WO2006109690A1 - 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ - Google Patents

電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ Download PDF

Info

Publication number
WO2006109690A1
WO2006109690A1 PCT/JP2006/307366 JP2006307366W WO2006109690A1 WO 2006109690 A1 WO2006109690 A1 WO 2006109690A1 JP 2006307366 W JP2006307366 W JP 2006307366W WO 2006109690 A1 WO2006109690 A1 WO 2006109690A1
Authority
WO
WIPO (PCT)
Prior art keywords
double layer
electric double
layer capacitor
fullerene
electrode
Prior art date
Application number
PCT/JP2006/307366
Other languages
English (en)
French (fr)
Inventor
Hideki Shimamoto
Chiho Yamada
Kouhei Okuyama
Hisatsugu Izuhara
Mitsumasa Hijiriyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
The Kansai Coke And Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., The Kansai Coke And Chemicals Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/887,900 priority Critical patent/US7948738B2/en
Priority to CN2006800105897A priority patent/CN101151692B/zh
Priority to EP06731314A priority patent/EP1870912B1/en
Publication of WO2006109690A1 publication Critical patent/WO2006109690A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor, and an electrode and an electrode material used for the electric double layer capacitor.
  • Electric double layer capacitors have begun to be used in memory backup of information equipment, and in automobiles. In the future, for automobiles and other applications that are expected to expand their applications, it will be effective to use as much current as possible during charging and discharging, so electric double layer capacitors with low internal resistance are required.
  • the capacitance decreases, and as the resistance of the electric double layer capacitor increases, the decrease in capacitance tends to increase.
  • the conventional electric double layer capacitor cannot be said to have a sufficiently low internal resistance, and its use has been limited to applications such as automobiles that use a large current.
  • the internal resistance of an electric double layer capacitor is mainly governed by the resistance of the electrode and the electrical conductivity of the electrolyte. Therefore, attempts have been made to reduce the resistance of the electrode and select the electrolyte. .
  • Japanese Patent Application Laid-Open No. 2002-222741 discloses that the resistance of the polarized electrode is improved by increasing the dispersibility of the activated charcoal powder and the conductivity-imparting agent to improve the compressive force and shear force. A method of obtaining an electrode having a low capacity and a high capacity has been proposed.
  • Japanese Patent Laid-Open No. 2000-353642 also aims to provide an electric double layer capacitor with a large electrostatic capacity and a low internal resistance, with a good balance of characteristics.
  • activated carbon for example, a capacitor having a low capacitance with low internal resistance, activated carbon, and a capacitor having a high capacitance with high internal resistance and activated carbon.
  • new carbon materials such as soot containing fullerenes and residues obtained by extracting fullerenes have attracted attention and are being studied as electrode materials for electric double layer capacitors and secondary batteries (specialty).
  • the present invention has been made in view of the above circumstances, and by devising an electrode material using a new carbonaceous material, the internal resistance of the obtained electric double layer capacitor is reduced. It is an object of the present invention to provide an electrode material for an electric double layer capacitor having a large capacitance, a manufacturing method thereof, an electrode for an electric double layer capacitor using the same, and an electric double layer capacitor.
  • the electrode material for an electric double layer capacitor of the present invention that has solved the above-mentioned problems is obtained by substantially extracting at least a part of fullerene using a solvent with a fullerene-containing soot or a fullerene-containing soot.
  • the extracted residue contains a carbonaceous material obtained by heat treatment or activation treatment and activated carbon.
  • the resistance of the electric double layer capacitor electrode material is equal to or less than the lower of the resistance of the carbonaceous material or the activated carbon.
  • Electrode electrode “Resistance of material”, “Resistance of carbonaceous substance”, and “Resistance of activated carbon” are “Internal resistance of electric double layer capacitor obtained by using electrode material for electric double layer capacitor as electrode material”, “ It means “internal resistance of an electric double layer capacitor obtained by using a carbonaceous material as an electrode material” and “internal resistance of an electric double layer capacitor obtained by using activated carbon as an electrode material”, respectively.
  • Examples of the solvent that substantially extracts at least a part of the fullerene include aromatic organic solvents.
  • the content of the carbonaceous substance is preferably 30% by mass or less, more preferably 10% by mass or less.
  • the capacitance of the obtained electrode material for an electric double layer capacitor is less than or greater than the capacitance of the carbonaceous material or the activated carbon. 85% or more.
  • the capacitance of the obtained electrode material for electric double layer capacitors is the higher of the capacitance of the carbonaceous material or the activated carbon. % Or more, often 100% or more (equal or higher).
  • the method for producing an electrode material for an electric double layer capacitor according to the present invention comprises an extraction residue obtained by substantially extracting at least a part of fullerene using a fullerene-containing soot or a fullerene-containing repulsive solvent. Is characterized by blending a carbonaceous material obtained by heat treatment or activation treatment and activated charcoal.
  • the electrode for an electric double layer capacitor of the present invention is characterized by using the electrode material, and the electric double layer capacitor of the present invention is characterized by using the electrode.
  • FIG. 1 (a) is an explanatory view illustrating a wound type electric double layer capacitor element, and (b) is an explanatory view illustrating an electric double layer capacitor using such a capacitor element.
  • FIG. 1 (a) is an explanatory view illustrating a wound type electric double layer capacitor element, and (b) is an explanatory view illustrating an electric double layer capacitor using such a capacitor element.
  • FIG. 2 is a cross-sectional view illustrating a polarizable electrode for an electric double layer capacitor of the present invention.
  • FIG. 3 is an X-ray diffraction pattern of fullerene-containing soot used in the present invention.
  • the fullerene-containing repulsive force used in the present invention is also an X-ray diffraction pattern of an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent.
  • the electrode material for an electric double layer capacitor of the present invention is a heat treatment of an extraction residue obtained by substantially extracting at least a part of fullerene using a fullerene-containing soot or a fullerene-containing repulsive solvent. Alternatively, it contains a carbonaceous material obtained by activation treatment and activated carbon.
  • fullerene-containing soot used in the present invention or an extraction residue obtained by substantially extracting at least a part of fullerene from a fullerene-containing soot using a solvent will be described.
  • “fullerene-containing soot or an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent is also simply referred to as“ fullerene-containing soot ”” There is.
  • Fullerene is a carbon molecule having a hollow shell-like structure closed by a network of five-membered and six-membered rings as is well known, for example, C, C, C, C, C, C, C, C, C, C, C,
  • the fullerene-containing soot is not particularly limited as long as it is a soot that can be produced when producing fullerene.
  • Examples of fullerene production methods include a method of evaporating a raw material by arc discharge using a graphite electrode (arc discharge method), a method of evaporating a raw material by flowing a high current through a carbonaceous material (resistance heating method) , A method of irradiating graphite with an ultraviolet laser (laser evaporation method), a method of incomplete combustion of a carbon-containing compound such as benzene (combustion method), and so on.
  • the fullerene-containing soot includes, in addition to the above-mentioned fullerenes, for example, fullerene precursors that have reached a ring-closing structure such as fullerene, carbon having a graphite or graphite structure, amorphous carbon, amorphous carbon. , Carbon black, polycyclic aromatic hydrocarbons, etc .; 0 'Yes, it's (Minato Egashira et al,' Arbon frameworK structure produced in the Fullerene related material) "Carbon 38 (2000) 615—621").
  • fullerene-containing soot examples include fullerene-containing soot containing 10% or more of C obtained by an arc discharge method or a laser evaporation method, or a toluene-soluble fullerene.
  • the fullerene-containing repulsive force may be an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent.
  • An extraction residue obtained by substantially extracting at least a part of fullerene using a fullerene-containing repulsive solvent means that a fullerene component soluble in a solvent is substantially extracted from the fullerene components contained in the fullerene-containing reeds. Means a residue. For example, fullerenes with carbon numbers of c 60 to c
  • An extraction residue obtained by substantially extracting at least a part of fullerene using the fullerene-containing repulsive solvent contains a carbon having a fullerene precursor, a graphite or a graphite structure. , Amorphous carbon, amorphous carbon, carbon black, C
  • the graphite-like substance is separated, but the amount is 15% of the fullerene-containing soot.
  • Solvents used for substantially extracting at least a part of fullerene using a fullerene-containing repulsive solvent include organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, and chlorinated hydrocarbons. Can be mentioned.
  • aromatic organic solvents such as benzene, toluene, xylene, 1-methylnaphthalene, 1,2,4-trimethylbenzene, tetralin and the like can be mentioned, and among these, toluene is preferable.
  • Examples of a method for obtaining an extraction residue by substantially extracting at least a part of fullerene using a fullerene-containing repulsive solvent include the following methods. First, a solvent having a mass of about 60 times is added to the fullerene-containing soot to prepare a dispersion of fullerene-containing soot, and this dispersion is treated with ultrasonic waves at room temperature for 1 hour to dissolve in the solvent of the fullerene-containing soot. The fullerene component and other solvent-soluble components are dissolved in the solvent.
  • the fullerene-containing soot dispersion is filtered, and further, the fullerene-containing soot is washed with a solvent until the filtrate is no longer colored, and at least a part of the solvent-soluble fullerene and other solvent-soluble components are removed. It is obtained by substantial extraction and vacuum drying of the obtained extraction residue at about 60 ° C.
  • the “activation treatment” in the present invention is not particularly limited as long as it is a treatment for making the fullerene-containing soot porous and the like and increasing its specific surface area.
  • chemical activation treatment, gas activation treatment, etc. Etc. can be adopted.
  • the chemical activation treatment can be performed, for example, by mixing and heating the fullerene-containing soot and the like as described above and an alkali metal compound as an activator.
  • alkali metal compound examples include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as potassium carbonate and sodium carbonate; alkali metals such as potassium sulfate and sodium sulfate. And sulfates thereof, and aqueous solutions and hydrates thereof.
  • Preferred as the activator is a hydrate or concentrated aqueous solution of an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide.
  • the amount of the alkali metal compound used for the fullerene-containing soot is not particularly limited.
  • the alkali metal compound Z fullerene-containing soot (mass ratio) is 0.3 or more and 4.0 or less on an anhydrous basis. It is preferable.
  • the heat treatment for the chemical activation is not particularly limited, and can be performed at, for example, 500 ° C or more and 900 ° C or less under an inert gas atmosphere such as argon or nitrogen. It is also a preferred embodiment to perform the heat treatment at.
  • an inert gas atmosphere such as argon or nitrogen.
  • metal compounds for example, For example, it is a preferable embodiment to remove potassium compounds.
  • the carbonaceous material washed with acid and Z or water is preferably vacuum-dried.
  • the fullerene-containing soot may be subjected to a gas activation treatment.
  • the gas activation treatment is preferably performed, for example, by bringing the fullerene-containing soot described above into contact with an acidic gas at 750 ° C. or higher.
  • the temperature of the gas activation treatment is preferably 800 ° C or higher, more preferably 850 ° C or higher, and 1100 ° C or lower is more preferable, and 1050 ° C or lower is preferable.
  • the acidic gas for example, carbon dioxide gas, water vapor, oxygen, combustion exhaust gas, and a mixture thereof can be used.
  • porous carbon that has been made porous to a practical level can also be obtained by simply heat-treating the above-described fullerene-containing soot.
  • the details of the mechanism of heat treatment of fullerene-containing soot and the like to make it porous are unknown, but some of the fullerene contained in fullerene-containing soot and the like sublimated during the heat treatment, and fullerene was present. It is thought that the fullerene-containing soot and the like become porous due to cavitation.
  • the heat treatment temperature in this embodiment is not particularly limited, but is preferably 750 ° C or higher, more preferably 800 ° C or higher, and 2800 ° C or lower, more preferably 2200 ° C or lower. It is. This is because if the heat treatment temperature is too low, the degree of pore development becomes too low. In addition, if the heat treatment temperature is too high, the number of fine pores once developed is decreased, and the specific surface area may be decreased.
  • the heat treatment of the fullerene-containing soot or the like is preferably performed in an inert atmosphere.
  • an inert atmosphere such as nitrogen or argon
  • a oxidizable carbon is placed in a surrounding container or carbon. It is preferable to carry out in a substantially inert atmosphere such as by firing in a crucible.
  • the heat treatment can also be performed under reduced pressure (in a vacuum), for example.
  • the heat treatment and the activation treatment can be performed in a superimposed manner. Further, the above heat treatment and gas activation treatment using an oxidizing gas can be appropriately combined.
  • the gas activation treatment using an oxidizing gas can be performed following the heat treatment under an inert gas atmosphere. A mode in which the heat treatment is performed following the gas activation treatment can be exemplified.
  • the carbonaceous material after the heat treatment or the activation treatment may contain an organic solvent-soluble component.
  • the obtained carbonaceous material is washed with an organic solvent to remove the organic solvent-soluble component beforehand. This is also a preferred embodiment.
  • the organic solvent soluble component contained in the obtained carbonaceous material is to prevent the organic solvent soluble component contained in the obtained carbonaceous material from eluting into the organic solvent-type driving electrolyte.
  • the organic solvent for washing the carbonaceous material include toluene, benzene, or a known organic solvent used as a driving electrolyte for an electric double layer capacitor.
  • the carbonaceous material washed with an organic solvent is preferably vacuum-dried. This is because the organic solvent remaining inside the carbonaceous material can be easily removed by vacuum drying.
  • the carbonaceous material obtained by the heat treatment or activation treatment is treated in an inert gas atmosphere or in an acidic solution. It is also a preferred embodiment that the heat treatment is performed in a reactive gas atmosphere.
  • the inert gas for example, argon, nitrogen, helium or the like can be used, and as the acidic gas, air, oxygen or the like can be used.
  • the heat treatment temperature is not particularly limited, and is preferably 100 ° C or higher and 1000 ° C or lower.
  • the electrode material for an electric double layer capacitor of the present invention is a heat treatment of an extraction residue obtained by substantially extracting at least a part of fullerene using a fullerene-containing soot or a fullerene-containing repulsive solvent. Alternatively, it contains a carbonaceous material obtained by activation treatment and activated carbon. By blending the carbonaceous material and activated carbon, the internal resistance of the electric double layer capacitor using the obtained electrode material for an electric double layer capacitor is obtained using either the carbonaceous material or the activated carbon. Equivalent to or lower than the lower internal resistance of the electric double layer capacitor (room temperature characteristics).
  • the resistance of the electrode material for the electric double layer capacitor obtained is equivalent to or less than the displacement force HS of the carbonaceous material used or the resistance of the activated carbon.
  • the synergistic effect obtained by blending these with the intermediate characteristics obtained by averaging is recognized, and this is an extremely excellent aspect.
  • the "activated carbon” used in the present invention is not particularly limited as long as it is a conventionally known activated carbon. Examples thereof include those obtained by gas activation treatment, and more preferably those obtained by chemical activation using phenol resin as a raw material.
  • the “activated carbon” used in the present invention is defined as a carbonaceous material having a specific surface area of 1000 m 2 Zg or more.
  • the carbonaceous material obtained by heat treatment or activation treatment of an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent such as fullerene-containing soot or fullerene-containing retentive force has a specific surface area of preferably 400 m 2 Zg or more and less than 1000 m 2 Zg, so that it is distinguished from “activated carbon” used in the present invention.
  • the specific surface area can be measured by an ASAP-2400 nitrogen adsorption apparatus manufactured by Micromeritics and can be determined by the BET multipoint method.
  • the content of the carbonaceous substance in the electrode material for an electric double layer capacitor of the present invention is 30% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, and still more preferably 7%. It is desirable that the amount is not more than mass% (excluding 0%). Further, the lower limit of the content of the carbonaceous material is not particularly limited, but is 0.1% by mass, preferably 1% by mass. By setting the content of the carbonaceous substance within the above range, an electrode material that reduces the internal resistance of the obtained electric double layer capacitor while maintaining a large capacitance can be obtained.
  • the capacitance of the obtained electrode material for an electric double layer capacitor is equal to the capacitance of the carbonaceous material or activated carbon to be used.
  • the higher one is 85% or higher, and the content of the carbonaceous material is 10% by mass or less, so that the capacitance of the obtained electrode material for electric double layer capacitors is the carbonaceous material used.
  • it is 95% or more of the higher of the electrostatic capacity of activated carbon, and in many cases 100% or more (equal or more).
  • the capacitance of the obtained electrode material for an electric double layer capacitor is 85% or more of the capacitance of the carbonaceous material or activated carbon to be used, the difference is high. It has been realized that the internal resistance of the obtained electric double layer capacitor is reduced without significantly reducing the capacitance of the capacitor. Also for the obtained electric double layer capacitor In an embodiment where the capacitance of the electrode material is 95% or more of the carbonaceous material or activated carbon used, whichever is higher, and in many cases 100% or more, the capacitance of the carbonaceous material and activated carbon is This is an excellent aspect in that the synergistic effect obtained by blending these raw materials is not found in the intermediate characteristics obtained by averaging the above.
  • the electrode material for an electric double layer capacitor of the present invention may further contain a binder, a conductivity imparting agent and the like as described later in addition to the carbonaceous material and activated carbon described above.
  • the electrode for the electric double layer capacitor of the present invention is not particularly limited as long as the electrode material for the electric double layer capacitor of the present invention is used, and the electric double layer capacitor of the present invention is the same as that of the present invention. If it uses an electrode, it will not specifically limit.
  • a polarizable electrode using the electrode material for an electric double layer capacitor of the present invention is arranged as a positive electrode and a negative electrode through a separator (the mispolarizable electrode is a positive electrode or a negative electrode).
  • the positive electrode and the negative electrode may be immersed in an electrolytic solution.
  • electric double layer capacitor having such a configuration for example, electric charges are stored at the interface between the electrolytic solution and the polarizable electrode.
  • FIG. 1 (a) is an explanatory view illustrating the structure and configuration of a wound electric double layer capacitor element
  • FIG. 1 (b) is an electric double layer capacitor using such a capacitor element. It is explanatory drawing which illustrates the structure and structure of this.
  • Capacitor element 1 is formed by winding polarizable electrode 3 connected to external lead-out lead 2 and polarizable electrode 3 ′ connected to external lead-out lead 2 ′ with a separator 4 therebetween to prevent short circuit. It is comprised by.
  • a sealing member 5 made of rubber is attached to the external lead wires 2 and 2 of the capacitor element 1.
  • Capacitor element 1 is impregnated with a driving electrolyte and then housed in a bottomed cylindrical metal case 6 made of aluminum.
  • the sealing member 5 is positioned at the opening of the metal case 6, and the sealing member 5 seals the opening of the metal case 6 by performing lateral drawing and curling on the opening of the metal case 6.
  • the polarizable electrode 3 for example, as shown in FIG. 2, an electrode material layer 8 provided on a current collector 7 can be used.
  • a polarizable electrode using the electrode material can be produced by a known method.
  • the electrode material For example, it can be obtained by kneading the electrode material, the conductivity-imparting agent and the binder solution, adding a solvent to form a paste, applying the paste to a current collector, and then removing the solvent.
  • the noinder include fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene butadiene rubber, petroleum pitch, and phenol resin.
  • the binder it is preferable to use a water-soluble binder having high dispersibility and film-forming properties, for example, carboxymethyl cellulose (hereinafter, “CMC”).
  • CMC carboxymethyl cellulose
  • the amount of the binder used is not particularly limited, but in the material constituting the polarizable electrode, 2% by mass to 8% by mass is preferable, and 4% by mass to 6% by mass is more preferable. .
  • the conductivity-imparting agent for example, carbon black such as acetylene black and ketjen black can be used.
  • the content of the conductivity-imparting agent is not particularly limited, but is preferably 8% by mass or less in the material constituting the polarizable electrode.
  • the electrolytic solution that can be used in the electric double layer capacitor of the present invention is not particularly limited, and a known electrolytic solution for an electric double layer capacitor can be used, for example, a non-aqueous (organic) electrolytic solution, an aqueous system Examples thereof include an electrolytic solution and a room temperature molten salt.
  • a non-aqueous (organic) electrolytic solution examples include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methylolene carbonate, and an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved.
  • BF salt of alkali metals such as quaternary ammonium Li
  • electrolyte solution in which PF salt is dissolved, electrolyte solution in which quaternary phosphonium salt is dissolved, etc.
  • aqueous electrolyte examples include sulfuric acid aqueous solution and potassium hydroxide aqueous solution.
  • the separator used in the electric double layer capacitor is not particularly limited.
  • cellulose, glass fiber, or a nonwoven fabric mainly composed of polyolefin such as polyethylene or polypropylene, cloth, microporous film, or the like can be used. .
  • Example [0047] The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and the scope of the present invention is not limited by the following examples. Both are included within the scope of the present invention.
  • the specific surface area was measured with an ASAP-2400 nitrogen adsorption apparatus manufactured by Micromeritics and determined by the BE T multipoint method.
  • Toluene was added to prepare a dispersion of fullerene-containing soot, and this dispersion was treated with ultrasonic waves for 1 hour at room temperature. Then, the dispersion was filtered, and further, until the color of the filtrate disappeared, The filtrate was vacuum-dried at 60 ° C for about 5 hours to obtain an extraction residue obtained by substantially extracting at least a part of the fullerene using a solvent with a fullerene-containing repulsive force. .
  • the yield of the extracted residue relative to the fullerene-containing soot was 91%, and the extract contained 78% C force and 18% C force as measured by liquid chromatography. This extraction residue is
  • the obtained carbonaceous material 2 had an average particle size of 5 ⁇ m and a specific surface area of 590 m 2 Zg.
  • the obtained carbonaceous material 2 and the electrode material 1 were combined with the activated carbon A used to obtain the electrode material 2 so that the content of the carbonaceous material was 10% by mass.
  • FIG. 4 shows the result of X-ray diffraction measurement of the extraction residue obtained by substantially extracting at least a part of fullerene using the fullerene-containing repulsive solvent. From Fig. 4, the peak heights near 11 °, 17 °, and 21 ° that are thought to be derived from fullerene C are
  • the extracted residue obtained is that C and C are substantially extracted as the fullerene-containing repulsive force as at least a part of the fullerene.
  • Carbonaceous material 3 had an average particle size of 6 m and a specific surface area of 520 m 2 Zg.
  • the obtained carbonaceous material 3 and the electrode material 1 were combined with the activated carbon A used in order to obtain an electrode material 3 so that the content of the carbonaceous material was 10% by mass.
  • coconut husk activated carbon manufactured by Carbontech Co., Ltd., trade name Amersop, average particle size 9 / zm, specific surface area 1310m 2 / g
  • the content of carbonaceous material 4 is 10% by mass
  • the carbonaceous material 4 and the electrode material 1 are combined with the activated carbon A used above.
  • an electrode material 4 was obtained.
  • Table 1 summarizes the evaluation results of the electrostatic capacity of the electrode double layer capacitor materials 1 to 4 and the internal resistance of the electric double layer capacitors 1 to 4.
  • the internal resistance of the electric double layer capacitors 1 to 3 as examples of the present invention is that of the electric double layer capacitor obtained by using carbonaceous substances 1 to 3 and activated carbon alone.
  • the capacitance of electrode materials 1 to 3 is equal to or lower than the lower of internal resistance, and the capacitance of carbonaceous materials 1 to 3 and activated carbon to be used!
  • Activated carbon 85% or more of 20F / ml, 43F / g).
  • the obtained capacitance and internal resistance are intermediate characteristics obtained by averaging the capacitance and internal resistance of the carbonaceous material and activated carbon used.
  • Electrode material (Production of electrode material) Commercial activated carbon B (trade name Max Soap, specific surface area 2300 m 2 Z g, manufactured by Kansai Thermal Chemical Co., Ltd.) and an average particle size 7 m, specific surface area 750 m obtained in the same manner as carbonaceous material 2 except for activation time 2 Zg of carbonaceous material 5 and the average amount of particles obtained in the same manner as carbonaceous material 3 6 ⁇ m, specific surface area 460 m 2 Zg of carbonaceous material 6 listed in Table 2 and Table 3, respectively. Thus, electrode materials 5 to 12 were obtained.
  • the carbonaceous material 5 corresponds to a carbonaceous material obtained by activating an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent.
  • Carbonaceous material 6 corresponds to a carbonaceous material obtained by heat-treating fullerene-containing soot.
  • each of the sheet-like electrodes 5 to 12 and the separator (made of cellulose) are wound so that a short-circuit preventing separator is interposed between the sheets of the sheet-like electrode.
  • Electric double layer capacitors 5 to 12 (rated voltage 2. OV—capacitance 70 F, size: ⁇ 18 mm ⁇ L 50 mm) were prepared.
  • a propylene carbonate solution in which ethylmethylimidazolium tetrafluoro fluoride was dissolved was used as the electrolytic solution.
  • the electric double layer capacitors 5 to 12 were subjected to constant current constant voltage charging of 1.5 A and 2. OV, and then discharged by 1. OA. 1.
  • the electrostatic capacity per volume was determined from the slope of the discharge curve between 7V and 1.3V.
  • the internal resistance of the obtained electric double layer capacitor was obtained from the voltage drop (IR drop) immediately after the start of discharge. That is, the voltage obtained by extrapolating the straight line portion between 1.7V and 1.3V of the discharge curve until the start of discharge is divided by 2.
  • the potential difference (V) subtracted from OV is divided by the discharge current (A), and the electrode The internal resistance per volume was determined.
  • the electrostatic capacity of the electrode double layer capacitor materials 5 to 12 and the internal resistance of the electric double layer capacitors 5 to 12 are 25 ° C and more severe evaluation conditions—30 °
  • the results measured in C are summarized in Table 2 and Table 3, respectively. [0065] [Table 2]
  • the room temperature characteristics indicate that the capacitance of the electrode material for an electric double layer capacitor obtained when the content of the carbonaceous substance 5 is 20% by mass or less.
  • carbonaceous materials or activated carbon It is found that it is 95% or more of the carbon dioxide (activated carbon in this case) and 100% or more when the content of the carbonaceous material 5 is 10% by mass or less.
  • the internal resistance of the electric double layer capacitor obtained by using the electrode materials 5 to 8 is lower than the internal resistance of the electric double layer capacitor obtained by using either a carbonaceous material or activated carbon. You can see that it is significantly lower than L.
  • Electrode material 9 2 15.5 15.0 141.4 258.0 Electrode material 1 0 5 14.8 12.5 143.8 225.0 Electrode material 1 1 10 14.0 12.3 136.0 348.3 Electrode material 1 2 20 13.1 8.8 152.0 320.9 Carbonaceous material 6 100 6.0 5.1 360.3 450.8 [0069] From Table 3, when the content of the carbonaceous material 6 is 20% by mass or less, the capacitance of the obtained electrode material for the electric double layer capacitor is higher than that of the carbonaceous material or activated carbon. It is found that it is 85% or more of Sugata (activated carbon here) and 95% or more when the content of carbonaceous material 6 is 10% by mass or less. In addition, the internal resistance of the electric double layer capacitor obtained by using the electrode materials 9 to 12 is low in the internal resistance of the electric double layer capacitor obtained by using either carbonaceous material or activated carbon! You can see that it is significantly lower than that.
  • the capacitance of the electrode material 9 is 100% or more of the higher of the carbonaceous material and activated carbon (in this case, activated carbon), and the electrode material 9 or 10 is used.
  • the internal resistance of the electric double layer capacitor obtained in this way was lower than the lower internal resistance of the electric double layer capacitor obtained using either carbonaceous material or activated carbon.
  • the internal resistance of the electric double layer capacitor obtained using electrode materials 11 and 12 was higher than the internal resistance of the electric double layer capacitor obtained using activated carbon.
  • the fullerene-containing repulsive force can also be obtained by substantially extracting at least a part of the fullerene using a solvent. It can be seen that it is preferable to use a carbonaceous material obtained by heat treatment or activation treatment of the extraction residue.
  • the detailed reason why the internal resistance of the obtained electric double layer capacitor can be lowered while keeping the capacitance of the conventional activated carbon large is unknown. It is considered as follows. Normally, the activated carbon particles are not round but square. Therefore, voids are likely to be generated between the activated carbon particles when a polarizable electrode is used. However, the carbonaceous material used in the present invention is substantially spherical. For this reason, the carbonaceous material used in the present invention is filled to some extent between the angular particles of the activated carbon particles, thereby increasing the electron conduction ratio in the electrode body and reducing the diffusion contribution of the electrolyte ions. This reduction in diffusion resistance reduces the resistance, and it is considered that the capacitance of more particles can be used.
  • an electrode material for an electric double layer capacitor having a low internal resistance and a large capacitance can be obtained, and can be suitably applied to an electrode for an electric double layer capacitor and an electric double layer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 得られる電気二重層キャパシタの内部抵抗が低く、かつ、静電容量の大きい電気二重層キャパシタ用電極材料及びその製造方法、並びに、これを用いた電気二重層キャパシタ用電極、及び、電気二重層キャパシタを提供する。本発明の電極材料は、フラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を、熱処理若しくは賦活処理して得られる炭素質物質と活性炭とを含有することを特徴とし、本発明の電気二重層キャパシタ用電極及び、電気二重層キャパシタは、該電極材料を使用するところに特徴がある。

Description

明 細 書
電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キヤ パシタ用電極、及び、電気二重層キャパシタ
技術分野
[0001] 本発明は、電気二重層キャパシタ、及び、該電気二重層キャパシタに使用する電 極、電極材料に関するものである。
背景技術
[0002] 電気二重層キャパシタは、情報機器のメモリーバックアップ、更には自動車等に使 われ始めた。今後、大きな用途拡大が見込まれている自動車などでは、充放電の際 に出来る限り大きな電流を用いることが有効になるため、内部抵抗の低い電気二重 層キャパシタが求められている。一般に、電気二重層キャパシタを充放電する際の電 流密度が大きくなると静電容量は小さくなり、電気二重層キャパシタの抵抗が高いほ ど、静電容量の低下は大きくなる傾向にある。この点において、従来の電気二重層キ ャパシタは十分に内部抵抗が低いとは言えず、自動車などの大電流を用いる用途向 けなどには使用が限られてきた。一般的に電気二重層キャパシタの内部抵抗は、電 極の抵抗、電解液の電気伝導度により主に支配されるため、電極の抵抗を低くする 方法や電解質を選択する方法が試みられて来た。
[0003] し力しながら、多くの場合、静電容量の大きな活性炭を電気二重層キャパシタの電 極材料として使用すると、得られる電気二重層キャパシタの内部抵抗が高くなる問題 があった。このような問題に対して、例えば、特開 2002— 222741号公報には、活性 炭粉末と導電性付与剤の分散性を高めて圧縮力や剪断力を向上させることにより分 極性電極の抵抗が低ぐ容量の高い電極を得る方法が提案されている。また、特開 2 000— 353642号公報には、静電容量が大きぐかつ内部抵抗も低い特性バランス のよい電気二重層キャパシタを提供することを目的とし、電極材料として、特性が異 なる複数種類の活性炭、例えば、静電容量が小さく得られるキャパシタの内部抵抗 が低 、活性炭と、静電容量が大きく得られるキャパシタの内部抵抗が高 、活性炭とを 配合することが提案されて 、る。 [0004] ところで、近年、フラーレンを含有する煤やこれからフラーレンを抽出した残渣など の新たな炭素材料が注目され、電気二重層キャパシタゃ二次電池などの電極材料と して検討されている(特開 2004— 221425号公報、 Minato Egashira et al、 "C arbon iramework structure produced in the Fullerene related mate rial (フラーレン関連物質に製造される炭素骨格構造) ""Carbon (炭素) 38 (2000 ) 615— 621,,)。
発明の開示
[0005] 例えば、特開 2000— 353642号公報に記載の方法の如ぐ静電容量が大きく内 部抵抗の高!ヽ活性炭と、静電容量が小さく内部抵抗の低!ヽ活性炭を配合する技術 では、静電容量及び内部抵抗が平均化された中間的な特性を有する電極材料しか 得られなかった。
[0006] 本発明は、上記事情に鑑みてなされたものであり、新たな炭素質物質を用いて電 極材料を工夫することにより、得られる電気二重層キャパシタの内部抵抗が低ぐ力 つ、静電容量の大きい電気二重層キャパシタ用電極材料及びその製造方法、並び に、これを用いた電気二重層キャパシタ用電極、及び、電気二重層キャパシタを提供 することを課題とする。
[0007] 上記課題を解決することのできた本発明の電気二重層キャパシタ用電極材料は、 フラーレン含有煤、又は、フラーレン含有煤力も溶媒を用いてフラーレンの少なくとも 一部を実質的に抽出して得られる抽出残渣物を、熱処理若しくは賦活処理して得ら れる炭素質物質と活性炭とを含有することを特徴とする。上記炭素質物質と活性炭と を配合することによって、静電容量を大きく保ったまま、得られる電気二重層キャパシ タの内部抵抗を低下させる電極材料が得られる。具体的には、前記電気二重層キヤ パシタ用電極材料の抵抗は、前記炭素質物質若しくは前記活性炭の抵抗のいずれ か低い方と同等若しくはそれ以下である。得られる電気二重層キャパシタ用電極材 料の抵抗が、使用する炭素質物質若しくは前記活性炭の抵抗の 、ずれ力低 、方と 同等若しくはそれ以下である態様は、前記炭素質物質と活性炭の抵抗を平均して得 られる中間的な特性ではなく、これらを配合することによって得られる相乗効果が認 められている点で極めて優れた態様である。ここで、「電気二重層キャパシタ用電極 材料の抵抗」、「炭素質物質の抵抗」、及び、「活性炭の抵抗」は、「電気二重層キヤ パシタ用電極材料を電極材料として使用して得られる電気二重層キャパシタの内部 抵抗」、「炭素質物質を電極材料として使用して得られる電気二重層キャパシタの内 部抵抗」、及び、「活性炭を電極材料として使用して得られる電気二重層キャパシタ の内部抵抗」をそれぞれ意味する。
[0008] 前記フラーレンの少なくとも一部を実質的に抽出する溶媒としては、例えば、芳香 族系有機溶媒を挙げることができる。
[0009] 本発明の電気二重層キャパシタ用電極材料は、前記炭素質物質の含有率が 30質 量%以下であることが好ましぐ 10質量%以下であることがより好ましい。前記含有率 を 30質量%以下とすることによって、得られる電気二重層キャパシタ用電極材料の 静電容量が、前記炭素質物質若しくは前記活性炭の静電容量の!/ヽずれか高!ヽ方の 85%以上となる。また、前記含有率を 10質量%以下とすることによって、得られる電 気二重層キャパシタ用電極材料の静電容量が、前記炭素質物質若しくは前記活性 炭の静電容量のいずれか高い方の 95%以上となり、多くの場合 100%以上(同等若 しくはそれ以上)となる。
[0010] 本発明の電気二重層キャパシタ用電極材料の製造方法は、フラーレン含有煤、又 は、フラーレン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出 して得られる抽出残渣物を、熱処理若しくは賦活処理して得られる炭素質物質と活 性炭とを配合することを特徴とする。
[0011] また、本発明の電気二重層キャパシタ用電極は、前記電極材料を用いることを特徴 とし、さらに、本発明の電気二重層キャパシタは、前記電極を用いることを特徴とする
[0012] 本発明によれば、従来の活性炭の静電容量を大きく保ったまま、得られる電気二重 層キャパシタの内部抵抗を低下させることができる。
図面の簡単な説明
[0013] [図 1] (a)は、捲回型の電気二重層キャパシタ素子を例示する説明図であり、 (b)は、 斯カるキャパシタ素子を使用する電気二重層キャパシタを例示する説明図である。
[図 2]本発明の電気二重層キャパシタ用分極性電極を例示する断面図である。 [図 3]本発明で使用するフラーレン含有煤の X線回折パターンである。
[図 4]本発明で使用するフラーレン含有煤力も溶媒を用いてフラーレンの少なくとも一 部を実質的に抽出して得られる抽出残渣物の X線回折パターンである。
発明を実施するための最良の形態
[0014] 本発明の電気二重層キャパシタ用電極材料は、フラーレン含有煤、又は、フラーレ ン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる 抽出残渣物を、熱処理若しくは賦活処理して得られる炭素質物質と活性炭とを含有 することを特徴とする。
[0015] (1)まず、本発明で使用するフラーレン含有煤、又は、フラーレン含有煤から溶媒 を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物につい て説明する。以下の説明において、「フラーレン含有煤、又は、フラーレン含有煤力も 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物」 を単に「フラーレン含有煤等」と略称する場合がある。
[0016] フラーレンとは、周知の如ぐ 5員環と 6員環とのネットワークで閉じた中空殻状の構 造を有する炭素分子であり、例えば、 C 、 C 、 C 、 C 、 C 、 C 、 C 、 C 、 C 、
60 70 76 78 80 82 84 86 88 c 、 c 、 c 、 c 、 c 、 c 、 c 、 c 、又は、これらの混合物を挙げることがで
90 92 94 96 180 240 320 540
きる。そして、フラーレン含有煤とは、フラーレンを製造する際にできる煤であれば、 特に限定されない。フラーレンの製造方法としては、例えば、グラフアイト電極などを 用いてアーク放電により原料を蒸発させる方法 (アーク放電法)、炭素質原料に高電 流を流して原料を蒸発させる方法 (抵抗加熱法)、紫外レーザーを黒鉛に照射する 方法 (レーザー蒸発法)、ベンゼンなどの炭素含有化合物を不完全燃焼させる方法( 燃焼法)などが挙げられ、 、ずれの方法によってもフラーレンを含有する煤が得られ る。前記フラーレン含有煤には、上述したフラーレンの他、例えば、フラーレンのよう な閉環構造には至らな力つたフラーレンの前駆体、グラフアイトやグラフアイト構造を 有する炭素、非晶質炭素、不定形炭素、カーボンブラック、多環芳香族炭化水素な ど; 0 '有 れ飞いる (Minato Egashira et al、 'し arbon frameworK structur e produced in the Fullerene related material (フラーレン関連物質に製造 される炭素骨格構造)"" Carbon (炭素) 38 (2000) 615— 621")。 [0017] 前記フラーレン含有煤の具体例としては、アーク放電法若しくはレーザー蒸発法に よって得られる C を 10%以上含有するフラーレン含有煤やトルエン可溶のフラーレ
60
ンを 5質量%以上含むフラーレン含有煤を挙げることができる。
[0018] また本発明では、前記フラーレン含有煤力も溶媒を用いてフラーレンの少なくとも一 部を実質的に抽出した抽出残渣物を使用することができる。フラーレン含有煤力 溶 媒を用いてフラーレンの少なくとも一部を実質的に抽出した抽出残渣物とは、フラー レン含有煤に含まれるフラーレン成分の内、溶媒に可溶なフラーレン成分を実質的 に抽出した残渣物を意味する。例えば、炭素数が c 60〜c などのフラーレンは、後
70
述する溶媒に可溶であり、フラーレン含有煤力 溶媒で抽出される。そして、前記フラ 一レン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得ら れる抽出残渣物には、前記のフラーレンの前駆体、グラフアイトやグラフアイト構造を 有する炭素、非晶質炭素、不定形炭素、カーボンブラックや、 C
70以上の高次のフラ 一レンなどが含まれていると考えられる。
[0019] Mmato Egashira et al、 Carbon iramework structure produced in the Fullerene related material (フラーレン関連物質に製造される炭素骨格構 造)"" Carbon (炭素) 38 (2000) 615— 621"によると、黒鉛電極を用いてアーク放 電法で作ったフラーレン含有煤中のトルエン可溶分は 10%であり、 C : 70%
60 、 C :
70
22%、少量の C 〜C の高次フラーレンからなり、トルエン不溶分中には C 力も C
76 120 70 のじ 、 C と類似の構造のクラスターがある。更にトルエン不溶分にアセトンを加
400 60 70
えるとグラフアイト様物質が分離するが、その量はフラーレン含有煤の 15%となる。
[0020] フラーレン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出す る際に使用する溶媒としては、芳香族炭化水素、脂肪族炭化水素、塩素化炭化水素 などの有機溶媒が挙げられる。例えば、ベンゼン、トルエン、キシレン、 1ーメチルナ フタレン、 1, 2, 4—トリメチルベンゼン、テトラリン等の芳香族系有機溶媒が挙げられ 、これらの中では、トルエンが好適である。トルエンを使用すれば、 C
60〜C 程度の 120 フラーレンを抽出することができる。
[0021] フラーレン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出し て、抽出残渣物を得る方法としては、例えば、次のような方法を挙げることができる。 まず、フラーレン含有煤に約 60倍の質量の溶媒を加えてフラーレン含有煤の分散液 を作製し、この分散液を室温で 1時間超音波で処理して、フラーレン含有煤の溶媒に 可溶なフラーレン成分やその他の溶媒可溶分を溶媒に溶解させる。次いで、フラー レン含有煤の分散液をろ過して、更に、ろ液の着色がなくなるまでフラーレン含有煤 を溶媒で洗浄し、溶媒に可溶なフラーレンの少なくとも一部やその他の溶媒可溶分 を実質的に抽出して、得られた抽出残渣物を約 60°Cで真空乾燥することにより得ら れる。
[0022] (2)次に、前記フラーレン含有煤、又は、フラーレン含有煤力も溶媒を用いてフラー レンの少なくとも一部を実質的に抽出して得られる抽出残渣物を、熱処理又は賦活 処理して得られる炭素質物質につ!、て説明する。
[0023] 本発明における「賦活処理」とは、前記フラーレン含有煤等を多孔質ィ匕し、その比 表面積を増大させる処理であれば、特に限定されず、例えば、薬品賦活処理、ガス 賦活処理などを採用することができる。
[0024] 前記薬品賦活処理は、例えば、上述したフラーレン含有煤等と賦活剤としてアル力 リ金属化合物とを混合して加熱処理することにより行うことができる。前記アルカリ金 属化合物としては、例えば、水酸ィ匕カリウム、水酸ィ匕ナトリウムなどのアルカリ金属水 酸化物;炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;硫酸カリウム、硫酸 ナトリウムなどのアルカリ金属の硫酸塩などや、その水溶液や水和物を挙げることが できる。前記賦活剤として好ましいのは、水酸ィ匕カリウム、水酸ィ匕ナトリウムなどのアル カリ金属水酸化物の水和物や濃厚な水溶液である。前記フラーレン含有煤等に対す るアルカリ金属化合物の使用量は、特に限定されないが、例えば、無水基準で、アル カリ金属化合物 Zフラーレン含有煤等 (質量比) =0. 3以上 4. 0以下であることが好 ましい。
[0025] 前記薬品賦活をする際の加熱処理は、特に限定されるものではないが、例えば、 5 00°C以上 900°C以下で行うことができ、アルゴン、窒素などの不活性ガス雰囲気下 で加熱処理を行うことも好ましい態様である。また、アルカリ金属水酸化物などを用い て薬品賦活をした場合には、酸及び Z又は水による洗浄を行って、フラーレン含有 煤等内に存在する未反応の賦活剤や反応の結果生じたアルカリ金属化合物 (例え ば、カリウム化合物)などを除去することが好ましい態様である。また、酸及び Z又は 水を用いて洗浄した炭素質物質は、真空乾燥することが好ましい。真空乾燥によって
、炭素質物質内部に残留する酸及び Z又は水を容易に除去できるからである。
[0026] 本発明では、フラーレン含有煤等をガス賦活処理してもよい。前記ガス賦活処理は 、例えば、上述したフラーレン含有煤等を 750°C以上で酸ィ匕性ガスと接触させること によって行われることが好ましい態様である。前記ガス賦活処理の温度は、 800°C以 上が好ましぐより好ましくは 850°C以上であって、 1100°C以下が好ましぐより好ま しくは 1050°C以下である。また、前記酸ィ匕性ガスとしては、例えば、炭酸ガス、水蒸 気、酸素、燃焼排ガス、及びこれらの混合物などを使用することができる。
[0027] また本発明では、上述したフラーレン含有煤等を単に熱処理することによつても、実 用レベルに多孔質化された多孔質炭素が得られる。フラーレン含有煤等を熱処理し て多孔質ィ匕する機構の詳細は不明であるが、フラーレン含有煤等に含有されている フラーレンの一部が、熱処理中に昇華し、フラーレンが存在していたところが空洞化 して、フラーレン含有煤等が多孔質ィ匕することも一因と考えられる。本態様における 熱処理温度は、特に限定されるものではないが、 750°C以上が好ましぐより好ましく は 800°C以上であって、 2800°C以下が好ましぐより好ましくは 2200°C以下である。 熱処理温度が低すぎると、細孔発達の程度が低くなり過ぎるからである。また、熱処 理温度が高すぎると、一度発達した細孔が減少し、却って比表面積が小さくなる場合 があるからである。
[0028] 前記フラーレン含有煤等の熱処理は、不活性雰囲気下で行うことが好ましぐ例え ば、窒素、アルゴンなどの不活性ガス雰囲気下、酸化されやすい炭素を周囲に置い た容器や炭素からなる坩堝に入れて焼成するなど実質的に不活性な雰囲気下で行 うことが好ましい。また、前記熱処理は、例えば、減圧下 (真空中)で行うこともできる。
[0029] 本態様における熱処理において、上記熱処理と上記賦活処理とを重畳的に行うこ ともできる。また、上記熱処理と酸化性ガスを用いるガス賦活処理とを適宜組合わせ ることもでき、例えば、不活性ガス雰囲気下における熱処理に続けて、酸化性ガスを 用いるガス賦活処理を行う態様や、上記ガス賦活処理に続けて上記熱処理を行う態 様を挙げることができる。 [0030] 熱処理後若しくは賦活処理後の炭素質物質には、有機溶媒可溶分が含まれてい る場合がある。特に駆動用電解液として有機溶媒を使用する電気二重層キャパシタ 用電極材料として使用する際には、得られる炭素質物質を有機溶媒で洗浄して、こ の有機溶剤可溶分を予め除いておくことも好ましい態様である。得られる炭素質物質 に含有されている有機溶媒可溶分が、有機溶媒系の駆動電解液に溶出するのを防 ぐためである。前記炭素質物質を洗浄する有機溶媒としては、トルエン、ベンゼン、 又は、電気二重層キャパシタの駆動電解液として使用される公知の有機溶媒などを 挙げることができる。また、有機溶媒を用いて洗浄した炭素質物質は、真空乾燥する ことが好ましい。真空乾燥によって、炭素質物質内部に残留する有機溶媒を容易に 除去できるからである。
[0031] さらに、本発明において、炭素質物質の表面の酸性官能基量などを調整するため に、前記熱処理若しくは賦活処理して得られる炭素質物質を不活性ガス雰囲気下、 若しくは、酸ィ匕性ガス雰囲気下で加熱処理することも好ましい態様である。前記不活 性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを、酸ィ匕性ガスとしては、空気 、酸素などを使用することができる。また、前記加熱処理温度は、特に限定されない 力 好ましくは 100°C以上 1000°C以下である。
[0032] (3)本発明の電気二重層キャパシタ用電極材料の構成について説明する。
[0033] 本発明の電気二重層キャパシタ用電極材料は、フラーレン含有煤、又は、フラーレ ン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる 抽出残渣物を、熱処理若しくは賦活処理して得られる炭素質物質と活性炭とを含有 する。上記炭素質物質と活性炭とを配合することによって、得られる電気二重層キヤ パシタ用電極材料を使用した電気二重層キャパシタの内部抵抗が、前記炭素質物 質若しくは前記活性炭のいずれかを使用して得られる電気二重層キャパシタの内部 抵抗の低い方と同等若しくはそれ以下になる(常温特性)。得られる電気二重層キヤ パシタ用電極材料の抵抗が、使用する炭素質物質若しくは前記活性炭の抵抗の 、 ずれ力 HSい方と同等若しくはそれ以下である態様は、前記炭素質物質と活性炭の抵 抗を平均して得られる中間的な特性ではなぐこれらを配合することによって得られる 相乗効果が認められて 、る点で極めて優れた態様である。 [0034] 本発明にお 、て使用する「活性炭」とは、従来公知の活性炭であれば特に限定さ れず、フエノール榭脂、石炭、ヤシガラ、石油コータス、石炭コータス、おが屑などを 薬品賦活処理あるいはガス賦活処理して得られるものを挙げることができ、より好まし くはフエノール榭脂ゃコータスを原料に用い薬品賦活して得られるものである。また、 本発明において使用する「活性炭」は、比表面積が 1000m2Zg以上の炭素質物質 として定義されるものである。一方、フラレーン含有煤、又はフラーレン含有煤力ゝら溶 媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を、 熱処理もしくは賦活処理して得られる前記炭素質物質は、好ましくは 400m2Zg以上 1000m2Zg未満の比表面積を有して 、る点で、本発明にお 、て使用される「活性炭 」とは区別されるものである。前記比表面積は、マイクロメリティックス社製 ASAP— 24 00窒素吸着装置で測定し、 BET多点法で求めることができる。
[0035] 本発明の電気二重層キャパシタ用電極材料中における前記炭素質物質の含有率 は、 30質量%以下、より好ましくは 15質量%以下、さらに好ましくは 10質量%以下、 さらに一層好ましくは 7質量%以下であることが望ましい(0%は含まない)。また、前 記炭素質物質の含有率の下限は、特に限定されるものではないが、 0. 1質量%、好 ましくは 1質量%である。前記炭素質物質の含有率を、上記範囲にすることによって、 静電容量を大きく保ったまま、得られる電気二重層キャパシタの内部抵抗を低下させ る電極材料が得られる。具体的には、前記炭素質物質の含有率を 30質量%以下と することによって、得られる電気二重層キャパシタ用電極材料の静電容量が、使用す る炭素質物質若しくは活性炭の静電容量のいずれか高い方の 85%以上であり、さら に炭素質物質の含有率を 10質量%以下とすることによって、得られる電気二重層キ ャパシタ用電極材料の静電容量が、使用する炭素質物質若しくは活性炭の静電容 量のいずれか高い方の 95%以上、多くの場合 100%以上(同等若しくはそれ以上) となる。
[0036] そして、得られる電気二重層キャパシタ用電極材料の静電容量が、使用する炭素 質物質若しくは活性炭の静電容量の 、ずれか高!、方の 85%以上である態様では、 電極材料の静電容量をそれ程低下させることなく、得られる電気二重層キャパシタの 内部抵抗を低くすることが実現されている。また、得られる電気二重層キャパシタ用 電極材料の静電容量が、使用する炭素質物質若しくは活性炭の静電容量のいずれ か高い方の 95%以上、多くの場合 100%以上である態様では、前記炭素質物質と 活性炭の静電容量を平均して得られる中間的な特性ではなぐこれらの原料を配合 することによって得られる相乗効果が認められている点で極めて優れた態様である。
[0037] また、本発明の電気二重層キャパシタ用電極材料は、上述した炭素質物質と活性 炭に加えて、後述するようなバインダー、導電性付与剤などをさらに含むことができる
[0038] (4)次に、本発明の電気二重層キャパシタ、及び、電気二重層キャパシタ用電極に ついて説明する。
[0039] 本発明の電気二重層キャパシタ用電極は、本発明の電気二重層キャパシタ用電極 材料を用いたものであれば特に限定されず、本発明の電気二重層キャパシタは、前 記本発明の電極を使用するものであれば、特に限定されない。本発明の電気二重層 キャパシタは、例えば、本発明の電気二重層キャパシタ用電極材料を使用した分極 性電極を、セパレータを介して正極及び負極として配置し ( ヽずれの分極性電極が 正極又は負極となっても良い)、前記正極及び負極を電解液で浸すように構成される 。このような構成の電気二重層キャパシタでは、例えば、前記電解液と分極性電極と の界面に電荷が蓄えられる。
[0040] 図 1 (a)は、捲回型の電気二重層キャパシタ素子の構造及び構成を例示する説明 図であり、図 1 (b)は、斯カるキャパシタ素子を使用する電気二重層キャパシタの構 造及び構成を例示する説明図である。キャパシタ素子 1は、外部引き出しリード線 2を 接続した分極性電極 3と外部引き出しリード線 2 'を接続した分極性電極 3 'とをその 間に短絡防止のセパレータ 4を介在させて捲回させることにより構成されている。この キャパシタ素子 1の外部引き出しリード線 2と 2,には、ゴムより成る封ロ部材 5が取り 付けられている。キャパシタ素子 1は、駆動用電解液を含浸させた後、アルミニウムに より構成された有底円筒状の金属ケース 6に収納される。この収納により、金属ケース 6の開口部に封ロ部材 5が位置し、そしてこの金属ケース 6の開口部に横絞り加工と カーリング加工を施すことにより封口部材 5が金属ケース 6の開口部を封口するもの である。 [0041] 分極性電極 3としては、例えば、図 2に示すように、集電体 7に電極材料層 8を設け たものを使用できる。
[0042] 前記電極材料を使用した分極性電極は、公知の方法により作製することができる。
例えば、前記電極材料と導電性付与剤とバインダー溶液とを混練し、溶媒を添加し てペースト化し、このペーストを集電体に塗布した後、溶媒を除去することにより得ら れる。前記ノインダーとしては、ポリテトラフルォロエチレン、ポリフッ化ビ-リデンなど のフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン ブタジエンゴ ム、石油ピッチ、フエノール榭脂等を使用することができる。これらの中でも、前記バイ ンダ一としては、高分散性で成膜性を有する水溶性バインダーを使用することが好ま しぐ例えば、カルボキシメチルセルロース(以下、「CMC」)を挙げることができる。
[0043] 前記バインダーの使用量は特に限定されるものではないが、前記分極性電極を構 成する材料中、 2質量%〜8質量%が好ましぐ 4質量%〜6質量%がより好ましい。
[0044] また、前記導電性付与剤としては、例えば、アセチレンブラック、ケッチェンブラック などのカーボンブラックなどを使用できる。前記導電性付与剤の含有量は、特に限定 されるものではないが、分極性電極を構成する材料中、 8質量%以下が好ましい。
[0045] 本発明の電気二重層キャパシタで使用できる電解液は特に限定されないが、電気 二重層キャパシタ用の公知の電解液を使用することができ、例えば、非水系(有機系 )電解液、水系電解液、常温溶融塩などを挙げることができる。前記非水系(有機系) 電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチノレエチ ルカーボネートなどの有機溶剤にアミジン塩を溶解した電解液、過塩素酸の 4級アン モニゥム塩を溶解した電解液、 4級アンモニゥムゃ Liなどのアルカリ金属の BF塩や
4
PF塩を溶解した電解液、 4級ホスホ-ゥム塩を溶解した電解液などを使用すること
6
ができる。前記水系電解液としては、例えば、硫酸水溶液、水酸化カリウム水溶液な どを使用できる。
[0046] 前記電気二重層キャパシタに使用されるセパレータも特に限定されないが、例えば 、セルロース、ガラス繊維、又は、ポリエチレンやポリプロピレンなどのポリオレフインを 主成分とした不織布、クロス、微孔フィルムなどを使用できる。
実施例 [0047] 以下、本発明を実施例によってより具体的に説明するが、本発明は、下記実施例 によって限定されるものではなぐ本発明の趣旨を逸脱しない範囲の変更、実施の態 様は、いずれも本発明の範囲内に含まれる。
[0048] [評価方法]
(1)X線回折測定
X線回折測定は、以下の条件で行った。
X線回折測定装置: Spectris社製 X' Pert PRO型
X線源: Cu— Κ α線 (波長 1. 54Α)、出力: 40KV40mA、操作軸: 0 Z2 0、測定 モード: Continuous 測定範囲: 2 0 = 5〜80° 、取り込み幅: 0. 01° 、走査速度: 5. 0 / min.
(2)比表面積の測定
比表面積は、マイクロメリティックス社製 ASAP— 2400窒素吸着装置で測定し、 BE T多点法で求めた。
[0049] [実験例 1]
(電極材料 1)
ロータリーキルンを用いて、東京プログレス (株)製フラーレン含有煤 (C : 10%以
60 上含有品)を窒素雰囲気下、 950°Cまで昇温した後、 950°Cを維持したまま、窒素 Z 水蒸気 = 50Z50 (体積比)の雰囲気下にて 10分間保持してガス賦活処理を行い、 冷却して炭素質物質 1を得た。得られた炭素質物質 1の平均粒子径 (d 、以下同じ)
50
は 7 /ζ πι、比表面積は 670m2Zgであった。炭素質物質の含有率が 5質量%になるよ うに、得られた炭素質物質 1と市販の活性炭 A (関西熱化学 (株)製、商品名マックス ソープ、平均粒子径 (d ) 10 m、比表面積 2330m2/g)とを配合して電極材料 1を
50
得た。
[0050] 東京プログレス (株)製フラーレン含有煤 (C : 10%以上含有品)につ 、て X線回
60
折を測定した結果を図 3に示した。 27° 、44° 、 55° 付近に黒鉛に由来するピーク が認められ、 11° 、 17° 、21° 付近にはフラーレン C に由来すると考えられるピー
60
ク、更には、非晶質、不定形の炭素に由来すると考えられる台地状のベースラインの 上昇が認められた。 [0051] (電極材料 2)
東京プログレス (株)製フラーレン含有煤 (C : 10%以上含有品)に約 60倍の質量
60
のトルエンを加えて、フラーレン含有煤の分散液を調製し、この分散液を室温で 1時 間超音波で処理した後、この分散液をろ過し、更に、ろ液の着色がなくなるまでトル ェンで洗浄し、このろ過物を 60°Cで約 5時間真空乾燥して、フラーレン含有煤力も溶 媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を得 た。抽出残渣物のフラーレン含有煤に対する歩留は 91%で、抽出物には、液体クロ マトグラフィ一で測定して C 力 78%、C 力 18%含まれていた。この抽出残渣物を、
60 70
ロータリーキルンを用いて、炭素質物質 1と同様に賦活処理を行って、炭素質物質 2 を得た。得られた炭素質物質 2の平均粒子径は 5 μ m、比表面積は 590m2Zgであ つた。炭素質物質の含有率が 10質量%になるように、得られた炭素質物質 2と電極 材料 1にお!、て使用した活性炭 Aとを配合して電極材料 2を得た。
[0052] 上記フラーレン含有煤力 溶媒を用いてフラーレンの少なくとも一部を実質的に抽 出して得られる抽出残渣物について X線回折を測定した結果を図 4に示した。図 4よ り、フラーレン C に由来すると考えられる 11° 、 17° 、21° 付近のピークの高さが、
60
黒鉛由来のピークと比べて、図 3よりも相対的に低くなつていることが認められる。この 結果より、得られた抽出残渣物は、フラーレン含有煤力もフラーレンの少なくとも一部 として C 及び C が実質的に抽出されているものであることが分かる。
60 70
[0053] (電極材料 3)
箱形電気炉を用いて、東京プログレス (株)製フラーレン含有煤 (C : 10%以上含
60
有品)を窒素雰囲気下、 1000°C以上で熱処理し、冷却して炭素質物質 3を得た。炭 素質物質 3の平均粒子径は 6 m、比表面積は 520m2Zgであった。炭素質物質の 含有率が 10質量%になるように、得られた炭素質物質 3と電極材料 1にお 、て使用 した活性炭 Aとを配合して電極材料 3を得た。
[0054] (電極材料 4)
市販のヤシガラ活性炭 (カーボンテック (株)製、商品名アマソープ、平均粒子径 9 /z m、比表面積 1310m2/g)を炭素質物質 4として、炭素質物質 4の含有率が 10質 量%になるように、炭素質物質 4と電極材料 1にお 、て使用した活性炭 Aとを配合し て電極材料 4を得た。
[0055] (電気二重層キャパシタの作製)
得られた電極材料 1〜4のそれぞれに、ポリテトラフルォロエチレンバインダー (PT FE)とカーボンブラックを電極材料: PTFE:カーボンブラック = 8 : 1 : 1 (質量比)にな るように混合し、プレスにより直径 26mm、厚さ 0. 5mmの一対のコイン状電極を作製 した。この一対のコイン状電極に、電解液(1モルの(C H ) NBのプロピレンカーボ
2 5 4 4
ネート溶液)を真空含浸させた後、ポリプロピレンセパレータを介して貼り合せ、集電 体で両側から挟んで電気二重層キャパシタ 1〜4を作製した。この電気二重層キャパ シタ 1〜4を、充電電圧 2. 5Vで 30分間充電後、 10mAで放電した。 2. 0Vと 1. 5V の間の放電曲線の勾配カゝら活性炭質量当たり、及び、電極体積当たりの静電容量を 求めた。また、得られた電気二重層キャパシタの内部抵抗は、放電開始直後の電圧 降下 (IRドロップ)により求めた。すなわち、放電曲線の 2. 0Vから 1. 0V間の直線部 を放電開始時点まで外挿して求めた電圧を 2. 5 Vから差し引いた電位差 (V)を放電 電流 (A)で除して、内部抵抗(Ω )を求めた。
[0056] 電極二重層キャパシタ用材料 1〜4の静電容量、及び、電気二重層キャパシタ 1〜 4の内部抵抗にっ 、て評価した結果を表 1にまとめた。
[0057] [表 1]
静電容量 内部抵钪 評健結果
F/ml F/g Ω 炭素質物質 1 9.0 14 2.5 活性炭 20 43 3.8 電棰材料 1 20 43 2.5 炭素質物質 2 8.5 13 2.5 活性炭 20 43 3.8 電極材料 2 19 40 2.1 炭素貧物貧 3 3.5 5.6 4.3 活性炭 20 43 3.8 電極材料 3 18 38 1.9 炭素質物質 4 12 23 4.6 活性炭 20 43 3.8 電棰材料 4 19 41 4.0
[0058] 表 1からも明らかなように、本発明例である電気二重層キャパシタ 1〜3の内部抵抗 は、炭素質物質 1〜3及び活性炭を単独で使用して得られる電気二重層キャパシタ の内部抵抗のいずれか低い方の同等以下であり、また、電極材料 1〜3の静電容量 は、使用する炭素質物質 1〜3及び活性炭の静電容量の!/、ずれか高 、方 (活性炭: 20F/ml、 43F/g)の 85%以上であった。これらの結果より、本発明では、単に炭 素質物質と活性炭とを配合して得られる平均化された中間的な特性ではなぐ炭素 質物質と活性炭とを配合することによって得られる相乗効果が認められた。
[0059] 一方、電気二重層キャパシタ 4では、得られた静電容量及び内部抵抗が、使用する 炭素質物質と活性炭のそれぞれの静電容量及び内部抵抗を平均化した中間的な特
'性にすぎなかった。
[0060] [実験例 2]
(電極材料の作製) 市販の活性炭 B (関西熱化学 (株)製、商品名マックスソープ、比表面積 2300m2Z g)と、賦活時間以外は炭素質物質 2と同様にして得た平均粒子径 7 m、比表面積 750m2Zgの炭素質物質 5、及び、炭素質物質 3と同様にして得た平均粒子径 6 μ m 、比表面積 460m2Zgの炭素質物質 6とをそれぞれ表 2及び表 3に記載した配合量 になるように配合して電極材料 5〜 12を得た。
[0061] 尚、炭素質物質 5は、フラーレン含有煤力も溶媒を用いてフラーレンの少なくとも一 部を実質的に抽出して得られる抽出残渣物を賦活処理して得られる炭素質物質に 相当し、炭素質物質 6は、フラーレン含有煤を熱処理して得られる炭素質物質に相 当する。
[0062] (電気二重層キャパシタの作製)
得られた電極材料 5〜 12のそれぞれに、水溶性バインダー(市販の CMC)とァセ チレンブラックとを、電極材料: CMC:アセチレンブラック = 8 : 1 : 1 (質量比)になるよ うに混合し、さらにペーストイ匕して、アルミニウム箔の表面に塗布し、乾燥してシート状 の電極 5〜 12を作製した。
[0063] 次いで、シート状電極のシート間に短絡防止のセパレータが介在されるように、シ ート状電極 5〜 12のそれぞれとセパレータ(セルロース製)とを捲回させて、捲回型の 電気二重層キャパシタ 5〜 12 (定格電圧 2. OV—静電容量 70F、サイズ: Φ 18mm X L50mm)を作製した。尚、電解液としては、ェチルメチルイミダゾリゥム · 4フッ化ホ ゥ素塩を溶解したプロピレンカーボネート溶液を用いた。
[0064] この電気二重層キャパシタ 5〜 12を、 1. 5A、 2. OVの定電流定電圧充電を施した 後、 1. OAで放電した。 1. 7Vと 1. 3Vの間の放電曲線の勾配から、体積当たりの静 電容量を求めた。また、得られた電気二重層キャパシタの内部抵抗は、放電開始直 後の電圧降下 (IRドロップ)により求めた。すなわち、放電曲線の 1. 7Vから 1. 3V間 の直線部分を放電開始時点まで外挿して求めた電圧を 2. OVから差し引いた電位 差 (V)を放電電流 (A)で除して電極体積当たりの内部抵抗を求めた。上記方法によ つて、電極二重層キャパシタ用材料 5〜 12の静電容量、及び、電気二重層キャパシ タ 5〜 12の内部抵抗を、 25°C、及び、一層厳しい評価条件である— 30°Cで測定した 結果を、それぞれ表 2及び表 3にまとめた。 [0065] [表 2]
Figure imgf000018_0001
[0066] 表 2からも明らかなように、常温特性(25°C)は、炭素質物質 5の含有量が 20質量 %以下の場合、得られる電気二重層キャパシタ用電極材料の静電容量が、炭素質 物質若しくは活性炭の!/ヽずれか高!、方 (ここでは活性炭)の 95%以上であり、炭素質 物質 5の含有量が 10質量%以下の場合、 100%以上であることが分かる。また、電 極材料 5〜8を使用して得られる電気二重層キャパシタの内部抵抗は、炭素質物質 若しくは活性炭のいずれかを使用して得られる電気二重層キャパシタの内部抵抗の 低 、方よりも著しく低くなつて L、ることが分かる。
[0067] 30°Cで評価した結果、電極材料 5〜8につ 、ては、常温で評価した結果と同一 の傾向が得られた。また、電極材料 5〜7を使用して得られる電気二重層キャパシタ の内部抵抗は、炭素質物質若しくは活性炭の 、ずれかを使用して得られる電気二重 層キャパシタの内部抵抗の低い方よりも低くなつた。
[0068] [表 3] 炭素質物質の 静電容量 内部抵抗
評価結果 配合量 F ml m Q /ml
wt% 25°C -30°C 25°C -30°C
活性炭 0 14.8 14.6 198.1 269.7
電極材料 9 2 15.5 15.0 141.4 258.0 電極材料 1 0 5 14.8 12.5 143.8 225.0 電極材料 1 1 10 14.0 12.3 136.0 348.3 電極材料 1 2 20 13.1 8.8 152.0 320.9 炭素質物質 6 100 6.0 5.1 360.3 450.8 [0069] 表 3から、炭素質物質 6の含有量が 20質量%以下の場合、得られる電気二重層キ ャパシタ用電極材料の静電容量が、炭素質物質若しくは活性炭の!/、ずれか高!ヽ方( ここでは活性炭)の 85%以上であり、炭素質物質 6の含有量が 10質量%以下の場合 、 95%以上であることが分かる。また、電極材料 9〜 12を使用して得られる電気二重 層キャパシタの内部抵抗は、炭素質物質若しくは活性炭の!/ヽずれかを使用して得ら れる電気二重層キャパシタの内部抵抗の低 、方よりも著しく低くなつて 、ることが分 かる。
[0070] 30°Cで評価した結果、電極材料 9の静電容量は、炭素質物質若しくは活性炭の いずれか高い方 (ここでは活性炭)の 100%以上であり、電極材料 9又は 10を使用し て得られる電気二重層キャパシタの内部抵抗が、炭素質物質若しくは活性炭のいず れかを使用して得られる電気二重層キャパシタの内部抵抗の低い方よりも低くなつた 。しカゝしながら、電極材料 11及び 12を使用して得られる電気二重層キャパシタの内 部抵抗は、活性炭を使用して得られる電気二重層キャパシタの内部抵抗よりも高くな つた o
[0071] 表 2及び表 3の低温特性の結果を比較すると、良好な低温特性を得るためには、フ ラーレン含有煤力も溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得 られる抽出残渣物を熱処理若しくは賦活処理して得られる炭素質物質を使用するこ とが好ましいことが分かる。
[0072] 本発明にお ヽて、従来の活性炭の静電容量を大きく保ったまま、得られる電気二重 層キャパシタの内部抵抗を低下させることができる詳細な理由については、不明であ る力 以下のように考えられる。通常、活性炭粒子は、球状ではなく角ばつた形をして いる。そのため、分極性電極にしたときに活性炭粒子間に空隙が生じやすい。しかし ながら、本発明で使用する炭素質物質は、略球状である。このため、活性炭粒子の 角ばった粒子間を本発明で使用する炭素質物質がある程度埋めることで、電極体内 での電子伝導割合を高め、電解液イオンの拡散寄与を小さくすることができている。 この拡散抵抗低減により低抵抗ィ匕し、より多くの粒子の静電容量を利用できているも のと考えられる。
産業上の利用可能性 本発明によれば、内部抵抗が低ぐ静電容量の大きな電気二重層キャパシタ用電 極材料が得られ、電気二重層キャパシタ用電極、及び、電気二重層キャパシタに好 適に適用できる。

Claims

請求の範囲
[1] フラーレン含有煤、又は、フラーレン含有煤力も溶媒を用いてフラーレンの少なくと も一部を実質的に抽出して得られる抽出残渣物を、熱処理若しくは賦活処理して得 られる炭素質物質と活性炭とを含有することを特徴とする電気二重層キャパシタ用電 極材料。
[2] 前記溶媒が芳香族系有機溶媒である請求項 1に記載の電気二重層キャパシタ用 電極材料。
[3] 前記炭素質物質の含有率が、 30質量%以下である請求項 1又は 2に記載の電気 二重層キャパシタ用電極材料。
[4] 前記炭素質物質の含有率が、 10質量%以下である請求項 3に記載の電気二重層 キャパシタ用電極材料。
[5] 前記電気二重層キャパシタ用電極材料の抵抗は、前記炭素質物質若しくは前記 活性炭の抵抗の 、ずれか低 、方と同等若しくはそれ以下である請求項 1〜4の 、ず れか一項に記載の電気二重層キャパシタ用電極材料。
[6] 前記電気二重層キャパシタ用電極材料の静電容量は、前記炭素質物質若しくは 前記活性炭の静電容量の 、ずれか高 、方の 85%以上である請求項 1〜5の 、ずれ か一項に記載の電気二重層キャパシタ用電極材料。
[7] 前記電気二重層キャパシタ用電極材料の静電容量は、前記炭素質物質若しくは 前記活性炭の静電容量のいずれか高い方の 95%以上である請求項 6に記載の電 気二重層キャパシタ用電極材料。
[8] 請求項 1〜7の 、ずれか一項に記載の電極材料を用いた電気二重層キャパシタ用 電極。
[9] 請求項 8に記載の電極を用いた電気二重層キャパシタ。
[10] フラーレン含有煤、又は、フラーレン含有煤力も溶媒を用いてフラーレンの少なくと も一部を実質的に抽出して得られる抽出残渣物を、熱処理若しくは賦活処理して得 られる炭素質物質と活性炭とを配合することを特徴とする請求項 1〜7のいずれか一 項に記載の電気二重層キャパシタ用電極材料の製造方法。
PCT/JP2006/307366 2005-04-08 2006-04-06 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ WO2006109690A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/887,900 US7948738B2 (en) 2005-04-08 2006-04-06 Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
CN2006800105897A CN101151692B (zh) 2005-04-08 2006-04-06 双电荷层电容器用的电极材料及其制备方法、双电荷层电容器用的电极以及双电荷层电容器
EP06731314A EP1870912B1 (en) 2005-04-08 2006-04-06 Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-112639 2005-04-08
JP2005112639A JP4616052B2 (ja) 2005-04-08 2005-04-08 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ

Publications (1)

Publication Number Publication Date
WO2006109690A1 true WO2006109690A1 (ja) 2006-10-19

Family

ID=37086965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307366 WO2006109690A1 (ja) 2005-04-08 2006-04-06 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ

Country Status (6)

Country Link
US (1) US7948738B2 (ja)
EP (1) EP1870912B1 (ja)
JP (1) JP4616052B2 (ja)
KR (1) KR101078236B1 (ja)
CN (1) CN101151692B (ja)
WO (1) WO2006109690A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172063A (zh) * 2011-12-22 2013-06-26 大连理工大学 一种利用富勒烯烟灰萃余物制备活性炭的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963080B2 (ja) * 2007-04-17 2012-06-27 独立行政法人産業技術総合研究所 固体高分子形燃料電池用触媒担体の製造方法、及び固体高分子形燃料電池用触媒担体
KR101043627B1 (ko) * 2009-01-29 2011-06-24 한국화학연구원 플러렌 유도체를 함유한 유기태양전지 소자
CN103081047B (zh) * 2010-08-18 2017-07-04 日本贵弥功株式会社 电容器、电容器的制造方法以及制造程序
EP2728647B1 (en) 2011-06-28 2018-10-10 Nippon Chemi-Con Corporation Battery and method for manufacturing the same
US20130224633A1 (en) * 2012-02-23 2013-08-29 Northwestern University Nanostructured carbon electrode, methods of fabricating and applications of the same
CN102850967A (zh) * 2012-09-10 2013-01-02 中国科学院大连化学物理研究所 一种制备高面密度及高电导率电极的复合粘结剂体系
US8975134B2 (en) 2012-12-27 2015-03-10 Intermolecular, Inc. Fullerene-based capacitor electrode
KR101325952B1 (ko) 2013-04-01 2013-11-07 한국기계연구원 경화성 폴리머 바인더를 활용한 고성능 기능성 활성 탄소 슈퍼 커패시터 및 이의 제조방법
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
CN107270610A (zh) 2016-04-07 2017-10-20 东芝生活电器株式会社 冰箱
JP7061971B2 (ja) 2016-05-20 2022-05-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション マルチセル・ウルトラキャパシタ
MY194849A (en) 2016-05-20 2022-12-19 Kyocera Avx Components Corp Ultracapacitor for use at high temperatures
CN115512980A (zh) 2016-05-20 2022-12-23 京瓷Avx元器件公司 超级电容器用的非水电解质
KR20190003793A (ko) 2016-05-20 2019-01-09 에이브이엑스 코포레이션 울트라커패시터용 전극 구조
JP2018086177A (ja) * 2016-11-29 2018-06-07 ブリヂストンスポーツ株式会社 マルチピースソリッドゴルフボール
WO2019182384A1 (ko) * 2018-03-21 2019-09-26 권민상 수퍼캐패시터의 전해액 및 이 전해액을 이용한 슈퍼캐패시터
JP7358804B2 (ja) * 2019-07-04 2023-10-11 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221425A (ja) * 2003-01-16 2004-08-05 Tdk Corp 電極及びその製造方法、並びに、電気化学素子、電気化学キャパシタ、電池、及び電気化学センサ
JP2004342778A (ja) * 2003-05-14 2004-12-02 Kansai Coke & Chem Co Ltd 多孔質炭素及びその製造方法、並びに、電気二重層キャパシタ用多孔質炭素及び電気二重層キャパシタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585711A (ja) * 1991-09-30 1993-04-06 Idemitsu Kosan Co Ltd フラーレンc60の精製方法
US5953204A (en) * 1994-12-27 1999-09-14 Asahi Glass Company Ltd. Electric double layer capacitor
JP3814440B2 (ja) * 1999-04-08 2006-08-30 カシオ計算機株式会社 電気二重層コンデンサ
JP2001146410A (ja) * 1999-11-17 2001-05-29 Showa Denko Kk 活性炭及びその製法
JP3862950B2 (ja) 2000-10-20 2006-12-27 株式会社リコー 光書込装置及び画像形成装置
JP2002198269A (ja) * 2000-12-26 2002-07-12 Nec Tokin Ceramics Corp 電気二重層コンデンサ
JP2002222741A (ja) 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd 電気二重層キャパシタ用分極性電極の製造方法およびその分極性電極を用いた電気二重層キャパシタ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221425A (ja) * 2003-01-16 2004-08-05 Tdk Corp 電極及びその製造方法、並びに、電気化学素子、電気化学キャパシタ、電池、及び電気化学センサ
JP2004342778A (ja) * 2003-05-14 2004-12-02 Kansai Coke & Chem Co Ltd 多孔質炭素及びその製造方法、並びに、電気二重層キャパシタ用多孔質炭素及び電気二重層キャパシタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EGASHIRA M.: "Fullerene-soot no Denki Nijuso Capacitor Denkyoku Toshite no Tokusei", DAI 40 KAI BATTERY SYMPOSIUM IN JAPAN, 14 November 1990 (1990-11-14), pages 221 - 222, XP003005267 *
See also references of EP1870912A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172063A (zh) * 2011-12-22 2013-06-26 大连理工大学 一种利用富勒烯烟灰萃余物制备活性炭的方法

Also Published As

Publication number Publication date
EP1870912A1 (en) 2007-12-26
US7948738B2 (en) 2011-05-24
US20090026422A1 (en) 2009-01-29
JP2006294817A (ja) 2006-10-26
EP1870912B1 (en) 2013-03-27
KR101078236B1 (ko) 2011-10-31
JP4616052B2 (ja) 2011-01-19
EP1870912A4 (en) 2010-03-03
CN101151692B (zh) 2012-05-09
KR20070116129A (ko) 2007-12-06
CN101151692A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2006109690A1 (ja) 電気二重層キャパシタ用電極材料及びその製造方法、電気二重層キャパシタ用電極、及び、電気二重層キャパシタ
KR101909424B1 (ko) 그래핀 분산액 및 그의 제조 방법, 그래핀-활물질 복합체 입자의 제조 방법 및 전극 페이스트의 제조 방법
Lei et al. A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte
US20030172509A1 (en) Supercapacitor and a method of manufacturing such a supercapacitor
CN102460620B (zh) 双电层电容器电极用碳材料和碳材料的生产方法
Abdelkader Electrochemical synthesis of highly corrugated graphene sheets for high performance supercapacitors
Kim et al. Fabrication of graphene–carbon nanotube papers decorated with manganese oxide nanoneedles on the graphene sheets for supercapacitors
CN107148692B (zh) 电极用导电性组合物、使用该导电性组合物的电极以及锂离子二次电池
JP2012511492A (ja) SnO2とカーボンナノチューブおよび/またはカーボンナノ繊維の複合材料の製造方法と、この方法で得られる材料と、この材料を含むリチウム電池の電極
JP2010503214A (ja) カーボンナノチューブのナノコンポジット、カーボンナノチューブのナノコンポジットを作製する方法、およびナノコンポジットを含むデバイス
JP6213971B2 (ja) グラフェン/CNT複合体電極装備Liイオン・スーパーキャパシター及びその製造方法
JP2007528596A (ja) 電極の製造方法と、得られた電極と、この電極を含むスーパーコンデンサ
Ramesh et al. A nanocrystalline Co 3 O 4@ polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors
WO2019070568A2 (en) INTERNAL HYBRID CELL FOR ELECTROCHEMICAL ENERGY STORAGE BASED ON LITHIUM OR SODIUM ION
Oh et al. New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries
KR101744122B1 (ko) 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법, 이에 따라 제조된 그래핀-탄소나노튜브 복합체 및 이를 포함하는 슈퍼커패시터
JP2018039685A (ja) 多孔質炭素材料及びその製造方法、複合体及びその製造方法、並びにリチウム硫黄電池用の正極材料
JP6126192B1 (ja) 二次電池用酸化物系負極活物資及びその製造方法
JP2017107742A (ja) 二次電池用酸化物系負極活物資及びその製造方法
Lee et al. Microporous carbon nanoplate/amorphous ruthenium oxide hybrids as supercapacitor electrodes
JP6829573B2 (ja) 捲回式非水系リチウム型蓄電素子
JP2007153639A (ja) 活性炭前駆体、活性炭およびその製造方法、並びに分極性電極および電気二重層キャパシタ
JP6754656B2 (ja) 非水系リチウム型蓄電素子
JP4377610B2 (ja) 電気二重層キャパシタ用多孔質炭素及びその製造方法、並びに、電気二重層キャパシタ
KR101627438B1 (ko) 결정성 탄소 구조체, 이의 제조방법, 및 이를 함유하는 에너지 저장소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010589.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11887900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006731314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077024069

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731314

Country of ref document: EP