WO2006104257A1 - ガスバリア材及びその製造方法 - Google Patents

ガスバリア材及びその製造方法

Info

Publication number
WO2006104257A1
WO2006104257A1 PCT/JP2006/307279 JP2006307279W WO2006104257A1 WO 2006104257 A1 WO2006104257 A1 WO 2006104257A1 JP 2006307279 W JP2006307279 W JP 2006307279W WO 2006104257 A1 WO2006104257 A1 WO 2006104257A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
carboxyl group
barrier material
resin
acid
Prior art date
Application number
PCT/JP2006/307279
Other languages
English (en)
French (fr)
Inventor
Aki Endo
Hiroshi Sasaki
Yusuke Obu
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to JP2007510585A priority Critical patent/JP5256487B2/ja
Priority to US11/910,397 priority patent/US7956133B2/en
Priority to EP20060731227 priority patent/EP1865020B1/en
Priority to AU2006229439A priority patent/AU2006229439A1/en
Priority to CN2006800108382A priority patent/CN101151305B/zh
Publication of WO2006104257A1 publication Critical patent/WO2006104257A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31739Nylon type
    • Y10T428/31743Next to addition polymer from unsaturated monomer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/3175Next to addition polymer from unsaturated monomer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a gas barrier material, and more particularly, a gas barrier material having excellent gas barrier properties and water resistance, and capable of maintaining excellent gas barrier properties even after being placed under high-temperature wet heat conditions such as retort treatment.
  • a gas barrier material having excellent gas barrier properties and water resistance, and capable of maintaining excellent gas barrier properties even after being placed under high-temperature wet heat conditions such as retort treatment.
  • gas barrier resins Conventionally, various types of gas barrier resins have been used, and in particular, polyvinylidene chloride, polyacrylonitrile, ethylene vinyl alcohol copolymer and the like are known as gas barrier resins.
  • polyvinylidene chloride polyacrylonitrile tends to refrain from its use due to environmental problems.
  • Ethylene vinyl alcohol copolymer has a high gas barrier humidity dependency, and the gas barrier property decreases under high humidity conditions. There was a problem to do.
  • films in which an inorganic substance is vapor-deposited on the surface of a base material are also known, but these films are very expensive, and the vapor-deposited film is a flexible base material. Or, it has a problem of poor adhesion to other resin layers.
  • a gas / J film in which a film comprising an aqueous polymer A, a water-soluble or water-dispersible polymer B, and an inorganic layered compound is formed on a substrate
  • a gas barrier film formed by coating a layer containing a metal compound on the surface of a molding layer made of a mixture of a poly (meth) acrylic acid polymer and a polyalcohol
  • the gas barrier film described in JP-A No. 2000-931 requires high-temperature and long-time heat treatment for curing the coating film, and the gas barrier property described in JP-A No. 2004-115776. Even in the case of coatings, it is necessary to perform heat treatment at a high temperature when the coating film is cured in a short time, and these gas barrier materials have a great influence on the plastic substrate and have problems in productivity.
  • the gas barrier materials described in Japanese Patent Application Laid-Open No. 2000-931 and Japanese Patent Application Laid-Open No. 2004-115776 improve gas barrier properties by utilizing ionic crosslinking with metal.
  • a layer containing a metal compound is applied.
  • the amount of metal contained is elementally analyzed by EDX (energy dispersive X-ray spectroscopy)
  • EDX energy dispersive X-ray spectroscopy
  • the abundance of metal elements is known, the amount of metal elements actually ion-bridged is unknown.
  • Japanese Patent Application Laid-Open No. 2004-115776 only the amount charged with a metal compound is described, and the amount of metal element that is actually ionically crosslinked is still unknown.
  • no ionic crosslinking amount necessary for imparting gas barrier properties under high humidity conditions and a gas barrier material having the crosslinking amount have been found.
  • the object of the present invention is excellent in gas barrier properties, retort resistance, and flexibility, particularly under high humidity conditions, without causing the above-mentioned problems, and the coating film can be cured at a low temperature in a short time. It is to provide a gas barrier material with excellent productivity.
  • a carboxyl group corresponding to an amount of at least an acid value of 330 mg KOHZg of a resin having a carboxyl group corresponding to an amount of acid value of 58 Omg KOH / g or more is ionically crosslinked.
  • a gas barrier material is provided.
  • a carboxyl group in the resin is cross-linked by a polyvalent metal ion;
  • the resin comprises a copolymer containing, as essential components, a carboxyl group-containing vinyl monomer (A) and a vinyl monomer (B) having a functional group capable of reacting with each other or with a carboxyl group.
  • the functional group in the vinyl monomer (B) reacts with each other or with a carboxyl group to form a crosslinked structure
  • the vinyl monomer (B) has an aldehyde group or a glycidyl group
  • At least one of the ring structures (d) contained in the compound (D) is an oxazoline group or a derivative thereof,
  • the compound (D) is 2, 2′-bis (2-oxazoline).
  • a gas barrier precursor made of a resin having a carboxyl group corresponding to an acid value of 58 Omg KOHZg or more is used, and a polyvalent metal compound is converted to 90 to 200 Ommo I / L in terms of metal atoms.
  • the treatment is an immersion treatment of a gas barrier precursor in water containing a polyvalent metal.
  • a packaging material comprising a layer made of the gas barrier material provided on the surface of a plastic substrate or between plastic layers.
  • the gas barrier material of the present invention has excellent gas barrier properties under high humidity conditions, and the oxygen transmission rate is 20 cc / m under high humidity conditions of a relative humidity of 80%. Excellent gas barrier properties of 2 days / atm or less are possible. Further, according to the present invention, the amount of ionic crosslinking necessary to impart gas barrier properties under high humidity conditions is clear, and it is possible to reliably impart excellent gas barrier properties under high humidity conditions to gas barrier materials. Become.
  • a vinyl monomer (A) containing a carboxyl group and a vinyl monomer (B) having a functional group capable of reacting with each other or with a force oxyl group An ether bond is formed in the carbon that forms a double bond between the nitrogen-containing gas barrier resin or the carboxyl group-containing polymer (C) consisting of a copolymer as an essential component, and oxygen in the ether bond.
  • An important feature of the gas spear material of the present invention is that a carboxyl group corresponding to an amount of at least an acid value of 33 Omg KOH g of a resin having a carboxyl group corresponding to an amount of an acid value of 58 Omg KOHZg or more is ionically crosslinked. This makes it possible to exhibit excellent gas barrier properties even under high humidity conditions.
  • a resin having a carboxyl group corresponding to an acid value of 58 OmgKOHZg or more has an excellent gas barrier property under low humidity conditions, but has an unreacted free carboxyl group in the resin. Therefore, there is a problem that the gas leakage property is lowered under high humidity conditions.
  • the acid value of the resin containing carboxyl groups and the amount of carboxyl groups to be ionically crosslinked are related to the gas barrier properties under high humidity conditions. This has a critical significance, and this is clear from the results of the examples described later.
  • the resin contains a carboxyl group equivalent to an acid value of 58 Omg KOHZg or more
  • the oxygen permeation amount is large as shown in Table 1 under high humidity conditions (80% RH), making it a gas-pariatable.
  • the gas barrier material of the present invention in which the carboxyl group corresponding to an amount of 33 Omg KOHZg or more is ion-crosslinked has a remarkable oxygen permeability under high humidity conditions (80% RH) before and after ion crosslinking. It is clear that the gas barrier properties under high humidity conditions are remarkably improved (Examples 1 to 18).
  • a gas barrier precursor comprising a resin having a carboxyl group corresponding to an amount of 58 Omg KOHZg or more.
  • FIG. 1 is a view showing a cross-sectional structure of the gas barrier material prepared in Example 1.
  • FIG. 1 is a view showing a cross-sectional structure of the gas barrier material prepared in Example 1.
  • FIG. 2 is a view showing the cross-sectional structure of the laminate produced in Example 17.
  • FIG. 3 is a view showing a cross-sectional structure of a gas barrier material having an anchor layer prepared in Example 12.
  • the gas barrier performance is determined by the combination of the acid value of the resin used and the acid value involved in ionic crosslinking. Therefore, it is important that the resin used in the present invention has a carboxyl group corresponding to an acid value of 58 Omg KOHZg or more, and among them, a carboxyl group corresponding to at least 33 Omg KOHZg or more is ionically crosslinked. It is.
  • the acid value of the resin is 65 Omg KOH / g or more, of which at least 40 Omg KOHZg or more Carboxyl group Is preferably ionically crosslinked.
  • the acid value of the resin is 650 to 95 Omg KOHZg, and that a carboxyl group corresponding to at least 50 Omg KOHZg is ion-crosslinked.
  • the resin has a force lpoxyl group corresponding to an acid value of 58 Omg KOHZg or more, at least a carboxyl group force equivalent to the amount of 33 Omg KOH Zg ⁇ ionically crosslinked.
  • a resin containing a carboxyl group corresponding to an acid value of 58 Omg KOHZg or more is preferable.
  • the functional groups of the compounds react with each other or with a carboxyl group to form a crosslinked structure, or
  • An ether bond is formed in the carbon that forms a double bond between the carboxyl group-containing polymer (C) and nitrogen, and contains two ring structures (d) containing oxygen in the ether bond.
  • a crosslinked structure can be formed by the reaction of the carboxyl group of the carboxyl group-containing polymer (C) with the ring structure (d) of the compound (D),
  • the copolymer is composed of a highly hydrogen-bonding copolymer having a high degree of hydrogen bond, it is possible to develop a good gas barrier property.
  • the functional group rich in reactivity derived from the vinyl monomer (B) is liberated in the copolymer.
  • gas barrier properties that can withstand high humidity conditions are provided.
  • the above polymer (C) is a high hydrogen bonding polymer having a high degree of hydrogen bonding. Therefore, it is possible to express a good gas barrier property.
  • Above polymer (C) is a high hydrogen bonding polymer having a high degree of hydrogen bonding. Therefore, it is possible to express a good gas barrier property.
  • the reaction between the carboxyl group of (C) and the ring structure (d) of the above compound (D) allows the polymer (C) to have a high hydrogen bonding property without interfering with the polymer chain of the above polymer (C). It is possible to form a cross-linked structure, and the formed cross-linked site is also composed of an amide ester bond, which is an effective structure for gas barrier properties, so that it has gas barrier properties that can withstand some high humidity conditions. ing.
  • the remaining unreacted free carboxyl group of the gas barrier resin in which such a crosslinked structure by a covalent bond is formed is ionically crosslinked, thereby improving water resistance and further excellent high humidity conditions. It is possible to remarkably improve the gas barrier property below, and to exhibit excellent retort resistance.
  • carboxyl group-containing vinyl monomer (A) examples include, but are not limited to, mono- or dicarboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, maleic anhydride, kutonic acid, and fumaric acid. Can be mentioned.
  • the vinyl monomer (B) having a functional group capable of reacting with each other or with a carboxyl group is preferably one having a reactive functional group such as an aldehyde group or a glycidyl group, but is not limited thereto.
  • Acrolein acrylic aldehyde
  • methacrolein methacrylaldehyde
  • glycidyl acrylate glycidyl methacrylate and the like can be suitably used.
  • a copolymer of the vinyl monomer (A) and the vinyl monomer (B) constituting the gas barrier resin that can be suitably used in the present invention is a vinyl polymer (A) and a vinyl monomer (B) in the copolymer.
  • At least 30% or more of the functional groups derived from the vinyl monomer (B) in the copolymer are free functional groups derived from the vinyl monomer (B) to be a cross-linking point between the copolymers.
  • it is preferably present at a rate of 50 to 100%.
  • the method for polymerizing the gas barrier resin is not particularly limited, but is preferably polymerized by radical polymerization, and the polymerization mode is preferably solution polymerization, and a non-aqueous solvent is particularly preferably used as the polymerization solvent. .
  • the copolymer has a free functional group that becomes a cross-linking point, for example, an aldehyde group.
  • the free aldehyde group in the copolymer hydrates with water and the crosslinking point is reduced, so that the gas barrier property is inferior. become.
  • the polymerization solvent examples include methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, tetrahydrofuran, N, N-dimethylformamide, ethyl acetate, toluene and the like.
  • alcohol and cyclic ether are used.
  • a mixed solvent, particularly a mixed solvent of isopropyl alcohol and tetrahydrofuran can be preferably used.
  • the mixing ratio of the alcohol and the cyclic ether in the mixed solvent is preferably in the range of 3:97 to 20:80, particularly 5:95 to 10:90 in terms of weight ratio. If the amount of alcohol is less than the above range, the polymerization efficiency is poor. On the other hand, if the amount of alcohol is more than the above range, the retort resistance of the resulting copolymer may be impaired.
  • Examples of the polymerization initiator used for the polymerization of the copolymer include conventionally known benzoyl peroxide, cumene hydroperoxide, tert-butyl peroxide, diisopropyl.
  • Peroxides such as oral pyrpercarbonate, di-tert-butyl peroxide, tert-butyl peroxybenzoate, inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, 2, 2 Radical polymerization initiators such as azo compounds such as —azobisisobutyronitrile, 2,2-azobis (2-methylpropionamidine) dihydrochloride, 4,4-azobis (4-cyananopentanoic acid) Among them, an azo compound can be preferably used.
  • the blending amount of the radical initiator is not particularly limited, but generally it is preferably in the range of 0.005 to 0.1 mol% with respect to the total amount of the vinyl monomers (A
  • the polymerization temperature is preferably in the range of 20 to 703 ⁇ 4, particularly 25 to 55 ° C. When the polymerization temperature is lower than the above range, the polymerization rate is low, and when the polymerization temperature is higher than the above range, gelation or the like Is not preferable.
  • the polymerization time varies depending on the compositions and amounts of the vinyl monomers (A) and (B), but is generally in the range of 0.5 to 144 hours, particularly 2 to 48 hours.
  • the gas barrier resin preferably used in the present invention 5000 to 1 50,000, is especially preferred having a number average molecular weight of 10000 to 1 00000.
  • an ether bond is formed on carbon that forms a double bond between the carboxyl group-containing polymer (C) and nitrogen.
  • a compound (D) containing two ring structures (d) containing oxygen in the ether bond, wherein the carboxyl group of the carboxyl group-containing polymer (C) and the ring of the compound (D) A gas barrier resin in which a crosslinked structure is formed by the reaction of the structure (d) can be suitably used.
  • the force lpoxyl group of the carboxyl group-containing polymer (C) reacts with the ring structure (d) of the compound (D) to form an amide ester, and an amide ester bond is formed at the cross-linked portion.
  • gas barrier resin exhibits excellent gas barrier properties.
  • the side chain force Lupoxyl group has a high hydrogen bonding property and a strong cohesive force to form a basic structure with excellent gas barrier properties. Can do.
  • An amide ester bond which is a structure effective for gas barrier properties, can be formed by a reaction between a carboxyl group as a polymer side chain and a ring structure (d) of a compound (D) as a crosslinking component.
  • carboxyl group-containing polymer (C) examples include, but are not limited to, a homopolymer or a copolymer of a monomer having a carboxyl group such as polyacrylic acid, polymethacrylic acid, polymaleic acid, polyitaconic acid, acrylic acid-methacrylic acid copolymer.
  • examples thereof include polymers and partially neutralized products thereof, and it is preferable to use polyacrylic acid or polymethacrylic acid.
  • the partially neutralized product of the polycarboxylic acid polymer can be partially neutralized with a metal hydroxide salt such as sodium hydroxide or potassium hydroxide, ammonia or the like.
  • the degree of neutralization of the partially neutralized product is not particularly limited, but is preferably 30% or less in terms of a molar ratio to the carboxyl group. If it is more than the above range, the hydrogen bonding property of the carboxyl group is lowered and the gas barrier property is lowered.
  • the weight average molecular weight of the polycarboxylic acid polymer is not particularly limited, but is preferably in the range of 5 0 00 to 1 5 0 0 0 0 0 0, particularly 1 0 0 0 0 0 to 1 0 0 0 0 0 0. .
  • the ring structure that does not contain oxygen in the ether bond as shown in the following formula (2) does not cause a cross-linking reaction to form an amide ester bond with the polycarboxylic acid polymer.
  • a single ring structure cannot be bridged.
  • Three or more are not preferable because the structure of the cross-linking points spreads three-dimensionally and a dense cross-linking structure with excellent gas barrier properties cannot be formed.
  • the compound (D) used in the gas barrier material of the present invention contains two ring structures (d) as described above, and such ring structures may have two identical ring structures or different ring structures. However, it is preferable that at least one is an oxazoline group or a derivative thereof.
  • Examples of the compound (D) having two such ring structures (d) include, but are not limited to, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-1,2-oxazoline) ), 2,2'-bis (5-methyl-2-oxazoline), 2,2 'monobis (5,5, monodimethyl-2-oxazoline), 2,2'-bis (4, 4, 4', 4 '-Tetramethyl-2-oxazoline), 2, 2'- p-phenylene bis (2-ox) PT / JP2006 / 307279
  • the cross-linked portion formed by the strong lpoxyl group-containing polymer (C) and the compound (D) is formed by an aliphatic chain. Therefore, among the compounds (D), those having no aromatic ring can be preferably used, and 2,2′-bis (2-oxazoline) can be particularly preferably used.
  • the gas barrier material of the present invention is a step before ionic crosslinking, PT / JP2006 / 307279
  • a multilayer gas barrier precursor in which a coating solution made of a resin having a carboxyl group corresponding to an acid value of not less than 5 8 O mg K O HZ g is applied to a plastic substrate and then heated to form a crosslinked structure;
  • the gas barrier precursor thus obtained can be obtained by ion crosslinking, and it is particularly preferable to form the gas barrier precursor using a coating solution.
  • a coating liquid can be prepared by dissolving or dispersing a gas barrier resin obtained by solution polymerization of a monomer (B) in a solvent and, if necessary, adding an acid catalyst or an inorganic dispersion.
  • the gas barrier resin is preferably contained in the coating solution at a solid content concentration of 3 to 80% by weight, particularly 5 to 50% by weight.
  • a solid content concentration 3 to 80% by weight, particularly 5 to 50% by weight.
  • the amount is less than the above range, it is difficult to form a coating film having a required film thickness, and sufficient gas barrier properties may not be imparted.
  • the amount is larger than the above range, the viscosity of the coating solution is too high and the coatability is poor.
  • the coating liquid contains an acid catalyst for accelerating the reaction of the functional groups in the vinyl monomer (B), which is a raw material monomer of the gas barrier resin, with each other or with a carboxyl group. This makes it possible to efficiently introduce the cross-linking structure unique to the above-described gas barrier resin of the present invention into the coating film.
  • the acid catalyst for promoting acid examples include acetic acid, propionic acid, ascorbic acid, benzoic acid, hydrochloric acid, p-toluenesulfonic acid, monovalent acid such as alkylbenzenesulfonic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, Examples of the divalent or higher acid include hypophosphorous acid, polyphosphoric acid, pyrophosphoric acid, maleic acid, itaconic acid, fumaric acid, and polycarboxylic acid. Monovalent acids are particularly preferable. Toluenesulfonic acid is preferably used.
  • the acid catalyst is preferably used in the range of 1 to 10 O mm o I, particularly 2.5 to 80 mm o I with respect to the gas barrier resin 1 O O g in the coating liquid.
  • a divalent or higher acid medium it is preferable to use a value obtained by dividing the above range by the valence n.
  • the acid medium is just before coating on the substrate in view of the storage stability (viscosity) of the coating solution. It is preferable to mix with other components.
  • the coating liquid contains, as necessary, known blending agents such as surfactants, fillers, coloring agents, additives, and the like. Can be formulated in a prescription.
  • the carboxyl group-containing polymer described above is used.
  • a gas barrier precursor subjected to reion crosslinking can be produced by heating at a temperature of 110 to 170 ° C for 5 seconds to 5 minutes.
  • Each component (D) may be dissolved in water, or may be prepared by mixing an aqueous solution of each component.
  • a solvent such as alcohol or a mixed solvent such as hydroalcohol can also be used.
  • the above-described acid catalyst may be added to promote the reaction between the carboxyl group of the carboxyl group-containing polymer (C) and the ring structure (d) of the compound (D).
  • the above-mentioned inorganic dispersions that can be blended to improve gas barrier properties, blended with known blending agents such as surfactants, fillers, coloring agents, additives, etc., if necessary, with conventional formulations. May be.
  • the substrate is immersed in the coating solution, or the coating solution is applied by a method such as slush coating, spin coat, roll coating, spray coating or the like. be able to. Although not generally necessary, it is of course possible to apply the coating to the substrate over a number of times if desired. If the plastic substrate has no or little wettability to the coating solution, the surface of the plastic substrate to which the coating solution is applied is subjected to corona discharge treatment, ozone treatment, short wavelength ultraviolet irradiation treatment, flame treatment, etc. Also good.
  • the drying and cross-linking of the coating liquid of the present invention varies depending on the coating liquid application amount, etc., but at a temperature of 1100 to 20.00 3 ⁇ 4, particularly at a temperature of 1100 to 1700 ° C.
  • the heat treatment can be performed for a short time of 0 seconds to 30 minutes, particularly 5 seconds to 5 minutes. For this reason, the effect of heating the coating on the substrate is small, and the productivity is excellent.
  • the heating method is not particularly limited, and heat treatment in a dry atmosphere such as an oven or heat treatment by contact with a hot nozzle may be performed.
  • a dry atmosphere such as an oven or heat treatment by contact with a hot nozzle
  • the solvent can be evaporated by blowing hot air with a dryer or irradiating with infrared rays to form a dry film, followed by heat treatment. Further, after drying and evaporating the solvent from the coating film, it may be further exposed to a temperature atmosphere in the range of 70 to 140 ° C. for a period of 10 seconds to 7 days. Good.
  • the gas barrier material according to the present invention has a strong ruxyl group corresponding to an amount of at least an acid value of 33 O mg KOH g among the unreacted residual carboxyl groups in the gas barrier precursor thus formed. It can be obtained by crosslinking.
  • a crosslinking agent having a thione polar group for example, primary, secondary, tertiary amino groups, quaternary organic ammonium groups, amide groups, etc. It is also possible to use a cationic monomer having JP2006 / 307279
  • the polyvalent metal compound that can be used for the metal-ion cross-linking of the gas / clear material of the present invention can be contained in water and can cross-link with a carboxyl group.
  • the polyvalent metal ion is not particularly limited as long as the carboxyl group of the resin can be cross-linked, and is about 2 or more (particularly 2 to 3), preferably magnesium ion Mg 2 + , calcium ion C a Divalent metal ions such as 2 + can be used.
  • the metal ions, alkaline earth metal (magnesium M g, calcium C a, strontium S r, barium B a, etc.), Group 8 of the periodic table metals (iron F e, Ruteni ⁇ beam R u etc.) of the Periodic Table 1 Examples include Group 1 metals (such as copper Cu), Periodic Table 1 Group 2 metals (such as zinc Zn), Periodic Table 1 Group 3 metals (such as aluminum AI), and the like.
  • Examples of the divalent metal ions magnesium ions M g 2 +, calcium ions C a 2 +, strike opening Nchiumu ion S r 2 +, carbonochloridate potassium ion B a 2 +, copper ions C u 2 +, zinc ions Z n 2 + etc. can be exemplified, and as the trivalent metal ions, aluminum ions AI 3 +, iron ions F e 3 + ions, such as may be exemplified.
  • the above metal ions can be used alone or in combination.
  • water dissociable metal compound that is the ion source of the polyvalent metal ion examples include salts of metals constituting the metal ion, such as halides (eg, chlorides such as magnesium chloride and calcium chloride), hydroxides, and the like.
  • halides eg, chlorides such as magnesium chloride and calcium chloride
  • hydroxides and the like.
  • Products eg, magnesium hydroxide, calcium hydroxide, etc.
  • oxides eg, magnesium oxide, calcium oxide, etc.
  • carbonates eg, magnesium carbonate, calcium carbonate
  • inorganic acid salts eg, perhalogenates (Eg, perchlorates such as magnesium perchlorate, calcium perchlorate, etc.), sulfates (eg, magnesium sulfate, sulfate, etc.), sulfites, nitrates (eg, magnesium nitrate, calcium nitrate, etc.), Hypophosphite, phosphite, phosphate (eg, magnesium phosphate, potassium phosphate ), Organic acid salts such as carboxylates (for example, acetates such as magnesium acetate and calcium acetate), and the like.
  • These metal compounds can be used alone or in combination of two or more. Of these compounds, the above-mentioned metal halides and hydroxides are preferable.
  • the process (i i i) is a process that brings about an aging effect after the processes (i) to (i i), and enables a reduction in the time of the processes (i) to (i i).
  • the treated water used in any of the above treatments (i) to (iii) may be cold water ⁇ , so that the water containing the polyvalent metal compound is likely to act on the gas barrier precursor.
  • the temperature of the water containing the compound is 20 ° C. or higher, preferably 35 ° C. or higher, particularly 40 to 100 ° C.
  • the processing time can be set to a certain extent and can be performed under mild processing conditions, in the case of (i) to (ii), it is preferable to perform the processing for 3 seconds or more, particularly 10 seconds to 4 days, In the case of (iii), (i) to (ii) are treated for 0.5 seconds or more, especially 1 second to 1 hour, and then an atmosphere treatment in which a gas barrier precursor is placed under high humidity for 1 hour or more. In particular, the treatment is preferably performed for 2 hours to 14 hours.
  • the treatment temperature is 100 ° C. or higher, particularly 120 ° C. to 140 ° C., and the treatment temperature is 1 second or longer, especially 3 seconds to 120 minutes. Do.
  • a gas barrier precursor formed from a coating solution in which a polyvalent metal compound is dissolved or dispersed in advance may be similarly treated with water or water containing a polyvalent metal compound.
  • the polyvalent metal compound is preferably 0.125 mm o IZL or more, more preferably 0.5 mm o IZL or more, in terms of metal atom in water, More preferably, it is at least 2.5 mm o IZL. Multivalent gold The higher the genus compound concentration, the better.
  • the water containing the polyvalent metal compound is preferably neutral to alkaline.
  • a gas-containing precursor composed of a resin having a strong lpoxyl group corresponding to an acid value of 58 Omg KOH / g or more is used as a polyvalent compound.
  • the acid value corresponds to an amount of 33 Omg KOH g or higher in a short time of 10 seconds or less, especially 1 to 5 seconds.
  • the concentration is low, making it difficult to form a predetermined amount of metal ion cross-linked structure in a short time as described above.
  • the concentration is too high, the concentration of the ion is too high, and diffusion of ions into the gas barrier precursor is difficult to occur.
  • the pH of water is less than 10, the degree of dissociation of free carboxyl groups of the gas barrier precursor when water permeates is not sufficient, so that a metal ion cross-linked structure is formed between the carboxyl groups in a short time as described above. It becomes difficult to form.
  • the pH is higher than 13, the load applied to the base material used for the gas-pariatic precursor or coating is too large.
  • the immersion treatment in which a gas barrier precursor is immersed in water containing a polyvalent metal is preferable because crosslinking in the shortest time is possible.
  • the gas barrier material of the present invention may contain an inorganic dispersion in addition to the resin having a force lpoxyl group corresponding to an acid value of 58 OmgKOHZg or more.
  • Such an inorganic dispersion has a function of blocking moisture from the outside and protecting the gas barrier resin, and can further improve the gas barrier property and water resistance.
  • the inorganic dispersion may have any shape such as a spherical shape, a needle shape, a layer shape, etc., but has a gas barrier property.
  • a resin that has wettability to the resin and that disperses well in the coating solution is used.
  • a silicate compound having a layered crystal structure, such as water-swellable mica and clay is preferably used.
  • These inorganic dispersions preferably have an aspect ratio of 30 or more and 500 or less in that they are dispersed in layers and block moisture.
  • the content of the inorganic dispersion should be 5 to 100 parts by weight with respect to 100 parts by weight of the resin having a carboxyl group corresponding to an acid value of 58 O mg KOHZ g or more. Is preferred.
  • the packaging material having a layer made of the gas barrier material of the present invention is, as described above, a gas barrier material single layer formed by ion-crosslinking a resin having a carboxyl group corresponding to an acid value of 58 O mg KOH / g or more. Alternatively, it can be obtained by forming the gas barrier material on the surface of the plastic substrate or between the plastic layers.
  • thermoformable thermoplastic resin As a plastic substrate, a film, a sheet, a bottle, a cup, a tray, or the like manufactured from a thermoformable thermoplastic resin by means of extrusion molding, injection molding, blow molding, stretch blow molding, or press molding.
  • a gas barrier material can be formed on a plastic substrate of any shape such as a shape or a can shape to form a packaging material.
  • Suitable examples of the resin constituting the plastic substrate include low, medium or high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene monocopolymer, ionomer, ethylene— Polyolefin copolymers such as vinyl acetate copolymer, ethylene vinyl alcohol copolymer: Polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate Z isophthalate, polyester such as polyethylene naphthalate: nylon 6, nylon 6, 6, Nylon 6, 10, Polyamide such as metaxylylene adipamide; polystyrene, styrene monobutadiene block copolymer, styrene monoacrylonitrile copolymer, styrene monobutadiene monoacrylonitrile copolymer (ABS resin Styrene copolymers such as: Vinyl chloride copolymers such as polyvinyl chloride and vinyl chloride-vin
  • thermoplastic resins may be used alone or exist in the form of a blend of two or more, and the plastic substrate may be in a single layer configuration or, for example, simultaneous melt extrusion or other laminating. It may be a laminated structure of two or more layers by Chillon.
  • thermoplastic resin that can be melt-molded may contain one or more additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants as desired.
  • additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants as desired.
  • the total amount per part by weight can be added in the range of 0.001 to 5.0 parts.
  • fiber reinforcement such as glass fiber, aromatic polyamide fiber, carbon fiber, pulp and cotton linter, or powder reinforcement material such as carbon black and white carbon, or glass Flakes, aluminum flakes and other flaky reinforcing materials can be blended in an amount of 2 to 150 parts by weight as a total amount per 100 parts by weight of the thermoplastic resin.
  • the total amount may be 5 to 100 parts by weight according to a formulation known per se.
  • scaly inorganic fine powder such as water-swellable mica, clay, etc.
  • scaly inorganic fine powder is added in an amount of 5 to 100 parts by weight as a total amount per 100 parts by weight of the thermoplastic resin. Even if blended according to a formulation known per se, there is no problem.
  • the aforementioned gas barrier material can be provided on the final film, sheet, or container surface, or the coating can be provided in advance on a preform for molding into a container.
  • preforms include bottomed or bottomless cylindrical parisons for biaxial stretch blow molding, pipes for plastic cage molding, sheets for vacuum molding, pressure molding, plug assist molding, Or a heat seal lid, a film for bag making, etc. can be mentioned.
  • the gas barrier material preferably has a thickness of generally 0.1 to 1 O jU m, particularly 0.5 to 5 m. If this thickness falls below the above range, acid On the other hand, even if the thickness force ⁇ the above range is exceeded, there is no particular advantage, and the cost of the packaging material tends to be disadvantageous.
  • this gas barrier material can be provided as a single layer as the inner surface of the container, the outer surface of the container, and the intermediate layer of the laminate, and as multiple layers, at least the inner and outer surfaces of the container or the inner and outer surfaces of the container One can be provided as an intermediate layer of the laminate.
  • Molding from the coated preform into the final container can be carried out under conditions known per se such as biaxial stretch blow molding, plug ciss ⁇ molding. Also, a film or sheet provided with a coating layer is bonded to another film or sheet to form a laminate, and this laminate is combined with a heat seal lid, a bouch, or a preform for container molding. It can also be used.
  • an anchor layer When used as a packaging material, an anchor layer may be provided on at least one side of the layer made of the gas barrier material.
  • the adhesion between the layers is improved, and the mechanical strength of the container and the flexibility of the laminate can be further increased.
  • a layer made of a gas barrier material may be formed via an anchor layer, and when used for an intermediate layer of the laminate, a gas barrier is used.
  • An anchor layer may be formed on at least one side of the material layer.
  • the anchor material may be formed from various polymers such as urethane, epoxy, acrylic, and polyester. It is particularly preferable to contain a urethane polymer.
  • the anchor material may be composed of a main agent and a curing agent, and may be a precursor in a state where the curing reaction has not been completed, or may be in a state where an excessive amount of the curing agent is present.
  • urethane it is mainly composed of polyol components such as polyester polyol and polyether polyol, and one component of polyisocyanate. Polyisocyanate components may be present so that
  • the thickness of the anchor layer is preferably from 0.01 to 1 O jUm, more preferably from 0.05 to 5 m, and even more preferably from 0.1 to 3 m. When this thickness is less than the above range, the effect of the anchor layer on adhesion is manifested. On the other hand, even if the thickness exceeds the above range, there is no particular advantage, and the cost of the packaging material tends to be disadvantageous.
  • the acid value is the number of mg of potassium hydroxide required to neutralize the acidic free functional group contained in 1 g of resin.
  • the acid value of the resin was calculated by a conventional method based on alkali neutralization titration. That is, the resin was dissolved in an ethanol solution and titrated with an ethanolic 0.1N potassium hydroxide standard solution using a 1% phenolphthalein ethanol solution as an indicator.
  • Liion crosslinking is formed by salt conversion of the carboxyl group.
  • the acid value involved in ionic crosslinking is calculated by measuring with a Fourier transform infrared spectrophotometer using a gas-par material after ionic crosslinking.
  • the characteristic absorption bands of carboxylic acids are around 920 to 970 cm— 1, near 1 700 to 1 7 10 cm— 1, around 2500 to 3200 cm— 1 , and 1 770 to 1 800 for acid anhydrides.
  • the cm one "at a wavelength of around 1 are known.
  • the characteristic absorption band of the carboxylic acid salts are known to be in the wavelength of the near-dated 1 480 ⁇ 1 630 cm- 1.
  • Peak height of X ii) ⁇ [peak height of + peak height of ( ⁇ )] (1)
  • the peak heights of ( ⁇ ) and (ii) refer to the difference in absorbance between the point where the skirt of this peak overlaps the baseline and the peak apex.
  • Acid value involved in ionic cross-linking acid value of resin X salt conversion rate of carboxyl group ... (2) If the amount of acidic functional groups other than carboxylic acid cannot be ignored, when calculating the salt conversion rate The result quantified by molar concentration is used.
  • Measuring method Single reflection method using germanium prism
  • the oxygen permeation amount of the obtained gas barrier precursor and gas barrier material was measured using an oxygen permeation amount measuring device (OX-TRAN2Z20, manufactured by Modern Control).
  • the measurement conditions are an ambient temperature of 25 ° C and a relative humidity of 80%.
  • the above coating solution is biaxially stretched with a thickness of 12 m using a bar coater. It was applied to a lenret phthalate film ( ⁇ ).
  • the above-mentioned film after coating is heat-treated with a gas oven under the conditions of a peak temperature of 170 ° C and a peak temperature holding time of 10 seconds, and has a 2 m thick coating layer (ii) as shown in FIG.
  • One film ( ⁇ ⁇ i) was used.
  • the film was immersed in tap water warmed to 50 ° C for 3 days. After taking out from water and drying, the oxygen permeation amount and acid value of the film were measured.
  • the gas barrier material was treated in the same manner as in Example 1, except that calcium chloride was added to tap water and the calcium ion concentration was adjusted to 2. O Ommo I ZL for 1 day in Example 1. Got.
  • a gas barrier material was obtained in the same manner as in Example 1 except that calcium chloride was added to tap water and the calcium ion concentration was adjusted to 3.75 mmo I / L in Example 1. It was.
  • Example 1 the p-toluenesulfonic acid was added so as to be 30 mm o I to the resin 1 00 g, were treated at the peak ⁇ 1 40 ° C by a gas oven with the addition of calcium chloride in tap water
  • a gas barrier material was obtained in the same manner as in Example 1 except that it was dipped in treated water adjusted to a calcium ion concentration of 3.75 mm I.
  • Example 1 a gas barrier material was obtained by the same method as in Example 1 except that it was immersed in tap water for 8 hours.
  • Example 1 acrolein was "I 3.4 g (0.24 mol), carboxyl group-containing resin was 54.8 g (0.76 mol I), and retorted in tap water at 120 ° C for 30 minutes.
  • a gas barrier material was obtained in the same manner as in Example 1 except that (Example 7).
  • Example 1 16.8 g (0.30 mol) of acrolein, carboxy
  • the gas barrier material was obtained in the same manner as in Example 1 except that the ru-group-containing resin was changed to 50.5 g (0.7 Omo I) and treated with tap water at 120 ° C. for 30 minutes.
  • Example 8 16.8 g (0.30 mol) of acrolein, carboxy
  • the gas barrier material was obtained in the same manner as in Example 1 except that the ru-group-containing resin was changed to 50.5 g (0.7 Omo I) and treated with tap water at 120 ° C. for 30 minutes.
  • Example 1 a gas pear material was obtained in the same manner as in Example 1 except that it was immersed in tap water adjusted to contain 1,2-diaminoethane 0.33 mmol IZ.
  • Example 1 In Example 1, 5.6 g (0.1 mol I) of acrolein, 60.2 g (0.7 mol I) of methacrylic acid as a carboxyl group-containing resin, and 23.2 g (0.2 mol I) of maleic acid
  • the gas barrier material was obtained in the same manner as in Example 1, except that calcium chloride was added to tap water and the immersion treatment was carried out with treated water adjusted to a calcium ion concentration of 3.75 mmo IL. .
  • Dextrin (product name: Amy co) using TEMPO hornworm medium (2. 2, 6, 6— Tetramethylpiperidiae 1-Oxyl, manufactured by Tokyo Kasei Co., Ltd.) to selectively oxidize only the primary hydroxyl group at C 6 position.
  • TEMPO hornworm medium (2. 2, 6, 6— Tetramethylpiperidiae 1-Oxyl, manufactured by Tokyo Kasei Co., Ltd.
  • a 5% by weight gas barrier resin solution was obtained.
  • polycarpoimide resin with a solid content of 40% by weight
  • the coating solution was applied to a biaxially stretched polyethylene terephthalate film (i) having a thickness of 12 / m by a bar coater.
  • the film after coating was heat-treated with a gas oven under conditions of a re-peak temperature of 140 ° C and a peak temperature holding time of 10 seconds, and a polyethylene terephthalate film (iii) having a coating layer (ii) with a thickness of 2 mm. )
  • the film was immersed in tap water warmed to 50 ° C for 3 days. After taking out from water and drying, the oxygen permeation amount and acid value of the film were measured.
  • the coating solution was applied to a biaxially stretched polyethylene terephthalate film (i) having a thickness of 12 / m by a bar coater.
  • the coated film was heat-treated with an electric oven at a peak temperature of 140 ° C and a peak temperature holding time of 1980 seconds to form a coating layer (ii) having a thickness of 2 jum.
  • a ting film (iii) was obtained.
  • the above film (iiii) was immersed in tap water heated to 50 ° C for 1 mm. After taking out from the hot water and drying, the oxygen permeation amount and acid value of the film were measured.
  • Polyester polyol (manufactured by Toyobo Co., Ltd., Byron 200) was dissolved in a mixed solvent of ethyl acetate Z-methylethyl ketone (60-40 by weight) to give 20% by weight.
  • polyisocyanate manufactured by Sumika essence Urethane Co., Ltd., Sumidur N 3300
  • di-n-ptyltin dilaurate manufactured by Wako Pure Chemical Industries, Ltd.
  • carboxyl group-containing polymer (C) polyacrylic acid (Nippon Pure Chemicals AC-1O LHP) was used and dissolved in methanol to obtain a solution (c) having a solid content of 15%. 7279
  • Example 11 The solution (b) of Example 11 is added to the solution (c) so that the amount becomes 10% by weight with respect to the polymer (C) having a strong lpoxyl group, and the coating solution (d) having a solid content of 8% with methanol is added. )
  • the coating solution (d) is applied to the polyethylene terephthalate film having the anchor layer (ix) with a bar coater, and then heat-treated with an electric oven at a peak temperature of 140 ° C and a peak temperature holding time of 1 80 seconds. Then, a coating layer (i ⁇ ) having a thickness of 2 m and a coating area of 450 cm 2 was formed, and a coating film (X) as shown in FIG. 3 was obtained.
  • Calcium chloride is added to tap water, and the calcium ion concentration adjusted to ⁇ HI 2.76 using force, calcium hydroxide and sodium hydroxide is 94 mm o I ZL.
  • the film (X) was soaked at 82 ° C for 5 seconds to obtain a gas barrier material.
  • the metal ion concentration was quantified using an Inductively Coupled Plasma emission spectrometer (I CAP-88 manufactured by Jalerash, Japan).
  • Example 1 except that the film (X) was immersed in the supernatant of ⁇ 1 2 ⁇ 33 and the calcium ion concentration of 469 mmo I ZL at a liquid temperature of 35 ° C for 10 seconds in Example 12. The same procedure as in No. 2 was performed to obtain a gas spear material.
  • Example 12 except that the film (X) is immersed in the supernatant of pH 1 1.21, calcium ion concentration 1 875 mm o I ZL at a liquid temperature of 94 ° C for 10 seconds. 1 Treated in the same manner as 2 to obtain a gas barrier material.
  • Example 1 solution in (c) on a carboxyl group-containing polymer (C) was added a solution (b) so that 1 5 weight 0/0, 8% solids of Coating solution with methanol ( d) and the fact, and p HI 1. 82, the supernatant of the calcium ion concentration is 4 69 mm o I Bruno L, liquid temperature of 50. .
  • the gas barrier material was obtained in the same manner as in Example 12 except that the film was soaked in the film (X) for 5 seconds.
  • Example 1 6 In Example 1 2, the supernatant was adjusted to pH HI 0.26 using sodium hydroxide and magnesium chloride hexahydrate added to tap water so that the magnesium ion concentration was 180 mmo I ZL.
  • a gas barrier material was obtained in the same manner as in Example 12 except that the film (X) was soaked at 96 ° C. for 10 seconds.
  • calcium ion is contained in tap water which is a diluting solution in an amount of 0.60 mmo I, it is not an effective amount in a short time of 10 seconds, so the effect in this example is due to magnesium ion.
  • the coating layer (ii) is the lower layer, a urethane adhesive (i V :) having a thickness of 2 m, a biaxially stretched nylon film (v) having a thickness of 15 mm, and a urethane having a thickness of 2 m.
  • An adhesive (V i) and an unstretched polypropylene film (V ii) having a thickness of 70 ⁇ m were sequentially laminated to obtain a laminate (V iii) having a layer structure as shown in FIG.
  • Example 17 a laminate was obtained in the same manner as in Example 17 except that the coating layer of Example 11 was used.
  • Example 2 In Example 1, 19.6 g (0.35 mol) of acrolein and 46.9 g (0.65 mol I) of a carboxyl group-containing resin were used. 1 Retort treatment in tap water at 20 ° C for 30 minutes A gas barrier material was obtained in the same manner as in Example 1 except that. (Comparative Example 2)
  • Example 1 a gas barrier material was obtained in the same manner as in Example 1 except that it was immersed in tap water for 6 hours.
  • the gas barrier material was obtained in the same manner as in Example 11 except that it was immersed in tap water for 35 minutes in Example 11.
  • Example 1 calcium chloride was further added to the coating solution so as to be 20 mmo I with respect to 1 OO g of resin, and the same treatment as in Example 1 was performed except that the immersion treatment was not performed.
  • TJP2006 / 307279
  • Example 1 In Example 2, except that the supernatant of ⁇ ⁇ 9 ⁇ 52 and calcium ion concentration of 469 mmo I ZL is treated by immersing the above film (X) for 10 seconds at a liquid temperature of 80 ° C. It processed by the same method and obtained the gas barrier material.
  • Example 1 Example 1 except that the supernatant of pH I 1.07 and calcium ion concentration 47 mm o I ZL was treated by immersing the above film (X) for 10 seconds at a liquid temperature of 60 ° C.
  • the gas barrier material was obtained by the same method as in 2.
  • Example 1 Example 2 except that the supernatant of pH 1 3.50 and calcium ion concentration of 469 mmo I / L is treated by immersing the film (X) for 10 seconds at a liquid temperature of 80 ° C. 1 Treated in the same manner as 2 to obtain a gas barrier material.
  • Example 1 2 Example 1 2 except that the supernatant of pH 1 1.01 and calcium ion concentration 2345 mm o I ZL was treated by immersing the above film (X) at a liquid temperature of 80 ° C. for 10 seconds.
  • the gas barrier material was obtained by processing in the same manner.
  • Example 1 Example 2 except that p HI 1 ⁇ 18 and calcium ion concentration 94 mm o I ZL supernatant were treated by immersing the above film (X) at 30 ° C for 10 seconds. 1 Treated in the same manner as 2 to obtain a gas barrier material.
  • Table 1 shows the measurement results of the acid value of the resins obtained in the above Examples and Comparative Examples, the amount of acid catalyst, the immersion treatment conditions, the acid value involved in ion crosslinking, and the oxygen permeation amount.
  • the DH measurement temperature is room temperature (21 ° C). Add Ca to the coating solution and immerse it in the coating solution. Not processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

本発明のガスバリア材は、酸価580mgKOH/g以上の量に相当するカルボキシル基を有する樹脂の少なくとも酸価330mgKOH/gの量に相当するカルボキシル基がイオン架橋されて成るものであり、高湿度条件下におけるガスバリア性、耐レトルト性、可撓性に優れ、塗膜を低温短時間で硬化することができ、生産性にも優れたガスバリア材を提供することが可能となる。

Description

明 細 書 ガスバリア材及びその製造方法 技術分野
本発明はガスバリア材に関し、 より詳細には、 優れたガスパリア性及び耐水性 を有し、 レトル卜処理のような高温湿熱条件下に置かれた後にも優れたガスバリ ァ性を維持し得るガスバリァ材に関する。 背景技術
従来より、 ガスバリア性樹脂としては種々のものが使用されており、 特にポリ 塩化ビニリデン、 ポリアクリロニトリル、 エチレンビニルアルコール共重合体等 がガスバリア性樹脂として知られている。 しかしながら、 ポリ塩化ビニリデンゃ ポリアクリロニトリルは、 環境の問題からその使用を控える傾向があり、 ェチレ ンビニルアルコール共重合体においては、 ガスバリア性の湿度依存性が大きく、 高湿度条件下ではガスパリア性が低下するという問題があった。
包装材料にガスバリア性を付与する方法としては、 基材の表面に無機物を蒸着 したフィルムも知られているが、 これらのフィルムはコストが非常に高く、 しか も蒸着フィルムは可撓性ゃ基材又は他の樹脂層との接着性に劣るという問題を有 している。
このような問題を解決するために、 基材に、 水溶液高分子 Aと水溶性または水 分散性の高分子 Bと、 無機系層状化合物から成る被膜を形成したガス/ Jァフィ ルム (特開平 9—1 5 1 2 6 4号公報)や、ポリ(メタ)アクリル酸系ポリマーとポリ アルコール類との混合物から成る成形物層の表面に金属化合物を含む層を塗工し て成るガスバリア性フィルム (特開 2 0 0 0— 9 3 1号公報)、 或いはポリビニル アルコールとエチレン一マレイン酸共重合体と 2価以上の金属化合物を含有する ガスバリア性塗料 (特開 2 0 0 4 - 1 1 5 7 7 6号公報)等が提案されている。 発明の開示 P T/JP2006/307279
上記先行技術文献記載されたガスバリア材は、 高湿度条件下におけるガスバリ ァ性は改善されているとしても、 包装材料としての多様な要求に耐え得るもので はなく、 未だ充分満足し得るものではない。
すなわち特開平 9一 1 51 264号公報に記載されたガスバリアフイルムにお いては、 塗膜中に無機層状化合物が分散されているだけであるため、 優れたガス バリァ性を得るために無機層状化合物を多量に添加する必要があリ、 機械的強度 力低下するという問題があると共に耐レトルト性にも劣っている。
また特開 2000-931号公報に記載されたガスバリア性フィルムでは、 塗 膜の硬化に高温且つ長時間の熱処理が必要であり、 また特開 2004— 1 1 57 76号公報に記載されたガスバリア性塗料においても、 短時間で塗膜の硬化を行 う場合には高温で熱処理することが必要であり、 これらのガスバリア材において はプラスチック基体への影響が大きいと共に生産性の点で問題がある。
更に特開 2000— 931号公報及び特開 2004-1 1 5776号公報に記 載されたガスパリァ材では、 金属によるイオン架橋を利用してガスバリア性を向 上させている。 しかし、 特開 2000— 931号公報においては金属化合物を含 む層を塗工しているが、 含まれている金属量を EDX (エネルギー分散型 X線分 光) により元素分析しているため、 金属元素の存在量はわかるが実際にイオン架 橋している金属元素量は不明である。 特開 2004— 1 15776号公報におい ては金属化合物を仕込んだ量しか記載されておらず、 やはり実際にイオン架橋し ている金属元素量は不明である。 これらのように高湿度条件下におけるガスバリ ァ性を付与するのに必要なイオン架橋量とその架橋量を有するガスバリア材は見 出されていない。
従って本発明の目的は、 上述したような問題を生じることなく、 特に高湿度条 件下におけるガスバリア性、 耐レトルト性、 可撓性に優れ、 塗膜を低温短時間で 硬化することができ、 生産性にも優れたガスバリア材を提供することである。 本発明によれば、 酸価 58 Omg KOH/g以上の量に相当するカルボキシル 基を有する樹脂の少なくとも酸価 330mg KOHZgの量に相当するカルボキ シル基がイオン架橋されていることを特徴とするガスバリア材が提供される。 本発明のガスバリア材においては、 1. 前記樹脂中のカルボキシル基が多価金属イオンにより架橋されていること、
2. 前記樹脂が、 カルボキシル基含有ビニルモノマー (A) と、 それ自体同士又 はカルボキシル基と反応可能な官能基を有するビニルモノマー (B) を必須成分 とする共重合体から成ること、
3. 前記ビニルモノマー (B)中の前記官能基がそれ自体同士又はカルボキシル基 と反応することにより、 架橋構造が形成されているものであること、
4. 前記ビニルモノマー (B) がアルデヒド基又はグリシジル基を有すること、
5. 前記樹脂が、 カルボキシル基含有ポリマー (C) と、 窒素との間に二重結合 を形成する炭素にエーテル結合が形成され、 該エーテル結合中の酸素を含んで成 る環構造 (d) を 2個含有する化合物 (D) から成り、 前記力ルポキシル基含有 ポリマ一 (C) のカルボキシル基と前記化合物 (D) の環構造 (d) が反応する ことにより架橋構造が形成されていること、
6. 前記化合物 (D) に含まれる環構造 (d) の少なくとも 1個がォキサゾリン 基又はその誘導体であること、
7. 前記化合物 (D) が、 2, 2' —ビス (2—ォキサゾリン) であること、 が好適である。
本発明によればまた、 酸価が 58 Omg KOHZg以上の量に相当するカルボ キシル基を有する樹脂から成るガスバリア性前駆体を、 多価金属化合物を金属原 子換算で 90乃至 200 Ommo I /Lの量で含有する p H 1 0乃至 1 3の水で、 35 °C以上の温度で 1 0秒以下の時間処理することにより、 少なくとも酸価 33 0 m g K O HZ gの量に相当する未反応カルボキシル基の間に金属イオン架橋構 造を形成させることを特徴とするガスバリァ材の製造方法が提供される。
本発明のガスバリア材の製造方法においては、 前記処理が、 多価金属を含有す る水中へのガスバリァ性前駆体の浸漬処理であることが好適である。
本発明によれば更にまた、 前記ガスバリア材から成る層を、 プラスチック基体 の表面或いはプラスチックの層間に備えてなることを特徴とする包装材が提供さ れる。
本発明のガスバリア材は、 高湿度条件下において優れたガスバリア性を有して おり、 相対湿度 80%という高湿度条件下において、 酸素透過量が 20 c c/m 2ノ d a y/a t m以下という優れたガスバリア性を呈することが可能である。 また本発明によれば、 高湿度条件下におけるガスバリア性を付与するのに必要 なイオン架橋量が明らかであり、 高湿度条件下における優れたガスバリア性を確 実にガスバリア材に付与することが可能となる。
また酸価が 58 OmgKOHZg以上の量に相当するカルボキシル基を有する 樹脂として、 カルボキシル基含有ビニルモノマー (A) と、 それ自体同士又は力 ルポキシル基と反応可能な官能基を有するビニルモノマー (B) を必須成分とす る共重合体から成るガスバリア性樹脂、或いはカルボキシル基含有ポリマー(C) と、 窒素との間に二重結合を形成する炭素にエーテル結合が形成され、 該エーテ ル結合中の酸素を含んで成る環構造(d)を 2個含有する化合物(D)から成り、 前記カルボキシル基含有ポリマー (C) のカルボキシル基と前記化合物 (D) の 環構造 (d) が反応することにより架橋構造が形成されていることからなるガス バリア性樹脂を用いることにより、 特に優れたガスバリア性と耐レトルト性をも 具備することが可能となる。
本発明のガスパリァ材は、 酸価 58 Omg KOHZg以上の量に相当するカル ポキシル基を有する樹脂の少なくとも酸価 33 Omg KOH gの量に相当する カルボキシル基がイオン架橋されていることが重要な特徴であり、 これによリ高 湿度条件下においても優れたガスバリア性を発現することが可能となる。
すなわち、 酸価が 58 OmgKOHZg以上の量に相当するカルボキシル基を 有する樹脂は、 低湿度条件下では優れたガスバリア性を有しているが、 樹脂中に 未反応の遊離のカルボキシル基が存在することから、 高湿度条件下においてその ガスノくリァ性が低下するという問題がある。
本発明においては、 このような酸価が 58 OmgKOHZg以上の量に相当す るカルボキシル基を含有する樹脂の少なくとも酸価 33 Omg KOH/gの量に 相当するカルボキシル基をイオン架橋することにより、 耐水性が顕著に向上し、 高湿度条件下においてもガスバリア性力 ξ低下することがなく、 優れたガスバリア 性及ぴ耐レトルト性を発現することが可能となるのである。
本発明のガスバリア材におけるカルボキシル基を含有する樹脂の酸価及びィォ ン架橋されるべきカルボキシル基の量は、 高湿度条件下におけるガスバリア性に ついて臨界的意義を有するものであり、 このことは後述する実施例の結果からも 明らかである。
すなわち、 酸価が 58 Omg KOHZg以上の量に相当するカルボキシル基を 含有する樹脂であっても、 高湿度条件下 (80%RH) では表 1に示すように酸 素透過量が大きくガスパリア性に劣っているが、 33 Omg KOHZg以上の量 に相当するカルボキシル基がイオン架橋されている本発明のガスバリア材は、 ィ オン架橋の前後で顕著に高湿度条件下 (80%RH) における酸素透過量が低減 しておリ、 高湿度条件下でのガスバリア性が顕著に改善されていることが明らか である (実施例 1 ~ 1 8)。
これに対して、 樹脂の酸価が 58 Omg KOHZgよりも小さい場合には、 酸 価 51 6m g KOHZgに相当するカルボキシル基をイオン架橋しても、 高湿度 条件下 (800/oRH) におけるガスバリア性の改善は見られないことが明らかで ある (比較例 1)。
またカルボキシル基含有樹脂の酸価が 58 Omg KOHZg以上であっても、 酸価 33 Omg KOHZgよりも少量のカルボキシル基しかイオン架橋していな い場合には、 イオン架橋前後での酸素透過量の変化があまりなく、 イオン架橋に よる高湿度条件下におけるガスバリア性の改善効果力得られていないことが明ら かである (比較例 2~3)。また、金属化合物をコーティング液に添加しても、浸 漬処理を行わない場合には金属元素がガスバリア材中に存在しているにもかかわ らず、 イオン架橋を形成しないため、 ガスバリア性能力心得られない (比較例 4)。 このことから金属元素の仕込量や存在量だけではガスバリァ性能は不明であリ、 実際にイオン架橋したカルボキシル基の量が重要であることが明らかである。 更に上記ガスバリア材を他のプラスチックフィルムとラミネートして積層体に した場合には、 イオン架橋前の見掛けガスバリア性が向上するため、 イオン架橋 前後でのガスバリア性の向上は少ないが、 やはりイオン架橋によってそのガスバ リア性が改善されていることが明らかである (実施例 1 7及び 1 8)。
また本発明において、 酸価 58 Omg KOHZg以上の量に相当するカルボキ シル基を有する樹脂をイオン架橋するに際して、 酸価が 58 OmgKOHZg以 上の量に相当するカルボキシル基を有する樹脂から成るガスバリア性前駆体を、 06307279
多価金属化合物を金属原子換算で 9 O〜2000mmo I ZLの量で含有する p H 1 0〜1 3の水で、 35 °C以上の温度で処理することにより、 10秒以下とい う短時間の処理で、 33 OmgKOHZg以上に相当するカルボキシル基をィォ ン架橋することが可能となるのである。 このことは後述する実施例の結果からも 明らかである。
すなわち、 処理水の金属イオン濃度、 pH、 及び温度が上記範囲にある実施例 1 2〜1 6においては処理時間が 1 0秒以下であるにもかかわらず、 処理時間が 8時間を超える実施例"!〜 1 1と同程度の酸価量に相当するカルボキシル基をィ オン架橋することが可能となり、 極めて効率よく目的とする量のイオン架橋を行 うことができ、 この製造方法によれば、 生産性よくガスバリア材を製造すること が可能となるのである。 図面の簡単な説明
図 1は、 実施例 1で作成したガスバリア材の断面構造を示す図である。
図 2は、 実施例 17で作成した積層体の断面構造を示す図である。
図 3は、 実施例 1 2で作成したアンカー層を有するガスバリア材の断面構造 を示す図である。 発明の最良の実施形態
(酸価が 58 Omg KOHZg以上の量に相当するカルボキシル基を有する樹 脂)
本発明のガスバリア材においては、 用いる樹脂の酸価とイオン架橋に携わった 酸価の組み合わせでガスバリア性能が定まる。 従って本発明で使用する樹脂は、 酸価 58 Omg KOHZg以上の量に相当するカルボキシル基を有し、 かつ、 そ のうち少なくとも 33 Omg KOHZg以上に相当するカルボキシル基がイオン 架橋されていることが重要である。
更に厳しいガスバリア性能を要求される分野で使用するため、 より優れたガス バリア性能を発現させるには、 樹脂の酸価が 65 Omg KOH/g以上であり、 かつ、 そのうち少なくとも 40 Omg KOHZg以上に相当するカルボキシル基 がイオン架橋されているのが好ましい。特に樹脂の酸価が 650乃至 95 Omg KOHZgであり、 かつ、 そのうち少なくとも 50 Omg KOHZg以上に相当 するカルボキシル基がイオン架橋されているのが最も好ましい。
本発明のガスバリア材においては、 酸価が 58 Omg KOHZg以上の量に相 当する力ルポキシル基を有する樹脂であれば、 少なくとも酸価 33 Omg KOH Zgの量に相当するカルボキシル基力《イオン架橋される限り、 その樹脂の種類に かかわらず高湿度条件下におけるガスバリア性を顕著に向上させることが可能で ある力 好適には、 酸価 58 Omg KOHZg以上の量に相当するカルボキシル 基を含有する樹脂が、
1. カルボキシル基含有ビニルモノマー (A) と、 それ自体同士又はカルポキシ ル基と反応可能な官能基を有するビニルモノマー (B) を必須成分とする共重合 体から成り、 しかもビニルモノマ一 (B)中の前記官能基がそれ自体同士又はカル ボキシル基と反応することにより、 架橋構造が形成可能なものであること、 或いは、
2. カルボキシル基含有ポリマー (C) と、 窒素との間に二重結合を形成する炭 素にエーテル結合が形成され、該エーテル結合中の酸素を含んで成る環構造(d) を 2個含有する化合物 (D) から成り、 前記カルボキシル基含有ポリマー (C) のカルボキシル基と前記化合物 (D) の環構造 (d) が反応することにより架橋 構造が形成可能なものであること、
が特に好ましい。
すなわち上記共重合体は、 高度の水素結合を有する高水素結合性の共重合体か ら成ることから、 良好なガスバリア性を発現すること力《可能となる。 しかも上記 ビニルモノマー (A)及び (B) を共重合して成る高水素結合性共重合体において は、 ビニルモノマー (B) に由来する反応性に富んだ官能基が共重合体中に遊離 した状態で存在していることから、 共重合体中に存在するこの遊離の官能基を架 橋点として、 高水素結合性を損なうことなく高水素結合性共重合体同士を架橋さ せることが可能であり、 これにより、 ある程度の高湿度条件にも耐えるガスバリ ァ性が付与されている。
また上記ポリマ一 (C) は、 高度の水素結合を有する高水素結合性のポリマー であることから、 良好なガスバリア性を発現することが可能である。 上記ポリマ
- ( C ) のカルボキシル基と上記化合物 (D ) の環構造 (d ) が反応することに より、 上記ポリマー (C ) の高水素結合性を損なうことなく上記ポリマー (C ) のポリマー鎖間に架橋構造を形成させることが可能であリ、 更に形成された架橋 部位も、 ガスバリア性に有効な構造であるアミドエステル結合から成るため、 あ る程度の高湿度条件にも耐えるガスバリア性が付与されている。
本発明においては、 このような共有結合による架橋構造が形成されたガスバリ ァ性樹脂の残余の未反応の遊離のカルボキシル基をイオン架橋することにより、 耐水性を向上させ、 更に優れた高湿度条件下におけるガスバリア性を顕著に向上 させることが可能であリ、 優れた耐レトルト性を発現することが可能となるので める。
以下、 上記ガスバリア性樹脂について説明する。
(カルボキシル基含有ビニルモノマー (A ) 及びビニルモノマー (B) によるガ スバリア性樹脂)
[カルボキシル基含有ビニルモノマー (A) ]
カルボキシル基含有ビニルモノマー (A) としては、 これに限定されないが、 例えば、アクリル酸、 メタクリル酸、ィタコン酸、マレイン酸、無水マレイン酸、 ク口トン酸、フマル酸等のモノ又はジカルボン酸モノマーを挙げることができる。
[ビニルモノマ一 (B ) ]
それ自体同士又はカルボキシル基と反応可能な官能基を有するビニルモノマー (B)としては、 アルデヒド基又はグリシジル基等の反応性の官能基を有するもの であることが望ましく、 これに限定されないが、特にァクロレイン (アクリルアル デヒド)、 メタクロレイン (メタクリルアルデヒド)、 グリシジルァクリレート、 グ リシジルメタクリレート等を好適に用いることができる。
本発明に好適に用いることができる、 上記ガスバリア性樹脂を構成するビニル モノマー (A)及びビニルモノマー (B ) の共重合体は、 共重合体中におけるビニ ルポリマー (A) とビニルモノマー (B ) の組成比 (モル0/ 0)が、 A : B = 7 0 : 3 0乃至 9 8 : 2、 特に 7 5 : 2 5乃至 9 5 : 5であることが望ましい。 上記範 囲よりもビニルモノマー (A ) の量が少ないと、 樹脂の酸価を 5 8 O m g K O H Z g相当以上にすることが困難になり、 イオン架橋による高湿度条件下における 優れたガスバリァ性を充分付与できないおそれがあり、 一方上記範囲よリもビニ ルモノマー (A ) の量が多いと、 共重合体同士を架橋するための架橋点となるビ ニルモノマー (B ) に由来する反応性官能基が少なくなリ、 強固な架橋構造を形 成することができず、 耐レトルト性に劣るようになる。
本発明において共重合体同士の架橋点となるべきビニルモノマー (B ) に由来 する遊離の官能基は、 共重合体中のビニルモノマー (B) に由来する官能基の少 なくとも 3 0 %以上、 特に 5 0乃至 1 0 0 %の割合で存在していることが好まし い。 これによリ共重合体同士の架橋を容易に形成でき、 優れたガスバリア性及び 耐レトルト性を付与することが可能となる。
上記ガスバリア性樹脂の重合方法は特に限定されないが、 好適にはラジカル重 合により重合することが好ましく、 その重合形式としては溶液重合によることが 望ましく、 特に非水性溶媒を重合溶媒として用いることが好ましい。
すなわち上記ガスバリア性樹脂においては、 得られた共重合体同士を架橋させ ることがガスバリア性向上の見地から好ましく、 このため共重合体中に架橋点と なる遊離の官能基、 例えばアルデヒド基を有していることが重要であるが、 水性 溶媒を用いた場合には、 共重合体中の遊離のアルデヒド基が水と水和反応して、 架橋点が低減してしまうためガスバリア性に劣るようになる。
重合溶媒としては、 メチルアルコール、 エチルアルコール、 イソプロピルアル コール、 アセトン、 テトラヒドロフラン、 N , N—ジメチルホルムアミド、 酢酸 ェチル、 トルエン等を挙げることができるが、 特に本発明においては、 アルコー ルと環状エーテルの混合溶媒、 特にイソプロピルアルコールとテトラヒドロフラ ンの混合溶媒を好適に使用することができる。 混合溶媒中のアルコールと環状ェ 一テルの配合割合は重量比で、 3: 9 7乃至 2 0: 8 0、特に 5: 9 5乃至 1 0 : 9 0の範囲にあることが望ましい。 上記範囲よりもアルコールの量が少ないと重 合効率に劣り、 その一方上記範囲よりもアルコールの量が多いと得られる共重合 体の耐レトルト性を阻害するおそれがある。
共重合体の重合に用いる重合開始剤としては、 従来公知のベンゾィルパーォキ サイド、 クメンヒドロパ一ォキサイド、 tert—ブチルパーォキサイド、 ジイソプ 口ピルパーォキシカーボネート、ジ一 tert—ブチルバ一ォキサイド、 tert—プチレ パーォキシベンゾエート等の過酸化物系、 過硫酸カリウム, 過硫酸ナトリウム, 過硫酸アンモニゥム等の無機過酸化物、 2, 2—ァゾビスイソプチロニトリル、 2, 2—ァゾビス (2—メチルプロピオンアミジン) ジヒドロクロライド、 4, 4—ァゾビス (4一シァノペンタン酸) 等のァゾ化合物等のラジカル重合開始剤 を使用することができるが、 中でもァゾ化合物を好適に使用することができる。 ラジカル開始剤の配合量は、特に限定されないが、一般にはビニルモノマー (A) 及び (B) の合計量に対して、 0. 005乃至0. 1モル%の範囲にあることが 好ましい。
重合温度は、 20乃至70¾、 特に 25乃至 55 °Cの範囲にあることが好まし く、 上記範囲よりも重合温度が低いと重合速度が低く、 上記範囲よりも重合温度 が高いとゲル化等が生じるため好ましくない。 また重合時間は、 ビニルモノマー (A) 及び (B) の組成や仕込み量などによって相違するが、 一般に 0. 5乃至 1 44時間、 特に 2乃至 48時間の範囲にあることが好ましい。
本発明に好適に用いるガスバリア性樹脂は、 5000乃至1 50000、 特に 10000乃至 1 00000の数平均分子量を有することが好ましい。
(カルボキシル基含有ポリマー(C) 及び化合物(D) によるガスパリア性樹脂) 本発明のガスバリア材においては、 カルボキシル基含有ポリマー (C) 及び窒 素との間に二重結合を形成する炭素にエーテル結合が形成され、 該エーテル結合 中の酸素を含んで成る環構造 (d) を 2個含有する化合物 (D) から成り、 前記 カルボキシル基含有ポリマ一(C)のカルボキシル基と化合物(D)の環構造(d) が反応することにより架橋構造が形成されているガスバリア性樹脂を好適に用い ることができる。
すなわち下記式 (1 ) に示すように、 カルボキシル基含有ポリマー (C) の力 ルポキシル基と、 化合物 (D) の環構造 (d) が反応してアミドエステルを形成 し、 架橋部分にアミドエステル結合が 2個形成された架橋塗膜として形成され、 これにより優れたガスバリア性を付与することが可能となるのである。
Figure imgf000012_0001
Figure imgf000012_0002
上記ガスバリア性樹脂が優れたガスバリア性を示す理由は以下の通りであると 考えられる。
i ) 主成分であるポリマーがカルボキシル基含有ポリマ一であるため、 側鎖の力 ルポキシル基が高水素結合性を有し強い凝集力が働き、 優れたガスバリア性を有 する基本構造を形成することができる。
i i ) ポリマー側鎖であるカルボキシル基と架橋成分である化合物 (D ) の環構 造 (d ) との反応により、 ガスバリア性に有効な構造であるアミドエステル結合 を形成することができる。
i i i ) 環構造 (d ) が架橋形成に必要最小限の 2個であるため、 架橋点の構造 が 3次元的に広がリ難く、 ガスバリァ性に優れた緻密な架橋構造を形成すること ができる。
i v ) 主成分にカルボキシル基含有ポリマーを用いると、 架橋に用いられなかつ た未反応のカルボキシル基を金属イオン架橋させて、 高湿度条件下におけるガス バリア性を更に向上させることができ、 高湿度条件下においても損なわれること のない優れたガスバリァ性を付与することもできる。
またカルボキシル基含有ポリマー (C ) の化合物 (D ) による架橋は、 低温且 つ短時間での加熱により形成可能であるため、 ガスバリア材を形成すべきプラス チック基体に与える影響も少なく、また生産性にも優れているという利点もある。 [力ルポキシル基含有ポリマー (C ) ]
カルボキシル基含有ポリマー (C) としては、 これに限定されないが、 ポリア クリル酸、 ポリメタクリル酸、 ポリマレイン酸、 ポリイタコン酸、 アクリル酸一 メタクリル酸コポリマ一等のカルボキシル基を有するモノマーの単独重合体又は 共重合体、 及びこれらの部分中和物を挙げることができ、 好適には、 ポリアクリ ル酸、 ポリメタクリル酸を用いることが好ましい。 ポリカルボン酸系ポリマーの 部分中和物は、 水酸化ナトリウム、 水酸化カリウム等の水酸化金属塩、 アンモニ ァ等により部分中和することができる。 部分中和物の中和度は、 特に限定されな いが、 カルボキシル基に対するモル比で 3 0 %以下であることが好ましい。 上記 範囲よリも多いとカルボキシル基の水素結合性が低下してガスバリア性が低下す る。 ポリカルボン酸系ポリマーの重量平均分子量は、 特に限定されないが、 5 0 0 0乃至 1 5 0 0 0 0 0、 特に 1 0 0 0 0乃至 1 0 0 0 0 0 0の範囲にあること が好ましい。
[化合物 (D ) ]
カルボキシル基含有ポリマー (C) を架橋するための架橋剤として用いられる 化合物 (D ) は、 窒素との間に二重結合を形成する炭素にエーテル結合が形成さ れ、該エーテル結合中の酸素を含んで成る環構造(d )、すなわち一 N = C— 0— 基、 或いは = C— 0—部分を環内に持つェキソイミノ基を有する環構造を 2個含 有するものであり、 かかる環構造 (d ) としては、 これに限定されないが下記の 環構造を例示することができる。
Figure imgf000013_0001
Figure imgf000013_0002
—方、 下記式 (2) に示されるような、 エーテル結合中の酸素を含まない環構 造ではポリカルボン酸系ポリマーとアミドエステル結合を生成する架橋反応が起 こらない。 また、 環構造が 1個では架橋することができない。 3個以上では架橋 点の構造が 3次元的に広がり、 ガスバリア性に優れた緻密な架橋構造が形成でき ないため好ましくない。 これらのことより、 窒素と炭素が二重結合を形成してい ること、 炭素がエーテル結合を形成していること、 窒素との間に二重結合を形成 する炭素にエーテル結合が形成されていること、 それらの条件が単独で存在する だけではなく、窒素との間に二重結合を形成する炭素にエーテル結合が形成され、 該エーテル結合中の酸素を含んで成る環構造 (d) を 2個含有することが重要な のである。
Figure imgf000014_0001
本発明のガスバリア材に用いる化合物 (D) は、 上述したような環構造 (d) を 2個含有するものであり、 かかる環構造は同一の環構造が 2個でもよいし、 異 なる環構造の組み合わせであってもよいが、 少なくとも 1個がォキサゾリン基又 はその誘導体であることが好適である。
かかる環構造 (d) を 2個有する化合物 (D) としては、 これに限定されない が、 例えば、 2,2' —ビス (2—ォキサゾリン)、 2,2' —ビス (4ーメチル一 2—ォキサゾリン)、 2,2' —ビス (5—メチルー 2—ォキサゾリン)、 2,2' 一ビス (5,5, 一ジメチルー 2—ォキサゾリン)、 2,2' —ビス(4, 4, 4' ,4' ーテ卜ラメチルー 2—ォキサゾリン)、 2, 2'— p—フエ二レンビス (2—ォキ P T/JP2006/307279
サゾリン)、 2, 2'— m—フエ二レンビス (2—ォキサゾリン)、 2, 2'— o—フ ェニレンビス (2—ォキサゾリン)、 2, 2'— p—フエ二レンビス (4—メチル —2—ォキサゾリン)、 2, 2'— p—フエ二レンビス (4, 4一ジメチルー 2— ォキサゾリン)、 2, 2'— m—フエ二レンビス(4—メチル一2—ォキサゾリン)、 2, 2'— m—フエ二レンビス (4, 4'—ジメチル一 2—ォキサゾリン)、 2, 2' —エチレンビス (2—才キサゾリン)、 2, 2'—テトラメチレンビス (2—ォキ サゾリン)、 2, 2'—へキサメチレンビス (2—ォキサゾリン)、 2, 2'—ォクタ メチレンビス (2—ォキサゾリン)、 2, 2'—デカメチレンビス (2—ォキサゾ リン)、 2, 2'—エチレンビス (4一メチル一2—ォキサゾリン)、 2, 2'—テト ラメチレンビス (4, 4—ジメチルー 2—ォキサゾリン)、 2, 2'— 3, 3'—ジ フエノキシェタンビス(2—ォキサゾリン)、 2, 2'—シクロへキシレンビス (2 一才キサゾリン)、 2, 2'—ジフエ二レンビス (2—ォキサゾリン) 等のビスォ キサゾリン類: 2, 2'—メチレンビス (5, 6—ジヒドロー 4H— 1 , 3—ォキ サジン)、 2. 2'—エチレンビス (5, 6—ジヒドロー 4 H— 1 , 3—ォキサジ ン)、 2, 2'—プロピレンビス(5, 6—ジヒドロ一 4H— 1 , 3—ォキサジン)、 2, 2'—ブチレンビス (5, 6—ジヒドロー 4 H— 1, 3—ォキサジン)、 2, 2'—へキサメチレンビス (5, 6—ジヒドロ一 4 H— 1 , 3—ォキサジン)、 2, 2'— p—フエ二レンビス (5, 6—ジヒドロ一 4H— 1, 3—ォキサジン)、 2, 2'— m—フエ二レンビス (5, 6—ジヒドロ一 4H— 1 , 3—ォキサジン)、 2, 2'—ナフチレンビス (5, 6—ジヒドロ一 4H— 1 , 3_ォキサジン)、 2, 2' — p ■ p'—ジフエ二レンビス (5, 6—ジヒドロ一 4H— 1 , 3—ォキサジン) 等のビスォキサジン類を例示することができる。
本発明においては、 機械的特性及び着色等の点から、 力ルポキシル基含有ポリ マ一 (C) と化合物 (D) により形成される架橋部分が、 脂肪族鎖により形成さ れていることが好適であることから、 上記化合物 (D) の中でも芳香環を有しな いものを好適に使用することができ、 中でも 2, 2' —ビス (2—ォキサゾリン) を特に好適に用いることができる。
(ガスバリア材)
本発明のガスバリア材は、 イオン架橋を施す前の段階として、 P T/JP2006/307279
( i ) 酸価 5 8 O m g K O H Z g以上の量に相当するカルボキシル基を有する樹 脂から成るコーティング液を基体上に塗布後加熱して架橋構造を形成した後、 基 体から取外した単層のガスバリァ性前駆体、
( i i ) 酸価 5 8 O m g K O HZ g以上の量に相当するカルボキシル基を有する 樹脂から成るコーティング液をプラスチック基体に塗布した後加熱して架橋構造 を形成した多層のガスバリア性前駆体、
或いは
( i i i ) 酸価 5 8 O m g K O H Z g以上の量に相当するカルボキシル基を有す る樹脂を直接シート状やフィルム状等にしてこれを加熱して架橋構造を形成して ガスバリア性前駆体、
を形成し、 このようにして得られたガスバリア性前駆体をイオン架橋することに より得ることができるが、 特にコーティング液を用いてガスバリア性前駆体を形 成することが好ましい。
本発明のガスバリア材において、 カルボキシル基含有ビニルモノマー (A ) と ビニルモノマー (B ) から成るガスバリア性樹脂を用い、 これをコーティング液 として使用する場合、 前述したカルボキシル基含有ビニルモノマー (A ) とビニ ルモノマー (B ) の溶液重合によるガスバリア性樹脂を溶媒中に溶解又は分散さ せ、 必要により酸触媒や無機分散体を配合して、 コーティング液を調製すること ができる。
上記ガスバリア性樹脂は、 コーティング液中 3乃至 8 0重量%、 特に 5乃至 5 0重量%の固形分濃度で含有されていることが望ましい。 上記範囲よりも少ない 場合には、 必要な膜厚の塗膜を形成することが困難であると共に、 充分なガスバ リア性を付与できないおそれがある。 一方上記範囲よりも多い場合には、 コ一テ ィング液の粘度が高くなリすぎて塗工性に劣る。
コ一ティング液は、 上記ガスバリァ性樹脂の原料モノマ一であるビニルモノマ ― ( B) 中の官能基がそれ自体同士又はカルボキシル基との反応を促進するため の酸触媒を含有することが特に好ましい。 これにより、 前述した本発明のガスバ リア性樹脂に特有の架橋構造を効率的に塗膜に導入することが可能となる。 ビニルモノマー (B ) 中の官能基がそれ自体同士又はカルボキシル基との反応 を促進するための酸触媒としては、 酢酸、 プロピオン酸、 ァスコルビン酸、 安息 香酸、 塩酸、 パラトルエンスルホン酸、 アルキルベンゼンスルホン酸等の一価の 酸、 硫酸、 亜硫酸、 リン酸、 亜リン酸、 次亜リン酸、 ポリリン酸、 ピロリン酸、 マレイン酸、 ィタコン酸、 フマル酸、 ポリカルボン酸等の二価以上の酸を挙げる ことができるが、 特に一価の酸が好ましく、 具体的にはパラトルエンスルホン酸 を用いることが好ましい。
酸触媒は、 コーティング液中のガスバリア性樹脂 1 O O gに対して 1乃至 1 0 O mm o I、 特に 2 . 5乃至 8 0 mm o Iの範囲で用いることが好ましい。 尚、 二価以上の酸^媒を用いる場合には、 価数 nで上記範囲を割った値を用いること が好ましい。
尚、 酸 媒は、 ビニルモノマー (B ) 中の官能基がそれ自体同士又はカルボキ シル基との反応を促進するものなので、 コーティング液の保存安定性 (粘度) を 考慮すると、 基体に塗布する直前に他の成分と混合することが好ましい。
コーティング液には、 ガスバリア性向上のために配合し得る上述した無機分散 体の他、 必要によりそれ自体公知の配合剤、 例えば、 界面活性剤、 充填剤、 着色 剤、 添加剤等を従来公知の処方で配合することができる。
本発明のガスパリァ材において、 カルボキシル基含有ポリマー (C) と化合物 ( D ) によるから成る樹脂を用いる場合、 前述したカルボキシル基含有ポリマー
( C ) 1 0 0重量部に対して化合物 (D ) を、 2乃至 6 0重量部、 特に 4乃至 4 0重量部の量で含有して成るコーティング液を、 用いるカルボキシル基含有ポリ マー(C)や化合物(D )の種類や、或いはコーティング液の塗工量にもよるが、
1 1 0乃至 1 7 0 °Cの温度で、 5秒乃至 5分間加熱することによリイオン架橋に 付されるガスバリァ性前駆体を製造することができる。
上記コーティング液の調製は、 カルボキシル基含有ポリマー (C) 及び化合物
( D ) の各成分を水に溶解させてもよいし、 或いは各成分の水溶液を混合するこ とによっても調製できる。 また水以外にもアルコール等の溶剤、 水ノアルコール 等の混合溶媒を用いることもできる。
また、 カルボキシル基含有ポリマー (C) のカルボキシル基と、 化合物 (D ) の環構造(d )の反応を促進するために上述した酸触媒を加えてもよい。さらに、 ガスバリア性向上のために配合し得る上述した無機分散体の他、 必要によリそれ 自体公知の配合剤、 例えば、 界面活性剤、 充填剤、 着色剤、 添加剤等を従来公知 の処方で配合してもよい。
コーティング液の基体への塗布の方法としては、 このコーティング液中に基体 を浸漬して塗布する方法、 或いはこのコーティング液をスラッシュコート、 スピ ンコー卜、ロールコー卜、スプレーコー卜等の方法により塗布することができる。 一般に必要ではないが、 基体への塗布は、 所望によリニ回以上にわたって行うこ とも勿論できる。 またプラスチック基体がコーティング液に対する濡れ性を有し ていない或いは少ない場合には、 プラスチック基体のコーティング液を塗布する 面をコロナ放電処理、 オゾン処理、 短波長紫外線照射処理、 火炎処理などに賦し てもよい。
本発明のコーティング液の乾燥及び架橋は、 コーティング液の塗布量などによ つても相違するが、 1 0 0乃至2 0 0 ¾、 特に 1 1 0乃至 1 7 0 °Cの温度で保持 時間において 0秒乃至 3 0分間、 特に 5秒乃至 5分間という短時間の加熱処理に よって行うことができる。 このため塗膜の加熱による基体への影響が小さく、 ま た生産性にも優れている。
加熱の方式は特に限定されず、 オーブン等の乾燥雰囲気での加熱処理や、 熱口 —ルとの接触による加熱処理等を行ってもよい。 また加熱処理に先立って、 ドラ ィヤーによる熱風の吹き付けや赤外線照射等により溶媒を蒸発させて乾燥被膜を 形成させた後、 加熱処理を行うこともできる。 また、 乾燥して塗膜から溶媒を蒸 発させた後、 7 0乃至 1 4 0 °Cの範囲の温度雰囲気下に、 1 0秒乃至 7日間の範 囲で更に曝露する処理であってもよい。
(イオン架橋)
本発明のガスバリァ材は、 このようにして形成されたガスバリァ性前駆体にお ける未反応の残余のカルボキシル基のうち、 少なくとも酸価 3 3 O m g K O H gの量に相当する力ルボキシル基をィォン架橋することにより得ることができる。 本発明においてガスバリア樹脂中のカルボキシル基をイオン架橋するには、 力 チオン性の極性基を有する架橋剤、 例えば 1級. 2級, 3級のアミノ基ゃ第 4級 有機アンモニゥム基、 アミド基等を有するカチオン性の単量体を用いることもで JP2006/307279
きるが、 好適には多価金属化合物を用いて金属イオン架橋することが望ましい。 本発明のガス /くリァ材の金属ィオン架橋に用いることができる多価金属化合物 としては、 水中に含有させることができ、 且つカルボキシル基と架橋反応可能な
2価以上の金属化合物である。
多価金属イオンとしては、 前記樹脂が有するカルボキシル基を架橋可能である 限り特に制限されず、 2価以上 (特に、 2〜3価) 程度、 好ましくはマグネシゥ ムイオン M g 2 +、 カルシウムイオン C a 2 +など 2価の金属イオンが使用できる。 上記金属イオンとしては、 アルカリ土類金属 (マグネシウム M g, カルシウム C a、 ストロンチウム S r , バリウム B aなど)、周期表 8族金属(鉄 F e, ルテニ ゥム R uなど)、 周期表 1 1族金属 (銅 C uなど)、 周期表 1 2族金属 (亜鉛 Z n など)、周期表 1 3族金属(アルミニウム A Iなど) などが例示できる。 2価金属 イオンとしては、マグネシウムイオン M g 2 +, カルシウムイオン C a 2 +, スト口 ンチウムイオン S r 2 +, ノくリウムイオン B a 2 +, 銅イオン C u 2 +, 亜鉛イオン Z n 2 +などが例示でき、 3価金属イオンとしては、 アルミニウムイオン A I 3 + , 鉄 イオン F e 3 +などのイオンが例示できる。上記金属イオンは一種又は二種以上組 み合わせて使用できる。 上記多価金属イオンのイオン源である水解離性金属化合 物としては、 上記金属イオンを構成する金属の塩、 例えば、 ハロゲン化物 (例え ば、 塩化マグネシウム、塩化カルシウムなどの塩化物)、水酸化物 (例えば、水酸 化マグネシウム、 水酸化カルシウムなど)、 酸化物 (例えば、 酸化マグネシウム、 酸化カルシウムなど)、 炭酸塩 (例えば、 炭酸マグネシウム、 炭酸カルシウム)、 無機酸塩、 例えば、 過ハロゲン酸塩 (例えば、 過塩素酸マグネシウム、 過塩素酸 カルシウムなどの過塩素酸塩など)、硫酸塩(例えば、硫酸マグネシウム、硫酸力 ルシゥムなど)、亜硫酸塩、硝酸塩(例えば、硝酸マグネシウム、硝酸カルシウム など)、 次亜リン酸塩、 亜リン酸塩、 リン酸塩 (例えば、 リン酸マグネシウム、 リ ン酸カルシウムなど)、 有機酸塩、例えば、 カルボン酸塩(例えば、酢酸マグネシ ゥム、 酢酸カルシウムなどの酢酸塩など) などが挙げられる。 これらの金属化合 物は、 単独又は二種以上組み合わせて使用できる。 これらの化合物のうち、 上記 金属のハロゲン化物、 水酸化物などが好ましい。
多価金属化合物によるガス/くリァ性前駆体のィオン架橋は、 多価金属化合物を 含有する水でガスバリア性前駆体を処理することにより容易にイオン架橋構造を 形成することができる。
すなわち、 多価金属化合物を含有する水による処理としては、
( ί ) 多価金属化合物を含有する水中へのガスバリア性前駆体の浸漬処理、
( i i ) 多価金属化合物を含有する水のガスバリア性前駆体へのスプレー処理、 ( i i i ) ( 乃至 i )の処理後に高湿度下にガスバリア性前駆体を置く雰 囲気処理、
( i v ) 多価金属化合物を含有する水でレトルト処理 (好ましくは、 包材と熱水 が直接接触する方法)、
等を挙げることができる。 上記処理 ( i i i ) は、 上記処理 ( i ) 〜 ( i i ) 後 のエージング効果をもたらす処理であり、 ( i ) ~ ( i i )処理の短時間化を可能 にする。
上記処理 ( i ) 〜 ( i i i ) の何れの場合も使用する処理水は冷水でも構わな い力《、多価金属化合物を含有する水がガスバリア性前駆体に作用しやすいように、 多価金属化合物を含有する水の温度を 2 0 °C以上、 好ましくは 3 5 °C以上、 特に 4 0乃至 1 0 0 °Cの温度とする。 処理時間をある程度長く設けることが可能で穏 やかな処理条件で行える場合は、 ( i ) 〜 ( i i ) の場合は、 3秒以上、 特に 1 0 秒乃至 4日程度処理を行うことが好ましく、 ( i i i )の場合は、 ( i ) 〜 ( i i ) 処理を 0. 5秒以上、 特に 1秒乃至 1時間程度処理した後、 高湿度下にガスバリ ァ性前駆体を置く雰囲気処理を 1時間以上、 特に 2時間乃至 1 4曰程度処理する ことが好ましい。
上記処理( i V )の場合は、処理温度は 1 0 1 °C以上、特に 1 2 0乃至 1 4 0 °C の温度であり、 1秒以上、 特に 3秒乃至 1 2 0分程度処理を行う。
また、 多価金属化合物を予め溶解乃至分散させておいたコーティング液から形 成したガスバリア性前駆体を、 水乃至多価金属化合物を含有する水で同様に処理 してもよい。
また何れの処理の場合も、 多価金属化合物は、 水中に金属原子換算で、 0. 1 2 5 mm o I Z L以上であることが好ましく、 0 . 5 mm o I Z L以上であるこ とがより好ましく、 2 . 5 mm o I Z L以上であることが更に好ましい。 多価金 属化合物濃度は濃いほど好ましい。
また何れの処理の場合も、 多価金属化合物を含有する水は、 中性乃至アルカリ 性であることが好ましい。
本発明においては特に工業的に高速生産性を求められる場合、 酸価が 58 Om g KOH/g以上の量に相当する力ルポキシル基を有する樹脂から成るガスノくリ ァ性前駆体を、多価金属化合物を金属原子換算で 90乃至 2000 mm o I ZL、 好ましくは 1 00乃至 1 50 Ommo I ZLの量で含有する p H 1 0乃至 1 3、 好ましくは p H 1 1乃至 1 2. 7の水で、 35 °C以上、 好ましくは 40 °C以上の 温度で上記処理を行うことにより、 1 0秒以下、 特に 1乃至 5秒間という短時間 で、 酸価 33 Omg KOH g以上の量に相当する未反応力ルポキシル基の間に 金属イオン架橋構造を形成させることが可能となり、 生産性を顕著に向上させる ことが可能となる。
多価金属化合物が金属原子換算で 9 Ommo I ZLより少ない場合は、 濃度が 低いために上記のような短時間で所定量の金属イオン架橋構造を形成させること が困難となり、 200 Ommo I ZLよりも多い場合は、 濃度が高すぎるためガ スバリァ性前駆体へのィォンの拡散がかえって生じ難くなリ、 やはリ上記のよう な短時間処理が困難となる。 水の pHが 1 0より小さい場合は、 水が浸透した際 のガスバリア性前駆体の遊離のカルボキシル基の解離度が十分でないため、 上記 のような短時間では該カルボキシル基間に金属イオン架橋構造を形成させること が困難となる。 また pHが 13より大きい場合は、 ガスパリア性前駆体やコ一テ ィングに用いる基材への負荷が大きすぎる。
尚、 上記処理 ( i ) 〜 ( i ί i ) のうち、 多価金属を含有する水中にガスバリ ァ性前駆体を浸漬する浸漬処理によることが最も短時間での架橋を可能にするた め好ましい。
本発明のガスバリア材には、 酸価 58 OmgKOHZg以上の量に相当する力 ルポキシル基を有する樹脂の他に、 無機分散体を含有していてもよい。 このよう な無機分散体は、 外部からの水分をブロックし、 ガスバリア性樹脂を保護する機 能を有し、 ガスバリア性や耐水性を更に向上させることができる。
かかる無機分散体は、 球状、 針状、 層状等、 形状は問わないが、 ガスバリア性 樹脂に対して濡れ性を有し、 コーティング液中において、 良好に分散するものが 使用される。 特に水分をブロックし得るという見地から、 層状結晶構造を有する ゲイ酸塩化合物、 例えば、 水膨潤性雲母、 クレイ等が好適に使用される。 これら の無機分散体は、 ァスぺク卜比が 3 0以上 5 0 0 0以下であることが層状に分散 させ、 水分をブロックするという点で好適である。
無機分散体の含有量は酸価 5 8 O m g K O H Z g以上の量に相当するカルボキ シル基を有する樹脂 1 0 0重量部に対し、 5乃至 1 0 0重量部の量で含有してい ることが好ましい。
本発明のガスバリア材から成る層を有する包装材は、 前述した通り、 酸価 5 8 O m g K O H / g以上の量に相当するカルボキシル基を有する樹脂をイオン架橋 して成るガスバリア材単層のものでもよいし、 或いはこのガスバリア材をプラス チック基体の表面或いはプラスチック層の間に形成させることにより得ることが できる。
プラスチック基体としては、 熱成形可能な熱可塑性樹脂から、 押出成形、 射出 成形、 ブロー成形、 延伸ブロー成形或いはプレス成形等の手段で製造された、 フ イルム、 シート、 或いはボトル状、 カップ状、 トレィ状、 缶形状などの任意の形 状のプラスチック基体にガスバリア材を形成して包装材とすることができる。 プラスチック基体を構成する樹脂の適当な例は、 低一、 中一或いは高一密度ポ リエチレン、 線状低密度ポリエチレン、 ポリプロピレン、 エチレン一プロピレン 共重合体、 エチレン一ブテン一共重合体、 アイオノマー、 エチレン—酢酸ビニル 共重合体、 エチレン一ビニルアルコール共重合体等のォレフィン系共重合体:ポ リエチレンテレフタレート、 ポリブチレンテレフタレー卜、 ポリエチレンテレフ タレート Zイソフタレート、 ポリエチレンナフタレート等のポリエステル:ナイ ロン 6、 ナイロン 6 , 6、 ナイロン 6, 1 0、 メタキシリレンアジパミド等のポ リアミド;ポリスチレン、 スチレン一ブタジエンブロック共重合体、 スチレン一 ァクリロ二トリル共重合体、 スチレン一ブタジエン一ァクリロニトリル共重合体 ( A B S樹脂) 等のスチレン系共重合体:ポリ塩化ビニル、 塩化ビニルー酢酸ビ ニル共重合体等の塩化ビニル系共重合体;ポリメチルメタクリレート、 メチルメ タクリレート .ェチルァクリレート共重合体等のァクリル系共重合体:ポリ力一 ポネート等である。
これらの熱可塑性樹脂は単独で使用しても或いは 2種以上のブレンド物の形で 存在していてもよい、 またプラスチック基体は、 単層の構成でも、 或いは例えば 同時溶融押出しや、 その他のラミネーシヨンによる 2層以上の積層構成であって もよい。
勿論、 前記の溶融成形可能な熱可塑性樹脂には、 所望に応じて顔料、 酸化防止 剤、 帯電防止剤、 紫外線吸収剤、 滑剤などの添加剤の 1種或いは 2種類以上を樹 脂 1 0 0重量部当りに合計量として 0 . 0 0 1部乃至 5 . 0部の範囲内で添加す ることもできる。
また、 例えば、 この容器を補強するために、 ガラス繊維、 芳香族ポリアミド繊 維、 カーボン繊維、 パルプ、 コットン ' リンター等の繊維補強材、 或いはカーボ ンブラック、 ホワイトカーボン等の粉末補強材、 或いはガラスフレーク、 アルミ フレーク等のフレーク状補強材の 1種類或いは 2種類以上を、 前記熱可塑性樹脂 1 0 0重量部当り合計量として 2乃至 1 5 0重量部の量で配合でき、 更に増量の 目的で、重質乃至軟質の炭酸カルシウム、雲母、滑石、カオリン、石膏、クレイ、 硫酸バリウム、 アルミナ粉、 シリカ粉、 炭酸マグネシウム等の 1種類或いは 2種 類以上を前記熱可塑性樹脂 1 0 0重量部当り合計量として 5乃至 1 0 0重量部の 量でそれ自体公知の処方に従って配合しても何ら差支えない。
さらに、 ガスバリア性の向上を目指して、 鱗片状の無機微粉末、 例えば水膨潤 性雲母、 クレイ等を前記熱可塑性樹脂 1 0 0重量部当り合計量として 5乃至 1 0 0重量部の量でそれ自体公知の処方に従って配合しても何ら差支えない。
本発明によれば、最終フィルム、 シート、 或いは容器の表面に前述したガスパ リア材を設けることもできるし、 容器に成形するための予備成形物にこの被覆を 予め設けることもできる。 このような予備成形体としては、 二軸延伸ブロー成形 のための有底又は無底の筒状パリソン、 プラスチック罐成形のためのパイプ、 真 空成形、圧空成形、プラグアシスト成形のためのシート、或いはヒートシール蓋、 製袋のためのフィルム等を挙げることができる。
本発明の包装材において、ガスバリア材は一般に 0 . 1乃至 1 O jU m、特に 0 . 5乃至 5 mの厚みを有することが好ましい。 この厚みが前記範囲を下回ると酸 素バリア性が不十分となる場合があり、 一方この厚み力《前記範囲を上回っても、 格別の利点がなく、 包装材のコストの点では不利となる傾向がある。 勿論、 この ガスバリア材は単一の層として、 容器の内面、 容器の外面、 及び積層体の中間層 として設けることが き、 また複数の層として、 容器の内外面、 或いは容器の内 外面の少なくとも一方と積層体の中間層として設けることができる。
被覆予備成形体から最終容器への成形は、 二軸延伸ブロー成形、 プラグアシス 卜成形等のそれ自体公知の条件により行うことができる。 また、 コーティング層 を設けたフィル厶乃至シ一トを他のフィルム乃至シー卜と貼り合わせて、 積層体 を形成し、 この積層体をヒートシール蓋、 バウチや、 容器成形用の予備成形体と して用いることもできる。
包装材として用いる場合に、 ガスバリア材から成る層の少なくとも片面に、 ァ ンカ一層を設けても良い。 アンカー層を設けることにより、 層間の密着性が高ま リ、 容器の機械的強度や積層体の可撓性を更に高めることができる。
ガスバリァ材から成る層を容器の内外面、 或いは積層体の最表層に用いる場合 は、 アンカー層を介してガスバリア材から成る層を形成すれば良く、 積層体の中 間層に用いる場合は、 ガスバリア材から成る層の少なくとも片面にアンカー層を 形成すれば良い。
本発明の包装材において、 アンカー材は、 ウレタン系、 エポキシ系、 アクリル 系、 ポリエステル系等種々のポリマーから形成され得る。 特にウレタン系ポリマ —を含有することが好ましい。 また、 アンカー材は主剤と硬化剤から構成されて いても良く、 硬化反応が完了していない状態の前駆体であっても、 或いは硬化剤 が過剰に存在している状態であっても良い。 例えばウレタン系の場合、 ポリエス テルポリオールゃポリエーテルポリオール等のポリオール成分とポリィソシァネ 一卜成分から主に構成されており、 ポリイソシァネート成分中のィソシァネート 基数がポリオール成分中の水酸基数よリも過剰になるようにポリィソシァ ネート成分が存在していても良い。
アンカー層の厚みは、 0 . 0 1乃至 1 O jU mであることが好ましく、 0 . 0 5 乃至 5 mであることがより好ましく、 0 . 1乃至 3 mであることが更に好ま しい。 この厚みが前記範囲を下回ると、 密着性におけるアンカー層の効果が発現 しなくなる場合があり、 一方この厚みが前記範囲を上回っても、 格別の利点がな く、 包装材のコストの点では不利となる傾向がある。 実施例
本発明を次の実施例によリ更に説明するが、 本発明は次の例によリ何らかの制 限を受けるものではない。
(樹脂の酸価の算出方法)
酸価とは、 樹脂 1 g中に含まれる酸性遊離官能基を中和するのに必要な水酸化 カリウムの mg数とする。 樹脂の酸価の算出は、 アルカリ中和滴定に基づく常法 により行った。 すなわち、 樹脂をエタノール溶液に溶解し、 1 %フエノールフタ レインエタノール溶液を指示薬として、 エタノール性 0· 1 N水酸化カリウム標 準溶液で滴定した。
(ィォン架橋に携わつた酸価の算出方法)
カルボキシル基の塩転換によリイオン架橋を形成させる。 イオン架橋に携わつ た酸価の測定には、 イオン架橋後のガスパリァ材を用い, フーリエ変換赤外分光 光度計で測定して算出する。 一般にカルボン酸の特性吸収帯は、 920〜970 cm—1付近、 1 700〜 1 7 1 0 cm—1付近、 2500〜 3200 cm— 1付近の 波長に、更に酸無水物では 1 770〜 1 800 cm一"1付近の波長にあることが知 られている。 また、 カルボン酸塩の特性吸収帯は、 1 480〜 1 630 cm—1付 近の波長にあることが知られている。 イオン架橋に携わった酸価の算出には、 1 600〜 1 800 cm_1のカルボン酸および酸無水物の波長領域に頂点を有す るピークの高さと、 1 480〜 1 630 cm一1のカルボン酸塩の波長領域に頂点 を有するピークの高さを用いる。 より好ましくは、 1 695〜 1 7 1 5 cm一1 ( i ) と 1 540〜 1 6 1 0 c m— 1 ( i i ) の波長領域に頂点を有するピークの 高さを用いる。各試料の赤外吸収スぺクトルを検出し、 ( ί ) および( ί ί )の波 長での吸光度を測定しピーク高さを得る。 カルボン酸と力ルポン酸塩の吸光度係 数を同じと見なし、 カルボキシル基の塩転換率 X (カルボン酸からカルボン酸塩 へ変換した割合) を下記式 (1 ) により算出する。
X= ii)のピーク高さ Ζ[ のピーク高さ +(ΰ)のピーク高さ] ··· (1 ) 尚、 ( ί ) 及び( i i ) のピーク高さは、 当ピークのすそ部分がベースラインに 重なる点とピーク頂点の吸光度差をいう。 上記によって求めた力ルポキシル基の 塩転換率に、 前項記載の方法で求めた樹脂の酸価を乗じてイオン架橋に携わった 酸 <面を下記式 (2) により算出する。 すなわち、
イオン架橋に携わった酸価 =樹脂の酸価 Xカルボキシル基の塩転換率 ··· (2) 尚、 カルボン酸以外の酸性官能基の量が無視できない場合は、 塩転換率を求め る際にモル濃度で定量した結果を用いる。
(フーリェ変換赤外分光光度計の測定条件)
使用機器: Digilab社製 FTS7000series
測定方法:ゲルマニウムプリズムを用いた 1回反射法
測定波長領域: 4000~700 cm— 1
(酸素透過量)
得られたガスバリア性前駆体及びガスバリア材の酸素透過量を、 酸素透過量測 定装置 (Modern Control社製、 OX— TRAN2Z20) を用いて測定した。 測 定条件は、 環境温度 25°C、 相対湿度 80%である。
(実施例 1 )
5 OOmLの四つロセパラブルフラスコの攪拌機、 温度計、 還流冷却器、 窒素 導入管を装着し、 温度制限された湯浴中にセットした。 十分窒素置換した後、 テ トラヒドロフラン 63 g、 イソプロピルアルコール 7. Og、 ァクロレイン 5. 6 g(0.1 Omo I )、力ルポキシル基含有樹脂としてアクリル酸 64.9 g(0. 9 Omo I ) を加え、 30°Cに保ち 1時間窒素置換を続けた。 続いて、 ァゾ系開 始剤 (商品名 V— 70 和光純薬製) 0. 77 g (0. 0025mo I ) を必要 量のテ卜ラヒドロフランに溶解させ、 一度に加えた。温度を 30°Cに維持したま ま、 24時間重合を続けた。 得られた溶液にテトラヒドロフランを適量加え、 粘 度を調整し、 ガスバリア性樹脂溶液を得た。 上記ガスバリア性樹脂溶液を固形分 で 20重量0 /0になるようエチルアルコールで希釈した。 更にパラトルエンスルホ ン酸を樹脂 100 gに対して 4 Ommo Iになるよう添加してよく撹拌し、 コー ティング液とした。
上記コーティング液をバーコ一ターにより、 厚み 12 mの 2軸延伸ポリェチ レン亍レフタレートフイルム ( ί ) に塗布した。 塗布後の上記フィルムをガス才 ーブンによりピーク温度 1 70°C、ピーク温度保持時間 1 0秒の条件で熱処理し、 厚み 2 mのコーティング層 ( i i ) を有する図 1に示すようなポリエチレン亍 レフタレ一トフイルム ( ί ί i ) とした。 50°Cに暖めた水道水に上記フィルム を 3日間浸漬処理した。 水中から取り出し乾燥後、 上記フィルムの酸素透過量と 酸価を測定した。
(実施例 2)
実施例 1において、 塩化カルシウムを水道水に添加してカルシウムイオン濃度 を 2. O Ommo I ZLに調整した処理水で 1日浸漬処理する以外は実施例 1 と 同様の方法で処理し、 ガスバリア材を得た。
(実施例 3)
実施例 1において、 塩化カルシウムを水道水に添加してカルシウムイオン濃度 を 3. 75mmo I / Lに調整した処理水で浸漬処理する以外は実施例 1と同様 の方法で処理し、 ガスバリア材を得た。
(実施例 4)
実施例 1において、 パラトルエンスルホン酸を樹脂 1 00 gに対して30mm o Iになるよう添加し、 ガスオーブンによりピーク溘度 1 40°Cで熱処理し、 塩 化カルシウムを水道水に添加してカルシウムイオン濃度を 3. 75mmo I し に調整した処理水で浸漬処理する以外は実施例 1と同様の方法で処理し、 ガスバ リア材を得た。
(実施例 5)
実施例 1において、 水道水で 8時間浸漬処理する以外は実施例 1と同様の方法 で処理し、 ガスバリア材を得た。
(実施例 6)
実施例 1において、 ァクロレインを" I 3. 4 g (0. 24mo l )、 カルボキシ ル基含有樹脂を 54. 8 g (0. 76mo I ) とし、 1 20 °Cで 30分間水道水 にレトルト処理する以外は実施例 1 と同様の方法で処理し、ガスバリア材を得た。 (実施例 7)
実施例 1において、 ァクロレインを 1 6. 8 g (0. 30mo l )、 カルボキシ ル基含有樹脂を 50. 5 g (0. 7 Omo I ) とし、 1 20°Cで 30分間水道水 にレトルト処理する以外は実施例 1と同様の方法で処理し、ガスバリア材を得た。 (実施例 8)
実施例 1において、 1, 2—ジアミノエタン 0. 33mmo I Zし含有するよ うに調整した水道水で浸漬処理する以外は実施例 1と同様の方法で処理し、 ガス パリア材を得た。
(実施例 9)
実施例 1において、ァクロレインを 5. 6 g (0. 1 mo I )、 カルボキシル基 含有樹脂としてメタクリル酸を 60. 2 g (0. 7mo I )、 マレイン酸を 23. 2 g (0. 2mo I ) とし、 塩化カルシウムを水道水に添加してカルシウムィォ ン濃度を 3. 75mmo I Lに調整した処理水で浸漬処理する以外は実施例 1 と同様の方法で処理し、 ガスバリア材を得た。 .
(実施例 1 0)
TEMPO角虫媒 (2. 2, 6, 6— Tetramethylpiperidiae 1 -Oxyl 東京 化成製) を利用し、 C 6位の一級水酸基のみを選択的に酸化して力ルポキシル基 にしたデキストリン (商品名 Amy c o I No. 7 H 日澱化学製) 1 1. 4 g を水に溶解させ、 固形分 25重量%のポリアクリル酸水溶液 (和光純薬製) 35 4. 4 gと混合し、 固形分で 1 5重量%のガスバリア性樹脂溶液を得た。 更に力 ルポキシル基間の架橋剤として、 固形分 40重量%のポリカルポジイミド系樹脂
(商品名カルポジライト E— 01 曰清紡製) を 7. 5 g添加してよく撹拌し、 コーティング液とした。
上記コーティング液をバーコ一ターにより、 厚み 1 2 / mの 2軸延伸ポリェチ レンテレフタレートフィルム ( i ) に塗布した。 塗布後の上記フィルムをガスォ ーブンによリピーク温度 1 40°C、ピーク温度保持時間 1 0秒の条件で熱処理し、 厚み 2〃 mのコ一ティング層 ( i i ) を有するポリエチレンテレフタレートフィ ルム ( i i i ) とした。 50°Cに暖めた水道水に上記フィルムを 3日間浸漬処理 した。 水中から取り出し乾燥後、 上記フイルムの酸素透過量と酸価を測定した。
(実施例 1 1 )
カルボキシル基含有ポリマー(C)としてポリアクリル酸(和光純薬製、 25% 水溶液) を用い、 これを減圧下で乾固させた後、 メタノールに溶解して固形分 2 1. 50/0の (メタノールノ水) 溶液 (a) とした。 溶媒組成は、 重量比でメタノ —ル 水=95. 5/4. 5である。 一方カルボキシル基間の架橋剤 (D) とし て 2, 2' 一ビス (2—ォキサゾリン) (東京化成製) を用い、 これを、 メタノー ルに溶解し、 固形分 5%の溶液 (b) とした。 架橋剤がポリカルボン酸系ポリマ 一に対して 10重量%になるように溶液 (a) 及び (b) を混合し、 更にメタノ ールを添加して固形分が 1 5%になるように調製した上でよく撹拌し、 コーティ ング液とした。
上記コーティング液をバーコ一ターにより、 厚み 1 2 /mの 2軸延伸ポリェチ レンテレフタレ一トフイルム ( i ) に塗布した。 塗布後の上記フィルムを電気ォ ーブンによりピーク温度 1 40°C、 ピーク温度保持時間 1 80秒の条件で熱処理 し、 厚み 2 jumのコーティング層 ( i i ) を形成し、 図 1に示すようなコ一ティ ングフィルム ( i i i ) を得た。
50°Cに暖めた水道水に、 上記フィルム ( i i i ) を 1曰浸漬処理した。 湯中 から取リ出し乾燥後、 上記フィルムの酸素透過量と酸価を測定した。
(実施例 1 2)
ポリエステルポリオ一ル (東洋紡績 (株) 製、 バイロン 200) を酢酸ェチル Zメチルェチルケトン混合溶媒 (重量比で 60ノ 40) に溶解し、 20重量%と した。 この溶液中にポリイソシァネー卜 (住化バイェルンウレタン (株) 製、 ス ミジュール N 3300) 及びジラウリン酸ジ一 n—プチルスズ (和光純薬製) を、 それぞれポリエステルポリオールに対して 60重量%、 0. 8重量%になる よう加え、 全固形分が 1 4重量%になるよう前記混合溶媒にて希釈し、 アンカー 層形成用コ一ティング液とした。
上記コーティング液をバーコ一ターにより、 厚み 1 2 mの 2軸延伸ポリェチ レンテレフタレートフィルム ( i ) に塗布した後、 電気オーブンによりピーク温 度 80°C、 ピーク温度保持時間 1 0秒の条件で熱処理し、 厚み 0. 5 imのアン カー層 (ix) を有するポリエチレンテレフタレートフィルムとした。
カルボキシル基含有ポリマー (C) として、 ポリアクリル酸 (日本純薬製 AC - 1 O LHP)を用い、メタノールに溶解して固形分 1 5%の溶液(c) とした。 7279
溶液 (c) に更に力ルポキシル基含有ポリマー (C) に対して 1 0重量%になる ように実施例 1 1の溶液 (b) を添加し、 メタノールで固形分 8%のコーティン グ液 (d) とした。
コーティング液 (d) をバーコ一ターにより、 アンカー層 (ix) を有するポリ エチレンテレフタレ一トフイルムに塗布した後、 電気オーブンによりピーク温度 1 40°C、 ピーク温度保持時間 1 80秒の条件で熱処理し、 厚み 2 m、 塗膜面 積 450 cm2のコーティング層 ( i ί ) を形成し、 図 3に示すようなコーティ ングフィルム (X) を得た。
塩化カルシウムを水道水に添加し、 力、つ水酸化カルシウム及び水酸化ナトリウ ムを用いて ρ H I 2. 76に調整したカルシウムイオン濃度が 94mm o I ZL の上澄み液 1. 5 Lに、液温 82 °Cで 5秒間上記フイルム( X )を浸して処理し、 ガスバリア材を得た。
上記金属イオン濃度は、 Inductively Coupled Plasma発光分析装置 (日本 ジャーレルァシュ社製 I CAP— 88) を用いて定量した。
(実施例 1 3)
実施例 1 2において、 ρ Η 1 2· 33、 カルシウムイオン濃度が 469mmo I ZLの上澄み液に、 液温 35 °Cで 1 0秒間上記フィルム (X) を浸して処理す る以外は実施例 1 2と同様の方法で処理し、 ガスパリァ材を得た。
(実施例 1 4)
実施例 1 2において、 p H 1 1. 21、 カルシウムイオン濃度が 1 875mm o I ZLの上澄み液に、 液温 94°Cで 1 0秒間上記フィルム (X) を浸して処理 する以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
(実施例 1 5)
実施例 1 2において、 溶液 (c) にカルボキシル基含有ポリマー (C) に対し て 1 5重量0 /0になるように溶液 (b) を添加し、 メタノールで固形分 8%のコー ティング液 (d) としたこと、 及び p H I 1. 82、 カルシウムイオン濃度が4 69 mm o Iノ Lの上澄み液に、 液温 50。。で 5秒間上記フィル厶 ( X ) を浸し て処理する以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。 (実施例 1 6) 実施例 1 2において、 マグネシウムイオン濃度が 1 80mmo I ZLになるよ うに塩化マグネシウム 6水和物を水道水に添加し、 かつ水酸化ナトリウムを用い て p H I 0.26に調整した上澄み液を、液温 96 °Cで 1 0秒間上記フィルム(X) を浸して処理する以外は実施例 1 2と同様の方法で処理し、ガスバリァ材を得た。 なお、 カルシウムイオンが希釈液である水道水中に 0. 60mmo I含まれて いるが、 1 0秒という短時間において有効な量ではないため、 本実施例における 効果はマグネシウムイオンによるものである。
(実施例 1 7)
実施例 1において、 コーティング層 ( i i ) を下層にして、 厚み 2 mのウレ タン系接着剤 ( i V:)、 厚み 1 5〃mの 2軸延伸ナイロンフィルム (v)、 厚み 2 mのウレタン系接着剤 (V i ) 及び厚み 70〃mの無延伸ポリプロピレンフィ ル厶 (V i i ) を順次ラミネートし、 図 2に示すような層構成の積層体 (V i i i ) を得た。
(実施例 1 8)
実施例 1 7において、 実施例 1 1のコーティング層を使用する以外は実施例 1 7と同様の方法で積層体を得た。
(比較例 1 )
実施例 1において、 ァクロレインを 1 9· 6 g (0. 35mo l )、 カルポキシ ル基含有樹脂を 46. 9 g (0. 65mo I ) とし、 1 20°Cで 30分間水道水 にレトル卜処理する以外は実施例 1と同様の方法で処理し、ガスバリァ材を得た。 (比較例 2)
実施例 1において、 水道水で 6時間浸漬処理する以外は実施例 1と同様の方法 で処理し、 ガスバリア材を得た。
(比較例 3)
実施例 1 1において、 水道水で 35分間浸漬処理する以外は実施例 1 1と同様 の方法で処理し、 ガスバリア材を得た。
(比較例 4)
実施例 1において、 コーティング液に更に塩化カルシウムを樹脂 1 O O gに対 して 20mmo Iになるように添加し、 浸漬処理を行わない以外は実施例 1と同 TJP2006/307279
様の方法で処理し、 ガスバリア材を得た。
(比較例 5)
実施例" I 2において、 ρ Η9· 52、 カルシウムイオン濃度が 469mmo I ZLの上澄み液を、 液温 80°Cで 1 0秒間上記フィルム (X) を浸して処理する 以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
(比較例 6)
実施例 1 2において、 pH I 1. 07、 カルシウムイオン濃度が 47 mm o I ZLの上澄み液を、 液温 60°Cで 1 0秒間上記フィルム (X) を浸して処理する 以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
(比較例 7)
実施例 1 2において、 p H 1 3. 50、 カルシウムイオン濃度が 469mmo I /Lの上澄み液を、 液温 80°Cで 1 0秒間上記フィルム (X) を浸して処理す る以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
(比較例 8)
実施例 1 2において、 p H 1 1. 01、 カルシウムイオン濃度が 2345mm o I ZLの上澄み液を、 液温 80°Cで 10秒間上記フィルム (X) を浸して処理 する以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
(比較例 9)
実施例 1 2において、 p H I 1 · 1 8、 カルシウムイオン濃度が 94 mm o I ZLの上澄み液を、 液温 30°Cで 1 0秒間上記フィルム (X) を浸して処理する 以外は実施例 1 2と同様の方法で処理し、 ガスバリア材を得た。
上記実施例及び比'較例で得られた樹脂の酸価、 酸触媒の量、 浸積処理条件、 ィ オン架橋に携わった酸価及び酸素透過量の測定結果を表 1に示す。
Figure imgf000033_0001
脂 1 oogに対するパラトルエンスルホン酸の量 積層体の酸素透過量
1 20°C30分間、水道水でレトルト処理 CaO. 60mmolと Mg 1 80mmol含有の処理水
1 . 2 ジアミノエタン 0. 33 mmol Lを水道水に添加 浸澴処理により塗膜剥離
処理水中の Caは樹脂中のカルボキシル基をすベて金属イオン架橋するのに必要 +分量存在している DHの測定温度は.室温(21 °C) コーティング液中に Caを添加し、浸澴処理を行っていない

Claims

言青 求 の 範 囲
1. 酸価 58 Omg KOHZg以上の量に相当するカルボキシル基を有する樹 脂の少なくとも酸価 33 OmgKOHZgの量に相当するカルボキシル基がィォ ン架橋されていることを特徴とするガスバリァ材。
2. 前記カルボキシル基が多価金属イオンにより架橋されている請求項 1記載 のガスバリア材。
3. 前記樹脂が、 カルボキシル基含有ビニルモノマー (A) と、 それ自体同士 又はカルボキシル基と反応可能な官能基を有するビニルモノマー (B) を必須成 分とする共重合体から成る請求項 1記載のガスバリア材。
4. 前記ビニルモノマー (B)中の前記官能基がそれ自体同士又はカルボキシル 基と反応することによリ、 架橋構造が形成されている請求項 3記載のガスバリァ 材。
5. 前記ビニルモノマー (B) がアルデヒド基又はグリシジル基を有する請求 項 3記載のガスバリア材。
6. 前記樹脂が、 カルボキシル基含有ポリマー (C) と、 窒素との間に二重結 合を形成する炭素にエーテル結合が形成され、 該エーテル結合中の酸素を含んで 成る環構造 (d) を 2個含有する化合物 (D) から成り、 前記カルボキシル基含 有ポリマー (C) のカルボキシル基と前記化合物 (D) の環構造 (d) が反応す ることにより架橋構造が形成されている請求項 1記載のガスバリア材。
7. 前記化合物 (D) に含まれる環構造 (d) の少なくとも 1個がォキサゾリ ン基又はその誘導体である請求項 6記載のガスバリア材。
8. 前記化合物 (D) 力 2, 2' 一ビス (2—ォキサゾリン) である請求項 6記載のガスバリア材。
9. 酸価が 58 Omg KOHZg以上の量に相当するカルボキシル基を有する 樹脂から成るガスバリア性前駆体を、 多価金属化合物を金属原子換算で 90 乃至 200 Ommo Iノ Lの量で含有する p H 1 0乃至 1 3の水で、 35°C以上 の温度で 10秒以下の時間処理することにより、 少なくとも酸価 330 m g K O HZ gの量に相当する未反応カルボキシル基の間に金属イオン架橋構造を形成さ せることを特徴とするガスバリア材の製造方法。
1 0. 前記処理が、 多価金属化合物を含有する水中にガスバリア性前駆体を浸 漬するものである請求項 9記載のガスバリァ材の製造方法。
1 1. 請求項 1記載のガスバリア材から成る層を、 プラスチック基体の表面或 いはプラスチックの層間に備えてなることを特徴とする包装材。
PCT/JP2006/307279 2005-03-30 2006-03-30 ガスバリア材及びその製造方法 WO2006104257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007510585A JP5256487B2 (ja) 2005-03-30 2006-03-30 ガスバリア材及びその製造方法
US11/910,397 US7956133B2 (en) 2005-03-30 2006-03-30 Gas-barrier material and a method of producing the same
EP20060731227 EP1865020B1 (en) 2005-03-30 2006-03-30 Gas-barrier material and process for producing the same
AU2006229439A AU2006229439A1 (en) 2005-03-30 2006-03-30 Gas-barrier material and process for producing the same
CN2006800108382A CN101151305B (zh) 2005-03-30 2006-03-30 阻气材料及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-099730 2005-03-30
JP2005099730 2005-03-30
JP2005-358789 2005-12-13
JP2005358789 2005-12-13

Publications (1)

Publication Number Publication Date
WO2006104257A1 true WO2006104257A1 (ja) 2006-10-05

Family

ID=37053504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307279 WO2006104257A1 (ja) 2005-03-30 2006-03-30 ガスバリア材及びその製造方法

Country Status (7)

Country Link
US (1) US7956133B2 (ja)
EP (1) EP1865020B1 (ja)
JP (1) JP5256487B2 (ja)
KR (1) KR101263085B1 (ja)
CN (1) CN101151305B (ja)
AU (1) AU2006229439A1 (ja)
WO (1) WO2006104257A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274199A (ja) * 2005-03-30 2006-10-12 Toyo Seikan Kaisha Ltd ガスバリア性樹脂、これを用いて成るガスバリア材、コーティング液、包装材及びガスバリア材の製造方法
WO2008084802A1 (ja) * 2007-01-11 2008-07-17 Toyo Seikan Kaisha, Ltd. ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008169303A (ja) * 2007-01-11 2008-07-24 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008195787A (ja) * 2007-02-09 2008-08-28 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008280452A (ja) * 2007-05-11 2008-11-20 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2010143591A (ja) * 2008-12-16 2010-07-01 Kuraray Co Ltd スパウト付きパウチ
US20120046405A1 (en) * 2009-05-06 2012-02-23 Inmat Inc. Barrier coatings stabilized with multi-valent metal cations
US20120053281A1 (en) * 2009-05-06 2012-03-01 Feeney Carrie A Barrier coatings post-formation treated with multi-valent metal cations
JP5151482B2 (ja) * 2005-09-28 2013-02-27 東洋製罐株式会社 ガスバリア材及びその製造方法並びにガスバリア性包装材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321459B2 (ja) * 2007-08-14 2013-10-23 東洋製罐株式会社 蒸着膜を備えた生分解性樹脂容器及び蒸着膜の形成方法
WO2009041500A1 (ja) * 2007-09-27 2009-04-02 Toyo Seikan Kaisha, Ltd. 耐ブロッキング性に優れたガスバリア材及びその製造方法
WO2011040540A1 (ja) * 2009-10-02 2011-04-07 東洋製罐株式会社 ガスバリア性積層体及びその製造方法
KR20140045930A (ko) * 2011-03-29 2014-04-17 썬 케미칼 비.브이. 폴리우레탄을 포함하는2-코트 차단시스템
US20150059295A1 (en) * 2012-04-27 2015-03-05 Mitsubishi Gas Chemical Company, Inc. Epoxy resin curing agent, epoxy resin composition, and gas-barrier adhesive and gas-barrier laminate
JP6934767B2 (ja) * 2017-07-25 2021-09-15 伯東株式会社 超音波伝達効率向上組成物、超音波診断用ゲル組成物及び超音波撮影方法
EP4010266A4 (en) * 2019-08-05 2023-08-16 Amcor Flexibles North America, Inc. STAIN RESISTANT WRAPPING FILM FOR AUTOCLAVE APPLICATIONS
CN113234298A (zh) * 2021-06-10 2021-08-10 江苏宝源高新电工有限公司 一种高性能的ldpe离子聚合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171468A (ja) * 2001-12-10 2003-06-20 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same
JP2004115776A (ja) * 2003-04-02 2004-04-15 Toyo Ink Mfg Co Ltd ガスバリア性塗料
JP2004315586A (ja) * 2003-04-11 2004-11-11 Toyo Ink Mfg Co Ltd ガスバリア性積層体の製造方法
JP2005081699A (ja) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd ガスバリア性積層体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074905B2 (ja) * 2001-02-28 2008-04-16 大日本インキ化学工業株式会社 吸水性材料、その製造方法および吸水性物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003171468A (ja) * 2001-12-10 2003-06-20 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
JP2003292713A (ja) * 2002-04-01 2003-10-15 Rengo Co Ltd ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
WO2003091317A1 (en) * 2002-04-23 2003-11-06 Kureha Chemical Industry Company, Limited Film and process for producing the same
JP2004115776A (ja) * 2003-04-02 2004-04-15 Toyo Ink Mfg Co Ltd ガスバリア性塗料
JP2004315586A (ja) * 2003-04-11 2004-11-11 Toyo Ink Mfg Co Ltd ガスバリア性積層体の製造方法
JP2005081699A (ja) * 2003-09-09 2005-03-31 Toyo Ink Mfg Co Ltd ガスバリア性積層体の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274199A (ja) * 2005-03-30 2006-10-12 Toyo Seikan Kaisha Ltd ガスバリア性樹脂、これを用いて成るガスバリア材、コーティング液、包装材及びガスバリア材の製造方法
JP5151482B2 (ja) * 2005-09-28 2013-02-27 東洋製罐株式会社 ガスバリア材及びその製造方法並びにガスバリア性包装材
WO2008084802A1 (ja) * 2007-01-11 2008-07-17 Toyo Seikan Kaisha, Ltd. ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008169303A (ja) * 2007-01-11 2008-07-24 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008195787A (ja) * 2007-02-09 2008-08-28 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2008280452A (ja) * 2007-05-11 2008-11-20 Toyo Seikan Kaisha Ltd ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP2010143591A (ja) * 2008-12-16 2010-07-01 Kuraray Co Ltd スパウト付きパウチ
US20120046405A1 (en) * 2009-05-06 2012-02-23 Inmat Inc. Barrier coatings stabilized with multi-valent metal cations
US20120053281A1 (en) * 2009-05-06 2012-03-01 Feeney Carrie A Barrier coatings post-formation treated with multi-valent metal cations
US9187654B2 (en) * 2009-05-06 2015-11-17 Carrie A. Feeney Barrier coatings post-formation treated with multi-valent metal cations

Also Published As

Publication number Publication date
CN101151305A (zh) 2008-03-26
US7956133B2 (en) 2011-06-07
JPWO2006104257A1 (ja) 2008-09-11
CN101151305B (zh) 2011-09-14
US20090274918A1 (en) 2009-11-05
EP1865020B1 (en) 2014-06-18
EP1865020A1 (en) 2007-12-12
EP1865020A4 (en) 2011-09-07
JP5256487B2 (ja) 2013-08-07
KR101263085B1 (ko) 2013-05-09
KR20080004543A (ko) 2008-01-09
AU2006229439A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
WO2006104257A1 (ja) ガスバリア材及びその製造方法
JP6598424B2 (ja) ガスバリア積層体
TWI411618B (zh) Air barrier film, gas barrier layered body and manufacturing method thereof
US8097345B2 (en) Gas barrier film, gas barrier laminate and method for manufacturing film or laminate
JP5353700B2 (ja) 耐ブロッキング性に優れたガスバリア材及びその製造方法
JP5298446B2 (ja) ガスバリア性成形体、塗液および塗液を用いたガスバリア性成形体の製造方法
JP5733213B2 (ja) ガスバリア性積層体及びその製造方法
WO2007037044A1 (ja) ガスバリア材及びその製造方法並びにガスバリア性包装材
KR20090108018A (ko) 가스 배리어재 형성용 조성물, 가스 배리어재 및 그 제조방법 및 가스 배리어성 포장재
JP5432140B2 (ja) ガスバリア性積層体の製造方法
WO2012086589A1 (ja) ガスバリア性積層体及びその製造方法
JP7359235B2 (ja) ラミネート積層体
JP2007131816A (ja) ガスバリア材及び包装材
JP4779405B2 (ja) ガスバリア性樹脂、これを用いて成るガスバリア材、コーティング液、包装材及びガスバリア材の製造方法
JP4882651B2 (ja) ガスバリア性ゴム状形成体およびその製造方法
JP5036340B2 (ja) ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP5456241B2 (ja) ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材
JP5237560B2 (ja) ガスバリア材形成用組成物、ガスバリア材及びその製造方法並びにガスバリア性包装材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010838.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510585

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006229439

Country of ref document: AU

Ref document number: 2006731227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006229439

Country of ref document: AU

Date of ref document: 20060330

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006229439

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077025030

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731227

Country of ref document: EP