JP2012166980A - Synthetic method of carbide-derived carbon - Google Patents

Synthetic method of carbide-derived carbon Download PDF

Info

Publication number
JP2012166980A
JP2012166980A JP2011029140A JP2011029140A JP2012166980A JP 2012166980 A JP2012166980 A JP 2012166980A JP 2011029140 A JP2011029140 A JP 2011029140A JP 2011029140 A JP2011029140 A JP 2011029140A JP 2012166980 A JP2012166980 A JP 2012166980A
Authority
JP
Japan
Prior art keywords
carbide
solution
cdc
derived carbon
phase material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011029140A
Other languages
Japanese (ja)
Inventor
Chunfeng Hu
ショーフェン フ
Yoshio Sakka
義雄 目
Mishra Mrinalini
ムリナリニ ミシュラ
Salvatore Grasso
サルバトーレ グラッソ
Hidehiko Tanaka
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011029140A priority Critical patent/JP2012166980A/en
Publication of JP2012166980A publication Critical patent/JP2012166980A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To synthesize carbide-derived carbon (CDC) in an environment-friendly mode under a mild condition.SOLUTION: The CDC is produced by etching selectively M and A elements in Mn+1AXphase (n=1, 2 or 3), wherein M is a transition metal, A is a group A element, and X is carbon. A produced CDC has a turbostratic microstructure, or various kinds of barrel-shaped, ribbon-shaped, onion-shaped or bar-shaped forms. Since this process does not use chlorine gas, it is by far environment-friendly in comparison with a process depending on a conventional technology.

Description

本発明はカーバイド誘導炭素(CDC)の合成方法に関し、特に液相中でカーバイドから他の元素を除去することによってCDCを合成する方法に関する。   The present invention relates to a method for synthesizing carbide-derived carbon (CDC), and more particularly to a method for synthesizing CDC by removing other elements from carbide in a liquid phase.

大きな比表面積を持ち、またナノサイズの細孔を有することによって、ナノポーラス炭素には濾過、ガス分離、ガス蓄積、及び電気化学分野への応用の可能性が見出されている。カーバイド誘導炭素(CDC)は、他の多孔質炭素材料に比較して、調節可能かつ狭い細孔サイズ分布を有することが確認されている。通常、CDCは400℃〜1200℃の高温での塩素化プロセスによって製造される。炭素以外の元素は塩素との反応によってカーバイドから選択的にエッチングされる。その結果、得られたCDCは元のカーバイドの形態を保持している。今日まで、SiC、TiC等の二元系のカーバイドやTiSiC、TiAlC等の三元系のカーバイドを使用して成功裏にCDCを作成することができた。しかし、塩素ガスは有毒で環境を汚染しやすいことが知られている。従って、環境にやさしい条件下でCDCを製造する新規な方法を見出すことが緊急に必要とされている。 By having a large specific surface area and nano-sized pores, nanoporous carbon has been found to have potential applications in the fields of filtration, gas separation, gas accumulation, and electrochemical. Carbide derived carbon (CDC) has been confirmed to have a tunable and narrow pore size distribution compared to other porous carbon materials. CDC is usually produced by a chlorination process at a high temperature of 400 ° C to 1200 ° C. Elements other than carbon are selectively etched from the carbide by reaction with chlorine. As a result, the obtained CDC retains its original carbide form. To date, CDCs have been successfully created using binary carbides such as SiC and TiC, and ternary carbides such as Ti 3 SiC 2 and Ti 2 AlC. However, it is known that chlorine gas is toxic and easily pollutes the environment. Accordingly, there is an urgent need to find a new method for producing CDC under environmentally friendly conditions.

本発明の課題は、穏やかな条件の下で環境にやさしい態様でCDCを製造する方法を提供することである。      The object of the present invention is to provide a method for producing CDC in an environmentally friendly manner under mild conditions.

本発明の一側面によれば、以下のステップを有するカーバイド誘導炭素の合成方法が与えられる:Mを早期遷移元素、AをA族元素、XをC、またn=1〜3とするとき、組成式Mn+1AXで表されるMAX相材料を準備し、前記MAX相材料を酸またはアルカリ溶液中に保持して、前記MAX相材料から前記早期遷移元素及びA族元素を除去する。
前記早期遷移元素はTi、V、Cr、Nb、Ta、Zr、Hf、Mo及びScからなる群から選択してよい。
前記A族元素はAl、Ge、Sn、Pb、P、S、Ga、As、Cd、In、Tl及びSiからなる群から選択してよい。
前記MAX相材料はNbAlC及びTiSiCからなる群から選択してよい。
前記MAX相材料は0℃〜200℃の範囲内で1〜600時間、前記溶液中に保持してよい。
前記溶液はNaOH、KOH、HCl、HSO及びHNOからなる群から選択された1つまたは複数の物質の溶液であってよい。
前記溶液の濃度は0.1〜2mol/Lの範囲であってよい。
前記MAX相材料と前記溶液との質量比は1/50〜1/500の範囲であってよい。
前記方法は前記MAX相材料を前記溶液中に保持する前記ステップの後に更に前記溶液のpHの値を7に変更するステップを含んでよい。
前記MAX相材料はバルクまたは粉末の形態であってよい。
According to one aspect of the present invention, there is provided a method for synthesizing a carbide-derived carbon having the following steps: when M is an early transition element, A is a group A element, X is C, and n = 1-3, A MAX phase material represented by a composition formula M n + 1 AX n is prepared, and the MAX phase material is held in an acid or alkaline solution to remove the early transition element and the group A element from the MAX phase material.
The early transition element may be selected from the group consisting of Ti, V, Cr, Nb, Ta, Zr, Hf, Mo and Sc.
The group A element may be selected from the group consisting of Al, Ge, Sn, Pb, P, S, Ga, As, Cd, In, Tl, and Si.
The MAX phase material may be selected from the group consisting of Nb 4 AlC 3 and Ti 3 SiC 2 .
The MAX phase material may be kept in the solution for 1 to 600 hours in the range of 0 ° C to 200 ° C.
The solution may be a solution of one or more substances selected from the group consisting of NaOH, KOH, HCl, H 2 SO 4 and HNO 3 .
The concentration of the solution may be in the range of 0.1 to 2 mol / L.
The mass ratio between the MAX phase material and the solution may be in the range of 1/50 to 1/500.
The method may further include changing the pH value of the solution to 7 after the step of retaining the MAX phase material in the solution.
The MAX phase material may be in bulk or powder form.

本発明による方法は塩素ガスを使用せず、またその廃液は中性であるため、その環境負荷は上で説明した従来技術による方法よりもはるかに低い。   Since the method according to the invention does not use chlorine gas and its waste liquid is neutral, its environmental burden is much lower than the prior art methods described above.

NaOH溶液中でNbAlC粉末から合成されたカーバイド誘導炭素(CDC)の高分解能透過型電子顕微鏡(HRTEM)写真。(a)凝集したCDC、(b)乱層構造CDC、(c)樽状CDC、(d)リボン状CDC、(e)玉葱状CDC、(f)棒状CDC。High resolution transmission electron microscope (HRTEM) photograph of carbide derived carbon (CDC) synthesized from Nb 4 AlC 3 powder in NaOH solution. (A) Aggregated CDC, (b) Turbulent structure CDC, (c) Barrel-shaped CDC, (d) Ribbon-shaped CDC, (e) Onion-shaped CDC, (f) Rod-shaped CDC. NaOH溶液中でNbAlC粒子を分解して得られたCDCのHRTEM写真。(a)CDC粒子とNbAlC粒子の共存状態、(b)CDC粒子とNbAlC粒子との間の境界の拡大写真。HRTEM photograph of CDC obtained by decomposing Nb 4 AlC 3 particles in NaOH solution. (A) Coexistence state of CDC particles and Nb 4 AlC 3 particles, (b) An enlarged photograph of the boundary between CDC particles and Nb 4 AlC 3 particles. HCl溶液中でNbAlC粉末から製造されたCDCのHRTEM写真。(a)乱層構造CDC、(b)樽状CDC、(c)リボン状CDC、(d)棒状CDC。HRTEM photograph of CDC made from Nb 4 AlC 3 powder in HCl solution. (A) Turbulent structure CDC, (b) barrel-shaped CDC, (c) ribbon-shaped CDC, (d) rod-shaped CDC. NaOH溶液中でTiSiC粉末から製造されたCDCのHRTEM写真。(a)リボン状CDC、(b)樽状CDC、(c)チューブ状CDC、(d)針の孔状(needle eye-like)CDC。HRTEM photograph of CDC made from Ti 3 SiC 2 powder in NaOH solution. (A) Ribbon-shaped CDC, (b) Barrel-shaped CDC, (c) Tube-shaped CDC, (d) Needle eye-like CDC. NbAlC前駆体及びTiSiC前駆体から得られたカーバイド誘導炭素についてのラマンスペクトル。Raman spectra for carbide-derived carbon obtained from Nb 4 AlC 3 precursor and Ti 3 SiC 2 precursor.

本発明の発明者は、MAX相中のM元素及びA元素(Mは遷移金属、AはA族元素、Xは炭素)が化学反応により酸性溶液または塩基溶液中に溶け出し、残存した炭素がCDCとして形成され得ることを見出した。この知見に基づき、本願発明者は以下に説明するように本発明を完成したものである。   The inventor of the present invention is that the M element and the A element in the MAX phase (M is a transition metal, A is a group A element, and X is carbon) are dissolved into an acidic solution or a base solution by a chemical reaction, and the remaining carbon is It has been found that it can be formed as a CDC. Based on this knowledge, the present inventor has completed the present invention as described below.

本発明は溶液中でカーバイド誘導炭素(CDC)を製造する方法をサポートする。その出発物質は、Mを遷移金属、AをA族元素、Xを炭素とし、またnを1〜3とするとき、組成式Mn+1AXで表されるMAX相材料である。本発明は以下の合成ステップを含む。 The present invention supports a method for producing carbide derived carbon (CDC) in solution. The starting material is a MAX phase material represented by a composition formula M n + 1 AX n where M is a transition metal, A is a group A element, X is carbon, and n is 1 to 3. The present invention includes the following synthesis steps.

(a)MAX相材料を秤量する。MAX相材料は大きな塊でもよいし、粉末でも良い。 (A) Weigh MAX phase material. The MAX phase material may be a large mass or a powder.

(b)酸性溶液あるいは塩基溶液を準備する。溶液中の酸あるいはアルカリの好ましい濃度は0.1〜2mol/Lであり、より好ましくは0.1〜1mol/Lである。溶媒として脱イオン水を使用する。 (B) Prepare an acidic solution or a base solution. A preferred concentration of acid or alkali in the solution is 0.1 to 2 mol / L, more preferably 0.1 to 1 mol / L. Deionized water is used as the solvent.

(c)MAX相材料を溶液中に入れる。MAX相材料と溶液との質量比は、好ましくは1/500〜1/50の範囲であり、より好ましくは1/500〜1/200である。 (C) Place the MAX phase material into the solution. The mass ratio between the MAX phase material and the solution is preferably in the range of 1/500 to 1/50, more preferably 1/500 to 1/200.

(d)温度を適切な値に設定してそれを好ましくは1〜600時間、より好ましくは300〜600時間、一層好ましくは約360時間、保持する。使用する温度は好ましくは0℃〜200℃、更に好ましくは20℃〜100℃、一層好ましくは25℃である。 (D) Set the temperature to a suitable value and hold it preferably for 1 to 600 hours, more preferably 300 to 600 hours, more preferably about 360 hours. The temperature used is preferably 0 ° C to 200 ° C, more preferably 20 ° C to 100 ° C, and even more preferably 25 ° C.

(e)溶液のpH値を7に変化させてもよい。これは環境汚染を防止するためである。そして、処理されたMAX相材料を溶液から濾過により分離する。製造された直後の試料を脱イオン水にて例えば3〜5回洗浄する。 (E) The pH value of the solution may be changed to 7. This is to prevent environmental pollution. The treated MAX phase material is then separated from the solution by filtration. The sample immediately after being manufactured is washed with deionized water, for example, 3 to 5 times.

(f)試料を空気中で乾燥してそれを清浄なガラス瓶中に入れる。 (F) Dry the sample in air and place it in a clean glass bottle.

上述のプロセスを用い、酸あるいは塩基溶液を使用してMAX相材料中のM元素及びA元素のエッチングによってCDCを合成する。残留した炭素はCDCを形成する。   Using the process described above, CDC is synthesized by etching of M element and A element in the MAX phase material using an acid or base solution. Residual carbon forms CDC.

以下の例はMAX相材料と溶液の各種の組合せによりカーバイド誘導炭素を製造することについて説明している。合成条件を変更してもCDCの形成には影響しないと考えられる。   The following examples illustrate the production of carbide-derived carbon from various combinations of MAX phase materials and solutions. It is considered that changing the synthesis conditions does not affect the formation of CDC.

しかしながら、本発明は本明細書中で説明したものだけに限定されないことに注意しなければならない。本発明の技術的範囲は特許請求の範囲に基づいて定められる。   However, it should be noted that the present invention is not limited to what has been described herein. The technical scope of the present invention is defined based on the claims.

例えば、本発明に使用可能なMAX相材料は、早期遷移金属であるTi、V、Cr、Nb、Ta、Zr、Hf、Mo及びScから選択した少なくとも一つの元素を含むような多様なMAX相材料とすることができる。このようなMAX相材料としては例えばNbAlC及びTiSiCがある。酸性あるいはアルカリ性溶液に使用可能な酸及びアルカリとしては、これに限定するものではないが、NaOH、KOH、HCl、HSO及びHNOなどが挙げられ、これらのうちでNaOH及びHClが好ましい。溶液を作成するため、これらの物質は単独であるいは組み合わせて使用される。 For example, the MAX phase material that can be used in the present invention includes various MAX phases including at least one element selected from Ti, V, Cr, Nb, Ta, Zr, Hf, Mo, and Sc, which are early transition metals. Can be a material. Examples of such a MAX phase material include Nb 4 AlC 3 and Ti 3 SiC 2 . Acids and alkalis that can be used in acidic or alkaline solutions include, but are not limited to, NaOH, KOH, HCl, H 2 SO 4 and HNO 3 , among which NaOH and HCl are preferred. . These materials are used alone or in combination to make a solution.

[実験1]
NbAlCを出発材料として使用し、カーバイド誘導炭素を製造した。0.1gのNbAlC粉末を秤量して20mlのNaOH溶液(1.0mol/L)に投入した。平均粒子サイズは0.91μmであった。100mlのプラスチック瓶を容器として使用した。粉末と溶液の入った瓶を25℃で360時間保持した。溶液のpH値を7に変更したあと、粉末を濾過によって分離し、脱イオン水で3回洗浄した。その後、粉末を空気中で乾燥して透過型電子顕微鏡(TEM)により調べた。図1は製造されたカーバイド誘導炭素の高分解能透過型電子顕微鏡(HRTEM)写真を示す。NbAlC粒子はエッチングされ、凝集したCDCを形成したことがわかる(図1(a))。出来上がったCDCの拡大像である図1(b)〜(f)は、上のようにして合成されたCDCの各所に観察することができる乱層構造、樽状、リボン状、玉葱状及び棒状の微細構造等の形態を示している。これらの黒鉛状炭素の構造は多壁ナノチューブと同様に粒子の縁でねじれている。原子層同士の間隔は約0.34nmであった。また、エッチング過程は、図2に示すように外側から内側へ進行することがわかる。図2(a)では、外側の層は規則的な炭素であり、中間層はアモルファス炭素、つまり規則性のない炭素であるのに対して、中心部はNbAlC粒からできている。NbAlC粒子は最初エッチングされて規則性のない炭素(図2(b))となり、次にこのアモルファス炭素が変化して規則性のある炭素になったと結論付けられる。更に、ラマン解析(図5中のカーブ(a))によれば、得られたままの状態のCDCは1350cm−1(Dバンド)及び1590cm−1(Gバンド)の2つのバンドを示すが、これは欠陥のある不規則な微細構造を表している。
[Experiment 1]
Nb 4 AlC 3 was used as a starting material to produce carbide derived carbon. 0.1 g of Nb 4 AlC 3 powder was weighed and put into 20 ml of NaOH solution (1.0 mol / L). The average particle size was 0.91 μm. A 100 ml plastic bottle was used as the container. The bottle containing the powder and solution was held at 25 ° C. for 360 hours. After changing the pH value of the solution to 7, the powder was separated by filtration and washed 3 times with deionized water. Thereafter, the powder was dried in air and examined with a transmission electron microscope (TEM). FIG. 1 shows a high-resolution transmission electron microscope (HRTEM) photograph of the manufactured carbide-derived carbon. It can be seen that the Nb 4 AlC 3 particles were etched to form aggregated CDC (FIG. 1 (a)). FIGS. 1B to 1F, which are enlarged images of the completed CDC, are a turbulent layer structure, barrel shape, ribbon shape, onion shape, and rod shape that can be observed in various places of the CDC synthesized as described above. The form of the fine structure etc. is shown. These graphitic carbon structures are twisted at the edges of the particles, similar to multi-walled nanotubes. The distance between the atomic layers was about 0.34 nm. It can also be seen that the etching process proceeds from the outside to the inside as shown in FIG. In FIG. 2A, the outer layer is regular carbon, and the intermediate layer is amorphous carbon, that is, non-regular carbon, whereas the central portion is made of Nb 4 AlC 3 grains. It can be concluded that the Nb 4 AlC 3 particles were first etched to become non-ordered carbon (FIG. 2 (b)), and then this amorphous carbon changed to become regular carbon. Furthermore, according to the Raman analysis (curve in FIG. 5 (a)), but the CDC state as obtained shows two bands of 1350 cm -1 (D band) and 1590 cm -1 (G band), This represents a defective irregular microstructure.

[実験2]
NbAlCを出発材料として使用し、カーバイド誘導炭素を製造した。0.1gのNbAlC粉末を秤量して40mlのHCl溶液(0.1mol/L)に投入した。平均粒子サイズは0.91μmであった。100mlのプラスチック瓶を容器として使用した。粉末と溶液の入った瓶を25℃で360時間保持した。溶液のpH値を7に変更した後、粉末を濾過によって分離し、脱イオン水で3回洗浄した。処理された粉末をHRTEMを使用して調べることで、乱層構造、樽状、リボン状及び棒状のCDCが存在することが観察された(図3(a)〜(d))。原子層同士の間隔は約0.34nmであった。ラマン解析に基づいて、Dバンド(1350cm−1)及びGバンド(1590cm−1)が確認された(図5中のカーブ(b))。この結果はCDCの欠陥のある不規則な微細構造を示している。
[Experiment 2]
Nb 4 AlC 3 was used as a starting material to produce carbide derived carbon. 0.1 g of Nb 4 AlC 3 powder was weighed and put into 40 ml of HCl solution (0.1 mol / L). The average particle size was 0.91 μm. A 100 ml plastic bottle was used as the container. The bottle containing the powder and solution was held at 25 ° C. for 360 hours. After changing the pH value of the solution to 7, the powder was separated by filtration and washed 3 times with deionized water. By examining the treated powder using HRTEM, it was observed that a CDC in a turbulent structure, barrel shape, ribbon shape and rod shape was present (FIGS. 3A to 3D). The distance between the atomic layers was about 0.34 nm. Based on the Raman analysis, D-band (1350 cm -1) and G band (1590 cm -1) was confirmed (the curve in Figure 5 (b)). This result shows an irregular microstructure with CDC defects.

[実験3]
TiSiCを出発材料として使用し、カーバイド誘導炭素を合成した。0.1gのTiSiCを秤量して20mlのNaOH溶液(1.0mol/L)に投入した。平均粒子サイズは0.36μmであった。100mlのプラスチック瓶を容器として使用した。粉末と溶液の入った瓶を25℃で360時間保持した。溶液のpH値を7に変更して濾過した後、処理された粉末を脱イオン水を使って3回洗浄した。この粉末をHRTEMによって調べた。図4(a)〜(d)はCDCの顕微鏡写真を示す。明らかに、ナノ構造の炭素が見出され、このカーボンはリボン状、樽状、チューブ状及び針の孔状の形態を示している。2つの原子層同士の距離は約0.34nmであった。更に、ラマン解析により、図5のカーブ(c)が示すようにDバンド(1350cm−1)及びGバンド(1567cm−1)が確認されたことで、CDCの欠陥のある不規則な微細構造の存在が示される。
[Experiment 3]
Carbide-derived carbon was synthesized using Ti 3 SiC 2 as a starting material. 0.1 g of Ti 3 SiC 2 was weighed and put into 20 ml of NaOH solution (1.0 mol / L). The average particle size was 0.36 μm. A 100 ml plastic bottle was used as the container. The bottle containing the powder and solution was held at 25 ° C. for 360 hours. After changing the pH value of the solution to 7 and filtering, the treated powder was washed 3 times with deionized water. This powder was examined by HRTEM. 4 (a) to 4 (d) show photomicrographs of CDC. Clearly, nanostructured carbon is found, which shows ribbon, barrel, tube and needle hole morphology. The distance between the two atomic layers was about 0.34 nm. Further, the Raman analysis, that D band (1350 cm -1) and G band (1567cm -1) was observed as shown by curve (c) in FIG. 5, the irregular microstructure with defects of CDC Existence is indicated.

カーバイド誘導炭素合成方法には実施に当たって多様な変更及び修正を行うことが可能となることを指摘しなければならない。このような変更及び修正は本発明の精神及び範囲を超えるものではなく、またそれに伴う効果を失わせるものでもない。従って、そのような全ての変更及び修正は添付の特許請求の範囲に包含される。   It should be pointed out that various changes and modifications can be made in the implementation of the carbide-derived carbon synthesis method. Such changes and modifications do not depart from the spirit and scope of the present invention and do not impair the attendant effects. Accordingly, all such changes and modifications are included within the scope of the appended claims.

上で説明したように、本発明は穏やかな条件下で塩素ガスなしでCDCを合成する方法を提供するので、従来技術の方法によるCDCの製造が引き起こす環境負荷を低減することができる。   As explained above, the present invention provides a method for synthesizing CDC under mild conditions and without chlorine gas, thus reducing the environmental burden caused by the production of CDC by prior art methods.

米国公開特許2009/0258782A1US Published Patent Application 2009 / 0258782A1 米国公開特許2009/0301902A1US Published Patent 2009 / 0301902A1 米国特許7,744,843US Patent 7,744,843

Y. Gogotsi et al., “Nanoporous Carbide-derived Carbon with Tunable Pore Size”, Nature Mater., 2: 591-4 (2003).Y. Gogotsi et al., “Nanoporous Carbide-derived Carbon with Tunable Pore Size”, Nature Mater., 2: 591-4 (2003). J. Chmiola et al., “Monolithic Carbide-derived Carbon Films for Micro-supercapacitors”, Science, 328: 480-3 (2010).J. Chmiola et al., “Monolithic Carbide-derived Carbon Films for Micro-supercapacitors”, Science, 328: 480-3 (2010). E. Urones-Garrote et al., “Electron Microscopy Study of Porous Carbide-derived Carbons Obtained from B4C”, J. Argentine Chem. Soc., 97: 13-24 (2009).E. Urones-Garrote et al., “Electron Microscopy Study of Porous Carbide-derived Carbons Obtained from B4C”, J. Argentine Chem. Soc., 97: 13-24 (2009). E. N. Hoffman et al., “Synthesis of Carbide-derived Carbon by Chlorination of Ti2AlC”, Chem. Mater., 17: 2317-22 (2005).E. N. Hoffman et al., “Synthesis of Carbide-derived Carbon by Chlorination of Ti2AlC”, Chem. Mater., 17: 2317-22 (2005). S. -H. Yeon et al., “Enhanced Volumetric Hydrogen and Methane Storage Capacity of Monolithic Carbide-derived Carbon”, Microporous and Mesoporous Mater., 131: 423-8 (2010).S. -H. Yeon et al., “Enhanced Volumetric Hydrogen and Methane Storage Capacity of Monolithic Carbide-derived Carbon”, Microporous and Mesoporous Mater., 131: 423-8 (2010). M. Kormann et al., “Processing of Carbide-derived Carbon (CDC) using Biomorphic Porous Titanium Carbide Ceramics”, J. Eur. Ceram. Soc., 28: 1297-1303 (2008).M. Kormann et al., “Processing of Carbide-derived Carbon (CDC) using Biomorphic Porous Titanium Carbide Ceramics”, J. Eur. Ceram. Soc., 28: 1297-1303 (2008).

Claims (10)

以下のステップ(a)及び(b)を設けたカーバイド誘導炭素の合成方法。
(a)組成式Mn+1AXで表されるMAX相材料を準備する。ここでMは早期遷移元素、AはA族元素、XはC、n=1〜3である。
(b)前記MAX相材料を酸またはアルカリ溶液中に保持して、前記MAX相材料から前記早期遷移元素及びA族元素を除去する。
A method for synthesizing carbide-derived carbon provided with the following steps (a) and (b).
(A) A MAX phase material represented by a composition formula M n + 1 AX n is prepared. Here, M is an early transition element, A is a group A element, X is C, and n = 1 to 3.
(B) The MAX phase material is held in an acid or alkali solution to remove the early transition element and group A element from the MAX phase material.
前記早期遷移元素はTi、V、Cr、Nb、Ta、Zr、Hf、Mo及びScからなる群から選択される、請求項1に記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to claim 1, wherein the early transition element is selected from the group consisting of Ti, V, Cr, Nb, Ta, Zr, Hf, Mo, and Sc. 前記A族元素はAl、Ge、Sn、Pb、P、S、Ga、As、Cd、In、Tl及びSiからなる群から選択される、請求項1または2に記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to claim 1 or 2, wherein the group A element is selected from the group consisting of Al, Ge, Sn, Pb, P, S, Ga, As, Cd, In, Tl, and Si. . 前記MAX相材料はNbAlC及びTiSiCからなる群から選択される、請求項2または3に記載のカーバイド誘導炭素の合成方法。 The method for synthesizing carbide-derived carbon according to claim 2 or 3, wherein the MAX phase material is selected from the group consisting of Nb 4 AlC 3 and Ti 3 SiC 2 . 前記MAX相材料を0℃〜200℃の範囲内で1〜600時間、前記溶液中に保持する、請求項1から4の何れかに記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to any one of claims 1 to 4, wherein the MAX phase material is held in the solution within a range of 0 ° C to 200 ° C for 1 to 600 hours. 前記溶液はNaOH、KOH、HCl、HSO及びHNOからなる群から選択された1つまたは複数の物質の溶液である、請求項1から5の何れかに記載のカーバイド誘導炭素の合成方法。 The synthesis of carbide-derived carbon according to any one of claims 1 to 5, wherein the solution is a solution of one or more substances selected from the group consisting of NaOH, KOH, HCl, H 2 SO 4 and HNO 3. Method. 前記溶液の濃度は0.1〜2mol/Lの範囲である、請求項1から6の何れかに記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to any one of claims 1 to 6, wherein the concentration of the solution is in a range of 0.1 to 2 mol / L. 前記MAX相材料と前記溶液との質量比は1/50〜1/500の範囲である、請求項1から7の何れかに記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to any one of claims 1 to 7, wherein a mass ratio between the MAX phase material and the solution is in a range of 1/50 to 1/500. 前記MAX相材料を前記溶液中に保持する前記ステップの後に更に前記溶液のpHの値を7に変更するステップを含む、請求項1から8の何れかに記載のカーバイド誘導炭素の合成方法。   The method for synthesizing a carbide-derived carbon according to any one of claims 1 to 8, further comprising a step of changing the pH value of the solution to 7 after the step of holding the MAX phase material in the solution. 前記MAX相材料はバルクまたは粉末の形態である、請求項1から9の何れかに記載のカーバイド誘導炭素の合成方法。   The method for synthesizing carbide-derived carbon according to claim 1, wherein the MAX phase material is in a bulk or powder form.
JP2011029140A 2011-02-14 2011-02-14 Synthetic method of carbide-derived carbon Pending JP2012166980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029140A JP2012166980A (en) 2011-02-14 2011-02-14 Synthetic method of carbide-derived carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029140A JP2012166980A (en) 2011-02-14 2011-02-14 Synthetic method of carbide-derived carbon

Publications (1)

Publication Number Publication Date
JP2012166980A true JP2012166980A (en) 2012-09-06

Family

ID=46971506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029140A Pending JP2012166980A (en) 2011-02-14 2011-02-14 Synthetic method of carbide-derived carbon

Country Status (1)

Country Link
JP (1) JP2012166980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701539B2 (en) 2013-03-15 2017-07-11 West Virginia University Research Corporation Process for pure carbon production
US9909222B2 (en) 2014-10-21 2018-03-06 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
US11332833B2 (en) 2016-04-20 2022-05-17 West Virginia Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513529A (en) * 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. Supercapacitor and method of manufacturing the supercapacitor
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
JP2008542184A (en) * 2005-06-01 2008-11-27 ドレクセル ユニバーシティー Method for producing nanoporous carbide-derived carbon with increased gas storage capacity
US20090017332A1 (en) * 2006-02-17 2009-01-15 Newcastle Innovation Limited Crystalline ternary ceramic precursors
US20090036302A1 (en) * 2005-11-23 2009-02-05 Yury Gogotsi Process for producing nanoporous carbide derived carbon with large specific surface area

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513529A (en) * 2000-11-09 2004-04-30 エフオーシー フランケンブルク オイル カンパニー エスト. Supercapacitor and method of manufacturing the supercapacitor
JP2008542184A (en) * 2005-06-01 2008-11-27 ドレクセル ユニバーシティー Method for producing nanoporous carbide-derived carbon with increased gas storage capacity
US20090301902A1 (en) * 2005-06-01 2009-12-10 Yury Gogotsi Process for producing nanoporous carbide-derived carbon with increased gas storage capability
US20090036302A1 (en) * 2005-11-23 2009-02-05 Yury Gogotsi Process for producing nanoporous carbide derived carbon with large specific surface area
JP2009517314A (en) * 2005-11-23 2009-04-30 ドレクセル・ユニバーシティー Method for producing nanoporous carbide-derived carbon having a high specific surface area
US20090017332A1 (en) * 2006-02-17 2009-01-15 Newcastle Innovation Limited Crystalline ternary ceramic precursors
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
US20080169749A1 (en) * 2006-10-24 2008-07-17 Samsung Sdi Co., Ltd. Carbide derived carbon, emitter for cold cathode including the same and electron emission device including the emitter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014029682; J. TRAVAGLINI et al.: 'The corrosion behavior of Ti3SiC2 in common acids and dilute NaOH' Corrosion Science , 2003, 45, 1313-1327. *
JPN6014029683; V. D. JOVIC et al.: 'Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4' Corrosion Science , 2006, 48, 4274-4282. *
JPN6014029686; S. REN et al.: 'Tribocorrosion behavior of Ti3SiC2 in the dilute and concentrated sulfuric acid solutions' Wear , 2010, 269, 50-59. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701539B2 (en) 2013-03-15 2017-07-11 West Virginia University Research Corporation Process for pure carbon production
US9764958B2 (en) 2013-03-15 2017-09-19 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10035709B2 (en) 2013-03-15 2018-07-31 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10144648B2 (en) 2013-03-15 2018-12-04 West Virginia University Research Corporation Process for pure carbon production
US10494264B2 (en) 2013-03-15 2019-12-03 West Virginia University Research Corporation Process for pure carbon production, compositions, and methods thereof
US10696555B2 (en) 2013-03-15 2020-06-30 West Virginia University Research Corporation Process for pure carbon production
US9909222B2 (en) 2014-10-21 2018-03-06 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
US11306401B2 (en) 2014-10-21 2022-04-19 West Virginia University Research Corporation Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
US11332833B2 (en) 2016-04-20 2022-05-17 West Virginia Research Corporation Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds

Similar Documents

Publication Publication Date Title
Kaplan et al. Current and future directions in electron transfer chemistry of graphene
Zheng et al. Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor
Zheng et al. One-step preparation of single-crystalline β-MnO2 nanotubes
JP7131543B2 (en) Method for producing surface-treated carbon nanostructure
Yu et al. Porous tubular carbon nanorods with excellent electrochemical properties
Zhang et al. Effect of the boron content on the steam activation of boron-doped diamond electrodes
Scarselli et al. Applications of three-dimensional carbon nanotube networks
US20230073650A1 (en) Carbon nanotube (cnt)-based three-dimensional ordered macroporous (3dom) material and preparation method thereof
JP2012166980A (en) Synthetic method of carbide-derived carbon
JPWO2018180901A1 (en) Fibrous carbon nanostructure dispersion, method for producing the same, and fibrous carbon nanostructure
Chen et al. Carbide-derived nanoporous carbon and novel core− shell nanowires
Ravindra et al. Hydrogen storage in palladium decorated carbon nanotubes prepared by solventless method
Dennis et al. Rod-like carbon nanostructures produced by the direct pyrolysis of α-cyclodextrin
Kong Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template
Eswaramoorthi et al. Anodic titanium oxide: a new template for the synthesis of larger diameter multi-walled carbon nanotubes
Chen et al. Controlled synthesis of hierarchically porous β-Ni (OH) 2 microspheres and NiO nanoparticles with the optical property of NiO nanoparticles
KR100827951B1 (en) Synthesizing carbon nanotubes directly on nickel foil
Kasi et al. Synthesis of carbon nanotube and carbon nanofiber in nanopore of anodic aluminum oxide template by chemical vapor deposition at atmospheric pressure
JP2007022875A (en) Composite material and molded item using it
JP2005154200A (en) Method for producing carbon nanotube
Christian et al. Synthesis of high-density graphene foams using nanoparticle templates
JP3952478B2 (en) Boron-containing carbon nanostructure and manufacturing method thereof
JP2004277201A (en) Carbon nanotube
Faraji et al. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth
JP2011168429A (en) Nanocarbon material encapsulating metal and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106