WO2006126444A1 - センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク - Google Patents

センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク Download PDF

Info

Publication number
WO2006126444A1
WO2006126444A1 PCT/JP2006/309930 JP2006309930W WO2006126444A1 WO 2006126444 A1 WO2006126444 A1 WO 2006126444A1 JP 2006309930 W JP2006309930 W JP 2006309930W WO 2006126444 A1 WO2006126444 A1 WO 2006126444A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
reflective mask
pattern
sensor
Prior art date
Application number
PCT/JP2006/309930
Other languages
English (en)
French (fr)
Inventor
Hajime Yamamoto
Tohru Isogami
Kazuaki Suzuki
Noriyuki Hirayanagi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP06756345.2A priority Critical patent/EP1887615A4/en
Priority to JP2007517792A priority patent/JP4924421B2/ja
Publication of WO2006126444A1 publication Critical patent/WO2006126444A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/52Reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70681Metrology strategies
    • G03F7/70683Mark designs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706835Metrology information management or control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706849Irradiation branch, e.g. optical system details, illumination mode or polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706851Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7015Reference, i.e. alignment of original or workpiece with respect to a reference not on the original or workpiece

Definitions

  • the present invention relates to a sensor calibration method, an exposure method, an exposure apparatus, a device manufacturing method, and a reflective mask, for example, a reflective type using EUV light (light having a wavelength of about 5 to 30 nm, also called soft X-ray).
  • the present invention relates to exposure amount control in an exposure apparatus that transfers a circuit pattern of a mask onto a photosensitive substrate.
  • a circuit pattern formed on a mask is transferred onto a photosensitive substrate (for example, a wafer) via a projection optical system.
  • a resist is applied to the photosensitive substrate, and the resist is exposed by exposure through the projection optical system, and a resist pattern corresponding to the mask pattern is obtained.
  • it is necessary to control the exposure amount on the photosensitive substrate.
  • the exposure amount on the photosensitive substrate cannot be measured in real time during exposure, a part of the illumination light irradiated to the mask is used. Is measured in real time by the illumination sensor, and the exposure amount is controlled based on the measurement result.
  • the illumination sensor is arranged at a position where a part of the illumination light emitted from the light source and incident on the mask can be measured.
  • Japanese Patent Application Laid-Open No. 9-184900 discloses a technical force for controlling an exposure amount in an exposure apparatus that uses EUV (Extreme UltraViolet) light as exposure light.
  • EUV Extreme UltraViolet
  • Patent Document 1 JP-A-9 184900
  • the relationship between the intensity of the illumination light incident on the mask and the intensity of the exposure light incident on the photosensitive substrate is ascertained at any time, and illumination is performed.
  • the sensor needs to be calibrated.
  • the illumination sensor is calibrated with the mask removed from the optical path.
  • EUVL Extra UltraViolet Lithography
  • the present inventors provide a reference reflecting plate (reference reflecting surface) on the mask stage on which the reflective mask is placed, and the light is reflected and projected by the reference reflecting plate.
  • a reference reflecting plate reference reflecting surface
  • the reflectivity of the reference reflector installed on the mask stage decreases with time due to adhesion of dust (carbon contamination, etc.), oxidation of the reflecting surface, and the like.
  • the illumination sensor uses the reference reflector on the mask stage. Is difficult to calibrate with high accuracy, and as a result, it is difficult to control the exposure amount on the photosensitive substrate with high accuracy.
  • the present invention has been made in view of the above-described problems, and when exposing the reflective mask pattern to the photosensitive substrate via the projection optical system, the exposure amount on the photosensitive substrate is increased.
  • An object of the present invention is to provide an exposure apparatus and an exposure method that can be precisely controlled. Means for solving the problem
  • the light is incident on the reflective mask from an illumination system.
  • a first detection step of detecting light incident on the reflective mask from the illumination system using the sensor
  • a calibration method comprising a calibration step of calibrating the sensor based on a detection result of a detection step and a detection result of the second detection step.
  • the pattern of the reflective mask illuminated by the illumination system is projected.
  • an exposure method for exposing a photosensitive substrate through an optical system an exposure method for exposing a photosensitive substrate through an optical system
  • an exposure amount control step of controlling an exposure amount irradiated to the photosensitive substrate based on a detection result of the sensor that has passed through the calibration step.
  • a third aspect of the present invention in an exposure apparatus that exposes a photosensitive substrate pattern via a projection optical system, a pattern of a reflective mask illuminated by an illumination system,
  • a first sensor that detects light incident on the reflective mask from the illumination system; and incident on a reference reflective surface formed on the reflective mask from the illumination system, reflected on the reference reflective surface, and the projection.
  • a second sensor that detects light reaching the image plane of the optical system; a calibration unit that calibrates the first sensor based on a detection result of the first sensor and a detection result of the second sensor;
  • An exposure apparatus comprising: an exposure amount control unit that controls an exposure amount irradiated to the photosensitive substrate based on a detection result of the first sensor calibrated by the calibration unit. To do.
  • a reflective mask used in an exposure apparatus that exposes a photosensitive substrate via a projection optical system
  • a reference reflecting surface used for controlling the exposure amount of the light beam reflected by the pattern reflecting surface of the pattern area where the pattern to be transferred is provided on the photosensitive substrate;
  • a reflective mask is provided.
  • the reference reflecting surface is provided outside the pattern area of the reflective mask, and therefore, compared to a method using a reference reflecting surface (reference reflecting plate) on the mask stage.
  • the reflectance of the reflective surface of the reflective mask used in the process is not significantly different from the reflectance of the reference reflective surface.
  • the exposure amount on the photosensitive substrate can be controlled with high accuracy using the reference reflective surface provided on the reflective mask, and a fine pattern can be exposed to light. It can be transferred onto a conductive substrate with high accuracy.
  • FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus that works on an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the internal configuration of the light source, illumination optical system, and projection optical system in FIG. 1.
  • FIG. 3 is a diagram schematically illustrating one scanning exposure operation in the present embodiment.
  • FIG. 4 is a diagram schematically showing a configuration of a reflective mask used in the first method and the second method.
  • FIG. 5 is a flowchart schematically showing each step of the exposure method including the illumination sensor calibration method according to the first method.
  • FIG. 6 is a flowchart schematically showing each step of the exposure method including the illumination sensor calibration method according to the second method.
  • FIG. 7 is a diagram schematically showing a configuration of a reflective mask used in a first modification of the second method in which a reference reflecting surface is scanned and illuminated immediately after each scanning exposure.
  • FIG. 8 is a diagram for explaining a usable range of a reference reflecting surface in the reflective mask of FIG.
  • FIG. 9 is a diagram schematically showing a configuration of a reflective mask used in a second modification of the second method for scanning and illuminating a reference reflecting surface during each scanning exposure.
  • FIG. 10 is a diagram schematically showing an arcuate illumination area formed on the reflective mask of FIG. 9 during scanning exposure.
  • FIG. 11 is a diagram showing a state where a light beam reflected by a reference reflecting surface of the reflective mask of FIG. 9 is blocked by a diaphragm in the projection optical system.
  • FIG. 12 is a diagram schematically showing a first configuration example of a reflective mask used in a third method.
  • FIG. 13 is a diagram schematically showing a second configuration example of a reflective mask used in the third method.
  • FIG. 14 is a flowchart showing an example of a technique for obtaining a semiconductor device as a micro device.
  • FIG. 1 is a view schematically showing the overall configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the internal configuration of the light source, illumination optical system, and projection optical system of FIG.
  • Fig. 1 along the optical axis direction of the projection optical system, that is, along the normal direction of the photosensitive substrate, the Z axis, and in the wafer plane, the Y axis in the direction parallel to the paper surface of Fig. 1, Figure 1 in paper Set the X axis in the direction perpendicular to the surface.
  • the exposure apparatus of the present embodiment includes an EUV light source 1 that emits EUV light of a predetermined wavelength as a light source for supplying exposure light.
  • the light emitted from the light source 1 enters the illumination optical system 2.
  • the EUV light is reflected by the plane reflecting mirror 3 to illuminate a reflective mask (reticle) M on which a pattern to be transferred is formed.
  • a reflective mask (reticle) M on which a pattern to be transferred is formed.
  • a reflective mask (reticle) M As shown in Fig. 2, between the light source 1 and the mask M, only the neutral density filter 23 for changing the amount of exposure light and EUV light of a predetermined wavelength (for example, 13.4 nm or 11.5 nm) are selectively used.
  • a wavelength selective filter 24 that transmits light can be provided.
  • the mask M is held by a mask stage MS that can move along the Y direction so that the pattern surface extends along the XY plane. Then, the movement of the mask stage MS is configured to be measured by a laser interferometer (not shown).
  • the light of the illuminated mask M force forms an image of a mask pattern on the wafer W, which is a photosensitive substrate, via a projection optical system PO that is a double imaging type and a reflection type. That is, on the wafer W, as will be described later with reference to FIG. 3, an arc-shaped static exposure region (effective exposure region) that is symmetric about the Y axis is formed.
  • the wafer W is held by a wafer stage (substrate stage) WS that can move two-dimensionally along the X and Y directions so that the exposure surface extends along the XY plane.
  • the movement of the wafer stage WS is configured to be measured by a laser interferometer (not shown) as in the mask stage MS.
  • the mask stage MS and the wafer stage WS are moved synchronously along the Y direction (scanning direction), that is, the mask M, Ueno, and W are moved in the Y direction with respect to the projection optical system PO.
  • the pattern of the mask M is transferred to one rectangular shot area of the wafer W by performing scanning exposure (scanning exposure) while relatively moving along.
  • the moving speed of the wafer stage WS is set to 1 Z4 of the moving speed of the mask stage MS, and the synchronous scanning is performed. Further, by repeating scanning exposure while moving the wafer stage WS stepwise in two dimensions along the XY plane, the pattern of the mask M is sequentially transferred to each shot area of the wafer W.
  • the laser plasma light source 1 light (non-EU V light) emitted from the laser light source 11 is condensed on the gas target 13 via the condenser lens 12.
  • a high-pressure gas such as xenon (Xe) is supplied from the nozzle 14, and the gas injected from the nozzle 14 forms the gas target 13.
  • the gas target 13 obtains energy from the focused laser beam, turns it into plasma, and emits EUV light.
  • the gas target 13 is positioned at the first focal point of the elliptical reflecting mirror 15. Therefore, the EUV light emitted from the laser plasma light source 1 is focused on the second focal point of the elliptical reflector 15.
  • the gas that has finished emitting light is sucked through the duct 16 and guided to the outside.
  • the EUV light collected at the second focal point of the elliptical reflecting mirror 15 becomes a substantially parallel light beam via the concave reflecting mirror 17, and is guided to the optical integrator 18 including a pair of fly-eye mirrors 18a and 18b.
  • the fly-eye mirrors 18a and 18b are configured by, for example, arranging a large number of concave mirror elements having an arcuate outer shape vertically and horizontally and densely. The detailed configuration and operation of the fly-eye mirrors 18a and 18b can be cited with reference to US Pat. No. 6,452,661.
  • a substantial surface light source having a predetermined shape is formed in the vicinity of the reflecting surface of the second fly's eye mirror 18b, that is, in the vicinity of the exit surface of the optical integrator 18 (18a, 18b).
  • the substantial surface light source is formed at or near the exit pupil position of the illumination optical system 2, that is, at a surface optically conjugate with or near the entrance pupil of the projection optical system PO.
  • Light having substantial surface light source power is emitted from the illumination optical system 2 through the condenser optical system (19, 20) constituted by the convex reflecting mirror 19 and the concave reflecting mirror 20.
  • the light emitted from the illumination optical system 2 is reflected by the planar reflecting mirror 3 and then forms an arcuate illumination area on the mask M via the movable blind 21 and the fixed blind 22.
  • the arcuate illumination area has an arcuate outer shape that is symmetric with respect to the Y axis, corresponding to the arcuate static exposure area formed on the wafer W.
  • the light source 1 (11 to 16), the illumination optical system 2 (17 to 20), the plane reflecting mirror 3 and the blind portion (21, 22) perform Koehler illumination on the mask M provided with a predetermined pattern.
  • the illumination system is configured.
  • the illuminated mask M force light forms an image of a mask pattern in an arcuate still exposure region on the wafer W via the projection optical system PO.
  • the projection optics PO is the mask M pattern.
  • a first reflective imaging optical system for forming an intermediate image of the mask and a second reflective imaging for forming an intermediate image of the mask pattern (secondary image of the mask M pattern) on the wafer W It consists of an optical system.
  • the first reflective imaging optical system is composed of four reflecting mirrors M1 to M4, and the second reflective imaging optical system is composed of two reflecting mirrors M5 and M6.
  • the projection optical system PO is an optical system telecentric on the wafer side (image side).
  • FIG. 3 is a diagram schematically illustrating one scanning exposure operation in the present embodiment.
  • a circular stationary exposure area (effective exposure area) symmetric with respect to the Y-axis is scanned from the scanning start position indicated by the solid line in the figure to the broken line in the figure.
  • the pattern of the mask M is transferred to the rectangular shot region SR of the wafer W.
  • the fixed blind 22 is fixedly arranged substantially parallel to and in close proximity to the mask M, and the arc-shaped boundary line of the illumination area formed on the mask M, and consequently, the static formed on the wafer W. Specifies the arc-shaped boundary of the exposure area ER.
  • the movable blind 21 is located farther from the mask M than the fixed blind 22 and is arranged substantially parallel to the mask M, and includes a pair of non-scanning direction blinds (shielding members) (not shown). It consists of a pair of scanning direction blinds (not shown).
  • the non-scanning direction blind of the movable blind 21 is movable in the non-scanning direction (X direction) orthogonal to the scanning direction (Y direction), and the X direction of the arcuate illumination area formed on the mask M during scanning exposure
  • a linear boundary line that determines the width along the X direction of the arc-shaped static exposure region ER formed on the wafer W is defined.
  • the scanning blind of the movable blind 21 is movable in the scanning direction (Y direction) during scanning exposure, and the arc-shaped still exposure region ER protrudes outside the rectangular shot region SR on the wafer W. So that the mask pattern is not transferred to the outside of the rectangular shot area SR, and the illumination system (1, 2) enters the mask M at the start and end stages of scanning exposure. Luminous flux and mask M force Projection optical system Limits the luminous flux incident on the PO.
  • FIG. 4 is a diagram schematically showing the configuration of the reflective mask.
  • the reflective type In the center of the mask M, a rectangular pattern area PA in which a pattern to be transferred to the wafer W is formed is provided.
  • a light-shielding band SS Around the pattern area PA, there is provided a light-shielding band SS having a strip shape extending in an elongated manner so as to correspond to the four sides of the rectangle.
  • a reference reflecting surface RR having substantially the same reflecting structure as the reflecting surface in the pattern area PA. Be prepared! / Speak.
  • the reflection surface and the reference reflection surface RR in the pattern area PA are formed of, for example, a multilayer film having the same configuration.
  • a plurality of alignment marks AR used for alignment between the reflective mask M and the wafer W are formed around the pattern area PA.
  • FIG. 4 illustrates a pair of rectangular reference reflection surfaces RR adjacent to the pattern area PA in the Y direction (scanning direction). However, the number, position, and outer shape of the reference reflection surfaces RR are illustrated. Various forms are possible for the size and the like.
  • the exposure apparatus of the present embodiment includes an illumination sensor 4 that detects light incident on the reflective mask M from the illumination system (1, 2), and an illumination system (1, 2). And an exposure sensor 5 that detects light that enters the reference reflecting surface RR and is reflected by the reference reflecting surface RR and reaches the image plane of the projection optical system PO.
  • the illumination sensor 4 is attached to each of the lower surfaces of a pair of non-scanning direction blinds constituting the movable blind 21, for example, and measures the intensity of light incident on the mask M.
  • the exposure sensor 5 is mounted on the wafer stage WS, for example, and measures the intensity of light incident from the illumination system (1, 2) via the reference reflecting surface RR and the projection optical system PO.
  • the measurement result of the illumination sensor 4 and the measurement result of the exposure sensor 5 are supplied to the control unit 6.
  • FIG. 5 is a flowchart schematically showing each step of the exposure method including the calibration method of the force sensor using the first method.
  • the reference reflecting surface RR on the reflective mask M is arranged in an illuminable area (S01).
  • the control unit 6 outputs a control signal to a mask stage driving unit (not shown), drives the mask stage MS in the Y direction (scanning direction), and performs EUV via the illumination optical system 2.
  • the reference reflecting surface RR is moved to an area that can be illuminated by light (exposure light) (area within the effective visual field of the projection optical system PO).
  • the exposure sensor 5 is arranged at an image plane position corresponding to the reference reflecting surface RR (S02).
  • the control unit 6 outputs a control signal to a wafer stage driving unit (not shown), drives the wafer stage WS along the XY plane, is reflected by the reference reflecting surface RR, and is a projection optical system.
  • the exposure sensor 5 is moved to a position where the light passing through the PO can be detected.
  • the reference reflecting surface RR is illuminated with EUV light through the illumination optical system 2, and the intensity of light incident on the mask M from the illumination system (1, 2) is measured using the illumination sensor 4 (S03).
  • the exposure sensor 5 is used to measure the intensity of light incident on the reference reflecting surface RR from the illumination system (1, 2) and reflected on the reference reflecting surface RR to reach the image plane of the projection optical system PO. (S04).
  • the illumination sensor 4 is calibrated (S05). Specifically, in the calibration step S05, the control unit 6 is incident on the wafer W and the intensity of illumination light incident on the reflective mask M based on the measurement result of the illumination sensor 4 and the measurement result of the exposure sensor 5.
  • the illumination sensor 4 is calibrated by grasping the relationship with the intensity of exposure light and storing the information on the intensity relationship in a storage unit arranged in the control unit 6 or the like.
  • this intensity-related information is calibration of the illumination sensor 4.
  • the intensity of the light source 1 is changed at a predetermined interval (for example, 1% is changed in a range of ⁇ 15%).
  • the relationship between the measurement result of the illumination sensor 4 and the measurement result and force of the exposure sensor 5 is stored as a lookup table or function. What is necessary is just to update a look-up table and a function to a new thing at every calibration.
  • the intensity relationship of light measured by the illumination sensor 4 and the exposure sensor 5 changes according to changes in the reflectance of the mask and the transmittance of the projection optical system. Note that the method of storing the relationship between the measured intensities of the two sensors is not limited to the above example, and various known methods may be used instead.
  • the real-time measurement result of the illumination sensor 4 calibrated through the calibration step S05 that is, the illumination sensor 4 calibrated by the calibration methods S01 to S05 (that is, the intensity of illumination light measured by the illumination sensor 4)
  • the exposure amount irradiated to the wafer W is controlled (S06).
  • the control unit 6 determines the output intensity of the light source 1, the running speed of the mask stage MS and the wafer stage WS, the illumination based on the real-time measurement result of the calibrated illumination sensor 4.
  • the attenuation value of the attenuation filter reference numeral 23 in Fig. 2
  • the first method uses the reflective mask M in which the reference reflective surface RR is provided outside the nonturn area PA, and the intensity of light incident on the reflective mask M is measured with the illumination sensor 4
  • the exposure sensor 5 measures the intensity of the light reflected by the reference reflecting surface RR and reaching the image plane of the projection optical system PO. Then, based on the measurement result of the illumination sensor 4 and the measurement result of the exposure sensor 5, the illumination sensor 4 is calibrated by determining the correspondence between the measurement intensities of the two sensors, and the real-time measurement result of the calibrated illumination sensor 4 is obtained. Based on the above, the exposure amount on the wafer W is controlled.
  • the reference reflecting surface RR is provided on the reflective mask M, and therefore, in the apparatus, compared to the method using the reference reflecting surface (reference reflecting plate) on the mask stage.
  • the reflectivity of the reflective surface of the reflective mask M used does not differ greatly from the reflectivity of the reference reflective surface RR.
  • the illumination sensor 4 is calibrated with high accuracy by using the reference reflecting surface RR provided outside the pattern area PA of the reflective mask M.
  • the amount of exposure on the wafer (photosensitive substrate) W can be controlled with high accuracy, so that a fine pattern can be transferred onto the wafer W with high accuracy.
  • the reference reflective surface RR is provided in a region adjacent to the pattern region PA in the scanning direction (Y direction) in the region outside the pattern region PA. Therefore, the reference reflecting surface RR can be easily moved to an illuminable region simply by driving the mask stage MS in the scanning direction.
  • various forms are possible with respect to the number, position, outer shape, size, and the like of the reference reflecting surface RR provided in the region outside the pattern region PA of the reflective mask M.
  • the illumination light is not irradiated around the light shielding band SS.
  • the exposure amount is controlled using the reference reflecting surface RR provided outside the pattern area PA of the reflective mask M. Therefore, only by repeating the normal exposure operation, the difference between the integrated light amount applied to the pattern area PA and the integrated light amount applied to the reference reflecting surface RR increases with time.
  • the reflective surface in the pattern area PA and the reference reflective surface RR outside the pattern area PA are both formed of a multilayer film. If so, the reflectivity decreases as the integrated amount of light applied increases. For this reason, in the first method, if the normal scanning exposure operation is simply repeated, the difference between the integrated light amount applied to the pattern area PA of the mask M and the integrated light amount applied to the reference reflecting surface RR over time. To increase.
  • the difference in reflectance between the reflecting surface in the pattern area PA and the reference reflecting surface RR increases with time, and the reflectance of the mask M can be accurately grasped using the reference reflecting surface RR.
  • the exposure amount on the wafer W may not be controlled with sufficient accuracy. Therefore, in the second method, a process for controlling the light irradiation to the reference reflecting surface RR is newly established so that the integrated light amount irradiated to the pattern area PA and the integrated light amount irradiated to the reference reflecting surface RR are substantially equal.
  • the illumination sensor 4 that detects light incident on the reflective mask M from the illumination system (1, 2) is calibrated with higher accuracy.
  • FIG. 6 is a flowchart schematically showing each step of the exposure method including the calibration method for the force sensor using the second method.
  • the second method for example, using the reflective mask M shown in FIG. 4 which is the same as the first method, the integrated light amount irradiated to the pattern area PA is substantially equal to the integrated light amount irradiated to the reference reflecting surface RR. In this way, the light irradiation to the reference reflecting surface RR is controlled (Sl l).
  • the reference reflecting surface RR is illuminated for a predetermined period of time by the illumination system (1, 2) every time (including the alignment time).
  • the standard sensitivity of the resist to be used in the current EUVL exposure apparatus is about 5MjZcm 2
  • the integrated light amount irradiated to the pattern area PA and the reference light amount It is possible to always make the integrated light amount irradiated to the reflecting surface RR substantially equal.
  • the wafer exchange time of the EUVL exposure system time required for wafer exchange only, not including EGA (enhanced global alignment) etc. alignment time
  • the overhead time is the reference reflective surface. It is sufficiently longer than the required irradiation time for RR of about 12.7 seconds.
  • the illumination sensor 4 is used to mask the illumination system (1, 2) from the illumination system (1, 2) while the reference reflecting surface RR is moved within the effective field of view of the projection optical system PO.
  • Measure the intensity of light incident on M S12
  • use the exposure sensor 5 to enter the reference reflection surface RR from the illumination system (1, 2) and reflect it on the reference reflection surface RR for projection.
  • the intensity of light reaching the image plane of the optical system PO is measured (S13).
  • the illumination sensor 4 is calibrated (S 14). Specifically, in the calibration step S14, the control unit 6 enters the illumination light intensity incident on the reflective mask M and the wafer W based on the measurement result of the illumination sensor 4 and the measurement result of the exposure sensor 5. The relationship with the intensity of the exposure light is grasped, and the illumination sensor 4 is calibrated by referring to the information on the intensity relationship.
  • This calibration method may be performed in the same manner as the first method described above.
  • the exposure amount irradiated to the wafer W is controlled (S15). Specifically, in the exposure amount control step S15, the control unit 6 determines the output intensity of the light source 1, the mask stage MS, and the wafer stage WS based on the real-time measurement result of the calibrated illumination sensor 4. The exposure amount on the wafer W is controlled by adjusting the speed, the attenuation value of the attenuation filter (reference numeral 23 in Fig. 2), etc. in the illumination optical path.
  • the control unit 6 controls the light irradiation to the reference reflecting surface RR so that the integrated light amount irradiated to the pattern area PA and the integrated light amount irradiated to the reference reflecting surface RR are substantially equal.
  • the control unit 6 calibrates the illumination sensor 4 based on the measurement result of the illumination sensor 4 and the measurement result of the exposure sensor 5 obtained in a state where the light irradiation to the reference reflecting surface RR is controlled. Function as.
  • the control unit 6 functions as an exposure amount control unit that controls the exposure amount based on the measurement result of the calibrated illumination sensor 4.
  • the light incident on the reference reflecting surface RR is always equal to the accumulated light amount irradiated on the nonturn area PA and the accumulated light amount irradiated on the reference reflecting surface RR. Since the irradiation is controlled, it is possible to prevent the reflectance difference between the reflecting surface in the pattern area PA and the reference reflecting surface RR from changing with time.
  • the illumination sensor 4 is calibrated with higher accuracy than the first method using the reference reflective surface RR of the reflective mask M, and as a result, The exposure amount on W can be controlled with higher accuracy than in the first method.
  • various forms are possible for the number, position, outer shape, size, etc. of the reference reflecting surface RR provided in the area outside the pattern area PA of the reflective mask M. is there.
  • the second method by illuminating the reference reflecting surface RR for a predetermined time every overhead time, the accumulated light amount irradiated to the non-region PA and the reference reflecting surface RR are irradiated.
  • the integrated light quantity is maintained substantially equal.
  • the present invention is not limited to this.
  • the reference reflecting surface RR is scanned and illuminated immediately after each scanning exposure to maintain the accumulated light amount substantially equal in the pattern area PA and the reference reflecting surface RR.
  • a variation in which the integrated light quantity is maintained substantially equal between the pattern area PA and the reference reflection surface RR by scanning and illuminating the reference reflection surface RR during scanning exposure is possible.
  • FIG. 7 is a diagram schematically showing a configuration of a reflective mask used in the first modification of the second method for scanning and illuminating the reference reflecting surface immediately after each scanning exposure.
  • the reflective mask M in FIG. 7 that works on the first modification of the second method covers the force pattern area PA having a configuration similar to that in FIG. One rectangular shape that extends in the X direction in the area adjacent to the surrounding light shielding band SS in the Y direction, which is the scanning direction, and opposite to the light incident side (+ ⁇ direction side) This is different from the configuration in Fig. 4 in that the reference reflecting surface RR is provided.
  • the reference reflecting surface RR that moves in the vertical direction which is the scanning direction, is illuminated by the illumination system (1, 2) immediately after the scanning exposure on the wafer W is completed or just before the start.
  • the illumination system (1, 2) immediately after the scanning exposure on the wafer W is completed.
  • Mask ⁇ continues the movement of mask ⁇ in the ⁇ direction beyond the end position of scanning exposure as it is for a predetermined distance.
  • FIG. 8 is a diagram for explaining a usable range of the reference reflective surface in the reflective mask of FIG.
  • a light ray L1 is a principal ray that passes through the leading end of the blind 21a in the scanning direction of the movable blind 21 on the assumption that the light beam L1 is incident on the light shielding band SS at an incident angle ⁇ and then reflected by the light shielding band SS.
  • Light ray L1 is absorbed by shading band SS).
  • Ray L2 is the principal ray that enters the mask M at an incident angle ⁇ through the tip of the traveling blind 21a.
  • the light rays L3 and L4 drawn by broken lines so as to intersect the light rays L1 and L2 at the tip of the scanning direction blind 21a and form an angle ⁇ with the light rays L1 and L2 are the pattern surfaces of the mask M (in the figure). Lower surface) A light beam that defines the blur width on the pattern surface of the mask M generated by the influence of the scanning direction blind 21a that is spaced apart by a force distance d.
  • the width Ws of the light shielding band SS (the dimension of the light shielding band SS along the Y direction in FIG. 8) is a pair corresponding to the principal ray L 1 reflected by the light shielding band SS and passing through the tip of the scanning direction blind 21a.
  • the outer edge ray L3 is set larger than the width of the blur region DR1 defined on the pattern surface of the mask M.
  • the angle ⁇ formed between the principal ray L1 and the outer edge ray L3 and the angle ⁇ ′ formed between the principal ray L2 and the outer edge ray L4 are expressed by the following equations (1) and (2).
  • NA is the image-side numerical aperture of the projection optical system PO
  • is the illumination coherence factor (the exit-side numerical aperture of the illumination optical system 2 ⁇ projection optical system ⁇ object side Numerical aperture)
  • is the projection magnification of the projection optical system ⁇ .
  • the pattern area PA of the mask M and the reference reflecting surface RR are irradiated with light from the illumination system (1, 2) under the same conditions, and the reference is immediately after the scanning exposure. It is important that the light beam reflected by the reflecting surface RR does not reach the wafer W, for example, is blocked by the scanning direction blind 21a of the movable blind 21 and does not enter the projection optical system PO. That is, the usable range of the reference reflecting surface RR (the width of the reference reflecting surface RR along the Y direction in FIG. 8) Wr is the main incident on the mask M at the incident angle ⁇ through the tip of the scanning direction blind 21a.
  • a pair of outer edge rays L4 corresponding to the ray L2 is defined as a dimension along the Y direction of the region between the blur region DR2 and the shading band SS defined on the pattern surface of the mask M. Is represented.
  • the standard incident angle ⁇ is about 105 mrad (milliradian), and the image projection numerical aperture NA of the standard projection optical system PO is about 0.26.
  • 8 is 1Z4, the standard coherence factor ⁇ is about 0.8, the standard distance d between the scanning direction blind 21a and the pattern surface of the mask ⁇ is about 18 mm, The width Ws of the standard shading band SS is about 3mm. Therefore, the usable range Wr of the reference reflecting surface RR in the first modification of the second method is about 1.4 mm.
  • Equation (5) the maximum value of the usable range Wr of the reference reflecting surface RR can be expressed by Equation (5) by substituting Equation (4) into Equation (3).
  • the reference reflecting surface RR is located within the range Wr where the end force on the opposite side of the pattern area of the shading zone is also expressed by equation (5)! /.
  • the usable range of the reference reflecting surface RR and the actual width dimension of the reference reflecting surface RR are matched to simplify the description.
  • the reference reflecting surface RR may be formed beyond the usable range without being limited to this, and in some cases, the width dimension of the reference reflecting surface RR is appropriately determined within the usable range. Also good. This is because, as long as the reference reflecting surface RR is arranged in the range Wr, the reference reflecting surface in the range is substantially equal to the integrated light amount irradiated to the pattern area PA and the integrated light amount irradiated to the reference reflecting surface RR. It is because it is kept equal to.
  • the calibration of the illumination sensor 4 and the control of the exposure amount can be performed with high accuracy by using the reference reflecting surface RR in that range.
  • various forms such as the width dimension, the outer shape, the position, and the number of the reference reflecting surface RR are possible.
  • the light beam reflected by the reference reflecting surface RR immediately after the scanning exposure is blocked by the scanning direction blind 21 a of the movable blind 21.
  • the light beam reflected by the reference reflecting surface RR immediately after scanning exposure without being limited to this is applied to another optical path other than the scanning direction blind 21a in the optical path between the mask M and the projection optical system PO. It may be blocked by a member, or in some cases, blocked in the optical path of the projection optical system PO.
  • the illumination system (1 , 2) explained the example of scanning illumination of the reference reflecting surface RR.
  • the movement of the front side mask M toward the + Y direction with respect to the starting position of the scanning exposure (the movement for scanning exposure)
  • the position where the reference reflecting surface RR is disposed is around the pattern area PA, and is preferably disposed at a position opposite to the light incident side. In this way, it is possible to block the light beam reflected by the reference reflecting surface RR by the scanning direction blind 21a regardless of the moving direction of the mask stage. Noh.
  • FIG. 9 is a diagram schematically showing a configuration of a reflective mask used in the second modified example of the second method for scanning and illuminating the reference reflecting surface during each scanning exposure.
  • the reflective mask M shown in FIG. 9 has the same configuration as that shown in FIG. 4 except for the second modification of the second method.
  • the reflective mask M shown in FIG. 4 is different from the configuration shown in FIG. 4 in that a rectangular reference reflecting surface RR that is elongated in the Y direction is provided in a region adjacent to ().
  • the reference reflecting surface RR is scanned and illuminated by the illumination system (1, 2) during the scanning exposure of the wafer W.
  • an arcuate illumination area IR as shown by a hatched area is formed on the reflective mask M during scanning exposure.
  • the arc-shaped boundary line of the illumination area IR is defined by the fixed blind 22 in the same manner as the arc-shaped boundary line of the static exposure area ER in FIG.
  • the linear boundary line that determines the width along the X direction of the arcuate illumination area IR is a pair of movable blinds 21 so that the illumination area IR covers the reference reflecting surfaces RR on both sides of the pattern area PA. Defined by non-scanning blinds.
  • the luminous flux corresponding to the region IRe indicated by the broken line adjacent to both ends of the arc-shaped illumination region IR is detected by, for example, a pair of illumination sensors 4 attached to the lower side surfaces of the pair of non-scanning direction blinds and reaches the mask M There is no.
  • one illumination sensor 4 may be used.
  • the diaphragm (blind; shielding member) S disposed at or near the intermediate imaging position of the projection optical system PO is reflected by the reference reflecting surface RR during scanning exposure.
  • the shielding part arranged in front of the paper surface of FIG. A diaphragm S is formed by the shielding part arranged on the side.
  • the light flux reflected by the reference reflecting surface RR during the scanning exposure is caused by the stop S arranged at or near the intermediate imaging position of the projection optical system PO. Blocking. However, it is not limited to this.
  • the emitted light beam may be blocked by another member other than the stop s in the optical path of the projection optical system PO. In some cases, the light beam may be blocked in the optical path between the mask M and the projection optical system PO. You may block it.
  • a total of four rectangular reference reflecting surfaces RR that are elongated in the Y direction are provided on both sides of the pattern area PA.
  • various forms are possible depending on the outer shape, position, number, etc. of the reference reflecting surface RR in the second modification of the second method, which is not limited to this.
  • the illumination sensor 4 is calibrated by using the reference reflecting surface RR formed outside the light shielding band SS of the reflective mask M, and consequently on the wafer W.
  • the amount of exposure is controlled.
  • the illumination sensor 4 is calibrated by using the reference reflecting surface RR formed inside the light shielding band SS of the reflective mask M, and the exposure amount on the wafer W is controlled.
  • Three methods are also possible.
  • FIG. 12 is a diagram schematically showing a first configuration example of a reflective mask used in the third method.
  • the reference reflective surface RR is formed on the scribe line SL provided between the pattern area PA and the light shielding band SS.
  • the scribe line is an area where chips are cut on the transferred wafer and is also called a street line.
  • the pattern area PA of the reflective mask M is provided with, for example, a scribe line SL extending in an L shape along the light shielding band SS, and along the X direction of the L shape scribe line SL.
  • a rectangular reference reflecting surface RR extending in the X direction is formed on the extending scribe line SL.
  • the third method In a normal exposure operation, illumination light is irradiated on the entire inside of the light shielding band under the same illumination condition.
  • the reference reflective surface RR is formed inside the light-shielding band SS of the reflective mask M. Therefore, simply repeating the normal scanning exposure operation (in some cases, the normal batch exposure operation)
  • the integrated light amount irradiated to the area PA and the integrated light amount irradiated to the reference reflecting surface RR are always maintained substantially equal.
  • the third method has higher accuracy than the first method by performing the same simple process as the first method that does not need to control the light irradiation to the reference reflecting surface RR as in the second method. In other words, the exposure amount on wafer W can be controlled with the same accuracy as the second method.
  • the reference reflection surface RR is formed on the extending scribe line SL
  • the reference reflection surface RR is formed on the scribe line SL extending along the Y direction which is a limited scanning direction. good.
  • the effective light receiving area of the exposure sensor 5 is significantly smaller than when the reference reflecting surface RR is formed on the scribe line SL extending along the X direction.
  • various forms are possible for the number, position, outer shape, size, etc. of the reference reflecting surface RR formed on the scribe line SL in the third method.
  • the scribe lines SL can be arranged on all four sides of the force arranged on the two sides around the rectangular pattern area PA, and the number of the scribe lines SL is arbitrary, s ( ?is there.
  • FIG. 13 is a diagram schematically showing a second configuration example of the reflective mask used in the third method.
  • a reference reflective surface RR composed of an area where no absorber is installed, for example, in an area inside the pattern area PA, that is, inside the shading band SS and the scribe line (not shown in FIG. 13) Is formed.
  • the reference reflection surface RR having a desired size and shape can be secured.
  • the reference reflecting surface RR having a desired size and shape is formed in the area inside the pattern area PA, the area of the area where the circuit pattern (device pattern) to be transferred can be drawn is reduced. It will be.
  • various forms are possible with respect to the number, position, outer shape, size, and the like of the reference reflecting surface RR formed in the area inside the pattern area PA.
  • the reference reflecting surface RR is separately arranged on the mask.
  • the reference reflection surface RR as an area where no absorber is installed is formed on the scribe line SL.
  • the reference reflection surface RR instead of providing the reference reflection surface RR, for example, on the scribe line SL extending along the Y direction.
  • the mark AM is a line “and” space pattern used for alignment with the wafer W, for example.
  • the formation position of the mark AM, the reflection area ratio (the area of the entire region irradiated with light) Information such as the ratio of the area of the reflecting surface to the surface is written in, for example, a two-dimensional barcode (matrix data) BC provided outside the pattern area PA! /. Therefore, when the illumination sensor 4 is calibrated using the mark AM, information such as the formation position of the mark AM and the reflection area ratio is optically read from the two-dimensional barcode BC, and the read information is input to the control unit 6 ( Supplied).
  • the control unit 6 moves the exposure sensor 5 to a position where the light reflected by the mark AM and passing through the projection optical system PO can be detected based on the information regarding the formation position of the mark AM.
  • the control unit 6 calibrates the illumination sensor 4 based on the information regarding the reflection area ratio of the mark AM, the measurement result of the illumination sensor 4, and the measurement result of the exposure sensor 5.
  • various forms such as the number, position, pattern form, etc. of the mark AM formed on the scribe line SL and used as the reference reflecting surface RR are possible.
  • the illumination sensor 4 is calibrated using light reflected by a part of the circuit pattern provided in the area inside the pattern area PA.
  • information such as the formation position of the partial pattern of the mask to be measured by the exposure sensor 5 and the reflection area ratio (ratio of the area of the reflective surface to the total area of the partial pattern area) is, for example, the design for the reflective mask M. Information power can be obtained.
  • the reference is based on the design information of the circuit pattern to be drawn on the reflective mask M.
  • the information such as the formation position and reflection area ratio of the selected partial pattern is acquired as the design information of the circuit pattern, and the acquired information such as the formation position and reflection area ratio is input to the control unit 6.
  • the control unit 6 moves the exposure sensor 5 to a position where the light reflected by the partial pattern and passed through the projection optical system PO can be detected based on the information on the formation position. Further, the control unit 6 calibrates the illumination sensor 4 based on the information regarding the reflection area ratio of the partial pattern, the measurement result of the illumination sensor 4, and the measurement result of the exposure sensor 5.
  • a partial pattern having a reflection area ratio as large as possible based on the design data regarding the reflection area ratio of the circuit pattern. In general, a partial pattern having a reflection area ratio of a predetermined value or more) is preferably used.
  • the illumination sensor 4 can be calibrated using the alignment mark and the circuit pattern that are normally arranged without separately arranging the reference reflecting surface. It is possible to control the exposure amount with high accuracy without applying it.
  • the area that reflects light is relatively small compared to the first to third methods, so it is preferable to use a highly sensitive sensor.
  • the reflectance of the reference reflective surface RR of the reflective mask M is included by using the illumination sensor 4 and the exposure sensor 5 provided in the exposure apparatus that is to control the exposure amount.
  • the light quantity is measured.
  • the reflectance of the reference reflecting surface RR which is not limited to this, may be measured with another device and stored, and the exposure amount control may be performed using the stored reflectance.
  • the exposure variation due to factors other than the reflective mask M is measured using a reference reflector separately arranged on the mask stage, the illumination sensor 4 is calibrated in advance, and stored at the time of exposure.
  • the exposure amount may be controlled using the reflectance of the reflecting surface RR. If it does in this way, it is not necessary to provide a reference reflective surface separately.
  • a reference reflective surface RR extending in the X direction is formed over almost the entire pattern area PA, and the reflective mask M is formed using the reference reflective surface RR.
  • the illuminance distribution along the X direction of the illuminated area can be measured.
  • the exposure sensor 5 detects the intensity of light reflected by each region and passing through the projection optical system PO.
  • the uniformity of illuminance along the X direction (direction perpendicular to the scanning direction) of the illumination area with respect to the reflective mask M can be confirmed.
  • the uniformity of illuminance along the direction orthogonal to the scanning direction is more important than the uniformity of illuminance along the scanning direction.
  • a laser plasma light source is used as an EUV light source for supplying EUV light.
  • other suitable light sources for supplying EUV light such as a discharge plasma light source or a synchrotron radiation (SOR) light source, can be used.
  • Various materials such as solid and liquid can be used as the target material.
  • the reflective mask The present invention is applied to an EUVL exposure apparatus using M.
  • suitable scanning exposure apparatuses using a reflective mask that is not limited to this, and in some cases other suitable batch exposure apparatuses using a reflective mask. The present invention can also be applied.
  • the illumination sensor is disposed immediately before the mask.
  • this may be disposed anywhere as long as a part of the emitted light beam can be detected.
  • a configuration may be adopted in which a light flux that does not face the mask is detected and exposure amount control is performed.
  • the illumination sensor is arranged in the vicinity of the reflective mask or at a position optically conjugate with the reflective mask.
  • the present invention also provides an illumination optical system that guides the light beam emitted from the light source to the mask and a projection optical system that forms an image of the mask pattern on the wafer in the illumination optical system and the projection optical system used in the above-described embodiments. It is not limited.
  • the mask is illuminated by the illumination system (illumination process), and the transfer pattern formed on the mask is exposed to the photosensitive substrate using the projection optical system (exposure exposure).
  • a micro device semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.
  • FIG. An example of a technique for obtaining a semiconductor device as a microdevice by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment will be described with reference to the flow chart of FIG. Will be described with reference to FIG.
  • step 301 in FIG. 14 a metal film is deposited on one lot of wafers.
  • step 302 a photoresist is applied onto the metal film on the one lot of wafers.
  • step 303 using the exposure apparatus of the present embodiment, the image of the pattern on the mask (reticle) is sequentially exposed to each shot area on the wafer of one lot via the projection optical system. Transcribed.
  • step 304 the photoresist on the one lot of wafers is developed, and in step 305, etching is performed on the one lot of wafers using the resist pattern as a mask. A circuit pattern corresponding to this pattern is formed in each shot area on each wafer. Then, the circuit pattern of the upper layer A device such as a semiconductor element is manufactured by performing the formation and the like. According to the semiconductor device manufacturing method described above, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 投影光学系を介して反射型マスクのパターンを感光性基板に露光する際に、感光性基板上における露光量を高精度に制御することのできる露光装置。照明系(1,2)から反射型マスク(M)へ入射する光を検出する第1センサ(4)と、照明系から反射型マスクに形成された基準反射面へ入射し、基準反射面で反射されて投影光学系(PO)の像面に達する光を検出する第2センサ(5)とを備えている。第1センサの検出結果と第2センサの検出結果とに基づいて第1センサの校正を行い、校正された第1センサの検出結果に基づいて感光性基板(W)へ照射される露光量を制御する。

Description

明 細 書
センサの校正方法、露光方法、露光装置、デバイス製造方法、および反 射型マスク 技術分野
[0001] 本発明は、センサの校正方法、露光方法、露光装置、デバイス製造方法、および 反射型マスクに関し、例えば EUV光 (軟 X線とも呼ばれる波長 5— 30nm程度の光) を用いて反射型マスクの回路パターンを感光性基板に転写する露光装置における 露光量の制御に関するものである。
背景技術
[0002] 半導体素子などの製造に使用される露光装置では、マスク (レチクル)上に形成さ れた回路パターンを、投影光学系を介して感光性基板 (たとえばウェハ)上に転写す る。感光性基板にはレジストが塗布されており、投影光学系を介した露光によりレジス トが感光し、マスクパターンに対応したレジストパターンが得られる。露光装置では、 感光性基板上における露光量を制御する必要があるが、感光性基板上での露光量 を露光中にリアルタイムに計測することができないため、マスクに照射される照明光の 一部を照明センサによりリアルタイムに計測し、この計測結果に基づいて露光量の制 御が行われる。マスク通過後の光束はマスクのパターン率に応じて変化するため、マ スク通過後の光量を測定するのでは露光量制御は困難となる。従って、照明センサ は光源力 射出してマスクに入射する照明光の一部を測定することができるような位 置に配置される。
[0003] 例えば、露光光として EUV (Extreme UltraViolet:極紫外線)光を用いる露光装置 において露光量を制御する技術力、特開平 9— 184900号公報に開示されている。
[0004] 特許文献 1 :特開平 9 184900号公報
発明の開示
発明が解決しょうとする課題
[0005] 照明センサの出力に基づいて露光量を高精度に制御するには、マスクに入射する 照明光の強度と感光性基板に入射する露光光の強度との関係を随時把握し、照明 センサを校正 (キャリブレーション)する必要がある。透過型のマスクを用いる場合は、 マスクを光路から除去した状態で照明センサを校正している。しかしながら、 EUVL ( Extreme UltraViolet Lithography:極紫外リソグラフィ)露光装置のように反射型マスク を用いる場合、マスクを除去すると照明光が感光性基板面まで到達しなくなるので、 校正を行う事ができない。そこで、本発明者らは、照明センサの校正を実施するため に、反射型マスクが載置されるマスクステージ上に基準反射板 (基準反射面)を設け 、この基準反射板で反射して投影光学系の像面に到達する光の強度を測定する方 法を検討した。
[0006] し力しながら、マスクステージ上に設置された基準反射板の反射率は、ごみ (カーボ ンコンタミ等)の付着や反射面の酸化等により経時的に低下する。また、実際に露光 に使用される反射型マスクの反射率と、マスクステージ上に設置された基準反射板の 反射率とに差が生じると、マスクステージ上の基準反射板を利用して照明センサを高 精度に校正することは困難であり、ひいては感光性基板上における露光量を高精度 に制御することは困難である。
[0007] 本発明は、前述の課題に鑑みてなされたものであり、投影光学系を介して反射型マ スクのパターンを感光性基板に露光する際に、感光性基板上における露光量を高精 度に制御することのできる露光装置および露光方法を提供することを目的とする。 課題を解決するための手段
[0008] 前記課題を解決するために、本発明の第 1形態では、投影光学系を介して反射型 マスクのパターンを感光性基板に露光する露光装置において、照明系から前記反射 型マスクへ入射する光を検出するセンサの校正方法であって、
前記センサを用いて、前記照明系から前記反射型マスクへ入射する光を検出する 第 1検出工程と、
前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2検出工程と、 前記第 1検出工程の検出結果と前記第 2検出工程の検出結果とに基づいて前記セ ンサの校正を行う校正工程とを含むことを特徴とする校正方法を提供する。
[0009] 本発明の第 2形態では、照明系により照明された反射型マスクのパターンを、投影 光学系を介して感光性基板に露光する露光方法において、
前記照明系から前記反射型マスクへ入射する光をセンサにより検出する第 1検出 工程と、
前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2検出工程と、 前記第 1検出工程の検出結果と前記第 2検出工程の検出結果とに基づいて前記セ ンサの校正を行う校正工程と、
前記校正工程を経た前記センサの検出結果に基づいて前記感光性基板へ照射さ れる露光量を制御する露光量制御工程とを含むことを特徴とする露光方法を提供す る。
[0010] 本発明の第 3形態では、照明系により照明された反射型マスクのパターンを、投影 光学系を介して感光性基板に露光する露光装置において、
前記照明系から前記反射型マスクへ入射する光を検出する第 1センサと、 前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2センサと、 前記第 1センサの検出結果と前記第 2センサの検出結果とに基づいて前記第 1セン サの校正を行う校正部と、
前記校正部により校正された前記第 1センサの検出結果に基づいて前記感光性基 板へ照射される露光量を制御する露光量制御部とを備えていることを特徴とする露 光装置を提供する。
[0011] 本発明の第 4形態では、第 2形態の露光方法を用いて前記反射型マスクのパター ンを前記感光性基板に露光する露光工程と、
前記露光工程を経た前記感光性基板を現像する現像工程とを含むことを特徴とす るデバイス製造方法を提供する。
[0012] 本発明の第 5形態では、投影光学系を介して感光性基板に露光する露光装置に 用いられる反射型マスクにぉ 、て、
前記感光性基板に転写すべきパターンが設けられたパターン領域のパターン反射 面で反射された光束の露光量を制御するために用いられる基準反射面を有すること を特徴とする反射型マスクを提供する。
発明の効果
[0013] 本発明では、例えば反射型マスクのパターン領域の外側に基準反射面を設けてい るので、マスクステージ上の基準反射面 (基準反射板)を利用する手法に比して、装 置内で使用される反射型マスクのパターン反射面の反射率と基準反射面の反射率と が大きく異なることがない。その結果、本発明の露光方法および露光装置では、反射 型マスクに設けられた基準反射面を用いて、感光性基板上における露光量を高精度 に制御することができ、ひいては微細なパターンを感光性基板上に高精度に転写す ることがでさる。
図面の簡単な説明
[0014] [図 1]本発明の実施形態に力かる露光装置の構成を概略的に示す図である。
[図 2]図 1の光源、照明光学系および投影光学系の内部構成を概略的に示す図であ る。
[図 3]本実施形態における 1回の走査露光動作を概略的に説明する図である
[図 4]第 1手法および第 2手法に用いられる反射型マスクの構成を概略的に示す図で ある。
[図 5]第 1手法にしたがう照明センサの校正方法を含む露光方法の各工程を概略的 に示すフローチャートである。
[図 6]第 2手法にしたがう照明センサの校正方法を含む露光方法の各工程を概略的 に示すフローチャートである。
[図 7]各走査露光の直後に基準反射面を走査照明する第 2手法の第 1変形例に用い られる反射型マスクの構成を概略的に示す図である。
[図 8]図 7の反射型マスクにおいて基準反射面の使用可能な範囲について説明する 図である。
[図 9]各走査露光中に基準反射面を走査照明する第 2手法の第 2変形例に用いられ る反射型マスクの構成を概略的に示す図である。
[図 10]走査露光に際して図 9の反射型マスク上に形成される円弧状の照明領域を概 略的に示す図である。 [図 11]図 9の反射型マスクの基準反射面で反射される光束を投影光学系中の絞りに より遮る様子を示す図である。
[図 12]第 3手法に用いられる反射型マスクの第 1構成例を概略的に示す図である。
[図 13]第 3手法に用いられる反射型マスクの第 2構成例を概略的に示す図である。
[図 14]マイクロデバイスとしての半導体デバイスを得る際の手法の一例について、そ のフローチャートを示す図である。
符号の説明
[0015] 1 光源(レーザプラズマ光源)
2 照明光学系
4 照明センサ
5 露光センサ
6 制御部
21 可動ブラインド
22 固定ブラインド
M マスク
PA パターン領域
RR 基準反射面
SS 遮光
MS マスクステージ
PO 投影光学系
W ウェハ
WS ウェハステージ (基板ステージ)
発明を実施するための最良の形態
[0016] 本発明の実施形態を、添付図面に基づいて説明する。図 1は、本発明の実施形態 にかかる露光装置の全体構成を概略的に示す図である。図 2は、図 1の光源、照明 光学系および投影光学系の内部構成を概略的に示す図である。図 1において、投影 光学系の光軸方向すなわち感光性基板であるウェハの法線方向に沿って Z軸を、ゥ ハ面内において図 1の紙面に平行な方向に Y軸を、ウェハ面内において図 1の紙 面に垂直な方向に X軸をそれぞれ設定して 、る。
[0017] 図 1を参照すると、本実施形態の露光装置は、露光光を供給するための光源として 、所定波長の EUV光を射出する EUV光源 1を備えている。光源 1から射出された光 は、照明光学系 2に入射する。その後、 EUV光は、平面反射鏡 3で反射され、転写 すべきパターンが形成された反射型のマスク(レチクル) Mを照明する。なお、図 2に 示すように、光源 1とマスク Mとの間に、露光光量を変化させるための減光フィルタ 23 や所定波長(たとえば 13. 4nmまたは 11. 5nm)の EUV光だけを選択的に透過させ る波長選択フィルタ 24を設ける事ができる。
[0018] マスク Mは、そのパターン面が XY平面に沿って延びるように、 Y方向に沿って移動 可能なマスクステージ MSによって保持されている。そして、マスクステージ MSの移 動は、レーザ干渉計 (不図示)により計測されるように構成されている。照明されたマ スク M力ゝらの光は、 2回結像型で反射型の投影光学系 POを介して、感光性基板であ るウェハ W上にマスクパターンの像を形成する。すなわち、ウェハ W上には、図 3を参 照して後述するように、 Y軸に関して対称な円弧状の静止露光領域 (実効露光領域) が形成される。
[0019] ゥ ハ Wは、その露光面が XY平面に沿って延びるように、 X方向および Y方向に沿 つて二次元的に移動可能なウェハステージ (基板ステージ) WSによって保持されて いる。なお、ウェハステージ WSの移動は、マスクステージ MSと同様に、レーザ干渉 計 (不図示)により計測されるように構成されている。こうして、マスクステージ MSおよ びゥ ハステージ WSを Y方向(走査方向)に沿って同期的に移動させながら、すな わち投影光学系 POに対してマスク Mおよびウエノ、 Wを Y方向に沿って相対移動させ ながら走査露光 (スキャン露光)を行うことにより、ウェハ Wの 1つの矩形状のショット領 域にマスク Mのパターンが転写される。
[0020] このとき、投影光学系 POの投影倍率 (転写倍率)が例えば 1Z4である場合、ウェハ ステージ WSの移動速度をマスクステージ MSの移動速度の 1 Z4に設定して同期走 查を行う。また、ウェハステージ WSを XY平面に沿って二次元的にステップ移動させ ながら走査露光を繰り返すことにより、ウェハ Wの各ショット領域にマスク Mのパターン が逐次転写される。 [0021] 図 2を参照すると、レーザプラズマ光源 1では、レーザ光源 11から発した光 (非 EU V光)が集光レンズ 12を介して気体ターゲット 13上に集光する。ここで、たとえばキセ ノン (Xe)カゝらなる高圧ガスがノズル 14より供給され、ノズル 14から噴射されたガスが 気体ターゲット 13を形成する。気体ターゲット 13は、集光されたレーザ光によりエネ ルギーを得てプラズマ化し、 EUV光を発する。なお、気体ターゲット 13は、楕円反射 鏡 15の第 1焦点に位置決めされている。したがって、レーザプラズマ光源 1から放射 された EUV光は、楕円反射鏡 15の第 2焦点に集光する。一方、発光を終えたガスは ダクト 16を介して吸引されて外部へ導かれる。
[0022] 楕円反射鏡 15の第 2焦点に集光した EUV光は、凹面反射鏡 17を介してほぼ平行 光束となり、一対のフライアイミラー 18aおよび 18bからなるオプティカルインテグレー タ 18に導かれる。フライアイミラー 18a, 18bは、たとえば円弧状の外形を有する多数 の凹面鏡要素を縦横に且つ稠密に配列することによりそれぞれ構成されている。フラ ィアイミラー 18aおよび 18bの詳細な構成および作用については、米国特許 6, 452 , 661号公報を参照して引用することができる。
[0023] こうして、第 2フライアイミラー 18bの反射面の近傍、すなわちオプティカルインテグ レータ 18 (18a, 18b)の射出面の近傍には、所定の形状を有する実質的な面光源 が形成される。ここで、実質的な面光源は、照明光学系 2の射出瞳位置またはその近 傍、すなわち投影光学系 POの入射瞳と光学的に共役な面またはその近傍に形成さ れる。実質的な面光源力もの光は、凸面反射鏡 19と凹面反射鏡 20とにより構成され たコンデンサー光学系(19, 20)を介して、照明光学系 2から射出される。
[0024] 照明光学系 2から射出された光は、平面反射鏡 3により反射された後、可動ブライン ド 21および固定ブラインド 22を介して、マスク M上に円弧状の照明領域を形成する。 この円弧状の照明領域は、ウェハ W上に形成される円弧状の静止露光領域に対応 して、 Y軸に関して対称な円弧状の外形形状を有する。このように、光源 1 (11〜16) 、照明光学系 2 (17〜20)、平面反射鏡 3およびブラインド部(21, 22)は、所定のパ ターンが設けられたマスク Mをケーラー照明するための照明系を構成している。
[0025] 照明されたマスク M力 の光は、投影光学系 POを介して、ウェハ W上の円弧状の 静止露光領域にマスクパターンの像を形成する。投影光学系 POは、マスク Mのパタ ーンの中間像を形成するための第 1反射結像光学系と、マスクパターンの中間像の 像 (マスク Mのパターンの二次像)をウェハ W上に形成するための第 2反射結像光学 系とにより構成されている。第 1反射結像光学系は 4つの反射鏡 M1〜M4により構成 され、第 2反射結像光学系は 2つの反射鏡 M5および M6により構成されている。また 、投影光学系 POはウェハ側 (像側)にテレセントリックな光学系である。
[0026] 図 3は、本実施形態における 1回の走査露光動作を概略的に説明する図である。
図 3を参照すると、 1回の走査露光 (スキャン露光)に際して、 Y軸に関して対称な円 弧状の静止露光領域 (実効露光領域) ERを図中実線で示す走査開始位置から図中 破線で示す走査終了位置まで相対移動させることにより、ウェハ Wの矩形状のショッ ト領域 SRにマスク Mのパターンが転写される。固定ブラインド 22は、マスク Mにほぼ 平行に且つ近接して固定的に配置され、マスク M上に形成される照明領域の円弧状 の境界線を、ひ ヽてはウェハ W上に形成される静止露光領域 ERの円弧状の境界線 を規定する。
[0027] 一方、可動ブラインド 21は、固定ブラインド 22よりもマスク Mから離れ、かつ、マスク Mに対してほぼ平行に配置されており、一対の非走査方向ブラインド (遮蔽部材)(不 図示)と一対の走査方向ブラインド (不図示)とにより構成されている。可動ブラインド 21の非走査方向ブラインドは、走査方向(Y方向)と直交する非走査方向(X方向)に 移動可能であり、走査露光に際してマスク M上に形成される円弧状の照明領域の X 方向に沿った幅を決定する直線状の境界線を、ひ 、てはウェハ W上に形成される円 弧状の静止露光領域 ERの X方向に沿った幅を決定する直線状の境界線を規定す る。
[0028] 可動ブラインド 21の走査方向ブラインドは、走査露光に際して走査方向(Y方向)に 移動可能であり、ウェハ W上において円弧状の静止露光領域 ERが矩形状のショット 領域 SRの外側にはみ出すことがないように、すなわち矩形状のショット領域 SRの外 側にマスクパターンが転写されることがないように、走査露光の開始段階および終了 段階において照明系(1, 2)からマスク Mへ入射する光束およびマスク M力 投影光 学系 POへ入射する光束を制限する。
[0029] 図 4は、反射型マスクの構成を概略的に示す図である。図 4を参照すると、反射型 マスク Mの中央には、ウェハ Wに転写すべきパターンが形成された矩形状のパター ン領域 PAが設けられている。パターン領域 PAの周囲には、長方形の四辺に対応す るように細長く延びる帯状の形態を有する遮光帯 SSが設けられている。さらに、バタ ーン領域 PAの外側において、パターン領域 PAに対して走査方向(Y方向)に隣接 する領域には、パターン領域 PAにおける反射面と実質的に同じ反射構造を有する 基準反射面 RRが設けられて!/ヽる。
[0030] 具体的に、パターン領域 PA内の反射面および基準反射面 RRは、例えば同じ構成 の多層膜により形成されている。また、パターン領域 PAの周囲には、反射型マスク M とウェハ Wとの位置合わせ (ァライメント)に用いられる複数のァライメントマーク ARが 形成されている。なお、図 4には、パターン領域 PAに対して Y方向(走査方向)に隣 接する一対の矩形状の基準反射面 RRを例示しているが、基準反射面 RRの数、位 置、外形形状、大きさなどについては様々な形態が可能である。
[0031] 再び図 1を参照すると、本実施形態の露光装置は、照明系(1, 2)から反射型マス ク Mへ入射する光を検出する照明センサ 4と、照明系(1, 2)から基準反射面 RRへ 入射し、この基準反射面 RRで反射されて投影光学系 POの像面に達する光を検出 する露光センサ 5とを備えている。照明センサ 4は、たとえば可動ブラインド 21を構成 する一対の非走査方向ブラインドの下側面にそれぞれ取り付けられ、マスク Mへ入 射する光の強度を計測する。露光センサ 5は、たとえばウェハステージ WS上に取り 付けられ、照明系(1, 2)から基準反射面 RRおよび投影光学系 POを介して入射す る光の強度を計測する。照明センサ 4の計測結果および露光センサ 5の計測結果は 制御部 6に供給される。
[0032] 図 5は、第 1手法にした力 Sう照明センサの校正方法を含む露光方法の各工程を概 略的に示すフローチャートである。第 1手法では、先ず、反射型マスク M上の基準反 射面 RRを照明可能な領域に配置する(S01)。具体的には、制御部 6が、マスクステ ージ駆動部(不図示)に対して制御信号を出力し、マスクステージ MSを Y方向(走査 方向)に駆動し、照明光学系 2を介した EUV光 (露光光)により照明可能な領域 (投 影光学系 POの有効視野内の領域)へ基準反射面 RRを移動させる。
[0033] 次 、で、露光センサ 5を基準反射面 RRに対応する像面位置に配置する(S02)。 具体的には、制御部 6が、ウェハステージ駆動部(不図示)に対して制御信号を出力 し、ウェハステージ WSを XY平面に沿って駆動し、基準反射面 RRで反射されて投影 光学系 POを通過した光を検出可能な位置へ露光センサ 5を移動させる。こうして、照 明光学系 2を介した EUV光により基準反射面 RRを照明し、照明センサ 4を用いて照 明系(1, 2)からマスク Mへ入射する光の強度を計測する(S03)。同時に、露光セン サ 5を用いて、照明系(1, 2)から基準反射面 RRへ入射し、この基準反射面 RRで反 射されて投影光学系 POの像面に達する光の強度を計測する(S04)。
[0034] さらに、計測工程 (検出工程) S03で得られた照明センサ 4の計測結果 (検出結果) と、計測工程 (検出工程) S04で得られた露光センサ 5の計測結果 (検出結果)とに基 づいて、照明センサ 4の校正を行う(S05)。具体的に、校正工程 S05において、制御 部 6は、照明センサ 4の計測結果と露光センサ 5の計測結果とに基づいて、反射型マ スク Mに入射する照明光の強度とウェハ Wに入射する露光光の強度との関係を把握 し、この強度関係の情報を制御部 6等に配置される記憶部に記憶することによって、 照明センサ 4を校正する。この強度関係の情報を得ることが照明センサ 4の校正であ り、例えば、光源 1の強度を所定の間隔で変化させ (例えば、 1%ずつ ± 15%程度の 範囲で変化させる)、この時の照明センサ 4の計測結果と露光センサ 5の計測結果と 力 2つのセンサの測定強度の関係をルックアップテーブルや関数として記憶させる 。校正の都度、ルックアップテーブルや関数を新たなものに更新すればよい。この照 明センサ 4と露光センサ 5とで計測される光の強度関係は、マスクの反射率や投影光 学系の透過率等の変化に応じて変化する。なお、 2つのセンサの測定強度の関係を 記憶する方法は上の例に限らず、周知の様々な方法を代わりに用いてもょ 、。
[0035] 最後に、校正工程 S05を経て校正された照明センサ 4、すなわち校正方法 S01〜 S05により校正された照明センサ 4のリアルタイムな計測結果 (つまり、照明センサ 4 によって計測された照明光の強度結果と、記憶部に記憶された強度関係の情報)に 基づいて、ウェハ Wへ照射される露光量を制御する(S06)。具体的に、露光量制御 工程 S06において、制御部 6は、校正された照明センサ 4のリアルタイムな計測結果 に基づいて、光源 1の出力強度、マスクステージ MSおよびウェハステージ WSの走 查速度、照明光路中の減衰フィルタ(図 2の符号 23)の減衰値等を調整することによ り、ウェハ w上における露光量を制御しながら露光を行う。
[0036] 以上のように、第 1手法では、ノターン領域 PAの外側に基準反射面 RRが設けられ た反射型マスク Mを用いて、この反射型マスク Mに入射する光の強度を照明センサ 4 により計測するとともに、基準反射面 RRで反射されて投影光学系 POの像面に達す る光の強度を露光センサ 5により計測する。そして、照明センサ 4の計測結果と露光 センサ 5の計測結果とに基づいて 2つのセンサの計測強度の対応関係を求めること によって照明センサ 4を校正し、校正された照明センサ 4のリアルタイムな計測結果に 基づいてウェハ W上における露光量の制御を行う。
[0037] 第 1手法では、反射型マスク M上に基準反射面 RRを設けて 、るので、マスクステー ジ上の基準反射面 (基準反射板)を利用する手法に比して、装置内で使用される反 射型マスク Mのパターン反射面の反射率と基準反射面 RRの反射率とが大きく異なる ことがない。その結果、第 1手法が適用される露光方法および露光装置では、反射型 マスク Mのパターン領域 PAの外側に設けられた基準反射面 RRを用いて、照明セン サ 4の校正を高精度に行い、ひいてはウェハ (感光性基板) W上における露光量を高 精度に制御することができるので、微細なパターンをウェハ W上に高精度に転写する ことができる。
[0038] 特に、図 4に示す反射型マスク Mの構成例では、パターン領域 PAの外側の領域に おいてパターン領域 PAに対して走査方向 (Y方向)に隣接する領域に基準反射面 R Rを設けているので、マスクステージ MSを走査方向に駆動するだけで、基準反射面 RRを照明可能な領域へ容易に移動させることができる。ただし、第 1手法では、反射 型マスク Mのパターン領域 PAの外側の領域に設けられる基準反射面 RRの数、位置 、外形形状、大きさなどについて様々な形態が可能である。
[0039] ところで、通常の露光動作では、遮光帯 SSの周囲には照明光が照射されないよう に構成されている。第 1手法では、反射型マスク Mのパターン領域 PAの外側に設け られた基準反射面 RRを用いて露光量の制御を行っている。従って、通常の露光動 作を繰り返すだけでは、パターン領域 PAに照射される積算光量と基準反射面 RRに 照射される積算光量との差が経時的に増大する。具体的に、パターン領域 PA内の 反射面およびパターン領域 PA外の基準反射面 RRがともに多層膜により形成されて いる場合、照射される積算光量の増大に応じて反射率が低下する。このため、第 1手 法では、通常の走査露光動作を単に繰り返していると、マスク Mのパターン領域 PA に照射される積算光量と基準反射面 RRに照射される積算光量との差が経時的に増 大する。
[0040] その結果、パターン領域 PA内の反射面と基準反射面 RRとの間の反射率差が経時 的に増大し、基準反射面 RRを用いてマスク Mの反射率を正確に把握することができ なくなり、ひいてはウェハ W上における露光量を十分な精度で制御することができなく なる可能性がある。そこで、第 2手法では、パターン領域 PAへ照射された積算光量と 基準反射面 RRへ照射された積算光量とが実質的に等しくなるように基準反射面 RR への光照射を制御する工程を新たに導入することにより、照明系(1, 2)から反射型 マスク Mへ入射する光を検出する照明センサ 4をさらに高精度に校正する。
[0041] 図 6は、第 2手法にした力 Sう照明センサの校正方法を含む露光方法の各工程を概 略的に示すフローチャートである。第 2手法では、例えば第 1手法と同じ図 4に示す 反射型マスク Mを用い、このパターン領域 PAへ照射された積算光量と基準反射面 R Rへ照射された積算光量とが実質的に等しくなるように基準反射面 RRへの光照射を 制御する(Sl l)。具体的に、光照射制御工程 S11では、たとえば 1つのウェハ Wへ の露光の終了と次のウェハ Wへの露光の開始との間のオーバーヘッドタイム(ウェハ Wの交換時間、マスク Mとウェハ Wとのァライメント時間などを含む)毎に、照明系(1 , 2)により基準反射面 RRを所定時間に亘つて照明する。
[0042] 具体的に、現在の EUVL露光装置において用いられるレジストの標準的な感度は 約 5mjZcm2であり、標準的な光源の出力強度は約 10Wである。したがって、照明 系および投影光学系の透過率を考えると、ウェハ面での照度は約 30mWZcm2にな る。すなわち、ウェハ上の単位面積当たりの露光時間は、約 0. 17秒( = 5mj/cm2 ÷ 30mW/cm2)になる。 300mmウェハを用いる場合、ウェハ 1枚当たり 76チップ分 を焼き付けるので、ウェハ 1枚の焼き付けの間にマスク上のパターン領域に EUV光 が照射されるトータル時間は、約 12. 7秒( = 0. 17秒 X 76チップ)である。
[0043] したがって、ウェハ Wの露光が終了する度に、例えば 12. 7秒に亘つて基準反射面 RRに EUV光を照射することにより、パターン領域 PAへ照射された積算光量と基準 反射面 RRへ照射された積算光量とを常に実質的に等しくすることができる。現在、 E UVL露光装置のウェハ交換時間(EGA (enhanced global alignment)などのァラィメ ント時間を含まない、ウェハの交換だけに要する時間)は約 15秒程度であり、オーバ 一ヘッドタイムは基準反射面 RRへの所要照射時間である約 12. 7秒よりも十分に長 い。換言すれば、現行の EUVL露光装置のスループットを低下させることなぐ光照 射制御工程 S 11を実行することが可能である。なお、光照射制御工程 S 11において EUV光を照射する際に、投影光学系や投影光学系を介してウェハステージ上に EU V光が照射されることが問題となる場合には、光路の所定の場所に遮蔽板が任意の タイミングで挿入できるように装置を構成することが好ま 、。
[0044] 次いで、光照射制御工程 S11を経た後に、基準反射面 RRを投影光学系 POの有 効視野内に移動させた状態で、照明センサ 4を用いて照明系(1, 2)からマスク Mへ 入射する光の強度を計測する(S12)とともに、露光センサ 5を用いて、照明系(1, 2) カゝら基準反射面 RRへ入射し、この基準反射面 RRで反射されて投影光学系 POの像 面に達する光の強度を計測する(S13)。
[0045] さらに、光照射制御工程 S11を経て計測工程 (検出工程) S12で得られた照明セン サ 4の計測結果 (検出結果)と、光照射制御工程 SI 1を経て計測工程 (検出工程) S 1 3で得られた露光センサ 5の計測結果 (検出結果)とに基づいて、照明センサ 4の校 正を行う(S14)。具体的に、校正工程 S14において、制御部 6は、照明センサ 4の計 測結果と露光センサ 5の計測結果とに基づいて、反射型マスク Mに入射する照明光 の強度とウェハ Wに入射する露光光の強度との関係を把握し、この強度関係の情報 を参照して、照明センサ 4を校正する。この校正法は上述した第 1の手法と同様に行 えばよい。
[0046] 最後に、校正工程 S 14を経て校正された照明センサ 4、すなわち校正方法 Sl l〜 S14により校正された照明センサ 4のリアルタイムな計測結果 (つまり、照明センサ 4 によって計測された照明光の強度結果と、記憶部に記憶された強度関係の情報)に 基づいて、ウェハ Wへ照射される露光量を制御する(S 15)。具体的に、露光量制御 工程 S15において、制御部 6は、校正された照明センサ 4のリアルタイムな計測結果 に基づいて、光源 1の出力強度、マスクステージ MSおよびウェハステージ WSの走 查速度、照明光路中の減衰フィルタ(図 2の符号 23)の減衰値等を調整することによ り、ウェハ W上における露光量を制御する。
[0047] こうして、制御部 6は、パターン領域 PAへ照射された積算光量と基準反射面 RRへ 照射された積算光量とが実質的に等しくなるように基準反射面 RRへの光照射を制 御する光照射制御部として機能する。また、制御部 6は、基準反射面 RRへの光照射 が制御された状態で得られた照明センサ 4の計測結果と露光センサ 5の計測結果と に基づいて照明センサ 4の校正を行う校正部として機能する。さらに、制御部 6は、校 正された照明センサ 4の計測結果に基づいて露光量を制御する露光量制御部として 機能する。
[0048] 以上のように、第 2手法では、ノターン領域 PAへ照射された積算光量と基準反射 面 RRへ照射された積算光量とが常に実質的に等しくなるように基準反射面 RRへの 光照射を制御するので、パターン領域 PA内の反射面と基準反射面 RRとの間の反 射率差が経時的に変化する事を防止できる。その結果、第 2手法が適用される露光 方法および露光装置では、反射型マスク Mの基準反射面 RRを用いて、照明センサ 4を第 1手法よりも高精度に校正し、ひいてはウエノ、 (感光性基板) W上における露光 量を第 1手法よりも高精度に制御することができる。第 2手法においても第 1手法と同 様に、反射型マスク Mのパターン領域 PAの外側の領域に設けられる基準反射面 RR の数、位置、外形形状、大きさなどについて様々な形態が可能である。
[0049] なお、第 2手法では、オーバーヘッドタイム毎に所定時間に亘つて基準反射面 RR を照明することにより、 ノ^ーン領域 PAへ照射された積算光量と基準反射面 RRへ 照射された積算光量とを実質的に等しく維持している。しかしながら、これに限定され ることなぐ各走査露光の直後に基準反射面 RRを走査照明することによりパターン領 域 PAと基準反射面 RRとで積算光量を実質的に等しく維持する変形例や、各走査 露光中に基準反射面 RRを走査照明することによりパターン領域 PAと基準反射面 R Rとで積算光量を実質的に等しく維持する変形例が可能である。
[0050] 図 7は、各走査露光の直後に基準反射面を走査照明する第 2手法の第 1変形例に 用いられる反射型マスクの構成を概略的に示す図である。第 2手法の第 1変形例に 力かる図 7の反射型マスク Mは、図 4と類似の構成を有する力 パターン領域 PAを包 囲する遮光帯 SSに対して走査方向である Y方向に隣接する領域であって光が入射 する側とは反対側(+Υ方向側)の領域において X方向に沿って細長く延びる 1つの 矩形状の基準反射面 RRが設けられている点が図 4の構成と相違している。第 2手法 の第 1変形例では、ウェハ Wへの走査露光の終了直後または開始直前に、走査方向 である Υ方向に移動する基準反射面 RRを照明系(1, 2)により照明する。以下、説明 を簡単にするために、マスク Μがー Υ方向に移動している場合であって、ウェハ Wへ の走査露光の終了直後に基準反射面 RRを照明する例について考える。マスク Μは 走査露光の終了位置を越えてマスク Μの Υ方向に向力う移動をそのまま所定距離 だけ続行する。
[0051] 図 8は、図 7の反射型マスクにおいて基準反射面の使用可能な範囲について説明 する図である。図 8において、光線 L1は、入射角度 Θで遮光帯 SSに入射した後に 遮光帯 SSで反射されたと仮定して可動ブラインド 21の走査方向ブラインド 21aの先 端を通る主光線である(実際には遮光帯 SSで光線 L1は吸収される)。光線 L2は、走 查方向ブラインド 21aの先端を通って入射角度 Θでマスク Mに入射する主光線であ る。また、走査方向ブラインド 21aの先端において光線 L1および光線 L2と交差し且 つ光線 L1および光線 L2と角度 φをなすように破線で描かれた光線 L3および L4は 、マスク Mのパターン面(図中下側の面)力 距離 dだけ離間して配置された走査方 向ブラインド 21aの影響により発生するマスク Mのパターン面上でのボケ幅を規定す る光線である。
[0052] 遮光帯 SSの幅 Ws (図 8中 Y方向に沿った遮光帯 SSの寸法)は、遮光帯 SSで反射 されて走査方向ブラインド 21 aの先端を通る主光線 L 1に対応する一対の外縁光線 L 3がマスク Mのパターン面上で規定するボケ領域 DR1の幅よりも大きく設定されてい る。ここで、主光線 L1が遮光帯 SSの Y方向に沿った中央位置に入射するように設計 することが望ましい。主光線 L1と外縁光線 L3とがなす角度 φおよび主光線 L2と外 縁光線 L4と力なす角度 φ 'は、次の式(1)、(2)により表わされる。式(1)、(2)にお いて、 NAは投影光学系 POの像側開口数であり、 σは照明のコヒーレンスファクタ( 照明光学系 2の射出側開口数 Ζ投影光学系 ΡΟの物体側開口数)であり、 βは投影 光学系 ΡΟの投影倍率である。
Figure imgf000018_0001
[0053] 第 2手法の第 1変形例では、マスク Mのパターン領域 PAと基準反射面 RRとが同じ 条件で照明系(1, 2)からの光照射を受け、且つ走査露光の直後に基準反射面 RR で反射された光束がウェハ Wに達しないこと、例えば可動ブラインド 21の走査方向ブ ラインド 21aに遮られて投影光学系 POに入射しないことが重要である。すなわち、基 準反射面 RRの使用可能な範囲(図 8中 Y方向に沿った基準反射面 RRの幅) Wrは、 走査方向ブラインド 21aの先端を通って入射角度 Θでマスク Mに入射する主光線 L2 に対応する一対の外縁光線 L4がマスク Mのパターン面上で規定するボケ領域 DR2 と遮光帯 SSとの間の領域の Y方向に沿った寸法として定義され、次の式(3)で表わ される。
Wr = dX (tan θ ) X 2— Ws/2— dX {tan 0 -tan( Θ φ)}
=dX (tan0)-Ws/2 + dXtan(0 - ) (3)
[0054] 現行の EUVL露光装置において、標準的な入射角度 Θは約 105mrad (ミリラジア ン)であり、標準的な投影光学系 POの像側開口数 NAは約 0.26であり、標準的な 投影光学系 POの投影倍率 |8は 1Z4であり、標準的なコヒーレンスファクタ σは約 0 .8であり、走査方向ブラインド 21aとマスク Μのパターン面との標準的な間隔 dは約 1 8mmであり、標準的な遮光帯 SSの幅 Wsは約 3mmである。したがって、第 2手法の 第 1変形例において基準反射面 RRの使用可能な範囲 Wrは、約 1.4mmになる。
[0055] なお、ボケ領域 DR1と遮光帯 SSの図面における右端との間の幅 Wmは、走査方向 ブラインド 21aとマスク Mとの相対的な位置関係のずれを考慮して決められる。このず れはステージ移動や取り付け誤差によって生じる可能性がある。従って、両者の相対 的な位置関係が理想的であるならば、幅 Wmを無くする事も可能であり、 Wrは最も大 きな値となる。この場合、 Ws = DRlとなる。ここで、 DR1は、式(2)を用いて、 DRl = dX{tan(0 + φ,)—tan(0 φ,)} (4)
と表すことができる。結果として、基準反射面 RRの使用可能な範囲 Wrの最大値は、 式 (3)に式 (4)を代入する事により、式 (5)で表すことができる。
Wr=d/2X{2tan0 +2tan( Θ - ) +tan( θ— φ,) -tan ( θ + ' ) } (5)
つまり、基準反射面 RRは、遮光帯のパターン領域とは逆側の端力も式 (5)で表さ れる範囲 Wrの中に配置されることが好まし!/、。
[0056] なお、第 2手法の第 1変形例では、説明を簡単にするために、基準反射面 RRの使 用可能な範囲と基準反射面 RRの実際の幅寸法とを一致させている。しかしながら、 これに限定されることなぐ使用可能な範囲を超えて基準反射面 RRを形成しても良 いし、場合によっては使用可能な範囲内において基準反射面 RRの幅寸法を適宜決 定しても良い。なぜならば、範囲 Wrに基準反射面 RRが配置されてさえいれば、その 範囲の基準反射面はパターン領域 PAへ照射された積算光量と基準反射面 RRへ照 射された積算光量とが実質的に等しく維持されるからである。従って、その範囲の基 準反射面 RRを用いることによって照明センサ 4の校正や露光量の制御を高精度に 行う事ができる。一般に、第 2手法の第 1変形例では、基準反射面 RRの幅寸法、外 形形状、位置、数などについて様々な形態が可能である。
[0057] また、第 2手法の第 1変形例では、走査露光の直後に基準反射面 RRで反射された 光束を、可動ブラインド 21の走査方向ブラインド 21aにより遮っている。し力しながら、 これに限定されることなぐ走査露光の直後に基準反射面 RRで反射された光束を、 マスク Mと投影光学系 POとの間の光路中において走査方向ブラインド 21a以外の別 の部材により遮ってもょ 、し、場合によっては投影光学系 POの光路中にぉ 、て遮つ てもよい。また、第 2手法の第 1変形例では、ウェハ Wへの走査露光の終了直後に、 走査露光の終了位置を越えてマスク Mの Y方向に向力う移動を続行しつつ、照明 系(1, 2)により基準反射面 RRを走査照明する例について説明した。しかしながら、 これに限定されることなぐウェハ Wへの走査露光の開始直前に、走査露光の開始位 置よりも手前側力 マスク Mの +Y方向に向力う移動(走査露光のための移動と同じ 特性の移動)を始めつつ、基準反射面 RRを走査照明することにより、走査露光の直 後に基準反射面 RRを走査照明する場合と同様の効果を得ることができる。なお、基 準反射面 RRが配置される位置はパターン領域 PAの周囲であって、光の入射側と反 対側の位置に配置することが好ましい。このようにすると、マスクステージの移動方向 によらずに走査方向ブラインド 21aで基準反射面 RRで反射される光束を遮る事が可 能である。
[0058] 図 9は、各走査露光中に基準反射面を走査照明する第 2手法の第 2変形例に用い られる反射型マスクの構成を概略的に示す図である。第 2手法の第 2変形例に力かる 図 9の反射型マスク Mは、図 4と類似の構成を有するが、パターン領域 PAの外側に おいてパターン領域 PAに対して非走査方向(X方向)に隣接する領域に、 Y方向に 細長く延びる矩形状の基準反射面 RRを設けている点が図 4の構成と相違している。 第 2手法の第 2変形例では、ウェハ Wへの走査露光中に、照明系(1, 2)により基準 反射面 RRを走査照明する。
[0059] 第 2手法の第 2変形例では、図 10に示すように、走査露光に際して、ハッチング領 域で示すような円弧状の照明領域 IRが反射型マスク M上に形成される。照明領域 IR の円弧状の境界線は、図 3における静止露光領域 ERの円弧状の境界線と同様に、 固定ブラインド 22により規定される。一方、円弧状の照明領域 IRの X方向に沿った幅 を決定する直線状の境界線は、照明領域 IRがパターン領域 PAの両側の基準反射 面 RRを覆うように、可動ブラインド 21の一対の非走査方向ブラインドにより規定され る。円弧状の照明領域 IRの両端に隣接した破線で示す領域 IReに対応する光束は 、例えば一対の非走査方向ブラインドの下側面に取り付けられた一対の照明センサ 4により検出され、マスク Mに達することはない。勿論、照明センサ 4は一つでもよい。
[0060] 第 2手法の第 2変形例では、走査露光中にパターン領域 PA以外の領域で反射さ れた光束、とりわけ基準反射面 RRで反射された光束がウェハ Wに達しな 、ことが重 要である。第 2手法の第 2変形例では、例えば投影光学系 POの中間結像位置また はその近傍に配置された絞り(ブラインド;遮蔽部材) Sにより、走査露光中に基準反 射面 RRで反射された光束を遮ることができる。なお、図 11では、説明を簡単にする ために、図中左右に配置された一対の遮蔽部分により絞り Sを表わしている力 実際 には図 11の紙面の手前に配置された遮蔽部分と奥側に配置された遮蔽部分とによ り絞り Sが構成される。
[0061] なお、第 2手法の第 2変形例では、走査露光中に基準反射面 RRで反射された光 束を、投影光学系 POの中間結像位置またはその近傍に配置された絞り Sにより遮つ ている。し力しながら、これに限定されることなぐ走査露光中に基準反射面 RRで反 射された光束を、投影光学系 POの光路中において絞り s以外の別の部材により遮つ てもよ 、し、場合によってはマスク Mと投影光学系 POとの間の光路中にぉ 、て遮つ てもよい。また、第 2手法の第 2変形例では、 Y方向に細長く延びる矩形状の基準反 射面 RRを、パターン領域 PAの両側に合計 4つ設けている。しカゝしながら、これに限 定されることなぐ第 2手法の第 2変形例における基準反射面 RRの外形形状、位置、 数などにっ 、て様々な形態が可能である。
[0062] ところで、上述の第 1手法および第 2手法では、反射型マスク Mの遮光帯 SSの外側 に形成された基準反射面 RRを利用して、照明センサ 4を校正し、ひいてはウェハ W 上における露光量を制御している。しかしながら、これに限定されることなぐ反射型 マスク Mの遮光帯 SSの内側に形成された基準反射面 RRを利用して、照明センサ 4 を校正し、ひいてはウェハ W上における露光量を制御する第 3手法も可能である。
[0063] 図 12は、第 3手法に用いられる反射型マスクの第 1構成例を概略的に示す図であ る。図 12の反射型マスク Mでは、パターン領域 PAと遮光帯 SSとの間に設けられたス クライブライン SL上に、基準反射面 RRが形成されている。スクライブラインは転写さ れたウェハ上でチップ間の切断等が行われる領域であり、ストリートラインとも呼ばれ る。具体的に、反射型マスク Mのパターン領域 PAには、例えば遮光帯 SSに沿って L 字状に細長く延びるスクライブライン SLが設けられ、 L字状のスクライブライン SLのう ち X方向に沿って延びるスクライブライン SL上に、 X方向に沿って細長く延びる矩形 状の基準反射面 RRが形成されて ヽる。
[0064] 通常の露光動作では遮光帯の内側は全て同一の照明条件で照明光が照射される 。第 3手法では、反射型マスク Mの遮光帯 SSの内側に基準反射面 RRが形成されて いるので、通常の走査露光動作 (場合によっては通常の一括露光動作)を単に繰り 返すだけで、パターン領域 PAに照射される積算光量と基準反射面 RRに照射される 積算光量とが常に実質的に等しく維持される。その結果、第 3手法では、第 2手法の ように基準反射面 RRへの光照射を制御する必要がなぐ第 1手法と同じ単純な工程 を実施するだけで、第 1手法よりも高い精度 (すなわち第 2手法と同等の精度)で、ゥ ェハ W上における露光量を制御することができる。
[0065] なお、図 12に示す構成例では、走査方向である Y方向と直交する X方向に沿って 延びるスクライブライン SL上に基準反射面 RRを形成して 、るが、これに限定されるこ となぐ走査方向である Y方向に沿つて延びるスクライブライン SL上に基準反射面 R Rを形成しても良い。ただし、この場合には、 X方向に沿って延びるスクライブライン S L上に基準反射面 RRを形成する場合に比して、露光センサ 5の有効受光面積がか なり小さくなる。いずれにしても、第 3手法においてスクライブライン SL上に形成され る基準反射面 RRの数、位置、外形形状、大きさなどについて様々な形態が可能であ る。また、図 12に示す構成例では、スクライブライン SLを四角形状のパターン領域 P Aの周囲の 2辺に配置した力 4辺の全てに配置する事も可能であるし、その数は任 ,s (?ある。
[0066] 図 13は、第 3手法に用いられる反射型マスクの第 2構成例を概略的に示す図であ る。図 13の反射型マスク Mでは、パターン領域 P Aの内側の領域に、すなわち遮光 帯 SSとスクライブライン(図 13では不図示)の内側に、例えば吸収体を設置しない領 域からなる基準反射面 RRが形成されている。この場合、スクライブライン SL上に基 準反射面 RRを形成する第 1構成例とは異なり、所望の大きさおよび形状を有する基 準反射面 RRを確保することが可能である。
[0067] ただし、パターン領域 PAの内側の領域に所望の大きさおよび形状を有する基準反 射面 RRを形成すると、転写すべき回路パターン (デバイスパターン)の描画可能な領 域の面積が減少することになる。第 2構成例においてパターン領域 PAの内側の領域 に形成される基準反射面 RRの数、位置、外形形状、大きさなどについて様々な形態 が可能である。
[0068] 上述の説明では、マスクに別途基準反射面 RRを配置したが、以下に示す第 4の手 法では、基準反射面 RRを用いないで照明センサ 4の校正を行う方法について説明 する。図 12の説明では、吸収体を設置しない領域としての基準反射面 RRをスクライ ブライン SL上に形成しているが、基準反射面 RRを設ける代わりに、例えば Y方向に 沿って延びるスクライブライン SL上に設けられているマーク AMを用いて照明センサ 4の校正を行うことも可能である。マーク AMは、例えばウェハ Wとの位置合わせ(ァラ ィメント)に用いられるライン 'アンド'スペース形態のパターンである。
[0069] この場合、マーク AMの形成位置、反射面積率 (光が照射される領域全体の面積 に対する反射面の面積の比率)などの情報は、例えばパターン領域 PAの外側に設 けられた二次元バーコード(マトリックスデータ) BCに書き込まれて!/、る。したがって、 マーク AMを用いて照明センサ 4を校正する場合、二次元バーコード BCからマーク AMの形成位置、反射面積率などの情報を光学的に読み取り、読み取られた情報は 制御部 6に入力 (供給)される。
[0070] 制御部 6は、マーク AMの形成位置に関する情報に基づいて、マーク AMで反射さ れて投影光学系 POを通過した光を検出可能な位置へ露光センサ 5を移動させる。ま た、制御部 6は、マーク AMの反射面積率に関する情報と、照明センサ 4の計測結果 と、露光センサ 5の計測結果とに基づいて、照明センサ 4の校正を行う。第 4の手法に おいてスクライブライン SL上に形成されて基準反射面 RRとして使用されるマーク A Mの数、位置、パターン形態などについて様々な形態が可能である。
[0071] 次に第 4の手法の変形例にっ 、て説明する。この変形例では、パターン領域 PAの 内側の領域に設けられた回路パターンの一部で反射された光を用いて照明センサ 4 の校正を行う。この場合、露光センサ 5で測定を行うマスクの部分パターンの形成位 置、反射面積率 (部分パターンの領域全体の面積に対する反射面の面積の比率)な どの情報は、例えば反射型マスク Mに関する設計情報力 得ることができる。
[0072] すなわち、第 4手法の変形例においてパターン領域 PAの内側の領域に設けられ た回路パターンの一部を用いる場合、反射型マスク Mに描画すべき回路パターンの 設計情報に基づいて、基準反射面 RRとして用いる部分パターンの領域を選択する。 そして、選択した部分パターンの形成位置、反射面積率などの情報を回路パターン の設計情報力 取得し、取得した形成位置、反射面積率などの情報を制御部 6に入 力する。
[0073] 制御部 6は、形成位置に関する情報に基づいて、部分パターンで反射されて投影 光学系 POを通過した光を検出可能な位置へ露光センサ 5を移動させる。また、制御 部 6は、部分パターンの反射面積率に関する情報と、照明センサ 4の計測結果と、露 光センサ 5の計測結果とに基づいて、照明センサ 4の校正を行う。本例においてパタ ーン領域 PAに設けられた回路パターンの一部を用いる場合、回路パターンの反射 面積率に関する設計データに基づいて、反射面積率のできるだけ大きい部分パター ン (一般には所定の値以上の反射面積率を有する部分パターン)を用いることが好ま しい。このように第 4の手法においては、基準反射面を別途配置せずに、通常配置さ れるァライメントマークや回路パターンを用いて照明センサ 4の校正を行う事ができる ため、レチクル製作に負荷をかけずに、精度の高い露光量制御を行う事が可能とな る。なお、第 4の手法においては、第 1〜第 3の手法に比べて光を反射する面積が相 対的に小さくなるので、高感度のセンサを用いる事が好ま 、。
[0074] なお、上述の実施形態では、露光量の制御を行うべき当該露光装置に設けられた 照明センサ 4および露光センサ 5を用いて、反射型マスク Mの基準反射面 RRの反射 率を含んだ光量計測を行っている。しかしながら、これに限定されることなぐ基準反 射面 RRの反射率を別の装置で測定し、記憶しておき、記憶された反射率を用いて 露光量制御を行ってもよい。この場合、マスクステージに別途配置された基準反射板 を用いて反射型マスク M以外の要因による露光量変動を計測し、照明センサ 4の校 正を予め行っておき、露光時は、記憶された反射面 RRの反射率を用いて露光量制 御を行えばよい。このようにすると、基準反射面を別途設けなくてもよい。
[0075] また、例えば図 4に示す反射型マスク Mにおいて、パターン領域 PAのほぼ全体に 亘つて X方向に延びる基準反射面 RRを形成し、この基準反射面 RRを用いて反射型 マスク Mを照明する照明領域の X方向に沿った照度分布を計測することができる。す なわち、基準反射面 RR上において X方向に間隔を隔てた複数の領域を想定し、各 領域で反射されて投影光学系 POを通過した光の強度を露光センサ 5により検出す ることにより、反射型マスク Mに対する照明領域の X方向(走査方向と直交する方向) に沿った照度の均一性を確認することができる。ちなみに、走査型の露光装置では、 走査方向に沿った照度の均一性よりも、走査方向と直交する方向に沿った照度の均 一性の方が重要である。
[0076] なお、上述の実施形態に力かる EUVL露光装置では、 EUV光を供給するための E UV光源としてレーザプラズマ光源を用いている。し力しながら、これ〖こ限定されること なぐ EUV光を供給する他の適当な光源、たとえば放電プラズマ光源やシンクロトロ ン放射(SOR)光源などを用いることもできる。また、ターゲット材料も固体や液体等 種々の材料を用いることが可能である。また、上述の実施形態では、反射型のマスク Mを用いる EUVL露光装置に対して本発明を適用している。し力しながら、これに限 定されることなぐ反射型のマスクを用いる他の適当な走査露光装置や、場合によつ ては反射型のマスクを用いる他の適当な一括露光装置に対しても本発明を適用する ことができる。
[0077] また、上述の実施形態では、照明センサをマスクの直前に配置したが、これは光源 力 射出された光束の一部を検出できればどこに配置しても構わない。例えば、本発 明で援用される特開平 9— 184900号公報に開示されているように、マスクに向かわ ない光束を検出して露光量制御を行うような構成であっても構わない。但し、好ましく は、照明センサは、反射型マスクの近傍あるいは、反射型マスクと光学的に共役な位 置に配置する。また、本発明は、光源から射出した光束をマスクへ導く照明光学系や 、マスクのパターンをウェハ上へ結像する投影光学系を上述の実施形態で用いた照 明光学系や投影光学系に限定されるものではない。
[0078] 上述の実施形態に力かる露光装置では、照明系によってマスクを照明し (照明工程 )、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に露光 する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子 、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置を用い て感光性基板としてのウェハ等に所定の回路パターンを形成することによって、マイ クロデバイスとしての半導体デバイスを得る際の手法の一例につき図 14のフローチヤ ートを参照して説明する。
[0079] 先ず、図 14のステップ 301において、 1ロットのウェハ上に金属膜が蒸着される。次 のステップ 302において、その 1ロットのウェハ上の金属膜上にフォトレジストが塗布さ れる。その後、ステップ 303において、本実施形態の露光装置を用いて、マスク(レチ クル)上のパターンの像がその投影光学系を介して、その 1ロットのウェハ上の各ショ ット領域に順次露光転写される。
[0080] その後、ステップ 304において、その 1ロットのウェハ上のフォトレジストの現像が行 われた後、ステップ 305において、その 1ロットのウェハ上でレジストパターンをマスク としてエッチングを行うことによって、マスク上のパターンに対応する回路パターンが、 各ウェハ上の各ショット領域に形成される。その後、更に上のレイヤの回路パターン の形成等を行うことによって、半導体素子等のデバイスが製造される。上述の半導体 デバイス製造方法によれば、極めて微細な回路パターンを有する半導体デバイスを スループット良く得ることができる。

Claims

請求の範囲
[1] 投影光学系を介して反射型マスクのパターンを感光性基板に露光する露光装置に おいて、照明系から前記反射型マスクへ入射する光を検出するセンサの校正方法で あって、
前記センサを用いて、前記照明系から前記反射型マスクへ入射する光を検出する 第 1検出工程と、
前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2検出工程と、 前記第 1検出工程の検出結果と前記第 2検出工程の検出結果とに基づいて前記セ ンサの校正を行う校正工程とを含むことを特徴とする校正方法。
[2] 前記反射型マスクのパターン領域へ照射された積算光量と前記基準反射面へ照射 された積算光量とが実質的に等しくなるように前記基準反射面への光照射を制御す る光照射制御工程をさらに含み、
前記校正工程では、前記光照射制御工程を経て得られた前記第 1検出工程の検 出結果と前記第 2検出工程の検出結果とに基づいて前記センサの校正を行うことを 特徴とする請求項 1に記載の校正方法。
[3] 照明系により照明された反射型マスクのパターンを、投影光学系を介して感光性基 板に露光する露光方法にぉ 、て、
前記照明系から前記反射型マスクへ入射する光をセンサにより検出する第 1検出 工程と、
前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2検出工程と、 前記第 1検出工程の検出結果と前記第 2検出工程の検出結果とに基づいて前記セ ンサの校正を行う校正工程と、
前記校正工程を経た前記センサの検出結果に基づいて前記感光性基板へ照射さ れる露光量を制御する露光量制御工程とを含むことを特徴とする露光方法。
[4] 前記反射型マスクのパターン領域へ照射された積算光量と前記基準反射面へ照射 された積算光量とが実質的に等しくなるように前記基準反射面への光照射を制御す る光照射制御工程をさらに含み、
前記校正工程では、前記光照射制御工程を経て得られた前記第 1検出工程の検 出結果と前記第 2検出工程の検出結果とに基づいて前記センサの校正を行うことを 特徴とする請求項 3に記載の露光方法。
[5] 前記反射型マスクおよび前記感光性基板を所定方向に移動させつつ走査露光を行 うことを特徴とする請求項 4に記載の露光方法。
[6] 前記光照射制御工程は、 1つの感光性基板への露光の終了と次の感光性基板への 露光の開始との間のオーバーヘッドタイムに、前記パターン領域の外側に形成され た前記基準反射面を前記照明系により照明する照明工程を含むことを特徴とする請 求項 4または 5に記載の露光方法。
[7] 前記光照射制御工程は、前記感光性基板への走査露光の終了直後または開始直 前に前記所定方向に移動する前記反射型マスクの前記基準反射面を前記照明系に より照明する照明工程と、該照明工程で照明された前記基準反射面力 の光が前記 投影光学系を介して前記感光性基板に達するのを遮る遮光工程を含み、
前記照明工程では、前記パターン領域の外側において前記パターン領域に対して 前記所定方向に隣接する領域であって光が入射する側とは反対側の領域に形成さ れた前記基準反射面を照明することを特徴とする請求項 5に記載の露光方法。
[8] 前記遮光工程は、前記照明工程で照明された前記基準反射面からの光を前記反射 型マスクと前記投影光学系との間の光路中において遮る工程を含むことを特徴とす る請求項 7に記載の露光方法。
[9] 前記光照射制御工程は、前記感光性基板への走査露光に際して前記所定方向に 移動する前記反射型マスクの前記基準反射面を前記照明系により照明する照明ェ 程と、該照明工程で照明された前記基準反射面力 の光が前記投影光学系を介し て前記感光性基板に達するのを遮る遮光工程を含み、
前記照明工程では、前記パターン領域の外側において前記パターン領域に対して 前記所定方向と直交する方向に隣接する領域に形成された前記基準反射面を照明 することを特徴とする請求項 5に記載の露光方法。
[10] 前記遮光工程は、前記照明工程で照明された前記基準反射面からの光を前記投影 光学系の光路中にぉ ヽて遮る工程を含むことを特徴とする請求項 9に記載の露光方 法。
[11] 前記第 2検出工程において、前記反射型マスクのパターン領域の周囲に設けられた スクライブライン上に形成された前記基準反射面を照明することを特徴とする請求項 3に記載の露光方法。
[12] 前記反射型マスクおよび前記感光性基板を所定方向に移動させつつ走査露光を行 い、
前記第 2検出工程における前記基準反射面の照明は、前記所定方向と直交する 方向に沿って延びるスクライブライン上に形成された前記基準反射面を照明すること を特徴とする請求項 11に記載の露光方法。
[13] 前記第 2検出工程において、前記反射型マスクのパターン領域に形成された前記基 準反射面を照明することを特徴とする請求項 3に記載の露光方法。
[14] 照明系により照明された反射型マスクのパターンを、投影光学系を介して感光性基 板に露光する露光方法にぉ 、て、
前記照明系から前記反射型マスクへ入射する光をセンサにより検出する第 1検出 工程と、
前記照明系から前記反射型マスクのスクライブライン上に形成されたマークへ入射 し、前記マークで反射されて前記投影光学系の像面に達する光を検出する第 2検出 工程と、
前記第 1検出工程の検出結果と前記第 2検出工程の検出結果とに基づいて前記セ ンサの校正を行う校正工程と、
前記校正工程を経た前記センサの検出結果に基づいて前記感光性基板へ照射さ れる露光量を制御する露光量制御工程とを含むことを特徴とする露光方法。
[15] 照明系により照明された反射型マスクのパターンを、投影光学系を介して感光性基 板に露光する露光方法にぉ 、て、
前記照明系から前記反射型マスクへ入射する光をセンサにより検出する第 1検出 工程と、
前記照明系から前記反射型マスクのパターン領域に設けられたパターンの一部へ 入射し、前記パターンの一部で反射されて前記投影光学系の像面に達する光を検 出する第 2検出工程と、
前記第 1検出工程の検出結果、前記第 2検出工程の検出結果及び前記パターン の一部の反射面積率に基づいて前記センサの校正を行う校正工程と、
前記校正工程を経た前記センサの検出結果に基づいて前記感光性基板へ照射さ れる露光量を制御する露光量制御工程とを含むことを特徴とする露光方法。
[16] 前記校正工程では、前記反射面積率として、前記部分パターンの設計上の反射面 積率を用いることを特徴とする請求項 15に記載の露光方法。
[17] 前記反射型マスクのパターン領域に設けられたパターンの反射面積率に関する設計 データに基づいて、所定の値以上の反射面積率を有する部分パターンを前記基準 反射面として選択することを特徴とする請求項 15または 16に記載の露光方法。
[18] 照明系により照明された反射型マスクのパターンを、投影光学系を介して感光性基 板に露光する露光装置にぉ 、て、
前記照明系から前記反射型マスクへ入射する光を検出する第 1センサと、 前記照明系から前記反射型マスクに形成された基準反射面へ入射し、前記基準反 射面で反射されて前記投影光学系の像面に達する光を検出する第 2センサと、 前記第 1センサの検出結果と前記第 2センサの検出結果とに基づいて前記第 1セン サの校正を行う校正部と、
前記校正部により校正された前記第 1センサの検出結果に基づいて前記感光性基 板へ照射される露光量を制御する露光量制御部とを備えていることを特徴とする露 光装置。
[19] 前記反射型マスクのパターン領域へ照射された積算光量と前記基準反射面へ照射 された積算光量とが実質的に等しくなるように前記基準反射面への光照射を制御す る光照射制御部をさらに備え、
前記校正部は、前記光照射制御部により前記基準反射面への光照射が制御され た状態で得られた前記第 1センサの検出結果と前記第 2センサの検出結果とに基づ いて前記第 1センサの校正を行うことを特徴とする請求項 18に記載の露光装置。
[20] 前記反射型マスクを保持して移動するマスクステージと、前記感光性基板を保持して 移動する基板ステージとをさらに備え、
前記マスクステージおよび前記基板ステージを所定方向に移動させつつ走査露光 を行うことを特徴とする請求項 18または 19に記載の露光装置。
[21] 前記反射型マスクの前記基準反射面は、前記パターン領域の外側において前記パ ターン領域に対して前記所定方向に隣接する領域であって光が入射する側とは反 対側の領域に形成され、
前記マスクステージは、前記感光性基板への走査露光の終了直後または開始直 前に前記所定方向に所定距離だけ移動するように構成され、
前記感光性基板への走査露光の終了直後または開始直前に前記所定方向に移 動する前記反射型マスクに対して前記照明系により照射され前記基準反射面で反 射された光が、前記投影光学系を介して前記感光性基板に達するのを遮るための遮 光部を備えていることを特徴とする請求項 20に記載の露光装置。
[22] 前記遮光部は、前記反射型マスクと前記投影光学系との間において前記所定方向 に移動可能な可動ブラインドを有することを特徴とする請求項 21に記載の露光装置
[23] 前記基準反射面は、前記パターン領域を包囲する遮光帯に隣接した前記基準反射 面の前記所定方向に沿った使用可能な範囲 Wr内に配置され、
前記基準反射面の前記所定方向に沿った使用可能な範囲 Wrは、前記反射型マ スクと前記可動ブラインドとの間隔を dとし、前記反射型マスクに入射する主光線の入 射角度を Θとし、前記投影光学系の像側開口数を NAとし、照明のコヒーレンスファタ タを σとし、前記投影光学系の投影倍率を |8とするとき、
Wr= d/2 X {2tan 0 + 2tan ( Θ - ) +tan ( Θ - φ ' ) -tan ( θ + ' ) } ただし、 φ =sin_1 (NA- σ · j8 )、 φ, =sin_1 (NA- β )
の式により規定されることを特徴とする請求項 22に記載の露光装置。
[24] 前記反射型マスクの前記基準反射面は、前記パターン領域の外側において前記パ ターン領域に対して前記所定方向と直交する方向に隣接する領域に形成され、 前記照明系は、前記感光性基板への走査露光に際して前記所定方向に移動する 前記反射型マスクの前記基準反射面を照明するように構成され、 前記感光性基板への走査露光に際して照明された前記基準反射面からの光が前 記投影光学系を介して前記感光性基板に達するのを遮るための遮光部を備えてい ることを特徴とする請求項 20に記載の露光装置。
[25] 前記遮光部は、前記投影光学系の中間結像位置またはその近傍に配置された絞り を有することを特徴とする請求項 24に記載の露光装置。
[26] 請求項 3乃至 17のいずれか 1項に記載の露光方法を用いて前記反射型マスクのパ ターンを前記感光性基板に露光する露光工程と、
前記露光工程を経た前記感光性基板を現像する現像工程とを含むことを特徴とす るデバイス製造方法。
[27] 投影光学系を介して感光性基板に露光する露光装置に用いられる反射型マスクに おいて、
前記感光性基板に転写すべきパターンが設けられたパターン領域のパターン反射 面で反射された光束の露光量を制御するために用いられる基準反射面を有すること を特徴とする反射型マスク。
[28] 前記基準反射面は、前記パターン反射面と実質的に同じ反射構造を有することを特 徴とする請求項 27に記載の反射型マスク。
[29] 前記反射型マスクは、前記投影光学系に対して前記感光性基板を所定方向に移動 させつつ走査露光を行う露光装置に用いられ、
前記基準反射面は、前記パターン領域の外側において前記パターン領域に対して 前記所定方向に隣接する領域に設けられていることを特徴とする請求項 27または 2
8に記載の反射型マスク。
[30] 前記基準反射面は、前記所定方向に隣接する領域であって光が入射する側とは反 対側の領域に形成されていることを特徴とする請求項 29に記載の反射型マスク。
[31] 前記反射型マスクは、前記投影光学系に対して前記感光性基板を所定方向に移動 させつつ走査露光を行う露光装置に用いられ、
前記基準反射面は、前記パターン領域の外側において前記パターン領域に対して 前記所定方向と直交する方向に隣接する領域に設けられていることを特徴とする請 求項 27または 28に記載の反射型マスク。
[32] 前記基準反射面は、前記パターン領域の周囲に設けられたスクライブライン上に形 成されて!/、ることを特徴とする請求項 27または 28に記載の反射型マスク。
[33] 前記反射型マスクは、前記投影光学系に対して前記感光性基板を所定方向に移動 させつつ走査露光を行う露光装置に用いられ、
前記基準反射面は、前記所定方向と直交する方向に沿って延びるスクライブライン 上に形成されていることを特徴とする請求項 32に記載の反射型マスク。
[34] 前記基準反射面は、前記パターン領域においてスクライブラインの内側に形成され て 、ることを特徴とする請求項 27または 28に記載の反射型マスク。
PCT/JP2006/309930 2005-05-23 2006-05-18 センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク WO2006126444A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06756345.2A EP1887615A4 (en) 2005-05-23 2006-05-18 SENSOR CALIBRATION METHOD, EXPOSURE DEVICE METHOD AND DEVICE, DEVICE MANUFACTURING METHOD, AND REFLECTION MASK
JP2007517792A JP4924421B2 (ja) 2005-05-23 2006-05-18 センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005148944 2005-05-23
JP2005-148944 2005-05-23
JP2006109578 2006-04-12
JP2006-109578 2006-04-12

Publications (1)

Publication Number Publication Date
WO2006126444A1 true WO2006126444A1 (ja) 2006-11-30

Family

ID=37451869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309930 WO2006126444A1 (ja) 2005-05-23 2006-05-18 センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク

Country Status (6)

Country Link
US (1) US8018577B2 (ja)
EP (1) EP1887615A4 (ja)
JP (1) JP4924421B2 (ja)
KR (1) KR101267144B1 (ja)
TW (1) TWI408492B (ja)
WO (1) WO2006126444A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287817A (ja) * 2006-04-14 2007-11-01 Nikon Corp 露光装置の較正方法及び露光装置
WO2009022506A1 (ja) * 2007-08-10 2009-02-19 Nikon Corporation 照明光学装置、露光装置、およびデバイス製造方法
JP2009272347A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 光反射型マスク、露光装置、測定方法、及び半導体装置の製造方法
JP2010004002A (ja) * 2008-05-20 2010-01-07 Komatsu Ltd 極端紫外光を用いる半導体露光装置
JP2010502004A (ja) * 2006-08-24 2010-01-21 カール・ツァイス・エスエムティー・アーゲー 光強度記録用検出器を備える照明システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014832A1 (de) * 2007-04-19 2008-10-23 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Mikrolithographie
JP5360057B2 (ja) * 2008-05-28 2013-12-04 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
DE102012216494A1 (de) * 2012-09-17 2013-08-14 Carl Zeiss Smt Gmbh Verfahren zum Betreiben eines Projektionsbelichtungssystems für die EUV-Lithographie und Projektionsbelichtungssystem
CN103869629B (zh) * 2012-12-13 2016-03-16 中芯国际集成电路制造(上海)有限公司 光刻系统以及光刻方法
US9046781B2 (en) 2013-03-15 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for reflective-type mask
NL2016889A (en) 2015-07-16 2017-01-17 Asml Netherlands Bv Lithographic Apparatus and Method
US20190278166A1 (en) * 2018-03-08 2019-09-12 Globalfoundries Inc. Photolithography system and method using a reticle with multiple different sets of redundant framed mask patterns
TWI744987B (zh) * 2020-07-17 2021-11-01 新加坡商光寶科技新加坡私人有限公司 光學感測器封裝結構及其製造方法
CN114640832A (zh) * 2022-02-11 2022-06-17 厦门聚视智创科技有限公司 一种投影图像的自动校正方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184900A (ja) 1995-12-28 1997-07-15 Nikon Corp パルスx線照射装置
JPH10189414A (ja) * 1996-12-26 1998-07-21 Nikon Corp X線投影露光装置及びx線投影露光方法
WO1999045581A1 (fr) * 1998-03-02 1999-09-10 Nikon Corporation Procede et appareil d'exposition, fabrication d'un outil d'exposition, dispositif, et fabrication de ce dispositif
JP2000286190A (ja) * 1999-03-31 2000-10-13 Nikon Corp 露光装置および露光方法ならびにデバイス製造方法
JP2002141275A (ja) * 2000-11-06 2002-05-17 Hitachi Ltd 露光方法、及びそれを用いて作製された半導体素子
US6452661B1 (en) 1998-02-27 2002-09-17 Nikon Corporation Illumination system and exposure apparatus and method
JP2003224053A (ja) * 2002-01-29 2003-08-08 Canon Inc 露光装置及びその制御方法、これを用いたデバイスの製造方法
JP2005109304A (ja) * 2003-10-01 2005-04-21 Canon Inc 照明光学系及び露光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250402A (ja) * 1995-03-15 1996-09-27 Nikon Corp 走査型露光方法及び装置
JPH1092722A (ja) * 1996-09-18 1998-04-10 Nikon Corp 露光装置
EP1039510A4 (en) * 1997-11-14 2003-11-12 Nikon Corp EXPOSURE DEVICE, MANUFACTURING METHOD THEREOF, AND EXPOSURE METHOD
US6850313B2 (en) * 1999-10-01 2005-02-01 Nikon Corporation Exposure method, exposure apparatus and its making method, device manufacturing method, and device
US20030090644A1 (en) * 2000-10-17 2003-05-15 Nikon Corporation Mask and exposure apparatus
JP2002196469A (ja) * 2000-12-25 2002-07-12 Hitachi Ltd デバイスの製造方法、それに用いるホトマスク、およびそのホトマスクの製造方法
US7092072B2 (en) * 2004-07-02 2006-08-15 Asml Netherlands B.V. Calibration apparatus and method of calibrating a radiation sensor in a lithographic apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184900A (ja) 1995-12-28 1997-07-15 Nikon Corp パルスx線照射装置
JPH10189414A (ja) * 1996-12-26 1998-07-21 Nikon Corp X線投影露光装置及びx線投影露光方法
US6452661B1 (en) 1998-02-27 2002-09-17 Nikon Corporation Illumination system and exposure apparatus and method
WO1999045581A1 (fr) * 1998-03-02 1999-09-10 Nikon Corporation Procede et appareil d'exposition, fabrication d'un outil d'exposition, dispositif, et fabrication de ce dispositif
JP2000286190A (ja) * 1999-03-31 2000-10-13 Nikon Corp 露光装置および露光方法ならびにデバイス製造方法
JP2002141275A (ja) * 2000-11-06 2002-05-17 Hitachi Ltd 露光方法、及びそれを用いて作製された半導体素子
JP2003224053A (ja) * 2002-01-29 2003-08-08 Canon Inc 露光装置及びその制御方法、これを用いたデバイスの製造方法
JP2005109304A (ja) * 2003-10-01 2005-04-21 Canon Inc 照明光学系及び露光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887615A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287817A (ja) * 2006-04-14 2007-11-01 Nikon Corp 露光装置の較正方法及び露光装置
JP2010502004A (ja) * 2006-08-24 2010-01-21 カール・ツァイス・エスエムティー・アーゲー 光強度記録用検出器を備える照明システム
WO2009022506A1 (ja) * 2007-08-10 2009-02-19 Nikon Corporation 照明光学装置、露光装置、およびデバイス製造方法
JP5387982B2 (ja) * 2007-08-10 2014-01-15 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
US8780328B2 (en) 2007-08-10 2014-07-15 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2009272347A (ja) * 2008-04-30 2009-11-19 Toshiba Corp 光反射型マスク、露光装置、測定方法、及び半導体装置の製造方法
JP2010004002A (ja) * 2008-05-20 2010-01-07 Komatsu Ltd 極端紫外光を用いる半導体露光装置

Also Published As

Publication number Publication date
EP1887615A4 (en) 2016-01-20
TWI408492B (zh) 2013-09-11
JP4924421B2 (ja) 2012-04-25
JPWO2006126444A1 (ja) 2008-12-25
KR101267144B1 (ko) 2013-05-23
KR20080015023A (ko) 2008-02-15
EP1887615A1 (en) 2008-02-13
US20060290916A1 (en) 2006-12-28
TW200700931A (en) 2007-01-01
US8018577B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
JP4924421B2 (ja) センサの校正方法、露光方法、露光装置、デバイス製造方法、および反射型マスク
JP5571316B2 (ja) 複数の位置調整装置を備えるリソグラフィ装置、及び位置調整測定方法
JP3610175B2 (ja) 投影露光装置及びそれを用いた半導体デバイスの製造方法
TWI574099B (zh) Flash measurement mask, flash measurement method, and exposure method
US7345739B2 (en) Lithographic alignment system and device manufacturing method
US7083290B2 (en) Adjustment method and apparatus of optical system, and exposure apparatus
US20040021854A1 (en) Flare measuring method and flare measuring device, exposure method and exposure system, method of adjusting exposure system
JPH11251226A (ja) X線投影露光装置
JPWO2010007945A1 (ja) 照明光学系、露光装置、及び露光方法
JP4303192B2 (ja) リソグラフィ装置およびデバイス製造方法
JP5387982B2 (ja) 照明光学装置、露光装置、およびデバイス製造方法
JP3874755B2 (ja) 迷放射を決定する方法、リソグラフィ投影装置
JP4496782B2 (ja) 反射光学系及び露光装置
JP2008186912A (ja) 収差評価方法、調整方法、露光装置、露光方法、およびデバイス製造方法
JP2001244183A (ja) 投影露光装置
JP3980469B2 (ja) リソグラフィック装置及びデバイス製造方法
JP2000260698A (ja) 投影露光装置およびそれを用いた半導体デバイスの製造方法
JP2000114164A (ja) 走査型投影露光装置及びそれを用いたデバイスの製造方法
JP2007173533A (ja) 露光装置、露光方法及びデバイス製造方法
JP2001305745A (ja) 走査露光方法および走査型露光装置
JP5390577B2 (ja) リソグラフィ装置および方法
JP2008172004A (ja) 収差評価方法、調整方法、露光装置、露光方法、およびデバイス製造方法
JP5397596B2 (ja) フレア計測方法及び露光方法
JP2001297959A (ja) 照明装置及び露光装置
JP2001118784A (ja) 露光装置及びその露光装置における疎密線幅差の補正方法並びに露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517792

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077029972

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756345

Country of ref document: EP