WO2006112033A1 - 交流モータ制御装置 - Google Patents

交流モータ制御装置 Download PDF

Info

Publication number
WO2006112033A1
WO2006112033A1 PCT/JP2005/007667 JP2005007667W WO2006112033A1 WO 2006112033 A1 WO2006112033 A1 WO 2006112033A1 JP 2005007667 W JP2005007667 W JP 2005007667W WO 2006112033 A1 WO2006112033 A1 WO 2006112033A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
current
control device
cable
Prior art date
Application number
PCT/JP2005/007667
Other languages
English (en)
French (fr)
Inventor
Hirokazu Matsui
Takefumi Sawada
Shigeyuki Yoshihara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to CN2005800494265A priority Critical patent/CN101160713B/zh
Priority to JP2006545348A priority patent/JPWO2006112033A1/ja
Priority to EP05734517A priority patent/EP1876700A4/en
Priority to PCT/JP2005/007667 priority patent/WO2006112033A1/ja
Priority to US11/911,487 priority patent/US7759888B2/en
Publication of WO2006112033A1 publication Critical patent/WO2006112033A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0805Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to abnormality detection of a cable connecting a motor and a power converter, and more particularly, to abnormality detection of an AC motor control device.
  • the former technique is a technique in which a weak voltage is applied to the motor before driving the motor, and a short circuit between phases is detected from the DC current pattern at that time. This has the disadvantage that it is possible to detect a short circuit between phases before driving the motor, but it is not possible to detect a short circuit between phases during motor drive.
  • An object of the present invention is to provide a motor control device capable of detecting an abnormal state (short circuit between phases, cable disconnection, etc.) of a motor cable during driving of an AC motor by an arithmetic processing unit without providing a special circuit. To provide is there.
  • a representative one of the AC motor control devices of the present invention is an AC motor and a chamber that drives the AC motor with a motor current via a motor cable.
  • Motor current detector that detects the motor current flowing in the motor cable connected to the AC module in the evening, and the motor cable error based on the motor current detected by the motor current detector And an arithmetic processing unit for detecting that.
  • Another representative one of the AC motor control devices of the present invention is an AC motor driven by a plurality of motor currents, and an inverter that drives the AC motor by a plurality of motor currents via a plurality of motor cables.
  • a motor current detector that detects a plurality of motor currents flowing through a plurality of motor cables that are connected overnight and an AC module, and a memory that stores a plurality of motor currents detected by the motor current detector The motor current stored in the storage means and a predetermined value determined in advance, and if at least two of the motor current values are larger than the predetermined value, an abnormal condition And an arithmetic processing unit that determines that
  • Another representative one of the AC motor control devices of the present invention is an AC motor driven by a plurality of motor currents, and an inverter that drives the AC motor by a plurality of motor currents via a plurality of motor cables.
  • a motor current detector that detects a plurality of motor currents flowing through a plurality of motor cables connected to the motor and AC motors, and stores a motor current detected by the motor current detector.
  • the memory means and the motor current stored in the memory means are compared with a predetermined value, and if at least one motor current value is smaller than the predetermined value among a plurality of motor current values, an error occurs.
  • An arithmetic processing unit that determines that the state is satisfied.
  • FIG. 1 is a configuration diagram of a drive system for an electric vehicle equipped with a motor control device for detecting a short circuit between phases according to an embodiment of the present invention.
  • FIG. 2 is a flow chart for performing phase-to-phase short-circuit detection according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a phase current at the time of a short circuit between phases in the present invention.
  • FIG. 4 is a diagram showing the configuration of a drive system for an electric vehicle equipped with a motor control device for detecting a short circuit between phases according to another embodiment of the present invention.
  • FIG. 5 is a flowchart for performing phase short-circuit detection, which is another embodiment of the present invention.
  • FIG. 6 is a flow chart ⁇ ⁇ for detecting a phase break, which is another embodiment of the present invention.
  • FIG. 7 is an explanatory view of an optimum value of the determination time for detecting the phase break that is another embodiment of the present invention.
  • FIG. 1 shows a power supply equipped with a motor control device in this embodiment. It is a block diagram of the drive system for electric vehicles.
  • AC motor 1 (synchronous motor) is a permanent magnet type synchronous motor.
  • AC motor 1 receives power supply via inverter circuit 2.
  • the AC module 1 is provided with a speed detector 6 such as an encoder as a rotation sensor and a phase calculator 7 such as a magnetic pole position sensor for detecting the magnetic pole position. These transmit the rotational speed and phase information of AC motor 1 to the control device.
  • DC current is input from the battery 4 to the inverter circuit 2.
  • a capacitor 3 for smoothing the voltage of the battery 4
  • a battery voltage detector 5 for measuring the voltage of the battery 4.
  • the battery voltage detection unit 5 transmits the detected voltage value of the battery 4 to the current command determination unit 9.
  • Imper circuit 2 outputs U-phase, V-phase, and W-phase three-phase AC currents.
  • a current detector 13 that detects the U-phase, V-phase, and W-phase current values that are AC currents input to AC motor 1.
  • the three-phase AC current detected by the current detector 13 is converted into dq axes by the three-phase two-phase converter 12 based on the phase angle ⁇ calculated by the phase calculator 7. This axis conversion value is transmitted to the input side of the current control calculation unit 10.
  • the current command determination unit 9 is processed by the rotation speed N output from the speed command detection unit 6, the voltage of the battery 4 detected by the battery voltage detection unit 5, and the torque command processing unit 8. Torque command Based on *, dq axis current command is output.
  • the current control calculation unit 1 0 is the d Q axis output from the current command determination unit 9. Based on the current command, the current detection value converted by the d-Q axis by the 3-phase 2-phase conversion unit 1 2 and the rotation speed N output by the speed detection unit 6, the dq-axis voltage command is output by PI control. Calculate.
  • the d Q-axis voltage command calculated by the current control calculation unit 10 is based on the phase angle ⁇ calculated by the phase calculation unit 7 and the three-phase AC voltage command is output by the two-phase three-phase conversion unit 1 1. Calculate.
  • the P W M signal calculation unit converts the three-phase alternating current command into a switching control signal for controlling the switching element in the inverter circuit 2. This switching control signal is supplied to the switching elements of each phase inside the inverter circuit 2.
  • the three-phase alternating current detected by the current detector 1 3 is input to the cable state detector 1 4.
  • the cable status detector 14 always samples the U-phase, V-phase, and W-phase AC current values at the same time. This sampling value is stored in, for example, a storage device inside the arithmetic processing unit. At this time, it is desirable that the sampling period is sufficiently shorter than the drive frequency of AC motor 1.
  • the current flowing between AC motor 1 and inverter circuit 2 is normal when there is an abnormality such as a short circuit between the phases or disconnection in the motor cable connecting AC motor 1 and inverter circuit 2. If this is the case, there will be differences in the phase relationships and current amplitude values of the U, V, and W phases.
  • an abnormality determination based on a change in the amplitude value of the motor current will be described.
  • Fig. 3 shows a comparison of the phase current during normal operation and when the phase is short-circuited.
  • the phase-to-phase inductance of the motor is minimized. Therefore, as shown in Fig. 3 (b), the short-circuit motor current becomes excessive with respect to the command value and oscillates by current feedback control. It becomes a state.
  • the amplitude value of the short-circuit current waveform 19 in the short-circuit state is more than doubled.
  • a short circuit between phases can be detected by sampling the sampling data for a predetermined time out of the sampled U-phase, V-phase, and W-phase current data.
  • Fig. 2 shows a flow chart of the interphase short-circuit detection method in this embodiment.
  • a short-circuit condition is detected.
  • the sampled current data of each phase is stored in a storage device inside the arithmetic processing unit.
  • a current value that is a criterion for determining whether or not a short-circuit state (abnormal state) is determined in advance, and that value is stored in a storage device. Therefore, by comparing the sampled current data and the reference current value with an arithmetic processing unit, it is possible to detect whether or not a short circuit has occurred.
  • a state 15 for determining the current value of the U phase it is in a state 15 for determining the current value of the U phase, and it is determined whether or not the U phase current exceeds a predetermined value. In this state, if it is determined that the U-phase current exceeds the predetermined value, the state then transitions to state 16 for determining the V-phase current value.
  • state 16 for determining the V-phase current value determine whether the V-phase current exceeds the specified value. If it is determined that the V-phase current exceeds the specified value, it is determined that the U-V phase is in a short-circuited state (short state).
  • state 16 determines the current value of the V phase that the V phase current is less than or equal to the predetermined value
  • state 17 the current value of the W phase is determined.
  • the W-phase current exceeds the specified value. If it is determined, the U-W phase is determined to be short-circuited.
  • the state transitions to the diagnosis start state.
  • the state 15 for determining the current value of the U phase if it is determined that the U phase current is less than or equal to the predetermined value, then the state 1 for determining the current value of the W phase 1 7 ' The state transitions to When it is determined that the W-phase current is less than the predetermined value, the state transitions to the diagnosis start state. On the other hand, if it is determined that the W-phase current exceeds the predetermined value, the state transitions to state 16 ′ where the V-phase current value is determined.
  • state 16 ' where the V-phase current value is determined, if it is determined that the V-phase current exceeds the specified value, it is determined that the V-W phase is short-circuited. On the other hand, when it is determined that the V-phase current is less than the predetermined value, the state transitions to the diagnosis start state.
  • an existing arithmetic processing unit for motor control. If an existing arithmetic processing unit or the like is used, it is not necessary to provide a special circuit for cable anomaly, so the cost performance is excellent. However, it is also possible to implement an abnormality detection processing device separately from the motor control processing device.
  • the motor cable can be obtained by sampling the data for a predetermined time from the sampled U-phase, V-phase, and W-phase current data and checking the current data of each layer. It is possible to provide a detection method capable of detecting a short circuit state between the two phases (U—V phase, U—W phase, V—W phase) and an AC motor control device for executing this detection method.
  • FIG. 4 is a configuration diagram of a drive system for an electric vehicle equipped with a motor control device according to this embodiment.
  • the description of the same parts as those of the motor control device of the first embodiment is omitted.
  • the three-phase alternating current detected by the current detector 3 2 is converted into a dQ-axis current by the three-phase two-phase converter 3 1.
  • the shaft current is converted into I rms 3 5 which is an effective value of the phase detection current.
  • Fig. 5 shows a flowchart of the interphase short-circuit detection method of this example.
  • the offset value ⁇ ⁇ r m s is calculated by the offset calculator 4 3 using the phase current command effective value I ′ r m s 40 and the phase detection current effective value I ⁇ r m s 4 1.
  • this offset value ⁇ ⁇ r m s 4 3 exceeds a predetermined value, it is determined that the phase is short-circuited between phases.
  • the effective value of the phase detection current calculated from the 2-phase 1-phase converter 3 3
  • FIG. 1 An embodiment for detecting cable breakage abnormality will be described with reference to FIGS. 1, 6, and 7.
  • FIG. 1 An embodiment for detecting cable breakage abnormality will be described with reference to FIGS. 1, 6, and 7.
  • the cable state detection unit 14 In the drive system for an electric vehicle equipped with the motor control device shown in Fig. 1, the cable state detection unit 14 always samples the alternating currents of the U, V, and W phases simultaneously. For example, the sampled value is stored in a storage device inside the arithmetic processing unit.
  • the detection current value of the disconnection phase is theoretically 0 A. Therefore, sampling data for a predetermined time is picked up from the sampled U-phase, V-phase, and W-phase current data.
  • Fig. 6 shows a flowchart of the disconnection detection method in this example.
  • the state is maintained. If the current command is greater than or equal to the predetermined value and the drive current is determined to be smaller than the predetermined value, the state transitions to state 5 1 for determining the U-phase current value.
  • the U-phase current value is smaller than the predetermined value in state 5 1 for determining the u-phase current value, it is determined that the U-phase is disconnected. On the other hand, if the U-phase flow is greater than or equal to a predetermined value, the state transitions to state 52 where the V-phase flow value is determined.
  • the W-phase current value is determined 5 3 if the W-phase current is smaller than the predetermined value, it is determined that the W-phase is disconnected. On the other hand, if the W-phase current is greater than or equal to the predetermined value, the state transitions to the judgment start state.
  • Fig. 7 shows a diagram explaining the optimum value of the judgment time in disconnection detection. As can be seen from this figure, it is desirable that the sampling time of the current data is at least 1 Z 2 of the motor drive frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

交流モータ駆動中におけるモータケーブルの異常状態を、特別な回路を使用せずに、演算処理装置にて検知可能なモータ制御装置を提供する。交流モータと、モータケーブルを介してモータ電流により交流モータを駆動するインバータと、交流モータのモータケーブルに流れるモータ電流を検出するモータ電流検出器を備えたモータ制御装置において、モータ電流検出器より検出したモータ電流からモータケーブルの相間短絡や断線等の異常を演算処理装置を用いて検知する。

Description

交流モータ制御装置
技術分野
本発明は、 モータと電力変換器との間を接続するケーブルの異常検出 に関し、 特に、 交流モータ制御装置の異常検出に関する。
背景技術
従来から、 モ一夕とインバ一夕との間を接書続するケ一ブルまたはモー 夕回路の断線や相間短絡等の異常を検出する方法がある。 かかる方法と しては、 モータ駆動停止中にモータ回路に低い電圧を印加して、 このと きのィンバ一夕直流部に流れる電流を診断パターンに基づいて診断判定 する技術 (特開平 6— 6 6 9 0 1号公報) や、 短絡電流が継続する時間 を計測し、 この継続時間が所定時間より長い場合に短絡故障であると判 断する技術 (特開平 1 0 — 1 9 1 5 5 1号公報) がある。
前者の技術は、 モータ駆動前にモータに対して微弱電圧を印加して、 そのときの D C電流パターンから相間短絡を検出するという技術である。 これは、 モータ駆動前に相間短絡を検知することが可能であるが、 モー 夕駆動中での相間短絡検知はできないという欠点がある。
また、 後者の技術は、 D Cモータにのみ適用可能な技術である。 この ため、 時々刻々と電流値が変化する交流モー夕の場合には、 この技術を 適用するのは困難である。
本発明の目的は、 交流モータ駆動中におけるモータケ一ブルの異常状 態 (相間短絡, ケーブル断線等) を、 特別な回路を設けることなく、 演 算処理装置にて検知することができるモータ制御装置を提供することに ある。
発明の開示
本発明の交流モータ制御装置のうち代表的な一つは、 交流モータと、 モータケーブルを介してモータ電流により交流モータを駆動するィンバ
—夕と、 交流モ一夕に接続されたモ一タケ一ブルに流れるモー夕電流を 検出するモータ電流検出器と、 モータ電流検出器により検出されたモー 夕電流に基づき、 モータケ一ブルの異常であることを検知する演算処理 装置とを有する。
また、 本発明の交流モータ制御装置のうち代表的な他の一つは、 複数 のモータ電流で駆動される交流モータと、 複数のモータケーブルを介し て複数のモータ電流により交流モータを駆動するィンバ一夕と、 交流モ 一夕に接続された複数のモ一夕ケーブルにそれぞれ流れる複数のモータ 電流を検出するモータ電流検出器と、 モータ電流検出器により検出され た複数のモータ電流を保存する記憶手段と、 記憶手段に記憶されたモ一 タ電流とあらかじめ決定された所定値とを比較し、 複数のモー夕電流値 のうち少なく とも 2つのモータ電流値が所定値より大きい場合に、 異常 状態であると判定する演算処理装置とを有する。
また、 本発明の交流モータ制御装置のうち代表的な他の一つは、 複数 のモータ電流で駆動される交流モータと、 複数のモータケーブルを介し て複数のモータ電流により交流モータを駆動するィンバ一夕と、 交流モ 一夕に接続された複数のモータケーブルにそれぞれ流れる複数のモータ 電流を検出するモータ電流検出器と、 モ一夕電流検出器により検出され た複数のモー夕電流を保存する記憶手段と、 記憶手段に記憶されたモー 夕電流とあらかじめ決定された所定値とを比較し、 複数のモ一夕電流値 のうち少なく とも 1つのモータ電流値が所定値より小さい場合に、 異常 状態であると判定する演算処理装置とを有する。
本発明によれば、 低コス トで迅速な異常検知を可能にする交流モー夕 制御装置を提供することができる。
図面の簡単な説明
第 1図は本発明の一実施例である相間短絡検知を行うモー夕制御 装置を備えた電気自動車の駆動システム構成図。
第 2図は本発明の一実施例である相間短絡検知を実施するフロー チャー ト。
第 3図は本発明における相間短絡時の相電流を説明する図。
第 4図は本発明の他の一実施例である相間短絡検知を行うモー夕 制御装置を備えた電気自動車の駆動システム構成図。
第 5図は本発明の他の一実施例である相間短絡検知を実施するフ ローチャー 卜。
第 6図は本発明の他の一実施例である相断線検知を行う フローチ ヤー 卜。
第 7図は本発明の他の一実施例である相断線検知を行う判定時間 の最適値についての説明図。 発明を実施するための最良の形態
以下、 本発明の実施形態について、 図面を参照しながら説明する。
(実施例 1 )
相間短絡検知を行うための一実施例を第 1 図〜第 3 図に基づい て説明する。 まず、 電気自動車用駆動制御システムに基づき、 本発 明のモータケーブル状態の異常検知方法を述べる。
第 1 図に示すのは、 本実施例におけるモー夕制御装置を備えた電 気自動車用駆動システムの構成図である。 交流モー夕 1 (同期電動 機) は、 永久磁石型同期モー夕である。 電力変換器であるインバー 夕回路 2 は、 バッテリ 4 を電源として動作する。 交流モー夕 1 は、 イ ンバー夕回路 2 を介して電力の供給を受ける。 交流モ一夕 1 には、 回転センサとしてのエンコーダ等の速度検出部 6 と、 磁極位置を検 出する磁極位置センサ等の位相演算部 7が備えられている。 これら は、 交流モータ 1 の回転数と位相の情報をそれぞれ制御装置に伝達 する。
ィ ンバ一夕回路 2 には、 バッテリ 4から直流電流が入力される。 イ ンバー夕回路 2 の直流電流入力側には、 バッテリ 4 の電圧を平滑 化するコンデンサ 3 と、 バッテリ 4の電圧を測定するバッテリ電圧 検出部 5が接続される。 バッテリ電圧検出部 5 は、 検出したバッテ リ 4 の電圧値を電流指令決定部 9に伝達する。
インパー夕回路 2からは、 U相, V相, W相の 3相交流電流が出力さ れる。 このインバー夕回路 2の交流電流出力側には、 交流モータ 1 に入 力される交流電流である U相, V相, W相の各電流値を検出する電流検 出部 1 3がある。 電流検出部 1 3より検出した 3相交流電流は、 位相演 算部 7にて演算された位相角 Θに基づき、 3相 2相変換部 1 2において d q軸変換される。 この 軸変換値は、 電流制御演算部 1 0の入力側 に伝達される。
電流指令決定部 9は、 速度指令検出部 6 よ り出力された回転数 N、 パッテリ電圧検出部 5 によ り検出されたバッテリ 4 の電圧、 及び、 トルク指令処理部 8 によ り処理された トルク指令 て *に基づいて、 d q軸電流指令を出力する。
電流制御演算部 1 0 は、 電流指令決定部 9 から出力された d Q軸 電流指令、 3相 2相変換部 1 2 によ り d Q軸変換された電流検出値、 及び、 速度検出部 6 によ り出力された回転数 Nに基づき、 P I 制御 により d q軸電圧指令を演算する。 電流制御演算部 1 0 にて演算さ れた d Q軸電圧指令は、 位相演算部 7 によ り演算された位相角 Θ に 基づき、 2相 3相変換部 1 1 において 3相交流電圧指令を演算する。
2相 3相変換部 1 1 の内部には、 P W M信号制御部(図示しない) がある。 P W M信号演算部は、 3相交流電流指令をインバ一タ回路 2 の内部にあるスィ ツチング素子を制御するためのスィ ツチング 制御信号に変換する。 このスイ ッチング制御信号は、 イ ンバー夕回 路 2 の内部にある各相のスィ ツチング素子に供給される。
電流検出部 1 3 によ り検出された 3相交流電流は、 ケーブル状態 検知部 1 4へ入力される。ケーブル状態検知部 1 4は、 U相, V相, W相の交流電流値を常時同時サンプリ ングする。 このサンプリ ング 値は、 例えば、 演算処理装置の内部にある記憶装置に保存される。 このとき、 サンプリ ング周期は、 交流モ一タ 1 の駆動周波数よ り十 分に短いものである ことが望ましい。
交流モータ 1 とインバー夕回路 2との間に流れる電流は、 交流モータ 1 とィンバータ回路 2 とを接続するモ一タケ一ブルに相間短絡や断線等 の異常が発生している場合と、 正常動作している場合とでは、 U相, V 相, W相各相の位相関係や電流振幅値に差異が生じる。 本実施例では、 一例として、 モータ電流の振幅値の変化に基づく異常判定を説明する。
第 3図に、 通常時と相間短絡時の相電流の比較図を示す。 モ一タケ一 ブルが相間短絡状態にある場合、 モータの相間ィンダクタンスは極小に なる。 このため、 短絡相モータ電流は、 第 3図 (b ) に示すとおり、 指 令値に対して過大となり、 電流フィードバックコントロールにより発振 状態となる。 一例として、 第 3図 ( a ) に示す正常時における電流波形 1 8の振幅値を比較すると、 短絡時の短絡相電流波形 1 9の振幅値は 2 倍以上となる。
モータ電流のこの相違を利用して、 サンプリングした U相, V相, W 相の各相電流データのうち、 所定時間分のサンプリングデータをピック ァップすることにより、 相間短絡を検知することができる。
第 2図に、 本実施例における相間短絡検知方法のフローチヤ一トを示 す。 サンプリングした U相, V相, W相の各相電流データに基づき、 相 間短絡状態が生じていることを検知する。 ここで、 サンプリングした各 相の電流データは、 演算処理装置の内部にある記憶装置に保存されてい る。 また、 短絡状態 (異常状態) であるか否かの判定基準となる電流値 をあらかじめ決定しておき、 その値を記憶装置に保存しておく。 このた め、 サンプリングした電流データと基準電流値とを演算処理装置にて比 較することにより、 短絡状態であるか否かを検知することができる。
まず、 診断開始時には、 U相の電流値を判定する状態 1 5にあり、 U 相電流があらかじめ決められた所定値を超えているか否かを判定する。 この状態において、 U相電流が所定値を超えていると判定された場合に は、 次に、 V相の電流値を判定する状態 1 6へと状態が遷移する。
V相の電流値を判定する状態 1 6 においては、 V相電流が所定値 を超えているか否かを判定する。 ここで V相電流が所定値を超えて いると判定された場合には、 U— V相間が短絡状態 (ショー ト状態) であると判定する。
一方、 V相の電流値を判定する状態 1 6 において、 V相電流が所 定値以下であると判定された場合には、 次に、 W相の電流値を判定 する状態 1 7へと遷移する。 こ こで、 W相電流が所定値を超えてい ると判定された場合には、 U— W相間が短絡状態であると判定する。 W相電流が所定値以下であると判定された場合には、 診断開始の状 態へと遷移する。
また、 U相の電流値を判定する状態 1 5 にある場合に、 U相電流 が所定値以下であると判定された場合には、 次に、 W相の電流値を 判定する状態 1 7 ' へと状態が遷移する。 W相電流が所定値以下で ある と判定された場合には、 診断開始の状態へと遷移する。 一方、 W相電流が所定値を超えていると判定された場合には、 V相の電流 値を判定する状態 1 6 ' へと状態が遷移する。
V相の電流値を判定する状態 1 6 ' において、 V相電流が所定値 を超えていると判定された場合には、 V— W相間が短絡状態である と判定する。 一方、 V相電流が所定値以下であると判定された場合 には、 診断開始の状態へと遷移する。
本実施例では、 異常状態の検知をより確実なものとするため、 電流の 所定値を超える状態が所定時間継続した場合に、 相間短絡状態であると 判定するようにすることがより好ましい。
モ—タケ—ブルが短絡している場合、 インパー夕から見たモータ巻線 のインダクタンスおよび抵抗は極めて小さい。 従って、 モ一タ電流は急 激に増大し、 モータ電流の検出値は指令値に対して過大となる。 また、 短絡相間において、 各々の位相角は片方の短絡相を基準とすると、 もう 片方の短絡相はほぼ逆相となる。 この関係を利用し、 モータ電流値を電 流検出器等により演算処理装置の内部に取込み、 その電流の振幅値およ び位相関係を判定することによって、 モ一夕ケーブルの短絡状態 (異常 状態) を検知することができる。
この場合、 演算処理装置の演算速度が十分速いものを用いれば、 異常 状態の早期検知が可能であるため、 ィンバ一夕およびモ一夕への過大電 流による機器破壊や意図しないトルクの発生を抑制できる。
また、 本実施例では、 既存のモータ制御用の演算処理装置等を用いる ことがより好ましい。 既存の演算処理装置等を用いれば、 ケ一ブル異常 用の回路を特別に設ける必要がないため、 コス トパフォ一マンスに優れ る。 ただし、 異常検知用の演算処理装置を、 モータ制御用の演算処理装 置とは別に設けて実施することも可能である。
以上のとおり、 サンプリ ングした U相, V相, W相の各電流デ一 夕のうち、 所定時間分のデータをサンプリ ングし、 各層の電流デ一 夕を確認するこ とにより、 モータケ一ブルの相間 ( U— V相, U— W相, V— W相)短絡状態を検知することができる検知方法、及び、 この検知方法を実行する交流モータ制御装置を提供する こ とがで きる。
(実施例 2 )
相間短絡検知を行う ための他の一実施例を第 4 図及び第 5 図に 基づいて説明する。 第 4図に示すのは、 本実施例におけるモー夕制 御装置を備えた電気自動車用駆動システムの構成図である。 本実施 例のモー夕制御装置において、 実施例 1 のモータ制御装置と同じ部 分については、 その説明を省略する。
第 4 図に示すモ一夕制御装置を備えた電気自動車の駆動システ ムにおいて、 交流モータ 2 0 , インバ一夕回路 2 1 , コンデンサ 2 2 , ノ ッ テ リ 2 3 , ノ ッ テ リ検出部 2 4, 速度検出部 2 5 , 位相 演算部 2 6, トルク指令処理部 2 7 , 電流指令決定部 2 8 , 電流制 御演算部 2 9 , 2相 3相変換部 3 0 , 3相 2相変換部 3 1 、 及び、 電流検出部 3 2 については、 第 1 図のシステムと同一である。 第 4 図では、 2相 1相変換部 3 3 、 及び、 ケーブル状態検知部 3 4が存 在する点で、 第 1 図のシステムとは異なる。
第 4図のシステムにおいて、 電流検出部 3 2 により検出された 3 相交流電流は、 3相 2相変換部 3 1 によって d Q軸電流に変換され る。 こ こで、 2相 1 相変換部 3 3 において数式 1 が実行される こ と によ り、 軸電流は、 相検出電流の実効値である I ~ r m s 3 5 に変換される。
I ~ r m s =(d軸検出電流2 + Q軸検出電流2) ·5 … (数式 1 ) 一方、 電流指令決定部 2 8から出力される d Q軸電流指令値を、 上 記同様、 2相 1相変換部 3 3 において数式 2 を実行するこ とによ り、 相電流指令の実効値 I ^ r m s 3 6 に変換する。
r m s二(d軸電流指令 2 + Q軸電流指令 2)° ·5 …(数式 2 ) こ こで、 モータケーブルが相間短絡状態である場合、 モータの相 間イ ンダクタンスは極小になる。 このため、 短絡相モータ電流が指 令値に対して過大になる という ことは、 前述のとおりである。 つま り、 モータ電流を実効値で判断すると、 検出電流実効値 I r m s 3 5 は、電流指令実効値 I * r m s 3 6 に対してオフセッ トが発生す る。
第 5 図に、 本実施例の相間短絡検知方法のフローチャー トを示す。 本図に示すように、相電流指令の実効値 I ' r m s 4 0 と相検出電流 の実効値 I - r m s 4 1 をオフセッ ト算出器 4 3 によ り オフセッ ト値 Δ Ι r m s を算出する。 このオフセッ ト値 Δ Ι r m s 4 3が所 定値を超える場合には、 このときを相間短絡状態であると判定する。 こ こで、 2相 1相変換部 3 3 よ り算出した相検出電流の実効値
I r m s 3 5 に対して、 フィ ルタ処理を施すことがより好ましい。 (実施例 3 )
次に、 ケーブル断線の異常検知を行う 実施例を第 1 図, 第 6 図 および第 7図を参照して説明する。
第 1 図に示すモータ制御装置を備えた電気自動車の駆動システ ムにおいて、 ケーブル状態検知部 1 4では、 U相, V相, W相の各 相の交流電流を常時同時サンプリ ングする。 サンプリ ングした値は、 例えば、 演算処理装置の内部にある記憶装置に保存する。
こ こで、 モータケ一ブルが断線状態である場合には、 断線相の検 出電流値は、 理論上 0 Aとなる。 そこで、 サンプリ ングした U相, V相, W相の電流データのうち、 所定時間分のサンプリ ングデータ をピックアップする。
第 6 図に、 本実施例における断線検知方法のフローチャー トを示 す。 第 6 図に示すとおり、 駆動電流値を判定する状態 5 0 において、 モータの駆動電流値があ らかじめ決定された所定値以上である場 合には 、 その状態が保持される。 方 電流指令が所定値以上の状 で、 駆動電流が所定値よ 小さいと判定された場合には、 U相電 流値を判定する状態 5 1 へと状態が遷移する
u相電流値を判定する状態 5 1 に いて U相電流が所定値より 小さい場合には、 U相が断線状態でめると判定する。 一方、 U相 流が所定値以上の場合には V相 流値を判定する状態 5 2へと状 台 ¾が遷移する。
V相電流値を判定する状態 5 2 において V相電流が所定値より 小さい場合には、 V相が断線状態であると判定する。 一方、 V相電 流が所定値以上の場合には W相 流値を判定する状態 5 3へと状 態が遷移する。 1
W相電流値を判定する状態 5 3 において、 W相電流が所定値よ り 小さい場合には、 W相が断線状態であると判定する。 一方、 W相電 流が所定値以上の場合には、 判定開始の状態へと遷移する。
また、 第 7 図に、 断線検知における判定時間の最適値を説明した 図を示す。 本図よりわかるとおり 、 電流データのサンプリ ング時間 は、 少なく とも、 モータ駆動周波数の 1 Z 2以上であることが望ま しい。
このよう に、 所定時間分の U相, V相, W相の電流デ一夕をサン プリ ングして、 各相の電流状態を判定する ことにより、 モータケ一 ブルの断線状態の検知方法、 及び、 その検知方法を実行する交流モ —夕制御装置を実現する こ とができる。
以上、 本発明の実施例について詳細に説明したが、 本発明は上記実施 例に限定されるものではなく、 その技術思想の範囲内で種々の変形が可 能である。 例えば、 相間短絡検知方法や断線検知方法において、 U相, V相, W相の各相の電流値の判定順序を変更することや、 電流の振幅値 の代わりに電流の位相を異常判定として用いることは、 当然に本発明の 範囲内にあるものである。

Claims

2 請 求 の 範 囲
1 . 交流モータと、
モータケーブルを介してモ—夕電流により前記交流モータを駆動する ィンバー夕と、
前記交流モータに接続された前記モータケーブルに流れる前記モー夕 電流を検出するモー夕電流検出器と、
前記モー夕電流検出器により検出された前記モータ電流に基づき、 前 記モー夕ケーブルの異常であることを検知する演算処理装置とを有する ことを特徴とする交流モー夕制御装置。
2 . 請求項 1記載の交流モー夕制御装置において、
前記モー夕ケーブルの前記異常は、 相間短絡状態であり、
前記異常であることは、 前記モー夕電流の振幅値の大きさに基づいて 判定し、
前記演算処理装置は、 前記異常であることを前記交流モータの駆動中 に検知することを特徴とする交流モー夕制御装置。
3 . 請求項 2記載の交流モータ制御装置において、
前記交流モータは、 3相の電流により制御されるものであり、 前記モー夕電流検出器は、 前記 3相の電流のうちいずれか 2相の電流 を用いて該 2相の電流を略同時にサンプリングすることにより前記相間 短絡状態であるか否かの判定を行う ことを特徴とする交流モータ制御装 置。
4 . 請求項 2記載の交流モータ制御装置において、
前記交流モータ制御装置は、 前記相間短絡状態である相を特定するこ とを特徴とする交流モー夕制御装置。
5 . 請求項 3記載の交流モータ制御装置において、 略同時にサンプリングした前記 2相の電流が、 あらかじめ設定した所 定値を超える状態を所定時間継続した場合に、 前記 2相の前記モータケ 一ブルが相間短絡状態であると判定することを特徴とする交流モー夕制 御装置。
6 . 請求項 5記載の交流モー夕制御装置において、
前記 3相は、 U相, V相, W相であり、
前記相間短絡状態であるか否かの判定は、 U— V相間, V— W相間, W— U相間の全てにおいて実施されることを特徴とする交流モータ制御 装置。
7 . 請求項 2記載の交流モータ制御装置において、
前記交流モー夕制御装置は、 前記モータ電流検出器で検出した前記モ 一夕電流と制御内部電流指令値とを比較することにより前記相間短絡状 態を検知することを特徴とする交流モー夕制御装置。
8 . 請求項 1記載の交流モー夕制御装置において、
前記交流モータ制御装置は、 前記モータケ一ブルの断線または未接続 を検知し、
前記演算処理装置は、 前記異常状態であることを前記交流モータの駆 動中に検知することを特徴とする交流モー夕制御装置。
9 . 請求項 1記載の交流モータ制御装置において、
前記演算処理装置は、 前記交流モータを制御するものであることを特 徵とする交流モータ制御装置。
1 0 . 請求項 1記載の交流モータ制御装置において、
前記交流モー夕制御装置は、 前記モータケーブルの異常を検知する前 記演算処理装置とは別の第 2演算処理装置を有し、
前記第 2演算処理装置は、 前記交流モータを制御するものであること 4
を特徴とする交流モータ制御装置。
1 1 . 複数のモー夕電流で駆動される交流モータと、
複数のモー夕ケーブルを介して前記複数のモー夕電流により前記交流 モータを駆動するィンバ一夕と、
前記交流モータに接続された前記複数のモータケーブルにそれぞれ流 れる前記複数のモータ電流を検出するモータ電流検出器と、
前記モータ電流検出器により検出された前記複数のモータ電流を保存 する記憶手段と、
前記記憶手段に記憶された前記モータ電流とあらかじめ決定された所 定値とを比較し、 前記複数のモ一夕電流値のうち少なく とも 2つのモー 夕電流値が該所定値より大きい場合に、 異常状態であると判定する演算 処理装置とを有することを特徴とする交流モータ制御装置。
1 2 . 請求項 1 1記載の交流モータ制御装置において、
前記複数のモータ電流は、 U相電流, V相電流、 及び、 W相電流であ り、
前記異常状態は、 前記モータケ一ブルの相間短絡状態であり、 前記演算処理装置は、 前記異常状態であることを前記交流モータの駆 動中に検知することを特徴とする交流モータ制御装置。
1 3 . 請求項 1 2記載の交流モー夕制御装置において、
前記交流モータ制御装置は、 ソフ トウエアを用いて前記異常状態であ ることを検知することを特徴とする交流モータ制御装置。
1 4 . 複数のモータ電流で駆動される交流モータと、
複数のモータケーブルを介して前記複数のモー夕電流により前記交流 モ一夕を駆動するィンバ一夕と、
前記交流モータに接続された前記複数のモータケーブルにそれぞれ流 れる前記複数のモータ電流を検出するモ一夕電流検出器と、 前記モータ電流検出器により検出された前記複数のモータ電流を保存 する記憶手段と、
前記記憶手段に記憶された前記モータ電流とあらかじめ決定された所 定値とを比較し、 前記複数のモ一夕電流値のうち少なく とも 1つのモー タ電流値が該所定値より小さい場合に、 異常状態であると判定する演算 処理装置とを有することを特徴とする交流モータ制御装置。
1 5 . 請求項 1 4記載の交流モータ制御装置において、
前記複数のモー夕電流は、 U相電流, V相電流、 及び、 W相電流であ り、
前記異常状態は、 前記モ一夕ケーブルの断線状態であり、
前記演算処理装置は、 前記異常状態であることを前記交流モータの駆 動中に検知することを特徴とする交流モータ制御装置。
1 6 . 請求項 1 5記載の交流モ一夕制御装置において、
前記交流モータ制御装置は、 ソフ トウエアを用いて前記異常状態であ ることを検知することを特徴とする交流モ一夕制御装置。
PCT/JP2005/007667 2005-04-15 2005-04-15 交流モータ制御装置 WO2006112033A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800494265A CN101160713B (zh) 2005-04-15 2005-04-15 交流电动机控制装置
JP2006545348A JPWO2006112033A1 (ja) 2005-04-15 2005-04-15 交流モータ制御装置
EP05734517A EP1876700A4 (en) 2005-04-15 2005-04-15 AC MOTOR CONTROL
PCT/JP2005/007667 WO2006112033A1 (ja) 2005-04-15 2005-04-15 交流モータ制御装置
US11/911,487 US7759888B2 (en) 2005-04-15 2005-04-15 AC motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/007667 WO2006112033A1 (ja) 2005-04-15 2005-04-15 交流モータ制御装置

Publications (1)

Publication Number Publication Date
WO2006112033A1 true WO2006112033A1 (ja) 2006-10-26

Family

ID=37114786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007667 WO2006112033A1 (ja) 2005-04-15 2005-04-15 交流モータ制御装置

Country Status (5)

Country Link
US (1) US7759888B2 (ja)
EP (1) EP1876700A4 (ja)
JP (1) JPWO2006112033A1 (ja)
CN (1) CN101160713B (ja)
WO (1) WO2006112033A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159750A (ja) * 2007-12-27 2009-07-16 Panasonic Corp モータの異常検出装置
JP2010011636A (ja) * 2008-06-27 2010-01-14 Hitachi Ltd 断線検出方法および電力変換装置
US8471507B2 (en) 2010-06-30 2013-06-25 Hitachi Automotive Systems, Ltd. Electric power conversion system and electric power conversion device
JP2015080290A (ja) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 モータ制御システム
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
JPWO2019155585A1 (ja) * 2018-02-08 2020-07-27 三菱電機株式会社 電動機の制御装置およびケーブル断線検出方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139146B1 (ko) * 2006-04-20 2012-04-26 미쓰비시덴키 가부시키가이샤 전동기 제어 장치
US7279862B1 (en) * 2006-08-04 2007-10-09 Gm Global Technology Operations, Inc. Fault handling of inverter driven PM motor drives
JP5122505B2 (ja) * 2009-03-09 2013-01-16 株式会社日立産機システム 電力変換装置及びその制御方法
US8125747B2 (en) * 2009-03-16 2012-02-28 Honeywell International Inc. Method for mitigating negative sequence effect resulting from non-symmetrical short circuit failure of synchronous electric machine based systems
JP5624290B2 (ja) * 2009-07-09 2014-11-12 日本電産エレシス株式会社 ブラシレスモータ制御装置及びブラシレスモータ制御装置を搭載した電動パワーステアリング装置
US7977963B2 (en) 2009-07-21 2011-07-12 GM Global Technology Operations LLC Methods, systems and apparatus for detecting abnormal operation of an inverter sub-module
PL2519543T3 (pl) 2009-12-29 2016-12-30 Białka wiążące heterodimery i ich zastosowania
JP5201245B2 (ja) * 2010-09-17 2013-06-05 株式会社デンソー 回転機の制御装置
US20120182655A1 (en) * 2011-01-17 2012-07-19 General Electric Company Methods and Systems Involving Monitoring Circuit Connectivity
US9252590B2 (en) * 2011-02-25 2016-02-02 Ntn Corporation Electric automobile, in-wheel motor drive device, and motor control method
JP5735305B2 (ja) * 2011-02-25 2015-06-17 Ntn株式会社 電気自動車
US8575879B2 (en) * 2011-08-19 2013-11-05 GM Global Technology Operations LLC Methods, systems and apparatus for controlling a multi-phase inverter
JP5810905B2 (ja) 2011-12-28 2015-11-11 株式会社デンソー モータ制御装置
US9369078B2 (en) 2013-03-11 2016-06-14 Steering Solutions Ip Holding Corporation Method of current reference generation for a motor
US9461574B2 (en) * 2013-03-12 2016-10-04 Steering Solutions Ip Holding Corporation Motor control system for determining a reference d-axis current and a q-axis current
US9531311B2 (en) 2013-03-13 2016-12-27 Steering Solutions Ip Holding Corporation Generation of a current reference to control a brushless motor
DE102013213044A1 (de) * 2013-07-04 2015-01-08 Voith Patent Gmbh Permanentmagneterregte Elektromaschine
CN105683768B (zh) 2013-09-06 2019-10-01 特灵国际有限公司 针对包括可变频率电动机驱动器的系统的诊断
KR101500141B1 (ko) * 2013-09-12 2015-03-09 현대자동차주식회사 3상 케이블 단선 진단 방법 및 장치
FR3011397B1 (fr) * 2013-09-30 2015-10-16 Renault Sas Systeme et procede de commande d'un moteur electrique d'un vehicule automobile pour la detection de defauts electriques.
KR102045227B1 (ko) * 2013-11-29 2019-11-15 현대모비스 주식회사 모터-인버터 구동시스템 및 그 운용방법
US20150153400A1 (en) * 2013-12-03 2015-06-04 Hyundai Motor Company Detection system and method of disconnection of motor power cable and motor control method
JP6153860B2 (ja) * 2013-12-25 2017-06-28 日立オートモティブシステムズ株式会社 電動機駆動装置
KR101575294B1 (ko) * 2014-06-02 2015-12-21 현대자동차 주식회사 인버터의 입력단 전압 추정 방법 및 이를 이용한 모터 제어 방법
DE102014226008B3 (de) * 2014-12-16 2016-03-17 Kuka Roboter Gmbh Verfahren zur Überprüfung der Zuordnung eines Antriebs zu einer Steuereinrichtung
KR102000060B1 (ko) * 2015-04-09 2019-07-18 엘에스산전 주식회사 전류 센서의 옵셋 보정 장치
JP6553414B2 (ja) * 2015-06-04 2019-07-31 株式会社日立産機システム 電力変換装置
JP6765320B2 (ja) * 2017-02-28 2020-10-07 株式会社日立産機システム 交流電動機の制御装置
JP2019013071A (ja) * 2017-06-29 2019-01-24 ルネサスエレクトロニクス株式会社 演算装置及び処理装置
EP3691112B1 (en) * 2017-09-29 2022-06-22 Hitachi Industrial Equipment Systems Co., Ltd. Data obtaining method, inverter, and rotating electric machine
CN108667352B (zh) * 2018-04-03 2019-05-07 西安科技大学 无刷直流电机两相短路故障定位与容错运行控制方法
JP7064932B2 (ja) * 2018-04-17 2022-05-11 日立Astemo株式会社 インバータ制御装置、インバータ制御方法、インバータ制御プログラム
US10526008B1 (en) 2018-07-31 2020-01-07 Steering Solutions Ip Holding Corporation Machine current limiting for permanent magnet synchronous machines
CN111352012B (zh) * 2018-12-21 2021-06-18 比亚迪股份有限公司 车辆、电机驱动系统及其绝缘检测方法和装置
JP6685456B1 (ja) * 2019-06-26 2020-04-22 三菱電機株式会社 回転電機制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666901A (ja) 1991-11-26 1994-03-11 Hitachi Ltd モータ制御装置
JPH10191551A (ja) 1996-12-25 1998-07-21 Mitsubishi Electric Corp 負荷短絡故障の検出方法及びその装置と電動パワーステアリング装置
JP2004106664A (ja) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004320945A (ja) * 2003-04-18 2004-11-11 Yaskawa Electric Corp Acサーボドライバのモータ動力線断線検出方法
JP2005057818A (ja) * 2003-08-01 2005-03-03 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389694A (en) * 1980-10-08 1983-06-21 Pemco Corporation Cable continuity monitoring system
US4857918A (en) * 1986-02-25 1989-08-15 Kabushiki Kaisha Toshiba Fault diagnostic apparatus for electric appliance
JP3625901B2 (ja) * 1995-06-30 2005-03-02 三菱電機株式会社 サーボ制御システムの自動適正化方法および装置
JPH118992A (ja) * 1997-06-13 1999-01-12 Aisin Seiki Co Ltd 多相電気モータのコイル異常検出装置
CN1074606C (zh) * 1998-12-22 2001-11-07 中国科学院电工研究所 直流伺服系统保护装置
CA2291939C (en) * 1999-12-08 2008-12-30 Harry E. Orton Method for diagnosing degradation in aircraft wiring
US6928854B2 (en) * 1999-12-22 2005-08-16 Robert Bosch Gmbh Method for detecting malfunctioning in a sensor
WO2002063760A1 (en) * 2001-02-08 2002-08-15 Stridsberg Innovation Ab High reliability motor system
US6876203B2 (en) * 2001-06-11 2005-04-05 Frederick K. Blades Parallel insulation fault detection system
DE10135739C2 (de) * 2001-07-21 2003-06-18 Bosch Gmbh Robert Navigationsvorrichtung
US7254520B2 (en) * 2002-05-14 2007-08-07 Analysis And Measurement Services Corporation Testing of wire systems and end devices installed in industrial processes
JP2004040921A (ja) * 2002-07-04 2004-02-05 Meidensha Corp 電動車輌の制御方法
DE10236377A1 (de) 2002-08-02 2004-02-12 Dr. Johannes Heidenhain Gmbh Verfahren zur Fehlererkennung bei einer Antriebseinrichtung
GB2395377B (en) * 2002-11-13 2006-02-01 Frdx Ltd Fault detection apparatus and method
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US6930490B2 (en) * 2003-05-16 2005-08-16 Electro-Motive Diesel, Inc. Traction motor fault detection system
US7342763B2 (en) * 2003-06-13 2008-03-11 Tdg Aerospace, Inc. Fuel system safety device for run-dry conditions
US7352550B2 (en) * 2003-06-13 2008-04-01 Tdg Aerospace, Inc. Method of detecting run-dry conditions in fuel systems
US7254004B2 (en) * 2003-06-13 2007-08-07 Tdg Aerospace, Inc. Systems and methods for fault-based power signal interruption
KR100812291B1 (ko) * 2003-10-22 2008-03-10 가부시키가이샤후지쿠라 절연 열화 진단 장치
US20070054359A1 (en) * 2005-07-11 2007-03-08 Jonathan Zalevsky Rational Chemical Modification of Adiponectin Variants
JP4682740B2 (ja) * 2005-08-08 2011-05-11 トヨタ自動車株式会社 車両の電源装置
JP4839722B2 (ja) * 2005-08-08 2011-12-21 トヨタ自動車株式会社 車両の電源装置
US7403129B2 (en) * 2006-05-10 2008-07-22 Eaton Corporation Electrical switching apparatus and method employing acoustic and current signals to distinguish between parallel and series arc faults
EP1909368B1 (de) * 2006-10-06 2020-05-20 Schmidhauser AG Schaltungsanordnung und Verfahren zur Isolationsüberwachung für Umrichteranwendungen
US20080296521A1 (en) * 2007-05-30 2008-12-04 General Electric Company Method and system for reducing or eliminating uncontrolled motion in a motion control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666901A (ja) 1991-11-26 1994-03-11 Hitachi Ltd モータ制御装置
JPH10191551A (ja) 1996-12-25 1998-07-21 Mitsubishi Electric Corp 負荷短絡故障の検出方法及びその装置と電動パワーステアリング装置
JP2004106664A (ja) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004320945A (ja) * 2003-04-18 2004-11-11 Yaskawa Electric Corp Acサーボドライバのモータ動力線断線検出方法
JP2005057818A (ja) * 2003-08-01 2005-03-03 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876700A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159750A (ja) * 2007-12-27 2009-07-16 Panasonic Corp モータの異常検出装置
JP2010011636A (ja) * 2008-06-27 2010-01-14 Hitachi Ltd 断線検出方法および電力変換装置
US8305020B2 (en) 2008-06-27 2012-11-06 Hitachi, Ltd. Electric power conversion device, compressor motor with the device, and air conditioner with the motor
US8471507B2 (en) 2010-06-30 2013-06-25 Hitachi Automotive Systems, Ltd. Electric power conversion system and electric power conversion device
JP2015080290A (ja) * 2013-10-15 2015-04-23 トヨタ自動車株式会社 モータ制御システム
JP2016077103A (ja) * 2014-10-08 2016-05-12 株式会社デンソー 断線判定装置
JPWO2019155585A1 (ja) * 2018-02-08 2020-07-27 三菱電機株式会社 電動機の制御装置およびケーブル断線検出方法

Also Published As

Publication number Publication date
CN101160713A (zh) 2008-04-09
US20090059446A1 (en) 2009-03-05
JPWO2006112033A1 (ja) 2008-11-27
CN101160713B (zh) 2011-07-27
US7759888B2 (en) 2010-07-20
EP1876700A1 (en) 2008-01-09
EP1876700A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2006112033A1 (ja) 交流モータ制御装置
JP3661572B2 (ja) インバーターの電流センサー診断装置
US8575879B2 (en) Methods, systems and apparatus for controlling a multi-phase inverter
US6501243B1 (en) Synchronous motor-control apparatus and vehicle using the control apparatus
US9503009B2 (en) Method and apparatus for controlling of 3-phase AC motor
JP3559260B2 (ja) 電動パワーステアリング制御装置及び制御方法
JP2006081327A (ja) インバータの故障検出装置
JP5614598B2 (ja) モータ制御装置
JP5402403B2 (ja) 電動機制御システム
JPH11308704A (ja) 電気車の制御装置及び制御方法
JP6939800B2 (ja) モータ制御方法、モータ制御システムおよび電動パワーステアリングシステム
JP2000184772A (ja) モータの異常検出装置
US20110062904A1 (en) Alternating current motor control system
JP2011004538A (ja) インバータ装置
JP4735439B2 (ja) 永久磁石式同期電動機の初期磁極位置推定装置
JP2012029347A (ja) 欠相診断装置及び欠相診断方法
JP2002320397A (ja) モータ回転子の位置推定装置、位置推定方法およびプログラム
JP2005057817A (ja) 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP3933108B2 (ja) 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP5482050B2 (ja) モータ制御装置およびモータの欠相診断方法
JP2000175485A (ja) 同期モ―タ制御装置及び電気車制御装置並びに同期モ―タ制御方法
WO2021111856A1 (ja) 電力変換装置、診断装置及び診断方法
JP2007259650A (ja) 電動駆動制御装置及び電動駆動制御方法
JP3578096B2 (ja) モータ制御装置
JP3881346B2 (ja) 電動パワーステアリング制御装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2006545348

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580049426.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11911487

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005734517

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005734517

Country of ref document: EP