b + c)≤0. 218とし、 nを 0. 02≤n≤0. 2とすることで、高輝度の緑色系発光 光体を得ることができる。
[0014] 第 1の発明に係る緑色系発光蛍光体によれば、一般式が M Si O X N :E
1 -a 2 2- l/2n n 2 uで表され、 Mはストロンチウム(Sr)、バリウム(Ba)及びカルシウム(Ca)の少なくとも a
1つ以上の元素であり、 Xは塩素(C1)及び臭素(Br)の少なくとも 1つ以上の元素であ り、 aを 0. 005≤a≤0. 15とし、 nを 0. 02≤n≤0. 2としたことで、発光輝度の高 ヽ優 れた緑色系発光蛍光体を得ることができる。
第 2の発明に係る緑色系発光蛍光体によれば、一般式が Sr Si O X N :E
1 -a 2 2- l/2n n 2 uで表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、 aを 0. a
005≤a≤0. 15とし、nを 0. 02≤n≤0. 2としたことで、発光輝度の高!ヽ優れた緑色 系発光蛍光体を得ることができる。
[0015] 第 3の発明に係る緑色系発光蛍光体によれば、一般式が(Sr Ba ) Si O
l -b b 1 -a 2 2—1/2
X N: Euで表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であ n n 2 a
り、 aを 0. 005≤a≤0. 15とし、 bを 0<b≤0. 761とし、 nを 0. 02≤n≤0. 2としたこ とで、発光輝度の高 、優れた緑色系発光蛍光体を得ることができる。
第 4の発明に係る緑色系発光蛍光体によれば、一般式が(Sr Ba Ca ) Si l -b— c b c 1 -a 2
O X N: Euで表され、 Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元
2- l/2n n 2 a
素であり、 aを 0. 005≤a≤0. 15とし、 cを 0< c≤0. 109とし、(b + c)を 0< (b + c) ≤0. 218とし、 nを 0. 02≤n≤0. 2としたことで、発光輝度の高い優れた緑色系発 光蛍光体を得ることができる。
図面の簡単な説明
[0016] [図 1]本発明の一実施の形態の緑色系発光蛍光体及び従来の緑色系発光蛍光体の 、 465nm励起時の発光スペクトルを表すグラフである。
発明を実施するための最良の形態
[0017] 以下、本発明の一実施の形態における蛍光体を製造する工程を説明する。本発明 に係る蛍光体は、成分元素を含む化合物を所定の比率になるように混合し、得られ た混合物を所定の条件下で焼成することにより得られる。
出発原料には、 Sr, Ca, Ba, Si及び Eu (以下、これらを「陽イオン元素」という。)を 含む炭酸塩、酸化物、窒化物、フッ化物等の化合物を用いることができる。出発原料 には、 1種類の陽イオン元素を含む単純ィ匕合物を用いても良ぐあるいは、 2種以上 の陽イオン元素を含む複合ィ匕合物を用いても良 、。
出発原料の種類及び混合比率は、作成しょうとする蛍光体の組成に応じて選択す る。
混合された出発原料は、所定の条件下で焼成する。焼成時の雰囲気は、水素と窒 素混合ガス雰囲気が好まし 、。水素ガス濃度は 1%から 5%の範囲が好まし 、。
[0018] 焼成温度は、 1200°C以上 1600°C以下が好ましい。焼成温度が 1200°C未満であ ると、出発原料の固相反応の反応速度が遅くなるので好ましくない。一方、焼成温度 が 1600°Cを越えると、焼結溶融が著しくなり好ましくない。焼成温度は、さらに好まし くは、 1300°C以上 1500°C以下である。
焼成時間は、 0. 5時間以上が好ましい。焼成時間が 0. 5時間未満であると、固相 反応が不十分となり、良好な蛍光体粒子が得られないので好ましくない。焼成時間は 、さらに好ましくは、 1時間以上である。
このような条件下で焼成すると、固相反応によって、目的の酸窒化物蛍光体が得ら れる。焼成直後は、通常、粉末が凝集した状態となっているので、これを LED用の蛍 光体として用いるためには、合成された粉末状蛍光体を分散工程、洗浄処理工程、 篩別工程を通して所定の粒度となるように製品化する。
[0019] 次に、上記一実施の形態の実施例として、本発明の緑色系発光蛍光体とその特性 について説明する。
[0020] (実施例 1)
はじめに、組成中のハロゲン元素として、塩素(C1)の置換量 nを変化させたときの 蛍光体の特性について説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO )を 141. Og (Srと
3
して 0. 955モル)、ユウ口ピウム(Eu)の原料として酸化ユウ口ピウム(Eu O )を 7. Og
2 3
(Euとして 0. 04モル)、ケィ素(Si)の原料として二酸化ケイ素(SiO )を 30. lg (Siと
2
して 0. 5モル)、ケィ素と窒素(N)の原料として窒化ケィ素(Si N )を 70. 2g (Siとし
3 4
て 1. 5モル、 Nとして 2モル)、ストロンチウムと塩素 (C1)の原料として塩化ストロンチウ ム(SrCl )を 0. 79g (Srとして 0. 005モノレ、 C1として 0. 01モノレ)を十分よく混合する 。この粉末混合物を、アルミナ容器内に充填して、 3%H + 97%N雰囲気において
2 2
1400°Cで 1時間焼成する。焼成後、分散処理及び洗浄処理を経て、さらに 420メッ シュの篩を通過させ、得られた蛍光体を試料 1— (1)とした。
[0021] この試料 1一(1)の蛍光体は、一般式: Sr Si O CI N: Eu で表される
0. 96 2 1. 995 0. 01 2 0. 04 同様にして、炭酸ストロンチウムに置換して添加する塩化ストロンチウムの量を、表 1 に示すように塩素(C1)の量 nとして 0. 02, 0. 05, 0. 1, 0. 15, 0. 2, 0. 25となるよ うに変化させたほかは試料 1— (1)と同一の条件で蛍光体を作成し、これを試料 1— ( 2)乃至試料 1— (7)とした。
また、比較用として、塩化ストロンチウムを全く添加しないほかは上記試料 1— (1)と 同様の条件で蛍光体を作成し、これを比較例 1とした。この比較例 1は、 Sr Si O
0. 96 2 2
N : Eu で表される。
2 0. 04
[0022] [表 1]
Figure imgf000009_0001
次に、得られた試料 1— (1)乃至試料 1— (7)及び比較例 1の発光特性を測定した 発光特性として、まず発光スペクトルを分光蛍光光度計 (型式: F— 4500 日立製 作所製)を用いて測定した。各々の試料を石英ガラス窓付きの粉末用試料セルに入 れ、励起波長として 465nmの青色領域の光を照射して、発光スペクトルを測定した。 このうち、比較例 1及び試料 1一(4)の発光スペクトルを図 1に示す。この図 1より、 従来タイプの酸窒化物蛍光体である比較例 1と、本発明の試料 1一(4)とを比較する と、ほぼ同様の発光スペクトルを持つことがわかる。
[0023] さらに、これら発光スペクトルから、以下の方法により輝度を算出した。すなわち、各 波長 λにおける発光強度を Ρ ( λ )で表すとすると、本発明の蛍光体の輝度 Βは、次 の数式 1を用いて算出した。
[0024] [数 1]
Figure imgf000010_0001
ここで、数式 1中の V( λ )は標準比視感度を表し、波長 λの積分範囲は 470nmか ら 700nmの範囲とした。こうして得られた輝度 Bを、比較例 1の輝度を 100とした場合 の相対輝度として表 2に示した。
なお、試料 1— (4)の発光スペクトルから、色度 x、色度 yも同様にそれぞれ算出し た。その結果、色度 Xは 0. 382、色度 yは 0. 589であった。
[0025] [表 2]
ロゲンと して 試料 一般式 の CIの量 n 相対輝度 比較例 1 ¾ro.96Sl202J 2:Euo.04 0 1 0 0 試料 1-(1) ¾ro.96 l20l.995^1o.OlN2-Lao,04 0. 0 1 1 0 5 試料 1-(2) ¾Γθ d.96 ΐ2θΐ Ι0.Ο Ν -ii Uo.04 0. 0 2 1 1 0 試料 1-(3) ΰΓθ.960ΐ2θΐ
Figure imgf000011_0001
0. 0 5 1 3 1 試料 1-(4) 〇 0. 1 1 58 試料 1-(5) ¾ro.96 l20l.925Clo.l5N2:Euo,04 0. 1 5 1 6 2 試料 1-(6) k>ro.96 l20l.9 Clo.2 N :EU0.04 0. 2 1 2 9 試料 1-(7) Sro.6Si 0l.875Clo.25N2:Euo.04 0. 2 5 1 0 6 これら表 2に示した結果から明らかなように、塩素(C1)の量 nが 0.02以上 0.2以下 である試料 1— (2)乃至試料 1— (6)では、相対輝度が比較例 1より向上しており好ま しいことがわかり、さらに塩素(C1)の量 nが 0.1以上 0.15以下の範囲において、より 好ましいことがわかる。
し力し、塩素(C1)の量 nが 0.02未満の 0.01である試料 1— (1)では、その相対輝 度は n = 0すなわち塩素を全く使用しな 、従来タイプの蛍光体である比較例 1と大差 なぐ効果がほとんどない。また、塩素(C1)の量 nが 0.2を超えた 0.25である試料 1 一(7)では、輝度が低下する傾向が見られ、やはり好ましくない。
[0026] 以上のことから、ハロゲン元素としての塩素(C1)の量 nは 0.02以上 0.2以下の範 囲が好ましぐ 0. 1以上 0.15以下の範囲がより好ましいことがわかる。
[0027] (実施例 2)
次に、付活剤としてのユウ口ピウム (Eu)の量 aを変化させた場合における本発明の 蛍光体の特性について説明する。
表 3に示すように炭酸ストロンチウムと酸ィ匕ユウ口ピウムの量を、ユウ口ピウムの量 aと して 0.002力ら 0.2に変化させたほかは、実施例 1の試料 1一(5)の製造方法と同 様にして蛍光体を作成し、これを試料 2— (1)乃至試料 2— (7)とした。
[0028] [表 3] SrCOs Eu203 Si02 Si3N4 SrCl2 式料
Si(mol) N(mol) Cl(mol) 試料 2-(1) 0.923 0.002 0.5 1.5 2 0.075 0.15 試料 2 -(2) 0.92 0.005 0.5 1.5 2 0.075 0.15 試料 2 -(3) 0.915 0.01 0.5 1.5 2 0.075 0.15 試料 1-(5) 0.885 。一 0.04 0.5 1.5 2 0.075 0.15 試料 2 -(4) 0.845 0.08 0.5 1.5 2 0.075 0.15 試料 2 -(5) 0.825 0.1 0.5 1.5 2 0.075 0.15 試料 2 -(6) 0.775 0.15 0.5 1.5 2 0.075 0.15 試料 2 -(7) 0.725 0.2 0. J5 1.5 2 0.075 0.15 こうして得られた試料 2—(1)乃至試料 2— (7)について、実施例 1と同一の方法で 輝度を測定し、その結果を比較例 1に対する相対輝度として試料 1 (5)とともに表 4 に示す。
[表 4]
J
Figure imgf000012_0001
これら、表 4に示した結果から、ユウ口ピウムの量 aが 0. 005以上 0. 15以下である 試料 2—(2)乃至試料 2—(6)及び試料 1一(5)では、比較例 1と比べて相対輝度が 向上しており好ましいことがわかる。さらに、ユウ口ピウムの量 aが 0. 04以上 0. 1以下 である試料 2— (4)、試料 2— (5)及び試料 1— (5)では、相対輝度が 150以上と、よ り優れた好ま 、蛍光体となることがわかる。
し力し、ユウ口ピウムの量 aが 0. 005未満の 0. 002である試料 2—(1)では、付活 剤としてのユウ口ピウム濃度が不十分なため相対輝度が低下し、ユウ口ピウムの量 aが 0. 15を超える 0. 2である試料 2—(7)では、濃度消光により、やはり相対輝度が低 下している。
[0030] これらのことから、ユウ口ピウム(Eu)の量 aが 0. 005以上 0. 15以下の範囲が好まし ぐ 0. 04以上 0. 1以下の範囲がより好ましいことがわかる。
[0031] (実施例 3)
次に、ストロンチウム(Sr)の一部をバリウム (Ba)で置換した場合における本発明の 蛍光体の特性について説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO )を 111. 19g (Sr
3
として 0. 7532モル)、ノリウム(Ba)の原料として炭酸バリウム(BaCO )を 18. 12g (
3
Baとして 0. 0918モル)、ストロンチウムと塩素(C1)の原料として塩化ストロンチウム( SrCl )を 10. 59g (Srとして 0. 0668モノレ、 C1として 0. 1336モノレ)、ノリウムと塩素
2
の原料として塩化バリウム(BaCl )を 1. 71g (Baとして 0. 0082モル、 C1として 0. 01
2
64モル)、ユウ口ピウム(Eu)の原料として酸化ユウ口ピウム(Eu O )を 14. lg (Euと
2 3
して 0. 08モル)、ケィ素(Si)の原料として二酸化ケイ素(SiO )を 30. lg (Siとして 0
2
. 5モル)、ケィ素と窒素(N)の原料として窒化ケィ素(Si N )を 70· 2g (Siとして 1 · 5
3 4
モル、 Nとして 2モル)を十分よく混合する。この粉末混合物を、アルミナ容器内に充 填して、 3%H + 97%N雰囲気において 1400°Cで 1時間焼成する。焼成後、分散
2 2
処理及び洗浄処理を経て、さらに 420メッシュの篩を通過させ、得られた蛍光体を試 料 3—(1)とした。
[0032] この試料 3—(1)の蛍光体は、 Sr Ba Si O CI N: Eu で表される。
0. 82 0. 1 2 1. 925 0. 15 2 0. 08
また、比較対象として、塩化ストロンチウム及び塩化バリウムを用いずに、その分炭 酸ストロンチウム及び炭酸バリウムで補ったほかは、試料 3— (1)と同様の条件で蛍 光体を作成した。この試料 3— (1)に対応する比較対象の蛍光体は、 Sr Ba Si
0. 82 0. 1 2
O N : Eu で表される。
2 2 0. 08
同様にして、ストロンチウム及びバリウムの量を、表 5に示すように変化させたほかは 試料 3— (1)と同一の条件で蛍光体を作成し、これを試料 3— (2)乃至試料 3— (7)と した。これら試料 3— (2)乃至試料 3— (7)についても、試料 3— (1)と同様に比較対 象となる蛍光体を各々作成した。
[0033] [表 5]
Figure imgf000014_0001
こうして得られた試料 3—(1)乃至試料 3—(7)及び各々の比較対象となる蛍光体 について、実施例 1と同一の方法で輝度を測定し、その結果を各々の比較対象とな る蛍光体に対する相対輝度として表 6に示す。なお、得られた発光スペクトルから、色 度 x、色度 y、発光ピーク波長もそれぞれ算出し、あわせて表 6に示した。なおここで、 ノ リウムの割合 bは、ストロンチウムとバリウムのモル数の合計に対するバリウムのモル 数の割合、すなわち b = BaZ (Sr + Ba)を表して 、る。
[0034] [表 6]
CI無しに
発光ピーク
試料 Sr の a Baの w b 対する 色度 X 色度 y
波_¾ (nm/
相対輝度
試料 3-(1) 0.82 0.1 0. 109 丄 9 丄 0.402 0.573 549
試料 3 -(2) 0.72 0.2 0.217 1 6 6 0.410 0.567 550
試料 3 -(3) 0.62 0.3 0.326 丄 7 8 0.420 0.560 555
試料 3 -(4) 0.42 0.5 0.543 1 8 3 0.464 0.523 570
試料 3 -(5) 0.22 0.7 0.761 2 丄 5 0.500 0.492 582
試料 3 -(6) 0.07 0.85 0.924 1 9 8 0.451 0.491 497;582
試料 3-(7) 0 0.92 1 丄 3 5 0.366 0.491 498;588 これら、表 6に示した結果から、バリウムの割合 bが 0. 109から 1である試料 3— (1) 乃至試料 3— (7)は、いずれも各々の比較対象となる塩素を含まない蛍光体と比べ て相対輝度が向上しており好ましいことがわかる。さらに、ノ リウムの割合 bが 0. 109 以上 0. 761以下である試料 3—(1)乃至試料 3—(5)では、発光ピークが 1つであり 、かつ色度 x、色度 y、発光ピーク波長及び図示しない発光スペクトルから、?見感輝度 の高 、、より優れた好まし 、蛍光体であることがわかる。
し力し、ノ リウムの割合 bが 0. 761を超える 0. 924である試料 3—(6)や 1である試 料 3—(7)では、発光ピークが 2つに分離している上に、短波長側に新たに発光ピー クができているため、視感輝度が低下してしまう傾向にあり、上記試料 3—(1)乃至試 料 3— (5)と比較すると好ましくない。
[0035] なお、この他バリウムの割合 bが 0. 109未満の蛍光体についても同様に確認したと ころ、同様に塩素による相対輝度向上の効果が確認された。
これらのことから、ノ リウムを添加する場合、ストロンチウムとバリウムのモル数の合計 に対するバリウムの割合 bは 0. 761以下であることが好ましいことがわかる。
[0036] (実施例 4)
次に、ストロンチウム(Sr)の一部をカルシウム(Ca)で置換した場合並びにカルシゥ ム(Ca)及びバリウム (Ba)で置換した場合における本発明の蛍光体の特性について 説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO )を 110. Og (Srと
3
して 0. 745モル)、カルシウム(Ca)の原料として炭酸カルシウム(CaCO )を 5. 0g (
3
Caとして 0. 05モル)、バリウム(Ba)の原料として炭酸バリウム(BaCO )を 9. 87g (B aとして 0. 05モル)、ユウ口ピウム(Eu)の原料として酸化ユウ口ピウム(Eu O )を 14.
2 3 lg (Euとして 0. 08モル)、ケィ素(Si)の原料として二酸化ケイ素(SiO )を 30. lg (S
2
iとして 0. 5モル)、ケィ素と窒素(N)の原料として窒化ケィ素(Si N )を 70. 2g (Siと
3 4
して 1. 5モル、 Nとして 2モル)、ストロンチウムと塩素(C1)の原料として塩化ストロンチ ゥム(SrCl )を 11. 9g (Srとして 0. 075モノレ、 C1として 0. 15モノレ)を十分よく混合す
2
る。この粉末混合物を、アルミナ容器内に充填して、 3%H + 97%N雰囲気におい
2 2
て 1400°Cで 1時間焼成する。焼成後、分散処理及び洗浄処理を経て、さらに 420メ ッシュの篩を通過させ、得られた蛍光体を試料 4 (3)とした。
[0037] この試料 4一(3)の蛍光体は、一般式: Sr Ba Ca Si O CI N : Eu で
08 表される c
同様にして、ストロンチウムに置換して添加するバリウムの量、カルシウムの量を、表
5に示すように変化させたほかは試料 4— (3)と同一の条件で蛍光体を作成し、これ を試料 4— (1)、試料 4— (2)、試料 4— (4)乃至試料 4— (7)とした。
[0038] [表 7]
Eu203: Eu=0.08mol
共通条件
Si02: Si=0.5mol / Si3N4: Si=1.5mol,N=2mol
Figure imgf000016_0001
こうして得られた試料 4一(1)乃至試料 4 (7)について、実施例 1と同一の方法で 輝度を測定し、その結果を比較例 1に対する相対輝度として表 8に示す。なおここで 、ノリウムの割合 bは、ストロンチウムとバリウムとカルシウムのモル数の合計に対する バリウムのモル数の割合、すなわち b = BaZ (Sr + Ba + Ca)を表しており、カルシゥ ムの割合 cは、同様に c = CaZ (Sr + Ba + Ca)を表して!/、る。
[0039] [表 8]
Figure imgf000017_0001
これら、表 8に示した結果から、試料 4一(1)乃至試料 4一 (6)は、いずれも比較例 1 と比べて相対輝度が向上しており好ましいことがわかる。ここで、試料 4— ( 1)乃至試 料 4 (6)は、いずれもバリウムの割合 b、カルシウムの割合 cの合計を表す (b + c)が 0. 054以上 0. 218以下であり、カルシウムの割合 c力 . 054以上 0. 109以下であ ることがわかる。さらに、(b + c)が 0. 108以下である試料 4— ( 1)乃至試料 4— (3)で は、より優れた好まし 、蛍光体となることがわかる。
しかし、(b + c)が 0. 218を超える 0. 272である試料 4一(7)では、相対輝度が低 下している。
[0040] これらのことから、本発明の蛍光体がカルシウムを含む場合は、カルシウムの割合 b 、ノリウムの割合 cの合計を表す (b + c)が 0を超え 0. 218以下の範囲であり、かつ力 ルシゥムの割合 cが 0を超え 0. 109以下である範囲が好ましぐさらに(b + c)が 0. 1 09以下の範囲がより好ましいことがわかる。
なお、上記 0く(b + c)≤0. 218及び 0< c≤0. 109より、 bの好適な範囲は、 0≤b < 0. 218であることが導き出される。
[0041] (実施例 5)
次に、ハロゲン元素として用いる塩素(C1)の一部及び全てを臭素(Br)で置換した 場合における本発明の蛍光体の特性について説明する。 まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO )を 124. 75g (Sr
3
として 0. 845モル)、ストロンチウムと塩素(C1)の原料として塩化ストロンチウム(SrCl )を 7. 93g (Srとして 0. 05モル、 C1として 0. 1モル)、ストロンチウムと臭素(Br)の原
2
料として臭化ストロンチウム(SrBr )を 6. 19g (Srとして 0. 025モル、 Brとして 0. 05
2
モル)、ユウ口ピウム(Eu)の原料として酸化ユウ口ピウム(Eu O )を 14. lg (Euとして
2 3
0. 08モル)、ケィ素(Si)の原料として二酸化ケイ素(SiO )を 30. lg (Siとして 0. 5
2
モル)、ケィ素と窒素(N)の原料として窒化ケィ素(Si N )を 70. 2g (Siとして 1. 5モ
3 4
ル、 Nとして 2モル)を十分よく混合する。この粉末混合物を、アルミナ容器内に充填 して、 3%H + 97%N雰囲気において 1400°Cで 1時間焼成する。焼成後、分散処
2 2
理及び洗浄処理を経て、さらに 420メッシュの篩を通過させ、得られた蛍光体を試料 5—(2)とした。
[0042] この試料 5— (2)の蛍光体は、 Sr Si O CI Br N: Eu で表される。こ
0. 92 2 1. 925 0. 1 0. 05 2 0. 08
こで、塩素及び臭素の合計であるハロゲン元素の量 nは 0. 15である。
同様にして、ハロゲン元素の量 nを 0. 15とし、塩素及び臭素の量を表 9に示すよう に変化させたほかは試料 5— (2)と同一の条件で蛍光体を作成し、これを試料 5— (1
)、試料 5— (3)及び試料 5— (4)とした。
また、比較のため、ハロゲン元素を全く使用しないほかは、試料 5—(2)と同様に蛍 光体を作成し、これを比較例 2とした。この比較例 2の蛍光体は、 Sr Si O N: Eu
0. 92 2 2 2 で
0. 08 表される。
[0043] さらに、ストロンチウムとバリウムを用いた場合においても、同様に確認した。このとき 、臭素の材料として臭ィ匕ストロンチウム(SrBr )及び臭化バリウム (BaBr )を用い、そ
2 2
のほかは試料 5—(2)らと同様に、塩素及び臭素の量を表 9に示すように作成した。こ れを試料 5—(5)及び試料 5— (6)とした。例えば試料 5— (5)の蛍光体は、 Sr Ba
0. 42
Si O CI Br N : Eu で表される。
0. 5 2 1. 925 0. 1 0. 05 2 0. 08
なお、この場合の比較のために、ハロゲン元素を用いない試料を比較例 3として作 成した。この比較例 3の蛍光体は、 Sr Ba Si O N: Eu で表される。
[0044] [表 9] Eu203: Eu=0.08mol
共通条件
SiOa: Si=0.5mol / Si3N : Si= 1.5mol,N=2mol
SrCOa BaCOs SrCla SrBi BaCla BaBi'a 試料
(mol) (mol) (mol) (mol)
比較例 2 0.92 0 0
試料 5-(1) 0.845 0.07 0.005
試料 5 -(2) 0.845 0.05 0.025
試料 5-(3) m
0.845 0.025 0.05
試料 5 -(4) 0.845 0 0.075
比較例 3 0.42 0.5 0 0 0 0
試料 5-(5) 0.3825 0.4625 0.025 0.0125 0.025 0.0125
試料 5 -(6) 0.3825 0.4625 0 0.0375 0 0.0375 こうして得られた試料 5—(1)乃至試料 5— (6)について、実施例 1と同一の方法で 輝度を測定し、その結果を試料 5—(1)乃至試料 5—(4)については比較例 2に対す る相対輝度として、試料 5—(5)及び試料 5— (6)については比較例 3に対する相対 輝度として表 10に示す。
[表 10] 口ゲン無し 試料 Srの量 Baの量 b C1の量 Brの量 対する
相対輝度 比較例 2 0 0 試料 5-(1) 0.14 0.01 5 4 試料 5-(2) 0.92 0.05 2 δ 試料 5-(3) 0.05 2 6 試料 5 -(4) 0.15 3 丄 比較例 3 0 0 試料 5-(5) 0.42 0.5 0.543 0.1 0.05 8 丄 試料 5-(6) 0 0.15 7 9 これら、表 10に示した結果から、ハロゲン元素として、塩素の一部及び全部を臭素 置換した試料 5—(1)乃至試料 5— (6)について、いずれも各々の比較例 2又は比較 例 3と比べて相対輝度が向上しており好ましいことがわかる。
これらのことから、用いるハロゲン元素として、塩素の一部及び全部を臭素で置換し たとしても、好ましいことがわかる。
[0046] (実施例 6)
次に、ハロゲン元素としての塩素(C1)あるいは臭素(Br)の他に、他のハロゲン元 素であるフッ素 (F)、ヨウ素 (I)が含まれる場合における本発明の蛍光体の特性につ いて説明する。
まず、ストロンチウム(Sr)の原料として炭酸ストロンチウム(SrCO )を 130. 65g (Sr
3
として 0. 885モル)、ストロンチウムと塩素(C1)の原料として塩化ストロンチウム(SrCl )を 10. 7g (Srとして 0. 0675モノレ、 C1として 0. 135モノレ)、ストロンチウムとフッ素(F
2
)の原料としてフッ化ストロンチウム(SrF )を 0. 94g (Srとして 0. 0075モル、 Fとして
2
0. 015モル)、ユウ口ピウム(Eu)の原料として酸化ユウ口ピウム(Eu O )を 7. 0g (E
2 3
uとして 0. 04モル)、ケィ素(Si)の原料として二酸化ケイ素(SiO )を 30. lg (Siとし
2
て 0· 5モル)、ケィ素と窒素(N)の原料として窒化ケィ素(Si N )を 70· 2g (Siとして
3 4
1. 5モル、 Nとして 2モル)を十分よく混合する。この粉末混合物を、アルミナ容器内 に充填して、 3%H + 97%N雰囲気において 1400°Cで 1時間焼成する。焼成後、
2 2
分散処理及び洗浄処理を経て、さらに 420メッシュの篩を通過させ、得られた蛍光体 を試料 6— (1)とした。
[0047] この試料 6—(1)の蛍光体は、 Sr Si O CI F N: Eu で表される。
0. 96 2 1. 925 0. 135 0. 015 2 0. 04
同様にして、塩素あるいは臭素の他に、他のハロゲン元素であるフッ素あるいはヨウ 素をカ卩える量を表 11に示すように変化させたほかは試料 6— (1)と同一の条件で蛍 光体を作成し、これを試料 6— (2)乃至試料 6— (5)とした。
[0048] [表 11]
Figure imgf000021_0001
こうして得られた試料 6—(1)乃至試料 6— (5)について、実施例 1と同一の方法で 輝度を測定し、その結果を比較例 1に対する相対輝度として表 12に示す。
[表 12]
Figure imgf000021_0002
これら、表 12に示した結果から、試料 6—(1)乃至試料 6—(4)はいずれも比較例 1 と比べて相対輝度が向上しており好ましいことがわかる。ここで、試料 6— (1)はフッ 素 (F)が全ハロゲン元素に対するモル比で 0. 1、試料 6—(2)及び試料 6— (3)はョ ゥ素 (I)が全ハロゲン元素に対するモル比で 0. 2以下である。また試料 6—(4)は、フ ッ素とヨウ素の合計が全ノヽロゲン元素に対するモル比で 0. 127である。
一方、フッ素とヨウ素の合計が全ハロゲン元素に対するモル比で 0. 187である試料 6— (5)については比較例 1に対して相対輝度の向上がみられない。
これらのことから、本発明の蛍光体に、塩素あるいは臭素以外のハロゲン元素が若 干量含まれる場合であってもよ ヽことがわかる。フッ素単独又はヨウ素単独であれば 全ノヽロゲン元素に対するモル比で 0. 2程度までは問題ないが、フッ素とヨウ素が両 方含まれる場合は全ハロゲン元素に対するモル比で 0. 13程度であるのが望ましい ことがわ力ゝる。
産業上の利用可能性
本発明の緑色系発光蛍光体は、青色光線等の短波長領域の可視光線等を発光 する発光素子と組み合わせることにより、蛍光体から発する長波長側の可視光線との 混色により、白色系の発光素子を構成することができる。さらに、発光素子として発光 ダイオードやレーザーダイオード等を用いることで、より高輝度な優れた白色系の発 光素子を構成できる。
これら白色系の可視光発光素子は、消費電力が小さく長寿命であるという特徴を活 かして画像表示装置や照明装置の発光源として広く利用できる。

Claims

請求の範囲
[1] 一般式が M Si O X N :Euで表される蛍光体であって、
1 -a 2 2- l/2n n 2 a
Mはストロンチウム(Sr)、バリウム(Ba)及びカルシウム(Ca)の少なくとも 1つ以上の 元素であり、
Xは塩素(C1)及び臭素(Br)の少なくとも 1つ以上の元素であり、
aiま 0. 005≤a≤0. 15であり、 ηίま 0. 02≤η≤0. 2である
ことを特徴とした緑色系発光蛍光体。
[2] 一般式が Sr Si O X N :Euで表される蛍光体であって、
1 -a 2 2- l/2n n 2 a
Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、
aiま 0. 005≤a≤0. 15であり、 ηίま 0. 02≤η≤0. 2である
ことを特徴とした緑色系発光蛍光体。
[3] 一般式が(Sr Ba ) Si O X N :Euで表される蛍光体であって、
1 -b b 1 -a 2 2~ l/2n n 2 a
Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、
aiま 0. 005≤a≤0. 15であり、 biま 0<b≤0. 761であり、 ηίま 0. 02≤η≤0. 2であ る
ことを特徴とした緑色系発光蛍光体。
[4] 一般式が(Sr Ba Ca ) Si O X N :Euで表される蛍光体であって、
1 -b-c b c 1 -a 2 2~ l/2n n 2 a
Xは塩素(CI)及び臭素(Br)の少なくとも 1つ以上の元素であり、
aiま 0. 005≤a≤0. 15であり、 dま 0< c≤0. 109であり、(b + c) ίま 0< (b + c)≤0 . 218であり、 nは 0. 02≤n≤0. 2である
ことを特徴とした緑色系発光蛍光体。
PCT/JP2006/310526 2005-05-30 2006-05-26 緑色系発光蛍光体 WO2006129559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT06756626T ATE486917T1 (de) 2005-05-30 2006-05-26 Grünes licht emittierender leuchtstoff
US11/661,926 US7837898B2 (en) 2005-05-30 2006-05-26 Green light emitting phosphor
DE602006018002T DE602006018002D1 (de) 2005-05-30 2006-05-26 Grünes licht emittierender leuchtstoff
JP2007502138A JP3981149B2 (ja) 2005-05-30 2006-05-26 緑色系発光蛍光体
EP06756626A EP1889892B1 (en) 2005-05-30 2006-05-26 Green light emitting phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005157732 2005-05-30
JP2005-157732 2005-05-30

Publications (1)

Publication Number Publication Date
WO2006129559A1 true WO2006129559A1 (ja) 2006-12-07

Family

ID=37481488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310526 WO2006129559A1 (ja) 2005-05-30 2006-05-26 緑色系発光蛍光体

Country Status (8)

Country Link
US (1) US7837898B2 (ja)
EP (1) EP1889892B1 (ja)
JP (1) JP3981149B2 (ja)
KR (1) KR100896032B1 (ja)
AT (1) ATE486917T1 (ja)
DE (1) DE602006018002D1 (ja)
TW (1) TW200643152A (ja)
WO (1) WO2006129559A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532819A (ja) * 2009-07-11 2012-12-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 同時ドープされたシリコン酸化窒化物
US8414796B2 (en) 2006-10-20 2013-04-09 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
JP2016540070A (ja) * 2013-11-13 2016-12-22 エルジー イノテック カンパニー リミテッド 青緑色蛍光体、それを含む発光素子パッケージ及び照明装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100070731A (ko) 2008-12-18 2010-06-28 삼성전자주식회사 할로실리케이트 형광체, 이를 포함하는 백색 발광 소자
TWI361216B (en) * 2009-09-01 2012-04-01 Ind Tech Res Inst Phosphors, fabricating method thereof, and light emitting device employing the same
KR101225002B1 (ko) * 2010-09-27 2013-01-22 삼성전자주식회사 형광체 및 이의 제조방법
TW201418414A (zh) * 2012-11-12 2014-05-16 Genesis Photonics Inc 波長轉換物質、波長轉換膠體以及發光裝置
US20160222288A1 (en) * 2013-09-13 2016-08-04 Ube Material Industries, Ltd. Method for producing silicate phosphor
US9537061B2 (en) * 2014-12-12 2017-01-03 General Electric Company Phosphor compositions and lighting apparatus thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134805A (ja) * 2002-10-14 2004-04-30 Lumileds Lighting Us Llc 蛍光体変換発光デバイス
JP2004277547A (ja) * 2003-03-14 2004-10-07 Nichia Chem Ind Ltd 酸窒化物蛍光体及びそれを用いた発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JP4024892B2 (ja) * 1996-12-24 2007-12-19 化成オプトニクス株式会社 蓄光性発光素子
WO2005116163A1 (en) * 2004-05-27 2005-12-08 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
TWI266441B (en) * 2005-10-26 2006-11-11 Lustrous Technology Ltd COB-typed LED package with phosphor
US20090283721A1 (en) * 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134805A (ja) * 2002-10-14 2004-04-30 Lumileds Lighting Us Llc 蛍光体変換発光デバイス
JP2004277547A (ja) * 2003-03-14 2004-10-07 Nichia Chem Ind Ltd 酸窒化物蛍光体及びそれを用いた発光装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414796B2 (en) 2006-10-20 2013-04-09 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US8529791B2 (en) 2006-10-20 2013-09-10 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US8877094B2 (en) 2006-10-20 2014-11-04 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9023242B2 (en) 2006-10-20 2015-05-05 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US9120975B2 (en) 2006-10-20 2015-09-01 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US9359550B2 (en) 2006-10-20 2016-06-07 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
US9428690B2 (en) 2006-10-20 2016-08-30 Intematix Corporation Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
US9458378B2 (en) 2006-10-20 2016-10-04 Intermatix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
US10190047B2 (en) 2006-10-20 2019-01-29 Intematix Corporation Green-emitting, garnet-based phosphors in general and backlighting applications
JP2012532819A (ja) * 2009-07-11 2012-12-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 同時ドープされたシリコン酸化窒化物
JP2016540070A (ja) * 2013-11-13 2016-12-22 エルジー イノテック カンパニー リミテッド 青緑色蛍光体、それを含む発光素子パッケージ及び照明装置

Also Published As

Publication number Publication date
DE602006018002D1 (de) 2010-12-16
US7837898B2 (en) 2010-11-23
ATE486917T1 (de) 2010-11-15
US20080061271A1 (en) 2008-03-13
JPWO2006129559A1 (ja) 2008-12-25
TW200643152A (en) 2006-12-16
JP3981149B2 (ja) 2007-09-26
EP1889892A1 (en) 2008-02-20
EP1889892B1 (en) 2010-11-03
KR20080009212A (ko) 2008-01-25
EP1889892A4 (en) 2010-03-17
KR100896032B1 (ko) 2009-05-11
TWI296649B (ja) 2008-05-11

Similar Documents

Publication Publication Date Title
KR100896032B1 (ko) 녹색계 발광 형광체
TWI384292B (zh) Light emitting device
EP1609839B1 (en) Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and led
JP4511885B2 (ja) 蛍光体及びled並びに光源
JP5361886B2 (ja) 熱安定性の酸窒化物蛍光体及びこの種の蛍光体を有する光源
JP4799549B2 (ja) 白色発光ダイオード
TWI351426B (en) Phosphor, method for production thereof, and light
TWI408210B (zh) 綠色發光螢光體、其製造方法以及使用該螢光體之發光元件
KR101172143B1 (ko) 백색 발광다이오드 소자용 시온계 산화질화물 형광체, 그의 제조방법 및 그를 이용한 백색 led 소자
JP2006307090A (ja) 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
WO2005116163A1 (en) Illumination system comprising a radiation source and a fluorescent material
TW201035287A (en) Nitride-based red-emitting phosphors in RGB (red-green-blue) lighting systems
JP2007039517A (ja) 青色系発光蛍光体およびそれを用いた発光装置
TWI808946B (zh) 螢光體、發光裝置、照明裝置及影像顯示裝置
US20080191234A1 (en) Yellow phosphor and white light emitting device using the same
WO2013105345A1 (ja) 蛍光体及び発光装置
JP2018501349A (ja) 蛍光体組成物及びその照明装置
JP3964449B1 (ja) 橙色発光蛍光体
TW201246622A (en) Method for producing crystalline substance
WO2016076380A1 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP2006232948A (ja) 赤色発光蛍光体及び発光装置
JP2008024852A (ja) 蛍光体の製造方法
CN102399554A (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
JP2017190434A (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP5736272B2 (ja) 青色発光蛍光体及び該青色発光蛍光体を用いた発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007502138

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11661926

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077026970

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006756626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756626

Country of ref document: EP