WO2006120772A1 - 抗菌性繊維およびその製造方法 - Google Patents

抗菌性繊維およびその製造方法 Download PDF

Info

Publication number
WO2006120772A1
WO2006120772A1 PCT/JP2005/021085 JP2005021085W WO2006120772A1 WO 2006120772 A1 WO2006120772 A1 WO 2006120772A1 JP 2005021085 W JP2005021085 W JP 2005021085W WO 2006120772 A1 WO2006120772 A1 WO 2006120772A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
glass
antibacterial glass
inorganic particles
fiber
Prior art date
Application number
PCT/JP2005/021085
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Kamiya
Kenichi Tanaka
Shinobu Kanamaru
Original Assignee
Koa Glass Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Glass Co., Ltd filed Critical Koa Glass Co., Ltd
Priority to CN2005800493421A priority Critical patent/CN101151405B/zh
Priority to US11/887,261 priority patent/US20090060967A1/en
Priority to JP2007526811A priority patent/JP4086893B2/ja
Publication of WO2006120772A1 publication Critical patent/WO2006120772A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Definitions

  • the present invention relates to an antibacterial fiber and a method for producing the same, and more specifically, even if an inorganic particle as a dispersant for antibacterial glass is added and the fiber has a diameter of about 10 to 30 / ⁇ ⁇ .
  • the present invention also relates to an antibacterial fiber capable of obtaining excellent surface smoothness, transparency, and the like, and a method for producing the same. Background art
  • a glass water treatment agent capable of eluting Ag ions is disclosed in Japanese Patent Laid-Open No. 62-210098.
  • This glass water treatment agent contains 0.2 to 1.5 parts by weight of monovalent Agion in terms of acid / silver salt per 100 parts by weight of glass, and 20 to 30% of BO as a glass component.
  • a borosilicate antibacterial glass strength containing 70 mol% is also obtained.
  • Examples 2 and 3 of the patent publication each contain 20-30 B 2 O.
  • JP-A-1-313531 discloses a synthetic resin molded article containing antibacterial glass in a resin as an antibacterial resin composition.
  • the synthetic resin molding is composed of one or more network-forming oxides of SiO, B 2 O, and P 2 O, Na 0, K 2 O,
  • Antibacterial property containing 0.1 to 20 parts by weight of AgO as monovalent Ag in 100 parts by weight of glass solids that can be used together with one or more types of network modified acid oxides of CaO and ZnO Glass
  • Patent Document 2 an antibacterial glass containing 2 parts by weight of Ag 2 O is disclosed (for example, Patent Document 2).
  • the applicant of the present invention is excellent in transparency and dispersibility with less yellowing of the soluble glass.
  • an antibacterial glass having an average particle size of 0.5 to 300 m which is an easy-to-manufacture polyhedral antibacterial glass, has already been proposed (for example, see Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 62-210098 (Claims)
  • Patent Document 2 JP-A-1 313531 (Claims)
  • Patent Document 3 WO02Z28792 Publication (Claims)
  • the antibacterial glass disclosed in Patent Document 1 has B 2 O as the glass composition.
  • Antibacterial glass becomes cloudy or re-aggregates, it is poor in transparency, and it is easy to yellow. There was a problem. There was also a problem of poor dispersibility when antibacterial glass was mixed with rosin.
  • antibacterial glass with poor transparency and dispersibility when used in the production of antibacterial fibers with a diameter of about 10-30 / ⁇ ⁇ , they aggregate in the fibers and are substantially spun. There was a problem that could not be done.
  • the antibacterial glass disclosed in Patent Document 2 has ⁇ ⁇ as a main component as a glass composition.
  • the compounding amount of the network-forming oxide and the network-modifying oxide is not optimized, and the antibacterial property is insufficiently expressed, or due to its glass composition, There was a problem of excessively long intervals.
  • the antibacterial glass disclosed in Patent Document 3 exhibits excellent antibacterial properties and dispersibility when used for general purposes, but has a diameter of about 10 to 30 / ⁇ ⁇ , for example.
  • the soluble glass When used in antibacterial fibers, if the spinning conditions vary, the soluble glass will re-agglomerate and be exposed on the surface, or the surface smoothness and transparency of the antibacterial fibers may be reduced. It was seen.
  • antibacterial fibers with a diameter of about 10 to 30 m
  • the dispersibility of the antibacterial glass in the transparent resin was poor, and as it was, it aggregated in the fiber and could not be stably spun.
  • a manufacturing method that can efficiently provide antibacterial glass having a small average particle size and a narrow particle size distribution that can be used for antibacterial fibers having a diameter of about 10 to 30 m has been substantially absent. .
  • the present inventor has added a predetermined aggregated inorganic particle as an antibacterial glass dispersant (dispersion aid) and controlled other predetermined conditions within a predetermined range, thereby reducing the diameter.
  • the present invention has been completed by finding that even an ultrafine fiber of about 10 to 30 m can be uniformly dispersed in the antibacterial fiber, and the antibacterial fiber can be stably produced.
  • the present invention relates to an antibacterial fiber using an antibacterial glass excellent in dispersibility in antibacterial fiber, production stability, and the like, and a method for producing the antibacterial fiber, which has excellent antibacterial property, surface smoothness or transparency. It is an object of the present invention to provide an antibacterial fiber capable of obtaining properties and the like, and a method for producing the same.
  • the diameter of the antibacterial fiber ranges from 10 to 30 m.
  • the value within the range, the average particle size of the antibacterial glass is set to a value within the range of 0.1 to 10 / ⁇ ⁇ , and the addition amount of the antibacterial glass is 0.1 to LO with respect to the total amount: LO
  • the value is within the range of% by weight, the average particle size of the inorganic particles is within the range of 1 to 15 ⁇ m, and the amount of inorganic particles added is 100 parts by weight of the antibacterial glass. 0.1 to 50 parts by weight
  • a dispersant for the antibacterial glass predetermined inorganic particles other than the antibacterial glass are added, and the dispersibility and the average particle diameter are controlled within a predetermined range by controlling the addition amount and the average particle diameter of the antibacterial glass.
  • Antibacterial glass excellent in transparency and the like can be stably obtained. Therefore, even when used for ultrafine antibacterial fibers with a diameter of about 10 to 30 / ⁇ ⁇ , they are sufficiently dispersed in the fibers to obtain excellent spinnability and excellent antibacterial properties.
  • Antibacterial fibers having surface properties, surface smoothness, transparency and the like can be stably obtained.
  • the average particle size means the average particle size of the secondary particles, and when the inorganic particles are basically present alone, The average particle size means the average particle size of primary particles.
  • the inorganic particles are preferably aggregated silica particles.
  • silica particles By using such agglomerated silica particles, it is possible to obtain an antibacterial glass excellent in dispersibility and transparency at a low cost and in a stable manner, and as a result, excellent spinnability can be obtained. Antibacterial fibers having surface smoothness and transparency can be obtained inexpensively and stably. In addition, silica particles are rich in hydrophilicity. By adhering to the periphery of the antibacterial glass, not only the dissolution rate of the antibacterial glass becomes uniform, but also the coloring property as the antibacterial fiber is high. It will be excellent.
  • volume resistivity of the inorganic particles it is preferable to volume resistivity of the inorganic particles to a value within the range of 1 X 1 0 5 ⁇ 1 X 10 9 ⁇ 'cm.
  • the visible light transmittance of the antibacterial fiber is 90% or more.
  • the antibacterial glass used in the present invention is excellent in transparency and dispersibility, and has an advantage that the visible light transmittance in the antibacterial fiber can be easily controlled to a value within a predetermined range.
  • the specific surface area of the antibacterial glass is set to 10, 0.
  • a value in the range of 00 to 300, OOOcm 2 / cm 3 is preferable.
  • antibacterial fibers having more excellent dispersibility, transparency, and excellent mechanical properties.
  • the antibacterial glass has an average particle size of 50% volume particle size (D50) and a 90% volume particle size (D90) of 0.5-12. It is preferable to set the value within the range of m and the ratio represented by D90ZD50 to a value within the range of 1.1 to 2.0.
  • the periphery of the antibacterial glass is surface-treated with a silane coupling agent having a long-chain alkyl group having 5 or more carbon atoms as a hydrophobic group. It is preferable.
  • the surface of the antibacterial glass can be made water-repellent, and control of the average particle size during production is facilitated, and it is excellent for transparent resins. Dispersibility can be obtained.
  • Another aspect of the present invention provides a method for producing antibacterial fibers comprising a transparent resin, an antibacterial glass, and inorganic particles as a dispersant for the antibacterial glass.
  • antibacterial glass excellent in dispersibility and transparency can be stably produced by using predetermined inorganic particles in combination as a dispersant for antibacterial glass and controlling the average particle diameter of the antibacterial glass. Obtainable. Therefore, even when used for ultra-fine antibacterial fibers with a diameter of about 10-30 / ⁇ ⁇ , it is sufficiently dispersed in the fibers to obtain excellent spinnability, and excellent antibacterial properties and surface Antibacterial fibers having smoothness or transparency can be stably obtained.
  • the pulverizer is preferably a wet ball mill, a dry ball mill, a planetary mill, a vibration mill, or a jet mill.
  • dry ball mills, planetary mills, vibration mills, and jet mills are dry pulverizers, and therefore, the drying step after pulverization can be omitted, and antibacterial glass having an average particle size of 0.1 to 10 / ⁇ ⁇ . Can effectively prevent aggregation.
  • a pulverizer is provided with a cyclone, and the antibacterial glass to which inorganic particles are added is produced while circulating using the cyclone.
  • antibacterial glass By producing antibacterial glass using such a pulverizer, it is possible to more economically obtain antibacterial glass excellent in dispersibility, transparency, and the like, and thus more excellent surface smoothness and transparency. In addition, antibacterial fibers having excellent mechanical properties can be stably obtained.
  • FIG. 1 is a diagram provided for explaining the particle size distribution of the antibacterial glass of Example 1.
  • FIG. 2 is a diagram provided for explaining a pulverization process using a planetary mill.
  • FIG. 3 is a diagram for explaining another planetary mill.
  • FIG. 4 is a diagram provided for explaining the particle size distribution of the antibacterial glass of Comparative Example 1.
  • FIG. 5 is a diagram for explaining the particle size distribution of the antibacterial glass of Comparative Example 2.
  • an antibacterial fiber comprising a transparent resin, an antibacterial glass, and inorganic particles as a dispersant for the antibacterial glass
  • the diameter of the antibacterial fiber is within a range of 10 to 30 m.
  • the average particle diameter of the antibacterial glass is set to a value within the range of 0.1 to 10 / ⁇ ⁇ , and the addition amount of the antibacterial glass is 0.1 to LO weight% with respect to the total amount.
  • the average particle diameter of the inorganic particles is set to a value within the range of 1 to 15 ⁇ m, and the addition amount of the inorganic particles is set to 100 parts by weight of the antibacterial glass addition amount.
  • 0.1 Antibacterial fiber with a value in the range of 1 to 50 parts by weight.
  • the antibacterial glass used for the antibacterial fiber of the first embodiment the inorganic particles used in combination, the transparent resin constituting the antibacterial fiber, the mode of the antibacterial fiber, and the like will be specifically described.
  • the antibacterial glass has a polyhedron shape, that is, a plurality of corners and faces, and preferably a polyhedron having 6-20 face strength, for example.
  • the reason for this is that by making the shape of the antibacterial glass a polyhedron, unlike the antibacterial glass such as a spherical shape, light easily proceeds in a certain direction in the plane. Therefore, light scattering caused by the antibacterial glass can be effectively prevented, and therefore the transparency of the antibacterial glass can be improved.
  • the antibacterial glass into a polyhedron in this way, not only mixing and dispersion in the resin is easy, but also when the antibacterial fiber is produced using a spinning device or the like, the antibacterial glass is reduced. It is characterized by being easily oriented in a certain direction. Therefore, the antibacterial glass can be easily dispersed uniformly in the resin, and the light scattering by the antibacterial glass in the resin can be effectively prevented, and excellent transparency can be exhibited.
  • the shape of the antibacterial glass is a polyhedron
  • the inorganic particles to be used together are attached. This is because it is easy to wear and it is difficult to re-aggregate during production and use, and therefore it becomes easy to control the average particle size and variation during production of the antibacterial glass.
  • the polyhedral glass content it is not always necessary to set the polyhedral glass content to 100% by weight, and other antibacterial or non-antibacterial properties. It is also preferable to use a mixture of antibacterial spherical glass, granular glass, or deformed glass.
  • the polyhedral glass content is preferably 80% by weight or more.
  • the reason for this is that when the polyhedral glass content is less than 80% by weight, the dispersibility in the resin and the transparency may be lowered. Therefore, in order to obtain more excellent dispersibility and transparency, it is more preferable to set the polyhedral glass content to a value of 90% by weight or more, and to a value of 95% by weight or more. preferable.
  • the average particle diameter (D50) of the antibacterial glass is set to a value within the range of 0.1 to LO m.
  • the particle size when the cumulative volume reaches 50% is defined as D50 (m), and the value is defined as the average particle size within the specified range. It is something to control.
  • the average particle size (D50) is more than 10 / zm, it is difficult to mix and disperse in the resin as well, or the surface smoothness may be reduced when producing ultrafine antibacterial fibers. This is because the transparency and the mechanical strength may be significantly reduced.
  • the average particle diameter (D50) of the antibacterial glass is more preferable to set to a value in the range of 0.5 to 8 ⁇ m, and to a value in the range of 0.8 to 3 / ⁇ ⁇ . Is more preferable.
  • the average particle size (D50) of antibacterial glass and 90% volume particle size (D90) described later, or the proportion of antibacterial glass having a predetermined particle size are determined by laser particle counter and sedimentation type, respectively.
  • Particle size distribution obtained by using a particle size distribution meter of It can be calculated from the particle size distribution obtained by image processing based on an electron micrograph of fungal glass.
  • the 90% volume particle size (D90) is set to a value within the range of 0.5 to 12 m, and the ratio represented by D90ZD50 is 1 A value in the range of 1 to 2.0 is preferable.
  • the antibacterial glass having the particle size distribution illustrated in FIG. 1 has a D90 value in the range of 0.5 to 12 / ⁇ ⁇ , and a specific force represented by D90ZD50. From this value, it has been found that an excellent surface smoothness can be obtained in an antibacterial fiber, while being easily and uniformly mixed with the resin.
  • the ratio of the presence of particles having a particle size of 10 / zm or more involved in the average particle size is 10% by volume or less with respect to the total amount. I prefer that.
  • the existence ratio of the particle size involved in the average particle size of 0.1 m or less may be a value of 5% by volume or less with respect to the total amount. I like it.
  • the reason for this is that if the content of the antibacterial glass having an excessively small particle size is increased, reaggregation is likely to occur.
  • the content of the antibacterial glass having an excessively small particle size is increased, reaggregation is likely to occur.
  • around the antibacterial glass that is the core By making the abundance ratio of the antibacterial glass which is easily re-aggregated to a predetermined value or less, the dispersibility between the desired antibacterial glass and the resin is improved, and it is excellent without causing clogging of the molding apparatus. This is because the surface smoothness can be obtained.
  • the proportion of particles having a particle size of 10 m or more and the proportion of particles having a particle size of 0.1 ⁇ m or less are values of 1% by volume or less, respectively. Then, it has been found that there is little reaggregation when mixing with the transparent resin.
  • the specific surface area of the antibacterial glass is preferably set to a value in the range of 10,000 to 300, OOOcm 2 / cm 3 .
  • a specific surface area of the antibacterial glass, 000 ⁇ 200, OOOcm 2 / cm 3 being more preferred instrument 18 to a value within the range from 000 to 150, the value in the range of OOOcm 2 / cm 3 More preferably.
  • the specific surface area (cm cm 3 ) of the antibacterial glass can be obtained from the particle size distribution measurement results. Assuming that the antibacterial glass is spherical, the specific surface area (cm The surface area (cm 2 ) of 3 ) can be calculated.
  • the glass composition of antibacterial glass includes Ag 0, ZnO, CaO, B 2 O and P 2 O,
  • the content of AgO is in the range of 0.2 to 5% by weight.
  • Ag 2 O is an essential component as an antibacterial ion release material in glass composition 1
  • the content of Ag 2 O is preferably set to a value in the range of 0.2 to 5% by weight.
  • the reason is that when the content of AgO is less than 0.2% by weight, the antibacterial property of the antibacterial glass is reduced.
  • PO is an essential component in the glass composition 1, and is basically a network-forming acid salt.
  • the present invention is also involved in the function of improving the transparency of antibacterial glass and the uniform release of Ag ions.
  • the PO content is preferably in the range of 30 to 80% by weight. The reason is
  • the uniform release of Ag ions and the mechanical strength may be poor.
  • the PO content exceeds 80% by weight, the antibacterial glass tends to yellow.
  • ZnO is an essential component in the glass composition 1 and functions as a network-modified acid oxide in antibacterial glass, and also has a function of preventing yellowing and a function of improving antibacterial properties. Is also fulfilled.
  • the content of ZnO is preferably set to a value in the range of 2 to 60% by weight with respect to the total amount.
  • the reason for this is that when the content of strong ZnO is less than 2% by weight, the yellowing prevention effect or antibacterial improvement effect may not be manifested. If the amount exceeds 60% by weight, the transparency of the antibacterial glass may be deteriorated or the mechanical strength may be poor.
  • the weight ratio represented by ZnOZCaO is preferably set to a value within the range of 1.1 to 15. This is because when the weight ratio is less than 1.1, the antibacterial glass In some cases, yellowing cannot be effectively prevented. On the other hand, if the weight ratio exceeds 15, the antibacterial glass may become cloudy or, conversely, yellow. .
  • CaO is an essential component in the glass composition 1 and basically functions as a network-modifying oxide, and also reduces the heating temperature when producing antibacterial glass. In addition, the yellowing prevention function can be exhibited.
  • the content of CaO is preferably set to a value within the range of 0.1 to 15% by weight with respect to the total amount. This is because if the CaO content is less than 0.1% by weight, the yellowing prevention function and the melting temperature lowering effect may not be exhibited, while the CaO content is 15% by weight. This is because the transparency of the antibacterial glass may be lowered if the content exceeds 50%.
  • B 2 O is an essential component in the glass composition 1 and is basically a network-forming oxidation.
  • the present invention is also involved in the function of improving the transparency of antibacterial glass and the uniform release of Ag ions.
  • the content of B 2 O is preferably a value within the range of 0.1 to 15% by weight.
  • the antibacterial glass may turn yellow.
  • the content of AgO is preferably set to a value in the range of 0.2 to 5% by weight with respect to the total amount.
  • CaO in the antibacterial glass, it basically functions as a network-modifying oxide, lowers the heating temperature when producing the antibacterial glass, and exhibits a yellowing prevention function. can do.
  • the CaO content is preferably set to a value in the range of 15 to 50% by weight with respect to the total amount.
  • the reason for this is that when the CaO content is less than 15% by weight, ZnO is substantially contained! /, And therefore, the yellowing prevention function and the melting temperature lowering effect are not exhibited!
  • the CaO content exceeds 50% by weight, the transparency of the antibacterial glass may be reduced.
  • the CaO content in consideration of the Ag O content.
  • the weight ratio represented by CaO / Ag 2 O is preferably a value within the range of 5-15.
  • the content can be the same as the composition 1.
  • the surface of the antibacterial glass is preferably treated with a coupling agent. This is because the treatment with the coupling agent provides better yellowing resistance, transparency and dispersibility, and even better surface smoothness regardless of the type of antibacterial fiber molding equipment. Because it can.
  • a coupling agent a silane coupling agent, an aluminum coupling agent, a titanium coupling agent, etc. can be used.
  • a silane coupling agent can be used because it has a particularly excellent adhesion to antibacterial glass. It is preferable to use an agent.
  • silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxy.
  • reethoxysilane, decyltrimethoxysilane, and decyltriethoxysilane may be mentioned.
  • silane coupling agent having a long-chain alkyl group having 5 or more carbon atoms as a hydrophobic group such as octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, and the like.
  • a surface treatment is preferred.
  • the surface of the antibacterial glass can be made water-repellent, and control of the average particle size during production is facilitated, and it is excellent for transparent resins. Dispersibility can be obtained. Therefore, it is possible to stably obtain antibacterial fibers having superior surface smoothness and transparency as well as excellent mechanical properties.
  • the amount of the coupling agent to be treated is preferably set to a value in the range of 0.01 to 30 parts by weight per 100 parts by weight of the antibacterial glass.
  • the elution rate of antibacterial ions such as antibacterial glass strength is set to a value within the range of 1 ⁇ 10 2 to 1 ⁇ 10 5 mg / Kg / 24Hr.
  • the dissolution rate of antibacterial ions with antibacterial glass strength is within the range of 1 X 10 3 to 5 X 10 4 mg / K g / 24Hr. It is more preferable to set the value within the range of 3 ⁇ 10 3 to 1 ⁇ 10 4 mg / Kg / 24Hr.
  • the elution rate of the powerful antibacterial ions can be measured according to the method described in Example 1 described later.
  • the addition amount of antibacterial glass is included in the range of 0.1 to LO weight% with respect to the total amount. It is characterized by that.
  • the antibacterial glass may have a reduced antibacterial property when the added amount of the antibacterial glass is less than 0.1% by weight, whereas the antibacterial fiber is added when the added amount of the antibacterial glass exceeds 10% by weight. This is because the mechanical strength of the fiber may decrease, it may be difficult to mix uniformly, or the transparency of the resulting antibacterial fiber may decrease.
  • the amount of antibacterial glass added should be a value within the range of 0.5 to 8% by weight relative to the total amount. More preferably, the value is in the range of 1 to 5% by weight.
  • the type of inorganic particles is not particularly limited.
  • aggregated silica particles dry silica, wet silica
  • titanium oxide zinc oxide
  • acid-aluminum acid-zirconium
  • calcium carbonate calcium carbonate
  • shirasu balloon quartz
  • quartz One kind or a combination of two or more kinds of particles, glass balloons and the like can be mentioned.
  • agglomerated silica particles dry silica, wet silica
  • colloidal silica which is an aqueous dispersion thereof are preferable because of their excellent dispersibility in antibacterial glass having a small primary average particle diameter.
  • Inorganic particles that is, since such agglomerated silica particles disperse while loosening the agglomerated state, they adhere to the periphery of the antibacterial glass and can evenly disperse the antibacterial glass even in the transparent resin. it can.
  • agglomerated silica particles having a cohesiveness degree (P) defined by the following formula (1) as a range of 100 to 1000 as inorganic particles. It can be said that it is more preferable to use particles.
  • A is an average volume particle diameter (D50) as primary particles measured when silica particles are in a slurry state and subjected to limit pulverization using a wet pulverizer
  • B is silica particles.
  • D50 average volume particle size
  • the average particle size (D50) is 1 to 15 when the inorganic particles are agglomerated. The value is in the range of m.
  • the particle size at which the cumulative volume reaches 50% is defined as D50 ( ⁇ m), and the value is defined as the average particle size within the specified range. Is controlled to the value of.
  • the reason for this is that when the average particle size (D50) of the strong inorganic particles is less than 1 ⁇ m, the dispersibility of the antibacterial glass becomes poor and light scattering tends to occur, resulting in a decrease in transparency. This is because of this.
  • the average particle size (D50) of the coverable inorganic particles exceeds 15 / zm, mixing and dispersion in the transparent resin is difficult, or when producing ultrafine antibacterial fibers. In addition, surface smoothness, transparency, and mechanical strength may be significantly reduced.
  • the average particle size (D50) of the inorganic particles it is more preferable to set the average particle size (D50) of the inorganic particles to a value in the range of 5 to 12 ⁇ m, and it is more preferable to set the value to a value in the range of 6 to LO / z m.
  • the average particle size of the inorganic particles can be measured using a laser type particle counter or a sedimentation type particle size distribution meter. Further, the average particle diameter of inorganic particles (or inorganic particles as secondary particles) can also be calculated by image processing from these electron micrographs.
  • the inorganic particles are basically aggregated, it is preferable to set the average particle size of the primary particles in a loosened state to a value within the range of 0.005 to 0.5 / zm.
  • the average particle size (D50) of the inorganic particles as the primary particles to be covered exceeds 0.5 m, the effect of improving the dispersibility of the antibacterial glass is similarly reduced, or the ultrafine antibacterial fibers This is because mixing and dispersing in transparent resin and handling are also difficult, and surface smoothness, transparency, and mechanical strength may be reduced. Therefore, the average particle size (D50) of the inorganic particles as the primary particles is set to 0.01-0. A value within the range is more preferred A value within the range of 0.02-0. 1 m is even more preferred.
  • the inorganic particles are added in an amount of 0.1 to 50 parts by weight with respect to 100 parts by weight of the antibacterial glass.
  • the dispersibility of the antibacterial glass becomes extremely poor when the amount of the inorganic particles to be added is less than 0.1 parts by weight.
  • the added amount of strong inorganic particles exceeds 50 parts by weight, the mechanical strength of the antibacterial fibers will decrease, it will be difficult to mix uniformly, or the transparency of the resulting antibacterial fibers will be This is because there is a case where the value decreases.
  • the amount of inorganic particles added is 0.5 to 30 weights per 100 parts by weight of the antibacterial glass. More preferably, the value is within the range of 1 to 10 parts by weight.
  • the volume resistivity of the inorganic particles is preferably set to a value in the range of 1 ⁇ 10 5 to 1 ⁇ 10 9 ⁇ ′cm.
  • the reason for this is that when the volume resistivity of the inorganic particles to be produced is less than 1 X 10 5 ⁇ 'cm, it becomes difficult to adjust the volume resistivity of the antibacterial fiber, and when added to the antibacterial fiber, This is because the mechanical strength may decrease, it may be difficult to mix uniformly, or the transparency of the resulting antibacterial fibers may decrease. On the other hand, if the volume resistivity of the strong inorganic particles exceeds 1 X 10 9 ⁇ 'cm, it is likely that static electricity is likely to be produced when producing antibacterial fibers, and the spinning speed may have to be significantly reduced. Because there is.
  • the volume resistivity of the inorganic particles is in the range of 5 ⁇ 10 5 to 5 ⁇ 10 8 ⁇ 'cm. It is more preferable to set the value within the range of 1 ⁇ 10 6 to 1 ⁇ 10 8 ′ cm.
  • the volume resistivity of the inorganic particles can be controlled within a predetermined range by using a surface treatment agent such as the above-described silane coupling agent, anoroleum coupling agent, and titanium coupling agent.
  • the antibacterial fiber it is preferable to add and mix the antibacterial glass into the transparent resin.
  • Preferred transparent resins include polyethylene resin, polypropylene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, S styrene resin, salt vinylidene resin, and butyl acetate resin.
  • Fatty, Polybulal Alcohol, Fluorine, Polyarylene, Acrylic, Epoxy, Chloride, Ionomer, Polyamide, Polyacetal, Silicone One type or a combination of two or more types of fats can be used.
  • those having a visible light transmittance specifically defined by the following formula of 80 to 100% are preferably 90 to 100% because they are suitable as a resinous resin. Those having visible light transmittance are more preferred.
  • the amount of transmitted light and the amount of incident light with respect to the transparent resin can be measured using an absorptiometer or a light meter (parameter meter). At the time of the measurement, a transparent resin having a plate shape of, for example, 1 mm thickness can be used.
  • Visible light transmittance (%) transmitted light amount Z incident light amount X 100
  • the diameter of the antibacterial fiber is set to a value within a range of 10 to 30 m. The reason for this is that if the diameter of the strong antibacterial fiber is less than 10 m, the mechanical strength of the antibacterial fiber is reduced and stable production becomes difficult. On the other hand, if the diameter of the strong antibacterial fiber exceeds 30 m, the usage of the antibacterial fiber is excessively limited.
  • the diameter of the antibacterial fiber is more preferably set to a value within the range of 12 to 25 ⁇ m, and further preferably set to a value within the range of 15 to 20 / ⁇ ⁇ .
  • the diameter of such antibacterial fibers can be measured with an electron microscope, a micrometer, or a caliper.
  • the visible light transmittance of the antibacterial fiber is 90% or more. The reason for this is that by limiting the value of the visible light transmittance of the antibacterial fiber in this way, it is possible to stably obtain an antibacterial fiber having superior surface smoothness and transparency, as well as mechanical properties. This is because it can.
  • the visible light transmittance of the strong antibacterial fiber is less than 90%, the coloring property of the antibacterial fiber may be remarkably deteriorated or the texture may be greatly changed.
  • the visible light transmittance of the antibacterial fiber it is more preferable to set the visible light transmittance of the antibacterial fiber to 95% or more from the viewpoint of a better balance between the mechanical strength of the antibacterial fiber and the static electricity generation. 98% More preferably, the above values are used.
  • the visible light transmittance of the antibacterial fiber can also be determined as in the case of the transparent resin described above.
  • an additive is included in the antibacterial fiber.
  • additives include colorants, antistatic agents, antioxidants, fluidizers, viscosity modifiers, metal particles, crosslinking agents, flame retardants, and the like, or a combination of two or more. it can.
  • the antibacterial fiber of the present invention has a characteristic that it is excellent in colorability as compared with a case where a hydrophilic antibacterial glass or inorganic particles are presumed to contain a predetermined amount, as compared with the case where they are not added. .
  • the second embodiment includes the following steps (A) to (D) in a method for producing antibacterial fibers comprising a transparent resin, antibacterial glass, and inorganic particles as a dispersant for the antibacterial glass. It is a manufacturing method of the antibacterial fiber characterized by.
  • B Using a pulverizer, the obtained glass body was added with inorganic particles having an average particle size of ⁇ ⁇ 15 m as a dispersant for antibacterial glass, and the average particle size was 0.1.
  • Glass raw materials (Glass composition 1) containing Ag 0, ZnO, CaO, B 2 O and P 2 O, Zn
  • a mixing machine such as a universal agitator (a planetary mixer), an alumina porcelain crusher, a ball mill, or a propeller mixer.
  • a universal stirrer it is preferable to mix and mix the glass raw materials under the conditions of a revolution of 100 rpm and a rotation speed of 250 rpm for 10 minutes to 3 hours.
  • the uniformly mixed glass raw material is melted by using a glass melting furnace as an example to prepare a glass melt.
  • the melting conditions for example, it is preferable to set the melting temperature to a value within the range of 1100 to 1500 ° C. and the melting time within the range of 1 to 8 hours. This is because such melting conditions can increase the production efficiency of the glass melt and reduce yellowing of the antibacterial glass as much as possible.
  • Coarse grinding Coarse pulverization is a process of pulverizing the glass body so that the average particle size is about 10 mm. Such coarse pulverization is performed by pulverizing the molten glass melt into a glass body, or by pulverizing an amorphous glass body using a bare hand, a nonmmer, or the like to obtain a predetermined average particle size. It is a process.
  • the antibacterial glass after coarse pulverization is usually confirmed to be a lump-free lump from an electron microscope photograph.
  • Medium grinding is a process of grinding the antibacterial glass after coarse grinding so that the average particle size is about 1 mm.
  • the antibacterial glass having an average particle size of about 10 mm is changed to an antibacterial glass having an average particle size of about 5 mm, and then a rotating mouse or a rotating tool (roll It is preferable to use an antibacterial glass having an average particle size of about 1 mm using a crusher 1).
  • a jaw crusher the antibacterial glass having an average particle size of about 10 mm is changed to an antibacterial glass having an average particle size of about 5 mm, and then a rotating mouse or a rotating tool (roll It is preferable to use an antibacterial glass having an average particle size of about 1 mm using a crusher 1).
  • the reason for this is that by carrying out medium grinding in multiple stages as described above, an antibacterial glass having a predetermined particle size can be effectively obtained without producing an antibacterial glass having an excessively small particle size.
  • the antibacterial glass after being crushed is confirmed to be a polyhedron having corners from an electron microscope photograph.
  • Fine pulverization is performed by crushing the antibacterial glass after the middle pulverization with the addition of inorganic particles with an average particle diameter of 0.1 to LO / zm and an average particle diameter of 1 to 15 m. It is a process.
  • fine pulverization for example, a rotary mouse, a rotary roll (roll crusher), a vibration mill, a ball mill, a planetary mill, a sand mill, or a jet mill can be used.
  • pulverizers it is particularly preferable to use a ball mill, a planetary mill, and a jet mill.
  • a polyhedral antibacterial glass having a predetermined particle size can be provided by using a ball mill, a planetary mill, etc., and an appropriate shear force can be applied, and an antibacterial glass having an excessively small particle size is not generated. This is because it can be obtained effectively.
  • the ball mill is a container in which a pulverization medium, an object to be pulverized, and a solvent are charged.
  • the planetary mill is prepared by charging the pulverized material 3 into a pulverizing vessel 2 in which the directions of the revolution shaft 5 and the rotation shaft 6 are both vertical, and rotating it. It is a general term for crushers that perform crushing.
  • a jet mill is a general term for a pulverizer that performs pulverization by colliding with objects to be pulverized in a container that does not use pulverization media.
  • alumina balls are used as grinding media 4 and the container is rotated at 30 to: LOO rpm, and the antibacterial glass after medium grinding is treated for 5 to 50 hours. It is preferable.
  • the antibacterial glass after intermediate pulverization collide with each other at a pressure of 0.61 to L 22 MPa (6 to 12 kgfZcm 2 ) by accelerating in a container.
  • the antibacterial glass after fine pulverization using a ball mill, jet mill or the like is a polyhedron having more corners than the antibacterial glass after medium pulverization, and has an average particle size (D50) and specific surface area. It has been confirmed by electron micrographs and particle size distribution that it is easy to adjust to the specified range.
  • a classifier such as a cyclone can be attached to a planetary mill or the like so that the antibacterial glass can be circulated without agglomeration.
  • the average particle size and particle size distribution in the antibacterial glass can be easily adjusted to a desired range, and the drying step after pulverization can be omitted.
  • antibacterial glass having a predetermined range or less can be easily removed using a bag filter in a dry state. Therefore, adjustment of the average particle size and particle size distribution in the antibacterial glass becomes easier.
  • the obtained antibacterial glass is dispersed in a transparent resin and spun into a predetermined shape to form an antibacterial fiber.
  • a stirring and mixing method for the method of dispersing the resulting polyhedral antibacterial glass in a transparent resin
  • a stirring and mixing method for example, a stirring and mixing method, a kneading method, a coating method, a diffusion method and the like can be employed.
  • the stirring and mixing method it is preferable to stir and mix at room temperature (25 ° C) for 1 to 20 minutes.
  • a mixing machine such as a propeller mixer, a V-preda, or a monofilar.
  • the type of molding apparatus used for spinning into a predetermined shape is not particularly limited.
  • BMC Blocka molding compound injection molding apparatus
  • SMC sheet molding compound compression molding apparatus
  • BMC Valta molding compound It is preferable to use a compression molding apparatus or a press apparatus.
  • the composition ratio of PO is 50 times
  • Each glass raw material was stirred using a universal mixer at a rotational speed of 250 rpm for 30 minutes until it was uniformly mixed. Next, using a melting furnace, the glass raw material was heated at 1280 ° C. for 3 hours and a half to prepare a glass melt.
  • the glass melt taken out from the glass melting furnace was poured into flowing water at 25 ° C. to make a glass body and water-crushed to obtain a coarsely crushed glass having an average particle diameter of about 10 mm.
  • the coarsely pulverized glass at this stage was observed with an optical microscope, and it was confirmed that the crushed glass was easily broken and had no corners or faces.
  • the coarsely pulverized glass after being pulverized in the secondary state was observed with an electron microscope and confirmed to be a polyhedron having a strength angle and a surface of at least 50% by weight or more.
  • silica particles (primary average particle size: 15 nm, secondary average particle size: 7 m) were added in a ratio of 7 parts by weight to 100 parts by weight of the antibacterial glass. . Thereafter, using a planetary mill equipped with a cyclone device and a bag filter as a pulverizer, fine pulverization was performed under the following processing conditions. Next, after pulverization, the pulverized media was separated and removed to obtain an antibacterial glass having silica particles attached to the surroundings.
  • an antibacterial glass having an average (D50) force S1. 2 / ⁇ ⁇ , D90 force 2. O ⁇ m, and it table force S88000 cm 2 / cm 3 was obtained.
  • the antibacterial glass after this stage was observed with an electron microscope, and at least 95% by weight or more was confirmed to be a polyhedron with corners and faces. Moreover, it confirmed that the silica particle was adhering to the surface of the polyhedral antibacterial glass.
  • Type of grinding media Anolemina Bonore
  • Antibacterial glass 1kg
  • the obtained polyhedral antibacterial glass was mixed with polypropylene (PP) resin using a kneader at room temperature under a condition of 25 kgZlO so that the addition amount would be 0.3% by weight of the total amount. Combined.
  • PP polypropylene
  • BMC Blocka molding compound
  • the obtained antibacterial glass lOOg was immersed in 500 ml of distilled water (20 ° C) and shaken for 24 hours using a shaker. Next, the Ag ion eluate was separated using a centrifuge and further filtered through a filter paper (5C) to obtain a measurement sample. Then, Ag ions in the measurement sample were measured by ICP emission spectroscopy, and the amount of Ag ion elution (mgZKgZ24Hr) was calculated. Table 2 shows the results obtained.
  • the antibacterial fibers were observed using an optical microscope, and the transparency was judged according to the following criteria.
  • A Colorless and transparent.
  • the cross section of the antibacterial fiber was observed using an electron microscope, and the antibacterial glass anti-aggregation property was judged based on the following criteria from the mixed state and surface state of the antibacterial glass. Table 2 shows the results obtained.
  • A Almost no aggregates are observed, and the surface of the antibacterial fiber is smooth.
  • A A weak aggregate is observed, but the surface of the antibacterial fiber is almost smooth.
  • Some agglomerates are observed, and some irregularities are observed on the surface of the antibacterial fiber.
  • X Many aggregates are observed.
  • the obtained antibacterial fibers are continuously irradiated with ultraviolet rays (black panel temperature: 63 ° C, illuminance: wavelength 300 to 700 nm) using an ultraviolet irradiation device (manufactured by Suga Test Instruments Co., Ltd., Sunshine Wetherometer).
  • ultraviolet irradiation device manufactured by Suga Test Instruments Co., Ltd., Sunshine Wetherometer.
  • 255 W / m 2 was irradiated, and yellowing of the antibacterial fiber was judged according to the following criteria.
  • the yellowing of the antibacterial fiber was observed using an optical microscope. Table 2 shows the results obtained.
  • test bacteria 10 g were used as test pieces for antibacterial evaluation.
  • test bacteria were cultured on Trvpticase Sov Agar (BBL) agar plate medium at 35 ° C for 24 hours, and the growth colonies were suspended in normal bouillon medium (Eiken Igaku Co., Ltd.) with 1Z500 concentration. Adjusted to about 1 ⁇ 10 6 CFU / ml.
  • antibacterial fibers as test specimens were uniformly contacted with 0.5 ml of the old Staphylococcus aureus IFO # 12732 suspension and 0.5 ml of Escherichia coli ATCC # 8739 suspension, respectively. Furthermore, a polyethylene film (sterilized) was placed thereon, and each was used as a measurement sample of the film cover method.
  • the sample to be measured is placed in a thermostatic chamber at a humidity of 95% and a temperature of 35 ° C for 24 hours, and the number of bacteria before the test (growth settlement) and the number of bacteria after the test (growth settlement) are measured.
  • the antibacterial 1 (S. aureus) and antibacterial 2 (E. coli) were evaluated according to the following criteria.
  • A Number of bacteria after the test The number of bacteria before the test is less than 1Z10000.
  • Number of bacteria after the test The number of bacteria before the test is 1Z10000 or more and less than 1Z1000.
  • the addition amount of silica particles (primary average particle size: 15 nm, secondary average particle size: 7 m) as a dispersant is 5 parts by weight with respect to 100 parts by weight of the antibacterial glass. Except for changing to 10 parts by weight and 12 parts by weight, after obtaining antibacterial glass in the same manner as in Example 1, antibacterial fibers were produced and evaluated.
  • the antibacterial glass was a polyhedron having a strength angle and a surface of at least 95% by weight when observed with an electron microscope.
  • Example 5 the same glass composition (A composition) as in Example 1 was used, and a jet mill was used as a pulverizer, and the pulverization process was performed at a pressure of 0.82 MPa and an input amount of 5 Kg / Hr. Carried out. As a result, an antibacterial glass having an average particle size (D50) of 2.5 / ⁇ ⁇ and a specific surface area of 4700 Ocm 2 / cm 3 was obtained.
  • D50 average particle size
  • Example 5 the antibacterial glass after this stage was observed with an electron microscope and confirmed to be a polyhedron having a strength angle and a surface of at least 95% by weight or more.
  • Example 6 the same glass composition (A composition) as in Example 1 was used, the pulverization conditions of the jet mill were changed to 0.82 MPa, the input amount of 30 kg ZHr, and the average particle size (D50) force 9 After obtaining an antibacterial glass having / ⁇ ⁇ and a specific surface area of 23000 cm 2 / cm 3 , antibacterial fibers were produced and evaluated in the same manner as in Example 1. However, the average diameter of the antibacterial fibers was 30 m.
  • Example 7 except that the composition of the antibacterial glass was changed, after obtaining the antibacterial glass in the same manner as in Example 1, antibacterial fibers were produced and evaluated. That is, P for the total amount
  • the composition ratio of O is 59.6% by weight, the composition ratio of CaO is 26.3% by weight, and the composition ratio of Na 2 O is 0.6.
  • B2O composition ratio is 10wt%
  • AgO composition ratio is 3wt%
  • CeO composition ratio is
  • the antibacterial is polyhedron with an average particle size (D50) of 3.2 m and a specific surface area of about 35000 cm 2 / cm 3 as in Example 1 except that the composition is 0.5% by weight. Got glass Later, antibacterial fibers were produced and evaluated.
  • Comparative Example 1 the same glass composition (A composition) as in Example 1 was used, the processing time of a planetary mill equipped with a cyclone device and a bag filter was shortened to 3 hours, and the average particle size (D50) was An antibacterial glass of 15 m was obtained.
  • D50 average particle size
  • Example 1 an attempt was made to produce an antibacterial fiber having a diameter of 10 m, but the average particle size of the antibacterial glass was too large to be spun. Therefore, an antibacterial fiber with a diameter of 50 m was manufactured and evaluated in the same manner as in Example 1.
  • Comparative Example 2 while using a glass composition (B composition) different from that in Example 1, using a planetary mill equipped with a cyclone device and a bag filter, the processing time was shortened to 3 hours, and the average particle size ( An antibacterial glass having a D50) of 15 m was obtained. However, as in Example 1, an attempt was made to produce an antibacterial fiber having a diameter of 10 m. However, the average particle size of the antibacterial glass was too large to spin. Therefore, an antibacterial fiber having a diameter of 50 / zm was produced and evaluated in the same manner as in Example 1.
  • Example 3 an antibacterial glass was obtained in the same manner as in Example 1 except that the addition of silica particles as a dispersant was ineffective. However, the antibacterial glass adhered to the inner wall of the ball mill and could not be taken out, and the experiment was stopped there.
  • Comparative Example 4 an antibacterial glass having an average particle size (D50) of 10 m or less was obtained by extending the milling time to 100 hours or longer using a wet ball mill. However, the antibacterial glass adheres to the inner wall of the ball mill and is difficult to take out. Further, when the antibacterial glass taken out was dried by heating, the antibacterial glass aggregated into large particles, and the experiment was stopped there.
  • D50 average particle size
  • Example 1 A planetary mill 1.2 88000 0.3 7 10
  • Example 2 A planetary mill 2.0 59000 0.3 5 10
  • Example 3 A planetary mill 1.2 89000 0.3 10 10
  • Example 4 A Planetary mill 1.1 93000 0.3 12 10
  • Example 5 A Jet mill 2.5 47000 0.3 7 10
  • Example 6 A Jets S 10.9 23000 0.3 7 30
  • Example 7 B Pole mill 3.2 35000 0.3 7 10 Comparative example 1 A Planetary mill 15.0 11000 0.3 None None 50 Comparative example 2
  • inorganic particles as a dispersant for the antibacterial glass are used in combination, and the average particle diameter, the added amount, etc. of the antibacterial glass are controlled within a predetermined range.
  • antibacterial glass that can be used when manufacturing antibacterial fibers with a diameter of about 10 to 30 m can be stably obtained.
  • an antibacterial glass having excellent dispersibility and manufacturing stability can be obtained.
  • antibacterial fibers capable of obtaining excellent surface smoothness and transparency can be obtained efficiently and stably.
  • the antibacterial fiber of the present invention a predetermined amount of inorganic particles as a dispersant for the antibacterial glass is added, and when the inorganic particles are hydrophilic, the dissolution rate of the antibacterial glass becomes uniform. In addition, the coloring property as an antibacterial fiber was excellent.
  • the antibacterial fiber may be post-added when spinning the inorganic particles in order to improve the strength, but the antibacterial fibers of the present invention may contain inorganic particles as a dispersant for the antibacterial glass. Is already contained, it is possible to omit such inorganic particles to be added later or to reduce the amount of addition. Therefore, in practice, the step of post-adding the inorganic particles can be omitted, while problems such as poor spinning caused by the step of post-adding the inorganic particles can be solved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Artificial Filaments (AREA)

Abstract

 直径が10~30μm程度の抗菌性繊維であっても、優れた表面平滑性や透明性等を有する抗菌性繊維およびその製造方法を提供することを目的とする。  そこで、透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤としての無機粒子と、を含む抗菌性繊維において、抗菌性繊維の直径を10~30μmの範囲内の値とし、抗菌性ガラスの平均粒径を0.1~10μmの範囲内の値とするとともに、抗菌性ガラスの添加量を、全体量に対して、0.1~10重量%の範囲内の値とし、かつ、無機粒子の平均粒径を1~15μmの範囲内の値とするとともに、無機粒子の添加量を、抗菌性ガラスの添加量100重量部に対して、0.1~50重量部の範囲内の値とする。  

Description

抗菌性繊維およびその製造方法
技術分野
[0001] 本発明は、抗菌性繊維およびその製造方法に関し、より詳細には、抗菌性ガラスの 分散剤としての無機粒子を添加し、直径が 10〜30 /ζ πι程度の繊維であっても、優れ た表面平滑性や透明性等が得られる抗菌性繊維およびその製造方法に関する。 背景技術
[0002] 近年、建材、家電製品 (TV、パソコン、携帯電話、ビデオカメラなど含む)、雑貨、 包装用資材等において、抗菌効果を付与するために、抗菌性ガラスを所定量榭脂中 に混入させた抗菌性榭脂組成物が使用されている。
このような抗菌性ガラスとして、 Agイオンを溶出しうるガラス水処理剤が特開昭 62— 210098号公報に開示されている。このガラス水処理剤は、組成物中に一価の Agィ オンをガラス 100重量部あたり酸ィ匕銀換算で 0. 2〜1. 5重量部含有し、ガラス成分と して B Oを 20〜70モル%含有する硼珪酸塩系の抗菌性ガラス力もなるものである。
2 3
より具体的には、当該特許公報の実施例 2および 3には、それぞれ、 B Oを 20〜30
2 3 モル0 /0、 ZnOを 40モル0 /0、 P Oを 30〜40モル0 /0および Ag Oを 1重量0 /0とした抗菌
2 5 2
性ガラスを開示している (例えば、特許文献 1参照)。
[0003] また、特開平 1— 313531号公報には、抗菌性榭脂組成物として、榭脂中に抗菌 性ガラスを含む合成樹脂成形体が開示されている。当該合成樹脂成形体は、具体 的に、 SiO、 B O、 P Oの一種もしくは二種以上の網目形成酸化物と、 Na 0、 K O
2 2 3 2 5 2 2
、 CaO、 ZnOの一種もしくは二種以上の網目修飾酸ィ匕物と力もなるガラス固形物 10 0重量部中に、一価の Agとして、 Ag Oを 0. 1〜20重量部含有した抗菌性ガラスを
2
榭脂中に含んだ構成としてある。より具体的には、当該特許公報の実施例において 、 SiO :40モル0 /0、 B O : 50モル0 /0、 Na 0 : 10モル0 /0力らなる混合物 100重量部に
2 2 3 2
対して、 Ag Oを 2重量部添加した抗菌性ガラスを開示している(例えば、特許文献 2
2
参照)。
[0004] さらに、本発明の出願人は、溶解性ガラスの黄変が少なぐ透明性や分散性に優れ るとともに、製造が容易な多面体の抗菌性ガラスであって、平均粒径が 0. 5〜300 mである抗菌性ガラスを既に提案して ヽる (例えば、特許文献 3参照)。
特許文献 1:特開昭 62— 210098号公報 (特許請求の範囲)
特許文献 2:特開平 1 313531号公報 (特許請求の範囲)
特許文献 3: WO02Z28792号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0005] しカゝしながら、特許文献 1に開示された抗菌性ガラスは、ガラス組成として B Oを 20
2 3
〜70モル%含んでおり、また、その形状を考慮していないためと思われる力 抗菌性 ガラスが白濁したり、再凝集したりして、透明性に乏し力つたり、黄変しやすいという問 題が見られた。また、抗菌性ガラスを榭脂中に混合した場合に、分散性が乏しいとい う問題も見られた。
したがって、力かる透明性や分散性に乏しい抗菌性ガラスを、直径が 10〜30 /ζ πι 程度の抗菌性繊維を製造する際に使用した場合、繊維中で凝集してしまい、実質的 に紡糸できな 、と 、う問題が見られた。
[0006] また、特許文献 2に開示された抗菌性ガラスは、ガラス組成として Β Οを主成分とし
2 3
て用いているとともに、網目形成酸化物と、網目修飾酸化物との配合量が最適化さ れておらず、抗菌性の発現が不十分であったり、そのガラス組成に起因して、製造時 間が過度に長くなつたりするという問題が見られた。
また、かかる抗菌性ガラスについても、直径が 10〜30 /ζ πι程度の抗菌性繊維を製 造する際に使用した場合、抗菌性ガラスの分散性が乏しぐそのままでは、繊維中で 凝集してしま!/、、実質的に紡糸できな 、という問題が見られた。
[0007] また、特許文献 3に開示された抗菌性ガラスは、一般的な用途に用いた場合には 優れた抗菌特性や分散性を示すものの、例えば、直径が 10〜30 /ζ πι程度の抗菌性 繊維に用いた場合には、紡糸条件等がばらつくと、溶解性ガラスが再凝集して、表面 に露出したり、抗菌性繊維の表面平滑性や透明性が低下したりするという問題が見ら れた。
すなわち、かかる抗菌性ガラスについても、直径が 10〜30 m程度の抗菌性繊維 を製造する際に使用した場合には、透明榭脂中での抗菌性ガラスの分散性が乏しく 、そのままでは、繊維中で凝集してしまい、安定的に紡糸できないという問題が見ら れた。
[0008] さらに、特許文献 1〜3に開示された抗菌性ガラスを製造する際に、湿式ボールミル 等の粉砕機を用いて平均粒径やそのばらつきを小さくしょうとすると、抗菌性ガラスが 粉砕機の容器の内面に付着してしまい、平均粒径を実質的に制御できないという製 造上の問題も見られた。また、湿式ボ—ルミル等カも抗菌性ガラスを取り出した後に、 乾燥工程を経なければならないが、その間に、抗菌性ガラスが凝集し、大粒子になり
Figure imgf000005_0001
ヽぅ問題も見られた。
すなわち、直径が 10〜30 m程度の抗菌性繊維に使用できる平均粒径が小さぐ かつ粒度分布が狭い抗菌性ガラスを効率的に提供できる製造方法は、実質的に存 在しない状態であった。
そこで、本発明者は鋭意検討した結果、抗菌性ガラスの分散剤 (分散助剤)として、 所定の凝集した無機粒子を添加するとともに、他の所定条件を所定範囲に制御する ことによって、直径が 10〜 30 m程度の極細であっても、抗菌性繊維中に均一に分 散させることができ、抗菌性繊維を安定的に製造できることを見出し、本発明を完成 させたものである。
すなわち、本発明は、抗菌性繊維中への分散性や製造安定性等に優れた抗菌性 ガラスを用いた抗菌性繊維およびその製造方法であって、優れた抗菌性や表面平 滑性あるいは透明性等が得られる抗菌性繊維およびその製造方法を提供することを 目的とする。
課題を解決するための手段
[0009] 本発明によれば、透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤として の無機粒子と、を含む抗菌性繊維において、抗菌性繊維の直径を 10〜30 mの範 囲内の値とし、抗菌性ガラスの平均粒径を 0. 1〜10 /ζ πιの範囲内の値とするとともに 、抗菌性ガラスの添加量を、全体量に対して、 0. 1〜: LO重量%の範囲内の値とし、 かつ、無機粒子の平均粒径を 1〜15 μ mの範囲内の値とするとともに、無機粒子の 添加量を、抗菌性ガラスの添加量 100重量部に対して、 0. 1〜50重量部の範囲内 の値とした抗菌性繊維が提供され、上述した問題点を解決することができる。
すなわち、抗菌性ガラスの分散剤として、抗菌性ガラス以外の所定の無機粒子を添 加するとともに、抗菌性ガラスの添加量や平均粒径等を所定範囲に制御することによ つて、分散性や透明性等に優れた抗菌性ガラスを安定的に得ることができる。したが つて、直径が 10〜30 /ζ πι程度の極細の抗菌性繊維に使用した場合であっても、繊 維中で十分に分散して、優れた紡糸性が得られるとともに、優れた抗菌性や表面平 滑性、あるいは透明性等を有する抗菌性繊維を安定的に得ることができる。
なお、無機粒子が基本的に凝集している場合には、その平均粒径としては二次粒 子の平均粒径を意味し、無機粒子が基本的に単独で存在している場合には、その平 均粒径としては一次粒子の平均粒径を意味する。
[0010] また、本発明の抗菌性繊維を構成するにあたり、無機粒子が、凝集シリカ粒子であ ることが好ましい。
このような凝集したシリカ粒子を使用することによって、さらに分散性や透明性等に 優れた抗菌性ガラスを安価かつ安定的に得ることができ、ひいては、優れた紡糸性 が得られるとともに、優れた表面平滑性や透明性を有する抗菌性繊維を安価かつ安 定的に得ることができる。また、シリカ粒子は親水性に富んでおり、抗菌性ガラスの周 囲に付着することにより、抗菌性ガラスの溶解速度が均一になるばかりか、抗菌性繊 維としての着色性にっ 、ても優れたものとなる。
[0011] また、本発明の抗菌性繊維を構成するにあたり、無機粒子の体積固有抵抗を 1 X 1 05〜1 X 109 Ω ' cmの範囲内の値とすることが好ましい。
このような無機粒子を抗菌性ガラスと併用することによって、抗菌性繊維の体積固 有抵抗の調整が容易になるばかりか、より優れた表面平滑性や透明性を有する抗菌 性繊維を安定的に得ることができる。
[0012] また、本発明の抗菌性繊維を構成するにあたり、抗菌性繊維における可視光透過 率を 90%以上の値とすることが好まし 、。
このように抗菌性繊維の可視光透過率の値を制限することにより、抗菌性ガラスや 無機粒子の分散性を推定することができ、それをもとに、より優れた表面平滑性や透 明性等を有する抗菌性繊維を安定的に得ることができる。 なお、本発明に用いる抗菌性ガラスは、透明性及び分散性に優れており、抗菌性 繊維における可視光透過率を所定範囲内の値に容易に制御できるという利点がある
[0013] また、本発明の抗菌性繊維を構成するにあたり、抗菌性ガラスの比表面積を 10, 0
00〜300, OOOcm2/cm3の範囲内の値とすることが好ましい。
このように抗菌性ガラスの比表面積を制限することにより、より優れた分散性や透明 性、さらには優れた機械的特性を有する抗菌性繊維を安定的に得ることができる。
[0014] また、本発明の抗菌性繊維を構成するにあたり、抗菌性ガラスの平均粒径を 50% 体積粒径(D50)とするとともに、 90%体積粒径(D90)を 0. 5〜12 mの範囲内の 値とし、かつ、 D90ZD50で表される比率を 1. 1〜2. 0の範囲内の値とすることが好 ましい。
このように抗菌性ガラスの体積粒径 (D50及び D90)をそれぞれ関連付けて制限す ることにより、より優れた分散性や透明性、さらには優れた機械的特性を有する抗菌 性繊維を安定的に得ることができる。
[0015] また、本発明の抗菌性繊維を構成するにあたり、抗菌性ガラスの周囲を、疎水基と して、炭素数 5以上の長鎖アルキル基を有するシランカップリング剤により表面処理し てあることが好ましい。
このように表面処理した抗菌性ガラスを用いることにより、抗菌性ガラスの表面を疎 水性とすることができ、製造時の平均粒径等の制御が容易になるばかりか、透明榭 脂に対する優れた分散性を得ることができる。
[0016] また、本発明の別の態様は、透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分 散剤としての無機粒子と、を含む抗菌性繊維の製造方法において、下記工程 (A)〜
(D)を含むことを特徴とする抗菌性繊維の製造方法である。
(A)抗菌性イオン放出物質を含むガラス原料を溶融し、さらに冷却してガラス体とす る工程
(B)得られたガラス体を、粉砕機を用いて、抗菌性ガラスの分散剤としての平均粒径 が 0. 01〜5 mの無機粒子を添カ卩した状態で、平均粒径が 0. 1〜: LO /z mの抗菌 性ガラスとし、無機粒子添加の抗菌性ガラスを製造する工程 (c)得られた無機粒子添加の抗菌性ガラスを、透明榭脂中に分散させる工程 (D)紡糸して、直径が 10〜30 mの抗菌性繊維とする工程
すなわち、抗菌性ガラスの分散剤として、所定の無機粒子を併用するとともに、抗 菌性ガラスの平均粒径等を制御することによって、分散性や透明性等に優れた抗菌 性ガラスを安定的に得ることができる。したがって、直径が 10〜30 /ζ πι程度の極細の 抗菌性繊維に使用した場合であっても、繊維中で十分に分散して、優れた紡糸性が 得られるとともに、優れた抗菌性や表面平滑性、あるいは透明性等を有する抗菌性 繊維を安定的に得ることができる。
[0017] また、本発明の抗菌性繊維の製造方法を実施するにあたり、粉砕機が、湿式ボー ルミル、乾式ボールミル、遊星ミル、振動ミル又はジェットミルであることが好ましい。 このような粉砕機を用いて抗菌性ガラスを製造することにより、分散性や透明性等 に優れた抗菌性ガラスをさらに安定的に得ることができ、ひいては、より優れた表面 平滑性や透明性、さらには優れた機械的特性を有する抗菌性繊維を安定的に得る ことができる。
特に、乾式ボールミル、遊星ミル、振動ミル及びジェットミルは、乾式粉砕機である ため、粉砕後の乾燥工程を省略でき、平均粒径が 0. 1〜10 /ζ πιの抗菌性ガラスで あっても凝集を有効に防止することができる。
[0018] また、本発明の抗菌性繊維の製造方法を実施するにあたり、粉砕機にサイクロンが 備えてあり、当該サイクロンを用いて循環させながら無機粒子添加の抗菌性ガラスを 製造することが好ましい。
このような粉砕機を用いて抗菌性ガラスを製造することにより、分散性や透明性等 に優れた抗菌性ガラスをさらに経済的に得ることができ、ひいては、より優れた表面 平滑性や透明性、さらには優れた機械的特性を有する抗菌性繊維を安定的に得る ことができる。
図面の簡単な説明
[0019] [図 1]実施例 1の抗菌性ガラスの粒度分布を説明するために供する図である。
[図 2]遊星ミルを用いた粉砕処理工程を説明するために供する図である。
[図 3]別の遊星ミルを説明するために供する図である。 [図 4]比較例 1の抗菌性ガラスの粒度分布を説明するために供する図である。
[図 5]比較例 2の抗菌性ガラスの粒度分布を説明するために供する図である。
発明を実施するための最良の形態
[0020] [第 1の実施形態]
第 1の実施形態は、透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤として の無機粒子と、を含む抗菌性繊維において、抗菌性繊維の直径を 10〜30 mの範 囲内の値とし、抗菌性ガラスの平均粒径を 0. 1〜10 /ζ πιの範囲内の値とするとともに 、抗菌性ガラスの添加量を、全体量に対して、 0. 1〜: LO重量%の範囲内の値とし、 かつ、無機粒子の平均粒径を 1〜15 μ mの範囲内の値とするとともに、無機粒子の 添加量を、抗菌性ガラスの添加量 100重量部に対して、 0. 1〜50重量部の範囲内 の値とした抗菌性繊維である。
以下、第 1の実施形態の抗菌性繊維に使用する抗菌性ガラス、併用する無機粒子 、抗菌性繊維を構成する透明榭脂、及び抗菌性繊維の態様等について具体的に説 明する。
[0021] 1.抗菌性ガラス
(1)形状
抗菌性ガラスの形状を、多面体、すなわち、複数の角や面から構成されており、例 えば 6〜20面体力 なる多面体であることが好ましい。
この理由は、抗菌性ガラスの形状を多面体とすることにより、球状等の抗菌性ガラス と異なり、光が面内を一定方向に進行しやすくなるためである。したがって、抗菌性ガ ラスに起因した光散乱を有効に防止することができ、そのため、抗菌性ガラスの透明 性を向上させることができる。
また、このように抗菌性ガラスを多面体とすることにより、榭脂中への混合分散が容 易となるばかりか、紡糸装置等を用いて抗菌性繊維を製造した場合に、抗菌性ガラ スが一定方向に配向しやすいという特徴がある。したがって、抗菌性ガラスを榭脂中 に均一に分散しやすくなるとともに、榭脂中での抗菌性ガラスによる光の散乱を効果 的に防止して、優れた透明性を発揮することができる。
さらに、このように抗菌性ガラスの形状が多面体であれば、併用する無機粒子が付 着しやすくなつて、製造時や使用時等に再凝集しにくいため、抗菌性ガラスの製造 時における平均粒径やばらつきの制御が容易となるためである。
[0022] 但し、第 1の実施形態および以下に述べる実施形態において、上述した多面体ガ ラスの含有量を 100重量%とすることは必ずしも必須でなぐ多面体ガラスと、それ以 外の抗菌性または非抗菌性の球形ガラスや粒状ガラス、あるいは異形ガラスとを混合 使用することも好ましい。
その場合、多面体ガラスの含有量を 80重量%以上の値とすることが好ましい。この 理由は、多面体ガラスの含有量が 80重量%未満となると、榭脂中の分散性や、透明 性が低下する場合があるためである。したがって、より優れた分散性や、透明性を得 るためには、多面体ガラスの含有量を 90重量%以上の値とすることがより好ましぐ 9 5重量%以上の値とすることがさらに好ましい。
[0023] (2)平均粒径
また、抗菌性ガラスの平均粒径(D50)を 0. 1〜: LO mの範囲内の値とすることを 特徴とする。
すなわち、抗菌性ガラスの累積体積の全体量を 100%としたときに、累積体積が 50 %になるときの粒径を D50 ( m)と定義し、その値を平均粒径として、所定範囲に制 御するものである。
この理由は、力かる平均粒径(D50)が 0. 1 μ m未満の値となると、榭脂中への混 合分散が困難になったり、光散乱が生じやすくなつたり、あるいは透明性が低下した りするためである。
一方、力かる平均粒径 (D50)が 10 /z mを超えると、榭脂中への混合分散や取扱い が同様に困難となったり、あるいは極細の抗菌性繊維を製造する際に、表面平滑性 や透明性、さらには機械的強度が著しく低下したりする場合があるためである。
したがって、抗菌性ガラスの平均粒径(D50)を 0. 5〜8 μ mの範囲内の値とするこ とがより好ましぐ 0. 8〜3 /ζ πιの範囲内の値とすることがさらに好ましい。
なお、抗菌性ガラスの平均粒径 (D50)および後述する 90%体積粒径 (D90)、ある いは所定粒径を有する抗菌性ガラスの存在割合は、それぞれレーザ方式のパーティ クルカウンターや沈降式の粒度分布計を用いて得られる粒度分布や、あるいは、抗 菌性ガラスの電子顕微鏡写真をもとに画像処理を実施して得られる粒度分布から算 出することができる。
[0024] また、抗菌性ガラスの平均粒径 (D50)に関して、 90%体積粒径 (D90)を 0. 5〜1 2 mの範囲内の値とし、かつ、 D90ZD50で表される比率を 1. 1〜2. 0の範囲内 の値とすることが好ましい。
この理由は、力かる D90ZD50で表される比率が 1. 1未満の値となると、透明榭脂 中への混合分散が困難になったり、あるいは、光散乱が生じやすくなり、透明性が低 下したりする場合がるためである。一方、力かる D90ZD50で表される比率が 2. 0を 超えると、透明榭脂中への混合分散や取扱いが困難となったり、あるいは得られる抗 菌性繊維において表面平滑性が低下したりする場合があるためである。
したがって、抗菌性ガラスの D90ZD50で表される比率を 1. 2〜1. 9の範囲内の 値とすることがより好ましぐ 1. 3〜1. 8の範囲内の値とすることがさらに好ましい。 なお、図 1に例示する粒度分布を有する抗菌性ガラスは、 D90が 0. 5〜12 /ζ πιの 範囲内の値であって、 D90ZD50で表される比率力 それぞれ 1. 1〜2. 0の範囲 内の値であることより、榭脂と容易かつ均一に混合するとともに、抗菌性繊維におい て優れた表面平滑性が得られることが判明している。
[0025] また、抗菌性ガラスの平均粒径 (D50)に関して、当該平均粒径に関与する粒径が 10 /z m以上の存在割合を、全体量に対して、 10体積%以下の値とすることが好まし い。
この理由は、過度に粒径が大きい抗菌性ガラスの含有量が多くなると、再凝集の際 にコアとなりやすいためである。すなわち、このような抗菌性ガラスの存在割合を所定 値以下にすることにより、所望の抗菌性ガラスと、榭脂との間の分散性が向上し、成 形装置の目つまりが生じることなぐ優れた表面平滑性を得ることができる。
また、抗菌性ガラスの平均粒径 (D50)に関して、当該平均粒径に関与する粒径が 0. 1 m以下の存在割合を、全体量に対して、 5体積%以下の値とすることが好まし い。
この理由は、過度に粒径が小さい抗菌性ガラスの含有量が多くなると、再凝集を生 じやすくなるためである。すなわち、コアとなる抗菌性ガラスの周囲において、このよう に再凝集しやすい抗菌性ガラスの存在割合を所定値以下にすることにより、所望の 抗菌性ガラスと、榭脂との間の分散性が向上し、成形装置の目つまりが生じることなく 、優れた表面平滑性を得ることができるためである。
なお、図 1に例示する粒度分布を有する抗菌性ガラスは、粒径が 10 m以上の存 在割合および粒径が 0. 1 μ m以下の存在割合が、それぞれ 1体積%以下の値であ ると、透明樹脂と混合する際の再凝集が少ないことが判明している。
[0026] (3)比表面積
また、抗菌性ガラスの比表面積を 10, 000〜300, OOOcm2/cm3の範囲内の値と することが好ましい。
この理由は、かかる比表面積が 10, OOOcm2/cm3未満の値となると、透明榭脂中 への混合分散や取扱いが困難となったり、あるいは抗菌性繊維とした場合に、表面 平滑性や機械的強度が低下したりする場合があるためである。
一方、力かる比表面積が 300, OOOcm2/cm3を超えると、逆に、取扱いが困難とな つて、透明榭脂中への混合分散が容易となったり、あるいは、光散乱が生じやすくな つて、透明性が低下したりするためである。
したがって、抗菌性ガラスの比表面積を 15, 000〜200, OOOcm2/cm3の範囲内 の値とすることがより好ましぐ 18, 000〜150, OOOcm2/cm3の範囲内の値とするこ とがさらに好ましい。
なお、抗菌性ガラスの比表面積 (cmソ cm3)は、粒度分布測定結果より求めること ができ、抗菌性ガラスを球状と仮定して、粒度分布の実測データから、単位体積あた り(cm3)の表面積 (cm2)として算出することができる。
[0027] (4)ガラス組成 1
抗菌性ガラスのガラス組成として、 Ag 0、 ZnO、 CaO、 B Oおよび P Oを含み、か
2 2 3 2 5 つ、全体量を 100重量%としたときに、 Ag Oの含有量を 0. 2〜5重量%の範囲内の
2
値、 ZnOの含有量を 1〜50重量%の範囲内の値、 CaOの含有量を 0. 1〜15重量 %の範囲内の値、 B Oの含有量を 0. 1〜15重量%の範囲内の値、および P Oの
2 3 2 5 含有量を 30〜80重量%の範囲内の値とするとともに、 ZnOZCaOの重量比率を 1. 1〜 15の範囲内の値とすることが好まし!/、。 [0028] ここで、 Ag Oは、ガラス組成 1における抗菌性イオン放出物質として必須構成成分
2
であり、力かる Ag Oを含有することにより、ガラス成分が溶解した場合に、所定速度
2
で Agイオンを徐々に溶出させることができ、優れた抗菌性を長期間発現することがで きる。
ここで、 Ag Oの含有量を 0. 2〜5重量%の範囲内の値とすることが好ましい。この
2
理由は、 Ag Oの含有量が、 0. 2重量%未満の値となると、抗菌性ガラスの抗菌性が
2
不十分となるためであり、所定の抗菌効果を得るためには、多量の抗菌性ガラスが必 要となるためである。一方、 Ag Oの含有量が、 5重量%を超えると、抗菌性ガラスが
2
より変色しやすくなり、また、コストが高くなり経済的に不利となるためである。
[0029] また、 P Oは、ガラス組成 1における必須構成成分であり、基本的に網目形成酸ィ匕
2 5
物としての機能を果たす力 その他に、本発明においては抗菌性ガラスの透明性改 善機能や Agイオンの均一な放出性にも関与する。
ここで、 P Oの含有量を 30〜80重量%の範囲内の値が好ましい。この理由は、か
2 5
力る P Oの含有量が 30重量%未満となると、抗菌性ガラスの透明性が低下したり、
2 5
あるいは Agイオンの均一な放出性や機械的強度が乏しくなるおそれがあるためであ り、一方、かかる P Oの含有量が 80重量%を超えると、抗菌性ガラスが黄変しやすく
2 5
なったり、また硬化性に乏しくなり機械的強度が低下するおそれがあるためである。
[0030] また、 ZnOは、ガラス組成 1における必須構成成分であり、抗菌性ガラスにおける網 目修飾酸ィ匕物としての機能を果たすとともに、黄変を防止する機能とともに、抗菌性 を向上させる機能をも果たしている。
ここで、 ZnOの含有量を、全体量に対して、 2〜60重量%の範囲内の値とすること が好ましい。この理由は、力かる ZnOの含有量が 2重量%未満の値となると、黄変防 止効果や、抗菌性の向上効果が発現しない場合があるためであり、一方、かかる Zn Oの含有量が 60重量%を超えると、抗菌性ガラスの透明性が低下したり、機械的強 度が乏しくなったりする場合があるためである。
また、 ZnOの含有量を、後述する CaOの含有量を考慮して定めることが好ましい。 具体的には、 ZnOZCaOで表される重量比率を、 1. 1〜15の範囲内の値とすること が好ましい。この理由は、かかる重量比率が 1. 1未満の値となると、抗菌性ガラスの 黄変を効率的に防止することができない場合があり、一方、かかる重量比率が 15を 超えると、抗菌性ガラスが白濁したり、あるいは、逆に、黄変したりする場合があるた めである。
[0031] また、 CaOは、ガラス組成 1における必須構成成分であり、基本的に網目修飾酸化 物としての機能を果たすとともに、抗菌性ガラスを作成する際の、加熱温度を低下さ せたり、 ZnOとともに、黄変防止機能を発揮したりすることができる。
ここで、 CaOの含有量を全体量に対して、 0. 1〜15重量%の範囲内の値とするこ とが好ましい。この理由は、力かる CaOの含有量が 0. 1重量%未満となると黄変防止 機能や溶融温度低下効果が発揮されないおそれがあるためであり、一方、力かる Ca Oの含有量が 15重量%を超えると、抗菌性ガラスの透明性が逆に低下するおそれが あるためである。
[0032] また、 B Oは、ガラス組成 1における必須構成成分であり、基本的に網目形成酸化
2 3
物としての機能を果たす力 その他に、本発明においては抗菌性ガラスの透明性改 善機能や Agイオンの均一な放出性にも関与する。
ここで、 B Oの含有量を 0. 1〜15重量%の範囲内の値が好ましい。この理由は、
2 3
かかる B Oの含有量が 0. 1重量%未満となると、抗菌性ガラスの透明性が低下した
2 3
り、あるいは Agイオンの均一な放出性や機械的強度が乏しくなるおそれがあるため であり、一方、かかる B Oの含有量が 15重量%を超えると、抗菌性ガラスが黄変しや
2 3
すくなったり、また硬化性に乏しくなり機械的強度が低下するおそれがある。
[0033] なお、ガラス組成 1の任意構成成分として、 CeO、 MgO、 Na 0、 Al O、 K 0、 Si
2 2 2 3 2
O、 BaO等を、本発明の目的の範囲内で所定量添加することも好ましい。
2
[0034] (5)ガラス組成 2
また、抗菌性ガラスのガラス組成として、 ZnOを実質的に含まない代りに Ag 0、 Ca
2
0、 B Oおよび P Oを含み、かつ、全体量を 100重量%としたときに、 Ag Oの含有
2 3 2 5 2 量を 0. 2〜5重量%の範囲内の値、 CaOの含有量を 15〜50重量%の範囲内の値、 B Oの含有量を 0. 1〜15重量%の範囲内の値、および P Oの含有量を 30〜80重
2 3 2 5
量%の範囲内の値とするとともに、 CaOZAg Oの重量比率を 5〜15の範囲内の値
2
とすることが好ましい。 [0035] ここで、 Ag Oに関しては、ガラス組成 1と同様の内容とすることができる。したがって
2
、 Ag Oの含有量を、全体量に対して、 0. 2〜5重量%の範囲内の値とすることが好
2
ましい。
また、抗菌性ガラスに CaOを用いることにより、基本的に網目修飾酸化物としての 機能を果たすとともに、抗菌性ガラスを作成する際の、加熱温度を低下させたり、黄 変防止機能を発揮させたりすることができる。
すなわち、 CaOの含有量を全体量に対して、 15〜50重量%の範囲内の値とするこ とが好ましい。この理由は、力かる CaOの含有量が 15重量%未満となると、 ZnOを実 質的に含んで!/、な 、ために、黄変防止機能や溶融温度低下効果が発揮されな!、場 合があるためであり、一方、力かる CaOの含有量が 50重量%を超えると、抗菌性ガラ スの透明性が逆に低下するおそれがあるためである。
なお、 CaOの含有量を Ag Oの含有量を考慮して定めることが好ましぐ具体的に
2
は、 CaO/Ag Oで表される重量比率を 5〜 15の範囲内の値とすることが好ましい。
2
また、 B Oおよび P Oに関しては、ガラス組成 1と同様の内容とすることができる。
2 3 2 5
さらに、 CeO、 MgO、 Na 0、 Al O、 K 0、 SiO、 BaO等の成分についても、ガラ
2 2 2 3 2 2
ス組成 1と同様の内容とすることができる。
[0036] (6)表面処理
また、抗菌性ガラスの表面に、カップリング剤処理が施してあることが好ましい。この 理由は、カップリング剤処理により、より優れた耐黄変性、透明性、および分散性が得 られ、かつ、抗菌性繊維の成形装置の種類によらず、さらに優れた表面平滑性を得 ることができるためである。
ここで、カップリング剤としては、シランカップリング剤、アルミニウムカップリング剤、 チタンカップリング剤等が使用可能である力 抗菌性ガラスに対して、特に優れた密 着力が得られることよりシランカップリング剤を使用することが好ましい。
[0037] また、好ましいシランカップリング剤の種類としては、 γ—ァミノプロピルトリメトキシシ ラン、 γ—ァミノプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリメトキシシラ ン、 γ—グリシドキシプロピルトリエトキシシラン、 γ—メルカプトプロピルトリメトキシシ ラン、 Ύ メルカプトプロピルトリエトキシシラン、ォクチルトリメトキシシラン、ォクチルト リエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン等の一種単独ま たは二種以上の組合せが挙げられる。
[0038] 特に、ォクチルトリメトキシシラン、ォクチルトリエトキシシラン、デシルトリメトキシシラ ン、デシルトリエトキシシラン等の、炭素数 5以上の長鎖アルキル基を疎水性基として 有するシランカップリング剤により表面処理してあることが好ましい。
このように表面処理した抗菌性ガラスを用いることにより、抗菌性ガラスの表面を疎 水性とすることができ、製造時の平均粒径等の制御が容易になるばかりか、透明榭 脂に対する優れた分散性を得ることができる。したがって、より優れた表面平滑性や 透明性、さらには優れた機械的特性を有する抗菌性繊維を安定的に得ることができ る。
[0039] なお、カップリング剤の処理量を、抗菌性ガラス 100重量部あたり、 0. 01〜30重量 部の範囲内の値とすることが好ましい。
この理由は、このようなカップリング剤の処理量であれば、所定の透明性や分散性 等が得られる一方、経済的にも有利なためである。
[0040] (7)溶出速度
また、抗菌性ガラス力ゝらの抗菌性イオンの溶出速度を 1 X 102〜1 X 105mg/Kg/ 24Hrの範囲内の値とすることが好ましい。
この理由は、力かる抗菌性イオンの溶出速度が 1 X 102mgZKgZ24Hr未満の値 になると、抗菌性が著しく低下する場合があり、一方、力かる抗菌性イオンの溶出速 度が 1 X 105mgZKgZ24Hrを超えると、長時間にわたって抗菌効果を発揮するこ とが困難となったり、あるいは得られる抗菌性繊維の透明性が低下したりする場合が 生じるためである。したがって、力かる抗菌性と透明性等とのバランスがより好ましい 観点から、抗菌性ガラス力もの抗菌性イオンの溶出速度を 1 X 103〜5 X 104mg/K g/24Hrの範囲内の値とすることがより好ましぐ 3 X 103〜1 X 104mg/Kg/24Hr の範囲内の値とすることがさらに好ましい。なお、力かる抗菌性イオンの溶出速度は、 後述する実施例 1に記載した方法に準じて測定することができる。
[0041] (8)添加量
また、抗菌性ガラスの添加量を、全体量に対して、 0. 1〜: LO重量%の範囲で含む ことを特徴とする。
この理由は、抗菌性ガラスの添加量力 0. 1重量%未満となると抗菌性が低下する 場合があり、一方、カゝかる抗菌性ガラスの添加量が、 10重量%を超えると、抗菌性繊 維の機械的強度が低下したり、均一に混合することが困難となったり、あるいは得ら れる抗菌性繊維の透明性が低下する場合が生じるためである。
したがって、力かる抗菌性と機械的強度等とのバランスがより好ましい観点から、抗 菌性ガラスの添カ卩量を、全体量に対して、 0. 5〜8重量%の範囲内の値とするのがよ り好ましぐ 1〜5重量%の範囲内の値とすることがさらに好ましい。
[0042] 2.無機粒子
(1)種類
無機粒子の種類は特に制限されるものではないが、例えば、凝集シリカ粒子 (乾式 シリカ、湿式シリカ)、酸化チタン、酸化亜鉛、酸ィ匕アルミニウム、酸ィ匕ジルコニウム、 炭酸カルシウム、シラスバルーン、石英粒子、ガラスバルーン等の一種単独又は二 種以上の組合せが挙げられる。
特に、これらのうち、凝集シリカ粒子(乾式シリカ、湿式シリカ)あるいは、その水分散 体であるコロダイダルシリカは、一次平均粒径が小さぐ抗菌性ガラスに対する分散 性が極めて優れているために好ましい無機粒子である。すなわち、このような凝集シ リカ粒子は、凝集状態がほぐれながら分散するため、抗菌性ガラスの周囲に付着して 、透明榭脂中であっても、当該抗菌性ガラスを均一に分散させることができる。
したがって、無機粒子として、下式(1)で定義される凝集性度 (P)が、 100〜1000 0の範囲の凝集シリカ粒子を使用することが好ましぐ 500〜5000の範囲の凝集シリ 力粒子を使用することがより好ましいと言える。
P = B/A (1)
(式(1)中、 Aは、シリカ粒子をスラリー状態とし、湿式粉砕機を用いて限界粉砕した 場合に測定される一次粒子としての平均体積粒径 (D50)であり、 Bは、シリカ粒子を 乾燥状態とし、乾式粉砕機を用いて限界粉砕した場合の二次粒子としての平均体積 粒径(D50)である。 )
[0043] (2)平均粒径 また、無機粒子が基本的に凝集していない場合にはその平均粒径 (D50)を、無機 粒子が凝集している場合には、二次粒子としての平均粒径 (D50)を 1〜15 mの範 囲内の値とすることを特徴とする。
すなわち、無機粒子の累積体積の全体量を 100%としたときに、累積体積が 50% になるときの粒径を D50 ( μ m)と定義し、その値を平均粒径として、所定範囲内の値 に制御するものである。
この理由は、力かる無機粒子の平均粒径 (D50)が 1 μ m未満の値となると、抗菌性 ガラスの分散性が乏しくなったり、光散乱が生じやすくなつたりして、透明性が低下し たりするためである。一方、カゝかる無機粒子の平均粒径 (D50)が 15 /z mを超えると、 透明榭脂中への混合分散や取扱いが同様に困難となったり、あるいは極細の抗菌 性繊維を製造する際に、表面平滑性や透明性、さらには機械的強度が著しく低下し たりする場合があるためである。
したがって、無機粒子の平均粒径(D50)を 5〜12 μ mの範囲内の値とすることがよ り好ましぐ 6〜: LO /z mの範囲内の値とすることがさらに好ましい。
なお、無機粒子の平均粒径 (あるいは二次粒子としての無機粒子)の平均粒径は、 レーザ方式のパーティクルカウンターや沈降式の粒度分布計を用いて測定すること ができる。また、これらの電子顕微鏡写真から画像処理することによつても、無機粒子 の平均粒径 (あるいは二次粒子としての無機粒子)を算出することができる。
また、無機粒子が基本的に凝集している場合には、それをほぐした状態での一次 粒子の平均粒径を 0. 005〜0. 5 /z mの範囲内の値とすることが好ましい。
この理由は、力かる一次粒子としての無機粒子の平均粒径(D50)が 0. 005 未満の値となると、抗菌性ガラスの分散性を向上させる効果が乏しくなったり、光散乱 が生じやすくなつたりして、透明性が低下したりするためである。
一方、カゝかる一次粒子としての無機粒子の平均粒径 (D50)が 0. 5 mを超えると 、同様に、抗菌性ガラスの分散性を向上させる効果が乏しくなったり、極細の抗菌性 繊維を製造する際に、透明榭脂中への混合分散や取扱いが同様に困難となったり、 表面平滑性や透明性、さらには機械的強度が低下したりする場合があるためである。 したがって、一次粒子としての無機粒子の平均粒径(D50)を 0. 01-0. の 範囲内の値とすることがより好ましぐ 0. 02-0. 1 mの範囲内の値とすることがさら に好ましい。
[0045] (3)添加量
また、無機粒子の添加量を、抗菌性ガラス 100重量部に対して、 0. 1〜50重量部 の範囲で含むことを特徴とする。
この理由は、カゝかる無機粒子の添加量が 0. 1重量部未満となると、抗菌性ガラスの 分散性が著しく乏しくなるためである。一方、力かる無機粒子の添加量が 50重量部 を超えると、抗菌性繊維の機械的強度が低下したり、均一に混合することが困難とな つたり、あるいは得られる抗菌性繊維の透明性が低下したりする場合が生じるためで ある。
したがって、力かる抗菌性ガラスの分散性と機械的強度等とのバランスがより好まし い観点から、無機粒子の添加量を、抗菌性ガラス 100重量部に対して、 0. 5〜30重 量部の範囲内の値とするのがより好ましぐ 1〜10重量部の範囲内の値とすることが さらに好ましい。
[0046] (4)体積固有抵抗
また、無機粒子の体積固有抵抗を 1 X 105〜1 X 109 Ω 'cmの範囲内の値とすること が好ましい。
この理由は、カゝかる無機粒子の体積固有抵抗が 1 X 105 Ω 'cm未満となると、抗菌 性繊維の体積固有抵抗の調整が困難になって、抗菌性繊維に添加した場合に、機 械的強度が低下したり、均一に混合することが困難となったり、あるいは得られる抗菌 性繊維の透明性が低下したりする場合が生じるためである。一方、力かる無機粒子 の体積固有抵抗が 1 X 109 Ω 'cmを超えると、抗菌性繊維を製造する際に、静電気 が発生しやすくなつて、紡糸速度を著しく遅くしなければならない場合があるためで ある。
したがって、かかる抗菌性繊維の機械的強度等と、静電気の発生性等とのバランス 力 り好ましい観点から、無機粒子の体積固有抵抗を 5 X 105〜5 X 108 Ω 'cmの範 囲内の値とするのがより好ましぐ 1 X 106〜1 X 108'cmの範囲内の値とすることがさ らに好ましい。 なお、無機粒子の体積固有抵抗は、上述したシランカップリング剤、ァノレミニゥムカ ップリング剤、及びチタンカップリング剤等の表面処理剤を用いることによって、所定 範囲に制御することができる。
[0047] 3.透明榭脂
抗菌性繊維を構成するにあたり、抗菌性ガラスを透明榭脂中に、添加混合すること が好ましい。
好ましい透明榭脂としては、ポリエチレン榭脂、ポリプロピレン榭脂、ポリエチレンテ レフタレート樹月旨、ポリブチレンテレフタレート榭月旨、ポリカーボネート榭 S旨、スチレン 系榭脂、塩ィ匕ビユリデン榭脂、酢酸ビュル系榭脂、ポリビュルアルコール榭脂、フッ 素系榭脂、ポリアリーレン榭脂、アクリル系榭脂、エポキシ系榭脂、塩化ビュル榭脂、 アイオノマー榭脂、ポリアミド系榭脂、ポリアセタール系榭脂、シリコーン榭脂等の一 種または二種以上の組合せを挙げることができる。
また、このような透明樹脂のうち、繊維用榭脂として好適なことから、具体的に 80〜 100%の下記式で定義される可視光透過率を有するものが好ましぐ 90〜100%の 可視光透過率を有するものがより好まし ヽ。
なお、透明榭脂に対する透過光量および入射光量は吸光光度計や光量計 (パヮ 一メータ)を用いて測定することができる。その測定の際、透明榭脂を、例えば厚さ 1 mmの板状としたものを使用することができる。
可視光透過率(%) =透過光量 Z入射光量 X 100
[0048] 4.抗菌性繊維
(1)直径
抗菌性繊維の直径を 10〜30 mの範囲内の値とすることを特徴とする。 この理由は、力かる抗菌性繊維の直径が 10 m未満の値になると、抗菌性繊維の 機械的強度が低下したり、安定的な製造が困難となったりするためである。一方、か 力る抗菌性繊維の直径が 30 mを超えると、抗菌性繊維の使用用途が過度に制限 されるためである。
したがって、抗菌性繊維の直径を 12〜25 μ mの範囲内の値とすることがより好まし く、 15〜20 /ζ πιの範囲内の値とすることがさらに好ましい。 なお、このような抗菌性繊維の直径については、電子顕微鏡やマイクロメータ、ある いはノギスによって測定することができる。
[0049] (2)可視光透過率
また、抗菌性繊維における可視光透過率を 90%以上の値とすることが好ま 、。 この理由は、このように抗菌性繊維の可視光透過率の値を制限することにより、より 優れた表面平滑性や透明性、さらには機械的特性を有する抗菌性繊維を安定的に 得ることができるためである。
すなわち、力かる抗菌性繊維の可視光透過率が 90%未満となると、抗菌性繊維に 対する着色性等が著しく低下したり、風合いが大きく変化したりする場合が生じるた めである。
したがって、かかる抗菌性繊維の機械的強度等と、静電気発生性とのバランスがよ り好ましい観点から、抗菌性繊維の可視光透過率を 95%以上の値とするのがより好 ましぐ 98%以上の値とすることがさらに好ましい。
なお、抗菌性繊維における可視光透過率についても、上述した透明樹脂と同様に 柳』定することができる。
[0050] (3)添加剤
抗菌性繊維中に、添加剤を含むことが好ましい。このような添加剤としては、着色剤 、帯電防止剤、酸化防止剤、流動化剤、粘度調整剤、金属粒子、架橋剤、難燃化剤 等の一種または二種以上の組合せを挙げることができる。
特に、本発明の抗菌性繊維の場合、親水性の抗菌性ガラスや無機粒子を所定量 含むためと思われる力 それらを添加しない場合と比較して、着色性に優れていると いう特徴がある。
[0051] [第 2の実施形態]
第 2の実施形態は、透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤として の無機粒子と、を含む抗菌性繊維の製造方法において、下記工程 (A)〜(D)を含 むことを特徴とする抗菌性繊維の製造方法である。
(A)抗菌性イオン放出物質を含むガラス原料を溶融し、さらに冷却してガラス体とす る工程 (B)得られたガラス体を、粉砕機を用いて、抗菌性ガラスの分散剤としての平均粒径 力^〜 15 mの無機粒子を添カ卩した状態で、平均粒径が 0. 1〜10 mの抗菌性ガ ラスとし、無機粒子添加の抗菌性ガラスを製造する工程
(C)得られた無機粒子添加の抗菌性ガラスを、透明榭脂中に分散させる工程
(D)紡糸して、直径が 10〜30 mの抗菌性繊維とする工程
[0052] (1)ガラス原材料の混合工程、溶融工程、及び冷却工程 (工程 A)
Ag 0、 ZnO、 CaO、 B Oおよび P O等を含むガラス原材料(ガラス組成 1)や、 Zn
2 2 3 2 5
Oを実質的に含まない代りに Ag 0、 CaO、 B Oおよび P O等を含むガラス原材料(
2 2 3 2 5
ガラス組成 2)を正確に秤量した後、均一に混合する工程である。そして、これらのガ ラス原材料を混合するに際して、万能攪拌機 (ブラネタリーミキサ)、アルミナ磁器潰ら い機、ボールミル、プロペラミキサ等の混合機械 (ミキサ)を使用することが好ましい。 例えば、万能攪拌機を用いた場合、公転数を 100rpm、自転数を 250rpmとし、 10 分〜 3時間の条件で、ガラス原材料を攪拌混合することが好ま ヽ。
[0053] 次いで、均一に混合したガラス原材料を、一例として、ガラス溶融炉を用い、溶融さ せて、ガラス融液を作成する。ここで、溶融条件としては、例えば、溶融温度を 1100 〜1500°C、溶融時間を 1〜8時間の範囲内の値とすることが好ましい。このような溶 融条件であれば、ガラス融液の生産効率を高めるとともに、製造時における抗菌性ガ ラスの黄変性を可及的に少なくすることができるためである。
なお、このようなガラス融液を得た後、それを流動水中に注入して冷却し、水粉砕を 兼ねてガラス体とすることが好ま 、。
[0054] (2)抗菌性ガラスの粉砕工程 (工程 B)
得られたガラス体を粉砕し、多面体であって、所定の平均粒径を有する抗菌性ガラ スとする工程である。
具体的には、以下に示すような粗粉砕、中粉砕、および微粉砕を行う工程である。 このように実施すると、均一な平均粒径を有する抗菌性ガラスを効率的に得ることが できる。ただし、用途によっては平均粒径をより細力べ制御するために、粉砕工程の 後、分級工程をさらに設けて、ふるい処理等を実施することも好ましい。
[0055] (2)— 1 粗粉砕 粗粉砕は、平均粒径が 10mm程度になるように、ガラス体を粉砕する工程である。 かかる粗粉砕は、溶融状態のガラス融液をガラス体とする際に水砕したり、無定形の ガラス体を素手やノヽンマー等を用いて粉砕したりして、所定の平均粒径とする工程で ある。
なお、粗粉砕後の抗菌性ガラスは、通常、角の無い塊状であることが電子顕微鏡写 真から確認されている。
[0056] (2) - 2 中粉砕
中粉砕は、平均粒径が lmm程度になるように、粗粉砕後の抗菌性ガラスを粉砕す る工程である。
より具体的には、例えば、ジョークラッシャーを用いて、平均粒径が 10mm程度の抗 菌性ガラスを、平均粒径が 5mm程度の抗菌性ガラスとし、次いで、回転ウスや回転口 ール(ロールクラッシャ一)を用いて、平均粒径が lmm程度の抗菌性ガラスとすること が好ましい。この理由は、このように多段階で中粉砕を行なうことにより、粒径が過度 に小さい抗菌性ガラスが生じることなぐ所定粒径を有する抗菌性ガラスを効果的に 得ることができるためである。
なお、中粉砕後の抗菌性ガラスは、角を有する多面体であることが電子顕微鏡写 真から確認されている。
[0057] (2) - 3 微粉砕
微粉砕は、平均粒径が 0. 1〜: LO /z m〖こなるよう〖こ、平均粒径が 1〜 15 mの無機 粒子を添加した状態で、中粉砕後の抗菌性ガラスを粉砕する工程である。かかる微 粉砕のためには、例えば、回転ウス、回転ロール(ロールクラッシャ—)、振動ミル、ボ ールミル、遊星ミル、サンドミル、あるいはジェットミルを用いることができる。
これらの粉砕機のうち、特に、ボールミル、遊星ミル及びジェットミルを用いることが 好ましい。
この理由は、ボールミルや遊星ミル等を用いることにより、適度なせん断力を付与す ることができ、粒径が過度に小さい抗菌性ガラスが生じることなぐ所定粒径を有する 多面体の抗菌性ガラスが効果的に得られるためである。
ここで、ボールミルとは、容器内に、粉砕メディアと、被粉砕物と、溶媒とを仕込み、 湿式状態で、容器を回転させて被粉砕物を粉砕する粉砕機の総称である。また、遊 星ミルとは、図 2や図 3に示すように、公転軸 5と自転軸 6の方向が共に鉛直方向であ る粉砕容器 2に被粉砕物 3を仕込み、それを回転させて粉砕を行う粉砕機の総称で ある。さらに、ジェットミルとは、粉砕メディアを用いることなぐ容器内で、被粉砕物同 士を衝突させて、粉砕を行う粉砕機の総称である。
より具体的には、ボールミルや遊星ミルを用いた場合、アルミナボールを粉砕メディ ァ 4として、容器を 30〜: LOOrpmで回転させ、中粉砕後の抗菌性ガラスを 5〜50時間 の間処理することが好ましい。また、ジェットミルを用いた場合、容器内で加速させて 、 0. 61〜: L 22MPa (6〜12KgfZcm2)の圧力で、中粉砕後の抗菌性ガラス同士 を衝突させることが好ま 、。
なお、ボールミルやジェットミル等を用いて微粉砕した後の抗菌性ガラスは、中粉砕 後の抗菌性ガラスよりも多くの角を有する多面体であって、平均粒径 (D50)や比表 面積を所定範囲に調整しやすいことが電子顕微鏡写真および粒度分布測定により 確認されている。
[0058] また、遊星ミル等を用いて微粉砕する場合、実質的にドライ状態 (例えば、相対湿 度が 20%Rh以下)で行うことが好まし 、。
この理由は、遊星ミル等にサイクロン等の分級装置を取り付けて、抗菌性ガラスを凝 集させることなぐ循環させることができるためである。
したがって、循環回数を制御することによって、抗菌性ガラスにおける平均粒径や 粒度分布を所望範囲に容易に調整することができるとともに、微粉砕後の乾燥工程 を省略することが可能となる。
一方、所定範囲以下の抗菌性ガラスについては、乾燥状態であれば、バグフィルタ 一を用いて、容易に除去することができるためである。したがって、抗菌性ガラスにお ける平均粒径や粒度分布の調整が、ますます容易となる。
[0059] (3)抗菌性繊維の製造工程 (工程 C)
得られた抗菌性ガラスを、透明樹脂に分散させるとともに、所定形状に紡糸して、抗 菌性繊維とする工程である。
まず、得られた多面体の抗菌性ガラスを、透明樹脂に分散させる方法については 特に制限されるものではないが、例えば、撹拌混合法、練り込み法、塗布法、拡散法 等を採ることができる。例えば、撹拌混合法の場合、室温(25°C)にて、 1〜20分撹 拌混合することが好ましい。また、抗菌性ガラスを混合する際に、プロペラミキサゃ V プレンダ、あるいは-一ダ等の混合機械を使用することが好ましい。
[0060] 次いで、所定形状に紡糸するに際して使用する成形装置の種類は特に制限される ものではないが、例えば、 BMC (バルタモールディングコンパウンド)射出成形装置、 SMC (シートモールディングコンパウンド)圧縮成形装置、 BMC (バルタモールディ ングコンパゥンド)圧縮成形装置、またはプレス装置を使用することが好ましい。
この理由は、このような成形装置を用いることにより、優れた表面平滑性を有する抗 菌性繊維を効率的に得ることができるためである。
実施例
[0061] 以下、本発明を実施例によってさらに詳細に説明する。但し、以下の説明は本発明 を例示的に示すものであり、本発明はこれらの記載に制限されるものではない。
[0062] [実施例 1]
1.溶融工程 (工程 A)
抗菌性ガラス (A組成)の全体量を 100重量%としたときに、 P Oの組成比が 50重
2 5
量%、 CaOの組成比が 5重量%、 Na Oの組成比が 1. 5重量%、 B Oの組成比が 1
2 2 3
0重量%、 Ag Oの組成比が 3重量%、 CeOの組成比が 0. 5重量%、 ZnOの組成比
2 2
が 30重量%となるように、それぞれのガラス原料を、万能混合機を用いて、回転数 2 50rpm、 30分の条件で、均一に混合するまで攪拌した。次いで、溶融炉を用いて、 1280°C、 3時間半の条件でガラス原料を加熱して、ガラス融液を作成した。
[0063] 2.粉砕工程 (工程 B)
次いで、ガラス溶融炉から取り出したガラス融液を、 25°Cの流動水中に流し込むこ とにより、ガラス体にするとともに水砕し、平均粒子径が約 10mmの粗粉砕ガラスとし た。なお、この段階の粗粉砕ガラスを、光学顕微鏡で観察し、崩れやすい塊状であつ て、角や面が無いことを確認した。
次いで、ジョークラッシャーを用いて、回転数 120rpmで、粗粉砕ガラスをホッパー カゝら自重を利用して供給しながら、一次中粉砕 (平均粒子径約 1000 μ m)を実施し た。
[0064] 次いで、回転ロールを用い、ギャップ lmm、回転数 30rpmの条件と、ギャップ 0. 2 5mm,回転数 30rpmの条件と、で、一次中粉砕した抗菌性ガラスを、連続的に二次 中粉枠した。
なお、二次中粉砕した後の粗粉砕ガラスを、電子顕微鏡で観察し、少なくとも 50重 量%以上力 角や面のある多面体であることを確認した。
[0065] 次 、で、シリカ粒子(一次平均粒径: 15nm、二次平均粒径: 7 m)を、抗菌性ガラ ス 100重量部に対して、 7重量部の割合となるように添加した。その後、粉砕機として 、サイクロン装置及びバグフィルターを備えた遊星ミルを用いて、以下の処理条件で 、微粉砕処理を実施した。次いで、微粉砕処理後、粉砕メディアを分離させて取り除 き、シリカ粒子が周囲に付着した抗菌性ガラスを得た。
すなわち、平均 (D50)力 S1. 2 /ζ πι、 D90力 2. O ^ m, it表 ® 力 S88000cm2 /cm3である抗菌性ガラスを得た。なお、この段階後の抗菌性ガラスを、電子顕微鏡で 観察し、少なくとも 95重量%以上が、角や面のある多面体であることを確認した。また 、多面体の抗菌性ガラスの面に、シリカ粒子が付着していることを確認した。
ミル容量: 4リットル
粉砕メディアの直径: 20mm
粉砕メディアの種類:ァノレミナボーノレ
粉砕メディアの量: 4kg
抗菌性ガラス: 1kg
回転数: 56rpm
処理時間: 15時間
[0066] 3.抗菌性繊維の製造工程 (工程 C)
得られた多面体の抗菌性ガラスを、ポリプロピレン (PP)榭脂中に、ニーダを用いて 、室温で、 25KgZlO分の条件で、添加量が、全体量の 0. 3重量%になるように混 合した。次いで、 BMC (バルタモールディングコンパウンド)射出成形装置を用いて、 シリンダー温度 190°Cの条件で、直径 10 mの繊維を紡糸した。
[0067] 4.抗菌性繊維の評価 表 1に示す抗菌性ガラス及び抗菌性繊維につき、以下の評価に供した。
[0068] (1)溶出量評価
得られた抗菌性ガラス lOOgを、 500mlの蒸留水(20°C)中に浸漬し、振とう機を用 いて 24時間振とうした。次いで、遠心分離器を用いて Agイオン溶出液を分離後、さ らにろ紙(5C)でろ過して、測定試料とした。そして、測定試料中の Agイオンを、 ICP 発光分光分析法により測定し、 Agイオン溶出量 (mgZKgZ24Hr)を算出した。得 られた結果を表 2に示す。
[0069] (2)紡糸性評価
抗菌性繊維を製造する際の紡糸性を、以下の基準で評価した。得られた結果を表 2に示す。
◎: 60分以上の連続紡糸が可能である。
〇: 10分以上の連続紡糸が可能である。
△: 1分以上の連続紡糸が可能である。
X:連続紡糸は 1分未満である。
[0070] (3)透明性評価
光学顕微鏡を使用して抗菌性繊維を観察し、その透明性を以下の基準で判断した
。得られた結果を表 2に示す。
◎:無色透明である。
〇:一部不透明感ある。
△:一部白色感がある。
X:完全に白色である。
[0071] (4)凝集防止性評価
電子顕微鏡を用いて抗菌性繊維の断面を観察し、抗菌性ガラスの混合状態及び 表面状態から、抗菌性ガラスの凝集防止性を、以下の基準で判断した。得られた結 果を表 2に示す。
◎:ほとんど凝集物が観察されず、抗菌性繊維の表面は平滑である。
〇:わず力な凝集物が観察されるが、抗菌性繊維の表面はほとんど平滑である。
△:少々の凝集物が観察され、抗菌性繊維の表面に少々凹凸が観察される。 X :多くの凝集物が観察される。
[0072] (5)黄変性評価
得られた抗菌性繊維に対して、紫外線照射装置 (スガ試験機 (株)製、サンシャイン ゥェザォメータ)を用いて連続的に紫外線 (ブラックパネル温度: 63°C、照度:波長 3 00〜700nmの光において、 255W/m2)を照射し、抗菌性繊維の黄変性を以下の 基準で判断した。なお、抗菌性繊維の黄変性は、光学顕微鏡を使用して観察した。 得られた結果を表 2に示す。
◎: 100時間経過後に無色透明である。
〇: 50時間経過後に無色透明である。
△: 10時間経過後に無色透明である。
X: 10時間経過後に黄変している。
[0073] (6)抗菌性評価 1〜2
10gの抗菌性繊維を抗菌性評価の試験片とした。一方、試験菌を、 Trvpticase Sov Agar (BBL)の寒天平板培地で、 35°C、 24時間培養し、発育集落を 1Z500 濃度の普通ブイヨン培地 (栄研ィ匕学 (株)製)に懸濁させて、約 1 X 106CFU/mlに なるように調整した。
次いで、試験片としての抗菌性繊維に、昔色ブドウ球菌(StaOhylococcus aureus IFO # 12732)の糨濁液 0. 5mlおよび大腸菌(Escherichia coli ATCC # 8739)の糨濁液 0. 5mlをそれぞれ均一に接触させ、さらに、ポリエチレン製フィル ム (滅菌)を載せて、それぞれフィルムカバー法の測定サンプルとした。
次いで、測定サンプルを、湿度 95%、温度 35°C、 24時間の条件で、恒温槽に載 置し、試験前の菌数 (発育集落)と試験後の菌数 (発育集落)とをそれぞれ測定し、以 下の基準で抗菌性 1 (黄色ブドウ球菌)と、抗菌性 2 (大腸菌)とを評価した。
なお、試験前の菌数 (発育集落)は、黄色ブドウ球菌および大腸菌とも、それぞれ 2 . 6 105(個7試験片)でぁった。それぞれ得られた結果を表 2に示す。
◎:試験後の菌数力 試験前の菌数の 1Z10000未満である。
〇:試験後の菌数力 試験前の菌数の 1Z10000以上〜 1Z1000未満である。
△:試験後の菌数力 試験前の菌数の lZiooo以上〜 lZioo未満である。 X:試験後の菌数力 試験前の菌数の 1Z100以上である。
[0074] [実施例 2〜4]
実施例 2〜4においては、分散剤としてのシリカ粒子(一次平均粒径: 15nm、二次 平均粒径:7 m)の添加量を、抗菌性ガラス 100重量部に対して、 5重量部、 10重 量部、及び 12重量部となるように変えたほかは、実施例 1と同様に抗菌性ガラスを得 た後、抗菌性繊維を製造して評価した。
なお、実施例 2〜4においても、抗菌性ガラスを作成した段階で電子顕微鏡観察し 、少なくとも 95重量%以上力 角や面のある多面体であることを確認した。
[0075] [実施例 5]
実施例 5においては、実施例 1と同様のガラス組成 (A組成)を用いるとともに、粉砕 機として、ジェットミルを用い、 0. 82MPaの圧力下において、 5Kg/Hrの投入量で、 微粉砕処理を実施した。その結果、平均粒径 (D50)が 2. 5 /ζ πι、比表面積が 4700 Ocm2/cm3である抗菌性ガラスを得た。
なお、実施例 5においても、この段階後の抗菌性ガラスを、電子顕微鏡で観察し、 少なくとも 95重量%以上力 角や面のある多面体であることを確認した。
[0076] [実施例 6]
実施例 6においては、実施例 1と同様のガラス組成 (A組成)を用い、ジェットミルの 粉砕条件を 0. 82MPaの圧力で、 30KgZHrの投入量に変えて、平均粒径(D50) 力 9 /ζ πι、比表面積が 23000cm2/cm3である抗菌性ガラスを得た後、実施例 1と 同様に抗菌性繊維を製造して評価した。但し、抗菌性繊維の平均直径を 30 mとし た。
[0077] [実施例 7]
実施例 7においては、抗菌性ガラスの組成を変えた以外は、実施例 1と同様に抗菌 性ガラスを得た後、抗菌性繊維を製造して評価した。すなわち、全体量に対して、 P
2
Oの組成比が 59. 6重量%、 CaOの組成比が 26. 3重量%、 Na Oの組成比が 0. 6
5 2
重量%、 B Oの組成比が 10重量%、 Ag Oの組成比が 3重量%、 CeOの組成比が
2 3 2 2
0. 5重量%となるように構成した以外は、実施例 1と同様に、多面体であって、平均 粒径(D50)が 3. 2 m、比表面積が約 35000cm2/cm3である抗菌性ガラスを得た 後、抗菌性繊維を製造して評価した。
[0078] [比較例 1]
比較例 1においては、実施例 1と同様のガラス組成 (A組成)を用い、サイクロン装置 及びバグフィルターを備えた遊星ミルの処理時間を 3時間と短くして、平均粒径 (D5 0)が 15 mである抗菌性ガラスを得た。しかしながら、実施例 1と同様に、直径 10 mの抗菌性繊維を製造しょうとしたが、抗菌性ガラスの平均粒径が大きすぎて紡糸で きなカゝつた。そこで、直径 50 mの抗菌性繊維を製造し、実施例 1と同様に評価を行 つた o
[0079] [比較例 2]
比較例 2においては、実施例 1と異なるガラス組成 (B組成)を用いるとともに、サイク ロン装置及びバグフィルターを備えた遊星ミルを用いて、処理時間を 3時間と短くして 、平均粒径 (D50)が 15 mである抗菌性ガラスを得た。しかしながら、実施例 1と同 様に、直径 10 mの抗菌性繊維を製造しょうとしたが、抗菌性ガラスの平均粒径が 大きすぎて紡糸できな力つた。そこで直径 50 /z mの抗菌性繊維を製造し、実施例 1と 同様に評価を行った。
[0080] [比較例 3]
比較例 3においては、分散剤としてのシリカ粒子を添加しな力つたほかは、実施例 1 と同様に抗菌性ガラスを得ようとした。し力しながら、抗菌性ガラスがボールミルの内 壁に付着してしまい、外に取り出すことができず、そこで実験を中止した。
[0081] [比較例 4]
比較例 4においては、湿式ボールミルを用いて、ミリング時間を 100時間以上に延 ばして、平均粒径 (D50)が 10 m以下の抗菌性ガラスを得ようとした。しかしながら 、抗菌性ガラスがボールミルの内壁に付着してしまい、外に取り出すことが困難であ つた。また、取出した抗菌性ガラスを加熱乾燥させたところ、抗菌性ガラスが凝集して 、大粒子となったため、そこで実験を中止した。
[0082] [表 1] ガラス 菌性ガラス シリカ粒子 抗菌性繊維 組成 粉砕機 平均粒径 比表面積 添加量 平均粒径 添加量 直径
(um) (cmVcm") (重量!) (um) (重量部) (um) 実施例 1 A 遊星ミル 1.2 88000 0.3 7 10 実施例 2 A 遊星ミル 2.0 59000 0.3 5 10 実施例 3 A 遊星ミル 1.2 89000 0.3 10 10 実施例 4 A 遊星ミル 1.1 93000 0.3 12 10 実施例 5 A ジェットミル 2.5 47000 0.3 7 10 実施例 6 A ジエツ S 10.9 23000 0.3 7 30 実施例 7 B ポールミル 3.2 35000 0.3 7 10 比較例 1 A 遊星ミル 15.0 11000 0.3 無し 無し 50 比較例 2 B 遊星ミル 15.0 10000 0.3 無し 無し 50 比較例 3 A ポールミル 評価不可 評価不可 評価不可 比較例 4 A ポールミル 評価不可 評価不可 評価不可
[0083] [表 2]
Figure imgf000031_0001
産業上の利用可能性
[0084] 以上説明したように、本発明の抗菌性繊維によれば、抗菌性ガラスの分散剤として の無機粒子を併用するとともに、抗菌性ガラスの平均粒径や添加量等を所定範囲に 制御することによって、直径が 10〜30 m程度の抗菌性繊維を製造する際に使用 できる抗菌性ガラスが安定的に得られるようになった。
したがって、本発明によれば、遊星ミルやジェットミル等の粉砕機、特に乾式粉砕機 を用いることにより、分散性に優れるとともに、製造安定性等に優れた抗菌性ガラスが 効率的に得られるようになり、ひいては、優れた表面平滑性や透明性が得られる抗菌 性繊維が効率的かつ安定的に得られるようになった。
また、本発明の抗菌性繊維によれば、抗菌性ガラスの分散剤としての無機粒子が 所定量添加されており、無機粒子が親水性の場合には、抗菌性ガラスの溶解速度が 均一になるばかりか、抗菌性繊維としての着色性も優れたものとなった。
さらに、抗菌性繊維中に、強度向上等のために、無機粒子を紡糸する際に後添カロ する場合があるが、本発明の抗菌性繊維には、抗菌性ガラスの分散剤としての無機 粒子が既に含まれているため、そのような後添加する無機粒子を省略したり、添加量 を少なくしたりすることができるようになった。したがって、事実上、無機粒子を後添加 する工程を省略することができる一方、無機粒子を後添加する工程に起因した紡糸 不良等の問題を解決することもできる。

Claims

請求の範囲
[1] 透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤としての無機粒子と、を含 む抗菌性繊維において、
前記抗菌性繊維の直径を 10〜30 mの範囲内の値とし、
前記抗菌性ガラスの平均粒径を 0. 1〜: LO /z mの範囲内の値とするとともに、前記 抗菌性ガラスの添加量を、全体量に対して、 0. 1〜: L0重量%の範囲内の値とし、 かつ、前記無機粒子の平均粒径を 1〜15 mの範囲内の値とするとともに、前記 無機粒子の添加量を、前記抗菌性ガラスの添加量 100重量部に対して、 0. 1〜50 重量部の範囲内の値とすることを特徴とする抗菌性繊維。
[2] 前記無機粒子が、凝集シリカ粒子であることを特徴とする請求の範囲第 1項に記載 の抗菌性繊維。
[3] 前記無機粒子の体積固有抵抗を 1 X 105〜1 X 109 Ω 'cmの範囲内の値とすること を特徴とする請求の範囲第 1項又は第 2項に記載の抗菌性繊維。
[4] 前記抗菌性繊維における可視光透過率を 90%以上の値とすることを特徴とする請 求の範囲第 1項〜第 3項のいずれか一項に記載の抗菌性繊維。
[5] 前記抗菌性ガラスの比表面積を 10, 000〜300, OOOcm2/cm3の範囲内の値とす ることを特徴とする請求の範囲第 1項〜第 4項のいずれか一項に記載の抗菌性繊維
[6] 前記抗菌性ガラスの平均粒径を 50%体積粒径 (D50)とするとともに、 90%体積粒 径(D90)を 0. 5〜12 /ζ πιの範囲内の値とし、かつ、 D90ZD50で表される比率を 1 . 1〜2. 0の範囲内の値とすることを特徴とする請求の範囲第 1項〜第 5項のいずれ か一項に記載の抗菌性繊維。
[7] 前記抗菌性ガラスの周囲を、疎水基として、炭素数 5以上の長鎖アルキル基を有す るシランカップリング剤により表面処理してあることを特徴とする請求の範囲第 1項〜 第 6項の 、ずれか一項に記載の抗菌性繊維。
[8] 透明樹脂と、抗菌性ガラスと、当該抗菌性ガラスの分散剤としての無機粒子と、を含 む抗菌性繊維の製造方法にお!、て、
下記工程 (Α)〜 (D)を含むことを特徴とする抗菌性繊維の製造方法。 (A)抗菌性イオン放出物質を含むガラス原料を溶融し、さらに冷却してガラス体とす る工程
(B)得られたガラス体を、粉砕機を用いて、抗菌性ガラスの分散剤としての平均粒径 力^〜 15 mの無機粒子を添カ卩した状態で、平均粒径が 0. 1〜10 mの抗菌性ガ ラスとし、無機粒子添加の抗菌性ガラスを製造する工程
(C)得られた無機粒子添加の抗菌性ガラスを、透明榭脂中に分散させる工程
(D)紡糸して、直径が 10〜30 mの抗菌性繊維とする工程
[9] 前記粉砕機が、湿式ボールミル、乾式ボールミル、遊星ミル、振動ミル又はジェット ミルであることを特徴とする請求の範囲第 8項に記載の抗菌性繊維の製造方法。
[10] 前記粉砕機にサイクロンが備えてあり、当該サイクロンを用いて循環させながら無機 粒子添加の抗菌性ガラスを製造することを特徴とする請求の範囲第 8項又は第 9項 に記載の抗菌性繊維の製造方法。
PCT/JP2005/021085 2005-05-10 2005-11-17 抗菌性繊維およびその製造方法 WO2006120772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2005800493421A CN101151405B (zh) 2005-05-10 2005-11-17 抗菌性纤维及其制造方法
US11/887,261 US20090060967A1 (en) 2005-05-10 2005-11-17 Antimicrobial fiber and method for producing the same thereof
JP2007526811A JP4086893B2 (ja) 2005-05-10 2005-11-17 抗菌性繊維の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005136940 2005-05-10
JP2005-136940 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006120772A1 true WO2006120772A1 (ja) 2006-11-16

Family

ID=37396293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021085 WO2006120772A1 (ja) 2005-05-10 2005-11-17 抗菌性繊維およびその製造方法

Country Status (5)

Country Link
US (1) US20090060967A1 (ja)
JP (1) JP4086893B2 (ja)
KR (1) KR100961604B1 (ja)
CN (1) CN101151405B (ja)
WO (1) WO2006120772A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2016824A1 (de) * 2007-07-20 2009-01-21 Sanitized AG Biozide Mischungen, deren Herstellung und Verwendungen
JP2010526941A (ja) * 2007-04-11 2010-08-05 ナショナル ユニヴァーシティー オブ シンガポール 化学的物質および生物学的物質の除染用の繊維
JP2014517107A (ja) * 2011-05-18 2014-07-17 エフ.ホルツァー ゲゼルシャフト ミット ベシュレンクテル ハフツング 抗菌作用のある成形品、製剤の滅菌方法、貯蔵容器及び貯蔵容器の使用
JP2016069772A (ja) * 2014-09-30 2016-05-09 Kbセーレン株式会社 合成繊維マルチフィラメント
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345089A4 (en) 2008-10-17 2012-10-03 Atonometrics Inc UV EXPOSURE CHAMBER FOR PV MODULES
JP5171569B2 (ja) * 2008-11-19 2013-03-27 浜松ホトニクス株式会社 ファイバオプティックプレート及びその製造方法
EP2803711B1 (en) 2013-05-17 2018-06-27 3M Innovative Properties Company Pressure sensitive adhesive assembly comprising filler material
JP5701461B1 (ja) * 2014-03-03 2015-04-15 株式会社ユポ・コーポレーション ラベル付きプラスチック容器
CN104231524A (zh) * 2014-07-23 2014-12-24 珠海天威飞马打印耗材有限公司 成型丝及其制备方法
CN108882715B (zh) * 2016-04-13 2021-05-11 富士胶片株式会社 抗菌性组合物、抗菌膜及湿型擦拭布
KR102243795B1 (ko) * 2018-09-28 2021-04-23 코아 가라스 가부시키가이샤 항균성 섬유 및 항균성 섬유의 제조 방법
KR102243796B1 (ko) * 2018-12-04 2021-04-23 코아 가라스 가부시키가이샤 항균성 섬유 및 항균성 섬유의 제조 방법
KR20210153111A (ko) * 2019-04-24 2021-12-16 도아고세이가부시키가이샤 섬유용 무기입자 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011734A (ja) * 1999-06-30 2001-01-16 Chufun Hightech Kk 抗菌性ポリアミド繊維
WO2003085051A1 (fr) * 2002-04-05 2003-10-16 Kanebo, Ltd. Composition de verre a effet antibacterien, composition de resine a effet antibacterien et procede pour produire lesdites compositions
JP2003301330A (ja) * 2002-04-03 2003-10-24 Toagosei Co Ltd 抗菌性ポリエステル繊維
JP2005022916A (ja) * 2003-07-01 2005-01-27 Ishizuka Glass Co Ltd 抗菌性付与用ガラス組成物、抗菌性複合材料および抗菌性繊維
JP2005048031A (ja) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd 抗菌剤、抗菌性樹脂および抗菌性繊維

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030593A (en) * 1990-06-29 1991-07-09 Ppg Industries, Inc. Lightly tinted glass compatible with wood tones
JP2726154B2 (ja) * 1990-11-30 1998-03-11 三田工業株式会社 電子写真用磁性現像剤
FR2776287B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Materiau ceramique poreux massif homogene
US6831028B1 (en) * 2000-09-29 2004-12-14 Koa Glass Co., Ltd. Antibacterial glass and method for production thereof
US20050089580A1 (en) * 2002-04-05 2005-04-28 Kanebo, Ltd. Antibacterial glass composition, antibacterial resin composition and method for producing the same
JP4293806B2 (ja) * 2003-02-28 2009-07-08 石塚硝子株式会社 抗菌性付与用ガラス組成物、及びそれを用いた抗菌性高分子複合材料
WO2005042437A2 (en) * 2003-09-30 2005-05-12 Schott Ag Antimicrobial glass and glass ceramic surfaces and their production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011734A (ja) * 1999-06-30 2001-01-16 Chufun Hightech Kk 抗菌性ポリアミド繊維
JP2003301330A (ja) * 2002-04-03 2003-10-24 Toagosei Co Ltd 抗菌性ポリエステル繊維
WO2003085051A1 (fr) * 2002-04-05 2003-10-16 Kanebo, Ltd. Composition de verre a effet antibacterien, composition de resine a effet antibacterien et procede pour produire lesdites compositions
JP2005022916A (ja) * 2003-07-01 2005-01-27 Ishizuka Glass Co Ltd 抗菌性付与用ガラス組成物、抗菌性複合材料および抗菌性繊維
JP2005048031A (ja) * 2003-07-31 2005-02-24 Ishizuka Glass Co Ltd 抗菌剤、抗菌性樹脂および抗菌性繊維

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526941A (ja) * 2007-04-11 2010-08-05 ナショナル ユニヴァーシティー オブ シンガポール 化学的物質および生物学的物質の除染用の繊維
EP2016824A1 (de) * 2007-07-20 2009-01-21 Sanitized AG Biozide Mischungen, deren Herstellung und Verwendungen
JP2014517107A (ja) * 2011-05-18 2014-07-17 エフ.ホルツァー ゲゼルシャフト ミット ベシュレンクテル ハフツング 抗菌作用のある成形品、製剤の滅菌方法、貯蔵容器及び貯蔵容器の使用
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
JP2016069772A (ja) * 2014-09-30 2016-05-09 Kbセーレン株式会社 合成繊維マルチフィラメント

Also Published As

Publication number Publication date
JP4086893B2 (ja) 2008-05-14
JPWO2006120772A1 (ja) 2008-12-18
KR20070112482A (ko) 2007-11-26
CN101151405B (zh) 2010-12-29
US20090060967A1 (en) 2009-03-05
CN101151405A (zh) 2008-03-26
KR100961604B1 (ko) 2010-06-04

Similar Documents

Publication Publication Date Title
JP4086893B2 (ja) 抗菌性繊維の製造方法
JP3622752B2 (ja) 抗菌性ガラスおよびその製造方法
JP4723558B2 (ja) 抗菌性繊維
KR100657123B1 (ko) 항균성 유리 및 항균성 유리의 제조방법
KR101372662B1 (ko) 마스터배치에 유래해서 되는 항균성 수지 조성물, 항균성 섬유, 항균성 필름 및 마스터배치에 유래해서 되는 항균성 수지 조성물의 제조방법
JPWO2007108245A1 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
CN101210117A (zh) 具有白色颜料性能的绢云母/TiO2复合材料
JP5069482B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP5085803B2 (ja) 抗菌性ガラスおよび抗菌性ガラスの製造方法
JP2000191339A (ja) 溶解性ガラス、抗菌性樹脂組成物、および抗菌性成形品
JP4181782B2 (ja) 防黴性ガラス、防黴性樹脂組成物および防黴性ガラスの製造方法
JP4095604B2 (ja) 抗菌性ガラスの製造方法
JP4387163B2 (ja) 抗菌性成形品およびその製造方法
JPS5958047A (ja) 塩素含有重合体用粒状安定剤及びその製法
JP5858916B2 (ja) 樹脂組成物
JP4804669B2 (ja) 抗菌性材料および抗菌性樹脂組成物
JP3797952B2 (ja) 抗菌性ガラスおよびその製造方法
JP3797951B2 (ja) 抗菌性ガラスおよびその製造方法
WO2003082758A1 (fr) Verre antimicrobien et procede permettant de produire celui-ci
JP4072229B2 (ja) 溶解性ガラスおよびそれを用いた抗菌性組成物
CN107298833B (zh) 一种高分散pbt纳米复合材料的制备方法
TW202340094A (zh) 被覆氧化鋁粒子及其製造方法,及其用途
JP2002179421A (ja) シリカ微粉末の製造方法、シリカ微粉末及びシリカ微粉末を含む樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11887261

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580049342.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077023898

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 8168/DELNP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05806592

Country of ref document: EP

Kind code of ref document: A1