WO2006125412A1 - Austenitischer leichtbaustahl und seine verwendung - Google Patents

Austenitischer leichtbaustahl und seine verwendung Download PDF

Info

Publication number
WO2006125412A1
WO2006125412A1 PCT/DE2006/000797 DE2006000797W WO2006125412A1 WO 2006125412 A1 WO2006125412 A1 WO 2006125412A1 DE 2006000797 W DE2006000797 W DE 2006000797W WO 2006125412 A1 WO2006125412 A1 WO 2006125412A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
steels
chromium
austenitic
steel
Prior art date
Application number
PCT/DE2006/000797
Other languages
English (en)
French (fr)
Inventor
Piotr R. Scheller
Andreas Weiss
Heiner Gutte
Original Assignee
Scheller Piotr R
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scheller Piotr R filed Critical Scheller Piotr R
Priority to JP2008512683A priority Critical patent/JP2008542528A/ja
Priority to EP06722850A priority patent/EP1891248A1/de
Priority to US11/915,338 priority patent/US20080199345A1/en
Publication of WO2006125412A1 publication Critical patent/WO2006125412A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the innovation relates to an austenitic lightweight steel and its use.
  • Steels with tensile strengths above 600 MPa are referred to as lightweight steels because the tensile strength per unit weight is higher than that of aluminum.
  • Stainless austenitic steels are distinguished not only by high corrosion resistance, but generally also by good cold workability.
  • the cold working as well as the energy absorbing capacity of these austenitic steels can be increased by a TRIP effect (transformation-induced plasticity). It is then achieved relatively high tensile strengths and at the same time relatively high elongation at break.
  • the alloying range in which a TRIP effect occurs in stainless, cold formable CrNi and CrNiMn steels has not previously been specified. So far, stainless cold-formable austenitic steels with TRIP effect can only be characterized by special properties.
  • these steels have a tensile strength of about 520 to 850 MPa and at the same time elongation at break of about 60 to 45%, according to [1, 2].
  • TRIP / TWIP steels twinning induced plasticity
  • LIP steels light induced plasticity
  • the TRIP / TWIP and LIP steels are also known as lightweight steels because of their increased tensile strength.
  • Austenitic TRIP / TWIP steels have tensile strengths greater than about 650 to 1100 MPa. The corresponding elongations at break are between approx. 80 and 40%, according to [1, 3, 4].
  • the chemical composition of the steels is defined in the published patent application DE 197 27 759 A [3]. After that, these steels contain manganese contents of 10 to 30% with usually additions of silicon and aluminum. They are not alloyed with chromium. A typical representative is a steel with 20% manganese, 3% silicon and 3% aluminum, according to [3, 4, 5].
  • Austenitic LIP steels have only been tested on a laboratory scale. They should reach tensile strengths of about 1000 to 1100 MPa and elongations in the range of about 60 to 50%. Data on the chemical composition of these steels are not yet published, according to [6].
  • the cold working and energy absorption capacity, the tensile strength and the elongation at break of the said steels are raised by a TRIP, TWIP or by the superposition of the TRIP and TWIP effect.
  • the product of tensile strength and maximum elongation can be used as an index to assess the cold workability of the steels.
  • the product of maximum elongation and tensile strength in the austenitic TRIP steels is in the range of approx. 25,000 to 38,000 MPa%, in the TRIP / TWIP steels over 38,000 to 57,000 MPa% and in the LIP steels above 57,000 MPa% [3-7].
  • the energy absorption capacity of the TRIP and TRIP / TWIP steels reaches values of 0.45 to 0.5 J / mm 3 . That is, in a crash stress have these steels a large stretch reserve on. [3, 4, 5]. Relevant values for the LIP steels are not published.
  • the cold workability as well as the energy absorption capacity is achieved in the austenitic TRIP and TRIP / TWIP steels by influencing the austenitic structure as a result of mechanical stress in the process of cold working.
  • the different mechanisms can be influenced in principle by the austenite stacking energy, which depends on the austenite chemical composition [5, 8].
  • niobium promotes the formation of fines and thus has a further positive influence on the mechanical properties.
  • niobium causes a setting of the carbon and thus causes an improvement of the corrosion properties.
  • Silicon contents of more than 1% are previously alloyed with austenitic steels in order to achieve heat resistance or improvement of the scale resistance in connection with high chromium contents.
  • Silicon and aluminum have high oxygen activity which can affect castability and purity. For this reason, the contents of these elements are usually minimized unless they are added to improve specific properties.
  • Silicon and aluminum are ferrite stabilizing elements. That is, the contents of these elements are limited in austenitic steels to avoid the formation of ferrite. With the exception of high-manganese TWIP steels, aluminum has not been used as an alloying element in austenitic steels. The influence of aluminum on the chromium and / or nickel equivalent has not been recorded in contrast to other accompanying and alloying elements. A chromium content greater than about 12% causes the formation of a passive layer, which is the corrosion resistance of stainless steels given. Austenitic steels with chromium contents of 12% are generally weather-resistant and resistant to corrosion. The resistance to rusting is increased in these steels.
  • High manganese austenitic TWIP steels are not alloyed with chromium. They therefore do not belong to the stainless, corrosion-resistant or weather-resistant steels.
  • Manganese is used in conventional austenitic steels as an austenite former and as a substitution element for nickel. Manganese is therefore alloyed mainly in austenitic steels for cost reasons.
  • a prerequisite for the development of deformation-induced ⁇ -martensite is that the structure consists of austenite.
  • a corresponding chromium and nickel equivalent is required for the chemical composition of the steels. That is, the chemical composition of the steels must be matched to one another with respect to the ferrite-stabilizing and austenite-stabilizing elements.
  • the stainless manganese and nitrogen alloyed austenitic steels 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) and 1.4373 (X12 CrMnNiN 17 9 5) and the steels AISI 201 and 202, which may be nitrogen-alloyed or contain no nitrogen are in terms of their Cr, Ni and Mn contents in individual sub-areas, which is covered by the patent. These steels are indicated in the steel key [7]. But they have no aluminum content.
  • the invention specified in the main claims is therefore based on the problem to provide further austenitic lightweight steels with good cold workability, a characteristic value for the cold workability greater than 30 000 MPa%, and with tensile strengths between 600 to 800 MPa and elongations at break over 50%.
  • the austenitic steel according to the invention is alloyed with silicon, aluminum and chromium and contains manganese.
  • this steel is an improvement by alloying measures, especially by the addition of silicon in the limits greater than 1, 0 to 4.0%, aluminum within the limits of 0.05 to 4% and simultaneous lowering of the chromium content to values below 18% achieved the cold workability.
  • the required chemical composition of the steel according to the invention determines.
  • the known stainless manganese and nitrogen-alloyed austenitic steels are 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) and 1.4373 (X12 CrMnNiN 17 9 5) and the steels AISI 201 and 202, which may be nitrogen-alloyed or have no nitrogen, in sub-areas of the claim.
  • These steels are indicated in the steel key [7]. They do not contain aluminum.
  • the steel according to the invention differs from these steels moreover by higher silicon contents and moreover partly also in its application.
  • the mixed crystal strengthening effect of nitrogen in the mentioned steels is used to achieve relatively high 0.2% strain limits, unlike steels which are readily cold formable.
  • the nitrogen-alloyed steels are then preferably used as spring steels.
  • the non-nitrogen-alloyed steels of types 201 and 202 are characterized by lower 0.2% proof strengths compared to nitrogen-alloyed steels of the same type. They therefore exhibit a slightly higher cold workability, so that parts of these steels as household items, in apparatus construction, the construction industry u. ⁇ . find use.
  • the advantages achieved by the invention are, in particular, that with the lightweight structural steels according to the invention an improvement in the mechanical properties and also an increase in the cold forming and Energy absorption capacity is achieved. It succeeds in cost-effective steels, such.
  • These steels according to the invention can be cold-formed very well analogously to the chromium-free, highly manganese-containing TWIP steels.
  • the austenitic steels according to the invention contain two different steel types.
  • the first type of steel comprises austenitic stainless steels with chromium contents within the limits of approximately 12.0 to 18.0%.
  • the second type of steel includes austenitic steels with chromium contents greater than 2.0 and less than 12.0%.
  • Steels of this type are non-rusting but, due to their chromium, nickel and silicon content, have an increased resistance to rusting, so that they differ in this respect from the previous austenitic TRIP / TWIP steels, despite a similar property potential.
  • a large number of these steels can therefore be regarded as weather-resistant or corrosion-resistant.
  • Especially such steels with chromium contents of 10 to 12% have a pronounced corrosion inertia.
  • a preferred composition according to claim 2 is that the
  • such an austenitic steel with ⁇ -TRIP effect, a good cold workability and an increased resistance to corrosion according to claim 3 has a carbon content of 0.04%, a chromium content of 13%, a silicon content of 1.5%, a niobium content of 0, 15%, a nickel content of 7.9%, a manganese content of 8.1%, a nitrogen content of 0.02% and an aluminum content of 0.11%, balance essentially iron.
  • the structure of the steel consists of metastable austenite. The steel shows a pronounced ⁇ -TRIP effect. It is achieved a relatively high hardenability.
  • the 0.2% proof stress is 210 MPa and the tensile strength is 645 MPa.
  • the steel achieves a maximum elongation of 65%. That is, the dimensional figure of the product of elongation at break and tensile strength is set by a value of 38,055 MPa%. The value for the energy absorption is about 0.5 J / mm 3 .
  • the steel forms an iron, chromium and silicon-containing oxidation layer that causes weathering resistance or corrosion inertia under atmospheric conditions.
  • a austenitic stainless steel with ⁇ -TRIP effect and good cold workability has a carbon content of 0.03%, a chromium content of 15.82%, a silicon content of 1.22%, a nickel content of 7.50 %, a manganese content of 5.80% and an aluminum content of 0.11%, balance essentially iron.
  • the structure of the steel consists of metastable austenite.
  • the steel shows an austenitic structure with a pronounced TRIP effect at room temperature. It is observed a relatively low yield ratio, which is a consequence of a high solidification capacity.
  • the 0.2% proof strength is about 197 MPa and the tensile strength is 620 MPa.
  • the steel achieves a maximum elongation of 64%. That is, the measure of the product of elongation at break and tensile strength, which is the Cold formability is characterized by a value of
  • the value for the energy absorption is about 0.5 J / mm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Die Erfindung betrifft einen austenitischen Leichtbaustahl und seine Verwendung. Die Aufgabe wird durch die Erfindung dadurch gelöst, dass der erfindungsgemäße austenitische Stahl mit Silizium, Aluminium und Chrom legiert ist und Mangan enthält. Bei diesem Stahl wird durch legierungstechnische Maßnahmen, besonders durch die Zugabe von Silizium in den Grenzen größer 1 , 0 bis 4,0 %, Aluminium in den Grenzen von 0,05 bis 4 % und gleichzeitiger Absenkung des Chromgehaltes auf Werte unter 18 % eine Verbesserung des Umformverhaltens erreicht. Die erfindungsgemäßen austenitischen Stähle enthalten zwei unterschiedliche Stahltypen. Der erste Stahltyp umfasst nichtrostende austenitische Stähle mit Chromgehalten in den Grenzen von ca. 12,0 bis 18,0 %. Der zweite Stahltyp umfasst austenitische Stähle mit Chromgehalten von größer 2,0 und kleiner 12,0 %. Stähle dieses Typs sind nicht nichtrostend, weisen aber aufgrund ihres Chrom-, Nickel- und Siliziumgehaltes einen erhöhten Widerstand gegenüber Abrostung auf, so dass sie sich diesbezüglich von den bisherigen austenitischen TRIP/TWIP-Stählen, trotz eines ähnlichen Eigenschaftspotenzials unterscheiden. Eine Vielzahl dieser Stähle kann deshalb als witterungsbeständig bzw. korrosionsträge angesehen werden. Besonders solche Stähle mit Chromgehalten von 10 bis 12 % weisen eine ausgeprägte Korrosionsträgheit auf.

Description

Austenitischer Leichtbaustahl und seine Verwendung
Die Neuerung bezieht sich auf einen austenitischen Leichtbaustahl und seine Verwendung. Stähle mit Zugfestigkeiten über 600 MPa werden als Leichbaustähle bezeichnet, da die Zugfestigkeit pro Gewichtseinheit höher liegt als beim Aluminium.
Stand der Technik
Nichtrostende austenitische Stähle zeichnen sich neben einer hohen Korrosionsbeständigkeit in der Regel durch eine gute Kaltumformbarkeit aus. Das Kaltumform- als auch das Energieabsorptionsvermögen dieser austenitischen Stähle kann durch einen TRIP-Effekt (transformation-induced plasticity) angehoben werden. Es werden dann relativ hohe Zugfestigkeiten und gleichzeitig relativ hohe Bruchdehnungen erreicht. Der Legierungsbereich in dem in nichtrostenden, kaltumformbaren CrNi- und CrNiMn-Stählen ein TRIP-Effekt auftritt, ist bisher nicht spezifiziert worden. Nichtrostende kaltumformbare austenitische Stähle mit TRIP- Effekt lassen sich bisher lediglich anhand spezieller Eigenschaften kennzeichnen. So weisen diese Stähle eine Zugfestigkeit von ca. 520 bis 850 MPa und gleichzeitig Bruchdehnungen von ca. 60 bis 45 % auf, nach [1 , 2]. Ein nichtrostender Stahl mit Chromgehalten von 17 bis 18 % und Nickelgehalten von 8 bis 10 %, wie z.B. der Stahl X5 CrNi 18 10 (1.4301), ist ein typischer Vertreter mit TRIP-Effekt.
Neben den nichtrostenden austenitischen Stählen gibt es kaltumformbare hochmanganhaltige TRIP/TWIP-Stähle (twinning induced plasticity) und die LIP- Stähle (light induced plasticity). Die TRIP/TWIP- und LIP-Stähle werden wegen ihrer erhöhten Zugfestigkeit auch als Leichtbaustähle bezeichnet. Austenitische TRIP/TWIP-Stähle weisen Zugfestigkeiten von mehr als ca. 650 bis 1100 MPa auf. Die dazugehörigen Bruchdehnungen liegen zwischen ca. 80 und 40 %, nach [1, 3, 4]. Die chemische Zusammensetzung der Stähle ist in der Offenlegungsschrift DE 197 27 759 A [3] festgelegt. Danach enthalten diese Stähle Mangangehalte von 10 bis 30 % mit in der Regel Zusätzen von Silizium und Aluminium. Sie sind nicht mit Chrom legiert. Ein typischer Vertreter ist ein Stahl mit 20 % Mangan, 3 % Silizium und 3 % Aluminium, nach [3, 4, 5].
Austenitische LIP-Stähle sind bisher nur im Labormaßstab getestet worden. Sie sollen Zugfestigkeiten von ca. 1000 bis 1100 MPa und Bruchdehnungen im Bereich von ca. 60 bis 50 % erreichen. Angaben über die chemische Zusammensetzung dieser Stähle sind bisher nicht veröffentlicht, nach [6].
Das Kaltumform- und das Energieabsorptionsvermögen, die Zugfestigkeit und die Bruchdehnung der genannten Stähle werden durch einen TRIP-, TWIP- bzw. durch die Überlagerung des TRIP- und TWIP-Effekts angehoben.
Wandelt der Austenit während einer mechanischen Beanspruchung verformungsinduziert in ε- und/oder α'-Martensit um, so wird ein TRIP-Effekt beobachtet. Als Folge davon steigen das plastische Deformationsvermögen und die Zugfestigkeit. Durch eine Zwillingsbildung können diese Eigenschaftsänderungen noch verstärkt werden. Es wird dann ein hohes Verfestigungsvermögen beobachtet. Bei relativ niedrigen 0,2 %-Dehngrenzen werden dann relativ hohe Zugfestigkeiten erreicht, so dass in der Regel ein niedriges Streckgrenzenverhältnis registriert wird.
Für die Beurteilung der Kaltumformbarkeit der Stähle kann als Kennzahl das Produkt aus Zugfestigkeit und maximaler Dehnung herangezogen werden. Das Produkt aus maximaler Dehnung und Zugfestigkeit liegt bei den austenitschen TRIP-Stählen im Bereich von ca. 25.000 bis 38.000 MPa %, bei den TRIP/TWIP-Stählen über 38.000 bis 57.000 MPa % und bei den LIP-Stählen über 57.000 MPa %, nach [3-7]. Das Energieabsorptionsvermögen der TRIP- und TRIP/TWIP-Stähle erreicht Werte von 0,45 bis 0,5 J/mm3. Das heißt, bei einer Crashbeanspruchung weisen diese Stähle eine große Dehnungsreserve auf. [3, 4, 5]. Diesbezügliche Werte für die LIP-Stähle sind nicht veröffentlicht.
Das Kaltumformvermögen als auch das Energieabsorptionsvermögens wird in den austenitischen TRIP- und TRIP/TWIP-Stählen durch die Beeinflussung des austenitischen Gefüges als Folge einer mechanischen Beanspruchung im Prozess einer Kaltumformung erreicht. Dadurch werden die Mikrostruktur des Austenits, vor allem bezüglich der Bildung von Stapelfehlem und Zwillingen, und die Bildung von verformungsinduziertem ε- und α'-Martensit beeinflusst. Über die Stapelfehlerenergie des Austenits, die von der chemischen Zusammensetzung des Austenits abhängig ist, können die unterschiedlichen Mechanismen prinzipiell beeinflusst werden [5, 8]. Niob fördert darüber hinaus die Entstehung von Feinkorn und hat damit einen weiteren positiven Einfluss auf die mechanischen Eigenschaften. Darüber hinaus bewirkt Niob eine Abbindung des Kohlenstoffs und verursacht damit eine Verbesserung der Korrosionseigenschaften.
Siliziumgehalte von mehr als 1 % werden bisher austenitischen Stählen zulegiert, um eine Hitzebeständigkeit bzw. eine Verbesserung der Zunderbeständigkeit in Verbindung mit hohen Chromgehalten zu erreichen. Silizium und Aluminium weisen eine hohe Sauerstoffaktivität auf, die Auswirkungen auf die Vergießbarkeit und den Reinheitsgrad haben kann. Aus diesem Grund sind die Gehalte dieser Elemente in der Regel minimiert, insofern sie nicht zur Verbesserung von speziellen Eigenschaften zulegiert werden.
Silizium und Aluminium sind ferritstabilisierende Elemente. Das heißt, die Gehalte dieser Elemente sind in austenitischen Stählen begrenzt, um die Bildung von Ferrit zu vermeiden. Mit Ausnahme der hochmanganhaltigen TWIP-Stähle ist bisher Aluminium als Legierungselement in austenitischen Stählen nicht gebräuchlich. Der Einfluss von Aluminium auf das Chrom- und/oder Nickeläquivalent ist im Gegensatz zu anderen Begleit- und Legierungselementen bisher nicht erfasst. Ein Chromgehalt größer ca. 12 % verursacht die Bildung einer Passivschicht, durch die die Korrosionsbeständigkeit der nichtrostenden Stähle gegeben ist. Austenitische Stähle mit Chromgehalten von 12 % sind in der Regel witterungsbeständig und korrosionsträge. Der Widerstand gegenüber Abrostung ist in diesen Stählen erhöht. Hochmanganhaltige austenitische TWIP-Stähle sind hingegen nicht mit Chrom legiert. Sie gehören somit nicht zu den nichtrostenden, korrosionsträgen oder witterungsbeständigen Stählen. Mangan wird in den gebräuchlichen austenitischen Stählen als Austenitbildner und als Substituitionselement für Nickel verwendet. Mangan wird deshalb hauptsächlich aus Kostengründen in austenitischen Stählen zulegiert.
Eine Voraussetzung für die Entstehung von verformungsinduziertem ε-Martensit ist, dass das Gefüge aus Austenit besteht. Um den TRIP-Effekt zu erreichen, ist für die chemische Zusammensetzung der Stähle ein entsprechendes Chrom- und Nickeläquivalent erforderlich. Das heißt, die chemische Zusammensetzung der Stähle muss bezüglich der ferritstabilisierenden und austenitstabilisierenden Elemente aufeinander abgestimmt sein.
Die nichtrostenden mangan- und stickstofflegierten austenitische Stähle 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) und 1.4373 (X12 CrMnNiN 17 9 5) und die Stähle AISI 201 und 202, die stickstofflegiert sein können oder auch keinen Stickstoff aufweisen, liegen bezüglich ihrer Cr-, Ni- und Mn-Gehalte in einzelnen Teilbereichen, der durch das Patent abgedeckt wird. Diese Stähle sind im Stahlschlüssel [7] ausgewiesen. Sie weisen aber keinen Aluminiumgehalt auf.
Zitierte Literatur
[1] Schröder, T.: Technische Rundschau 1/2 (2005), S. 48-52 [2] DIN 17 440 und DIN 17 441 [3] Frommeyer, G.: Offenlegungsschrift, DE 197 27 759 A1
[4] Frommeyer, G.: Patentschrift, DE 197 27 759 C2
[5] Grässel, 0., L. Krüger, G. Frommeyer und L.W. Meyer: Intern. J. Plasticity
16 (2000), S. 1391-1409 [6] Bode, R. u. a.: stahl und eisen 8(2004), S. 19 bis 26 [7] Stahlschlüssel 2004, Verlag Stahlschlüssel Wegst GmbH [8] Martinez, L.G. u. a.: Steel research 63 (1992) 5, S. 221-223
Der in den Hauptansprüchen angegebenen Erfindung liegt damit das Problem zugrunde, weitere austenitische Leichtbaustähle mit guter Kaltumformbarkeit, einem Kennwert für die Kaltumformbarkeit größer 30 000 MPa %, und mit Zugfestigkeiten zwischen 600 bis 800 MPa und Bruchdehnungen über 50 % bereitzustellen.
Diese Aufgabe wird durch die Erfindung dadurch gelöst, dass der erfindungsgemäße austenitische Stahl mit Silizium, Aluminium und Chrom legiert ist und Mangan enthält. Bei diesem Stahl wird durch legierungstechnische Maßnahmen, besonders durch die Zugabe von Silizium in den Grenzen größer 1 ,0 bis 4,0 %, Aluminium in den Grenzen von 0,05 bis 4 % und gleichzeitiger Absenkung des Chromgehaltes auf Werte unter 18 % eine Verbesserung der Kaltumformbarkeit erreicht.
Es konnte gefunden werden, dass Aluminium sowohl das Chrom- als auch das Nickeläquivalent beeinflusst. Das ist im Wirkfaktor für Aluminium zur Berechnung des Chromäquivalents entsprechend dem Patentanspruch 1 berücksichtigt. Darüber hinaus wird eine Wirkung auf das Nickeläquivalent mit einem Koeffizienten ebenfalls im Patentanspruch 1 berücksichtigt. Durch Aluminium wird das Nickeläquivalent folglich erniedrigt. Die Verbesserung der mechanischen Eigenschaften und eine Anhebung des Kaltumform- und des Energieabsorptionsvermögens wird folglich durch Aluminium bevorzugt oberhalb Raumtemperatur erreicht. Das heißt, bei Temperaturen, bei denen die meisten technischen Kaltumformungen ablaufen.
Unter diesen Voraussetzungen lässt sich die erforderliche chemische Zusammensetzung des erfindungsgemäßen Stahles, wie angegeben, bestimmen. Bezüglich ihrer Cr-, Ni- und Mn-Gehalte liegen die bekannten nichtrostenden mangan- und stickstofflegierten austenitische Stähle 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) und 1.4373 (X12 CrMnNiN 17 9 5) und die Stähle AISI 201 und 202, die stickstofflegiert sein können oder auch keinen Stickstoff aufweisen, in Teilbereichen des Anspruchs. Diese Stähle sind im Stahlschlüssel [7] ausgewiesen. Sie enthalten aber kein Aluminium. Der erfindungsgemäße Stahl unterscheidet sich aber von diesen Stählen darüber hinaus durch höhere Siliziumgehalte und darüber hinaus auch teilweise in seiner Anwendung. Besonders die mischkristallverfestigende Wirkung des Stickstoffs in den genannten Stählen wird genutzt, um, anders als bei gut kaltumformbaren Stählen, relativ hohe 0,2 %- Dehngrenzen zu erreichen. Die stickstofflegierten Stähle werden dann bevorzugt als Federstähle verwendet. Die nicht stickstofflegierten Stähle des Typs 201 und 202 zeichnen sich gegenüber stickstofflegierten Stählen des gleichen Typs durch niedrigere 0,2 %-Dehngrenzen aus. Sie weisen deshalb auch ein etwas höheres Kaltumformvermögen aus, so dass Teile aus diesen Stählen auch als Haushaltsgegenstände, im Apparatebau, der Bauindustrie u. ä. Verwendung finden.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass mit den erfindungsgemäßen Leichtbaustählen eine Verbesserung der mechanischen Eigenschaften und auch eine Anhebung des Kaltumform- und des Energieabsorptionsvermögen erreicht wird. Es gelingt damit, kostengünstige Stähle, wie z. B. austenitische CrNiMn-Stähle mit abgesenkten Nickelgehalten herzustellen. Diese Stähle weisen bessere oder vergleichbare Eigenschaften auf, wie z. B. handelsübliche nichtrostende CrNi-Stähle vom Typ 18/8 oder 18/10. Darüber hinaus gelingt es, witterungs- bzw. korrosionsträge Leichtbaustähle mit einem hohen Festigkeits- und Zähigkeitsniveau herzustellen. Diese erfindungsgemäßen Stähle lassen sich analog zu den chromfreien, hochmanganhaltigen TWIP-Stählen sehr gut kaltumformen.
Die Erfindung soll an den folgenden bevorzugten Beispielen nachfolgend erläutert werden.
Die erfindungsgemäßen austenitischen Stähle enthalten zwei unterschiedliche Stahltypen. Der erste Stahltyp umfasst nichtrostende austenitische Stähle mit Chromgehalten in den Grenzen von ca. 12,0 bis 18,0 %. Der zweite Stahltyp umfasst austenitische Stähle mit Chromgehalten von größer 2,0 und kleiner 12,0 %. Stähle dieses Typs sind nicht nichtrostend, weisen aber aufgrund ihres Chrom-, Nickel- und Siliziumgehaltes einen erhöhten Widerstand gegenüber Abrostung auf, so dass sie sich diesbezüglich von den bisherigen austenitischen TRIP/TWIP-Stählen, trotz eines ähnlichen Eigenschaftspotenzials unterscheiden. Eine Vielzahl dieser Stähle kann deshalb als witterungsbeständig bzw. korrosionsträge angesehen werden. Besonders solche Stähle mit Chromgehalten von 10 bis 12 % weisen eine ausgeprägte Korrosionsträgheit auf.
Eine bevorzugte Zusammensetzung besteht nach Anspruch 2 darin, dass der
Nickelgehalt kleiner 10 % - aber auch 0%, der Niobgehalt kleiner 1 ,2 % - aber auch 0%, der Kohlenstoffgehalt zwischen 0,01% und 0,15 %, der Stickstoffgehalt kleiner 0,1 % - aber auch 0%, der Kupfergehalt kleiner 4 % - aber auch 0%, der Kobaltgehalt kleiner 1 % - aber auch 0%, der Molybdängehalt kleiner 4 % - aber auch 0%, der Wolframgehalt kleiner 3 % - aber auch 0%, der Titangehalt kleiner 1 % - aber auch 0% und der Vanadingehalt kleiner 0,15 % - aber auch 0% ist.
Bevorzugt weist ein solcher austenitischer Stahl mit ε-TRIP-Effekt, einer guten Kaltumformbarkeit und einem erhöhten Abrostungswiderstand nach Anspruch 3 einen Kohlenstoffgehalt von 0,04 %, einen Chromgehalt von 13 %, einen Siliziumgehalt von 1,5 %, einen Niobgehalt von 0,15 %, einen Nickelgehalt von 7,9 %, einen Mangangehalt von 8,1 %, einen Stickstoffgehalt von 0,02 % und einen Aluminiumgehalt von 0,11 % auf, Rest im wesentlichen Eisen. Das Gefüge des Stahles besteht aus metastabilem Austenit. Der Stahl zeigt einen ausgeprägten ε- TRIP-Effekt. Es wird ein relativ hohes Verfestigungsvermögen erreicht. Die 0,2 %- Dehngrenze liegt bei 210 MPa und die Zugfestigkeit bei 645 MPa. Der Stahl erreicht eine maximale Dehnung von 65 %. Das heißt, die Maßzahl aus dem Produkt von Bruchdehnung und Zugfestigkeit ist durch einen Wert von 38 055 MPa % festgelegt. Der Wert für die Energieabsorption liegt bei ca. 0,5 J/mm3. Der Stahl bildet eine eisen-, chrom- und siliziumhaltige Oxidationsschicht, die unter atmosphärischen Bedingungen eine Witterungsbeständigkeit bzw. eine Korrosionsträgheit verursacht.
Besonders bevorzugt weist ein nichtrostender, austenitischer Stahl mit ε-TRIP-Effekt und guter Kaltumformbarkeit nach Anspruch 4 einen Kohlenstoffgehalt von 0,03 %, einen Chromgehalt von 15,82 %, einen Siliziumgehalt von 1,22 %, einen Nickelgehalt von 7,50 %, einen Mangangehalt von 5,80 % und einen Aluminiumgehalt von 0,11 % auf, Rest im wesentlichen Eisen. Das Gefüge des Stahles besteht aus metastabilem Austenit. Der Stahl zeigt ein austenitisches Grundgefüge mit einem ausgeprägten TRIP-Effekt bei Raumtemperatur. Es wird ein relativ niedriges Streckgrenzenverhältnis beobachtet, das eine Folge eines hohen Verfestigungsvermögens ist. Die 0,2 %-Dehngrenze liegt bei ca. 197 MPa und die Zugfestigkeit bei 620 MPa. Der Stahl erreicht eine maximale Dehnung von 64 %. Das heißt, die Maßzahl aus dem Produkt von Bruchdehnung und Zugfestigkeit, das die Kaltumformbarkeit kennzeichnet, ist durch einen Wert von
39 820 MPa % festgelegt. Der Wert für die Energieabsorption liegt bei ca. 0,5 J/mm3.

Claims

PATENTANSPRÜCHE
1. Austeniti scher Leichtbaustahl mit guter Kaltumformbarkeit und einem Kennwert für die Kaltumformbarkeit größer 30 000 MPa %, mit Zugfestigkeiten zwischen
600 bis 800 MPa und Bruchdehnungen über 50 %, dadurch gekennzeichnet, dass der Stahl einen Chromgehalt von größer 2,0 % und kleiner 18 % und einen Siliziumgehalt von größer 1 ,0 und kleiner 4 %, einen Mangangehalt von größer 2 und kleiner 20 % und einen Aluminiumgehalt größer 0,05 und kleiner 4 % aufweist und in einem Legierungsbereich liegt, der durch die Koordinaten von vier Punkten
(Cräqu=14; NiäqU =14,5), (Cräqu =14; Niäqu =17,5), (Cräqu =20; Niäqu =10) und (Cräqu =20; Niäqu =13) festgelegt ist, wobei das Chrom- und Nickeläquivalent über die Beziehungen 1 und 2
Cräqu = % Cr + % Mo + 1 ,5 % Si + 0,5 % W + 0,9 % Nb + 4 % AI (1 )
+ 4 % Ti + 1 ,5 % V,
Niäqu = % Ni + 30 % C + 18 % N + 0,5 % Mn + 0,3 % Co + 0,2 % Cu - 0,2 % AI (2)
aus der chemischen Zusammensetzung des Stahles berechnet werden, wobei die Angaben in Masseprozent einzusetzen sind und wobei der Rest im Wesentlichen aus Eisen und anderen Stahlbegleitelementen (O, P, S) besteht.
2. Leichtbaustahl nach Anspruch 1, dadurch gekennzeichnet, dass
- der Nickelgehalt von 0 bis 10 %,
- der Niobgehalt von 0 bis 1 ,2 %, - der Kohlenstoffgehalt von 0,01 bis 0,15 %,
- der Stickstoffgehalt von 0 bis 0,1 %,
- der Kupfergehalt von 0 bis 4 %,
- der Kobaltgehalt von 0 bis 1 %, - der Molybdängehalt von 0 bis 4 %,
- der Wolframgehalt von 0 bis 3 %,
- der Titangehalt von 0 bis 1 % und
- der Vanadingehalt von 0 bis 0,15 % ist.
3. Leichtbaustahl nach Anspruch 1 , dadurch gekennzeichnet, dass
- der Kohlenstoffgehalt 0,04 %,
- der Chromgehalt 13 %,
- der Siliziumgehalt 1 ,5 %,
- der Niobgehalt 0,15 % - der Nickelgehalt 7,9 %,
- der Mangangehalt 8,1 %,
- der Aluminiumgehalt 0,11 % und
- der Stickstoffgehalt 0,02 % ist.
4. Leichtbaustahl nach Anspruch 1 , dadurch gekennzeichnet, dass
- der Kohlenstoffgehalt 0,03 %,
- der Chromgehalt 15,82 %,
- der Siliziumgehalt 1 ,22 %,
- der Nickelgehalt 7,5 %, - der Mangangehalt 5,8 % und
- der Aluminiumgehalt 0, 11 % ist.
5. Verwendung des Leichtbaustahles nach Anspruch 1 , 2, 3 oder 4 als Werkstoff für warmgewalzte Bleche und Bänder.
6. Verwendung des Leichtbaustahles nach Anspruch 1 , 2, 3 oder 4 als Werkstoff für kaltgewalzte Bleche und Bänder.
7. Verwendung des Leichtbaustahles nach Anspruch 1 , 2, 3 oder 4 als Werkstoff für crashbeanspruchte Bauteile und versteifende Strukturkomponenten.
8. Verwendung des Leichtbaustahles nach Anspruch 1 , 2, 3 oder 4 für Nichtflacherzeugnisse und Befestigungselemente.
9. Verwendung des Leichtbaustahles nach Anspruch 6, 7 oder 8, dadurch gekennzeichnet, dass der Werkstoff eine Wärmebehandlung erfährt.
10. Verwendung des Leichtbaustahles nach Anspruch 1 , 2 oder 3 als Werkstoff für witterungsbeständige und korrosionsträge Teile.
11. Verwendung des Leichtbaustahles nach Anspruch 1 , 2, oder 4 als Werkstoff für nichtrostende Teile.
PCT/DE2006/000797 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung WO2006125412A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008512683A JP2008542528A (ja) 2005-05-23 2006-05-08 オーステナイト系軽量鋼およびその使用
EP06722850A EP1891248A1 (de) 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung
US11/915,338 US20080199345A1 (en) 2005-05-23 2006-05-08 Austenitic Lightweight Steel and Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005024029.1 2005-05-23
DE102005024029A DE102005024029B3 (de) 2005-05-23 2005-05-23 Austenitischer Leichtbaustahl und seine Verwendung

Publications (1)

Publication Number Publication Date
WO2006125412A1 true WO2006125412A1 (de) 2006-11-30

Family

ID=36649769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000797 WO2006125412A1 (de) 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung

Country Status (6)

Country Link
US (1) US20080199345A1 (de)
EP (1) EP1891248A1 (de)
JP (1) JP2008542528A (de)
KR (1) KR20080034839A (de)
DE (1) DE102005024029B3 (de)
WO (1) WO2006125412A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009722A1 (de) * 2006-07-20 2008-01-24 Actech Gmbh Nichtrostender austenitischer stahlformguss, verfahren zu dessen herstellung, und seine verwendung
EP2350332A1 (de) * 2008-11-05 2011-08-03 Honda Motor Co., Ltd. Hochfestes stahlblech und herstellungsverfahren dafür
KR101903174B1 (ko) 2016-12-13 2018-10-01 주식회사 포스코 강도 및 연성이 우수한 저합금 강판
KR101952818B1 (ko) * 2017-09-25 2019-02-28 주식회사포스코 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044160A1 (de) * 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
US8182963B2 (en) * 2009-07-10 2012-05-22 GM Global Technology Operations LLC Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates
US8888838B2 (en) 2009-12-31 2014-11-18 W. L. Gore & Associates, Inc. Endoprosthesis containing multi-phase ferrous steel
DE102010026808B4 (de) * 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
DE102011121679C5 (de) * 2011-12-13 2019-02-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Bauteilen aus Leichtbaustahl
ES2791887T3 (es) 2016-03-29 2020-11-06 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Acero con densidad reducida y procedimiento para la fabricación de un producto plano de acero o un producto alargado de acero a partir de un acero de este tipo
CN107475618B (zh) * 2017-07-11 2019-02-26 西南交通大学 一种高强韧低碳含铝中锰形变诱发塑性钢及制备方法
DE102020100640A1 (de) * 2020-01-14 2021-07-15 Stahlzentrum Freiberg e.V. Verfahren zur Verbesserung der Korrosionsbeständigkeit von Befestigungs- und/oder Bewehrungsbauteilen aus hochlegierten Stählen und Befestigungs- und/oder Bewehrungsbauteile aus hochlegierten Stählen

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419736A (en) 1973-04-21 1975-12-31 Nisshin Steel Co Ltd Austenitic stainless steel
EP0031800A1 (de) * 1979-12-28 1981-07-08 Fagersta AB Ausscheidungsgehärteter, austenitischer, rostfreier Stahl
DE19727759A1 (de) 1997-07-01 1999-01-07 Max Planck Inst Eisenforschung Leichtbaustahl und seine Verwendung
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
JP2000256797A (ja) * 1999-03-04 2000-09-19 Nisshin Steel Co Ltd 高温酸化特性を改善した高Mnオーステナイト系ステンレス鋼材
WO2003056053A1 (en) * 2001-12-11 2003-07-10 Sandvik Ab Precipitation hardenable austenitic steel
EP1352982A2 (de) * 2002-04-10 2003-10-15 Thyssenkrupp Nirosta GmbH Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrissfreien Formteilen und Formteil
EP1449933A1 (de) * 1999-10-04 2004-08-25 Hitachi Metals, Ltd. Treibriemen
WO2005061152A1 (de) * 2003-12-23 2005-07-07 Salzgitter Flachstahl Gmbh Verfahren zum erzeugen von warmbändern aus leichtbaustahl

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl
JP4606113B2 (ja) * 2004-10-15 2011-01-05 日新製鋼株式会社 比例限界応力の高いオーステナイト系ステンレス鋼材および製造法
JP4494245B2 (ja) * 2005-02-14 2010-06-30 日新製鋼株式会社 耐候性に優れた低Niオーステナイト系ステンレス鋼材
JP4823534B2 (ja) * 2005-02-14 2011-11-24 日新製鋼株式会社 耐応力腐食割れ性に優れた低Niオーステナイト系ステンレス鋼材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419736A (en) 1973-04-21 1975-12-31 Nisshin Steel Co Ltd Austenitic stainless steel
EP0031800A1 (de) * 1979-12-28 1981-07-08 Fagersta AB Ausscheidungsgehärteter, austenitischer, rostfreier Stahl
EP0031800B1 (de) 1979-12-28 1983-12-14 Fagersta AB Ausscheidungsgehärteter, austenitischer, rostfreier Stahl
DE19727759A1 (de) 1997-07-01 1999-01-07 Max Planck Inst Eisenforschung Leichtbaustahl und seine Verwendung
DE19727759C2 (de) 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
JP2000256797A (ja) * 1999-03-04 2000-09-19 Nisshin Steel Co Ltd 高温酸化特性を改善した高Mnオーステナイト系ステンレス鋼材
EP1449933A1 (de) * 1999-10-04 2004-08-25 Hitachi Metals, Ltd. Treibriemen
WO2003056053A1 (en) * 2001-12-11 2003-07-10 Sandvik Ab Precipitation hardenable austenitic steel
EP1352982A2 (de) * 2002-04-10 2003-10-15 Thyssenkrupp Nirosta GmbH Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrissfreien Formteilen und Formteil
WO2005061152A1 (de) * 2003-12-23 2005-07-07 Salzgitter Flachstahl Gmbh Verfahren zum erzeugen von warmbändern aus leichtbaustahl

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BODE, R. U. A., STAHL UND EISEN, vol. 8, 2004, pages 19 - 26
GRÄSSEL, 0., L. KRÜGER, G. FROMMEYER, L.W. MEYER, INTERN. J. PLASTICITY, vol. 16, 2000, pages 1391 - 1409
MARTINEZ, L.G. U. A., STEEL RESEARCH, vol. 5, 1992, pages 221 - 223
SCHRÖDER, T., TECHNISCHE RUNDSCHAU, vol. 1-2, 2005, pages 48 - 52
STAHLSCHLÜSSEL, VERLAG STAHLSCHLÜSSEL WEGST GMBH, 2004

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008009722A1 (de) * 2006-07-20 2008-01-24 Actech Gmbh Nichtrostender austenitischer stahlformguss, verfahren zu dessen herstellung, und seine verwendung
EP2350332A1 (de) * 2008-11-05 2011-08-03 Honda Motor Co., Ltd. Hochfestes stahlblech und herstellungsverfahren dafür
EP2350332A4 (de) * 2008-11-05 2012-05-30 Honda Motor Co Ltd Hochfestes stahlblech und herstellungsverfahren dafür
US9267193B2 (en) 2008-11-05 2016-02-23 Honda Motor Co., Ltd High-strength steel sheet and the method for production therefor
KR101903174B1 (ko) 2016-12-13 2018-10-01 주식회사 포스코 강도 및 연성이 우수한 저합금 강판
KR101952818B1 (ko) * 2017-09-25 2019-02-28 주식회사포스코 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법

Also Published As

Publication number Publication date
KR20080034839A (ko) 2008-04-22
DE102005024029B3 (de) 2007-01-04
EP1891248A1 (de) 2008-02-27
JP2008542528A (ja) 2008-11-27
US20080199345A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
DE102005024029B3 (de) Austenitischer Leichtbaustahl und seine Verwendung
DE102005030413C5 (de) Hochfester austenitisch-martensitischer Leichtbaustahl und seine Verwendung
DE69604341T3 (de) Martensitischer. rostfreier stahl mit guter beständigkeit gegen lochfrasskorrosion und mit hoher härte
DE102006033973A1 (de) Nichtrostender austenitischer Stahlguss und seine Verwendung
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE3117539C2 (de)
DE4212966C2 (de) Verwendung eines martensitischen Chrom-Stahls
WO2009090231A1 (de) Bauteile aus höher kohlenstoffhaltigem austenitischem stahlformguss, verfahren zu deren herstellung und deren verwendung
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
EP0914485B1 (de) Austenitische nickel-chrom-stahllegierung
DE69527639T2 (de) Ferritischer warmfester stahl mit ausgezeichneter festigkeit bei hohen temperaturen und verfahren zu dessen herstellung
EP2976441B1 (de) Eisenbasierte formgedächtnislegierung
DE69323256T2 (de) Stahlblech für Pressverarbeitung, das ausgezeichnete Steifigkeit und ausreichende Pressverarbeitbarkeit aufweist
DE2752082C2 (de) Austenitischer nichtrostender Stahl
DE3604789C1 (de) Verguetungsstahl
DE68916235T2 (de) Legierung auf Zirkon-Basis mit erhöhter Beständigkeit gegen Korrosion durch Salpetersäure und mit guter Kriechbeständigkeit.
AT395176B (de) Korrosionsbestaendige ni-cr-si-cu-legierungen
DE10215598A1 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
DE202010018445U1 (de) Scherenmesser einer Schrottschere
DE19628350B4 (de) Verwendung einer rostfreien ferritisch-austenitischen Stahllegierung
WO2017167778A1 (de) Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
DE68906708T2 (de) Austenitisch-ferritischer rostfreier stahl.
DE1533252B1 (de) Niedriglegierter stahl hoher kerbzaehigkeit fuer geschweisste konstruktionen, die dem korrodierenden einfluss von schwefelwasserstoff ausgesetzt sind
EP2809818B1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
EP1382704B1 (de) Kaltarbeitsstahl mit hohem Verschleisswiderstand

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4489/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008512683

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11915338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006722850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077029541

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006722850

Country of ref document: EP