US20030172509A1 - Supercapacitor and a method of manufacturing such a supercapacitor - Google Patents
Supercapacitor and a method of manufacturing such a supercapacitor Download PDFInfo
- Publication number
- US20030172509A1 US20030172509A1 US10/322,541 US32254102A US2003172509A1 US 20030172509 A1 US20030172509 A1 US 20030172509A1 US 32254102 A US32254102 A US 32254102A US 2003172509 A1 US2003172509 A1 US 2003172509A1
- Authority
- US
- United States
- Prior art keywords
- carbon
- electrodes
- mixing
- electrode
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 88
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 64
- 239000003990 capacitor Substances 0.000 claims abstract description 48
- 239000002245 particle Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 50
- 239000011230 binding agent Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 25
- 239000002904 solvent Substances 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 14
- 239000011888 foil Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000005056 compaction Methods 0.000 claims description 9
- 238000000227 grinding Methods 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 238000007580 dry-mixing Methods 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 238000010345 tape casting Methods 0.000 claims description 3
- 238000007582 slurry-cast process Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 44
- 239000003792 electrolyte Substances 0.000 abstract description 30
- 238000009826 distribution Methods 0.000 abstract description 16
- 239000011810 insulating material Substances 0.000 abstract description 4
- 239000011244 liquid electrolyte Substances 0.000 abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 36
- 239000000463 material Substances 0.000 description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 230000008569 process Effects 0.000 description 24
- 239000000843 powder Substances 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 20
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 229910052786 argon Inorganic materials 0.000 description 18
- 239000003575 carbonaceous material Substances 0.000 description 18
- 150000002500 ions Chemical class 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 14
- -1 metalloid carbides Chemical class 0.000 description 14
- 239000000460 chlorine Substances 0.000 description 13
- 229910052801 chlorine Inorganic materials 0.000 description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 239000002243 precursor Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 9
- 229910052580 B4C Inorganic materials 0.000 description 8
- 229910003178 Mo2C Inorganic materials 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000007772 electrode material Substances 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 229910016384 Al4C3 Inorganic materials 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910019785 NBF4 Inorganic materials 0.000 description 6
- 239000004809 Teflon Substances 0.000 description 6
- 229920006362 Teflon® Polymers 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910003074 TiCl4 Inorganic materials 0.000 description 5
- 239000007833 carbon precursor Substances 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000026030 halogenation Effects 0.000 description 5
- 238000005658 halogenation reaction Methods 0.000 description 5
- 229920000379 polypropylene carbonate Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910039444 MoC Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000012771 pancakes Nutrition 0.000 description 2
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 241000018344 Ehrlichia sp. 'CGE agent' Species 0.000 description 1
- 206010014415 Electrolyte depletion Diseases 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229910003182 MoCx Inorganic materials 0.000 description 1
- 229910016027 MoTi Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 235000012093 Myrtus ugni Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 244000061461 Tema Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 238000006298 dechlorination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- OYMJNIHGVDEDFX-UHFFFAOYSA-J molybdenum tetrachloride Chemical class Cl[Mo](Cl)(Cl)Cl OYMJNIHGVDEDFX-UHFFFAOYSA-J 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 238000002429 nitrogen sorption measurement Methods 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920006303 teflon fiber Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/34—Carbon-based characterised by carbonisation or activation of carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/42—Powders or particles, e.g. composition thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- This invention relates in general to the field of supercapacitors. More particularly, this invention relates to a superior supercapacitor having electrodes fabricated from specially synthesized nanostructured carbon (SNC) powders in which the pore sizes and the specific surface may be selectively controlled.
- SNC nanostructured carbon
- Electric double layer capacitors are widely used in a variety of industries.
- PCT WO 99/24995 shows an electric double layer capacitor and manufacturing method.
- the electric double layer capacitor comprises metal foil or mesh current collectors, polarizable electrodes made of an activated carbon and a polymer binder, conductive coatings comprising a melamine resin binder at the interfaces between current collectors and polarizable electrodes, and non-aqueous electrolyte.
- the thickness of the polarizable electrodes is 15 micron.
- the electrodes were deposited into the conductive layer coated current collector by a screen printing method.
- Such a electric double layer capacitor demonstrates long term low impedance at the electrode-current collector interface and high power capabilities.
- U.S. Pat. No. 5,776,633 describes carbon/carbon composite materials and use thereof in electrochemical cells.
- This invention provides an activated carbon fabric impregnated with a mixture of activated carbon powder and binder; the thickness of materials obtained being 125-250 micron.
- the advantage of materials obtained includes the low resistivity, the ability to easily form thin composites with very good mechanical strength.
- an electric double layer capacitor is described in U.S. Pat. No. 5,142,451.
- an electric double layer capacitor which comprises a plurality of thin plate-like electrode elements is disclosed.
- the polarizable electrodes were manufactured by sintering powder of minute active carbon particles having an average diameter of about 20 micron into a porous sintered electrode body. This polarizable electrode is held in contact with a current collector through an electrically conductive layer to reduce the inner resistance of the capacitor.
- a method for manufacturing a polarizable electrode for electric double layer capacitor is taught in U.S. Pat. No. 5,277,729.
- the thickness of electrode is about 40-500 micron.
- the electrode is obtained by hot rolling an initial mixture of fine carbon powder, polymer resin and liquid lubricant.
- a metal electrode material, capacitor using metal electrode material, and method of manufacture is disclosed in PCT WO 99/38177.
- the metal electrode material comprises a “valve metal material” with carbon particles on its surface.
- the metal electrode material is coated with an activated carbon layer and used as polarizable electrode for an electric double layer capacitor. That capacitor has reduced inner resistance, resulting in an increase in capacitance.
- U.S. Pat. No. 5,742,474 describes an electric double layer capacitor, comprising a pair of polarized electrodes made of the same activated carbon materials.
- the amount of the carbon material of the polarized positive electrode is higher than that of the polarized negative electrode.
- the main advantage is that it is possible to increase a voltage applied to the electric double layer capacitor.
- nanoporous, nanoporosity and nanostructured apply to pore sizes less than 3 nanometer.
- transport porosity is meant pores larger than 3 nanometers.
- an object of the present invention is to provide a supercapacitor, which exhibits superior performance.
- the present invention provides the following features.
- Specially synthesized nanostructured carbon (SNC) powder is processed to fabricate electrodes in such a manner that the resultant electrodes have pore sizes, which are selectively and closely controlled. Further, thin, composite aluminum and SNC electrodes are made using the carbon powder. Additionally, by the ability to selectively control the resultant pore sizes in the electrodes, a capacitor is provided wherein the positive and negative electrodes are balanced with respect to their nanopore size and active carbon content, thereby tailoring the electrodes to fit the ionic sizes of the electrolyte positive and negative ions respectively employed with the capacitor.
- the present invention also allows, in another aspect of the present invention, the selection of the most efficient electrolyte with respect to its conductivity and other desirable features.
- the present invention also provides for the selection of a desirable separator, which gives increased conductivity and leaves sufficient free ion concentration when charged.
- SNC is synthesized from inorganic polycrystalline material to selectively control the pore size and pore size distribution in the resulting electrode.
- an electric double layer capacitor comprising: at least two thin and flexible polarizable electrodes obtained by rolling a mixture of SNC material with a binder. Said electrodes are connected to metal current collectors; a thin layer of a porous, ion-permeable but electron-insulating material (separator) interposed between electrodes; and a liquid electrolyte.
- an electric double layer capacitor comprising: a pair of polarizable electrodes made of a SNC material having different porosities (and pore size distributions); a thin layer of a porous, ion-permeable but electron-insulating material (separator) interposed between the electrodes; and a liquid electrolyte.
- TABLE 1 is a table showing pore structure parameters for SNC(SiC) powder modified by HNO 3 .
- TABLE 2 is a comparison of electrochemical behaviour of non-modified and modified SNC materials.
- TABLE 3 shows properties of modified nanostructured carbon from different precursors.
- TABLE 5 illustrates the influence of carbon material from various precursor material on capacitance in electric double layer capacitors with water based electrolyte systems.
- TABLE 6 shows results of different methods of connecting an aluminum current collector to a carbonaceous electrode sheet.
- TABLE 7 is a rendering of the effect of balancing positively and negatively charged polarizable electrodes.
- TABLE 8 gives examples of electrochemical performance of prototype electric double layer capacitors according to the present invention.
- FIG. 1 is a schematic drawing of supercapacitor device comprising 4 anodes and 4 cathodes connected in parallel according to the present invention.
- FIG. 2 is a graph of the pore size distribution of SNC(TiC)
- FIG. 3 is a graph of the pore size distribution of SNC(Mo 2 C)
- FIG. 4 is a graph of the pore size distribution of SNC((MoTi)Cx)
- FIG. 5 compares the pore size distribution of carbon powders from TiC before and after modification
- FIG. 6 is a Ragone plot of specific energy and specific power of an unpacked electrochemical system of device number 1 in table 8.
- FIG. 7 shows some electrolytic salts (cation and anions) used in electrolytes for electric double layer capacitors.
- FIG. 1 illustrates a side view of a capacitor with 4 anodes and 4 cathodes connected in parallel in accordance with the present invention.
- the capacitor with double electric layers generally includes a hermetic case 5, closed by a sealing 7. Inside of the case are situated one or more electrode pairs of which 1 is the anode and 2 is the cathode.
- the electrodes 1 and 2 are saturated with an electrolyte and separated by means of a porous separator 4.
- metal current collectors 3 which are in turn joined to a terminal lead 6.
- the present invention provides in one aspect SNC powder uniquely manufactured with closely controlled pore sizes. SNC powder is processed to fabricate electrodes in such a manner that the resultant electrode has pore sizes which are selectively and closely controlled. Further, thin electrodes are made using the carbon powder.
- a capacitor is provided wherein the positive and negative electrodes are balanced with respect to their nanopore size and active carbon content. This allows one to tailor the electrodes to fit the ionic sizes of the positive and negative electrolyte ions employed with the capacitor.
- This also provides, in another aspect of the present invention, the selection of the most efficient electrolyte with respect to its conductivity and other desirable features.
- the selection of a desirable separator is provided, which possesses desirable ionic conductivity and leaves sufficient free ion concentration when charged.
- SNC materials are produced by thermo-chemical treatment of carbides or related carbon-containing compounds.
- the choice of carbon containing compound and respective synthesis conditions controls the size of nanopores and the extent of the active surface area.
- the ability to control the pore size and porosity is required to match the ion sizes in different electrolytes used in the supercapacitor application.
- Substituting O and N for carbon in TiCx can further lower the total carbon content of the precursor compound. This gives a further possibility to widen and control the total porosity and range of pore sizes.
- Substitutions for Titanium such as with Molybdenum may also be made.
- the Mo atoms substitute for Ti in the same sintered metal lattice to form a solid solution compound such as (TiMo)Cx.
- a solid solution yields a carbon with a nanopore size and distribution, which differs beneficially from that of TiCx or MoCx.
- FIGS. 2 to 4 show the pore distribution for TiC-, Mo 2 C- and sintered (TiMo)Cx-derived carbon respectively.
- carbon containing compounds based on the following metals, or metalloids or combinations thereof are preferred be used: Ti, Zr, Hf, V, Nb, Ta, Mo, W, Cr, Fe, Al, Si, B, and Ca.
- the size of the particles of the carbon precursor should preferably be less than about 100 microns to provide good conditions for halogenation throughout the particles. In most carbides, a particle size of less than about 10 microns is advantageous to avoid overheating inside the particles, which during chlorination increases the amount of undesirable graphitic clusters and closed porosity.
- Halogenation can be made with all halogens, but Cl 2 is preferred. In its simplest form a charge of TiC powder is placed in a tube furnace heated to a desired reaction temperature in the flow of inert gas. Thereupon Cl 2 gas is passed through the powder mass and allowed to react until all Titanium is removed from the carbide. The mass balance of the reaction can be presented as:
- the TiCl 4 being a vapor at the reaction temperature is swept away and condensed in a collector thus providing separation of the products of reaction.
- the reaction of carbides with chlorine is exothermic and can increase the local temperature within the powder mass.
- the actual reaction temperature affects the nanoscale structure of the carbon product and has to be kept below the temperature of graphitization.
- 900-1000° C. is preferred.
- Carbides that form gaseous chlorine are preferred because their chlorides are vapors.
- the carbon product is subsequently heat treated at 900-1100° C.
- inert gas such as Argon or Helium to remove the excess of chlorine adsorbed in pores (dechlorination). Removal of any undesired residual chlorine including chemically bound is done by additional heat treatment in preferably H 2 atmosphere at 600-900° C. Diluted H 2 O vapor at 800-1000° C. using inert carrier gas, e.g. Argon, also works.
- nanoporous carbon gives good control of the size and size distribution of nanopores in the resulting particles, some additional refinement of the controllability is desirable.
- nanopores modification process of the carbon realized by halogenation of the precusor material is done by essentially known methods such as exposing at elevated temperature the nanoporous carbon to an oxidizing medium which may consist of H 2 O carried by an inert gas, carbon dioxide, concentrated nitric or sulphuric acid or other oxidizing agents. The effects are controllable widening of the nanopores and removal of physically and chemically absorbed chlorine.
- FIG. 5 shows the effect on TiC derived carbon of such modification.
- Table 1 shows the effect of halogenated SiC, subsequently modified by HNO 3 .
- Table 2 shows electrochemical effects of modification of SiC and TiC derived carbon.
- Table 3 illustrates material properties of a number of modified carbon materials from various precursors.
- Titanium carbide may also be made by the reaction at high temperature of titanium with carbon; titanium tetrachloride with organic compounds such as methane, chloroform, or poly(vinyl chloride); titanium disulfide with carbon; organotitanates with carbon precursor polymers and titanium tetrachloride with hydrogen and carbon monoxide.
- the reaction of titanium tetrachloride with a hydrocarbon-hydrogen mixture at 1000° C. has been used in the prior art for the chemical vapor deposition (CVD) of thin carbide films used in wear-resistant coatings.
- the SNC materials produced as described above are combined in a form suitable for use as a thin, flat, flexible electrode containing high fractions of the SNC.
- Theoretical models developed by the inventors predict that the porous carbon electrodes should be essentially thin to provide the high power output. Estimations show the optimum thickness to be in the range of about 5-150 micron. Besides, one should bear in mind that electrodes must not be brittle since they are normally pressed when assembling the electrode pack in order to reduce the equivalent series resistance of a capacitor device.
- fabrication of composite electrodes of certain thickness may be accomplished by rolling a plasticized mixture of SNC powder, one or more binders and certain solvents, said plasticized mixture being made as a stiff putty like mass with the help of the certain solvents.
- Optional additives to the SNC carbon powder are colloidal or Thermally Expanded Graphite (TEG) (1-15% wt. of the dry mass) to increase conductivity, conductive polymers (2-20% wt. of the dry mass.) also to increase conductivity and SiO 2 (0.5-10% wt. of the dry mass) that increases capacitance.
- TOG Thermally Expanded Graphite
- fluorine-containing polymers e.g. PTFE (Teflon) or PVDF poly(vinylidene fluoride) were selected as a permanent binder that provides structural integrity.
- PTFE Teflon
- PVDF poly(vinylidene fluoride)
- Another incorporated binder is temporary and serves to facilitate the formation of a ductile tape. It also raises the hydraulic component of the rolling force during the roll compaction (below) and limits the crushing force onto the carbon particles.
- the increased ductility enables rolling to thinner sections without unduly stiffening or hardening of the product.
- the ductility also enables cross rolling of the extruded material which develops a more isotropic distribution of Teflon fibers.
- this temporary binder should be completely removable, at a temperature below the decomposition temperature of the permanent binder, without leaving any residues. This has the beneficial effect of leaving behind an improved transport porosity.
- One example of such temporary binder is polypropylene carbonate (PPC).
- the proportion of this temporary binder should be 4-10% wt. of the carbon, preferably 5-7% wt.
- the binder is added to a suitable solvent with the concentration of 7-18%, preferably 10%.
- the solvent should have two advantageous characteristics. It should have low evaporation rate which means that the solvent content should change very slowly during material mixing and processing, resulting in better control and lot-to-lot reproducibility. Such solvents act as a plasticizer of the temporary binder and improves the working range of the tape. If it did not act this way, then the addition of a special plasticizer would be required. Plasticizers do not thermally decompose in a manner similar to that of e g PPC and at the low temperatures allowable would leave material behind. An additional requirement on the solvent is that it will evaporate completely, without leaving traces, along with the temporary binder.
- One such preferred solvent is N-Methyl Pyrrolidone (NMP). The solvent is first added to the dry mix together with the dissolved temporary binder. Additional amounts of solvent is added during the appropriate processing steps until a suitable consistency of the mass is reached. The precise amount of solvent to be added depends on the type of carbon used, particularly on its specific surface.
- carbon made as indicated earlier from TiC, without subsequent modification, requires that solvent be added until the ratio of the temporary binder to total solvent is 3-5%.
- Other carbon qualities may require a higher or somewhat lower ratio of temporary binder to total solvent content.
- the present invention includes several improvements, that are necessary when considering the SNC powder according to the present invention, to obtain superior electrochemical characteristics for electric double layer capacitors.
- the method of making flexible carbon tapes can be by hand but it is more advantageously carried out in a series of mechanized steps that lend enabling an integrated automated process.
- the procedure for manufacturing flexible carbon tapes for electrodes includes the following steps in order of sequence:
- Applicable methods are tumbling, ball milling or stirring of chosen carbon powder, Teflon powder and optionally included additive as described above.
- Wet Mixing is a process to incorporate solvent such as NMP and a secondary binder such as PPC dissolved in a suitable solvent such as NMP.
- Wet mixing may be advantageously carried out in a planetary paddle mixer.
- Mulling is a process that effectively mixes the solid and liquid ingredients and works the material into a soft, flexible mass. This operation is performed in a bowl holding the components to be mixed and a cylinder inside the bowl located so that its outside surface is pushed by a spring against the inside surface and bottom of the bowl. The material to be mixed is passed through the gap formed between the spring loaded cylinder and the bowl wall. The material is contained within the bowl and is cycled back to the input of the process automatically. Due to the pressure applied to the mixture during the mulling process, there is extrusion of the material in both axes as the material is folded back. This extrusion induces forces on the Teflon powder that stretch it into fiber form.
- Grinding is a process in which the product from the muller is fed into a system of rotating blades that cuts the material into small pieces suitable for feeding into an extruder.
- the previous mixing process may have entrapped air in pockets in the material.
- the grinding facilitates the removal of any such air when vacuum is applied to the extrusion hopper after loading the material into it.
- This process is an alternative to mulling, grinding and extrusion to produce a belt preform suitable for roll compaction.
- the step serves to further induce fiber formation of the Teflon portion of the binder system by stretching the Teflon particles.
- the equipment and process conventionally used for mixing rubber compounds is suited to this requirement.
- the equipment consists of a pair of rollers, placed horizontally side by side so that the passage of material between them will be vertical.
- the relative rotational speed of the rollers is set such that one roller turns faster than the other.
- the mixing is accomplished by passing the materials through the rollers and compressing it while simultaneously shearing it. This process is repeated until the material is thoroughly blended.
- the materials In order to start the process, the materials must be roughly blended together so they will form a mass that can be placed into the rolls.
- the product is collected as a single belt perform suitable for roll compaction.
- Extrusion is performed to produce a ductile belt preform, typically ⁇ 1 mm thick, suitable for roll compaction.
- Roll compaction is a process in which a suitable ductile belt preform is fed between rolls rotating at the same speed with the gap or nip set so that the resulting tape is of the desired thickness, typically about 100 micrometers.
- the rolling action is predominantly a shearing process that produces the tape without unduly compressing it.
- the physical properties of the tape are influenced by several factors including the diameter of the rolls, the rolling speed and the reduction in thickness per pass.
- the fabricated electrode is heat treated at a temperature that leaves the Teflon unaffected.
- the pyrolysis temperature for PPC is 250° C.
- One preferred embodiment of the present invention provides an electric double layer capacitor (EDLC), which comprises thin and flexible polarizable SNC electrodes providing both low internal resistance and high capacitance at the same time. This is achieved by fabricating thin composite electrodes having the thickness in the range of about 5-150 microns and being stable mechanically, chemically and electrochemically in electrolytes over a long time.
- the electrodes comprise SNC carbon material as a powder, thermoexpanded graphite (TEG) as an additive, and a binder.
- nanoporous carbon materials produced by chlorinating titanium carbide, silicon carbide, molybdenum carbide, boron carbide, aluminum carbide or their combinations were used. These carbon materials possess a reasonably large specific area (1000-2500 m 2 /g) including the notable contribution from the pores of about 0.7-3 nm in size that enables the ions from an electrolyte to enter the pores forming the electric double layer.
- the optimum carbon particle size in fabricated electrodes according to the present invention depends on the raw mass preparation method for the electrode sheet rolling but preferable are sizes not exceeding 10 micron. Powder having large grain size would cause poor mechanical strength of the composite electrodes. Drawback of particles exceeding 10 microns is also the increased resistivity of respective electrodes caused by the limited rate of diffusion of ions inside the particles.
- a slurry of SNC carbon and other components as described above can be prepared, suitable for tape casting or slurry rolling to yield continuous flexible thin tapes. Tape casting could be made onto an aluminum foil or mesh so that this aluminum current collector can be directly incorporated into the electrode in a single manufacturing step.
- an aluminum layer of 2-5 microns thickness may be deposited on one side of composite electrodes by using an appropriate deposition method such as Plasma Activated Physical Vapor Deposition.
- the contact between the composite electrodes and aluminum foil or mesh (the current collector) is provided by pressing them together, by diffusion welding, spot or seam welding or laser welding.
- Magnetic pulse welding or joining is another method with the advantage of being a “cold process”.
- the non-aqueous electrolytic solution preferably comprises at least one salt selected from the group of tetrafluoroborates or hexafluorophosphates of tetraalkylamonium, tetrakis (diallcylamino) phosphonium, N,N-dialkyl-1,4-diazabicyclo[2.2.2]octanediium or their mixture, dissolved in an aprotic polar solvent or a mixture of such solvents selected from the group consisting of acetonitrile, propionitrile, benzonitrile, butyronitrile, 3-methoxypropionitrile, gamma-butyrolactone, -valerolactone, ethylene carbonate, propylene carbonate, N,N-dimethylformamide, 1-methyl-2-pyrroli
- the total salt concentration in the non-aqueous electrolyte is chosen in the range of 0.5-3 mol/l according to the present invention.
- Organic electrolytes are widely used to increase voltage, and hence, specific performances of an electric double layer capacitor and are preferred for high energy applications.
- most of known electrolytes comprise cations and anions of different size.
- large organic cations cannot enter small pores resulting in much lower capacitance of the negative electrode, and hence of the entire capacitor device.
- the present invention aims at using unsymmetrical polarizable electrodes in order to increase both the capacitance and voltage of an electric double layer capacitor resulting in its higher specific energy and power.
- Unit cells can be manufactured and selected so that their capacitance and inner resistance are practically equal along a stack of series connected EDCLs, however, it is rather difficult to equalize their leakage current. Even a small deviation in the leakage current value for various unit cells along the SC stack can cause a significant deviation from mean voltage value after keeping the charged stack for some time. In its turn, the disbalance in voltage can cause the decomposition of electrolyte in the cells charged up to a voltage higher than their rated voltage during further cycling the stack.
- the present invention discloses a number of compounds, which undergo a fully reversible electrochemical reaction within a potential range not far from that wherein the impurities in the electrolyte start decomposing.
- Said compounds are chosen from aromatic series, the preferable compounds being twinned aromatic hydrocarbons (including heterosubstituted ones), aromatic nitrites, quinones and nitro- or amino-derivatives.
- Such combinations as nitronitriles (nitro-cyano derivatives) or cyanosubstituted quinones can also be used.
- All these compounds possess at least one reversible electrochemical wave either in anode or in cathode region (or in both regions), said electrochemical wave being located not far from the potential, at which the electrolyte decomposition starts.
- concentration range wherein said additives are effective enough to influence the electrode potential and leakage current without deteriorating the performance of a supercapacitor device is between 1 ⁇ 10 ⁇ 4 and 1 ⁇ 10 ⁇ 1 mol/ 1 , preferably between 1 ⁇ 10 ⁇ 3 and 1 ⁇ 10 ⁇ 2 mol/ 1 .
- the electrochemical characteristics of some selected compounds are presented in Table 4. TABLE 4 Electrochemical characteristics of some compounds selected as voltage equalizing additives Anodic process Cathodic process No.
- the electric double layer capacitor includes a porous, ion-permeable, insulating material (separator) interposed between electrodes. It may be selected from the group of a nonwoven polypropylene or polyethylene separator films, a cellulose separator paper, a polyethylene terephthalate nuclear membrane; the separator thickness being about 5-100 micron, preferably 5-20 micron.
- the standard separator used in the art are PP based microporous separator films from Celgard GmbH (Germany).
- dielectric materials such as SiO 2 , SiCN or Al 2 O 3
- a thin film of 0.1-3 microns
- Our experiments show that sputtering a thin porous dielectric film improves both the mechanical properties and electrical performance of the composite electrodes.
- Yet another method to provide a separator is to use a screenable paste permeable membrane compound formed from a silicon oxide aerosol carried in a PVDF/NMP paste.
- the dried film properties are controlled by the ratio of the SiO2 wt. to the resin wt. and the dried film thickness to the solvent percent.
- balancing of the positive and negative electrodes is provided.
- One carbon was chosen for the anode and another for the cathode to match the sizes of the positive and negative ions of the electrolyte.
- FIG. 7 illustrates a variety of electrolytic salts suitable for use in the present invention. Sources of information about ions sizes are e g
- a positive polarizable electrode is made of nanoporous carbon material having an surface area of 1500 m 2 /g according to BET measurements and a pore size of 0.5-1.5 nm preferably 0.5-1.0 nm.
- the negative polarizable electrode is made of carbon material having an average surface area of 2000 m 2 /g and a pore size of 1.0-3.0 nm, preferably 1.0-2.0 nm.
- a supercapacitor is provided where the specific capacitance of the cathode and the anode are different. If electrodes of the same size are used then the one having a lower capacitance, determines the cell as a whole by this lower capacitance level. To compensate for this we increase the volume (thickness) of the electrode (cathode) to raise the capacitance to that of the anode. The positive and negative capacitance need to be the same for most efficient energy storage.
- a supercapacitor where the positively and negatively charged electrodes in an electrode pair are balanced according to the zero-charge potential of the chosen electrode material. Balancing the electrodes with respect of the amount of stored charge considering the electrode's zero-charge potential and the applicable electrochemical window (i.e. the region of an ideal polarizability) increases the nominal voltage and electrochemical stability of a capacitor.
- All supercapacitors contain three key components: electrodes, separator and electrolyte. It is the interdependent tuning of the properties of these elements that is necessary for and contribute to the high performance.
- Titanium carbide H.C. Starck, grade C.A., 300 g
- Flow rate of chlorine gas was 1.6 l/min and rotation speed of reactor tube was ⁇ 2.5 rpm.
- the by-product, TiCl 4 was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1000° C.
- Titanium carbide Pacific Particulate Materials, 1.0kg was loaded into the silica fluidised bed reactor and let to react with a flow of chlorine gas (99.999% assay) for 4h at 950° C. Flow rate of chlorine gas was 7.5 l/min. The by-product, TiCl 4 , was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (6 l/min) at 1000° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon. During heating and cooling, the reactor was flushed with a slow stream (0.5 l/min) of argon. Final yield of the carbon material was 190g (95% from theoretical).
- Molybdenum carbide Donetsk Chemical Reagent Plant JSC, Ukraine, Lot TY6-09-03-363-78, particle size ⁇ 40 micron, 100g
- the molybden carbide was loaded into the silica stationary bed reactor and allowed to react with a flow of chlorine gas (99.999% assay) for 80 min. in a tube furnace at 750° C. Flow rate of chlorine gas was 1.6 l/min.
- the by-product, mixture of molybdenum chlorides was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1000° C.
- a carbon powder of Example 1 (25g) was placed in a quartz reaction vessel and loaded into horizontal quartz reactor heated by the tube furnace. Thereupon the reactor was flushed with argon to remove air and the furnace was heated up to 900° C. using a heat-up gradient of 15°/min. The argon flow was then passed with a flow rate of 0.8 l/min through the distilled water heated up to 75-80° C. and the resultant argon/water vapor mixture with approximate ratio of 10/9 by volume was let to interact with a carbon at 900° C. for 2.5h. After that the reactor was flushed with argon for one more hour at 900° C. to complete the activation of a carbon surface and then slowly cooled to room temperature. The yield of a modified carbon was 15.8g.
- Silicon carbide (H.C.Starck, lot 3481, particle size ⁇ 10 micron, 100g) was loaded into the silica rotary kiln reactor and allowed to react with a flow of chlorine gas (99.999% assay) for 1h in a tube furnace at 1150° C. Flow rate of chlorine gas was 1.5 l/min and rotation speed of reactor tube was ⁇ 2.5 rpm. The by-product, SiCl 4 , was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1150° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon.
- Argon 0.5 l/min
- the argon flow was then passed with a flow rate of 0.8 L/min through the distilled water heated up to 75-80° C. and the resultant argon/water vapor mixture with approximate ratio of 10/9 by volume was let to interact with a carbon at 900° C. for 2.5h. After that the reactor was flushed with argon for one more hour at 900° C. to complete the modification of a carbon surface and then slowly cooled to room temperature.
- a mixture including 86% wt of SNC powder of Example 1 and 8% wt of TEG was stirred in ethanol for 10 minutes. After that 6% wt of PTFE (as a suspension in water) was added to this slurry preliminary cooled to 15° C., stirred for 30 minutes and gently pressed until the wet “pancake” was formed. Thereupon the ethanol was evaporated at elevated temperature ( ⁇ 95° C.). This pancake was then impregnated with heptane, shaped to a cylinder and extruded by rolling the body in direction of the ends of a cylinder. The latter procedure was repeated until the elastic properties appeared.
- Polarizable electrodes were made in the same manner as in example 6 except that SNC powder from Examples 2-5 was used, respectively. Carbon powder with particle sizes >10 micron were reduced by ball milling. The electrode sheets were prepared with a thickness of 98 ⁇ 4, 125 ⁇ 5, 125 ⁇ 5 and 125 ⁇ 5 microns for the SNC of examples 2, 3, 4 and 5, respectively.
- m 1 and m 2 are the initial and final weights of the test-sample, respectively, and d C 6 H 6 is the density of benzene at room temperature.
- Electrochemical tests were performed in the 3-electrode electrochemical cell, using the Solartron potentiostat 1287 with FRA analyzer. Electrochemical experiments were done in aqueous, 6M KOH and non-aqueous 1.5M Tetraethylanimoniumtetrafluoroborate (TEA) in Acetonitrile (AN) electrolyte. During experiments the electrolyte was degassed with Ar gas.
- TAA Tetraethylanimoniumtetrafluoroborate
- Electrochemical impedance spectroscopy was used to determine series capacitance and series resistance at frequencies 10 mHz and 100 Hz, respectively.
- the present invention provides superior supercapacitor performance.
- our SNC has a combination of high specific surface area and narrow pore size distribution in a high packing density of the electrode, which is better than any other known carbon. This allows the making of very thin electrodes, which provide the low resistance and the high power of the device, while still maintaining high specific energy. Balancing the electrochemical performance of positively and negatively charged electrodes by varying their composition and volume, in accordance with the objective of the present invention, is also a key feature of the method for manufacturing the EDLC proposed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
An electric double layer capacitor including at least one pair of polarizable electrodes connected to current collectors, a separator made of ion-permeable but electron-insulating material interposed between the electrodes in each pair of electrodes, and a liquid electrolyte. According to the invention the electrodes include a layer of carbon particles having a narrow distribution of nanopores therein, the pore sizes of the nanopores being adapted to fit the ion sizes of the electrolyte. The invention also relates to a method of manufacturing such a supercapacitor.
Description
- This invention relates in general to the field of supercapacitors. More particularly, this invention relates to a superior supercapacitor having electrodes fabricated from specially synthesized nanostructured carbon (SNC) powders in which the pore sizes and the specific surface may be selectively controlled.
- Electric double layer capacitors are widely used in a variety of industries. For example, PCT WO 99/24995 shows an electric double layer capacitor and manufacturing method. The electric double layer capacitor comprises metal foil or mesh current collectors, polarizable electrodes made of an activated carbon and a polymer binder, conductive coatings comprising a melamine resin binder at the interfaces between current collectors and polarizable electrodes, and non-aqueous electrolyte. The thickness of the polarizable electrodes is 15 micron. The electrodes were deposited into the conductive layer coated current collector by a screen printing method. Such a electric double layer capacitor demonstrates long term low impedance at the electrode-current collector interface and high power capabilities.
- Another prior art capacitor is described in U.S. Pat. No. 5,150,283, showing an electric double layer capacitor and method for producing the same. The method includes depositing a mixture prepared by dispersing activated carbon powder and agent for improving the electric conductivity of the layer on an aluminum substrate by either means of spreading, impregnating or printing. The layer thickness is equal to 50-100 micron.
- U.S. Pat. No. 5,776,633 describes carbon/carbon composite materials and use thereof in electrochemical cells. This invention provides an activated carbon fabric impregnated with a mixture of activated carbon powder and binder; the thickness of materials obtained being 125-250 micron. The advantage of materials obtained includes the low resistivity, the ability to easily form thin composites with very good mechanical strength.
- Another example of an electric double layer capacitor is described in U.S. Pat. No. 5,142,451. Specifically, an electric double layer capacitor which comprises a plurality of thin plate-like electrode elements is disclosed. The polarizable electrodes were manufactured by sintering powder of minute active carbon particles having an average diameter of about 20 micron into a porous sintered electrode body. This polarizable electrode is held in contact with a current collector through an electrically conductive layer to reduce the inner resistance of the capacitor.
- A method for manufacturing a polarizable electrode for electric double layer capacitor is taught in U.S. Pat. No. 5,277,729. The thickness of electrode is about 40-500 micron. The electrode is obtained by hot rolling an initial mixture of fine carbon powder, polymer resin and liquid lubricant.
- A metal electrode material, capacitor using metal electrode material, and method of manufacture is disclosed in PCT WO 99/38177. The metal electrode material comprises a “valve metal material” with carbon particles on its surface. The metal electrode material is coated with an activated carbon layer and used as polarizable electrode for an electric double layer capacitor. That capacitor has reduced inner resistance, resulting in an increase in capacitance.
- U.S. Pat. No. 5,742,474 describes an electric double layer capacitor, comprising a pair of polarized electrodes made of the same activated carbon materials. However, the amount of the carbon material of the polarized positive electrode is higher than that of the polarized negative electrode. The main advantage is that it is possible to increase a voltage applied to the electric double layer capacitor.
- The vast majority of carbon materials used for electrodes in electric double layer capacitors (EDLC) have been prepared by the charring or carbonization of organic substances, usually followed by a surface activation process using water vapor or other activation agent.
- The foregoing demonstrates that electrodes and capacitors have been widely studied in the prior art. Yet with all of this study, there is still a great need for the development of supercapacitors that exhibit superior performance.
- For the purpose of this patent application, the terms nanoporous, nanoporosity and nanostructured apply to pore sizes less than 3 nanometer. By transport porosity is meant pores larger than 3 nanometers.
- In summary, an object of the present invention is to provide a supercapacitor, which exhibits superior performance. In particular, the present invention provides the following features. Specially synthesized nanostructured carbon (SNC) powder is processed to fabricate electrodes in such a manner that the resultant electrodes have pore sizes, which are selectively and closely controlled. Further, thin, composite aluminum and SNC electrodes are made using the carbon powder. Additionally, by the ability to selectively control the resultant pore sizes in the electrodes, a capacitor is provided wherein the positive and negative electrodes are balanced with respect to their nanopore size and active carbon content, thereby tailoring the electrodes to fit the ionic sizes of the electrolyte positive and negative ions respectively employed with the capacitor. This also allows, in another aspect of the present invention, the selection of the most efficient electrolyte with respect to its conductivity and other desirable features. The present invention also provides for the selection of a desirable separator, which gives increased conductivity and leaves sufficient free ion concentration when charged.
- In another aspect of the present invention, a method is provided wherein SNC is synthesized from inorganic polycrystalline material to selectively control the pore size and pore size distribution in the resulting electrode.
- In one embodiment, an electric double layer capacitor is provided comprising: at least two thin and flexible polarizable electrodes obtained by rolling a mixture of SNC material with a binder. Said electrodes are connected to metal current collectors; a thin layer of a porous, ion-permeable but electron-insulating material (separator) interposed between electrodes; and a liquid electrolyte.
- In another embodiment, an electric double layer capacitor is provided comprising: a pair of polarizable electrodes made of a SNC material having different porosities (and pore size distributions); a thin layer of a porous, ion-permeable but electron-insulating material (separator) interposed between the electrodes; and a liquid electrolyte.
- TABLE 1 is a table showing pore structure parameters for SNC(SiC) powder modified by HNO3.
- TABLE 2 is a comparison of electrochemical behaviour of non-modified and modified SNC materials.
- TABLE 3 shows properties of modified nanostructured carbon from different precursors.
- TABLE 4 gives electrochemical characteristics of some compounds selected as voltage equalizing additives
- TABLE 5 illustrates the influence of carbon material from various precursor material on capacitance in electric double layer capacitors with water based electrolyte systems.
- TABLE 6 shows results of different methods of connecting an aluminum current collector to a carbonaceous electrode sheet.
- TABLE 7 is a rendering of the effect of balancing positively and negatively charged polarizable electrodes.
- TABLE 8 gives examples of electrochemical performance of prototype electric double layer capacitors according to the present invention.
- FIG. 1 is a schematic drawing of supercapacitor device comprising 4 anodes and 4 cathodes connected in parallel according to the present invention.
- FIG. 2 is a graph of the pore size distribution of SNC(TiC)
- FIG. 3 is a graph of the pore size distribution of SNC(Mo2C)
- FIG. 4 is a graph of the pore size distribution of SNC((MoTi)Cx)
- FIG. 5 compares the pore size distribution of carbon powders from TiC before and after modification
- FIG. 6 is a Ragone plot of specific energy and specific power of an unpacked electrochemical system of
device number 1 in table 8. - FIG. 7 shows some electrolytic salts (cation and anions) used in electrolytes for electric double layer capacitors.
- The invention will now be described in more detail with reference to exemplifying embodiments thereof and also with reference to the accompanying drawings of which FIG. 1 illustrates a side view of a capacitor with 4 anodes and 4 cathodes connected in parallel in accordance with the present invention. The capacitor with double electric layers generally includes a
hermetic case 5, closed by a sealing 7. Inside of the case are situated one or more electrode pairs of which 1 is the anode and 2 is the cathode. Theelectrodes porous separator 4. To theelectrodes current collectors 3 which are in turn joined to aterminal lead 6. - The present invention provides in one aspect SNC powder uniquely manufactured with closely controlled pore sizes. SNC powder is processed to fabricate electrodes in such a manner that the resultant electrode has pore sizes which are selectively and closely controlled. Further, thin electrodes are made using the carbon powder. In another aspect of the present invention by selectively controlling the resultant pore size in the electrodes, a capacitor is provided wherein the positive and negative electrodes are balanced with respect to their nanopore size and active carbon content. This allows one to tailor the electrodes to fit the ionic sizes of the positive and negative electrolyte ions employed with the capacitor. This also provides, in another aspect of the present invention, the selection of the most efficient electrolyte with respect to its conductivity and other desirable features. In yet another aspect of the present invention, the selection of a desirable separator is provided, which possesses desirable ionic conductivity and leaves sufficient free ion concentration when charged.
- Additionally, a method is provided wherein SNC is synthesized to selectively control the pore size and pore size distribution in the resulting electrode. Finally, a post treatment of the nanoporous carbon material for fine tuning of the pore size and its distribution is introduced.
- More particularly, SNC materials are produced by thermo-chemical treatment of carbides or related carbon-containing compounds. The choice of carbon containing compound and respective synthesis conditions controls the size of nanopores and the extent of the active surface area. The ability to control the pore size and porosity is required to match the ion sizes in different electrolytes used in the supercapacitor application.
- Process for a preparation of mineral active carbons from metal or metalloid carbides and some carbonitrides is described in GB 971943 that was focused on producing activated carbon powders, which would have superior adsorption behaviors. Major difference of the present invention from the prior art mentioned above is to provide the carbonaceous material for electric double layer capacitors having large capacitance per volume and low electrical resistivity. These targets are achievable by a material of high density in the sense that no wasteful porosity occurs. Another aspect of this invention is to provide the process for producing such a carbonaceous material.
- There is a large range of possible carbon containing precursor compounds of the general formula MCON, where M is a metal, C is carbon, O is oxygen and N is nitrogen. Some of these compounds are more suitable to our process than others. For example if M is a transition metal such as Titanium, then the simplest compound is TiCx where x is in the range of about 0.5-1. For TiC, the pore size of the resulting carbon has been measured to have a peak value of about 0.6-0.8 nm. For TiC0.5 the peak pore size of the resulting carbon is approximately 2.8 nm. The control of C sub-stoichiometry offers a method to control the nanopore size resulting from halogenation. Substituting O and N for carbon in TiCx can further lower the total carbon content of the precursor compound. This gives a further possibility to widen and control the total porosity and range of pore sizes. Substitutions for Titanium such as with Molybdenum may also be made. In this case the Mo atoms substitute for Ti in the same sintered metal lattice to form a solid solution compound such as (TiMo)Cx. Upon halogenation, such a solid solution yields a carbon with a nanopore size and distribution, which differs beneficially from that of TiCx or MoCx.
- FIGS.2 to 4 show the pore distribution for TiC-, Mo2C- and sintered (TiMo)Cx-derived carbon respectively.
- According to one aspect of the present invention, carbon containing compounds based on the following metals, or metalloids or combinations thereof, are preferred be used: Ti, Zr, Hf, V, Nb, Ta, Mo, W, Cr, Fe, Al, Si, B, and Ca.
- The size of the particles of the carbon precursor should preferably be less than about 100 microns to provide good conditions for halogenation throughout the particles. In most carbides, a particle size of less than about 10 microns is advantageous to avoid overheating inside the particles, which during chlorination increases the amount of undesirable graphitic clusters and closed porosity. Halogenation can be made with all halogens, but Cl2 is preferred. In its simplest form a charge of TiC powder is placed in a tube furnace heated to a desired reaction temperature in the flow of inert gas. Thereupon Cl2 gas is passed through the powder mass and allowed to react until all Titanium is removed from the carbide. The mass balance of the reaction can be presented as:
- TiC+2Cl2ΠTiCl4+C
- The TiCl4 being a vapor at the reaction temperature is swept away and condensed in a collector thus providing separation of the products of reaction. In most cases the reaction of carbides with chlorine is exothermic and can increase the local temperature within the powder mass. The actual reaction temperature affects the nanoscale structure of the carbon product and has to be kept below the temperature of graphitization. For instance, in the case of TiC as precursor material, 900-1000° C. is preferred. Thus it is preferred to carry out chlorination under conditions of near uniform heat transfer, such as in a fluidized bed or a rotary kiln reactor. Carbides that form gaseous chlorine are preferred because their chlorides are vapors. The carbon product is subsequently heat treated at 900-1100° C. in the atmosphere of inert gas such as Argon or Helium to remove the excess of chlorine adsorbed in pores (dechlorination). Removal of any undesired residual chlorine including chemically bound is done by additional heat treatment in preferably H2 atmosphere at 600-900° C. Diluted H2O vapor at 800-1000° C. using inert carrier gas, e.g. Argon, also works.
- Even though the above method of manufacturing nanoporous carbon gives good control of the size and size distribution of nanopores in the resulting particles, some additional refinement of the controllability is desirable. The match of nanopores size and ion size under a given set of circumstances, such as different size of cations and anions and their diffusive mobility inside the pores, is important; the pores should not be too small or they will not be entered by the ions or if the fit is too close, the mobility of the ions will be impeded.
- On the other hand, if the nanopores are unnecessarily large, the specific surface of the carbon material suffers. Certain carbide precursors are more expensive than others and the carbon yield from the process also differs. For economic reasons as well as from functional, it is advantageous to apply a nanopores modification process of the carbon realized by halogenation of the precusor material. This is done by essentially known methods such as exposing at elevated temperature the nanoporous carbon to an oxidizing medium which may consist of H2O carried by an inert gas, carbon dioxide, concentrated nitric or sulphuric acid or other oxidizing agents. The effects are controllable widening of the nanopores and removal of physically and chemically absorbed chlorine. In most cases it is preferable to use such modified nanostuctured carbon for at least one of the electrodes in a electric double layer capacitor. FIG. 5 shows the effect on TiC derived carbon of such modification. Table 1 shows the effect of halogenated SiC, subsequently modified by HNO3. Table 2 shows electrochemical effects of modification of SiC and TiC derived carbon. Table 3 illustrates material properties of a number of modified carbon materials from various precursors.
TABLE 1 Pore Structure Parameters for SNC (SiC) powder modified by HNO3 Pore sizeb Surface area S, Pore volume Vp, X*, nm Cycle number m2/ga ccm/g (calculation) initial powder 1330 0.49 0.74 1 1420 0.55 0.78 2 1320 0.58 0.88 3 1260 0.65 1.03 4 1240 0.65 1.04 -
TABLE 2 Electrochemical comparison of non-modified and modified SNC materials SNC Sa,BET [m2g−1] Specific Capacitance [F g−1]* precursor Type of SNC powder electrode DC = −1.4 V DC = +1.4 V SiC Non-modified 1086 931 5.8 79.9 Modified 2140 1567 92.8 88.1 (H2O) TiC Non-modified 1485 1054 80.5 113.4 Modified 2232 1639 111.2 142.5 (H2O) -
TABLE 3 Examples of material properties of modified nanostructured carbon from different precursors. Post- Ws SSC Precursor Tchlor treatment Sa(BET) Vp(total) Vp(nano) (C6H6) C(+)a C(−)a # carbide ° C. agents m2/g cm3/g cm3/g cm3/g F/g F/ g 1 TiC 950 H2 1500 0.74 0.60 0.66 113 98 2 Mo2C 750 H2 2138 1.59 0.16 1.44 111 105 3 B4C 1100 — 1231 0.71 0.23 0.81 77 71 4 TiC 950 H2/H2O 2237 1.23 0.61 1.11 116 110 5 SiC 1150 H2/H2O 1696 0.90 0.61 0.81 116 95 6 Al4C3 400 — 1204 0.81 0.55 0.63 104 91 - In another embodiment it is also possible to react TiCl4 with a suitable carbon source such as CH4 to recycle the TiCl4 back to TiC.
- Titanium carbide may also be made by the reaction at high temperature of titanium with carbon; titanium tetrachloride with organic compounds such as methane, chloroform, or poly(vinyl chloride); titanium disulfide with carbon; organotitanates with carbon precursor polymers and titanium tetrachloride with hydrogen and carbon monoxide. The reaction of titanium tetrachloride with a hydrocarbon-hydrogen mixture at 1000° C. has been used in the prior art for the chemical vapor deposition (CVD) of thin carbide films used in wear-resistant coatings.
- The SNC materials produced as described above are combined in a form suitable for use as a thin, flat, flexible electrode containing high fractions of the SNC. Theoretical models developed by the inventors predict that the porous carbon electrodes should be essentially thin to provide the high power output. Estimations show the optimum thickness to be in the range of about 5-150 micron. Besides, one should bear in mind that electrodes must not be brittle since they are normally pressed when assembling the electrode pack in order to reduce the equivalent series resistance of a capacitor device.
- According to the present invention, fabrication of composite electrodes of certain thickness may be accomplished by rolling a plasticized mixture of SNC powder, one or more binders and certain solvents, said plasticized mixture being made as a stiff putty like mass with the help of the certain solvents.
- Optional additives to the SNC carbon powder are colloidal or Thermally Expanded Graphite (TEG) (1-15% wt. of the dry mass) to increase conductivity, conductive polymers (2-20% wt. of the dry mass.) also to increase conductivity and SiO2 (0.5-10% wt. of the dry mass) that increases capacitance.
- After investigation of different types of compounds, which might be used as binders, fluorine-containing polymers, e.g. PTFE (Teflon) or PVDF poly(vinylidene fluoride) were selected as a permanent binder that provides structural integrity. The selection was based on the fact that those compounds keep both their binding properties and chemical and electrochemical stability in electrolytes after the composite electrode material is thermally treated at temperatures below the decomposition temperature of such polymers. In addition the carbon electrodes fabricated by the method do not lose their mechanical strength even if the binder content does not exceed 2-10% by wt. of the carbon powder. This results in relatively high capacitance and low resistivity of the EDLC comprising such electrodes.
- Another incorporated binder is temporary and serves to facilitate the formation of a ductile tape. It also raises the hydraulic component of the rolling force during the roll compaction (below) and limits the crushing force onto the carbon particles. The increased ductility enables rolling to thinner sections without unduly stiffening or hardening of the product. The ductility also enables cross rolling of the extruded material which develops a more isotropic distribution of Teflon fibers.
- A requirement on this temporary binder is that it should be completely removable, at a temperature below the decomposition temperature of the permanent binder, without leaving any residues. This has the beneficial effect of leaving behind an improved transport porosity. One example of such temporary binder is polypropylene carbonate (PPC). The proportion of this temporary binder should be 4-10% wt. of the carbon, preferably 5-7% wt. Before mixing, the binder is added to a suitable solvent with the concentration of 7-18%, preferably 10%.
- The solvent should have two advantageous characteristics. It should have low evaporation rate which means that the solvent content should change very slowly during material mixing and processing, resulting in better control and lot-to-lot reproducibility. Such solvents act as a plasticizer of the temporary binder and improves the working range of the tape. If it did not act this way, then the addition of a special plasticizer would be required. Plasticizers do not thermally decompose in a manner similar to that of e g PPC and at the low temperatures allowable would leave material behind. An additional requirement on the solvent is that it will evaporate completely, without leaving traces, along with the temporary binder. One such preferred solvent is N-Methyl Pyrrolidone (NMP). The solvent is first added to the dry mix together with the dissolved temporary binder. Additional amounts of solvent is added during the appropriate processing steps until a suitable consistency of the mass is reached. The precise amount of solvent to be added depends on the type of carbon used, particularly on its specific surface.
- For instance carbon made as indicated earlier from TiC, without subsequent modification, requires that solvent be added until the ratio of the temporary binder to total solvent is 3-5%. Other carbon qualities may require a higher or somewhat lower ratio of temporary binder to total solvent content.
- Although the method comprising extruding and rolling of thin and flexible carbon tapes by using binders such as PTFE is widespread, the present invention includes several improvements, that are necessary when considering the SNC powder according to the present invention, to obtain superior electrochemical characteristics for electric double layer capacitors.
- The method of making flexible carbon tapes can be by hand but it is more advantageously carried out in a series of mechanized steps that lend enabling an integrated automated process.
- The procedure for manufacturing flexible carbon tapes for electrodes includes the following steps in order of sequence:
- Dry mixing
- Wet mixing
- Muller mixing
- Grinding
- Extrusion
- Roll compaction
- Heat treatment
- Alternatively we may proceed by
- Dry mixing
- Wet mixing
- Roll mixing (Rubber Mill Processing)
- Roll compaction
- Heat treatment
- Dry Mixing
- Applicable methods are tumbling, ball milling or stirring of chosen carbon powder, Teflon powder and optionally included additive as described above.
- Wet mixing
- Wet Mixing is a process to incorporate solvent such as NMP and a secondary binder such as PPC dissolved in a suitable solvent such as NMP. Wet mixing may be advantageously carried out in a planetary paddle mixer.
- Muller Mixing
- Mulling is a process that effectively mixes the solid and liquid ingredients and works the material into a soft, flexible mass. This operation is performed in a bowl holding the components to be mixed and a cylinder inside the bowl located so that its outside surface is pushed by a spring against the inside surface and bottom of the bowl. The material to be mixed is passed through the gap formed between the spring loaded cylinder and the bowl wall. The material is contained within the bowl and is cycled back to the input of the process automatically. Due to the pressure applied to the mixture during the mulling process, there is extrusion of the material in both axes as the material is folded back. This extrusion induces forces on the Teflon powder that stretch it into fiber form.
- Grinding
- Grinding is a process in which the product from the muller is fed into a system of rotating blades that cuts the material into small pieces suitable for feeding into an extruder. The previous mixing process may have entrapped air in pockets in the material. The grinding facilitates the removal of any such air when vacuum is applied to the extrusion hopper after loading the material into it.
- Roll Mixing (Rubber Mill Processing)
- This process is an alternative to mulling, grinding and extrusion to produce a belt preform suitable for roll compaction.
- The step serves to further induce fiber formation of the Teflon portion of the binder system by stretching the Teflon particles. The equipment and process conventionally used for mixing rubber compounds is suited to this requirement. The equipment consists of a pair of rollers, placed horizontally side by side so that the passage of material between them will be vertical. The relative rotational speed of the rollers is set such that one roller turns faster than the other. The mixing is accomplished by passing the materials through the rollers and compressing it while simultaneously shearing it. This process is repeated until the material is thoroughly blended. In order to start the process, the materials must be roughly blended together so they will form a mass that can be placed into the rolls. At the end of the process, the product is collected as a single belt perform suitable for roll compaction.
- Extrusion
- Extrusion is performed to produce a ductile belt preform, typically<1 mm thick, suitable for roll compaction.
- Roll Compaction
- Roll compaction is a process in which a suitable ductile belt preform is fed between rolls rotating at the same speed with the gap or nip set so that the resulting tape is of the desired thickness, typically about 100 micrometers.
- The rolling action is predominantly a shearing process that produces the tape without unduly compressing it. The physical properties of the tape are influenced by several factors including the diameter of the rolls, the rolling speed and the reduction in thickness per pass.
- Heat Treatment
- To remove without residual material traces the temporary binder and the solvent, the fabricated electrode is heat treated at a temperature that leaves the Teflon unaffected. The pyrolysis temperature for PPC is 250° C.
- One preferred embodiment of the present invention provides an electric double layer capacitor (EDLC), which comprises thin and flexible polarizable SNC electrodes providing both low internal resistance and high capacitance at the same time. This is achieved by fabricating thin composite electrodes having the thickness in the range of about 5-150 microns and being stable mechanically, chemically and electrochemically in electrolytes over a long time. The electrodes comprise SNC carbon material as a powder, thermoexpanded graphite (TEG) as an additive, and a binder.
- To fabricate electrodes in accordance with the present invention, nanoporous carbon materials produced by chlorinating titanium carbide, silicon carbide, molybdenum carbide, boron carbide, aluminum carbide or their combinations were used. These carbon materials possess a reasonably large specific area (1000-2500 m2/g) including the notable contribution from the pores of about 0.7-3 nm in size that enables the ions from an electrolyte to enter the pores forming the electric double layer. The optimum carbon particle size in fabricated electrodes according to the present invention depends on the raw mass preparation method for the electrode sheet rolling but preferable are sizes not exceeding 10 micron. Powder having large grain size would cause poor mechanical strength of the composite electrodes. Drawback of particles exceeding 10 microns is also the increased resistivity of respective electrodes caused by the limited rate of diffusion of ions inside the particles.
- Alternatively to the above method, a slurry of SNC carbon and other components as described above can be prepared, suitable for tape casting or slurry rolling to yield continuous flexible thin tapes. Tape casting could be made onto an aluminum foil or mesh so that this aluminum current collector can be directly incorporated into the electrode in a single manufacturing step.
- To reduce the internal resistance of a EDLC device, in accordance with the present invention an aluminum layer of 2-5 microns thickness may be deposited on one side of composite electrodes by using an appropriate deposition method such as Plasma Activated Physical Vapor Deposition. The contact between the composite electrodes and aluminum foil or mesh (the current collector) is provided by pressing them together, by diffusion welding, spot or seam welding or laser welding.
- Magnetic pulse welding or joining is another method with the advantage of being a “cold process”.
- All types of electrolytes used in electric double layer capacitors may be used for the present invention, water based (e g KOH, H2SO4) and organic. The non-aqueous electrolytic solution preferably comprises at least one salt selected from the group of tetrafluoroborates or hexafluorophosphates of tetraalkylamonium, tetrakis (diallcylamino) phosphonium, N,N-dialkyl-1,4-diazabicyclo[2.2.2]octanediium or their mixture, dissolved in an aprotic polar solvent or a mixture of such solvents selected from the group consisting of acetonitrile, propionitrile, benzonitrile, butyronitrile, 3-methoxypropionitrile, gamma-butyrolactone, -valerolactone, ethylene carbonate, propylene carbonate, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone, dimethoxyethane, methyl ethyl ketone and tetrahydrofuran. The general requirement of useable electrolytes are the chemical and electrochemical stability and good performance over a wide temperature range. In order to avoid electrolyte depletion between the electrodes of the EDLC, the total salt concentration in the non-aqueous electrolyte is chosen in the range of 0.5-3 mol/l according to the present invention.
- Organic electrolytes are widely used to increase voltage, and hence, specific performances of an electric double layer capacitor and are preferred for high energy applications. However, most of known electrolytes comprise cations and anions of different size. In many cases, large organic cations cannot enter small pores resulting in much lower capacitance of the negative electrode, and hence of the entire capacitor device. To provide an electric double layer capacitor, the present invention aims at using unsymmetrical polarizable electrodes in order to increase both the capacitance and voltage of an electric double layer capacitor resulting in its higher specific energy and power.
- Equalizing Leakage Current
- Unit cells can be manufactured and selected so that their capacitance and inner resistance are practically equal along a stack of series connected EDCLs, however, it is rather difficult to equalize their leakage current. Even a small deviation in the leakage current value for various unit cells along the SC stack can cause a significant deviation from mean voltage value after keeping the charged stack for some time. In its turn, the disbalance in voltage can cause the decomposition of electrolyte in the cells charged up to a voltage higher than their rated voltage during further cycling the stack.
- To improve a supercapacitor performance and to equalize the voltage of unit cells when they are assembled in a stack, some additives can be added to the electrolyte. As another embodiment, the present invention discloses a number of compounds, which undergo a fully reversible electrochemical reaction within a potential range not far from that wherein the impurities in the electrolyte start decomposing. Said compounds are chosen from aromatic series, the preferable compounds being twinned aromatic hydrocarbons (including heterosubstituted ones), aromatic nitrites, quinones and nitro- or amino-derivatives. Such combinations as nitronitriles (nitro-cyano derivatives) or cyanosubstituted quinones can also be used. All these compounds possess at least one reversible electrochemical wave either in anode or in cathode region (or in both regions), said electrochemical wave being located not far from the potential, at which the electrolyte decomposition starts. The concentration range wherein said additives are effective enough to influence the electrode potential and leakage current without deteriorating the performance of a supercapacitor device is between 1×10−4 and 1×10−1 mol/1, preferably between 1×10−3 and 1×10−2 mol/1. The electrochemical characteristics of some selected compounds are presented in Table 4.
TABLE 4 Electrochemical characteristics of some compounds selected as voltage equalizing additives Anodic process Cathodic process No. Compound Ep, Va Ep, V1 Ep, mV 1 Anthracene ≈0.9 −2.21 60 2 1,2- — −2.025 70 Dicyanobenzene 3 5-Nitro-1,2- — −1.09 60 dicyanobenzene −1.685 90 4 1-Cyano- 1.75 −2.34 60 naphthalene 5 Anthraquinone — −1.18 80 −2.83 60 - 2.2 V (0.5 mnA/cm2 was chosen as a limiting current density). Reduction of water impurities starts at ca. −2.3 V.
- The electric double layer capacitor includes a porous, ion-permeable, insulating material (separator) interposed between electrodes. It may be selected from the group of a nonwoven polypropylene or polyethylene separator films, a cellulose separator paper, a polyethylene terephthalate nuclear membrane; the separator thickness being about 5-100 micron, preferably 5-20 micron. The standard separator used in the art are PP based microporous separator films from Celgard GmbH (Germany).
- Alternatively dielectric materials (such as SiO2, SiCN or Al2O3) may be deposited as a thin film (of 0.1-3 microns) on the electrode surface. Our experiments show that sputtering a thin porous dielectric film improves both the mechanical properties and electrical performance of the composite electrodes.
- Yet another method to provide a separator is to use a screenable paste permeable membrane compound formed from a silicon oxide aerosol carried in a PVDF/NMP paste. The dried film properties are controlled by the ratio of the SiO2 wt. to the resin wt. and the dried film thickness to the solvent percent.
- In another aspect of the invention, balancing of the positive and negative electrodes is provided. One carbon was chosen for the anode and another for the cathode to match the sizes of the positive and negative ions of the electrolyte.
- Of particular advantage, for a given electrolyte we estimate the sizes of the ions and then choose the appropriate carbon precursor and process parameters which gives us the SNC with the matching pore characteristics. FIG. 7 illustrates a variety of electrolytic salts suitable for use in the present invention. Sources of information about ions sizes are e g
- 1. Makoto Ue. J. Electrochern. Soc., (1994) vol. 141, No. 12, p. 3336
- 2. Makoto Ue. Electrochim. Acta, (1994) vol. 39, No.13, p.2083.
- Both crystallographic data and MM2 calculations were used to estimate the ion size (van der Waals volume and radii) for a number of tetraalkylamonium cations as well as for some anions and solvent molecules.
- For doubly-charged N,N-dialkyl-1,4-diazabicyclo[2.2.2]octanediium (DEDACO2+) cation, the size was estimated by the inventors from the size of fragments included.
- In one example, a positive polarizable electrode is made of nanoporous carbon material having an surface area of 1500 m2/g according to BET measurements and a pore size of 0.5-1.5 nm preferably 0.5-1.0 nm. The negative polarizable electrode is made of carbon material having an average surface area of 2000 m2/g and a pore size of 1.0-3.0 nm, preferably 1.0-2.0 nm.
- In another aspect of the invention, a supercapacitor is provided where the specific capacitance of the cathode and the anode are different. If electrodes of the same size are used then the one having a lower capacitance, determines the cell as a whole by this lower capacitance level. To compensate for this we increase the volume (thickness) of the electrode (cathode) to raise the capacitance to that of the anode. The positive and negative capacitance need to be the same for most efficient energy storage.
- In yet another aspect of the invention, a supercapacitor is provided where the positively and negatively charged electrodes in an electrode pair are balanced according to the zero-charge potential of the chosen electrode material. Balancing the electrodes with respect of the amount of stored charge considering the electrode's zero-charge potential and the applicable electrochemical window (i.e. the region of an ideal polarizability) increases the nominal voltage and electrochemical stability of a capacitor.
- All supercapacitors contain three key components: electrodes, separator and electrolyte. It is the interdependent tuning of the properties of these elements that is necessary for and contribute to the high performance.
- Design of the cell is important. If the electrode is thin, both the current collector and separator have to be thin. Balancing of dissimilar electrodes is very important and again hinges on our ability to tailor make the pore size by choosing the appropriate carbon precursor and on the processing and post processing operations. This feature also applies to the ability to match electrolyte ion size and pore size. A further important feature is to adjust the size of electrodes so that they deliver the same capacitance. The combination of these features gives the high performance of the supercapacitors of this invention.
- The ability to control the nanopores size and its distribution is of course also beneficial for supercapacitors based on aqueous electrolyte systems( e g KOH, HSSO4). Table 5 shows that the capacitance in such a system can be influenced by choice of precursor material and thus the pore characteristics. Further refinement by modification of this nanoporosity offers optimization opportunities.
TABLE 5 Examples of influence on capacitance of choice of carbon precursors. Ws Sa,BET Capacitance* # SNC precursor [cm3g−1] [m2g−1] [ F g −1]1 Al4C3 0.60 1353 251 2 B4C 0.78 1782 217 3 Mo2C 0.90 1873 223 4 TiC 0.73 1340 212 5 SiC 0.44 1059 209 6 TiC/Al4C3, 3/1 (by wt.) 0.58 1542 239 7 B4C/Al4C3, 3/1 (by wt.) 0.67 1614 239 8 B4C/Al4C3, 1/1 (by wt.) 0.58 1572 219 9 B4C/Al4C3, 1/3 (by wt.) 0.53 1440 211 - The foregoing description of specific embodiments and examples of the invention have been presented for the purpose of illustration and description, and although the invention has been illustrated by certain of the preceding examples, it is not to be construed as being limited thereby. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications, embodiments, and variations are possible in light of the above teaching. It is intended that the scope of the invention encompass the generic area as herein disclosed, and by the claims appended hereto and their equivalents.
- Titanium carbide (H.C. Starck, grade C.A., 300 g) with an average particle size of 1.3-3 microns was loaded into the silica rotary kiln reactor and let to react with a flow of chlorine gas (99.999% assay) for 4h in a tube furnace at 950° C. Flow rate of chlorine gas was 1.6 l/min and rotation speed of reactor tube was ˜2.5 rpm. The by-product, TiCl4, was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1000° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon. During heating and cooling, the reactor was flushed with a slow stream (0.5 l/min) of argon. Resulting carbon powder (47.6g) was moved into silica stationary bed reactor and treated with hydrogen gas at 800° C. for 2.5h. During heating and cooling, the reactor was flushed with a slow stream of Helium (0.3 l/min). Final yield of the carbon material was 45.6g (75.9% from theoretical).
- Titanium carbide (Pacific Particulate Materials, 1.0kg) with an average particle size of 70 microns was loaded into the silica fluidised bed reactor and let to react with a flow of chlorine gas (99.999% assay) for 4h at 950° C. Flow rate of chlorine gas was 7.5 l/min. The by-product, TiCl4, was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (6 l/min) at 1000° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon. During heating and cooling, the reactor was flushed with a slow stream (0.5 l/min) of argon. Final yield of the carbon material was 190g (95% from theoretical).
- Molybdenum carbide (Donetsk Chemical Reagent Plant JSC, Ukraine, Lot TY6-09-03-363-78, particle size <40 micron, 100g) The molybden carbide was loaded into the silica stationary bed reactor and allowed to react with a flow of chlorine gas (99.999% assay) for 80 min. in a tube furnace at 750° C. Flow rate of chlorine gas was 1.6 l/min. The by-product, mixture of molybdenum chlorides, was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1000° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon. During heating and cooling, the reactor was flushed with a slow stream of argon. Resulting carbon powder (4.9g) was moved into silica stationary bed reactor and treated with hydrogen gas at 800° C. for 1h. During heating and cooling, the reactor was flushed with a slow stream of helium (˜0.3 l/min). Final yield of the carbon material was 4.6g (78% from theoretical).
- A carbon powder of Example 1 (25g) was placed in a quartz reaction vessel and loaded into horizontal quartz reactor heated by the tube furnace. Thereupon the reactor was flushed with argon to remove air and the furnace was heated up to 900° C. using a heat-up gradient of 15°/min. The argon flow was then passed with a flow rate of 0.8 l/min through the distilled water heated up to 75-80° C. and the resultant argon/water vapor mixture with approximate ratio of 10/9 by volume was let to interact with a carbon at 900° C. for 2.5h. After that the reactor was flushed with argon for one more hour at 900° C. to complete the activation of a carbon surface and then slowly cooled to room temperature. The yield of a modified carbon was 15.8g.
- Preparation of Carbon From SiC in Rotary Kiln Reactor With Subsequent Modification in a Stationary Bed
- Silicon carbide (H.C.Starck, lot 3481, particle size <10 micron, 100g) was loaded into the silica rotary kiln reactor and allowed to react with a flow of chlorine gas (99.999% assay) for 1h in a tube furnace at 1150° C. Flow rate of chlorine gas was 1.5 l/min and rotation speed of reactor tube was ˜2.5 rpm. The by-product, SiCl4, was led away by the stream of the excess chlorine and passed through the water-cooled condenser into the collector. After that the reactor was flushed with the Argon (0.5 l/min) at 1150° C. for 0.5h to remove the excess of chlorine and residues of a gaseous by-products from carbon. During heating and cooling, the reactor was flushed with a slow stream (0.5 l/min) of argon. Resulting carbon powder (29.9g) was moved into silica stationary bed reactor and treated with hydrogen gas at 800° C. for 2h. During heating and cooling, the reactor was flushed with a slow stream of helium (˜0.3 l/min). The yield of the carbon material was 28.7g (95.6% from theoretical). Part of a carbon powder (15g) obtained was placed in a quartz reaction vessel and loaded into horizontal quartz reactor heated by the tube furnace. Thereupon the reactor was flushed with argon to remove air and the furnace was heated up to 900° C. using a heat-up gradient of 15°/min. The argon flow was then passed with a flow rate of 0.8 L/min through the distilled water heated up to 75-80° C. and the resultant argon/water vapor mixture with approximate ratio of 10/9 by volume was let to interact with a carbon at 900° C. for 2.5h. After that the reactor was flushed with argon for one more hour at 900° C. to complete the modification of a carbon surface and then slowly cooled to room temperature.
- A mixture including 86% wt of SNC powder of Example 1 and 8% wt of TEG was stirred in ethanol for 10 minutes. After that 6% wt of PTFE (as a suspension in water) was added to this slurry preliminary cooled to 15° C., stirred for 30 minutes and gently pressed until the wet “pancake” was formed. Thereupon the ethanol was evaporated at elevated temperature (˜95° C.). This pancake was then impregnated with heptane, shaped to a cylinder and extruded by rolling the body in direction of the ends of a cylinder. The latter procedure was repeated until the elastic properties appeared. Finally the heptane was removed at ˜75°, the extruded cake rolled stepwise down to thickness of 98±4 microns, dried in vacuum at 270° C. and covered from one side with an aluminum layer of 4±1 μm using Plasma Activated Physical Vapor Deposition.
- Polarizable electrodes were made in the same manner as in example 6 except that SNC powder from Examples 2-5 was used, respectively. Carbon powder with particle sizes >10 micron were reduced by ball milling. The electrode sheets were prepared with a thickness of 98±4, 125±5, 125±5 and 125±5 microns for the SNC of examples 2, 3, 4 and 5, respectively.
- The electrodes as prepared according examples 6-10 were attached by methods indicated in
- TABLE 5 to Al foil of 10 microns thick (current collector) and interleaved with a separator. A Celgard separator was used in the present examples The electrode pairs from positively and negatively charged polarizable electrodes made as disclosed in Examples 6-10, were connected in parallel. The electrode pack thus prepared was placed in a sealed box, kept under vacuum for three days to remove all the gases absorbed and then impregnated with electrolyte comprising solution of a single quaternary ammonium salt or a mixture of such in acetonitrile. The EDLC cells thus fabricated were cycled within the voltage range of 1.5-3.0 V under constant current or constant power conditions.
- Certain of the results obtained are shown in Tables 6 and 7: The applicability of different methods to connect the carbonaceous electrode sheet to the aluminum foil is presented in Table 6 and the effect of balancing the positively and negatively charged polarizable electrodes is presented in Table 7.
TABLE 6a Results of different methods of connecting an aluminum current collector to a carbonaceous electrode sheet. Volumetric Type of connection Resistance Capacitance Capacitance between the electrode Electrodes (active (Per active (Per active SNC used in +/− and the current thickness Resistance volume)b weight)b volume)b electrodes collector (+/−) [Ω cm2] [Ω cm3] [F g−1] [F cm−3] C(TiC)/C(TiC)- Electrode/ Al foil 100/120 0.87 0.037 6.7 9.1 modified (arc spot weld) C(TiC)/C(Mo2C) Electrode/Al foil 102/120 0.60 0.023 6.7 9.7 (diffusion weld) C(TiC)/C(TiC)- Electrode/Al foil 95/130 0.69 0.025 6.9 10.7 modified (pressure contact) C(TiC)/C(TiC)- Electrode/ Al foil 100/130 0.68 0.027 6.7 10.0 modified (laser spot-weld) -
TABLE 7 Examples of the effect of balancing positively and negatively charged polarizable electrodes Volumetric Resistance Capacitance Capacitance (active (Per active (Per active Electrod SNC used in Resistance volume) weight)a volume)a Electrolyte Csalt Thicknes +/− electrodes [Ω cm2] [Ω cm3] [F g−1] [F cm−3] Separator salt [M] +/− C(Mo2C)/ 0.42 0.017 4.2 6.7 Celgard 277 Et4NBF4 1.5 130/130 C(Mo2C) C(TiC)/ 0.29 0.010 7.8 12.2 Celgard 277 Et4NBF4 1.5 105/135 C(TiC)- modified C(TiC)/ 0.38 0.014 6.0 9.4 Celgard 277 Et4NBF4/ 0.745/ 98/128 C(Mo2C) Et2Me2NBF4 0.846 C(TiC)/ 0.47 0.015 6.9 9.0 Celgard 2400 Et4NBF4 1.5 140/140 C(TiC) C(B4C)/ 0.61 0.018 5.2 6.8 Celgard 2400 Et4NBF4 1.5 115/115 C(B4C) - The examples of capacitor prototypes and their electrochemical performance illustrating the object of this invention are presented in Table 8 and FIG. 6.
TABLE 8 Examples of electrochemical performance of prototype electric double layer capacitors according to the present invention. Capacitance Resistance Specific capacitance Specific resistance # Electrolyte [F] [m Ω] [F g−1] [F cm−3] [Ω cm2] [Ω cm3] 1 1.5 M TEA/AN 630 0.56 7.39 9.63 0.87 0.037 2 0.75 M TEA + 0.75 M 663 0.68 7.47 9.93 1.16 0.045 TEMA/ AN 3 1.0 M TEA/AN 631 0.54 7.35 9.54 0.84 0.036 - The low temperature nitrogen sorption experiments were performed at the boiling temperature of nitrogen (−196° C.) using Gemini Sorptometer 2375 (Micromeritics). The specific surface area of carbon materials was calculated according BET theory up to the nitrogen relative pressure (p/p0) of 0.2, with the exception for results reported in Table 1. The volume of micro-pores was calculated from the t-plot of adsorption isotherm and the pore size distribution according to BJH(Barrett-Joyner-Halenda) theory. Adsorption dynamics of benzene vapours was studied at room temperature using the computer controlled weighing of the carbon samples in benzene vapours at normal pressure and room temperature. A volume of the pores that adsorbed benzene in above-described conditions, was calculated according the equation
- Ws=(m2−m1)/m1×dC
6 H6 [cm3g−1] - where m1 and m2 are the initial and final weights of the test-sample, respectively, and dC
6 H6 is the density of benzene at room temperature. - The electrochemical tests were performed in the 3-electrode electrochemical cell, using the Solartron potentiostat 1287 with FRA analyzer. Electrochemical experiments were done in aqueous, 6M KOH and non-aqueous 1.5M Tetraethylanimoniumtetrafluoroborate (TEA) in Acetonitrile (AN) electrolyte. During experiments the electrolyte was degassed with Ar gas.
- Three types of experiments using: constant voltage (CV), constant current (CC), and impedance (EIS) technique were used. The region of the ideal polarizabilty was observed between −1.5 to +1.5V (vs. SCE) and −1.0 to +0.25V (vs. Hg/HgO) for non-aqueous and for aqueous systems, respectively. Discharge capacitance for the negatively and positively charged electrode materials were calculated from the CV and CC plots. The EIS measurements were carried out at constant DC potentials: −1.4V, +1.4V for non-aqueous and −1.0V, in aqueous electrolytes. The EIS capacitance was calculated at frequency 10mHz.
- The constant current (CC) and constant voltage (CV) tests were carried out using the potentiostat Solartron 1287. The nominal voltage of capacitors was estimated from the CV plots. The capacitance of the supercapacitors was calculated from CC plots according to formula: C=Idt/dE. Internal resistance was derived from the IR -drop.
- The power, energy performance and respective Ragone plots were characterized, using constant power (CP) charge-discharge cycling regimes.
- Electrochemical impedance spectroscopy (EIS) was used to determine series capacitance and series resistance at
frequencies 10 mHz and 100 Hz, respectively. - In summary, the present invention provides superior supercapacitor performance. Specifically, our SNC has a combination of high specific surface area and narrow pore size distribution in a high packing density of the electrode, which is better than any other known carbon. This allows the making of very thin electrodes, which provide the low resistance and the high power of the device, while still maintaining high specific energy. Balancing the electrochemical performance of positively and negatively charged electrodes by varying their composition and volume, in accordance with the objective of the present invention, is also a key feature of the method for manufacturing the EDLC proposed.
Claims (7)
1. A method of manufacturing an electrode for an electric double layer capacitor, characterized by mixing a mixture comprising carbon particles having nanopores with a predetermined size, at least a primary binder and a secondary binder and a solvent, extruding the mixture, rolling the extruded mixture into sheet shape and thereafter attaching the formed electrode sheet to a conductive foil or mesh.
2. The method according to claim 1 , characterized in that the mixing step comprises dry mixing, wet mixing, muller mixing and grinding.
3. A method of manufacturing an electrode for an electric double layer capacitor, characterized by mixing a mixture comprising carbon particles having nanopores with a predetermined size, at least a primary binder and a secondary binder and a solvent, roll mixing the mixture, rolling the mixture into sheet shape and thereafter attaching the formed electrode sheet to a conductive foil or mesh.
4. The method according to claim 3 , characterized in that the mixing step comprises dry mixing and wet mixing.
5. The method according to claim 1 , characterized in that the step of rolling the mixture into sheet shape is performed by roll compaction.
6. The method according to claim 5 , characterized by removing the solvent and the secondary binder from the formed electrode sheet by heat treatment, said secondary binder being removable from the formed electrode sheet at a temperature below the decomposition temperature of the first binder.
7. A method of manufacturing an electrode for an electric double layer capacitor, characterized by mixing a mixture comprising carbon particles having nanopores with a predetermined size, a binder and a solvent to a slurry and tape casting the slurry directly onto a conductive foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/322,541 US20030172509A1 (en) | 2000-11-09 | 2002-12-19 | Supercapacitor and a method of manufacturing such a supercapacitor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24759300P | 2000-11-09 | 2000-11-09 | |
RU2001117550/12A RU2211801C2 (en) | 2001-06-15 | 2001-06-15 | Method of modifying porous carbon material |
RU2001177550 | 2001-06-15 | ||
US09/986,569 US6602742B2 (en) | 2000-11-09 | 2001-11-09 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/251,870 US6697249B2 (en) | 2000-11-09 | 2002-09-23 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/322,541 US20030172509A1 (en) | 2000-11-09 | 2002-12-19 | Supercapacitor and a method of manufacturing such a supercapacitor |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,569 Division US6602742B2 (en) | 2000-11-09 | 2001-11-09 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/251,870 Division US6697249B2 (en) | 2000-11-09 | 2002-09-23 | Supercapacitor and a method of manufacturing such a supercapacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030172509A1 true US20030172509A1 (en) | 2003-09-18 |
Family
ID=26654086
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,569 Expired - Fee Related US6602742B2 (en) | 2000-11-09 | 2001-11-09 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/251,870 Expired - Fee Related US6697249B2 (en) | 2000-11-09 | 2002-09-23 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/322,541 Abandoned US20030172509A1 (en) | 2000-11-09 | 2002-12-19 | Supercapacitor and a method of manufacturing such a supercapacitor |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/986,569 Expired - Fee Related US6602742B2 (en) | 2000-11-09 | 2001-11-09 | Supercapacitor and a method of manufacturing such a supercapacitor |
US10/251,870 Expired - Fee Related US6697249B2 (en) | 2000-11-09 | 2002-09-23 | Supercapacitor and a method of manufacturing such a supercapacitor |
Country Status (8)
Country | Link |
---|---|
US (3) | US6602742B2 (en) |
EP (1) | EP1332504A2 (en) |
JP (1) | JP2004513529A (en) |
KR (1) | KR20030064783A (en) |
CN (1) | CN1483212A (en) |
AU (1) | AU2002214042A1 (en) |
IL (2) | IL155790A0 (en) |
WO (1) | WO2002039468A2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040240149A1 (en) * | 2003-05-30 | 2004-12-02 | Lessner Philip Michael | Electrolytic capacitor |
WO2005060067A1 (en) * | 2003-12-17 | 2005-06-30 | Koninklijke Philips Electronics N.V. | Maintenance free emergency lighting |
US20060121727A1 (en) * | 2004-12-07 | 2006-06-08 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric and a titanium carbide gate electrode |
WO2007070455A2 (en) * | 2005-12-09 | 2007-06-21 | Drexel University | Mesporous carbons |
US20080229565A1 (en) * | 2002-09-30 | 2008-09-25 | Medtronic, Inc. | Method of producing a capacitor |
EP2026363A1 (en) * | 2006-06-05 | 2009-02-18 | Xiamen University | A supercapacitor based on electrochemistry active materials in liquid phase |
US20090080141A1 (en) * | 2007-09-25 | 2009-03-26 | Renewable Energy Development, Inc. | Multi electrode series connected arrangement supercapacitor |
US20090279230A1 (en) * | 2008-05-08 | 2009-11-12 | Renewable Energy Development, Inc. | Electrode structure for the manufacture of an electric double layer capacitor |
US20090296317A1 (en) * | 2005-06-09 | 2009-12-03 | Katsuhiko Naoi | Electrolytic capacitator element and processing for producing the same |
US20100053844A1 (en) * | 2008-08-28 | 2010-03-04 | Ioxus, Inc. | High voltage EDLC cell and method for the manufacture thereof |
US7931985B1 (en) | 2010-11-08 | 2011-04-26 | International Battery, Inc. | Water soluble polymer binder for lithium ion battery |
US20110136009A1 (en) * | 2010-02-05 | 2011-06-09 | International Battery, Inc. | Rechargeable battery using an aqueous binder |
US20110141661A1 (en) * | 2010-08-06 | 2011-06-16 | International Battery, Inc. | Large format ultracapacitors and method of assembly |
US20110143206A1 (en) * | 2010-07-14 | 2011-06-16 | International Battery, Inc. | Electrode for rechargeable batteries using aqueous binder solution for li-ion batteries |
US20110170237A1 (en) * | 2008-06-05 | 2011-07-14 | California Institute Of Technology | Low temperature double-layer capacitors using asymmetric and spiro-type quaternary ammonium salts |
CN102637531A (en) * | 2012-03-20 | 2012-08-15 | 深圳市今朝时代新能源技术有限公司 | Electrode of supercapacitor, preparation method of electrode and preparation method of slurry of electrode |
US20120257357A1 (en) * | 2009-10-05 | 2012-10-11 | Taiyo Yuden Co., Ltd. | Electrochemical capacitor |
US8804310B2 (en) | 2009-07-17 | 2014-08-12 | Taiyo Yuden Co., Ltd. | Electrochemical device |
CN105359238A (en) * | 2013-07-12 | 2016-02-24 | Ioxus公司 | Stability enhancing additive for electrochemical devices |
DE102014223138A1 (en) | 2014-11-13 | 2016-05-19 | Robert Bosch Gmbh | Connecting two components by means of cold forming |
US9919924B2 (en) | 2012-07-27 | 2018-03-20 | Hanwha Chemical Corporation | Porous carbon and method of preparing the same |
US10446328B2 (en) | 2016-05-20 | 2019-10-15 | Avx Corporation | Multi-cell ultracapacitor |
US10475595B2 (en) | 2016-05-20 | 2019-11-12 | Avx Corporation | Ultracapacitor for use at high temperatures |
US10658127B2 (en) | 2016-05-20 | 2020-05-19 | Avx Corporation | Nonaqueous electrolyte for an ultracapacitor |
US10679798B2 (en) | 2016-05-20 | 2020-06-09 | Avx Corporation | Ultracapacitor containing thin electrodes in a metal container |
Families Citing this family (198)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU1762200A (en) * | 1998-12-05 | 2000-06-26 | Energy Storage Systems Pty Ltd | A charge storage device |
AUPR194400A0 (en) * | 2000-12-06 | 2001-01-04 | Energy Storage Systems Pty Ltd | An energy storage device |
US20020127474A1 (en) * | 2001-01-09 | 2002-09-12 | E.C.R.-Electro-Chemical Research Ltd. | Proton-selective conducting membranes |
US20030062257A1 (en) * | 2001-10-03 | 2003-04-03 | Gozdz Antoni S. | Electrochemical cell comprising lamination of electrode and paper separator members |
DE10212609B4 (en) * | 2002-03-21 | 2015-03-26 | Epcos Ag | Electrolytic solution and its use |
US20050270619A1 (en) * | 2002-07-26 | 2005-12-08 | Koninklijke Philips Electronics N.V. | Electrochromic color display having different electrochromic materials |
KR101016268B1 (en) * | 2002-08-23 | 2011-02-25 | 닛신보 홀딩스 가부시키 가이샤 | Electric double-layer capacitor |
US7061750B2 (en) * | 2002-11-29 | 2006-06-13 | Honda Motor Co., Ltd. | Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith |
US7154738B2 (en) * | 2002-11-29 | 2006-12-26 | Honda Motor Co., Ltd. | Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith |
JP2006513969A (en) * | 2003-04-23 | 2006-04-27 | エフオーツェー・フランケンブルク・オイル・カンパニー・イスタブリッシュメント | Method for changing pore characteristics of porous carbon and porous carbon material produced by the method |
WO2005007566A2 (en) * | 2003-07-03 | 2005-01-27 | Drexel University | Nanoporous carbide derived carbon with tunable pore size |
US7791860B2 (en) | 2003-07-09 | 2010-09-07 | Maxwell Technologies, Inc. | Particle based electrodes and methods of making same |
US20110165318A9 (en) * | 2004-04-02 | 2011-07-07 | Maxwell Technologies, Inc. | Electrode formation by lamination of particles onto a current collector |
US20050266298A1 (en) * | 2003-07-09 | 2005-12-01 | Maxwell Technologies, Inc. | Dry particle based electro-chemical device and methods of making same |
US7342770B2 (en) * | 2003-07-09 | 2008-03-11 | Maxwell Technologies, Inc. | Recyclable dry particle based adhesive electrode and methods of making same |
US20050250011A1 (en) * | 2004-04-02 | 2005-11-10 | Maxwell Technologies, Inc. | Particle packaging systems and methods |
US20060147712A1 (en) * | 2003-07-09 | 2006-07-06 | Maxwell Technologies, Inc. | Dry particle based adhesive electrode and methods of making same |
US7352558B2 (en) | 2003-07-09 | 2008-04-01 | Maxwell Technologies, Inc. | Dry particle based capacitor and methods of making same |
US20100014215A1 (en) * | 2004-04-02 | 2010-01-21 | Maxwell Technologies, Inc. | Recyclable dry particle based electrode and methods of making same |
US7295423B1 (en) * | 2003-07-09 | 2007-11-13 | Maxwell Technologies, Inc. | Dry particle based adhesive electrode and methods of making same |
US7508651B2 (en) * | 2003-07-09 | 2009-03-24 | Maxwell Technologies, Inc. | Dry particle based adhesive and dry film and methods of making same |
US20070122698A1 (en) | 2004-04-02 | 2007-05-31 | Maxwell Technologies, Inc. | Dry-particle based adhesive and dry film and methods of making same |
US7102877B2 (en) * | 2003-09-12 | 2006-09-05 | Maxwell Technologies, Inc. | Electrode impregnation and bonding |
US7920371B2 (en) | 2003-09-12 | 2011-04-05 | Maxwell Technologies, Inc. | Electrical energy storage devices with separator between electrodes and methods for fabricating the devices |
US7495349B2 (en) * | 2003-10-20 | 2009-02-24 | Maxwell Technologies, Inc. | Self aligning electrode |
KR100964685B1 (en) * | 2003-10-20 | 2010-06-21 | 엘지전자 주식회사 | Method and apparatus for recording and reproducing data on/from optical disc write once |
KR100569188B1 (en) * | 2004-01-16 | 2006-04-10 | 한국과학기술연구원 | Carbon-porous media composite electrode and preparation method thereof |
JPWO2005076299A1 (en) * | 2004-02-03 | 2007-10-18 | 日清紡績株式会社 | Electric double layer capacitor |
US7384433B2 (en) | 2004-02-19 | 2008-06-10 | Maxwell Technologies, Inc. | Densification of compressible layers during electrode lamination |
US7090946B2 (en) * | 2004-02-19 | 2006-08-15 | Maxwell Technologies, Inc. | Composite electrode and method for fabricating same |
US20060246343A1 (en) * | 2004-04-02 | 2006-11-02 | Maxwell Technologies, Inc. | Dry particle packaging systems and methods of making same |
US7227737B2 (en) * | 2004-04-02 | 2007-06-05 | Maxwell Technologies, Inc. | Electrode design |
US7492571B2 (en) * | 2004-04-02 | 2009-02-17 | Linda Zhong | Particles based electrodes and methods of making same |
US20060137158A1 (en) * | 2004-04-02 | 2006-06-29 | Maxwell Technologies, Inc. | Dry-particle packaging systems and methods of making same |
WO2005118471A1 (en) * | 2004-06-01 | 2005-12-15 | Tartu Tehnoloogiad OÜ | A method of making the porous carbon material and porous carbon materials produced by the method |
JP2006024611A (en) * | 2004-07-06 | 2006-01-26 | Nisshinbo Ind Inc | Electric double layer capacitor |
US20080003166A1 (en) * | 2004-07-15 | 2008-01-03 | Yurii Maletin | Methods of forming nanoporous carbon material and electrodes and electrochemical double layer capacitors therefrom |
US7420797B2 (en) * | 2004-07-16 | 2008-09-02 | Cardiac Pacemakers, Inc. | Plug for sealing a capacitor fill port |
US7164574B2 (en) * | 2004-07-16 | 2007-01-16 | Cardiac Pacemakers, Inc. | Method and apparatus for openings in a capacitor case |
US7408762B2 (en) * | 2004-07-16 | 2008-08-05 | Cardiac Pacemakers, Inc. | Method and apparatus for providing capacitor feedthrough |
US7245478B2 (en) | 2004-08-16 | 2007-07-17 | Maxwell Technologies, Inc. | Enhanced breakdown voltage electrode |
US7440258B2 (en) | 2005-03-14 | 2008-10-21 | Maxwell Technologies, Inc. | Thermal interconnects for coupling energy storage devices |
US7203053B2 (en) | 2005-04-07 | 2007-04-10 | American Radionic Company, Inc. | Capacitor for multiple replacement applications |
US11183337B1 (en) | 2005-04-07 | 2021-11-23 | Amrad Manufacturing, Llc | Capacitor with multiple elements for multiple replacement applications |
US11183336B2 (en) | 2005-04-07 | 2021-11-23 | Amrad Manufacturing, Llc | Capacitor with multiple elements for multiple replacement applications |
US7423861B2 (en) | 2005-04-07 | 2008-09-09 | American Radionic Company, Inc. | Capacitor with multiple elements for multiple replacement applications |
US9412521B2 (en) | 2005-04-07 | 2016-08-09 | American Radionic Company, Inc. | Capacitor with multiple elements for multiple replacement applications |
US11183338B2 (en) | 2005-04-07 | 2021-11-23 | Amrad Manufacturing, Llc | Capacitor with multiple elements for multiple replacement applications |
US20060251565A1 (en) * | 2005-04-22 | 2006-11-09 | Tartu Tehnoloogiad Ou | Method for manufacturing the nanoporous skeletonC material |
WO2006130512A1 (en) * | 2005-05-31 | 2006-12-07 | Corning Incorporated | Cellular honeycomb ultracapacitors and hybrid capacitors with separator-supported current collectors |
JP2008544543A (en) * | 2005-06-24 | 2008-12-04 | ユニバーサル・スーパーキャパシターズ・エルエルシー | Heterogeneous electrochemical supercapacitor and method for producing the same |
DK1894216T3 (en) * | 2005-06-24 | 2013-06-24 | Universal Supercapacitors Llc | ELECTRODEMIC AND DOUBLE ELECTRICAL CHEMICAL CONDENSATOR WITH DOUBLE ELECTRICAL LAYER AND THEREFORE MANUFACTURED DOUBLE ELECTRICAL LAYER ELECTRICAL CONDENSOR |
CA2612639C (en) * | 2005-06-24 | 2014-08-26 | Samvel Avakovich Kazaryan | Current collector for double electric layer electrochemical capacitors and method of manufacture thereof |
US7586736B2 (en) * | 2005-07-11 | 2009-09-08 | Micro Power Electronics Inc. | Electrical insulation system and method for electrical power storage component separation |
US8313723B2 (en) * | 2005-08-25 | 2012-11-20 | Nanocarbons Llc | Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers |
US7268995B2 (en) * | 2005-09-26 | 2007-09-11 | Nisshinbo Industries, Inc. | Electric double layer capacitor |
EP1768141B1 (en) * | 2005-09-26 | 2009-09-02 | Nisshinbo Industries, Inc. | Polarizable electrode for electric double layer capacitor |
US7723262B2 (en) | 2005-11-21 | 2010-05-25 | Energ2, Llc | Activated carbon cryogels and related methods |
USD818959S1 (en) | 2005-12-23 | 2018-05-29 | American Radionic Company, Inc. | Capacitor |
US20070178310A1 (en) * | 2006-01-31 | 2007-08-02 | Rudyard Istvan | Non-woven fibrous materials and electrodes therefrom |
RU2008132758A (en) * | 2006-02-15 | 2010-03-20 | Рудьярд Лайле ИСТВАН (US) | MESOPOROUS ACTIVATED CARBON |
EP2005504B1 (en) * | 2006-03-08 | 2013-05-29 | CAP-XX Limited | Electrolyte |
US7696729B2 (en) * | 2006-05-02 | 2010-04-13 | Advanced Desalination Inc. | Configurable power tank |
US20110128671A1 (en) * | 2006-05-15 | 2011-06-02 | Yury Gogotsi | Supercapacitors and methods for producing same |
JPWO2007139008A1 (en) * | 2006-05-29 | 2009-10-08 | パナソニック株式会社 | Electric double layer capacitor and manufacturing method thereof |
US20080000882A1 (en) * | 2006-06-01 | 2008-01-03 | Vanderlick Stephen W | Method and apparatus for a foil to control heat flow from welding a device case |
FR2902938B1 (en) * | 2006-06-22 | 2008-08-29 | Batscap Sa | METHOD FOR PRODUCING THE ELECTRICAL CONNECTIONS OF AN ELECTRIC ENERGY STORAGE ASSEMBLY |
US7833351B2 (en) * | 2006-06-26 | 2010-11-16 | Applied Materials, Inc. | Batch processing platform for ALD and CVD |
CN101490773B (en) * | 2006-07-14 | 2011-12-21 | 松下电器产业株式会社 | Electric double layer capacitor and method for manufacturing same |
US7879488B2 (en) * | 2006-08-28 | 2011-02-01 | Cardiac Pacemakers, Inc. | Apparatus and method for a power source casing with a stepped bevelled edge |
US8518573B2 (en) * | 2006-09-29 | 2013-08-27 | Maxwell Technologies, Inc. | Low-inductive impedance, thermally decoupled, radii-modulated electrode core |
GB2443221A (en) * | 2006-10-25 | 2008-04-30 | Nanotecture Ltd | Hybrid supercapacitor comprising double layer electrode and redox electrode |
KR101496934B1 (en) | 2006-11-15 | 2015-03-03 | 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 | electric double layer capacitance device |
KR20090088427A (en) | 2006-11-27 | 2009-08-19 | 유니버셜 수퍼캐패시터즈 엘엘씨 | Electrode for use with double electric layer electrochemical capacitors having high specific parameters |
US20080151472A1 (en) * | 2006-12-20 | 2008-06-26 | Maletin Yuriy A | Electrochemical double layer capacitor |
US7952854B2 (en) | 2006-12-29 | 2011-05-31 | American Radionic Company, Inc. | Electrolytic capacitor |
CN101778794B (en) | 2007-02-14 | 2015-08-19 | 肯塔基大学研究基金会 | Form the method for activated carbon |
WO2008103681A1 (en) * | 2007-02-19 | 2008-08-28 | Universal Supercapacitors Llc | Negative electrode current collector for heterogeneous electrochemical capacitor and method of manufacture thereof |
US20080204973A1 (en) * | 2007-02-28 | 2008-08-28 | Maxwell Technologies, Inc. | Ultracapacitor electrode with controlled iron content |
US20080201925A1 (en) | 2007-02-28 | 2008-08-28 | Maxwell Technologies, Inc. | Ultracapacitor electrode with controlled sulfur content |
JP5271261B2 (en) * | 2007-05-15 | 2013-08-21 | 東洋アルミニウム株式会社 | Carbon-coated aluminum material and manufacturing method thereof |
US8252441B2 (en) * | 2007-08-31 | 2012-08-28 | Micro Power Electronics, Inc. | Spacers for fixing battery cells within a battery package casing and associated systems and methods |
US7706128B2 (en) * | 2007-11-29 | 2010-04-27 | Corning Incorporated | Capacitive device |
US20090159354A1 (en) * | 2007-12-25 | 2009-06-25 | Wenfeng Jiang | Battery system having interconnected battery packs each having multiple electrochemical storage cells |
US8498097B2 (en) * | 2008-01-31 | 2013-07-30 | Drexel University | Supercapacitor compositions, devices and related methods |
US20090312175A1 (en) * | 2008-04-29 | 2009-12-17 | University Of Connecticut | Increased Activity of Catalyst Using Inorganic Acids |
CN101290837B (en) * | 2008-06-11 | 2010-07-28 | 天津大学 | Preparing method of porous carbon electrode of super capacitor with high magnified charge-discharge performance |
US8257867B2 (en) | 2008-07-28 | 2012-09-04 | Battelle Memorial Institute | Nanocomposite of graphene and metal oxide materials |
US8450014B2 (en) | 2008-07-28 | 2013-05-28 | Battelle Memorial Institute | Lithium ion batteries with titania/graphene anodes |
US9346680B2 (en) * | 2008-09-09 | 2016-05-24 | Battelle Memorial Institute | Mesoporous metal oxide graphene nanocomposite materials |
US8699207B2 (en) * | 2008-10-21 | 2014-04-15 | Brookhaven Science Associates, Llc | Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer |
US8404613B2 (en) | 2008-10-21 | 2013-03-26 | Brookhaven Science Associates, Llc | Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures |
GB2466081B (en) * | 2008-12-15 | 2010-11-17 | Etv Motors Ltd | Cooling for hybrid electric vehicle |
US20100157527A1 (en) * | 2008-12-23 | 2010-06-24 | Ise Corporation | High-Power Ultracapacitor Energy Storage Pack and Method of Use |
WO2012037445A2 (en) | 2010-09-17 | 2012-03-22 | Drexel University | Novel applications for alliform carbon |
US20100258111A1 (en) * | 2009-04-07 | 2010-10-14 | Lockheed Martin Corporation | Solar receiver utilizing carbon nanotube infused coatings |
US8293818B2 (en) | 2009-04-08 | 2012-10-23 | Energ2 Technologies, Inc. | Manufacturing methods for the production of carbon materials |
JP2012525012A (en) | 2009-04-24 | 2012-10-18 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | CNT leaching EMI shielding composite and coating |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
US8664573B2 (en) | 2009-04-27 | 2014-03-04 | Applied Nanostructured Solutions, Llc | CNT-based resistive heating for deicing composite structures |
FI2448748T3 (en) | 2009-07-01 | 2024-10-09 | Basf Mobile Emissions Catalysts Llc | Ultrapure synthetic carbon materials |
WO2011017130A1 (en) | 2009-07-27 | 2011-02-10 | The Paper Battery Co. | Compliant energy storing structural sheet |
US9017867B2 (en) | 2009-08-10 | 2015-04-28 | Battelle Memorial Institute | Self assembled multi-layer nanocomposite of graphene and metal oxide materials |
US8835046B2 (en) | 2009-08-10 | 2014-09-16 | Battelle Memorial Institute | Self assembled multi-layer nanocomposite of graphene and metal oxide materials |
US20110089958A1 (en) * | 2009-10-19 | 2011-04-21 | Applied Nanostructured Solutions, Llc | Damage-sensing composite structures |
US8456795B2 (en) | 2009-11-13 | 2013-06-04 | American Radionic Company, Inc. | Hard start kit for multiple replacement applications |
CN102823037A (en) * | 2009-12-11 | 2012-12-12 | 艾纳G2技术公司 | Carbon materials comprising an electrochemical modifier |
WO2011084787A1 (en) * | 2009-12-21 | 2011-07-14 | Ioxus, Inc. | Improved energy storage in edlcs by utilizing a dielectric layer |
WO2011083369A1 (en) | 2010-01-08 | 2011-07-14 | Etv Motors Ltd. | Gas-turbines, controllers, hybrid gas-turbine electric vehicles and methods of operation thereof |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
WO2011109485A1 (en) | 2010-03-02 | 2011-09-09 | Applied Nanostructured Solutions,Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
AU2011223738B2 (en) | 2010-03-02 | 2015-01-22 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
US8916296B2 (en) | 2010-03-12 | 2014-12-23 | Energ2 Technologies, Inc. | Mesoporous carbon materials comprising bifunctional catalysts |
US8405955B2 (en) | 2010-03-16 | 2013-03-26 | Corning Incorporated | High performance electrodes for EDLCS |
CN101800132A (en) * | 2010-03-26 | 2010-08-11 | 北京集星联合电子科技有限公司 | Super capacitor and production method thereof |
EE05653B1 (en) | 2010-04-29 | 2013-04-15 | O� Skeleton Technologies | S Blue composite electrode for electric double layer capacitor |
CN102893353B (en) | 2010-05-18 | 2016-03-16 | 英派尔科技开发有限公司 | Adopt the ultracapacitor of phase-change material |
US9337474B1 (en) * | 2010-05-20 | 2016-05-10 | Halbert P. Fischel | Electrodes for electrochemical cells |
US8780526B2 (en) * | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
EE05629B1 (en) | 2010-09-06 | 2013-02-15 | O� Skeleton Technologies | Method for the preparation of an electrochemical system of a high power and energy density supercapacitor, a corresponding supercapacitor and a method for making it |
JP2014508370A (en) | 2010-09-23 | 2014-04-03 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | CNT-infused fibers as self-shielding wires for reinforced transmission lines |
CN103261090A (en) | 2010-09-30 | 2013-08-21 | 艾纳G2技术公司 | Enhanced packing of energy storage particles |
US8557441B2 (en) | 2010-10-09 | 2013-10-15 | Battelle Memorial Institute | Titania-graphene anode electrode paper |
KR101156654B1 (en) * | 2010-10-22 | 2012-06-14 | (주)에이티엔에스 | Carbon nanofiber hybrid electrode and ultra capacitance energy storage device using it, and method for fabricating carbon nanofiber hybrid electrode |
CN108538625B (en) | 2010-12-28 | 2020-12-08 | 巴斯福股份公司 | Carbon material comprising enhanced electrochemical properties |
JP2012166980A (en) * | 2011-02-14 | 2012-09-06 | National Institute For Materials Science | Synthetic method of carbide-derived carbon |
WO2012112481A1 (en) * | 2011-02-16 | 2012-08-23 | Drexel University | Electrochemical flow capacitors |
CN107403697B (en) * | 2011-02-21 | 2018-11-09 | 日本蓄电器工业株式会社 | Electrode foil, collector, electrode and the storage assembly using these objects |
US8773842B2 (en) | 2011-03-11 | 2014-07-08 | Ls Mtron, Ltd. | Electrical energy storage device and manufacturing method thereof |
EP2686855A1 (en) * | 2011-03-18 | 2014-01-22 | Cnrs | Electrochemical capacitor |
US9472353B2 (en) | 2011-04-07 | 2016-10-18 | Corning Incorporated | Ultracapacitor with improved aging performance |
KR20140037074A (en) * | 2011-04-07 | 2014-03-26 | 리트리브 테크놀로지스 인코포레이티드 | Carbon electrodes and electrochemical capacitors |
US20120262127A1 (en) | 2011-04-15 | 2012-10-18 | Energ2 Technologies, Inc. | Flow ultracapacitor |
CN103947017B (en) | 2011-06-03 | 2017-11-17 | 巴斯福股份公司 | For the carbon lead blend in mixed tensor storage device |
KR20130012469A (en) * | 2011-07-25 | 2013-02-04 | 삼성전기주식회사 | Energy storage module |
US8842417B2 (en) * | 2011-09-23 | 2014-09-23 | Corning Incorporated | High voltage electro-chemical double layer capacitor |
JP5885226B2 (en) | 2011-10-10 | 2016-03-15 | ダナ オートモーティブ システムズ グループ、エルエルシー | Magnetic pulse welding and forming for plates |
JPWO2013094423A1 (en) * | 2011-12-22 | 2015-04-27 | 株式会社村田製作所 | Power storage device |
KR101297094B1 (en) | 2011-12-22 | 2013-08-14 | 비나텍주식회사 | Structure of Current Collector and Electrode including the same and, Lithium Ion capacitor comprising the same |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
JP6011614B2 (en) * | 2012-04-02 | 2016-10-19 | 住友電気工業株式会社 | Method for producing porous carbon material |
KR101325632B1 (en) * | 2012-04-25 | 2013-11-07 | 비나텍주식회사 | Self-charging hybrid battery and USN sensor node module using the same |
JP2013232602A (en) * | 2012-05-01 | 2013-11-14 | Ibiden Co Ltd | Method of producing electrode material for power storage device, electrode for power storage device, and power storage device |
DE102012208352A1 (en) * | 2012-05-18 | 2013-11-21 | Robert Bosch Gmbh | Method for connecting two battery poles of two battery cells consisting of dissimilar materials and battery unit |
US20130344391A1 (en) * | 2012-06-18 | 2013-12-26 | Sila Nanotechnologies Inc. | Multi-shell structures and fabrication methods for battery active materials with expansion properties |
KR101412775B1 (en) * | 2012-07-27 | 2014-07-02 | 서울대학교산학협력단 | Porous carbon and method for preparing the same |
KR20150063373A (en) | 2012-09-28 | 2015-06-09 | 스미토모덴키고교가부시키가이샤 | Electrode active material for capacitor, and capacitor using said electrode active material |
CN105190948B (en) | 2013-03-14 | 2019-04-26 | 14族科技公司 | The complex carbon material of electrochemical modification agent comprising lithium alloyage |
JP2014225574A (en) | 2013-05-16 | 2014-12-04 | 住友電気工業株式会社 | Capacitor and charge and discharge method thereof |
US9318261B2 (en) | 2013-05-21 | 2016-04-19 | American Radionic Company, Inc. | Power factor correction capacitors |
KR20160067837A (en) * | 2013-08-15 | 2016-06-14 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | A multicomponent approach to enhance stability and capacitance in polymer-hybrid supercapacitors |
US9607775B2 (en) * | 2013-08-30 | 2017-03-28 | Corning Incorporated | High-voltage and high-capacitance activated carbon and carbon-based electrodes |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
JP2015151324A (en) * | 2014-02-18 | 2015-08-24 | 住友電気工業株式会社 | Activated carbon and method for producing the same |
WO2015137980A1 (en) | 2014-03-14 | 2015-09-17 | Energ2 Technologies, Inc. | Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
WO2016031977A1 (en) * | 2014-08-29 | 2016-03-03 | 住友電気工業株式会社 | Negative electrode material for power storage device, manufacturing method thereof, and lithium ion power storage device |
JP6394188B2 (en) * | 2014-08-29 | 2018-09-26 | 住友電気工業株式会社 | Method for producing porous carbon material |
EP3197832B1 (en) | 2014-09-25 | 2022-06-22 | Drexel University | Physical forms of mxene materials exhibiting novel electrical and optical characteristics |
US20170250033A1 (en) | 2014-10-31 | 2017-08-31 | Oü Skeleton Technologies Group | A method for making a high-density carbon material for high-density carbon electrodes |
US10522856B2 (en) | 2014-12-03 | 2019-12-31 | Global Energy Science, Llc | Electrochemical cells with mobile electrolyte |
US10793450B2 (en) | 2014-12-03 | 2020-10-06 | University Of Kentucky Research Foundation | Potential of zero charge-based capacitive deionization |
KR102246849B1 (en) * | 2015-05-29 | 2021-04-30 | 주식회사 리크릭스 | Separator having selective moving function of ion and secondary battery including the same |
WO2017031006A1 (en) | 2015-08-14 | 2017-02-23 | Energ2 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
KR102637617B1 (en) | 2015-08-28 | 2024-02-19 | 그룹14 테크놀로지스, 인코포레이티드 | Novel materials with extremely durable intercalation of lithium and manufacturing methods thereof |
JP2017088443A (en) * | 2015-11-09 | 2017-05-25 | 住友電気工業株式会社 | Porous carbon material, manufacturing method, and electrode and capacitor using the same |
CN106920702B (en) * | 2015-12-28 | 2018-09-21 | 江苏国泰超威新材料有限公司 | A kind of electrolyte for double-layer capacitor and double layer capacitor |
JP6269693B2 (en) * | 2016-01-27 | 2018-01-31 | 住友電気工業株式会社 | Method for producing porous carbon material |
KR102614960B1 (en) * | 2016-02-29 | 2023-12-19 | 스몰텍 에이비 | Nanostructure energy storage and electronic device |
GB2548128B (en) * | 2016-03-09 | 2021-12-15 | Zapgo Ltd | Method of reducing outgassing |
US9869018B2 (en) * | 2016-04-26 | 2018-01-16 | Taiwan Semiconductor Manufacturing Co., Ltd. | Solid precursor delivery method using liquid solvent for thin film deposition |
CN105789560B (en) * | 2016-05-02 | 2018-02-09 | 北京工业大学 | A kind of method that alloy is welded and taken off using laser melting coating composite diffusion and prepares lithium ion battery silicium cathode |
CN105870405B (en) * | 2016-05-02 | 2018-02-09 | 北京工业大学 | A kind of method that alloy is welded and taken off using Alloy by Laser Surface Remelting technology composite diffusion and prepares lithium ion battery silicium cathode |
WO2017207593A1 (en) * | 2016-05-31 | 2017-12-07 | Oü Skeleton Technologies Group | A method for manufacturing microporous carbon particles |
CN108369870A (en) | 2016-06-06 | 2018-08-03 | 住友电气工业株式会社 | For the porous carbon materials of electrical double layer capacitor electrodes, its manufacturing method and electrical double layer capacitor electrodes |
ITUA20164388A1 (en) * | 2016-06-15 | 2017-12-15 | Gd Spa | Method and laser welding device of an electrical circuit of a heating portion of an electronic cigarette. |
EP3528319A4 (en) * | 2016-10-11 | 2019-10-30 | Nissan Motor Co., Ltd. | Electrode drying method |
US9859060B1 (en) | 2017-02-07 | 2018-01-02 | American Radionic Company, Inc. | Capacitor with multiple elements for multiple replacement applications |
CN108428564A (en) * | 2017-02-14 | 2018-08-21 | 东莞东阳光科研发有限公司 | A kind of preparation method of lithium-ion capacitor negative plate |
CN110582823A (en) | 2017-03-09 | 2019-12-17 | 14集团技术公司 | Decomposition of silicon-containing precursors on porous support materials |
WO2018190392A1 (en) * | 2017-04-14 | 2018-10-18 | 住友電気工業株式会社 | Method for producing porous carbon material |
US11195663B2 (en) | 2017-05-12 | 2021-12-07 | Amrad Manufacturing, Llc | Capacitor with multiple elements for multiple replacement applications |
US11278862B2 (en) | 2017-08-01 | 2022-03-22 | Drexel University | Mxene sorbent for removal of small molecules from dialysate |
US10497518B1 (en) | 2017-12-13 | 2019-12-03 | American Radionic Company, Inc. | Hard start kit for multiple replacement applications |
US11424077B1 (en) | 2017-12-13 | 2022-08-23 | Amrad Manufacturing, Llc | Hard start kit for multiple replacement applications |
US10147550B1 (en) | 2018-04-27 | 2018-12-04 | American Radionic Company, Inc. | Capacitor with multiple elements for multiple replacement applications |
CN108766775B (en) * | 2018-05-25 | 2019-05-28 | 常州大学 | A kind of preparation method and applications of ultralow temperature high capacity supercapacitor |
DE102018222142A1 (en) * | 2018-12-18 | 2020-06-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing a solid electrolyte membrane or an anode and solid electrolyte membrane or an anode |
US10586655B1 (en) | 2018-12-28 | 2020-03-10 | American Radionic Company, Inc. | Capacitor with multiple elements for multiple replacement applications |
WO2020216885A1 (en) * | 2019-04-25 | 2020-10-29 | F. Hoffmann-La Roche Ag | Systems and methods for inserting a nanopore in a membrane using osmotic imbalance |
USD906247S1 (en) | 2019-07-11 | 2020-12-29 | American Radionic Company, Inc. | Capacitor |
CN110610810B (en) * | 2019-09-29 | 2022-02-08 | 宇启材料科技南通有限公司 | Dry manufacturing method of valve metal coating electrode foil and electrolytic capacitor |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
KR20230082028A (en) | 2020-09-30 | 2023-06-08 | 그룹14 테크놀로지스, 인코포레이티드 | Method of Passivation to Control Oxygen Content and Reactivity of Silicon-Carbon Composites |
DE102021107429A1 (en) | 2021-03-24 | 2022-09-29 | Skeleton Technologies GmbH | Method of making microporous carbon material |
CA3157689A1 (en) | 2021-04-30 | 2022-10-30 | Amrad Manufacturing, Llc | Hard start kit for multiple replacement applications |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4477260A (en) * | 1982-05-05 | 1984-10-16 | Alfred University Research Foundation, Inc. | Process for preparing a carbonaceous slurry |
US5142451A (en) * | 1989-09-12 | 1992-08-25 | Isuzu Motors Limited | Electric double layer capacitor |
US5150283A (en) * | 1990-03-29 | 1992-09-22 | Matsushita Electric Industrial Co. Ltd. | Electric double layer capacitor and method for producing the same |
US5742472A (en) * | 1995-07-13 | 1998-04-21 | Samsung Electronics Co., Ltd. | Stacked capacitors for integrated circuit devices and related methods |
US6264707B1 (en) * | 1998-01-30 | 2001-07-24 | Asahi Glass Company Ltd. | Electrode for an electric double layer capacitor and process for producing it |
US6277513B1 (en) * | 1999-04-12 | 2001-08-21 | General Motors Corporation | Layered electrode for electrochemical cells |
US6323072B1 (en) * | 1996-02-23 | 2001-11-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming semiconductor thin film |
US6515845B1 (en) * | 2000-02-22 | 2003-02-04 | Fincell Co., Ltd. | Method for preparing nanoporous carbon materials and electric double-layer capacitors using them |
US6631074B2 (en) * | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3586923A (en) * | 1968-01-20 | 1971-06-22 | Matsushita Electric Ind Co Ltd | Electrolytic capacitor and method for manufacturing solid electrolyte |
FR2344135A1 (en) * | 1976-03-09 | 1977-10-07 | Accumulateurs Fixes | SPECIFIC HIGH ENERGY ELECTROCHEMICAL GENERATORS |
DE2723772A1 (en) * | 1977-05-26 | 1978-12-07 | Varta Batterie | GALVANIC ELEMENT WITH A NEGATIVE LIGHT METAL ELECTRODE AND AN ANHYDROUS ORGANIC ELECTROLYTE |
JPH08138978A (en) * | 1994-11-02 | 1996-05-31 | Japan Gore Tex Inc | Electric double layer capacitor and manufacture of its electrode |
RU2084036C1 (en) * | 1995-11-30 | 1997-07-10 | Альфар Интернешнл Лтд. | Capacitor with double electric layer |
US6316563B2 (en) * | 1997-05-27 | 2001-11-13 | Showa Denko K.K. | Thermopolymerizable composition and use thereof |
RU2151737C1 (en) * | 1997-05-30 | 2000-06-27 | Акционерное общество закрытого типа "Карбид" | Method of preparing porous carbon product and porous carbon product obtained by said method |
US6094338A (en) * | 1997-07-09 | 2000-07-25 | Mitsubishi Chemical Corporation | Electric double-layer capacitor |
RU2145132C1 (en) * | 1998-07-03 | 2000-01-27 | Мирзоев Рустам Аминович | Electrochemical capacitor using combined charge storage mechanism |
JP3241325B2 (en) * | 1998-07-31 | 2001-12-25 | 日本電気株式会社 | Electric double layer capacitor |
US6275371B1 (en) * | 1998-08-12 | 2001-08-14 | Hitachi Maxwell, Ltd. | Electrode material for electrochemical capacitor, electrochemical capacitor comprising the same, and method for the production of the same |
DE10006839A1 (en) * | 1999-02-17 | 2000-08-24 | Hitachi Maxell | Electrode used for capacitors in electric vehicles comprises a collector having a polarizable material layer consisting of activated charcoal, conducting auxiliary aid |
-
2001
- 2001-11-06 IL IL15579001A patent/IL155790A0/en unknown
- 2001-11-06 KR KR10-2003-7006379A patent/KR20030064783A/en not_active Application Discontinuation
- 2001-11-06 CN CNA018204023A patent/CN1483212A/en active Pending
- 2001-11-06 EP EP01982465A patent/EP1332504A2/en not_active Ceased
- 2001-11-06 WO PCT/EP2001/012837 patent/WO2002039468A2/en active Application Filing
- 2001-11-06 JP JP2002541697A patent/JP2004513529A/en active Pending
- 2001-11-06 AU AU2002214042A patent/AU2002214042A1/en not_active Abandoned
- 2001-11-09 US US09/986,569 patent/US6602742B2/en not_active Expired - Fee Related
-
2002
- 2002-09-23 US US10/251,870 patent/US6697249B2/en not_active Expired - Fee Related
- 2002-12-19 US US10/322,541 patent/US20030172509A1/en not_active Abandoned
-
2007
- 2007-11-15 IL IL187404A patent/IL187404A0/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4477260A (en) * | 1982-05-05 | 1984-10-16 | Alfred University Research Foundation, Inc. | Process for preparing a carbonaceous slurry |
US5142451A (en) * | 1989-09-12 | 1992-08-25 | Isuzu Motors Limited | Electric double layer capacitor |
US5150283A (en) * | 1990-03-29 | 1992-09-22 | Matsushita Electric Industrial Co. Ltd. | Electric double layer capacitor and method for producing the same |
US5742472A (en) * | 1995-07-13 | 1998-04-21 | Samsung Electronics Co., Ltd. | Stacked capacitors for integrated circuit devices and related methods |
US6323072B1 (en) * | 1996-02-23 | 2001-11-27 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming semiconductor thin film |
US6264707B1 (en) * | 1998-01-30 | 2001-07-24 | Asahi Glass Company Ltd. | Electrode for an electric double layer capacitor and process for producing it |
US6277513B1 (en) * | 1999-04-12 | 2001-08-21 | General Motors Corporation | Layered electrode for electrochemical cells |
US6515845B1 (en) * | 2000-02-22 | 2003-02-04 | Fincell Co., Ltd. | Method for preparing nanoporous carbon materials and electric double-layer capacitors using them |
US6631074B2 (en) * | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8339769B2 (en) | 2002-09-30 | 2012-12-25 | Medtronic, Inc. | Method of producing a capacitor |
US20080229565A1 (en) * | 2002-09-30 | 2008-09-25 | Medtronic, Inc. | Method of producing a capacitor |
US20040240149A1 (en) * | 2003-05-30 | 2004-12-02 | Lessner Philip Michael | Electrolytic capacitor |
US7256982B2 (en) * | 2003-05-30 | 2007-08-14 | Philip Michael Lessner | Electrolytic capacitor |
US20070274025A1 (en) * | 2003-05-30 | 2007-11-29 | Lessner Philip M | Capacitor |
US7667954B2 (en) | 2003-05-30 | 2010-02-23 | Medtronic, Inc. | Capacitor |
WO2005060067A1 (en) * | 2003-12-17 | 2005-06-30 | Koninklijke Philips Electronics N.V. | Maintenance free emergency lighting |
US20060121727A1 (en) * | 2004-12-07 | 2006-06-08 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric and a titanium carbide gate electrode |
US7064066B1 (en) * | 2004-12-07 | 2006-06-20 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric and a titanium carbide gate electrode |
US7317231B2 (en) | 2004-12-07 | 2008-01-08 | Intel Corporation | Method for making a semiconductor device having a high-K gate dielectric and a titanium carbide gate electrode |
US20090296317A1 (en) * | 2005-06-09 | 2009-12-03 | Katsuhiko Naoi | Electrolytic capacitator element and processing for producing the same |
US8644003B2 (en) * | 2005-06-09 | 2014-02-04 | National University Corporation, Tokyo University Of Agriculture And Technology | Electrolytic capacitor element and process for producing the same |
WO2007070455A3 (en) * | 2005-12-09 | 2008-02-07 | Univ Drexel | Mesporous carbons |
WO2007070455A2 (en) * | 2005-12-09 | 2007-06-21 | Drexel University | Mesporous carbons |
US20090190286A1 (en) * | 2006-06-05 | 2009-07-30 | Xiamen University | Supercapacitor |
EP2026363A4 (en) * | 2006-06-05 | 2009-08-05 | Univ Xiamen | A supercapacitor based on electrochemistry active materials in liquid phase |
EP2026363A1 (en) * | 2006-06-05 | 2009-02-18 | Xiamen University | A supercapacitor based on electrochemistry active materials in liquid phase |
US8094433B2 (en) | 2006-06-05 | 2012-01-10 | Xiamen University | Supercapacitor |
US20090080141A1 (en) * | 2007-09-25 | 2009-03-26 | Renewable Energy Development, Inc. | Multi electrode series connected arrangement supercapacitor |
US7830646B2 (en) | 2007-09-25 | 2010-11-09 | Ioxus, Inc. | Multi electrode series connected arrangement supercapacitor |
US8098483B2 (en) | 2007-09-25 | 2012-01-17 | Ioxus, Inc. | Multi electrode series connected arrangement supercapacitor |
US20090279230A1 (en) * | 2008-05-08 | 2009-11-12 | Renewable Energy Development, Inc. | Electrode structure for the manufacture of an electric double layer capacitor |
US10014125B2 (en) | 2008-05-08 | 2018-07-03 | Ioxus, Inc. | High voltage EDLC cell and method for the manufacture thereof |
US20110170237A1 (en) * | 2008-06-05 | 2011-07-14 | California Institute Of Technology | Low temperature double-layer capacitors using asymmetric and spiro-type quaternary ammonium salts |
US8804309B2 (en) * | 2008-06-05 | 2014-08-12 | California Institute Of Technology | Low temperature double-layer capacitors using asymmetric and spiro-type quaternary ammonium salts |
US20100053844A1 (en) * | 2008-08-28 | 2010-03-04 | Ioxus, Inc. | High voltage EDLC cell and method for the manufacture thereof |
US9245693B2 (en) | 2008-08-28 | 2016-01-26 | Ioxus, Inc. | High voltage EDLC cell and method for the manufacture thereof |
US8411413B2 (en) | 2008-08-28 | 2013-04-02 | Ioxus, Inc. | High voltage EDLC cell and method for the manufacture thereof |
US8804310B2 (en) | 2009-07-17 | 2014-08-12 | Taiyo Yuden Co., Ltd. | Electrochemical device |
US20120257357A1 (en) * | 2009-10-05 | 2012-10-11 | Taiyo Yuden Co., Ltd. | Electrochemical capacitor |
US8902594B2 (en) * | 2009-10-05 | 2014-12-02 | Taiyo Yuden Co., Ltd. | Electrochemical capacitor |
US20110136009A1 (en) * | 2010-02-05 | 2011-06-09 | International Battery, Inc. | Rechargeable battery using an aqueous binder |
US8076026B2 (en) | 2010-02-05 | 2011-12-13 | International Battery, Inc. | Rechargeable battery using an aqueous binder |
US20110143206A1 (en) * | 2010-07-14 | 2011-06-16 | International Battery, Inc. | Electrode for rechargeable batteries using aqueous binder solution for li-ion batteries |
US8102642B2 (en) | 2010-08-06 | 2012-01-24 | International Battery, Inc. | Large format ultracapacitors and method of assembly |
US20110141661A1 (en) * | 2010-08-06 | 2011-06-16 | International Battery, Inc. | Large format ultracapacitors and method of assembly |
US7931985B1 (en) | 2010-11-08 | 2011-04-26 | International Battery, Inc. | Water soluble polymer binder for lithium ion battery |
US20110168956A1 (en) * | 2010-11-08 | 2011-07-14 | International Battery, Inc. | Water soluble polymer binder for lithium ion battery |
US8092557B2 (en) | 2010-11-08 | 2012-01-10 | International Battery, Inc. | Water soluble polymer binder for lithium ion battery |
CN102637531A (en) * | 2012-03-20 | 2012-08-15 | 深圳市今朝时代新能源技术有限公司 | Electrode of supercapacitor, preparation method of electrode and preparation method of slurry of electrode |
US9919924B2 (en) | 2012-07-27 | 2018-03-20 | Hanwha Chemical Corporation | Porous carbon and method of preparing the same |
CN105359238A (en) * | 2013-07-12 | 2016-02-24 | Ioxus公司 | Stability enhancing additive for electrochemical devices |
CN109755044A (en) * | 2013-07-12 | 2019-05-14 | Ioxus公司 | Stability for electrochemical appliance enhances additive |
DE102014223138A1 (en) | 2014-11-13 | 2016-05-19 | Robert Bosch Gmbh | Connecting two components by means of cold forming |
US10446328B2 (en) | 2016-05-20 | 2019-10-15 | Avx Corporation | Multi-cell ultracapacitor |
US10475595B2 (en) | 2016-05-20 | 2019-11-12 | Avx Corporation | Ultracapacitor for use at high temperatures |
US10658127B2 (en) | 2016-05-20 | 2020-05-19 | Avx Corporation | Nonaqueous electrolyte for an ultracapacitor |
US10679798B2 (en) | 2016-05-20 | 2020-06-09 | Avx Corporation | Ultracapacitor containing thin electrodes in a metal container |
US10840031B2 (en) | 2016-05-20 | 2020-11-17 | Avx Corporation | Ultracapacitor for use at high temperatures |
Also Published As
Publication number | Publication date |
---|---|
US6697249B2 (en) | 2004-02-24 |
WO2002039468A3 (en) | 2003-03-06 |
US20030064565A1 (en) | 2003-04-03 |
US6602742B2 (en) | 2003-08-05 |
WO2002039468A2 (en) | 2002-05-16 |
IL187404A0 (en) | 2008-02-09 |
CN1483212A (en) | 2004-03-17 |
US20020097549A1 (en) | 2002-07-25 |
AU2002214042A1 (en) | 2002-05-21 |
IL155790A0 (en) | 2003-12-23 |
EP1332504A2 (en) | 2003-08-06 |
KR20030064783A (en) | 2003-08-02 |
JP2004513529A (en) | 2004-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6697249B2 (en) | Supercapacitor and a method of manufacturing such a supercapacitor | |
JP5276001B2 (en) | Electrode for energy storage device | |
JP5473282B2 (en) | Carbon material for electric double layer capacitor and manufacturing method thereof | |
EP2172422B1 (en) | Process for producing activated carbon for electric double layer capacitor electrode | |
JP4754553B2 (en) | Electrode manufacturing method, obtained electrode, and super capacitor including this electrode | |
EP1870912B1 (en) | Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor | |
US8842417B2 (en) | High voltage electro-chemical double layer capacitor | |
US20060140846A1 (en) | Method to modify pore characteristics of porous carbon and porous carbon materials produced by the method | |
US9951443B2 (en) | Separators, electrodes, half-cells, and cells of electrical energy storage devices | |
JP2005136397A (en) | Activated carbon, electrode material using it, and electric double layer capacitor | |
TW201526048A (en) | Ultracapacitor with improved aging performance | |
Berenguer-Murcia et al. | Binderless thin films of zeolite-templated carbon electrodes useful for electrochemical microcapacitors with ultrahigh rate performance | |
JP2009537434A (en) | CATALYST COMPOSITION COMPRISING ACTIVATED CARBON AND CARBON NANOTUBE, PROCESS FOR PRODUCING THE SAME, ELECTRODE CONTAINING CATALYTIC COMPOUND, AND SUPERCONDUCTOR | |
Li et al. | NiCo2S4 nanosheets decorated on nitrogen-doped hollow carbon nanospheres as advanced electrodes for high-performance asymmetric supercapacitors | |
Wang et al. | In Situ Intercalation of Bismuth into 3D Reduced Graphene Oxide Scaffolds for High Capacity and Long Cycle‐Life Energy Storage | |
JP2017092303A (en) | Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon | |
KR20140076326A (en) | Super capacitor electrode material with titanate of porous structure and carbon materials and method of preparation of the same | |
JP4935374B2 (en) | Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor | |
Lukatskaya | Capacitive performance of two-dimensional metal carbides | |
KR20240085883A (en) | Manufacturing method for zinc oxide-boron nitride nanotube-cellulose nanofiber composite film and the zinc oxide-boron nitride nanotube-cellulose nanofiber composite film manufactured thereby | |
JP2018006625A (en) | Evaluation method for capacitor performance of electric double layer capacitor | |
JP2003151862A (en) | Continuous formation of film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |