WO2006119828A1 - Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung - Google Patents

Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung Download PDF

Info

Publication number
WO2006119828A1
WO2006119828A1 PCT/EP2006/003053 EP2006003053W WO2006119828A1 WO 2006119828 A1 WO2006119828 A1 WO 2006119828A1 EP 2006003053 W EP2006003053 W EP 2006003053W WO 2006119828 A1 WO2006119828 A1 WO 2006119828A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid material
water
acid
reaction mixture
reaction
Prior art date
Application number
PCT/EP2006/003053
Other languages
German (de)
English (en)
French (fr)
Inventor
Wulf Bentlage
Reinmar PEPPMÖLLER
Jürgen Kunstmann
Oliver Zindel
Original Assignee
Geohumus International Research & Development Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36648545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006119828(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to NZ562800A priority Critical patent/NZ562800A/en
Priority to DE502006006251T priority patent/DE502006006251D1/de
Priority to AP2007004233A priority patent/AP2023A/xx
Application filed by Geohumus International Research & Development Gmbh & Co. Kg filed Critical Geohumus International Research & Development Gmbh & Co. Kg
Priority to AT06724009T priority patent/ATE458760T1/de
Priority to US11/920,019 priority patent/US20090163365A1/en
Priority to EP06724009A priority patent/EP1879932B1/de
Priority to BRPI0610229-8A priority patent/BRPI0610229A2/pt
Priority to EA200702433A priority patent/EA200702433A1/ru
Priority to HK08107896.2A priority patent/HK1118302B/xx
Priority to JP2008509315A priority patent/JP2008540704A/ja
Priority to AU2006246079A priority patent/AU2006246079A1/en
Priority to CA002605499A priority patent/CA2605499A1/en
Priority to ES06724009T priority patent/ES2304910T3/es
Priority to DE202006020295U priority patent/DE202006020295U1/de
Publication of WO2006119828A1 publication Critical patent/WO2006119828A1/de
Priority to EGNA2007001210 priority patent/EG25200A/xx
Priority to IL186753A priority patent/IL186753A/en
Priority to NO20076284A priority patent/NO20076284L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/40Fertilisers incorporated into a matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Definitions

  • Acrylate (co) polymers which absorb water or aqueous liquids to form hydrogels have already been described. These are usually prepared by processes of inverse suspension or emulsion polymerization, as described in US-PS 4,286,082, DE-PS 27 06 135, US-PS 4,340,706 and DE-PS 28 40 010 are described. Polymers obtainable in this way are also called superabsorbents and are commonly used in the hygiene and sanitary sector. It has also been proposed to use the hydrogel-forming polymers obtained for the hygiene sector in the botanical sector as water storage, for example in the German Patent application DE 101 14 169.6, or also in the international patent application WO 03/000621.
  • Figure 1 shows the sponge-like structure of an exemplary hybrid material according to the invention according to Example 1, wherein Figure IA shows the dry material with a pin size comparison, and Figure IB shows the same material in the water-saturated, swollen state.
  • Figure 4 shows the different stature heights of grass when comparing plant substrate without the addition of hybrid material according to the invention (left pots) with plant substrate containing the hybrid material (right pots), with an irrigation of 57 ml every six days
  • Figure 4B is a partial enlargement of the photo of FIG 4A represents.
  • the swelling behavior of the hybrid material can be determined, for example, by contacting of the hybrid material desalted with a sufficient amount of water, for example, typically at room temperature of about 20-23 0 C, preferably 20 ° C and weighing the drained material after certain time intervals.
  • the solids-containing, water-swellable hybrid material of the present invention differs in its preparation and composition from conventional materials.
  • it has a high swellability and is directly comparable in the undried, residual moist state, for example, with humus.
  • the swelling process in aqueous liquids due to the Increase the pore volume enter a suction effect, which can cause a beyond the absorption capacity of the polymer matrix addition liquid absorption.
  • Monomer residues are understood to mean a material which contains less than 1000 ppm, preferably less than 500 ppm and particularly preferably less than 300 ppm, possibly even less than 100 ppm or less than 50 ppm of monomer residues.
  • Use substances which contain at least two ethylenically unsaturated groups or at least one ethylenically unsaturated group and at least one further functional group which is reactive with acid groups.
  • Suitable monomers, comonomers, water-soluble polymers, crosslinkers and other polymer components are described below in connection with the preparation process.
  • the weight ratio of polymer matrix to inorganic particulate solids may be between 99: 1 and 1:99, preferably between about 90:10 to 10:90, or optionally between about 70:30 to about 30:70.
  • the level of inorganic solids is at least about 50% by weight, preferably at least about 60% by weight, and more preferably at least about 70 or even at least 80% by weight.
  • the proportion of polymer may be at least about 5% by weight, preferably at least about 10% by weight or at least about 20% by weight.
  • the inorganic particulate solids may include, for example, ground minerals, slags or minerals containing at least one material selected from silica sand, clay, shale, sedimentary rocks, meteorites, igneous rocks such as lava rock, greywacke, gneiss, trass, basalt, diabase, dolomite, magnesite, bentonite fumed silica and feldspar.
  • ground minerals slags or minerals containing at least one material selected from silica sand, clay, shale, sedimentary rocks, meteorites, igneous rocks such as lava rock, greywacke, gneiss, trass, basalt, diabase, dolomite, magnesite, bentonite fumed silica and feldspar.
  • the porous, sponge-like structure of the hybrid material of the present invention can improve soil capillarity while positively affecting soil quality by the presence of finely ground minerals, especially finely ground sand.
  • the mineral content of the hybrid materials is a weighting of the Product, so that, for example, a floating at high ground moisture can be prevented.
  • the inorganic constituents of the hybrid material according to the invention can influence the polymerization process and thus the sponge structure of the hybrid material, it has proven advantageous in certain exemplary embodiments of the invention to more appropriately measure the particle size of the inorganic solid particles Way to choose. Since these minerals are at the same time a mineral nutrient source for the plants, the degree of grinding can be selected so that the particle sizes of the inorganic solid particles are less than 200 ⁇ m, preferably less than 100 ⁇ m.
  • the hybrid material may be e.g. Clay materials such as bentonite, montmorillonite, phyllosilicates, zeolites, etc. include. These clay materials may e.g. have the property to absorb even small amounts of liquid and bind cations. They can therefore contribute to the strength and swelling behavior of the hybrid material. Their particle sizes may more preferably be between about 0.1-8 mm, preferably between about 0.3-5 mm. Their proportion in certain exemplary embodiments of the hybrid material of the invention may be between about 5% and 60% by weight, based on the total weight of the hybrid material in the dry state.
  • Clay materials such as bentonite, montmorillonite, phyllosilicates, zeolites, etc. include. These clay materials may e.g. have the property to absorb even small amounts of liquid and bind cations. They can therefore contribute to the strength and swelling behavior of the hybrid material. Their particle sizes may more preferably be between about 0.1-8 mm, preferably between about 0.3-5 mm. Their proportion in certain
  • the other inorganic solids preferably added in the hybrid material according to the invention also have a product-producing effect and can therefore fulfill an important function.
  • the hybrid materials according to the invention may additionally contain, in a minor amount, further solid, optionally finely ground, inorganic or organic additives.
  • the hybrid material may optionally be water-soluble and / or dissolved in water inorganic additives selected from at least one of Alkali silicate, potassium silicate, sodium silicate, alkali hydroxide, potassium hydroxide, sodium hydroxide, silicic acid, alkali phosphate, alkali nitrate, alkaline earth hydrogen phosphate, phosphoric acid, magnesium oxide, magnesium hydroxide, magnesium carbonate, iron oxides, iron salts, especially Fe (II) salts, and / or boric acid.
  • the properties of the hybrid material according to the invention can be further modified or improved if it additionally water-soluble or dissolved in water, or solid, optionally finely divided, water-insoluble organic additives such.
  • uric acid for example, for CO 2 evolution during polymerization and / or as a fertilizing nitrogen source
  • guanidine for example as fertilizer, glycol, glycerol, polyethylene glycol, polysaccharides, starch, starch derivatives, cellulose, wood, straw, peat, waste paper, chromium-free leather and recycled granules of wood or plastic, or plastic granules, fibrous materials or nonwovens, for example, for modifying the physical properties depending on the intended use contains.
  • the hybrid material after its preparation in an aqueous medium a residual moisture content at 20 ° C of at least about 0.1 wt .-%, based on the total weight of the residual wet material, preferably up to about 60 wt .-%, more preferably about 20 to 40 Wt .-%, in particular about 35 wt .-% exhibit. This can be adjusted by partial drying according to the desired requirements.
  • the properties of the hybrid material and, in particular, the swelling behavior can be markedly improved by changing the sequence of the addition of the reactant and, if appropriate, the selection of suitable pH ranges in the reaction mixture with suitable control of the polymerization reaction. It has also been found that, by suitable control of the polymerization conditions, the addition of carbonates and similar compounds for gas generation for the foaming of the hybrid material to form its sponge structure can largely be dispensed with.
  • the polymer matrix may consist of homopolymeric or copolymeric, crosslinked polymers based on ethylenically unsaturated, acid group-containing polymers, e.g. Polyacrylates are formed.
  • a process for producing a water-swellable hybrid material comprising a structure-crosslinked polymer matrix and inorganic solid particles bound therein comprising the steps of: a) providing a reaction mixture comprising at least one ethylenically unsaturated, acid group-containing monomer and at least one suitable solvent, wherein the pH of the
  • the at least one polymerizable component may be selected from water-soluble, ethylenically unsaturated, acid group-containing monomers comprising at least one of acrylic acid, methacrylic acid, ethacrylic acid, sorbic acid, maleic acid, fumaric acid, itaconic acid, vinylsulfonic acid, methacrylaminoalkylsulfonic acid, vinylphosphonic acid, or vinylbenzenephosphonic acid.
  • the proportion of comonomers in the reaction mixture can be 0 up to 50% by weight.
  • Water-soluble, ethylenically unsaturated comonomers may be selected from at least one of unsaturated amines such as acrylamide, methacrylamide, N-alkylacrylamide, N-alkylmethacrylamide, N-dialkylaminoacrylamide, N-dialkylaminomethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-vinylamide, N-vinylformamide , N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-formamide; Vinyl pyrrolidone, hydroxyethylene acrylate, hydroxyethyl methacrylate, acrylic acid ester and / or methacrylic acid ester. Particularly preferred is acrylic acid as a monomer, preferably without the addition of comonomers.
  • the monomeric reaction mixture may further be added water-soluble polymers up to 30 wt .-%, based on the polymerizable substance of the monomeric reaction mixture.
  • water-soluble polymers it is possible to use homopolymers or copolymers of the abovementioned monomers or comonomers, partially saponified polyvinyl acetate, polyvinyl alcohol, starch, starch derivatives, graft polymerized starch, cellulose and cellulose derivatives such as carboxymethyl cellulose, hydroxymethyl cellulose and galactomannose and its oxalkylated derivatives, as well as any mixtures of these can be used.
  • These water-soluble polymers are essentially physically incorporated.
  • the monomers or comonomers are initially charged in at least one suitable solvent.
  • the at least one solvent may in an exemplary embodiment of the invention protic polar solvents, such as water, aqueous solutions, alcohols such as methanol, ethanol; Alkylamines, tetrahydrofuran, dioxane, and any mixtures thereof, but particularly preferably water.
  • protic polar solvents such as water, aqueous solutions, alcohols such as methanol, ethanol; Alkylamines, tetrahydrofuran, dioxane, and any mixtures thereof, but particularly preferably water.
  • these protic-polar solvents may optionally also be used in mixtures with aprotic and / or non-polar solvents, if appropriate with the addition of surfactants, emulsifiers or other amphiphilic substances, in order to obtain the most homogeneous possible reaction mixture.
  • the pH of the reaction mixture before addition of the inorganic particulate matter may be less than 7.
  • the pH is particularly preferably below 6.8, preferably below 6.5, in particular below pH 6 or below pH 5, approximately between pH 0 and pH 6 or between pH 1 and 5.
  • At least one crosslinker may be added to the reaction mixture of solvent and at least one polymerizable component.
  • the at least one crosslinker is added in an amount of 0.01 to 5% by weight, preferably 0.1 to 2.0% by weight, based on the total of the polymerizable monomers.
  • crosslinkers it is possible to use all substances which contain at least two ethylenically unsaturated groups or at least one ethylenically unsaturated group and at least one further functional group which is reactive with acid groups.
  • methylenebisacrylamide, mono-, di- and polyesters of acrylic acid, methacrylic acid, itaconic acid and maleic acid of polyhydric alcohols such as butanediol, hexanediol, polyethylene glycol, trimethylolpropane, pentaerythritol, glycerol and polyglycerol, as well as of them resulting oxalkylated homologs, e.g. B. butanediol diacrylate, and also the esters of these acids with allyl alcohol and its alkoxylated homologues.
  • polyhydric alcohols such as butanediol, hexanediol, polyethylene glycol, trimethylolpropane, pentaerythritol, glycerol and polyglycerol, as well as of them resulting oxalkylated homologs, e.g. B. butanediol diacrylate, and
  • N-diallylacrylamide diallyl phthalate, triallyl citrate, tri- monoallyl polyethylene glycol ether citrate, allylacrylamide, triallyl citrate, trimonoallyl, polyethylene glycol ether citrate and allyl ethers of diols and polyols and their ethoxylates.
  • Representatives of the last-mentioned genus are polyallyl ethers of glycerol, trimethylolpropane, pentaerythritol and their ethoxylates, as well as tetraallyloxyethane and polyglycidyl allyl ethers such as ethylene glycol diglycidyl ether and glycerol glycidyl ether. Also suitable are, for example, diamines and their salts having at least two ethylenically unsaturated substituents such as di- and triallylamine and tetraallylammonium chloride.
  • At least two different crosslinkers may be used, these preferably differing in their hydrolytic stability, or at least three crosslinkers.
  • Preferred crosslinkers in at least two crosslinkers are, for example. Butanediol diacrylate and methylenebisacrylamide.
  • the inorganic solid particles Before, after or together with the at least one crosslinker, the inorganic solid particles can be added.
  • the inorganic solid particles are particularly preferably added to the reaction mixture which already contains the at least one polymerisable component.
  • the polymerizable component (s) in particular acid group-containing, ethylenically unsaturated monomers, and in particular at acidic pH values, and then subsequent addition of the inorganic solid particles hybrid materials can be obtained with particularly pronounced initial swelling behavior, ie, for example, rapid swelling immediately after contact with water
  • the inorganic particulate solids may include, for example, ground minerals, slags or minerals containing at least one material selected from quartz sand, clay, shale, sedimentary rocks, meteorite rocks, igneous rocks such as lava rock meal, greywacke, gneiss, trass, basalt, diabase, dolomite, Magnesite, bentonite, fumed silica and feldspar.
  • particulates may also be selected from fertilizers selected from the group of conventional K, N, P fertilizers, which may be added to the reaction mixture in addition to the minerals mentioned above.
  • the amount of inorganic solid particles can be selected and adjusted according to requirements and intended use, with conventional amounts and proportions mentioned above.
  • Preferred are high-solids hybrid materials, preferably with inorganic solids contents of more than 60 wt .-% based on dry hybrid material.
  • the content of igneous rocks, for example lava rock is preferably below 35% by weight, based on the dry hybrid material, in particular below 30% by weight, particularly preferably below 25% by weight.
  • the inorganic particulates do not contain minerals or salts that form carbon dioxide in the presence of acid.
  • the at least one polymerizable component can be at least partially hydrolyzed, and thus the pH, the course of polymerization and ultimately the product structure can be suitably modified.
  • a maximum of about 80 mol% for example about 60 to 80 mol%, and in exemplary embodiments, a maximum of 40 mol% of the acid groups of the monomers are neutralized.
  • basic solid particles may optionally be a partial neutralization or pH adjustment by addition of at least one basic substance, such as an alkaline earth and / or alkali metal hydroxide, lime, alkylamines, ammonia, etc., as well as the compounds mentioned above made become.
  • the solid particles in the reaction mixture become substantially uniform
  • the stirring is preferably continued during the polymerization.
  • redox systems can be used, for.
  • peroxo or azo compounds such as potassium peroxymonosulfate, potassium peroxodisulfate, tert-butyl hydroperoxide, 2,2'-azo-bis (2-methylenpropionamidine) dihydrochloride or hydrogen peroxide, optionally together with one or more reducing agents such as potassium, potassium, potassium formamidine sulfinate and ascorbic acid ,
  • the oxidizing agent is preferably introduced.
  • the initiation can also be effected by photocatalysis in conjunction with suitable sensitizers.
  • the polymerization reaction may be controlled such that the hybrid material forms under volume increase relative to the volume of the reaction mixture.
  • the heat of reaction is preferably controlled by suitable measures.
  • the heat of reaction of the exothermic polymerization reaction may be controlled so that about 0.1 to 30 weight percent, preferably about 2 to 15 weight percent of the at least one solvent evaporates.
  • the vaporizing solvent will in this case foam up the hybrid material as an expanding gas, so that the addition of foaming agents, such as gas-evolving substances, can typically be dispensed with, especially since gases possibly split off, such as carbon dioxide, can also be liberated in the polymerization of certain monomers.
  • at least one gas-forming agent may additionally be added, for example carbonate salts and / or urea, in order to at least partially effect or support the increase in volume.
  • the reaction solution or the hybrid material no carbonate salt and / or no mineral or generally no substance, in particular no inorganic substance, which releases carbon dioxide in the presence of acids. If, in addition to the evolution of steam, carbon dioxide is to be released in order to support the sponge formation of the hybrid material, organic compounds, for example urea or the like, which represent an advantageous nitrogen source in addition to the carbon dioxide evolution, are preferably used for this purpose.
  • the heat of reaction may alternatively or additionally also be controlled by the quantitative ratio of the at least one polymerisable component to the at least one suitable solvent or via the volume of the solvent.
  • the amount ratio of the at least one polymerizable component to the at least one suitable solvent is between about 1: 1 to 1: 5.
  • the heat of reaction can also be controlled by cooling the reaction mixture.
  • an increase in volume relative to the volume of the reaction mixture prior to onset of the polymerization reaction of at least 10%, preferably at least 20%, more preferably at least 50%, and most preferably at least 100% may be effected.
  • the average reaction temperature of the polymerization reaction is maintained between about 50 ° C and 130 ° C, preferably from about 60 to 110 ° C, especially from about 70 to 100 ° C.
  • the starting temperature of the reaction mixture may be between about 4 0 C and about 40 ° C, preferably at about 15 ° C to about 30 ° C, for example about room temperature, ie about 20 to 22 ° C, can be set.
  • additional organic particulate matter as above can be mixed, whereby they are also bound in the polymer matrix.
  • Preferred examples thereof may include at least one organic substance from the group of microorganisms, bacteria fungi, algae, yeasts, fungicides, pesticides, herbicides, cellulose, starch, derivatives of starches, plastics or polysaccharides; Wood, straw, peat, waste paper, chrome-free leather and
  • Recycled granules, plastic granules, fibers or nonwovens include.
  • At least one water-soluble, water-swellable and / or dissolved in water additive can be added to the reaction mixture, as listed above.
  • Preferred examples thereof include at least one of alkali silicate, potassium silicate, sodium silicate, potassium hydroxide, sodium hydroxide, or urea.
  • a post-treatment such as e.g. Post-crosslinking, neutralization and the like are usually not required, that is, by the process described herein, the hybrid material can be obtained in a form that is directly suitable for the applications described herein.
  • the hybrid material according to the present invention may be obtained by suitable choice of ingredients and / or appropriate process control substantially free of monomer residues, but this need not always be the case. In particular, in applications in the agricultural sector, however, it is advantageous that the low residual monomer content remaining in the product after the polymerization, if any, precludes any endangerment of natural life.
  • the polymers can be subjected to intensive drying after production to remove monomer residues. The drying temperatures are typically well above the boiling point of acrylic acid (bp: 142 ° C), generally above 170 ° C. Inevitably, the risk of incipient product decomposition is present under these conditions.
  • a purification method can be used to reduce or remove the residual monomer content in the hybrid material.
  • the hybrid material can be post-treated thermally or chemically, such as by heating the hybrid material in a convection oven, or, more preferably, with superheated steam at temperatures of about 100 to about 15O 0 C, optionally under pressure.
  • This can be done, for example, by placing products with residual monomeric acrylic acid or other pollutants in a thermally insulated pressure pot with lower steam inlet and upper pressure relief valve and then subjected to a steam treatment.
  • the temperature of the steam can be advantageously between 100 to 150 ° C, in particular between 100 and 120 ° C, under pressure correspondingly lower adjusted.
  • the described post-treatment steps can also be used alternatively or additionally for post-crosslinking, for partial hydrolysis and / or simply for drying or for setting a defined residual moisture content of the hybrid material in the hybrid material. Suitable residual moisture contents are defined above.
  • the hybrid material is not completely dried after its production.
  • An optional object of the present invention is therefore also a process for the removal of residual acrylic acid from particulate polycarboxylate-containing polymer products and mixtures comprising these polymer products, by treatment with steam at a temperature of about 100 ° to 16O 0 C, optionally under pressure, subjected ,
  • the treatment is carried out with steam at a temperature of about 100 to 150 0 C, in particular at about 20 to 140 0 C, under pressure possibly lower.
  • ammonia or sulfur dioxide may additionally be admixed with the steam, preferably in small amounts, for example about 0.1 to 10% by volume, for example 0.1 to 5% by volume, based on the volume of vapor.
  • a further optional object of the present invention is therefore a process for increasing the water absorption capacity of polycarboxylate-containing polymer products and their mixtures, by steam treatment as described above, or by short-term (about 10 seconds to 1 hour) high temperature heating (temperature at least 140 ° C, preferably at least 150 ° C) after the polymerization in the wet state.
  • the first step is usually a cutting, so that slices, mats or smaller blocks arise. If one sticks to the matte form, the most diverse forms can be achieved by further cutting or punching. For example, square sticks can be produced which subsequently supply the plant roots with the mineral and fertilizer requirements necessary for growth when they are put into their food area. But it can also be used a shredder, which the production of earthy crumbs arbitrarily adjustable particle size is directly possible. These can look in and out Texture particularly well adapted to humus. In the fresh state, there may still be some stickiness that can be used to mix in other solids and to create a variety of shapes and shapes by simply compressing the crumbs. Preferably, crushing methods are used whose
  • Energy input is as low as possible, for example, slowly rotating cutting / shredding apparatus (shredder) one or more wavy design, or the like.
  • the energy input in the comminution is chosen appropriately and is preferably not more than 100W / kg, in particular not more than 30W / kg.
  • hybrid materials for example in granular or crumb form, are outstandingly suitable for use as soil improvers in a wide variety of applications.
  • soil adjuvants mixed in a suitable amount in soil, sand, humus, peat and the like or the like, they promote by their water absorption and storage capacity germination, growth and
  • Cultivation of plants can therefore give good plant results even when added to unfavorable soil in bad weather conditions. In addition, they also allow a restriction of the irrigation intervals and are therefore beneficial, especially in low-rain growing areas.
  • a particularly preferred application of the products of the invention is in the admixture in soils in arid regions for water storage.
  • hybrid materials according to the invention also alone for plant breeding.
  • a particular embodiment of this is the use of products in plant containers, which are connected to a water reservoir, for example, by capillary rods that make up the
  • Product sponges bring the water that is taken through the plant roots.
  • the crumbs of the products according to the invention with their pores and pockets are excellently suitable as a carrier for a wide variety of solids.
  • Castor bean meal is obtained during the extraction of castor oil and is one of the solid fertilizers.
  • rapeseed meal a residual product of rapeseed oil production, may be used instead of castor meal. Mixtures of these and other oil recovery meal residues are of course also usable.
  • the use of the hybrid materials as Gülleabsorber or litter material in animal husbandry may be desirable. It is also possible to combine a fertilizer-free product with wood flour or wood shavings, which can subsequently be used dried as "animal litter" for animal husbandry, in particular for ungulates.It is also interesting to retrofit the crumbs with fine-grained, often dusty, synthetic polymer particles. Due to the adhesive effect of the fresh crumbs of the product according to the invention, fabrics or nonwovens can also be provided without soaking and used wherever water-absorbent products are required and / or fixed If these crumbly fabrics and fleeces are additionally provided with buoyant natural and synthetic materials, they can be used in wetlands such as plant breeding, rice cultivation or also for insect control with appropriate equipment.
  • Preferred applications of the hybrid material may also be in the hygienic field, in the cosmetic or wellness sector, e.g. the
  • Hybrid material can be used as a component of fango packs, moor or mud baths, or for mineral packs such as mineral-based facial or body masks. - ZO -
  • the hybrid material can be used in sealing applications, such as as an additive in down hole sealing systems, for example. in oil wells, as a component in sandbags for dyke repair or elevation, as a cable protection agent to destroy the destructive
  • Example 1 180 g of demineralized water were initially charged in a glass beaker with 150 g of acrylic acid at room temperature. Then, with stirring, 7 g of urea were added and dissolved. The pH was about 1.6. Thereafter, 0.02 g of Wako V50 and 0.4 g of butanediol diacrylate were added as crosslinkers. Subsequently, 460 g of inorganic solids (mixture of lava stone flour 200 g (Eifelgold ', Fa.
  • FIG. 1A shows the sponge-like structure of the dry material thus obtained, wherein a pin serves as a size comparison.
  • FIG. 1B shows the same material in the water-saturated, swollen state.
  • Example 3 Using the same materials as described in Example 1, a further polymerization batch was carried out but using 260 g of demineralized water. The pH was about 1.6. In the course of the exothermic polymerization reaction, water vapor (about 2% water was evaporated) and carbon dioxide gas were released at an average reaction temperature of 80 ° C, thereby increasing the volume of the reaction by about 50%. The resulting closed-pore, elastic, sponge-like product was gently comminuted by means of a slowly rotating cutting tool. The resulting hybrid material had a maximum swelling capacity (24 hours of demineralized water) of about 30 times its own weight and a Shore hardness of about 20 in the production wet state (water content about 35% by weight).
  • Example 3 Example 3
  • Example 1 A polymerization batch as described in Example 1 was carried out using the same materials and the amounts indicated there. During the exothermic polymerization reaction, the
  • Example 1 Example 1
  • the product was comminuted as described in Example 1.
  • the resulting hybrid material had a maximum swelling capability (24 hours of demineralized water) of about 25 times its own weight and a Shore hardness of about 28 in the wet condition (water content about 35% by weight).
  • Example 4 (Comparative Example) 100.0 g of water, 560 g of potassium hydroxide solution (50%) were mixed with 100.0 g of acrylic acid and 40.0 g of aqueous butanediol diacrylate solution (0.8 wt.%), 40.0 g of bentonite and 140 g. 0 g of quartz sand and 120 g of lava rock flour (Eifellava) mixed in finely ground form at basic pH, stirred well and the polymerization by adding 20.0 ml of a 1.0 wt .-% sodium peroxodisulfate, 10 ml of a 0.2% strength by weight ascorbic acid solution and 10 ml of a 1.25% strength by weight potassium disulphite solution.
  • FIG. 2 shows the swelling behavior of the material according to Example 4 (lower curve) compared to the hybrid material according to Example 1 (upper curve) upon contact of the hybrid material with demineralized water.
  • the samples used were in each case taken from the water after certain time intervals, drained on a sieve and weighed. It can clearly be seen that the material according to Example 1 initially absorbs the water considerably more quickly and after only about 2 hours had absorbed more than 20 times its own weight of water.
  • Example 5 This example shows a comparison of the biomass evolution of grass in
  • Substrate containing 1 wt .-% of the hybrid material of Example 1 contains pure sand as a substrate.
  • L 60 was filled, or fine sand mixed with 1 wt .-% of the hybrid material of Example 1, and then each a lawn seed mixture RSM 3.1 (50% Lolium perenne, 50% Poa pratensis). The reproducibility was repeated 4 times. Conditions: 25 0 C constant, 10 kLux with a lighting duration of 12 h
  • Variant 1-3 / 57 I-IV 1% Material from Example I 3 57 ml H 2 O every 3 days
  • Variant 1-6 / 57 I-IV 1% Material from Example 1, 57ml H 2 O / 6 days
  • FIG. 3 shows the different stature heights of the comparison of variant 0-3 without hybrid material (left four pots) with variant 1-3 with hybrid material (right four pots), ie with an irrigation of 57 ml every three days
  • FIG. 3B showing an enlarged detail of FIG Photos of Figure 3 A represents.
  • Figure 4 shows the different stature heights of the comparison of the variant 0-6 without hybrid material (left four pots) with variant 1-6 with hybrid material (right four pots), so with an irrigation of 57 ml every six days
  • Figure 4B is an enlarged detail of Photos of Figure 4A represents. At three times, the stature heights of the grass were measured. To all
  • Example 4 The granulate of Example 4 was mixed with 0.1 wt .-% of the fungicide Parmetol DF ® 12 and homogeneously impregnated with a maximum water. The wet granules were stored open for 12 months in air at room temperature and kept moist. There was no colonization with microorganisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Fertilizers (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Sealing Material Composition (AREA)
  • Cultivation Of Plants (AREA)
  • Housing For Livestock And Birds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
PCT/EP2006/003053 2005-05-07 2006-04-04 Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung WO2006119828A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE202006020295U DE202006020295U1 (de) 2005-05-07 2006-04-04 Wasserquellbares Hybridmaterial mit anorganischen Zusatzstoffen
EA200702433A EA200702433A1 (ru) 2005-05-07 2006-04-04 Набухающий в воде гибридный материал с неорганическими добавками и способ его получения
AP2007004233A AP2023A (en) 2005-05-07 2006-04-04 Water-swellable hybrid material with inorganic additives and process for its preparation
JP2008509315A JP2008540704A (ja) 2005-05-07 2006-04-04 無機添加剤を含む水膨潤性ハイブリッド材料及びその製造方法
AT06724009T ATE458760T1 (de) 2005-05-07 2006-04-04 Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung
US11/920,019 US20090163365A1 (en) 2005-05-07 2006-04-04 Water-swellable hybrid material with inorganic additives and method of Producing same
EP06724009A EP1879932B1 (de) 2005-05-07 2006-04-04 Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung
BRPI0610229-8A BRPI0610229A2 (pt) 2005-05-07 2006-04-04 material hìbrido intumescìvel em água com aditivos inorgánicos e processo para sua preparação
HK08107896.2A HK1118302B (en) 2005-05-07 2006-04-04 Water-swellable hybrid material with inorganic additives and process for its preparation
NZ562800A NZ562800A (en) 2005-05-07 2006-04-04 Soil additive comprising a water-swellable hybrid polymer matrix which incorporates solid inorganic materials
DE502006006251T DE502006006251D1 (de) 2005-05-07 2006-04-04 Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung
AU2006246079A AU2006246079A1 (en) 2005-05-07 2006-04-04 Water-swellable hybrid material with inorganic additives and process for its preparation
CA002605499A CA2605499A1 (en) 2005-05-07 2006-04-04 Water-swellable hybrid material with inorganic additives and process for its preparation
ES06724009T ES2304910T3 (es) 2005-05-07 2006-04-04 Material hibrido hinchable en agua con sustancias aditivas inorganicas y el procedimiento para su obtencion.
EGNA2007001210 EG25200A (en) 2005-05-07 2007-01-06 Water-swellable hybrid material with inorganic additives and process for its preparation
IL186753A IL186753A (en) 2005-05-07 2007-10-18 Hybrid material that swells in water with inorganic additives and a process for its preparation
NO20076284A NO20076284L (no) 2005-05-07 2007-12-06 Vannsvellbart hybridmateriale med uorganiske tilsetningsstoffer, og fremgangsmate for fremstilling av dette

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005021221A DE102005021221A1 (de) 2005-05-07 2005-05-07 Superabsorber mit anorganischen und organischen Ballast- und Zusatzstoffen
DE102005021221.2 2005-05-07

Publications (1)

Publication Number Publication Date
WO2006119828A1 true WO2006119828A1 (de) 2006-11-16

Family

ID=36648545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/003053 WO2006119828A1 (de) 2005-05-07 2006-04-04 Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung

Country Status (25)

Country Link
US (1) US20090163365A1 (forum.php)
EP (2) EP2168990A3 (forum.php)
JP (1) JP2008540704A (forum.php)
KR (1) KR20080008406A (forum.php)
CN (1) CN101171272A (forum.php)
AP (1) AP2023A (forum.php)
AR (1) AR056341A1 (forum.php)
AT (1) ATE458760T1 (forum.php)
AU (1) AU2006246079A1 (forum.php)
BR (1) BRPI0610229A2 (forum.php)
CA (1) CA2605499A1 (forum.php)
CY (1) CY1110041T1 (forum.php)
DE (3) DE102005021221A1 (forum.php)
EA (1) EA200702433A1 (forum.php)
EG (1) EG25200A (forum.php)
ES (1) ES2304910T3 (forum.php)
IL (1) IL186753A (forum.php)
IN (1) IN2007DE08135A (forum.php)
MA (1) MA29415B1 (forum.php)
MX (1) MX2007013922A (forum.php)
NO (1) NO20076284L (forum.php)
NZ (1) NZ562800A (forum.php)
PT (1) PT1879932E (forum.php)
WO (1) WO2006119828A1 (forum.php)
ZA (1) ZA200709106B (forum.php)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455625C (zh) * 2006-12-29 2009-01-28 中国科学院长春应用化学研究所 农用有机-无机复合营养型保水剂的制备方法
DE202007016362U1 (de) 2007-11-08 2009-03-26 Arpadis Deutschland Gmbh Bodenverbesserungsmittel
DE102007056264A1 (de) 2007-11-08 2009-07-16 Arpadis Deutschland Gmbh Bodenverbesserungsmittel und seine Verwendung
WO2009090959A1 (ja) * 2008-01-14 2009-07-23 Ntn Corporation 高分子オルガノゲル、高分子組成物およびこれらの製造方法
JP2009270048A (ja) * 2008-05-09 2009-11-19 Kawamura Inst Of Chem Res カルボン酸塩構造又はカルボキシアニオン構造の基を有する有機無機複合ヒドロゲルの製造方法
WO2011006981A2 (de) 2009-07-16 2011-01-20 Geohumus International Research & Development Gmbh Verbesserung des wärmeübergangs und der wärmekapazität von wärmespeichern
CN102924644A (zh) * 2012-11-11 2013-02-13 陕西理工学院 一种丙烯酸保湿复合材料的制备方法
US8410233B2 (en) 2008-08-12 2013-04-02 Basf Se Method for producing superabsorbers with a low residual monomer content
WO2013060848A1 (de) 2011-10-28 2013-05-02 Basf Se Hochquellfähige polymerisate
DE102013102665A1 (de) 2012-03-15 2013-09-19 Sachtleben Pigment Gmbh Verfahren zur Granulierung von teilchenhaltigem Material aus industriellen Prozessen, das so hergestellte Granulat und dessen Verwendung
DE102012102473A1 (de) 2012-03-22 2013-09-26 Xtract Gmbh Verfahren zur Behandlung von Klärschlamm
EP3228679A1 (de) * 2016-04-04 2017-10-11 Geohumus GmbH Hybridmaterial
US9834486B2 (en) 2013-04-29 2017-12-05 Basf Se Process for producing high-swellability polymer composites
CN109095542A (zh) * 2018-09-26 2018-12-28 深圳市裕农科技股份有限公司 一种澄清剂及其制备方法
CN110343529A (zh) * 2019-08-09 2019-10-18 内蒙古惠百农菊芋产业发展有限公司 一种固体水及其制作方法

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019400A1 (de) * 2006-04-24 2007-10-25 Stockhausen Gmbh Farbige Superabsorber
KR20100082840A (ko) * 2007-09-27 2010-07-20 에스체아 히기에너 프로덕츠 악티에볼라그 클레이결합된 폴리머 겔
DE202007016682U1 (de) * 2007-11-29 2008-02-21 Hubeny, Rudolf Bodenverbesserungsmittel
DE102007059186A1 (de) * 2007-11-30 2009-06-04 Ruthmann Gmbh Pressling und Verfahren zur Herstellung einer Suspension, sowie Verwendung einer Suspension
AT506372A3 (de) * 2008-01-25 2012-06-15 Abp Patent Network Gmbh Bodenhilfsstoff
CN101296513B (zh) * 2008-04-22 2013-05-08 中兴通讯股份有限公司 一种物理上行控制信道干扰随机化的方法
DE102008049743A1 (de) * 2008-09-30 2010-04-01 Basf Se Förderung des oberirdischen Wachstums von Pflanzen durch Superabsorber
US8025709B2 (en) 2009-01-09 2011-09-27 Specialty Feritlizer Products, LLC Quick drying polymeric coating
EP2226309A1 (en) * 2009-03-04 2010-09-08 Daniela Sternini Agricultural composition
DE102009034137A1 (de) * 2009-07-22 2011-01-27 Inotec Glienke & Glienke Gbr (Vertretungsberechtigte Gesellschafter: Peter O. Glienke Flüssigkeiten speicherndes und expandierbares Kompositmaterial sowie dessen Herstellung und Anwendung
US7686863B1 (en) 2009-10-05 2010-03-30 Specialty Fertilizer Products, Llc Gypsum fertilizer products with polymer adjuvants
US8192520B2 (en) * 2009-10-05 2012-06-05 Specialty Fertilizer Products, Llc Enhanced fertilizer products with polymer adjuvants
US8555521B2 (en) * 2010-01-12 2013-10-15 Hot-Woods, Llc Method of treatment of wooden items
DE102010004478A1 (de) 2010-01-12 2011-07-14 Riesinger, Birgit, 48346 Neue Technologien zur Verwendung in Wundauflagen mit superabsorbierenden Polymeren
WO2011141526A1 (de) 2010-05-11 2011-11-17 Geohumus International Research & Development Gmbh Bioabbaubares wasserquellbares hybridmaterial
JP2012012451A (ja) * 2010-06-30 2012-01-19 San-Dia Polymer Ltd 吸収性樹脂粒子及び吸収性物品
WO2012022046A1 (en) 2010-08-20 2012-02-23 Rhodia (China) Co., Ltd. Soil additives for prevention of evaporation and methods for use
DE102010047379A1 (de) 2010-10-05 2012-04-05 Atlantichem Gmbh Wasser aufnehmende und Wasser speichernde Pfropfpolymere, Verfahren zu deren Herstellung sowie deren Verwendung
EP2465546B1 (en) 2010-12-15 2015-01-14 The Procter and Gamble Company Water-absorbent modified clay linked polymers
DE102011010329A1 (de) * 2011-02-04 2012-08-09 Inotec Glienke & Glienke Gbr (Vertretungsberechtigte Gesellschafter: Peter O. Glienke, 10557 Berlin; Isolde M. Glienke, 10557 Berlin) Wasser speicherndes und abgebendes organisch basiertes Kompositmaterial sowie dessen Herstellung und Anwendung
CN102225981B (zh) * 2011-04-27 2013-11-13 浙江卫星石化股份有限公司 多孔型丙烯酸钠高吸水性树脂的制备方法
CN103168639B (zh) * 2012-04-27 2015-07-15 北京仁创科技集团有限公司 一种复合型营养种植砂及其制备方法
CN103168641B (zh) * 2012-04-27 2015-11-04 北京仁创科技集团有限公司 一种复合型砂种植结构
CN103168638B (zh) * 2012-04-27 2016-06-08 北京仁创科技集团有限公司 一种多孔种植砂及砂种植结构
CN103168671B (zh) * 2012-04-27 2015-11-04 北京仁创科技集团有限公司 一种复合型营养砂种植结构
CN103168640B (zh) * 2012-04-27 2015-09-16 北京仁创科技集团有限公司 一种营养种植砂及砂种植结构
US9145340B2 (en) 2012-08-13 2015-09-29 Verdesian Life Sciences, Llc Method of reducing atmospheric ammonia in livestock and poultry containment facilities
CN104995237A (zh) * 2012-08-30 2015-10-21 贸森斯有限公司 多孔凝胶及其应用
CN102827589B (zh) * 2012-09-19 2016-10-26 中国石油集团长城钻探工程有限公司 一种有机土激活剂及其制备方法
US9961922B2 (en) 2012-10-15 2018-05-08 Verdesian Life Sciences, Llc Animal feed and/or water amendments for lowering ammonia concentrations in animal excrement
EP2730596A1 (de) * 2012-11-13 2014-05-14 Basf Se Polyurethanweichschaumstoffe enthaltend Pflanzensamen
US9259709B2 (en) * 2012-12-07 2016-02-16 Red Lion Chem Tech, Llc Composites for water remediation
TWI453179B (zh) * 2013-02-19 2014-09-21 Chunghwa Picture Tubes Ltd 顆粒狀肥料及其製造方法
JP6435279B2 (ja) 2013-03-15 2018-12-05 アダマ・マクテシム・リミテッド 土壌中の肥料及び他の農業用化学物質の効率的な吸収のための人工環境
US9139481B2 (en) * 2013-05-24 2015-09-22 Verdesian Life Sciences, LLP Anhydrous ammonia supplemented with agricultural actives
CN103348837B (zh) * 2013-06-06 2016-03-23 易志坚 改性沙体的制作方法
CN103387461A (zh) * 2013-08-01 2013-11-13 合肥多加农业科技有限公司 一种绿色稳定的缓释肥及其制备方法
US11254620B2 (en) 2013-08-05 2022-02-22 Verdesian Life Sciences U.S., Llc Micronutrient-enhanced polymeric seed coatings
TW201522390A (zh) 2013-08-27 2015-06-16 特級肥料產品公司 聚陰離子聚合物
WO2015035031A1 (en) 2013-09-05 2015-03-12 Verdesian Life Sciences, Llc Polymer-boric acid compositions
CN103922836B (zh) * 2014-03-21 2015-11-18 成都新柯力化工科技有限公司 一种水溶肥促溶剂及其制备方法
CA2945823C (en) 2014-05-21 2022-04-26 Verdesian Life Sciences, Llc Polymer soil treatment compositions including humic acids
CA2946202C (en) 2014-05-22 2022-06-21 Verdesian Life Sciences, Llc Polymeric compositions
CN104163708B (zh) * 2014-08-01 2016-02-24 成都新柯力化工科技有限公司 一种水溶性复合肥悬浮助剂及其制备方法和应用
KR101899924B1 (ko) * 2014-08-04 2018-09-18 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
WO2016042379A1 (en) * 2014-09-15 2016-03-24 Adama Makhteshim Ltd. Compositions for the delivery of agrochemicals to the roots of a plant
US12371655B2 (en) 2015-01-09 2025-07-29 Xiant Technologies, Inc. Multi-media structures containing growth enhancement additives
EP3242548A4 (en) * 2015-01-09 2018-08-29 Xiant Technologies, Inc. Multi-media structures containing growth enhancement additives
CN106008800B (zh) * 2016-05-26 2018-04-13 济南永胜化工有限公司 一种抗酸碱性能强的高分子吸水树脂的制备方法
JP2018127430A (ja) * 2017-02-10 2018-08-16 株式会社アセンダント 施術用泥及び施術用泥製造方法
WO2018233731A1 (de) 2017-06-21 2018-12-27 Geohumus Gmbh Wasserquellbares hybridmaterial
CN110770261B (zh) * 2017-07-03 2022-03-11 Dic株式会社 有机无机复合水凝胶的制造方法
DE102017006922A1 (de) 2017-07-20 2019-01-24 Wolf-Dieter Jülich Wasserspeicherndes Schichtsystem zur Unterstützung von Ansaaten und Pflanzungen sowie zur Feuchthaltung der Wurzelzone
DE102017007273A1 (de) * 2017-08-01 2019-02-07 Instraction Gmbh Entfernung von Bakterien aus Trinkwasser über Filtration
NL2021946B1 (en) * 2018-11-06 2020-05-15 4Grow Fun B V Controlled-release device in agriculture
DE102019106646A1 (de) * 2019-03-15 2020-09-17 Instraction Gmbh Partikel mit biozider Beschichtung
KR102293184B1 (ko) * 2019-09-16 2021-08-25 한국원자력연구원 흡수성 복합재 조성물, 이를 이용하여 제조된 흡수성 복합재 및 이의 제조방법
US11655196B2 (en) * 2019-09-24 2023-05-23 Icl Europe Cooperatief U.A. Granules of polyhalite and urea
CN111303895B (zh) * 2019-12-28 2022-09-02 北京市政建设集团有限责任公司 一种防膨型复合土壤固化剂及其制备方法
CN112341565B (zh) * 2020-12-01 2022-02-22 四川省农业科学院生物技术核技术研究所 一种包膜肥料丙烯酸类保水层及其制备方法和装置
CN113053578A (zh) * 2021-03-24 2021-06-29 上海上力特种电缆有限公司 用于防水电缆的阻水粉及其制备方法和防水电缆
IL316695A (en) * 2022-05-02 2024-12-01 Entrega Inc Oral dosage form with ionically chargeable hydrogel for delivery of active ingredient
EP4585666A1 (de) * 2024-01-05 2025-07-16 Müller, Marc Verbundwerkstoff
DE102024000733B3 (de) 2024-03-05 2025-03-20 Terraaedis Gmbh Biologisch abbaubare Geomatte mit eingewebtem, eingelagertem und/oder eingeschweißtem Bodensubstrat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735987A (en) * 1986-03-25 1988-04-05 Osaka Yuki Kagaku Kogyo Kabushiki Kaisha Method for manufacture of high-expansion type absorbent polymer
EP0942014A2 (en) * 1998-03-11 1999-09-15 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
DE10114169A1 (de) * 2001-03-22 2002-10-02 Reinmar Peppmoeller Silikathaltige, Wasser und wäßrige Flüssigkeiten speichernde, anionische Polymere sowie deren Herstellung und Verwendung
US20040132869A1 (en) * 2001-06-23 2004-07-08 Reinmar Peppmoller Solids-containing, water-absorbing anionic polymers having a sponge structure and the production and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1569298A (en) * 1976-06-25 1980-06-11 Knox J H Intercommunication systems
DE2706135C2 (de) * 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Verdickungsmittel für ausgeschiedenen Darminhalt und Harn
US4131576A (en) 1977-12-15 1978-12-26 National Starch And Chemical Corporation Process for the preparation of graft copolymers of a water soluble monomer and polysaccharide employing a two-phase reaction system
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
JPS6025045B2 (ja) 1980-03-19 1985-06-15 製鉄化学工業株式会社 塩水吸収能のすぐれたアクリル酸重合体の製造方法
JP2567453B2 (ja) * 1987-04-30 1996-12-25 株式会社日本触媒 水溶性重合体および水膨潤性重合体の製造方法
JPH01304104A (ja) * 1988-06-01 1989-12-07 Bridgestone Corp 充填剤補強水膨潤性ゲルの製造方法
DE19529348C2 (de) * 1995-08-09 1997-11-20 Stockhausen Chem Fab Gmbh Absorptionsmittel für Wasser und wäßrige Flüssigkeiten auf Polyacrylatbasis sowie Verfahren zu ihrer Herstellung und Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735987A (en) * 1986-03-25 1988-04-05 Osaka Yuki Kagaku Kogyo Kabushiki Kaisha Method for manufacture of high-expansion type absorbent polymer
EP0942014A2 (en) * 1998-03-11 1999-09-15 Nippon Shokubai Co., Ltd. Hydrophilic resin, absorbent article, and acrylic acid for polymerization
DE10114169A1 (de) * 2001-03-22 2002-10-02 Reinmar Peppmoeller Silikathaltige, Wasser und wäßrige Flüssigkeiten speichernde, anionische Polymere sowie deren Herstellung und Verwendung
US20040132869A1 (en) * 2001-06-23 2004-07-08 Reinmar Peppmoller Solids-containing, water-absorbing anionic polymers having a sponge structure and the production and use thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455625C (zh) * 2006-12-29 2009-01-28 中国科学院长春应用化学研究所 农用有机-无机复合营养型保水剂的制备方法
DE202007016362U1 (de) 2007-11-08 2009-03-26 Arpadis Deutschland Gmbh Bodenverbesserungsmittel
DE102007056264A1 (de) 2007-11-08 2009-07-16 Arpadis Deutschland Gmbh Bodenverbesserungsmittel und seine Verwendung
WO2009090959A1 (ja) * 2008-01-14 2009-07-23 Ntn Corporation 高分子オルガノゲル、高分子組成物およびこれらの製造方法
JP2009191260A (ja) * 2008-01-14 2009-08-27 Ntn Corp 高分子オルガノゲル、高分子組成物およびこれらの製造方法
JP2009270048A (ja) * 2008-05-09 2009-11-19 Kawamura Inst Of Chem Res カルボン酸塩構造又はカルボキシアニオン構造の基を有する有機無機複合ヒドロゲルの製造方法
US8410233B2 (en) 2008-08-12 2013-04-02 Basf Se Method for producing superabsorbers with a low residual monomer content
WO2011006981A2 (de) 2009-07-16 2011-01-20 Geohumus International Research & Development Gmbh Verbesserung des wärmeübergangs und der wärmekapazität von wärmespeichern
DE102009033413A1 (de) 2009-07-16 2011-01-27 Geohumus International Research & Development Gmbh Verbesserung des Wärmeübergangs und der Wärmekapazität von Wärmespeichern
WO2013060848A1 (de) 2011-10-28 2013-05-02 Basf Se Hochquellfähige polymerisate
US9920151B2 (en) 2011-10-28 2018-03-20 Basf Se Highly swellable polymers
DE102013102665A1 (de) 2012-03-15 2013-09-19 Sachtleben Pigment Gmbh Verfahren zur Granulierung von teilchenhaltigem Material aus industriellen Prozessen, das so hergestellte Granulat und dessen Verwendung
WO2013135239A1 (de) 2012-03-15 2013-09-19 Sachtleben Pigment Gmbh Verfahren zur granulierung von teilchenhaltigem material aus industriellen prozessen, das so hergestellte granulat und dessen verwendung
US9303128B2 (en) 2012-03-15 2016-04-05 Sachtleben Pigment Gmbh Method for granulating particle-containing material obtained from industrial processes, the granulate thus produced, and use thereof
DE102012102473A1 (de) 2012-03-22 2013-09-26 Xtract Gmbh Verfahren zur Behandlung von Klärschlamm
CN102924644A (zh) * 2012-11-11 2013-02-13 陕西理工学院 一种丙烯酸保湿复合材料的制备方法
US9834486B2 (en) 2013-04-29 2017-12-05 Basf Se Process for producing high-swellability polymer composites
EP3228679A1 (de) * 2016-04-04 2017-10-11 Geohumus GmbH Hybridmaterial
CN109095542A (zh) * 2018-09-26 2018-12-28 深圳市裕农科技股份有限公司 一种澄清剂及其制备方法
CN110343529A (zh) * 2019-08-09 2019-10-18 内蒙古惠百农菊芋产业发展有限公司 一种固体水及其制作方法

Also Published As

Publication number Publication date
DE502006006251D1 (de) 2010-04-08
AP2007004233A0 (en) 2007-12-31
AP2023A (en) 2009-08-10
ZA200709106B (en) 2008-09-25
DE202006020295U1 (de) 2008-02-28
IL186753A0 (en) 2008-02-09
MA29415B1 (fr) 2008-04-01
AR056341A1 (es) 2007-10-03
US20090163365A1 (en) 2009-06-25
BRPI0610229A2 (pt) 2010-06-08
IL186753A (en) 2012-02-29
EP2168990A3 (de) 2010-08-11
NO20076284L (no) 2008-01-30
EP2168990A2 (de) 2010-03-31
HK1118302A1 (zh) 2009-02-06
PT1879932E (pt) 2010-05-24
KR20080008406A (ko) 2008-01-23
AU2006246079A2 (en) 2009-03-05
ES2304910T1 (es) 2008-11-01
EG25200A (en) 2011-11-14
CA2605499A1 (en) 2006-11-16
ATE458760T1 (de) 2010-03-15
AU2006246079A1 (en) 2006-11-16
EP1879932B1 (de) 2010-02-24
CY1110041T1 (el) 2015-01-14
IN2007DE08135A (forum.php) 2007-11-30
MX2007013922A (es) 2008-05-29
CN101171272A (zh) 2008-04-30
DE102005021221A1 (de) 2006-11-09
JP2008540704A (ja) 2008-11-20
NZ562800A (en) 2010-06-25
EA200702433A1 (ru) 2008-08-29
ES2304910T3 (es) 2010-06-28
EP1879932A1 (de) 2008-01-23

Similar Documents

Publication Publication Date Title
EP1879932B1 (de) Wasserquellbares hybridmaterial mit anorganischen zusatzstoffen und verfahren seiner herstellung
EP1399397B1 (de) Feststoffhaltige, wasserquellende und -saugende, anionische polymere mit schwammstruktur sowie deren herstellung und verwendung
EP2209757B1 (de) Bodenverbesserungsmittel und seine verwendung
EP2307333B1 (de) Materialverbund aus polymermaterialien und einer porösen, mineralischen matrix sowie deren herstellung und anwendung
WO2011009441A2 (de) Flüssigkeiten speicherndes und expandierbares kompositmaterial sowie dessen herstellung und anwendung
JP2005500407A5 (forum.php)
DE202007016362U1 (de) Bodenverbesserungsmittel
WO2011141526A1 (de) Bioabbaubares wasserquellbares hybridmaterial
DE102007016919A1 (de) Vorrichtung und Verfahren zur Eintragung von Bodenverbesserungsmitteln
WO1999048998A1 (de) VERFAHREN ZUR ANHEBUNG DES pH-WERTS IN SAUREN BÖDEN
WO1999048360A1 (de) Verfahren zur verminderung der pflanzenverfügbarkeit von schwermetallen sowie verwendung von vernetzten poly(meth)acrylaten in dem verfahren
DE202011004661U1 (de) Expandierender und Flüssigkeiten speichernder Materialverbund und Formkörper
DE20221830U1 (de) Feststoffhaltige, wasserabsorbierende, anionische Polymere mit Schwammstruktur
HK1118302B (en) Water-swellable hybrid material with inorganic additives and process for its preparation
HK1141306A (en) Water-swellable hybrid material with inorganic additives and process for its preparation
DE10114169A1 (de) Silikathaltige, Wasser und wäßrige Flüssigkeiten speichernde, anionische Polymere sowie deren Herstellung und Verwendung
CH316766A (de) Verfahren zum Behandeln von Böden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 186753

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2605499

Country of ref document: CA

Ref document number: 8135/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006724009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 562800

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: DZP2007000669

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2006246079

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200680015477.0

Country of ref document: CN

Ref document number: 2008509315

Country of ref document: JP

WWE Wipo information: entry into national phase

Country of ref document: MX

Ref document number: MX/a/2007/013922

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: AP/P/2007/004233

Country of ref document: AP

ENP Entry into the national phase

Ref document number: 2006246079

Country of ref document: AU

Date of ref document: 20060404

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006246079

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200702609

Country of ref document: VN

Ref document number: 1020077028568

Country of ref document: KR

Ref document number: 200702433

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006724009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920019

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0610229

Country of ref document: BR

Kind code of ref document: A2