WO2006103887A1 - 高温特性に優れたボトル缶用アルミニウム合金板 - Google Patents

高温特性に優れたボトル缶用アルミニウム合金板 Download PDF

Info

Publication number
WO2006103887A1
WO2006103887A1 PCT/JP2006/304381 JP2006304381W WO2006103887A1 WO 2006103887 A1 WO2006103887 A1 WO 2006103887A1 JP 2006304381 W JP2006304381 W JP 2006304381W WO 2006103887 A1 WO2006103887 A1 WO 2006103887A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
cold
rolling
amount
less
Prior art date
Application number
PCT/JP2006/304381
Other languages
English (en)
French (fr)
Inventor
Katsura Kajihara
Kiyohito Tsuruda
Yasuhiro Aruga
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005089369A external-priority patent/JP4019082B2/ja
Priority claimed from JP2005089371A external-priority patent/JP4019084B2/ja
Priority claimed from JP2005089370A external-priority patent/JP4019083B2/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US11/909,665 priority Critical patent/US20090053099A1/en
Priority to EP06715351A priority patent/EP1870481A4/en
Priority to CA002602657A priority patent/CA2602657A1/en
Publication of WO2006103887A1 publication Critical patent/WO2006103887A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the thickness is reduced to 0.2 mm or less (thickness of the central portion of the can body is thin! By the way, about 120 to 130 ⁇ m)
  • the aluminum alloy sheet referred to in the present invention is exemplified by a rolled sheet (cold rolled sheet) rolled through hot rolling-cold rolling. It can be applied to alloy plates.
  • the aluminum alloy is also referred to as an A1 alloy.
  • an aluminum-based beverage can a two-piece aluminum can obtained by seaming a can body and a can lid (can end) is widely used.
  • the can body is DI processed (deep drawing and ironing) on an aluminum-cold cold-rolled sheet, trimmed to a predetermined size, degreased and washed, and then painted and printed. It is manufactured by performing baking (baking) and necking and flange-caking the can body edge.
  • JIS3004 alloy and 3104 alloy which are Al-Mg-Mn alloys
  • This JIS3004 alloy and 3104 alloy are excellent in ironing workability, and show relatively good formability even when cold rolled at a high rolling rate to increase strength. It is considered preferable.
  • a bottle can has a thermoplastic resin coating layer formed on both sides of an aluminum alloy plate and is punched out with a lubricant applied to obtain a blank.
  • the cup-shaped molded product is then redrawn and stretched or ironed (DI processed) to reduce the body diameter and reduce the thickness of the bottomed cylindrical shape. Mold the can.
  • a bottle can is obtained by applying a neck-in cover and a flange cover to this part and winding a separately formed bottom lid with a seamer (see Patent Document 1).
  • the resin coating (coating or film lamination) is performed, and then the circular blank is formed. After punching and cup molding, drawing and ironing is performed, and printing, painting, necking, trimming, etc. are performed.
  • a base treatment eg, a mouth mate
  • a resin coating coating or film laminating
  • punching into a circular blank and forming a cup it is drawn and ironed, trimmed, printed and painted, and then threaded curl and neck flange.
  • the can body of a bottle can has a substantially circular cross section in the horizontal direction of the can body immediately after the DI cage.
  • the can body is heated to temperatures above 200 ° C during printing and heat treatment to improve the adhesion of the laminate film.
  • the can body itself is thinned from the original cold-rolled sheet having a thickness of about 0.3 to 0.4 mm to a thickness of 0.2 mm or less. Therefore, if the heat treatment at a high temperature exceeding 200 ° C is performed, the can body is freed from processing strain and residual stress during DI processing, and heat softening occurs.
  • the material that tends to soften has a problem that the degree of softening is remarkable, the strength and hardness of the can are remarkably lowered, and sufficient can strength cannot be secured.
  • the above-mentioned printing and laminating film can be used. For example, 290 ° CX for 20 seconds, higher temperatures and faster speeds have been developed. Such a tendency further promotes a decrease in strength and hardness of the can body and nonuniform shape of the can body due to the thermal softening.
  • an aluminum alloy plate for DI can that can prevent the heat deformation during the heat treatment of coating and obtain a DI can with high roundness.
  • Patent Document 2 Specifically, as an aluminum alloy sheet for DI cans, Mn: 0. 5 to 1.3 wt%, Mg: 0. 5 to 1.3 wt%, Cu: 0. 1 to 0.3 mass 0/0 Fe: 0.2 to 0.6% by mass, Si: 0.1 to 0.5% by mass, and an aluminum alloy composition containing a baking temperature T (° C) of 230 to 270 ° C. Change in tensile strength after heat treatment for 20 minutes It is intended to reduce the ATS.
  • the Mn solid solution amount and crystal grain size of the hot-rolled sheet are controlled within a predetermined range, and the ear ratio of the hot-rolled sheet is stabilized to ⁇ 3 to ⁇ 6%, which is then subjected to intermediate annealing. It has been proposed that the cold-rolled sheet obtained is cold-rolled without any problem to stably obtain an ear rate of 0 to 2% (Patent Document 3).
  • Patent Document 1 JP 20CU-162344 (full text)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-277865 (full text)
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-342657 (full text)
  • Patent Document 2 may be effective for heat treatment at 230 to 270 ° C. for 20 minutes as defined or assumed.
  • the heat treatment temperature becomes higher at 290 ° CX for 20 seconds, especially for the high-speed heat treatment with a higher temperature and shorter time. Since the can body is thinner, it cannot prevent the strength and deformation of the can body due to thermal softening.
  • the present invention has been made in view of a serious problem, and on the premise of ensuring moldability such as a DI cache, even for high-speed heat treatment with higher temperature and shorter time,
  • An object of the present invention is to provide an aluminum alloy plate for bottle cans that is excellent in high-temperature properties, can prevent thermal deformation during coating heat treatment, ensure the strength of the can after heat treatment, and obtain a bottle with high roundness.
  • the aluminum alloy plate for a good bottle cans in high temperature properties of the present invention, Mn:. 0. 7 ⁇ 1 5% ( wt 0/0, the same below), Mg: 0.8 to 1.7%, Fe: 0.1 to 0.7%, Si: 0.05 to 0.5%, Cu: 0.1 to 0.6%, the balance being A1 and inevitable
  • the crystal grain structure is a structure in which the average aspect ratio of the crystal grains is elongated in the rolling direction with an average aspect ratio of 3 or more by observing the top surface in the center of the plate thickness.
  • the amount of Cu in the solution separated from the precipitate with a particle size exceeding 0.2 m by the residue extraction method using hot phenol is 0.05 to 0.3%, and the solid solution amount of Mg is due to hot phenol.
  • the amount of Mg in the solution separated from the precipitate with a particle size exceeding 0.2 m by the residue extraction method is required to be TO. 75-1. 6%.
  • the DI can body of the bottle can is required to be further thinned as described above mainly for the purpose of reducing the manufacturing cost and reducing the weight.
  • it is necessary to increase the strength of the cold-rolled aluminum alloy material, so that the buckling strength does not decrease.
  • control of number and size suppression of microsegregation of additive elements, control of solid solution amounts of alloy elements such as Mn, and control of cube orientation.
  • the morphology of crystal grains and further, the amount of Cu solid solution and the amount of Mg solid solution in the structure are determined after the heat treatment It was found to correlate with strength and thermal deformation during coating heat treatment.
  • the metallurgical factors of these tissues do not inhibit the stabilization of the ear rate, but also have the effect of stabilizing the ear rate, so that the strength of the can after heat treatment and the heat treatment during the coating heat treatment can be ensured.
  • Formability such as DI processing can be ensured while suppressing thermal deformation.
  • the heat treatment can be performed at a higher temperature and in a shorter time.
  • thermal deformation during coating heat treatment is suppressed, and the strength of the can after heat treatment can be secured.
  • the Cu solid solution amount and the Mg solid solution amount in the structure are further controlled within the optimum range.
  • the amount of Cu solid solution or Mg solid solution greatly affects the softening resistance during high-temperature heat treatment. others Therefore, by securing the Cu solid solution amount and the Mg solid solution amount together, the softness resistance property during high-temperature heat treatment can be improved and the elliptical deformation can be suppressed.
  • the amount of Mg solid solution greatly affects the strength characteristics after high-temperature heat treatment. For this reason, the strength after the high temperature heat treatment can be secured by securing the Mg solid solution amount.
  • the control of the solid solution amount of other alloy elements such as Mn in the prior art described above contributes to improving the formability such as DI processing, such as the reduction in the ear rate of the cold rolled sheet.
  • it is significantly smaller than the control effect of the Cu solid solution amount and the Mg solid solution amount in terms of suppressing thermal deformation during coating heat treatment and ensuring the strength of the can after heat treatment, which are the problems of the present invention. Therefore, even if a solid solution amount of other alloy elements such as Mn is secured, thermal deformation during the coating heat treatment is not suppressed, and the strength of the can after the heat treatment cannot be secured.
  • the temperature of the aluminum alloy plate is shortened by controlling the crystal grain of the aluminum alloy plate to a structure elongated in the rolling direction, having an average aspect ratio of 3 or more, which is not equal to the equiaxed grain.
  • the primary purpose is to prevent thermal deformation during coating heat treatment against high-speed heat treatment and to ensure the strength of the can after heat treatment.
  • control is further performed to suppress the anisotropy in the structure.
  • the difference between the maximum and minimum values of the tensile strength in each direction of 0 °, 45 °, and 90 ° with respect to the rolling direction is 25 MPa or less, and 0 °, 45 °,
  • the difference between the maximum value and the minimum value among n values in the 90 ° tensile test in each direction shall be 0.03 or less.
  • Mn 0.7 to 1.5% (mass%, the same shall apply hereinafter)
  • Mg 0.8 to 1.7%
  • Fe 0.1 to 0.7%
  • Si 0.05 to 0.5%
  • Cu 0.1 to 0.6%
  • the balance being A1 and inevitable impurity power
  • the crystal grain structure is a structure in which the average aspect ratio of the crystal grains is elongated in the rolling direction of 3 or more by observing the upper surface in the central portion in the plate thickness direction, and further, 0 °, 45 °, and 90 °
  • the difference between the maximum value and the minimum value of the tensile strength in each direction is 25 MPa or less, and the maximum value out of the n values by the tensile test in each direction of 0 °, 45 ° and 90 ° with respect to the rolling direction.
  • the present invention also provides an aluminum alloy sheet for bottle cans excellent in high temperature characteristics, characterized in that the difference from the minimum value is 0.03 or less.
  • an aluminum alloy sheet obtained by normal hot rolling or cold rolling In the manufacturing process, in particular, when a hot-rolled sheet is annealed in the middle (intermediate annealing) and cold-rolled to the final sheet thickness, the cold-rolling ratio must be increased, and the strength is increased. Anisotropy occurs, and a difference of about 30 MPa or more occurs between the tensile strengths in the directions of 0 °, 45 ° and 90 ° with respect to the rolling direction. When the strength anisotropy is high, the internal stress after cup molding and ironing becomes uneven in the circumferential direction, and the degree of recovery when printed and when heat treatment is performed to improve the adhesion of the laminate film. Becomes non-uniform and elliptical deformation is likely to occur. This is the reason why it was not possible to prevent thermal deformation during coating heat treatment in normal hot rolling and cold rolling.
  • a hot rolled sheet that is not used in normal cold rolling in which intermediate annealing is performed between passes (during cold rolling) Even when directly cold-rolled to the final thickness without annealing, thermal deformation during the coating heat treatment is suppressed, and can strength after heat treatment can be secured.
  • the present invention controls the crystal grains of the aluminum alloy cold-rolled sheet to a structure stretched in the rolling direction with an average aspect ratio of 3 or more that is not equiaxed grains. Therefore, it is a force that suppresses thermal deformation during coating heat treatment against high-speed heat treatment with higher temperature and shorter time, and ensures the strength of the can after heat treatment.
  • the present invention further controls the dispersed particles in this tissue. That is, the average particle size of the dispersed particles is refined to 5 m or less, and the ⁇ repulsive force indicating the solid-liquid coexistence temperature range of the aluminum liquid phase and the solid phase is 0 ° C. or less.
  • This solid-liquid coexistence temperature range is a component system in which the solid-liquid coexistence temperature range of the dispersed particles such as Al (Fe, Mn) intermetallic compound and the liquid phase of aluminum is larger as the ⁇ is larger. In other words, it is a component system that easily changes its morphology as soon as it undergoes changes in the crystallized phase due to the forging conditions, resulting in a structure in which coarse compound particles are easily formed.
  • the smaller the solid-liquid coexistence temperature range ⁇ the smaller the solid-liquid coexistence temperature range of the dispersed particles and the aluminum liquid phase, and the stable phase of the intermetallic compound and the metastable phase. It can be said that the variation in generation is small and the compound particles have a fine structure.
  • FIG. 1 is a development view of a cup obtained by DI molding a plate material.
  • FIG. 2 is a schematic state diagram showing ⁇ defined in the present invention.
  • FIG. 3 is a calculation state diagram for obtaining ⁇ ⁇ by calculation.
  • the preferred chemical component composition (unit: mass%) of the A1 alloy cold-rolled sheet of the present invention will be described below, including reasons for limiting each element.
  • the composition of the aluminum alloy cold-rolled sheet for bottle cans excellent in high temperature characteristics of the present invention is as follows: Mn: 0.7 to 1.5%, Mg: 0.8 to 1.7%, Fe: 0.1
  • the composition contains ⁇ 0.7%, Si: 0.05 to 0.5%, Cu: 0.1 to 0.6%, the balance being A1 and inevitable impurity power.
  • the component balance of the main constituent elements Mn, Mg, Fe, Cu, Si
  • the solid solution amount of Mg and Cu can be secured. This makes it possible to produce a fine and stable crystallized product with an average size of 5 m or less during fabrication, and to control the optimal Cu solid solution amount or Mg solid solution structure.
  • Mn 0.7 to 1.5%.
  • Mn is an effective element that contributes to improvement in strength and further contributes to improvement in formability.
  • Mn is extremely important because ironing is performed during DI molding.
  • Mn forms various Mn intermetallic compounds such as A1-Fe-Mn-Si intermetallic compounds (a phase).
  • a phase As the ⁇ phase is appropriately distributed, the ironing workability can be improved. In other words, in the ironing process of aluminum plates, the power that emulsion type lubricants are normally used. If the amount of the ⁇ phase is small, lubrication is insufficient even when emulsion type lubricants are used. There is a risk of appearance defects such as scuffing and seizure. Therefore, ⁇ phase is generated to prevent surface wrinkling during ironing. For this reason, Mn is an indispensable element.
  • the Mn content is 0.7% or more, preferably 0.8% or more, preferably 0.85% or more, and more preferably 0.9% or more.
  • the upper limit of the Mn content is 1.5%, preferably 1.3%, more preferably 1.1%, and still more preferably 1.0%.
  • the Mn solid solution amount of aluminum alloy cold-rolled sheets improves formability such as DI casing by combining with cold rolling without intermediate annealing, such as lowering the ear rate of cold-rolled sheets. It contributes to that. Therefore, in order to improve the moldability of DI cage, etc., the amount of Mn in the solution separated from precipitates with a particle size exceeding 0.2 m by the residue extraction method using hot phenol (solid solution Mn amount) And the total amount of Mn in the precipitate having a particle size of 0.2 ⁇ m or less) is preferably 0.1 to 0.38%.
  • Mn solid solution amount is less than 0.12%, there is no improvement in formability such as DI processing, while if the Mn solid solution amount exceeds 0.38%, work hardening during cold rolling is excessive. Therefore, it is highly possible to reduce the formability of DI processing and the like.
  • Mg 0.8 to 1.7%.
  • Mg is effective in that the strength can be improved by solid solution strengthening alone.
  • the can body material (cold rolled sheet) of the present invention is finally annealed (also called finish annealing.
  • finish annealing also called finish annealing.
  • time: 1 to Soft annealing can be suppressed when the can is made and then baked (baked printing).
  • the amount of Cu solid solution can be secured at the stage of hot rolling, and Al-Cu-Mg precipitates during baking (baking printing). Softness of time can be suppressed.
  • the Mg content is 0.8% or more, preferably 0.9% or more, and more preferably 1.0% or more.
  • the upper limit of the Mg content is 1.7%, preferably 1.6%, and more preferably 1.35%.
  • Mg also affects the amount of precipitated Mn and the amount of solid solution. In other words, as the amount of Mg increases, the amount of precipitation of Al-Fe-Mn-Si intermetallic compounds ( ⁇ phase) is suppressed, so the amount of Mn solid solution tends to increase. Therefore, it is preferable to determine the Mg content in relation to the Mn solid solution amount.
  • Mg is coarse in the A1-Fe-Si system or the A1-Mn-Fe-Si system, which can be obtained only as a solid solution or fine precipitate as previously described.
  • solid precipitates were also dissolved, and when the amount was large, the amount of solid solution Mg and finely precipitated Mg decreased, and it was obvious that elliptical deformation was likely to occur.
  • the amount of Mg solid solution also greatly affects the strength characteristics after high-temperature heat treatment. Therefore, in the present invention, the Mg solid solution amount is ensured together with the Cu solid solution amount to improve the softening resistance property during the high temperature heat treatment and also ensure the strength after the high temperature heat treatment.
  • the particle size is 0.2 by the residue extraction method using hot phenol.
  • the amount of Mg in the solution separated from precipitates exceeding IX m (total amount of solid solution Mg and Mg in precipitates whose particle size is 0.2 ⁇ m or less) is 0.75-1. 6%.
  • the amount of Mg in coarse precipitates having a particle size exceeding 0.2 ⁇ m reduces the softening resistance during high-temperature heat treatment and the strength properties after high-temperature heat treatment. Therefore, securing the Mg solid solution also leads to the regulation of coarse precipitates with a particle size exceeding 0.2 m.
  • the amount of Mg in precipitates with a particle size of 0.2 ⁇ m or less with only solid-dissolved Mg is also softening-resistant during high-temperature heat treatment, as with solid-dissolved Mg. In addition to improving properties, it also ensures strength after high-temperature heat treatment.
  • the total amount of the solid solution Mg amount and the Mg amount in the precipitate having a particle size of 0.2 m or less is defined as the solid solution Mg amount. Therefore, the amount of solid solution Mg is defined as the amount of Mg in the solution separated from precipitates having a particle size exceeding 0.2 m by the residue extraction method using hot phenol.
  • the Mg solid solution amount is less than 0.75%, the softening resistance at the time of high-temperature heat treatment is insufficient, the deformation of the can is not suppressed, and the strength after high-temperature heat treatment is also reduced.
  • Fe 0.1 to 0.7%.
  • Fe has the effect of refining crystal grains, and further generates the Al-Fe Mn-Si intermetallic compound ( ⁇ phase) described above, which contributes to improved formability. Fe is also useful in that it promotes precipitation of Mn crystals and controls the amount of Mn solid solution in the aluminum matrix and the dispersion state of Mn-based intermetallic compounds (such as the ⁇ phase). On the other hand, if Fe is excessive in the presence of Mn, a large primary intermetallic compound is likely to be generated, which may impair the formability.
  • the content of Fe can be set according to the content of Mn, and the mass ratio of Fe to Mn (Fe ZMn) is, for example, in the range of 0.1 to 0.7, preferably 0.7. It is in the range of 2 to 0.6, more preferably in the range of 0.3 to 0.5.
  • the lower limit content of Fe is 0.1% or more, preferably 0.2% or more, and more preferably 0.3% or more. Further, the upper limit content of Fe is 0.7% or less, preferably 0.6% or less, and more preferably 0.5% or less.
  • Si 0.05 to 0.5%.
  • Si is an element that generates Al-Fe-Mn-Si intermetallic compounds (a phase) and controls the dispersion state of Mn intermetallic compounds. As the ⁇ phase is properly distributed, the moldability can be improved.
  • the Si content is 0.05% or more, preferably 0.1% or more, and more preferably 0.
  • the upper limit of the Si content is 0.5%, preferably 0.45%, and more preferably 0.4%.
  • the lower limit of Cu content is 0.1% or more, preferably 0.15% or more, and more preferably 0.2% or more.
  • the upper limit of Cu content is 0.6%, preferably 0.5%, and more preferably 0.35%.
  • examples of the strength improving element having the same effect include Cr and Zn.
  • one or two of Cr and Zn can be selectively contained.
  • the amount of Cu in the solution separated from the precipitate having a particle size exceeding 0.2 ⁇ m by the residue extraction method using hot phenol (the amount of solid solution Cu and the particle size is 0).
  • the total amount of Cu in precipitates of 2 ⁇ m or less) is set to 0.05-0.3%.
  • the amount of Cu in coarse precipitates having a particle size exceeding 0.2 ⁇ m reduces the softening resistance during high-temperature heat treatment and the strength characteristics after high-temperature heat treatment. Therefore, securing the amount of Cu solid solution also leads to the regulation of coarse precipitates whose particle size exceeds 0.2 m.
  • the amount of Cu in precipitates with a particle size of 0.2 ⁇ m or less with only solid-dissolved Cu is also softening-resistant during high-temperature heat treatment, as is the case with solid-solved Cu. In addition to improving properties, it also ensures strength after high-temperature heat treatment. Therefore, in the present invention, the total amount of the solid solution Cu amount and the Cu amount in the precipitate having a particle size of 0.2 m or less is defined as the solid solution Cu amount. Therefore, the amount of solid solution Cu is reduced to 0.2 by the residual extraction method using hot phenol. It is defined as the amount of Cu in the solution separated from precipitates exceeding m.
  • the Cu solid solution amount is less than 0.05%, the softening resistance during high temperature heat treatment is insufficient, deformation of the can is not suppressed, and the strength after high temperature heat treatment is also reduced.
  • the Cr content is 0.001% or more, preferably 0.002% or more, in order to exert the strength improvement effect.
  • the upper limit of the Cr content is 0.3%, preferably 0.25%.
  • the strength can be improved by aging precipitation of Al-Mg-Zn-based particles.
  • the Zn content is 0.05% or more, preferably 0.06% or more.
  • the upper limit of the Zn content is 0.5%, preferably 0.45%.
  • Ti is a grain refinement element. This effect was demonstrated! / Sometimes it is contained selectively. In this case, the Ti content is 0.005% or more, preferably 0.01% or more, and more preferably 0.015% or more. When Ti is excessive, a huge Al-Ti intermetallic compound crystallizes and hinders formability. Therefore, the upper limit of Ti content is 0.2%, preferably 0.1%, more preferably 0.05%.
  • the Ti may be contained alone, but may be contained together with a small amount of B.
  • the B content when selectively contained is 0.0001% or more, preferably 0.0005% or more, and more preferably 0.0008% or more.
  • the upper limit of the B content is 0.05%, preferably 0.01%, and more preferably 0.005%.
  • the content should basically be small, but within the range not inhibiting the above-mentioned plate properties, The inclusion of up to the upper limit of each element of 3000 series aluminum alloy is permitted.
  • the temperature was shortened and the time was shortened. Thermal deformation during coating heat treatment against high-speed heat treatment is suppressed, and can strength after heat treatment can be secured.
  • the average aspect ratio of the crystal grains is less than 3, it is not much different from ordinary equiaxed grains, and the above effects are insufficient, so it is impossible to achieve thermal deformation suppression during coating heat treatment and to ensure can strength after heat treatment. .
  • the larger the elongation in the rolling direction of the crystal grains the better.
  • the average aspect ratio of the crystal grains is preferably 3.1 or more.
  • the aspect ratio of the crystal grains is determined by the crystal grain structure of the hot-rolled sheet, the cold rolling rate, and the cold rolling temperature in the process without intermediate annealing.
  • the upper limit of the average aspect ratio of the crystal grains is determined by the capability limit power of the manufacturing process for forming elongated grains such as hot rolling and cold rolling, but the level is about 6.
  • the average external ratio of crystal grains is measured by upper surface observation (polarization observation) at the center in the thickness direction. After tempering (before bottle can molding), the center of the plate in the thickness direction and the upper surface of the rolled surface are subjected to mechanical polishing, electrolytic polishing, and anodizing treatment with Barker's solution, followed by polarization observation.
  • the hot rolled sheet in order to achieve the average aspect ratio of the crystal grains and to improve the formability and strength of the can, is directly cooled to the final sheet thickness without being annealed in the middle. Even in the case of hot rolling, thermal deformation during the coating heat treatment is suppressed, and the strength of the can after heat treatment is ensured.
  • the anisotropy in this structure is further controlled. Specifically, two anisotropy indices, tensile strength and n-value, are selected and used for controlling this anisotropy.
  • anisotropy of tensile strength is increased, as described above, the internal stress after cup forming and ironing becomes non-uniform in the circumferential direction.
  • heat treatment is performed to improve the adhesion of the laminating film, the degree of recovery becomes non-uniform, and elliptic deformation tends to occur.
  • the work hardening index that is, the n-value anisotropy in the rolling direction is also important.
  • the n value anisotropy is large, even if the anisotropy of the tensile strength is small (even within the specified range), the internal stress applied by cup molding and ironing becomes uneven in the circumferential direction.
  • heat treatment is applied during printing and to improve the adhesion of the laminate film, the degree of recovery becomes non-uniform and elliptic deformation tends to occur.
  • the difference is set to 0.03 or less, preferably 0.028 or less, more preferably 0.025 or less, still more preferably 0.02 or less, and still more preferably 0.015 or less.
  • hot-rolling conditions are particularly controlled in order to satisfy both anisotropic indices. Specifically, hot finish rolling is performed with a tandem rolling mill equipped with a rolling stand of about 3 to 6, and the tension at the time of coil cutting in these final stands is relatively increased to be rolled. Increase the advanced rate of
  • the average tension at the time of coiling of the final stand is made as high as possible, exceeding at least 20 MPa.
  • the average tension at the time of staking is 20 MPa or less, the anisotropy of the plate increases particularly when cold rolling is performed without forming crystal grains such as Cube orientation or annealing in the middle.
  • the average tension during normal scraping is manufactured in the range of 5 to: LOMPa.
  • the point of controlling the dispersed particles in the aluminum alloy cold-rolled sheet structure will be described.
  • the average particle size of dispersed particles in this structure is further controlled. That is, in observation of particles of 0.5 m or more, the average particle size of the dispersed particles is refined to 5 m or less, and ⁇ T indicating the solid-liquid coexistence temperature range of the aluminum liquid phase and the solid phase is 40 ° C or less.
  • the dispersed particles in the aluminum alloy cold rolled sheet structure are various intermetallic compounds such as the A1-Fe-Mn-Si intermetallic compound (a phase).
  • the average particle size of the dispersed particles when observing particles of 0.5 m or more is set to 5 ⁇ m or less, preferably 4.5 ⁇ m or less.
  • the dispersed particles to be analyzed and measured have a size (centroid diameter) of 0.5 ⁇ m or more. This is because particles having a particle size of 0.5 m or more have a large influence on the soft-soft property as described above, and particles having a particle size of less than 0.5 / z m have a small influence. In addition, small dispersed particles of less than 0.5 m have a large measurement variation due to this measurement, which is difficult to observe.
  • the average particle size of dispersed particles when observing particles of 0.5 m or more is measured with a scanning electron microscope (SEM) of the plate structure. More specifically, the specimen at the center of the plate thickness and the upper surface of the rolled surface is mirror-polished, and the structure of the polished surface is SEM of 500 times or 1000 times (for example, manufactured by Hitachi, Ltd .: S4500 type field emission scanning) Using 10 electron microscopes (FE-SEM: Field Emission Scanning Electron Microscoppy), observe the tissue of each field of view of about 200 m x about 150 ⁇ m.
  • SEM scanning electron microscope
  • dispersed particle phase (intermetallic compound phase)
  • observation is performed by observing a reflected electron image.
  • the black image is A1
  • These dispersed particles are traced, and the average size (average value of the centroid diameter) of each dispersed particle is obtained by image analysis using Image-ProPlus manufactured by MEDIACYBERNETI CS as image analysis software.
  • the number of dispersed particles measured was a total of 200 or more in the above-mentioned 10-field structure observation, and the average value was calculated.
  • Fig. 2 schematically shows the phase diagram of the Al-Mg-Mn alloy, which shows the liquidus and solidus lines of aluminum, and the crystals of AlMn and Al (Fe, Mn) compounds, which are the main crystallization products. Temperature relationship The clerk is shown schematically.
  • the temperature range (temperature difference) between the liquidus and solidus lines of A1 is the solid-liquid coexistence temperature range ⁇ referred to in the present invention.
  • a component system having a wider (longer) ⁇ tends to have a larger variation in the formation of a stable phase and a metastable phase of an intermetallic compound depending on the conditions in the solidification / cooling process during fabrication.
  • the crystallized product is in a structural state in which elements other than the constituent elements of the intermetallic compound are forcibly dissolved. For this reason, softening at a high temperature increases in the state of a bottle can body, and elliptical deformation and strength reduction tend to be caused by high-temperature heat treatment. Therefore, the effect of the elongated crystal grains is offset as in the case of increasing the average particle size of the dispersed particles.
  • the average particle size of the dispersed particles increases as ⁇ increases.
  • exceeds 40 ° C, the average particle size of dispersed particles tends to become coarser. Therefore, ⁇ is less preferable than 40 ° C.
  • Preferably it is 38 ° C or less, more preferably 36 ° C or less, more preferably 34 ° C or less.
  • ⁇ T is calculated by measuring the melting point and solid phase temperature of the target aluminum alloy cold-rolled sheet (test piece) by differential thermal analysis. calculate.
  • the melting point is around 645 ° C to 660 ° C
  • the change detected around 600 ° C to 630 ° C is the solid phase temperature.
  • test apparatus for example, TGZDTA (TGD7000) manufactured by ULVAC-RIKO is used, and the test conditions are as follows.
  • Sample container Alumina (macro type 8 X 10mm)
  • ⁇ ⁇ ⁇ may be obtained from the calculated state diagram, but the differential thermal analysis is more accurate. However, ⁇ by thermodynamic equilibrium diagram calculation is useful when designing an alloy so that ⁇ is 40 ° C or less in advance.
  • FIG. 3 illustrates examples of ⁇ ⁇ ⁇ in the calculation state diagram of an example C alloy of the invention shown in Example 7 below.
  • the solid-liquid coexisting temperature range of aluminum ⁇ force Basically, the main constituent elements in the present invention (Mn, Mg, Fe) , Cu, Si) by designing each component balance.
  • Mn, Mg, Fe the main constituent elements in the present invention
  • Cu the main constituent elements in the present invention
  • Si the main constituent elements in the present invention
  • Mn, Fe, etc. increase from the median of the specified range of content, or increase in content, and ⁇ increases as content decreases .
  • Mg, Cu, Si, and the like tend to increase ⁇ ⁇ ⁇ ⁇ with an increase in content, and generally, ⁇ becomes smaller when these alloy elements are less within the content specification of the present invention.
  • the aluminum alloy cold-rolled sheet for bottle cans has the required strength, formability, etc. In order to satisfy, it is simply difficult to lower the content of each of the main constituent elements.
  • the crystallization temperature of the Al (Fe, Mn) -based intermetallic compound varies depending on the multi-component component balance including the other selective additive elements such as the above-mentioned additive elements and impurity elements. Therefore, this ⁇ also varies greatly depending on the other selectively added elements and impurity elements.
  • the ratio of can stock scrap, etc. to the melting raw materials used in can materials has been increasing year by year compared to bare metal, and is mixed in other than basic component elements.
  • inevitable impurity elements include Zr, Bi, Sn, Ga, V, Co, Ni, Ca, Mo, Be, Pb, and W. Sum of contents of these elements (total) is conventionally 0.01% or less was force recently scrap blending ratio Te is high such that ⁇ Kotsure, 0.015 0/0 or more, 0.02 0 In case of 0 or more, this is [According to ⁇ . 0. 05%, there is! / ⁇ ⁇ or 0.1% or more inevitably mixed.
  • the A1 alloy cold-rolled sheet of the present invention can be produced without greatly changing the conventional soaking, hot-rolling and cold-rolling production processes.
  • the structure specified in the present invention and not impair the basic material characteristics (ear ratio, strength), moldability, and ironing workability for bottle can molding, It is necessary to limit the process to the optimum condition range and combine these processes.
  • the soaking temperature is 550-650 ° C. If the soaking temperature is too low, it takes too much time to homogenize and the productivity decreases, and if the soaking temperature is too high, the lump surface swells, so set the soaking temperature in the above range. To do.
  • Preferable soaking temperatures are 580 ° C or higher (especially 590 ° C or higher) and 615 ° C or lower (especially 610 ° C or lower).
  • the soaking time is preferably as short as possible so that the soot lump can be homogenized, for example, 12 hours or less, preferably 6 hours or less. If the temperature is higher than ° C, the soaking time must be 6 hours or more. If the soaking temperature is 580 ° C or higher, the soaking time must be 5 hours or more, and the soaking temperature is 590 ° C. If so, the soaking time should be at least 4 hours.
  • the soaking may be performed in a plurality of stages.
  • the temperature rise rate of the soaking process, the temperature of soaking process (homogenization temperature), and the cooling rate may be controlled at any stage, and may be performed at all stages. It is desirable to do this at the second stage.
  • the temperature of the soaking process after the second is often lower than the first soaking temperature.
  • the temperature of the soaking process after the second time is, for example, about 10 to 100 ° C, preferably about 50 to: LOO ° C lower than the soaking temperature of the first time.
  • Handling of the ingot after completion of the soaking may be performed by hot and rough rolling after cooling and reheating, or by hot rough rolling without cooling excessively.
  • hot rough rolling is performed without overcooling, the amount of Cu solid solution and the fineness of 0.2 m or less
  • the total power of Cu during precipitation The particle size is 0 by the residue extraction method using hot phenol.
  • the amount of Cu in the separated solution is 0.05 to 0.3%, and the combined power of Mg solid solution and Mg during fine precipitation of 0.2 ⁇ m or less
  • the amount of Mg in the solution separated from the precipitate having a particle size exceeding 0.2 / zm by the extraction method is 0.75 to: L 6%.
  • self-heating of the soot mass after soaking can be used, and the number density of precipitates of alloy elements can be reduced as well as the production time and heat energy can be saved, and the ear rate can be reduced.
  • the end temperature of hot rough rolling be 420 ° C or higher. Further preferable end temperatures are 430 ° C or higher (especially 440 ° C or higher) and 470 ° C or lower (especially 460 ° C or lower).
  • the start temperature of hot rough rolling is set to, for example, about 490 to 550 ° C, preferably 495 to 540 ° C. It is desirable that the temperature be about 500 to 530 ° C. If the starting temperature is set to 550 ° C. or lower, surface oxidation of the hot rolled sheet can be prevented. Furthermore, the coarseness of recrystallized grains Since enlargement can be prevented, the moldability can be further improved.
  • the aluminum alloy sheet that has been subjected to hot rough rolling is subjected to hot finish rolling as quickly as possible. By rapidly performing hot finish rolling, it is possible to prevent recovery of strain accumulated in hot rough rolling, and it is possible to increase the strength of the cold-rolled sheet obtained thereafter.
  • the aluminum alloy sheet that has been subjected to hot rough rolling is preferably hot-rolled within 5 minutes, preferably within 3 minutes, for example.
  • the finishing temperature of hot finish rolling is preferably 310 to 350 ° C.
  • the hot finish rolling process is a process of finishing the cold-rolled alloy sheet to a predetermined size. Since the structure after rolling becomes a recrystallized structure by self-heating, the end temperature affects the recrystallized structure.
  • the finish temperature of hot finish rolling By setting the finish temperature of hot finish rolling to 310 ° C or higher, the final plate structure is made to be a structure stretched in the rolling direction with an average aspect ratio of 3 or more, along with the subsequent cold rolling conditions.
  • the specified Cu solid solution amount and Mg solid solution amount can be ensured by the invention.
  • the finish temperature of hot finish rolling is less than 310 ° C, the above-described structure of the present invention is unlikely to occur even if the cold rolling rate of subsequent cold rolling is increased.
  • the lower limit of the finish temperature of hot finish rolling is 310 ° C or higher, preferably 320 ° C or higher.
  • the upper limit is 350 ° C or lower, preferably 340 ° C or lower.
  • a tandem hot rolling mill with 3 or more stands is used as the hot finishing mill.
  • the rolling rate per stand can be reduced, and strain can be accumulated while maintaining the surface properties of the hot-rolled sheet. Therefore, the strength of the cold-rolled sheet and its DI compact can be increased. It can be further increased.
  • the total rolling reduction of hot finish rolling is desirably 80% or more.
  • the total rolling rate 80% or more in combination with cold rolling, which will be described later, the final sheet structure is blocked with a structure in which the average aspect ratio S3 is extended in the rolling direction.
  • cold rolled sheets and their DI components The strength of the feature can be increased.
  • the thickness of the alloy sheet after hot (finishing) rolling is preferably about 1.8 to 3 mm.
  • the plate thickness is preferably about 1.8 to 3 mm.
  • the plate thickness is set to 1.8 mm or more, it is possible to prevent the surface properties (seizure, rough skin, etc.) of the hot rolled plate and the plate thickness profile from being damaged.
  • the plate thickness is set to 3 mm or less, it is possible to prevent the rolling rate from becoming too high when manufacturing cold rolled plates (usually, plate thickness: about 0.28 to 0.35 mm). Can reduce the ear rate.
  • the average ear rate is controlled in a predetermined range. Therefore, it can be cold-rolled without intermediate annealing, and the average ear rate of the cold-rolled sheet can be reduced to 0 to 3.5%.
  • the final plate structure is a structure stretched in the rolling direction with an average aspect ratio of 3 or more, and the sum of the amount of Cu solid solution and the amount of Cu during fine deposition of less than 0. Force A residue with a particle size of more than 0.
  • the amount of Cu in the separated solution is 0.05 to 0.3%, and the Mg solid solution is less than 0.2 ⁇ m. Sum of Mg amount during precipitation As the amount of Mg in the solution separated from precipitates whose particle size exceeds 0.2 / zm by the residue extraction method using hot funnel, the amount of Mg is between 0.75 and L 6%. .
  • the final plate structure is made to be a structure in which the average aspect ratio of the crystal grains is elongated in the rolling direction, and the Cu solid solution amount is less than 0.
  • the amount of Cu in the fine precipitation of 0.05 to 0.3% as the amount of Cu in the solution separated from the precipitate whose particle size exceeds 0.2 m by the residue extraction method using hot phenol. Mg solid solution amount and 0.
  • the sheet thickness after cold rolling is about 0.28 to 0.35 mm in terms of forming into a bottle can.
  • the rolling mill is not limited to a tandem rolling mill as long as it can recover sufficiently by cold rolling and sufficiently generate subgrains.
  • finish annealing may be performed at a temperature lower than the recrystallization temperature. Finish annealing recovers the work structure and improves DI moldability and can bottom moldability.
  • the temperature of the finish annealing is preferably about 100 to 150 ° C, particularly about 115 to 150 ° C. By setting the temperature to 100 ° C or higher, the processed structure can be sufficiently recovered. On the other hand, by controlling the temperature to 150 ° C or less, excessive precipitation of solid solution elements can be prevented, and DI moldability and flange moldability can be further enhanced.
  • the finish annealing time is preferably 4 hours or less (particularly about 1 to 3 hours). By avoiding annealing that is too long, excessive precipitation of solid solution elements can be prevented and DI moldability can be further enhanced.
  • finish annealing is basically unnecessary because sub-grains can be generated at lower temperatures and continuously.
  • the total amount of other elements in both the inventive example and the comparative example is unavoidable, including inevitable impurity elements, Zr, Bi, Sn, Ga, V, Co, Ni, Ca, Mo, Be, Pb, and W were contained in a total content of these elements of 0.01% or less.
  • the soot mass was subjected to soaking according to the conditions shown in Table 2.
  • the soaking process was performed as two soaking processes in which after the first soaking process, it was cooled to room temperature at the cooling rate shown in Table 2 and then reheated to perform the second soaking process.
  • the rate of temperature increase under the first soaking condition is substantially
  • the 300 ° C force, which affects the characteristics also refers to the rate of temperature increase up to the maximum temperature.
  • the cooling rate under the first soaking condition effectively refers to the cooling rate up to the maximum temperature of 300 ° C that affects the characteristics.
  • hot reverse rolling is performed by using a reverse hot roughing mill with one stand and a tandem hot rolling mill with four stands as a hot finishing rolling mill. Rolled. At that time, the hot finish rolling time after the hot rough rolling was completed was set to be within 3 minutes. Then, an aluminum alloy hot rolled sheet having a thickness of 2 to 2.5 mm after hot finish rolling was manufactured in common.
  • the obtained hot-rolled sheet was cold-rolled by a single-pass plate with a two-stage tandem press using a roll stand without intermediate annealing, and the final sheet thickness was 0.3 mm in common.
  • a plate material (cold rolled plate) for the bottle cans of the same month was manufactured.
  • the aluminum plate was forcibly cooled using an aqueous emulsion solution so that the temperature of the aluminum plate immediately after cold rolling did not rise to a temperature exceeding 250 ° C. Finish annealing (final annealing) after this cold rolling was not performed.
  • Test pieces were collected from the plate material (coil) for bottle cans after cold rolling, and the average aspect ratio of the crystal grains, the Cu solid solution amount, and the Mg solid solution amount, respectively, as the structure of the test piece were described above. The method was adjusted. These results are shown in Table 3.
  • the hardness of the cold-rolled sheet sample was measured with a micro Vickers hardness tester at four locations with the load of lOOg, and the hardness was the average value of them.
  • the evaluation of the elliptical deformation was carried out by washing the bottle can body formed by DI molding of the above-mentioned plate material for the bottle can body after being cleaned and baked under the condition that the body temperature of the can reaches 300 ° C in 30 seconds.
  • the degree of elliptical deformation was investigated.
  • the elliptical deformation was evaluated to be acceptable when the elliptical deformation was 4 mm or less. If this elliptical deformation exceeds 4 mm, defects such as toppling and jamming will occur in the transport process and necking process in the can process, making continuous can efficient production difficult. .
  • the ear rate was obtained by collecting a blank plate material for this bottle can body, applying a lubricant [DA Stuart, Nalco 147], and forming it into a cup shape by a 40% deep drawing test using an Eriksen tester. investigated.
  • FIG. Figure 1 is a developed view of a cup obtained by DI molding of a bottle can body plate.
  • the heights of the ears (Tl, T2, T3, T4; referred to as minus ears) occurring in the 0 °, 90 °, 180 °, and 270 ° directions were measured.
  • Measure the height of the ears (Yl, Y2, Y3, Y4; called plus ears) that occur in the directions of °, 135 °, 225 °, and 315 °.
  • Each height Y1 ⁇ Y4, Tl ⁇ T4 is the height from the bottom of the cup. From each measured value, the average ear rate is calculated based on the following formula.
  • Ear Ratio (%) [ ⁇ (Yl + ⁇ 2 + ⁇ 3 + ⁇ 4)-(Tl + ⁇ 2 + ⁇ 3 + ⁇ 4) ⁇ / ⁇ 1/2 X (Y1 + Y2 + Y3 + Y4 + T1 + T2 + T3 + T4) ⁇ ] X 100
  • the drawing pressure of the draw molding is concentrated on these two negative ears (Tl, ⁇ 3 in Fig. 1).
  • the average ear rate is 0-2% (positive side)
  • the remaining two negative ears (Tl, ⁇ 3 in Fig. 1) are also generated. Since it can be sufficiently suppressed, it is possible to prevent the can body from being broken due to an ear cut.
  • the allowable range is + 0% to + 3.5%.
  • a blank with a diameter of 156 mm is punched from the plate material for the bottle can body (plate thickness is 0.3 mm), a cup with a cup diameter of 92 mm is formed, redrawing, ironing, and trimming, and a can-making speed of 300 cans Z min.
  • a DI can barrel for bottle cans (inner diameter 66 mm ⁇ , height 170 mm, side wall thickness 103 ⁇ m, side wall tip thickness 165 ⁇ m, final third ironing rate 40%) was manufactured. Molded cans The number of occurrences of body cracks per 50,000 cans was determined, and DI moldability was evaluated. ⁇ (very good) for those that did not exist at all, ⁇ (good) for one or less cans, ⁇ (generally good) for 2 to 4 cans, X for more than 5 cans X Evaluated as (bad).
  • Invention Examples 1 to 6 have the composition of the present invention, the average aspect ratio of crystal grains is 3 or more, and the Cu solid solution amount is 0. 05 to 0.3%, and the Mg solid solution amount is 0.75 to L 6% according to the measurement method described above.
  • Invention Examples 1 to 6 have a hardness change ⁇ of 30 Hv or less after heat treatment at 290 ° CX for 20 seconds (after baking hard), and 0. Less than 2% resistance ⁇ lOMPa Above, it is excellent in high temperature characteristics with less hardness reduction and strength reduction.
  • Invention Examples 1 to 6 are excellent in the ear rate and DI moldability. Therefore, it can be understood that the improvement of the high temperature characteristics in the present invention does not hinder the formability that the bottle can body plate material should basically satisfy.
  • Comparative Examples 7 to 10 have the composition of the present invention, the conditions of soaking and hot rolling also deviate from the preferable condition force, so the average aspect ratio of crystal grains, Cu solidity Either the dissolved amount or Mg solid solution amount is lost. As a result, compared with the above-described invention examples, the high-temperature characteristics with large hardness reduction and strength reduction are inferior.
  • Comparative Example 8 the hot finish rolling finish temperature is too low. In comparative example 9, the finish temperature of hot finish rolling is too low. Comparative Example 10 is a single cold rolling mill, and is subjected to intermediate annealing during the cold rolling.
  • Comparative Examples 11 to 20 are preferably produced under the production conditions!
  • the alloy composition deviates from the composition of the present invention.
  • the high temperature characteristics are greatly inferior in hardness reduction and strength reduction.
  • the moldability is becoming low.
  • the total amount of other elements in both the inventive examples and the comparative examples is unavoidable impurity elements, Zr, Bi, Sn, Ga, V, Co, Ni, Ca, Mo, Be, Pb, W
  • the total content of these elements includes 0.03% or more! /.
  • the soot mass was subjected to soaking according to the conditions shown in Table 5.
  • the soaking process was performed as two soaking processes in which after the first soaking process, it was cooled to room temperature at the cooling rate shown in Table 5 and then reheated to perform the second soaking process.
  • the rate of temperature increase under the first soaking condition substantially refers to the rate of temperature increase up to the maximum temperature of 300 ° C force that affects the characteristics.
  • the cooling rate under the first average heat condition effectively refers to the cooling rate from the highest temperature that affects the characteristics to 300 ° C.
  • hot rough rolling is performed by using a reverse hot rough rolling mill with one stand, and a hot finish rolling mill with several stand tandem hot rolling mills. Hot rolling was performed.
  • the hot finish rolling is started within 3 minutes.
  • the average tension at the time of cutting is shown in Table 5. Controlled.
  • an aluminum alloy hot rolled sheet having a thickness of 2 to 2.5 mm after hot finish rolling was manufactured in common.
  • the obtained hot-rolled sheet was cold-rolled by a single-pass through a two-stage tandem rolling mill using a roll stand without intermediate annealing, and the final sheet thickness was 0.3 mm in common.
  • a plate material (cold rolled plate) for bottle cans was manufactured.
  • the temperature of the aluminum sheet immediately after the cold rolling was controlled to be 130 to 200 ° C. Finish annealing (final annealing) after this cold rolling was not performed.
  • the roll stand is passed twice with a single rolling mill with one stage, and the first and second passes. In between, intermediate annealing at 150 ° CX for 1 hour was performed.
  • Test pieces were collected from the plate material (coil) for bottle cans after cold rolling, and the average aspect ratio and tensile characteristics of the crystal grains were investigated as the structure of the test pieces. These results are shown in Table 6.
  • test pieces were prepared in which the longitudinal direction of the test piece was 0 °, 45 °, and 90 ° with respect to the rolling direction, and the tensile strength and n value of each test piece were determined. Then, the difference (MPa) between the maximum value and the minimum value among these tensile strengths, and the difference between the maximum value and the minimum value among these n values (between 2 and 4% of strain) were obtained. In addition, the average values of these tensile strengths and n values in the above directions were also obtained.
  • the hardness of the cold-rolled sheet sample was measured with a micro Vickers hardness tester at four locations with the load of lOOg, and the hardness was the average value of them.
  • the evaluation of the elliptical deformation was carried out by washing the bottle can body formed by DI molding of the above-mentioned plate material for the bottle can body after being cleaned and baked under the condition that the body temperature of the can reaches 300 ° C in 30 seconds.
  • the degree of elliptical deformation was investigated.
  • the elliptical deformation was evaluated to be acceptable when the elliptical deformation was 4 mm or less. If this elliptical deformation exceeds 4 mm, defects such as toppling and jamming will occur in the transport process and necking process in the can process, making continuous can efficient production difficult. .
  • the ear rate was obtained by collecting a blank of this bottle can body plate material, applying lubricant (DA Stuart, Nalco 147), and then deep drawing 40% using an Erichsen tester. The test was molded into a cup shape and investigated. The test conditions were the same as in Example 1, and the average ear rate was calculated.
  • Invention Examples 101 to 106 have the composition of the present invention and have an average aspect ratio of crystal grains of 3 or more, 0 °, 45 °, 90 ° with respect to the rolling direction.
  • the difference between the maximum value and the minimum value of the tensile strength in each direction of ° is 25 MPa or less, and among the n values by the tensile test in each direction of 0 °, 45 ° and 90 ° with respect to the rolling direction, The difference between the maximum value and the minimum value is 0.03 or less.
  • the inventive examples 101 to 106 have a hardness change ⁇ ⁇ of 30 Hv or less after 290 ° CX 20 seconds heat treatment (after beta hard), and 0.
  • the 2% proof stress is 215MPa or more, and it has excellent high-temperature characteristics with little decrease in hardness and strength.
  • Invention Examples 101 to 106 are excellent in the ear rate and DI moldability. Therefore, it can be seen that the improvement of the high temperature characteristics in the present invention does not hinder the formability that the bottle can body plate material should basically satisfy.
  • the soot mass includes inevitable impurity elements such as Zr Bi, Sn Ga, V, Co, Ni, Ca Mo, and Be as the total amount of other elements in both the inventive examples and comparative examples.
  • Pb, W The total content of these elements includes 0.03% or more! /.
  • the strength required for aluminum alloy cold-rolled sheets for bottle cans is first determined by designing the balance of each component of the main constituent elements (Mn, Mg, Fe, Cu, Si) and selective additive elements.
  • the alloy was designed to satisfy the formability.
  • thermodynamic equilibrium diagram of each example was calculated, and the solid-liquid coexisting temperature range ⁇ T of aluminum was calculated to design or modify the alloy. And it was set as the actual aluminum alloy component composition of A-N shown in the said Table 7.
  • Soaking lump of these component compositions was subjected to soaking treatment according to the conditions shown in Table 8.
  • the soaking process was two soaking processes in which after the first soaking process, it was cooled to room temperature at the cooling rate shown in Table 8, and then reheated to perform the second soaking process.
  • the rate of temperature increase under the first soaking condition effectively refers to the rate of temperature increase from 300 ° C to the maximum temperature, which affects the characteristics.
  • the cooling rate in the first soaking condition effectively refers to the cooling rate from the highest temperature that affects the characteristics to 300 ° C.
  • the obtained hot-rolled sheet was cold-rolled by a single-pass plate with a two-stage tandem rolling mill using a roll stand without intermediate annealing, and the final thickness of 0.3 mm was common.
  • a plate material (cold rolled plate) for bottle cans was manufactured.
  • the aluminum plate was forcibly cooled using an aqueous emulsion solution so that the temperature of the aluminum plate immediately after cold rolling did not rise to a temperature exceeding 250 ° C. Finish annealing (final annealing) after this cold rolling was not performed.
  • the roll stand was passed twice with a single rolling mill with one stage, and the first and second passes. In between, intermediate annealing at 150 ° CX for 1 hour was performed.
  • Example 1 the 0.2% strength test tensile test is performed according to JIS ⁇ 2201, and the shape of the test piece is JIS No. 5 test piece, and the longitudinal direction of the test piece coincides with the rolling direction. It was produced as follows. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the specimen broke.
  • Example 2 In the same manner as in Example 1, the hardness of the cold-rolled sheet sample was measured with a micro Vickers hardness tester by applying a load of 100 g at four locations, and the hardness was an average value thereof.
  • the ear rate was obtained by collecting a blank of this bottle can body plate, applying lubricant (DA Stuart, Nalco 147), and then deep drawing 40% using an Erichsen tester.
  • the test was molded into a cup shape and investigated.
  • Example 2 In the same manner as in Example 1, the number of barrel cracks per 50,000 cans was determined, and DI moldability was evaluated. ⁇ (very good) that was not present at all, ⁇ (good) that was less than 1 can, ⁇ (generally good) that was 2 to 4 cans, more than 5 cans Evaluated as X (defect) 7 items.
  • Invention Examples 201 to 206 have the composition of the present invention, and the average particle size of dispersed particles having an average aspect ratio of crystal grains of 3 or more and 0.5 m or more. Has a structure of 5 ⁇ m or less and a ⁇ repulsive force of 0 ° C or less indicating the solid-liquid coexistence temperature range of the liquid phase and solid phase of aluminum.
  • Invention Examples 201 to 206 have a hardness change ⁇ ⁇ of 30 Hv or less after 290 ° CX 20-second heat treatment (after beta hard), and 0. 2% proof stress is 270MPa or more, and it has excellent high-temperature properties with little decrease in hardness and strength.
  • Invention Examples 201 to 206 are excellent in the ear rate and DI moldability. Therefore, it can be seen that the improvement of the high temperature characteristics in the present invention does not hinder the formability that the bottle can body plate material should basically satisfy.
  • Comparative Examples 207 to 210 have the composition of the present invention, the conditions of soaking and hot rolling also deviate from the preferable condition force, so the average aspect ratio of crystal grains, 0.5 Either the average particle size or ⁇ of dispersed particles of m or more is a structure that does not fall within the scope of the present invention. As a result, compared with the above-mentioned invention examples, the high temperature characteristics with a large decrease in hardness and strength are inferior.
  • Comparative Example 207 the second soaking temperature is too low.
  • the hot finish rolling finish temperature is too low.
  • Comparative Example 208 the hot finish rolling finish temperature is too low.
  • comparative example 209 the hot finish rolling end temperature is too low.
  • Comparative Example 210 intermediate annealing was performed during cold rolling.
  • Comparative Examples 211 to 220 are preferably manufactured under manufacturing conditions!
  • the alloy composition deviates from the composition of the present invention.
  • the deviation of the average aspect ratio of crystal grains, the average particle size of dispersed particles of 0.5 m or more, and ⁇ T is a structure that deviates from the scope of the present invention! / ⁇
  • the high-temperature characteristics in which the hardness decrease and the strength decrease are large are inferior.
  • the moldability is becoming low.
  • the present invention prevents thermal deformation during coating heat treatment even after high-speed heat treatment with higher temperature and shorter time on the premise of ensuring formability such as DI processing, and so on. It is possible to provide an aluminum alloy cold-rolled sheet for bottle cans that is excellent in high-temperature characteristics, while ensuring the strength of the can and obtaining a bottle can with high roundness. Therefore, even if it is heat-treated with a thin wall such as a bottle can, it is required that there is no reduction in strength or deformation, and the strength and formability are also low. It is suitable for applications requiring strict U ⁇ characteristics that need to be maintained as is.

Abstract

 塗装熱処理時の熱変形を防止し、熱処理後の缶強度を確保することができる、高温特性に優れたボトル缶用アルミニウム合金板を提供することを目的とする。  Mn:0.7~1.5%、Mg:0.8~1.7%、Fe:0.1~0.7%、Si:0.05~0.5%、Cu:0.1~0.6%を含有し、残部がAl及び不可避的不純物からなる組成を有し、かつ、結晶粒組織を、板厚方向中央部の上面観察による結晶粒の平均アスペクト比が3以上の圧延方向に伸長させた組織とし、Cu固溶量が、熱フェノールによる残査抽出法により粒子サイズが0.2μmを超える析出物と分離された溶液中のCu量として0.05~0.3%、Mg固溶量が、熱フェノールによる残査抽出法により粒子サイズが0.2μmを超える析出物と分離された溶液中のMg量として0.75~1.6%であることとし、成形性を阻害せずに、高温特性を向上させる。

Description

明 細 書
高温特性に優れたボトル缶用アルミニウム合金板
技術分野
[0001] 本発明は、ボトル缶 (飲料缶)の缶胴材として、 0. 2mm以下 (缶胴中央部の肉厚が 薄!、ところでは 120〜 130 μ m程度)の板厚に薄肉化されて高温で熱処理された際 にも、強度低下が少なく高強度が確保でき、かつ、変形もし難い、などの高温特性に 優れたボトル缶用アルミニウム合金板 (ボトル缶用素材板)に関するものである。なお 、本発明で言うアルミニウム合金板とは、熱間圧延-冷間圧延を通じて圧延された圧 延板 (冷間圧延板)を例示して説明するが、この種冷延板を含め、広くアルミニウム合 金板に適用できるものである。以下、アルミニウム合金を A1合金とも言う。
背景技術
[0002] アルミニウム系飲料缶としては、缶胴体と缶蓋 (缶エンド)とをシーミンダカ卩ェするこ とによって得られる 2ピースアルミニウム缶が多用されている。前記缶胴体は、アルミ -ゥム系冷間圧延板を DI加工 (深絞り加工及びしごき加工)し、所定のサイズにトリミ ングを施した後、脱脂'洗浄処理を行い、さらに塗装および印刷を行って焼付け (ベ 一キング)を行い、缶胴縁部をネッキングカ卩工及びフランジカ卩ェすることによって製造 されている。
[0003] 前記缶胴体用の冷間圧延板としては、従来から Al-Mg-Mn系合金である JIS300 4合金、 3104合金等の硬質板が広く用いられている。この JIS3004合金、 3104合 金は、しごき加工性に優れており、強度を高めるために高圧延率で冷間圧延を施し た場合でも比較的良好な成形性を示すことから、 DI缶胴材として好適であるとされて いる。
[0004] 一方、ボトル缶は、アルミニウム合金板の両面に熱可塑性榭脂被膜層が形成され、 潤滑剤が塗布されたものを打ち抜 、てブランクを得、このブランクを絞り加工してカツ プ状に成形し、次いで、このカップ状の成形品に対し、再絞り加工とストレッチ加工又 はしごき加工 (DI加工)を行って、胴部が小径化され、薄肉化された有底円筒状の缶 を成形する。そして、缶の底部側を複数回絞り加工することにより、肩部と未開口の口 部を成形し、洗浄及びトリミング等の後に、缶胴部に印刷'塗装工程を実施し、口部 を開口してカール部及びネジ部を形成し (ネジ 'カール成形)、ネジ部の反対側の部 分に対しネックインカ卩ェとフランジカ卩ェを施し、シーマーにより、別途成形した底蓋を 巻き締めすることによりボトル缶が得られる (特許文献 1参照)。
[0005] このように、 2ピース缶では、アルミニウム合金板に、下地処理 (クロメート等)を行な つた後、榭脂被覆 (榭脂塗布又はフィルムラミネート)を行ない、続いて円形のブラン クに打抜き、カップ成形した後、絞りしごき加工を施し、印刷'塗装、ネッキング、トリミ ング等の処理を実施して 、る。
[0006] また、ネジ付きの口部を有するボトル缶では、アルミニウム合金板に、下地処理 (ク 口メート等)を行なった後、榭脂被覆 (榭脂塗布又はフィルムラミネート)を行ない、続 いて円形のブランクに打抜き、カップ成形した後、絞りしごき加工を施し、トリミング、 印刷及び塗装を行ない、ネジ 'カール成形後、ネックフランジ成形を実施している。
[0007] ボトル缶の缶胴は DIカ卩ェ直後には缶胴の水平方向断面が略真円状になっている のが普通である。しかし、印刷塗装時及びラミネートフィルムの密着性を向上させるた めの熱処理時に、缶胴は 200°C以上の温度まで加熱される。
[0008] この際、缶胴自体は元の約 0. 3〜0. 4mm程度の板厚の冷延板から、 0. 2mm以 下の肉厚にまで、薄肉化されている。したがって、このような 200°Cを超えるような高 温における熱処理を受けると、缶胴は、 DI加工時の加工歪及び残留応力が開放さ れ、熱軟化が起きる。
[0009] この場合に、軟ィ匕しやすい材料では、軟ィ匕の度合いが顕著であり、缶の強度や硬 度が著しく低下し、十分な缶強度を確保できなくなるという問題点がある。
[0010] また、缶の円周方向について軟ィ匕の度合いが不均一になるため、缶胴の横断面が
、成形された真円ではなぐ楕円となって変形してしまい、缶胴の形状が不均一とな るという問題点がある。
[0011] 近年では、缶軽量化の要求から、アルミニウム缶の板厚が 0. 2mm以下のレベルで 、ますます薄くなつてきており、上記熱軟化による、缶胴の強度や硬度の低下、缶月同 の形状不均一化などの現象が顕著になってきている。
[0012] 更に、近年、缶の生産性向上の観点から、前記印刷塗装時及びラミネートフィルム の密着性を向上させるための熱処理力 例えば、 290°C X 20秒と、より高温化、短時 間化された高速化が進展している。このような傾向も、上記熱軟化による、缶胴の強 度や硬度の低下や、缶胴の形状不均一化をより助長する。
[0013] これに対して、この熱軟ィ匕による缶胴の強度低下や変形を防止すベぐ缶胴の板 厚を増せば、缶重量の増加となり、また、板厚を増大させずにアルミニウム材料自体 の強度を増力 tlさせると、前記しごき成形時に、破断が生じたりするという不都合がある 。したがって、このような問題に対して、従来の胴缶材料や方法だけでは、対応でき ない。
[0014] 上記熱軟化による缶胴の形状不均一化に対して、従来から、この塗装熱処理時の 熱変形を防止し、真円度が高い DI缶を得ることができる DI缶用アルミニウム合金板 が提案されてはいる(特許文献 2)。具体的には、 DI缶用アルミニウム合金板として、 Mn: 0. 5乃至 1. 3質量%、Mg : 0. 5乃至 1. 3質量%、 Cu: 0. 1乃至 0. 3質量0 /0、 Fe : 0. 2乃至 0. 6質量%、Si: 0. 1乃至 0. 5質量%を含有するアルミニウム合金組 成によって、ベーキング温度 T(°C)が 230乃至 270°Cの条件で、 20分間熱処理した ときの、熱処理前後の引張り強さの変化 ATSを小さくしょうとするものである。
[0015] この他、缶への成形性向上のために、組織を制御することも、従来から多数提案さ れている。例えば、熱間圧延板の Mn固溶量及び結晶粒径を所定の範囲に制御し、 熱間圧延板の耳率を安定して- 3〜- 6%にし、これを、その後、中間焼鈍することなく 冷間圧延することによって、得られる冷間圧延板の耳率を安定して 0〜2%にすること が提案されて ヽる (特許文献 3)。
特許文献 1 :特開 20CU-162344号公報 (全文)
特許文献 2:特開 2003- 277865号公報 (全文)
特許文献 3:特開 2003- 342657号公報 (全文)
発明の開示
発明が解決しょうとする課題
[0016] ただ、前記 Mn固溶量及び結晶粒径など、従来力 の耳率安定ィ匕のためのアルミ ニゥム合金板の組織の冶金的な因子を制御するだけでは、塗装熱処理時の熱変形 を防止することができない。 [0017] また、前記特許文献 2のように、 Mn、 Mg、 Cu、 Fe、 Siなどのアルミニウム合金糸且成 のみによっては、前記した熱軟ィ匕による缶胴の強度低下や変形を抑制することには 大きな限界がある。
[0018] 即ち、前記特許文献 2は、その規定している乃至想定している、 230乃至 270°C X 20分間の熱処理に対しては有効かもしれない。し力しながら、これに対して、前記し たように、 290°C X 20秒と、より高温化短時間化された高速化熱処理に対しては、特 に熱処理温度がより高温となり、また、缶胴がより薄肉化されているために、熱軟化に よる缶胴の強度低下や変形を防止できな 、。
[0019] 本発明は力かる問題点に鑑みてなされたものであって、 DIカ卩ェ等の成形性の確保 を前提に、より高温化短時間化された高速化熱処理に対しても、塗装熱処理時の熱 変形を防止し、熱処理後の缶強度を確保するとともに、真円度が高いボトル缶を得る ことができる、高温特性に優れたボトル缶用アルミニウム合金板を提供することを目的 とする。
課題を解決するための手段
[0020] この目的を達成するために、本発明の高温特性に優れたボトル缶用アルミニウム合 金板は、 Mn: 0. 7〜1. 5% (質量0 /0、以下同じ)、 Mg : 0. 8〜1. 7%、Fe : 0. 1〜0 . 7%、Si: 0. 05〜0. 5%、Cu: 0. 1〜0. 6%を含有し、残部が A1及び不可避的不 純物からなる組成を有し、かつ、結晶粒組織を、板厚方向中央部の上面観察による 結晶粒の平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、 Cu固溶量が 、熱フエノールによる残查抽出法により粒子サイズが 0. 2 mを超える析出物と分離 された溶液中の Cu量として 0. 05〜0. 3%、 Mg固溶量が、熱フ ノールによる残查 抽出法により粒子サイズが 0. 2 mを超える析出物と分離された溶液中の Mg量とし TO. 75-1. 6%とすることを要 とする。
[0021] 本発明によれば、ボトル缶の DI缶胴については、主として製造コストの低減、及び 軽量化の目的から、前記した通り、更なる薄肉化が求められている。この薄肉化を達 成するためには、座屈強度の低下をきたさないように、材料であるアルミニウム合金 冷延板の高強度化を図る必要がある。また、薄肉化を達成するためには、更に、 DI 成形時における耳率が低いことが強く求められる。 DI成形時の耳率を低くすれば、 D I成形時の歩留まりを高めることができ、さらには缶胴の耳切れに起因する缶胴破断 を防止することができる。
[0022] このため、前記した通り、従来から、耳率を高度に安定ィ匕させるために、ボトル缶の DI缶胴材料であるアルミニウム合金冷延板の特に組織の冶金的な因子を制御する ことが公知である。代表的には、結晶粒径の微細化制御、 Mg Siなどの化合物の個
2
数や大きさの制御、添加元素のミクロ的偏析抑制、 Mnなどの合金元素の固溶量制 御、キューブ方位の制御、などである。
[0023] しかし、本発明の課題である、塗装熱処理時の熱変形を防止するための、材料であ るアルミニウム合金冷延板の組織の冶金的な因子を制御する技術は未だ実質的に 提案されていない。これは、塗装熱処理時の熱変形と相関する組織の冶金的な因子 の知見が未だなされていないことによる。また、上記耳率安定ィ匕のための公知の組織 の冶金的な因子を種々制御するだけでは、塗装熱処理時の熱変形を防止することが できない。
[0024] これに対して、本発明では、数有る組織の冶金的な因子の内でも、結晶粒の形態と 、更に、組織における Cu固溶量と Mg固溶量とが、熱処理後の缶強度や塗装熱処理 時の熱変形と相関することを知見した。
[0025] また、これらの組織の冶金的な因子は、耳率の安定化を阻害せず、却って、耳率を 安定化させる作用もあるため、熱処理後の缶強度の確保や塗装熱処理時の熱変形 を抑制した上で、 DI加工等の成形性を確保することができる。言い換えると、熱処理 後の缶強度の確保や塗装熱処理時の熱変形を抑制した上で、基本的な要求特性で ある DIカ卩ェ等の成形性を確保した、アルミニウム合金板とすることができる。
[0026] アルミニウム合金板の結晶粒を、等軸粒ではなぐ平均アスペクト比が 2以上の、圧 延方向に伸長させた組織に制御することによって、より高温化短時間化された高速 化熱処理に対しての、塗装熱処理時の熱変形が抑制され、熱処理後の缶強度も確 保できる。
[0027] そして、本発明では、この結晶粒の形状制御に加えて、更に、組織における Cu固 溶量と Mg固溶量とを併せて最適範囲に制御する。
[0028] Cu固溶量や Mg固溶量は、高温熱処理時の耐軟化特性に大きく影響する。このた め、 Cu固溶量や Mg固溶量を併せて確保することによって、高温熱処理時の耐軟ィ匕 特性を向上させ、楕円変形を抑制することができる。また、 Mg固溶量は、高温熱処 理後の強度特性に大きく影響する。このため、 Mg固溶量を確保することによって、高 温熱処理後の強度をも確保することができる。
[0029] なお、前記した従来技術の Mnなど他の合金元素の固溶量制御は、冷間圧延板の 耳率の低下など、 DI加工等の成形性を向上させることには寄与する。しかし、本発明 が課題とする、塗装熱処理時の熱変形抑制や、熱処理後の缶強度確保の点では、 C u固溶量と Mg固溶量との制御効果に比して著しく小さい。したがって、 Mnなど他の 合金元素の固溶量を確保しても、塗装熱処理時の熱変形は抑制されず、熱処理後 の缶強度も確保できない。
[0030] 本発明は、アルミニウム合金板の結晶粒を、等軸粒ではなぐ平均アスペクト比が 3 以上の、圧延方向に伸長させた組織に制御することによって、より高温化短時間化さ れた高速化熱処理に対しての、塗装熱処理時の熱変形が抑制され、熱処理後の缶 強度も確保できるようにすることが第 1の目的であるが、この効果を確実なものとする ために、本発明では、更に、この組織における異方性を抑制するように制御する。即 ち、圧延方向に対して 0° 、45° 、90° の各方向の引張強度の内、最大値と最小値 との差が 25MPa以下であり、圧延方向に対して 0° 、45° 、 90° の各方向の引張り 試験による n値の内、最大値と最小値との差が 0. 03以下であることとする。
したがって、本件第 2の発明は、 Mn: 0. 7〜1. 5% (質量%、以下同じ)、 Mg : 0. 8 〜1. 7%、Fe : 0. 1〜0. 7%、Si: 0. 05〜0. 5%、Cu: 0. 1〜0. 6%を含有し、残 部が A1及び不可避的不純物力 なる組成を有し、かつ、
結晶粒組織を、板厚方向中央部の上面観察による結晶粒の平均アスペクト比が 3以 上の圧延方向に伸長させた組織とし、更に、圧延方向に対して 0° 、45° 、90° の 各方向の引張り強度の内、最大値と最小値との差が 25MPa以下であり、圧延方向 に対して 0° 、45° 、90° の各方向の引張り試験による n値の内、最大値と最小値と の差が 0. 03以下であることを特徴とする、高温特性に優れたボトル缶用アルミニウム 合金板を提供するものでもある。
[0031] 本件第 2の発明によれば、通常の熱間圧延や冷間圧延によるアルミニウム合金板 製造工程において、特に、熱間圧延板を、途中での焼鈍(中間焼鈍)を行なって、最 終の板厚まで冷間圧延した場合、冷間圧延率が高くならざるを得ず、強度の異方性 が生じてしまい、圧延方向に対して 0° 、45° 、90° の各方向の引張強度の間で、 約 30MPa以上の差が生じる。強度の異方性が高くなると、カップ成形、しごき加工後 の内部応力が、円周方向で不均一となり、印刷塗装時及びラミネートフィルムの密着 性を向上させるための熱処理を施したとき、回復度合いが不均一となり、楕円変形が 生じやすい。通常の熱間圧延および冷間圧延した場合に、塗装熱処理時の熱変形 を防止することができなかったのはこの理由による。
[0032] また、熱間圧延板を、途中で焼鈍することなぐ最終の板厚まで直通で冷間圧延し た場合でも、冷間圧延率が高くならざるを得ず、強度の異方性が生じやすい。このた め、圧延方向に対して 0° 、45° 、90° の各方向の引張強度の間で差が生じ、同様 に楕円変形が生じやすい。前記した従来の中間焼鈍抜きでの冷間圧延において、 塗装熱処理時の熱変形を防止することができなかったのはこの理由による。
[0033] これに対して、本発明は、缶への成形性や強度向上のために、パス間(冷延途中) で中間焼鈍を行なう通常の冷間圧延ではなぐ熱間圧延板を、途中で焼鈍すること なぐ最終の板厚まで直通で冷間圧延した場合でも、前記塗装熱処理時の熱変形が 抑制され、熱処理後の缶強度も確保できる。
[0034] 更に、本発明は、上述したように、アルミニウム合金冷延板の結晶粒を、等軸粒で はなぐ平均アスペクト比が 3以上の、圧延方向に伸長させた組織に制御することによ つて、より高温化短時間化された高速化熱処理に対しての、塗装熱処理時の熱変形 が抑制され、熱処理後の缶強度も確保できるようにしたものである力 この効果を確 実なものとするために、本発明では、更に、この組織における分散粒子を制御する。 即ち、分散粒子の平均粒子サイズを 5 m以下に微細化させるとともに、アルミニウム の液相と固相の固液共存温度範囲を示す ΔΤ力 0°C以下とする。
[0035] この固液共存温度範囲 ΔΤが大きいほど、 Al (Fe、 Mn)系金属間化合物などの分 散粒子と、アルミニウムの液相との、固液共存温度範囲が大きい成分系である。つま り、铸造条件による晶出物相の変動を受けやすぐその形態がばらつきやすい成分 系であり、粗大な化合物粒子が生成しやすい組織となる。 [0036] 逆に、この固液共存温度範囲 ΔΤが小さいほど、分散粒子とアルミニウムの液相と の、固液共存温度範囲が小さい成分系であり、金属間化合物の安定相と準安定相 の生成のばらつきが小さぐかつ、化合物粒子が微細な組織であると言える。
図面の簡単な説明
[0037] [図 1]板材を DI成形することによって得られるカップの展開図である。
[図 2]本発明で規定する Δ Τを示す模式的な状態図である。
[図 3] Δ Τを計算により求めるための計算状態図である。
発明を実施するための最良の形態
[0038] (A1合金冷延板組成)
先ず、本発明の A1合金冷延板の好ましい化学成分組成 (単位:質量%)について、 各元素の限定理由を含めて、以下に説明する。
[0039] 本発明の高温特性に優れたボトル缶用アルミニウム合金冷延板の組成は、 Mn: 0 . 7〜1. 5%、Mg : 0. 8〜1. 7%、Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、Cu : 0. 1 〜0. 6%を含有し、残部が A1及び不可避的不純物力もなる組成とする。
[0040] 但し、本発明では、主要構成元素(Mn、 Mg、 Fe、 Cu、 Si)の成分バランスを、 Mg 、 Cuの固溶量が確保できるように成分設計することが好ましい。これによつて、铸造 時に、平均サイズが 5 m以下で、微細で安定な晶出物が生成するとともに、最適な Cu固溶量、あるいは Mg固溶量の組織に制御することができる。
[0041] Mn : 0. 7〜1. 5%。
Mnは強度の向上に寄与し、さらには成形性の向上にも寄与する有効な元素であ る。特に本発明の缶胴材 (冷間圧延板)では、 DI成形時にしごき加工が行われるた め、 Mnは極めて重要となる。
[0042] より詳細には、 Mnは A1- Fe-Mn-Si系金属間化合物( a相)などの種々の Mn系金 属間化合物を形成する。そして前記 α相が適正に分布しているほど、しごき加工性 を向上できる。すなわちアルミニウム板のしごき加工においては、通常エマルジョンタ イブの潤滑剤が用いられている力 前記 α相の量が少ないと、ェマルジヨンタイプの 潤滑剤を使用しても潤滑性が不足し、ゴーリングと称される擦り疵や焼付きなどの外 観不良が発生する虞がある。従って α相を生成し、しごき加工時の表面疵を防止す るためにも Mnは不可欠な元素である。
[0043] Mnの含有量が少な過ぎると上記効果が発揮されない。このため、 Mnの含有量は 0. 7%以上、好ましくは 0. 8%以上、好ましくは 0. 85%以上、さらに好ましくは 0. 9 %以上である。
[0044] 一方、 Mnが過剰になると、 MnAlの初晶巨大金属化合物が晶出し、成形性が低
6
下する。それゆえ、 Mn含有量の上限は 1. 5%、好ましくは 1. 3%、さらに好ましくは 1. 1%、さらに好ましくは 1. 0%とする。
[0045] (Mn固溶量)
アルミニウム合金冷延板の Mn固溶量は、前記した通り、中間焼鈍無しの冷間圧延 と組み合わせることによって、冷間圧延板の耳率の低下など、 DIカ卩ェ等の成形性を 向上させることには寄与する。したがって、 DIカ卩ェ等の成形性を向上させるために、 熱フエノールによる残查抽出法により粒子サイズが 0. 2 mを超える析出物と分離さ れた溶液中の Mn量(固溶 Mn量と粒子サイズが 0. 2 μ m以下の析出物中の Mn量と の合計量)として、 0. 12〜0. 38%とすること力 S好ましい。 Mn固溶量が 0. 12%未満 では、 DI加工等の成形性向上効果が無ぐ一方、 Mn固溶量が 0. 38%を超えた場 合、冷間圧延時の加工硬化が過剰となって、却って DI加工等の成形性を低下させる 可能 ¾が高い。
[0046] Mg : 0. 8〜1. 7%。
Mgは単独で固溶強化によって強度を向上できる点で有効である。更には、後述す る Cuと共に含有させることによって、本発明の缶胴材 (冷間圧延板)を最終焼鈍 (仕 上焼鈍ともいう。例えば、温度: 100〜150°C程度、時間: 1〜2時間程度の焼鈍)し、 その後に製缶して力もべ一キング (焼付印刷)する際に、軟ィ匕を抑制できる。即ち、 M g及び Cuを両者含有すると、熱間圧延板の段階において、 Cu固溶量を確保すること ができ、ベーキング (焼付印刷)を行う際に Al-Cu-Mgが析出するため、ベーキング 時の軟ィ匕を抑制できる。
[0047] Mgの含有量が少な過ぎると、 Mg固溶量が確保できず、高温熱処理時の耐軟化特 性の向上効果が発揮されない。このため、 Mgの含有量は 0. 8%以上、好ましくは 0. 9%以上、さらに好ましくは 1. 0%以上とする。 [0048] 一方、 Mgが過剰になると加工硬化が生じやすくなるため、成形性が低下する。この ため、 Mg含有量の上限は 1. 7%、好ましくは 1. 6%、さらに好ましくは 1. 35%とす る。
[0049] なお、 Mgは Mnの析出量及び固溶量にも影響を与える。すなわち Mgが多いほど Al-Fe-Mn-Si系金属間化合物( α相)の析出量が抑制されるため、 Mn固溶量が多 くなりやすい。このため、 Mn固溶量との関係で、 Mg含有量を決定することが好まし い。
[0050] (Mg固溶量と 0. 2 μ m以下の微細析出中の Mg量の和)
Mg固溶量と 0. 2 m以下の微細析出中の Mg量の和は、 Cu固溶量と 0. 以 下の微細析出中の Cu量の和とともに、高温熱処理時の耐軟化特性に大きく影響す る。従来でも、前記特許文献 3で、耳率ばらつきの安定化を目的として、 Mn固溶量、 および Cu固溶量を規定した特許があるが、本発明で解決しょうとする課題である中 間焼鈍工程で、缶加熱後の楕円変形を抑制するためには、従来の制御だけでは、 不十分であり、 Mgの固溶'析出状態も制御する必要がある。 Mgの存在状態につい て、詳細に調査した結果、 Mgは、従来言われているような固溶や微細析出物として だけでなぐ A1- Fe- Si系または A1- Mn- Fe- Si系の粗大な析出物中にも、固溶して いることがわかり、その量が多いと、固溶 Mg、微細析出の Mg量が少なくなり、楕円変 形が生じやすいことがわ力つた。 また Mg固溶量は、高温熱処理後の強度特性にも 大きく影響する。したがって、本発明では、 Cu固溶量ととも〖こ、 Mg固溶量を確保して 、高温熱処理時の耐軟化特性を向上させるとともに、高温熱処理後の強度をも確保 する。
[0051] このために、本発明では、熱フエノールによる残查抽出法により粒子サイズが 0. 2
IX mを超える析出物と分離された溶液中の Mg量(固溶 Mg量と粒子サイズが 0. 2 μ m以下の析出物中の Mg量との合計量)として、 0. 75- 1. 6%とする。
[0052] 粒子サイズが 0. 2 μ mを超える粗大な析出物中の Mg量は、高温熱処理時の耐軟 化特性や高温熱処理後の強度特性を却って低下させる。したがって、 Mg固溶量を 確保することは、粒子サイズが 0. 2 mを超える粗大な析出物を規制することにも繋 がる。 [0053] また、事実として固溶している Mgだけでなぐ粒子サイズが 0. 2 μ m以下の析出物 中の Mg量も、固溶している Mgと同様に、高温熱処理時の耐軟化特性を向上させる とともに、高温熱処理後の強度をも確保する。このため、本発明では、固溶 Mg量と粒 子サイズが 0. 2 m以下の析出物中の Mg量との合計量を固溶 Mg量として規定す る。そのために、固溶 Mg量を、熱フエノールによる残查抽出法により粒子サイズが 0 . 2 mを超える析出物と分離された溶液中の Mg量として規定する。
[0054] この Mg固溶量が 0. 75%未満では、高温熱処理時の耐軟化特性が不足し、缶の 変形が抑制されず、また、高温熱処理後の強度も低下する。
[0055] 一方、この Mg固溶量が 1. 6%を超えても、冷間圧延時の加工硬化が過剰となって 、却って DIカ卩ェ等の成形性の方を低下させる。
[0056] Fe : 0. 1〜0. 7%。
Feは結晶粒を微細化させる作用があり、さらには上述の Al-Fe Mn-Si系金属間 化合物(α相)を生成するため、成形性の向上に寄与する。また Feは、 Mnの晶出ゃ 析出を促進し、アルミニウム基地中の Mn固溶量や Mn系金属間化合物(前記 α相な ど)の分散状態を制御する点でも有用である。一方、 Mnの存在下で Feが過剰になる と、巨大な初晶金属間化合物が発生しやすくなり、成形性を損なう虞がある。
[0057] 従って、 Feの含有量は、 Mnの含有量に応じて設定でき、 Feと Mnとの質量比(Fe ZMn)は、例えば、 0. 1〜0. 7の範囲、好ましくは 0. 2〜0. 6の範囲、さらに好まし くは 0. 3〜0. 5の範囲である。
[0058] なお、 Mnの含有量が上記範囲の場合、 Feの下限含有量は 0. 1 %以上、好ましく は 0. 2%以上、さらに好ましくは 0. 3%以上とする。また、 Feの上限含有量は、 0. 7 %以下、好ましくは 0. 6%以下、さらに好ましくは 0. 5%以下である。
[0059] Si : 0. 05〜0. 5%。
Siは、 Al-Fe-Mn-Si系金属間化合物( a相)を生成し、 Mn系金属間化合物の分 散状態を制御するために有用な元素である。 α相が適正に分布している程、成形性 を向上できる。
[0060] このため、 Siの含有量は 0. 05%以上、好ましくは 0. 1 %以上、さらに好ましくは 0.
2%以上とする。一方、 Siが過剰になると、時効硬化によって材料が硬くなり過ぎ、成 形性が低下する。このため、 Si含有量の上限は 0. 5%、好ましくは 0. 45%、さらに 好ましくは 0. 4%とする。
[0061] Cu : 0. 1〜0. 6%。
Cuは、冷間圧延板の製缶時にベーキング (焼付印刷)を行うときに、 Al-Cu-Mgが 析出するとともに、 Mgと共に含有させて、固溶 Mgと固溶 Cuとの作用によって、軟ィ匕 を抑制できる。このため、 Cu含有の下限量は 0. 1 %以上、好ましくは 0. 15%以上、 さらに好ましくは 0. 2%以上とする。一方、 Cuが過剰になると、時効硬化は容易に得 られるものの、硬くなりすぎるために、成形性が低下し、さらには耐食性も劣化する。 このため、 Cu含有の上限量は 0. 6%、好ましくは 0. 5%、さらに好ましくは 0. 35%と する。
[0062] Cuの他に、同効の強度向上元素としては、 Cr、 Znなどが挙げられる。この点、 Cu に加えて、更に、 Cr、 Znの一種または二種を選択的に含有させることができる。
[0063] (Cu固溶量と 0. 2 μ m以下の微細析出中の Cu量の和)
Cu固溶量と 0. 2 m以下の微細析出中の Cu量の和は、 Mg固溶量と 0. 以 下の微細析出中の Mg量の和とともに、高温熱処理時の耐軟化特性に大きく影響す る。
[0064] このために、本発明では、熱フエノールによる残查抽出法により粒子サイズが 0. 2 μ mを超える析出物と分離された溶液中の Cu量(固溶 Cu量と粒子サイズが 0. 2 μ m以下の析出物中の Cu量との合計量)として、 0. 05-0. 3%とする。
[0065] 粒子サイズが 0. 2 μ mを超える粗大な析出物中の Cu量は、高温熱処理時の耐軟 化特性や高温熱処理後の強度特性を却って低下させる。したがって、 Cu固溶量を 確保することは、粒子サイズが 0. 2 mを超える粗大な析出物を規制することにも繋 がる。
[0066] また、事実として固溶している Cuだけでなぐ粒子サイズが 0. 2 μ m以下の析出物 中の Cu量も、固溶している Cuと同様に、高温熱処理時の耐軟化特性を向上させると ともに、高温熱処理後の強度をも確保する。このため、本発明では、固溶 Cu量と粒 子サイズが 0. 2 m以下の析出物中の Cu量との合計量を固溶 Cu量として規定する 。そのために、固溶 Cu量を、熱フエノールによる残查抽出法により粒子サイズが 0. 2 mを超える析出物と分離された溶液中の Cu量として規定する。
[0067] この Cu固溶量が 0. 05%未満では、高温熱処理時の耐軟化特性が不足し、缶の 変形が抑制されず、また、高温熱処理後の強度も低下する。
[0068] 一方、この Cu固溶量が 0. 3%を超えても、冷間圧延時の加工硬化が過剰となって 、却って DI加工等の成形性の方を低下させる。また、耐食性も低下する。
[0069] Cr: 0. 001〜0. 3%。
この際、 Crの含有量は、強度向上効果の発揮のためには、 0. 001%以上、好まし くは 0. 002%以上とする。一方、 Crが過剰になると、巨大晶出物が生成して成形性 が低下する。このため、 Cr含有量の上限は 0. 3%、好ましくは 0. 25%とする。
[0070] Zn: 0. 05〜: L 0%。
また、 Znを含有させると、 Al-Mg-Zn系粒子が時効析出することによって強度を向 上できる。この効果を発揮させるためには、 Zn含有量は 0. 05%以上、好ましくは 0. 06%以上とする。一方、 Znが過剰になると耐食性が低下する。このため、 Zn含有量 の上限は 0. 5%、好ましくは 0. 45%とする。
[0071] Ti: 0. 005〜0. 2%。
Tiは結晶粒微細化元素である。この効果を発揮させた!/、時には選択的に含有させ る。その際の Tiの含有量は 0. 005%以上、好ましくは 0. 01%以上、さらに好ましく は 0. 015%以上とする。なお、 Tiが過剰になると、巨大な Al-Ti系金属間化合物が 晶出して成形性を阻害する。したがって、 Ti含有量の上限は 0. 2%、好ましくは 0. 1 %、さら〖こ好ましくは 0. 05%とする。
[0072] 前記 Tiは単独で含有させてもょ 、が、微量の Bと共に含有してもよ 、。 Bと併用する と、結晶粒の微細化効果がさらに向上する。このために選択的含有させる際の Bの含 有量は 0. 0001%以上、好ましくは 0. 0005%以上、さらに好ましくは 0. 0008%以 上とする。一方、 Bが過剰になると、 Ti-B系の粗大粒子が生成して成形性を低下させ る。したがって、 B含有量の上限は 0. 05%、好ましくは 0. 01%、さらに好ましくは 0. 005%とする。
[0073] 以上記載した元素以外は不可避的不純物であり、上記板特性を阻害しな!、ために 、含有量は基本的に少ない方が良いが、上記板特性を阻害しない範囲で、 JIS規格 などで記載された、 3000系アルミニウム合金の各元素の上限値程度までの含有は 許容される。
[0074] (A1合金冷延板組織)
次ぎに、本発明 A1合金冷延板組織について、以下に説明する。
[0075] (結晶粒の平均アスペクト比)
前記した通り、アルミニウム合金冷延板の結晶粒を、通常の等軸粒ではなぐ平均 アスペクト比が 3以上の、圧延方向に伸長させたものにすることによって、より高温ィ匕 短時間化された高速化熱処理に対しての、塗装熱処理時の熱変形が抑制され、熱 処理後の缶強度も確保できる。
[0076] 即ち、アルミニウム合金冷延板の結晶粒を圧延方向への伸長粒とすることによって
、しごき加工性を付与して、 DI加工等の成形性を確保した上で、本発明で規定した、 上記成分組成と、後述する固溶、析出状態組織のもとで、熱処理後の缶強度を確保 できる。これによつて、塗装熱処理時の熱変形も抑制される。
[0077] 結晶粒の平均アスペクト比が 3未満では、通常の等軸粒と大差なくなり、上記効果 が不足するため、塗装熱処理時の熱変形抑制や、熱処理後の缶強度確保が達成で きない。この点で、結晶粒の圧延方向への伸長は大きいほど良ぐより好ましくは、結 晶粒の平均アスペクト比は 3. 1以上である。
[0078] 結晶粒のアスペクト比は、中間焼鈍を施さな 、工程では、熱延板の結晶粒組織、冷 間圧延率および冷間圧延温度によって決まる。この点で、結晶粒の平均アスペクト比 の上限は、熱間圧延や冷間圧延など、伸長粒とするための製造工程の能力限界力 決定されるが、そのレベルは 6程度である。
[0079] (平均アスペクト比測定方法)
結晶粒の平均ァスぺ外比は、板厚方向中央部の上面観察 (偏光観察)によって測 定される。調質処理後 (ボトル缶成形前)の板の板厚方向中央部、圧延面上面を、機 械研磨、電解研磨、およびバーカー液による陽極酸ィ匕処理後、偏光観察によって行
[0080] 上記板の板厚方向中央部を上面から、結晶粒組織を偏光観察したとき、結晶方位 の違いによって白黒の違いがでる。この際の観察で、輪郭がはっきり観察できる、視 野内の結晶粒を対象に、個々の結晶粒の圧延方向の最大長さと、板幅方向の最大 長さを計測する。そして、この個々の結晶粒の (圧延方向の最大長さ) Z (板幅方向 の最大長さ)をアスペクト比として計算する。 X 100倍の光学顕微鏡の観察で、測定 する結晶粒を 100個として、それら結晶粒のアスペクト比の平均値によって、結晶粒 の平均アスペクト比を求める。
[0081] (異方性抑制)
本発明では、結晶粒の平均アスペクト比達成のために、また、缶への成形性や強 度向上のために、熱間圧延板を、途中で焼鈍することなぐ最終の板厚まで直通で 冷間圧延した場合でも、前記塗装熱処理時の熱変形を抑制し、熱処理後の缶強度 を確保する。
[0082] このため、本発明では、上記結晶粒制御とともに、更に、この組織における異方性 を抑制するように制御する。具体的には、この異方性の制御に、引張強度と n値との 二つの異方性指標を選択して用いる。
[0083] 一つは、引張強度であり、引張強度の異方性が高くなると、前記した通り、カップ成 形、しごき加工後の内部応力が、円周方向で不均一となり、印刷塗装時及びラミネー トフイルムの密着性を向上させるための熱処理を施したとき、回復度合 、が不均一と なり、楕円変形が生じやすい。
[0084] したがって、引張強度の異方性を小さくするために、アルミニウム合金板の、圧延方 向に対して 0° 、45° 、90° の各方向の引張強度の内、最大値と最小値との差をで きるだけ小さくする。具体的には、この差を 25MPa以下、好ましくは 20MPa以下とす る。
[0085] 上記引張強度に加えて、加工硬化指数、即ち、 n値の圧延方向の異方性も、重要 である。 n値の異方性が大きい場合、たとえ、上記引張強度の異方性が小さくても (規 定範囲でも)、カップ成形、しごき加工によって加わる内部応力が、円周方向で不均 一となり、印刷塗装時及びラミネートフィルムの密着性を向上させるための熱処理を 施したとき、回復度合いが不均一となり、楕円変形が生じやすい。
[0086] したがって、 n値の異方性を小さくするために、アルミニウム合金板の、圧延方向に 対して 0° 、45° 、90° の各方向の n値の内、最大値と最小値との差をできるだけ小 さくする。具体的には、この差を 0. 03以下、好ましくは 0. 028以下、より好ましくは 0 . 025以下、更により好ましくは 0. 02以下、更に好ましくは、 0. 015以下とする。
[0087] これら 、ずれか、あるいは両方の異方性指標を満足しな!、異方性がアルミニウム合 金板にある場合、缶の成形性には影響を及ぼさないかもしれないが、上記結晶粒制 御を行なったとしても、前記塗装熱処理時の熱変形が生じる。即ち、上記引張強度 の内、最大値と最小値との差が 25MPaを超えた場合、および Zまたは、上記 n値の 内、最大値と最小値との差が 0. 03を超えた場合には、前記塗装熱処理時の熱変形 が生じる。
[0088] (異方性抑制方法)
熱間圧延板を、途中で焼鈍することなく冷間圧延した場合でも、両方の異方性指標 を満足するためには、特に熱間圧延条件を制御する。具体的には、熱間仕上げ圧延 を 3〜6程度の圧延スタンドを備えたタンデム式の圧延機により行 、、これら最終スタ ンドにおけるコイル卷取り時の張力を比較的高めて、圧延される板の先進率を高くす る。
[0089] この点、上記、最終スタンドのコイル卷取り時の平均張力を、少なくとも 20MPaを 超えて、できるだけ高くする。卷取り時の平均張力が 20MPa以下では、 Cube方位な どの結晶粒が生じやすぐ途中で焼鈍することなく冷間圧延した場合には、特に板の 異方性が大きくなる。尚、通常の卷取り時の平均張力は、 5〜: LOMPaの範囲で製造 されている。
[0090] 更に、本発明にお ヽて、アルミニウム合金冷延板組織における分散粒子を制御す る点について説明する。前記した通り、上記伸長した結晶粒の効果発揮を確実なも のとするために、本発明では、更に、この組織における分散粒子の平均粒子サイズを 制御する。即ち、 0. 5 m以上の粒子観察における、分散粒子の平均粒子サイズを 5 m以下に微細化させるとともに、アルミニウムの液相と固相の固液共存温度範囲 を示す Δ Tが 40°C以下とする。
[0091] (分散粒子の平均粒子サイズ)
アルミニウム合金冷延板組織における分散粒子は、上記 A1- Fe- Mn- Si系金属間 化合物( a相)などの種々の金属間化合物であるが、この分散粒子の平均粒子サイ ズは細かいほど好ましい。
[0092] 分散粒子の平均粒子サイズが 5 μ mを超えて、粗大な分散粒子 (析出化合物)の割 合が多くなると、回復'再結晶の核となりやすぐ高温での軟化が大きくなり、高温熱 処理で楕円変形や、強度低下を招きやすい。このため、上記伸長した結晶粒の効果 発揮を相殺してしまうこととなる。
[0093] したがって、本発明では、 0. 5 m以上の粒子観察における分散粒子の平均粒子 サイズを、 5 μ m以下、好ましくは 4. 5 μ m以下とする。
[0094] ここで解析測定対象とする分散粒子は 0. 5 μ m以上のサイズ (重心直径)とする。 0 . 5 m以上の粒子の存在が、上記した通り耐軟ィ匕特性に及ぼす影響度が大きぐ 0 . 5 /z m未満の粒子は、その影響度が小さいためである。また、 0. 5 m未満の小さ な分散粒子は、観察もしにくぐ本測定による測定ばらつきも大きくなることから、本発 明の規定、測定対象からは外す。
[0095] (平均粒子サイズの測定)
0. 5 m以上の粒子観察における分散粒子の平均粒子サイズは、板組織の走査 型電子顕微鏡 (SEM)にて行なう。より具体的には、板厚中央部、圧延面上面の試 験材を鏡面研磨し、研磨面の組織を、 500倍または 1000倍の SEM (例えば日立製 作所製: S4500型電界放出型走査電子顕微鏡 FE-SEM : Field Emissionn Scanninn g Electron Microscoppy)により、約 200 m X約 150 μ m程度の大きさの各 10視野 の組織を観察する。
[0096] この際、分散粒子相 (金属間化合物相)を明瞭に観察するため、反射電子像の観 察により観察する。黒い像が A1であり、異なったコントラストで分散粒子相が明瞭にな る。これら分散粒子をトレースし、画像解析のソフトウェアとして、 MEDIACYBERNETI CS社製の Image-ProPlusを用いて、各分散粒子の平均サイズ(重心直径の平均値) を画像解析により求める。測定した分散粒子の数は、上記 10視野の組織観察におけ る合計で 200個以上とし、その平均値で算出した。
[0097] (固液共存温度範囲 ΔΤ)
図 2に、 Al-Mg-Mn系合金の状態図を模式的に示し、アルミニウムの液相線、固 相線、そして主たる晶出物である AlMn系、 Al(Fe、 Mn)系化合物の晶出温度の関 係を模式的に示す。図 2において、 A1の液相線と固相線との間の温度範囲(温度差) 力 本発明で言う固液共存温度範囲 ΔΤである。
[0098] この ΔΤが広い (長い)成分系ほど、铸造時の凝固 ·冷却過程での条件により、金属 間化合物の安定相と準安定相の生成のばらつきが大きくなる傾向にある。その場合 、これら晶出物に、金属間化合物の構成元素以外の元素が強制固溶された組織状 態である。このため、ボトル缶胴での状態で、高温での軟化が大きくなり、高温熱処 理で楕円変形や、強度低下を招きやすい。したがって、分散粒子の平均粒子サイズ の粗大化と同様に、上記伸長した結晶粒の効果発揮を相殺してしまうこととなる。
[0099] また、 ΔΤが広い(大きい)成分系ほど、液相中では、金属間化合物が急速に成長 するため、粗大な化合物粒子分布となり易くなる。この結果、上記規定の分散粒子の 平均粒子サイズを微細化できなくなる。このため、上記分散粒子の部分で説明した通 り、粗大な粒子が回復 '再結晶の核となって、熱処理によってボトル缶胴の軟化が大 きくなり、楕円変形を起こしやすい。また、粗大な化合物の存在自体、缶表面の欠陥 、ピンホールの原因になりやすい。
[0100] なお、上述の説明の通り、厳密には、 ΔΤとして、 Al-Mn系金属間化合物の晶出温 度と A1の固相温度の範囲を規定する方法もあるが、本発明 A1合金系では、 A1合金 系の融点と、 Al-Mn系化合物の晶出温度とが 4〜7°C程度しか変わらないため、正 確な指標とはなり得ない事情がある。このため、測定評価上、 ΔΤに十分な差 (余裕) があり、正確な指標となり得る、 A1液相温度と固相温度との範囲 (温度差)で規定を 行った。
[0101] この ΔΤ (固液共存温度範囲)が狭い(小さい)ほど、分散粒子とアルミニウムの液相 との、固液共存温度範囲が小さい成分系であり、金属間化合物の安定相と準安定相 の生成のばらつきが小さぐかつ、化合物粒子が微細な組織となる。とこのため、ボト ル缶胴での状態で、高温での耐軟化特性が大きくなり、高温熱処理で楕円変形や、 強度低下を抑制できる。
[0102] 後述する実施例の通り、 ΔΤが大きくなるにつれて、分散粒子の平均粒子サイズも 増大している。そして、特に、 ΔΤが 40°Cを超えた場合に、分散粒子の平均粒子サイ ズの粗大化傾向が大きくなる。従って、 ΔΤは 40°C以下の小さい値ほど好ましぐより 好ましくは 38°C以下、さらに好ましくは 36°C以下、さらに好ましくは 34°C以下、である
[0103] (固液共存温度範囲 ΔΤの算出)
△Tの算出は、示差熱分析により、対象となるアルミニウム合金冷延板 (試験片)の 融点と固相温度とを測定することにより、アルミニウムの液相が共存している温度範囲 △Tを算出する。本発明アルミニウム合金系の範囲であれば、およそ 645°C〜660°C あたりが融点であり、およそ 600°C〜630°C付近で検出される変化が固相温度であ る。
[0104] 試験装置は、例えば、アルバック理工製 TGZDTA (TGD7000)を用いて、試験 条件は以下の通りとする。
ヒートパターン: RT〜700°C〜RT: 10°C/分
雰囲気: Ar(100mlZ分)
試料重量:約 500mg
リファレンス:アルミナ粉末
試料容器:アルミナ (マクロ型 8 X 10mm)
[0105] なお、示差熱分析以外に、計算状態図から ΔΤを求めても良いが、示差熱分析に よる方がより正確である。ただ、熱力学的な平衡状態図計算による ΔΤは、予め ΔΤ が 40°C以下になるように合金設計をする場合には役立つ。図 3に、後述する実施例 表 7の発明例 C合金の計算状態図での ΔΤを例示する。
[0106] ( ΔΤの制御)
この ΔΤの制御は、後述する製造条件にもよる力 アルミニウムの固液共存温度範 囲 ΔΤ力 0°C以下になるように基本的には、本発明における主要構成元素(Mn、 M g、 Fe、 Cu、 Si)の各成分バランスの設計によって行なう。なお、各合金元素 (成分) の一般的な傾向としては、 Mn、 Feなどは、含有量の規定範囲の中央値から、含有 量が増加する、あるいは含有量が減少するとともに、 ΔΤが大きくなる。また、 Mg、 C u、 Siなどは含有量の増加により ΔΤが大きくなる傾向があり、本発明の含有量規定 内では、全般に、これら合金元素が少ない方が ΔΤが小さくなる。
[0107] ただ、ボトル缶用アルミニウム合金冷延板としては、要求される、強度、成形性等を 満足するためには、単純に、上記各主要構成元素の含有量を下げにくい。
[0108] 更に、 Al(Fe, Mn)系金属間化合物の晶出温度は、この他の前記選択的な添カロ 元素や、不純物元素なども加えた、多元系の成分バランスによって変化する。したが つて、この ΔΤもこの他の前記選択的な添加元素や、不純物元素などによって大きく 変化する。
[0109] 特に、近年のように、缶材に使用される溶解原料に占める、缶材スクラップなどの比 率は、地金に比して、年々増加しており、基本成分元素以外に混入される不可避的 な不純物元素が多くなつてきている。これらの不可避的な不純物元素としては、 Zr、 Bi, Sn、 Ga, V, Co, Ni, Ca、 Mo, Be、 Pb, Wなどである。これらの元素の含有量 の総和(総量)は、従来は、 0. 01%以下であった力 近年スクラップ配合率が高くな る ίこつれて、 0. 0150/0以上、 0. 020/0以上、場合【こよって ίま 0. 05%,ある!/ヽ ίま 0. 1 %以上、不可避的に混入する。
[0110] したがって、この ΔΤ¾、上記各主要構成元素の量や選択的な添加元素量が同じと しても、これらの不純物元素量が 0. 01%を超えた場合には、この影響を受けて、大 きく変化する。また、合金化元素の種類によっても、その影響度は異なり、しかも多成 分系では各成分の相互作用によっても固液共存温度範囲は変化する。このため、こ れらの不可避的な不純物元素の量が高くなつた場合には、その成分系の複雑さ故に 、単純な含有量範囲、基本成分バランス (MgZMn比など)だけでは、固液共存温 度範囲 ΔΤを最適範囲とするための、成分設計を行うことが極めて難しい。
[0111] それゆえ、 ΔΤの制御を行なう場合には、先ず、本発明における主要構成元素(M n、 Mg、 Fe、 Cu、 Si)や選択的な添カ卩元素の各成分バランスの設計によって、ボトル 缶用アルミニウム合金冷延板として、要求される、強度、成形性等を満足する合金設 計を行なう。
[0112] その上で、液相温度及び固相温度などの計算手法として、前記図 2のような熱力学 的な平衡状態図計算を行い、アルミニウムの固液共存温度範囲 ΔΤが 40°C以下に なるように合金設計の修正を行なった上で、実際に、試験的に製造してみて、後述す る量産的な製造条件の元で、アルミニウムの固液共存温度範囲 ΔΤが 40°C以下に なる力否かを予め検証する必要がある。 [0113] (製造方法)
本発明 A1合金冷延板は、従来の均熱、熱延、冷延の製造工程を大きく変えることな く製造が可能である。但し、本発明規定の組織とし、かつ、ボトル缶成形のための基 本的な材料特性 (耳率、強度)や成形性、しごき加工性を阻害せずに確保するため には、上記個々の工程を最適条件範囲に限定するとともに、これらの工程を組み合 わせる必要がある。
[0114] (均熱条件)
均熱温度は 550〜650°Cとする。均熱温度が低すぎると、均質ィ匕に時間が力かり過 ぎて生産性が低下し、均熱温度が高すぎると、铸塊表面に膨れが生じるため、前記 範囲に均熱温度を設定する。好ましい均熱温度は、 580°C以上(特に 590°C以上)、 615°C以下(特に 610°C以下)である。
[0115] なお、均熱時間 (均質化時間)は、铸塊を均質ィ匕できれば短い程望ましぐ例えば 1 2時間以下、好ましくは 6時間以下とするのが望ましいが、均熱温度を 550°C以上と する場合には均熱時間は 6時間以上必要であり、均熱温度を 580°C以上とする場合 には均熱時間は 5時間以上必要であり、均熱温度を 590°C以上とする場合には均熱 時間は 4時間以上必要である。
[0116] 均熱処理は、複数の段階に分けて行っても良い。その場合、上記均熱処理の昇温 速度、均熱処理の温度 (均質化温度)、及び冷却速度の制御は、いずれの段階で行 つてもよく、全ての段階で行ってもよいが、少なくとも第 1回目の段階で行うのが望まし い。
[0117] 第 1回目の均熱処理の温度を上記範囲に設定する場合、第 2回目以降の均熱処 理の温度は、第 1回目の均熱処理温度よりも低くする場合が多い。第 2回目以降の均 熱処理の温度は、第 1回目の均熱処理温度に比べて、例えば、 10〜100°C程度、 好ましくは 50〜: LOO°C程度低くする。
[0118] (熱延開始条件)
均熱処理終了後の铸塊の取り扱いは、ー且冷却し、再加熱してから熱間粗圧延し てもよく、あるいは過度に冷却することなぐそのまま熱間粗圧延してもよい。過度に 冷却することなぐそのまま熱間粗圧延する場合、 Cu固溶量と 0. 2 m以下の微細 析出中の Cu量の和力 熱フエノールによる残查抽出法により粒子サイズが 0.
を超える析出物と分離された溶液中の Cu量として 0. 05〜0. 3%、 Mg固溶量と 0. 2 μ m以下の微細析出中の Mg量の和力 熱フ ノールによる残查抽出法により粒子 サイズが 0. 2 /z mを超える析出物と分離された溶液中の Mg量として 0. 75〜: L 6% としゃすい。また、均熱処理後の铸塊の自己発熱を利用することができ、生産時間や 熱エネルギーを節約できるだけでなぐ合金元素の析出物の数密度を小さくでき、耳 率を低減できる。
[0119] なお、铸塊をー且冷却し、再加熱する場合には、 30°CZ時間以上の速度で急速 加熱するのが望ましい。この急速加熱によって、 Mgや Cu力 それまでに生成した粗 大な化合物への固溶、若しくは、粗大な析出物界面での析出が抑制でき、 Cu固溶 量と 0. 2 m以下の微細析出中の Cu量の和力 熱フ ノールによる残查抽出法によ り粒子サイズが 0. 2 mを超える析出物と分離された溶液中の Cu量として 0. 05〜0 . 3%、Mg固溶量と0. 2 m以下の微細析出中の Mg量の和力 熱フエノールによる 残查抽出法により粒子サイズが 0. 2 mを超える析出物と分離された溶液中の Mg 量として 0. 75〜: L 6%としゃすい。また、合金元素の析出物の数密度が高くなり過 ぎるのを防止でき、耳率を低減できる。
[0120] (熱間粗圧延条件)
熱延を、粗圧延と仕上げ圧延とに分けて、かつ連続して実施するに際し、熱間粗圧 延の終了温度が低くなり過ぎると、次工程の熱間仕上圧延で圧延温度が低くなつて エッジ割れが生じやすくなる。また、熱間粗圧延の終了温度が低くなり過ぎると、仕上 圧延後に再結晶するために必要となる自己熱が不足しやすくなるため、結晶粒径が 小さくなり過ぎる。このため、熱間粗圧延の終了温度は 420°C以上とすることが好まし い。更に好ましい終了温度は 430°C以上(特に 440°C以上)、 470°C以下(特に 460 °C以下)である。
[0121] この熱間粗圧延の終了温度を 420〜480°C程度にしておくためには、熱間粗圧延 の開始温度を、例えば、 490〜550°C程度、好ましくは 495〜540°C程度、さらに好 ましくは 500〜530°C程度にしておくのが望ましい。前記開始温度を 550°C以下にし ておけば、熱間圧延板の表面酸ィ匕を防止することもできる。更には、再結晶粒の粗 大化を防止できるため、成形性をさらに高めることもできる。
[0122] 熱間粗圧延が終了したアルミニウム合金板は、連続的など、速やかに熱間仕上圧 延するのが望ましい。速やかに熱間仕上圧延することによって、熱間粗圧延で蓄積さ れた歪みが回復してしまうのを防止でき、その後に得られる冷間圧延板の強度を高 めることができる。熱間粗圧延が終了したアルミニウム合金板は、例えば、 5分以内、 好ましくは 3分以内に熱間仕上圧延することが好ま 、。
[0123] (熱間仕上圧延条件)
熱間仕上圧延の終了温度は 310〜350°Cとすることが好ましい。熱間仕上圧延ェ 程は、合金冷延板を所定の寸法に仕上げる工程であり、圧延終了後の組織は自己 発熱によって再結晶組織になるため、その終了温度は再結晶組織に影響を与える。 熱間仕上圧延の終了温度を 310°C以上とすることで、続く冷間圧延条件と併せて、 最終板組織を、平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、かつ、 本発明で規定の Cu固溶量、 Mg固溶量を確保することができる。熱間仕上圧延の終 了温度が 310°C未満では、続く冷間圧延の冷延率を大きくしても、上記本発明組織 になりにくい。
[0124] 一方、 350°Cを越えると、最終板組織を、平均アスペクト比が 3以上の圧延方向に 伸長させた組織とできず、かつ、所望の Mg固溶量が確保できない。従って、熱間仕 上圧延の終了温度の下限は 310°C以上、好ましくは 320°C以上とする。また、上限 は 350°C以下、好ましくは、 340°C以下とする。
[0125] (熱間仕上圧延機の種類)
熱間仕上圧延機としては、スタンド数が 3以上のタンデム式熱間圧延機を使用する 。スタンド数を 3以上とすることによって、 1スタンドあたりの圧延率を小さくでき、熱延 板の表面性状を保ちつつ歪みを蓄積することができるため、冷間圧延板及びその DI 成形体の強度をさらに高めることができる。
[0126] (熱間仕上圧延の総圧延率)
熱間仕上圧延の総圧延率は 80%以上にするのが望ましい。総圧延率は 80%以上 とすることで、後述する冷間圧延と組み合わせて、最終板組織を、平均アスペクト比 力 S3以上の圧延方向に伸長させた組織としゃすい。また、冷間圧延板及びその DI成 形体の強度を高めることができる。
[0127] (熱間圧延板の板厚)
熱間(仕上げ)圧延終了後の合金板の板厚は、 1. 8〜3mm程度とするのが望まし い。板厚を 1. 8mm以上とすることによって、熱間圧延板の表面性状 (焼付き、肌荒 れなど)や板厚プロフィールの悪ィ匕を防止できる。一方、板厚が 3mm以下とすること によって、冷間圧延板 (通常、板厚: 0. 28〜0. 35mm程度)を製造する際の圧延率 が高くなりすぎるのを防止でき、 DI成形後の耳率を抑制できる。
[0128] 上述のようにして得られた熱間圧延板は、 Cu固溶量及び Mg固溶量が最適の範囲 に制御されているため、平均耳率が所定の範囲に制御されている。そのため、中間 焼鈍することなく冷間圧延して、冷間圧延板の平均耳率を 0〜3. 5%と小さくすること ができる。また、後述する冷間圧延と組み合わせて、最終板組織を、平均アスペクト 比が 3以上の圧延方向に伸長させた組織とし、 Cu固溶量と 0. 以下の微細析 出中の Cu量の和力 熱フエノールによる残查抽出法により粒子サイズが 0. を 超える析出物と分離された溶液中の Cu量として 0. 05〜0. 3%、 Mg固溶量と 0. 2 μ m以下の微細析出中の Mg量の和力 熱フ ノールによる残查抽出法により粒子 サイズが 0. 2 /z mを超える析出物と分離された溶液中の Mg量として 0. 75〜: L 6% としゃすい。
[0129] (冷間圧延)
冷間圧延工程では、中間焼鈍することなぐ複数のパス数による謂わば直通で圧延 し、合計の圧延率を 77〜90%にするのが望ましい。中間焼鈍することなぐ合計の 圧延率を 77%以上とすることによって、最終板組織を、結晶粒の平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、 Cu固溶量と 0. 以下の微細析出中 の Cu量の和が、熱フエノールによる残查抽出法により粒子サイズが 0. 2 mを超え る析出物と分離された溶液中の Cu量として 0. 05〜0. 3%、Mg固溶量と0.
以下の微細析出中の Mg量の和力 熱フ ノールによる残查抽出法により粒子サイズ が 0. 2 /z mを超える析出物と分離された溶液中の Mg量として 0. 75〜: L 6%としゃ すい。また、缶の耐圧強度をより高めることができる。中間焼鈍を入れた場合、あるい は、合計の圧延率が低い場合、等軸粒になりやすぐ結晶粒の平均アスペクト比が 3 以上の圧延方向に伸長させた組織になりにくい。
[0130] 一方、圧延率が 90%を超えると、結晶粒の平均アスペクト比は大きくできるものの、 DI成形時のプラス耳が大きくなり過ぎ、また強度が強くなり過ぎるために、 DI成形時 にカツビング割れや缶底割れが生じる可能性が高い。
[0131] 冷間圧延後の板厚は、ボトル缶への成形上、 0. 28-0. 35mm程度とする。
[0132] なお、冷間圧延工程では、圧延スタンドが 2段以上直列に配置された、タンデム圧 延機を使用することが望ましい。このようなタンデム圧延機を使用することにより、圧延 スタンドが 1段で、繰り返しパス (通板)を行なって所定板厚まで冷延するシングルの 圧延機と比して、同じ合計冷延率でも、パス (通板)回数が少なくて済み、 1回の通板 における圧延率を高くすることができる。
[0133] したがって、最終板組織を、結晶粒の平均アスペクト比が 3以上の圧延方向に伸長 させた組織が得やすくなる。
[0134] また、従来のように、シングルの圧延機を用いた冷間圧延後に、仕上げ焼鈍を施す 場合に比して、より低温で、かつ連続的に回復を生じさせ、サブグレインを生成するこ とができる。但し、このように、冷間圧延により回復を生じさせて十分にサブグレインを 生成することができるものであれば、圧延機はタンデム圧延機に限定されるものでは ない。
[0135] 但し、タンデム圧延機による冷延では、 1回の通板における圧延率が高くなるため に、 1回の通板における発熱量が高くなる。この発熱量が高くなり過ぎた場合、加工 時の歪み導入と発熱によって、 Cuや Mgの析出物発生量、特に、粗大析出物界面で の析出物が増加して、その結果、 Cuや Mgの固溶量および微細析出物量が確保で きない可能性がある。
[0136] このため、タンデム圧延機による冷延では、冷間圧延工程における冷間圧延直後 のアルミニウム合金板の温度が最も上昇する際に、アルミニウム合金板を強制的に冷 却し、冷間圧延後のアルミニウム板の温度が 200°Cを超える温度に上昇しないように することが好ましい。
[0137] このような冷間圧延時のアルミニウム合金板の強制的な冷却手段としては、通常使 用される水を含まな ヽ圧延油を、水溶性油や水溶性潤滑剤などのェマルジヨンタイ プに変えて、このェマルジヨン水溶液を用い、潤滑性能を低下させずに、冷却性能を 強化させることが好ましい。
[0138] 冷間圧延後は、必要に応じて、再結晶温度よりも低い温度で仕上焼鈍 (最終焼鈍) を行ってもよい。仕上焼鈍を行うと加工組織が回復し、 DI成形性や缶底成形性が向 上する。仕上焼鈍の温度は、例えば、 100〜150°C程度、特に 115〜150°C程度に するのが望ましい。温度を 100°C以上とすることによって、加工組織を充分に回復さ せることができる。一方、温度が 150°C以下とすることによって、固溶元素の過剰な析 出を防止でき、 DI成形性やフランジ成形性をさらに高めることができる。
[0139] 仕上焼鈍の時間は、 4時間以下 (特に 1〜3時間程度)とするのが望ましい。長すぎ る焼鈍を避けることによって、固溶元素の過剰な析出を防止でき、 DI成形性をさらに 高めることができる。
[0140] 但し、前記したタンデム圧延機による冷延では、より低温で、かつ連続的に回復を 生じさせ、サブグレインを生成することができるために、仕上焼鈍が基本的には不要 である。
[0141] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範 囲に包含される。
実施例 1
[0142] アルミ地金のみを溶解原料として、下記表 1に示す A〜Nの成分組成の A1合金の 溶湯を溶解し、 DC铸造法にて板厚 600mm、幅 2100mmの铸塊を製造した。なお、 表 1にお 、て「-」で示す元素含有量は検出限界以下であることを示す。
[0143] この铸塊には、表 1に示す通り、発明例、比較例ともに、その他元素の総量として、 不可避的な不純物元素、 Zr、 Bi, Sn、 Ga, V, Co, Ni, Ca、 Mo, Be、 Pb, Wを、こ れらの元素の含有量の総和で 0. 01%以下含んでいた。
[0144] この铸塊を表 2に示す条件に従って、均熱処理を行なった。均熱処理は、 1回目の 均熱処理後に室温まで表 2に示す冷却速度にて冷却した後、再加熱して 2回目の均 熱処理を行う、 2回の均熱処理とした。ここで、 1回目均熱条件の昇温速度は、実質上 、特性に影響を及ぼす 300°C力も最高温度までの昇温速度を指す。また、 1回目均 熱条件の冷却速度は、実質上、特性に影響を及ぼす最高温度力 300°Cまでの冷 却速度を指す。この均熱処理後に、熱間粗圧延として、スタンド数が 1個のリバース 熱間粗圧延機、熱間仕上圧延機として、スタンド数が 4個のタンデム式熱間圧延機を 使用して、熱間圧延を行なった。その際、熱間粗圧延終了後に熱間仕上圧延を開始 する時間は 3分以内とした。そして、共通して熱間仕上圧延後の板厚を 2〜2. 5mm としたアルミニウム合金熱延板を製造した。
[0145] 得られた熱間圧延板を、中間焼鈍することなぐロールスタンドが 2段のタンデム圧 延機により 1回のみの通板で冷間圧延し、共通して、最終板厚 0. 3mmのボトル缶月同 用板材 (冷間圧延板)を製造した。この際、タンデム圧延機による冷延では、冷間圧 延直後のアルミニウム板の温度が 250°Cを超える温度に上昇しないように、ェマルジ ヨン水溶液を用い、アルミニウム板を強制的に冷却した。この冷間圧延後の仕上焼鈍 (最終焼鈍)は行なわなかった。
[0146] なお、比較例 10のみは、総冷延率は同じである力 比較のために、ロールスタンド 力 段のシングル圧延機で 2回通板し、 1回目と 2回目とのパス間に、 150°C X 1時間 の中間焼鈍を施した。
[0147] 冷延後のボトル缶胴用板材 (コイル)から試験片を採取し、試験片の組織として、結 晶粒の平均アスペクト比、および Cu固溶量、 Mg固溶量を、各々前記した方法で調 查した。これらの結果を表 3に示す。
[0148] また、試験片の高温特性として、室温での試験片表面の硬さと 0. 2%耐カ、および 、試験片を 290°C X 20秒熱処理した時の表面の硬さと 0. 2%耐カを各々測定し、こ の熱処理前後での試験片表面の硬さ変化 (硬さ減少量) Δ Ην(Ην)を求めた。更に、 成形後の缶胴のベータハード後の楕円変形量を測定した。これらの結果も表 3に示 す。
[0149] (0. 2%耐カ測定)
0. 2%耐カ測定の引張試験は JIS Ζ 2201にしたがって行うとともに、試験片形状は J IS 5号試験片で行い、試験片長手方向が圧延方向と一致するように作製した。また 、クロスヘッド速度は 5mm/分で、試験片が破断するまで一定の速度で行った。 [0150] (硬さ測定)
冷延板試料の硬さ測定は、マイクロビッカース硬度計にて、 lOOgの荷重をカ卩えて 4 箇所行い、硬さはそれらの平均値とした。
[0151] (楕円変形評価)
楕円変形の評価は、後述するように、上記ボトル缶胴用板材を DI成形したボトル缶 胴を、洗浄後、缶の実体温度が 300°Cに、 30秒で達する条件でベーキングした上で 、楕円変形度を調査した。楕円変形度調査は、ボトル缶胴の口部の径を順に円周方 向に調査し、その中での最大径力 最小径を減算した量を楕円変形量 (mm)として 求め、これを N= 10缶の平均値として評価した。なお、この楕円変形量は 4mm以下 を楕円変形性が合格と評価した。この楕円変形量が 4mmを超えると、缶製造工程に おける、後工程の搬送工程及びネッキング工程で、転倒及びジャムなどの不良が発 生し、缶の連続的で効率的な製造を困難にする。
[0152] 更に、ボトル缶胴用板材が基本的に満たすべき成形性として、耳率と DI (しごき)成 形性 (成形時の割れ発生回数)を測定、評価した。これらの結果も表 3に示す。
[0153] (耳率)
耳率は、このボトル缶胴用板材力 ブランクを採取し、潤滑油 [D. A. Stuart社製 、ナルコ 147]を塗布した上で、エリクセン試験機によって、 40%深絞り試験、カップ 状に成形して調査した。試験条件は、ブランクの直径 =66. 7mm,ポンチの直径 = 40mm,ダイス側肩部の Rを 2. Omm、ポンチの肩 R= 3. Omm、しわ押さえ圧 =40 Okgfで行なった。
[0154] このように得られたカップの開口周縁部の 8方向(圧延方向を 0° として、 0° 方向、 45° 方向、 90° 方向、 135° 方向、 180° 方向、 225° 方向、 270° 方向、及び 3 15° 方向)に生じる山谷の形状を測定し、平均耳率を算出した。
[0155] 平均耳率の算出方法は、図 1に基づいて説明する。図 1は、ボトル缶胴用板材を DI 成形することによって得られるカップの展開図である。この展開図では、圧延方向を 0 ° として、 0° 、 90° 、 180° 、及び 270° 方向に生じる耳の高さ(Tl, T2, T3, T4 ;マイナス耳と称する)を測定し、 45° 、 135° 、 225° 、及び 315° 方向に生じる耳 の高さ(Yl, Y2, Y3, Y4 ;プラス耳と称する)を測定する。なお各高さ Y1〜Y4, Tl 〜T4は、カップの底部からの高さである。そして各測定値から、次式に基づいて平均 耳率を算出する。
平均耳率(%) = [{ (Yl +Υ2+Υ3+Υ4) - (Tl +Τ2+Τ3+Τ4) }/{ 1/2 X (Y1 +Y2+Y3+Y4+T1 +T2+T3+T4) }] X 100
[0156] なお本発明の対象としている冷間圧延板では、平均耳率を 0近くにした場合、 4つ のプラス耳(Υ1〜Υ4)並びに 90° 方向及び 270° 方向の 2つのマイナス耳(図 1の Τ2、Τ4)の発達は抑制されるものの、 0° 方向及び 180° 方向の 2つのマイナス耳( 図 1の Tl、 Τ3)の発達は抑制されにくい。そして単に平均耳率の絶対値を小さくした 場合には、例えば、平均耳率を- 2〜2% (絶対値では 2%以下)にした場合には、平 均耳率を- 2以上 0%未満としても、マイナス耳(図 1の Tl、 Τ3)の抑制が不十分なた めに、絞り成形のシヮ押さえ圧力 この 2つのマイナス耳(図 1の Tl、 Τ3)に集中し、 耳立ち、耳切れなどが発生して生産に不具合が生じるのに対して、平均耳率を 0〜2 % (プラス側)にした場合には、残りの 2つのマイナス耳(図 1の Tl、 Τ3)も十分に抑 制できるために、耳切れに起因する缶胴破壊を防止できる。なお、本発明において は、 +0%〜+ 3. 5%を許容範囲とした。
[0157] (DI成形性)
前記ボトル缶胴用板材 (板厚が 0. 3mm)から、直径 156mmのブランクを打ち抜き 、カップ径 92mmのカップを成形し、再絞り加工、しごき加工、及びトリミングにより、 製缶速度 300缶 Z分の速さで、ボトル缶用 DI缶胴(内径 66mm φ、高さが 170mm 、側壁板厚 103 μ m、側壁先端部板厚 165 μ m、最終第 3しごき率 40%)を製造した 。成形缶 5万缶あたりの胴割れの発生個数を求め、 DI成形性を評価した。全く存在し な力つたものを◎ (極めて良好)、 1缶以下であったものを〇(良好)、 2乃至 4缶であ つたものを△ (概ね良好)、 5缶を超えたものを X (不良)として評価した。
[0158] 表 3から明らかなように、発明例 1〜6は、本発明成分組成を有し、かつ、結晶粒の 平均アスペクト比が 3以上、 Cu固溶量が前記した測定方法で 0. 05〜0. 3%、 Mg固 溶量が前記した測定方法で 0. 75〜: L 6%である。
[0159] この結果、発明例 1〜6は、表 3から明らかなように、 290°C X 20秒熱処理後(ベー クハード後)の、硬さ変化 Δ Ηνが 30Hv以下であり、かつ、 0. 2%耐カカ ^lOMPa以 上であり、硬度低下や強度低下が少なぐ高温特性に優れている。
[0160] 更に、発明例 1〜6は、耳率と DI成形性にも優れている。したがって、本発明におけ る高温特性の改良が、ボトル缶胴用板材が基本的に満たすべき成形性を阻害してい ないことが分かる。
[0161] これに対して、比較例 7〜10は、本発明成分組成ではあるものの、均熱処理や熱 間圧延の条件が前記好ましい条件力も外れるために、結晶粒の平均アスペクト比、 C u固溶量、 Mg固溶量のいずれかが外れる。この結果、上記発明例に比して、硬度低 下や強度低下が大きぐ高温特性が劣っている。
[0162] 比較例 7は 2回目の均熱温度が低過ぎる。また、熱間仕上げ圧延終了温度が低過 ぎる。
比較例 8は熱間仕上げ圧延終了温度が低過ぎる。比較例 9は熱間仕上げ圧延終了 温度が低過ぎる。比較例 10はシングル冷間圧延機であり、しかも冷間圧延途中で中 間焼鈍を施している。
[0163] 比較例 11〜20は、好ま ヽ製造条件で製造されて!ヽる。しかし、合金組成が本発 明成分組成から外れる。この結果、上記発明例に比して、硬度低下や強度低下が大 きぐ高温特性が劣っている。また、成形性も低くなつている。
[0164] 以上の結果から、本件第 1の発明の各要件の臨界的な意義が分力る。
[0165] [表 1]
〔〕^0166
Figure imgf000033_0001
*その他元素: Z r、 B i、 S n. G a、 V、 C o, N i 、 C a、 Mo、 B e、 P b、 Wの総量
〔〕
Figure imgf000034_0001
Figure imgf000035_0001
実施例 2
[0168] アルミ地金のみを溶解原料として、下記表 4に示す A〜Nの成分組成の A1合金の 溶湯を溶解し、 DC铸造法にて板厚 600mm、幅 2100mmの铸塊を製造した。なお、 表 4にお 、て「-」で示す元素含有量は検出限界以下であることを示す。
[0169] この铸塊には、表 4に示す通り、発明例、比較例ともに、その他元素の総量として、 不可避的な不純物元素、 Zr、 Bi, Sn、 Ga, V, Co, Ni, Ca、 Mo, Be、 Pb, Wを、こ れらの元素の含有量の総和で 0. 03%以上含んで!/、る。
[0170] この铸塊を表 5に示す条件に従って、均熱処理を行なった。均熱処理は、 1回目の 均熱処理後に室温まで表 5に示す冷却速度にて冷却した後、再加熱して 2回目の均 熱処理を行う、 2回の均熱処理とした。ここで、 1回目均熱条件の昇温速度は、実質 上、特性に影響を及ぼす 300°C力も最高温度までの昇温速度を指す。また、 1回目 均熱条件の冷却速度は、実質上、特性に影響を及ぼす最高温度から 300°Cまでの 冷却速度を指す。この均熱処理後に、熱間粗圧延として、スタンド数が 1個のリバ一 ス熱間粗圧延機、熱間仕上圧延機として、スタンド数力 個のタンデム式熱間圧延機 を使用して、熱間圧延を行なった。その際、熱間粗圧延終了後に熱間仕上圧延を開 始する時間は 3分以内とし、前記異方性指標を制御するために、これら卷取り時の平 均張力を表 5に示すように制御した。そして、共通して熱間仕上圧延後の板厚を 2〜 2. 5mmとしたアルミニウム合金熱間圧延板を製造した。
[0171] 得られた熱間圧延板を、中間焼鈍することなぐロールスタンドが 2段のタンデム圧 延機により 1回のみの通板で冷間圧延し、共通して、最終板厚 0. 3mmのボトル缶胴 用板材 (冷間圧延板)を製造した。この際、タンデム圧延機による冷延では、冷間圧 延直後のアルミニウム板の温度が 130〜200°Cとなるように制御した。この冷間圧延 後の仕上焼鈍 (最終焼鈍)は行なわなかった。
[0172] なお、比較例 110のみは、総冷延率は同じである力 比較のために、ロールスタン ドが 1段のシングル圧延機で 2回通板し、 1回目と 2回目とのパス間に、 150°C X 1時 間の中間焼鈍を施した。
[0173] 冷延後のボトル缶胴用板材 (コイル)から試験片を採取し、試験片の組織として、結 晶粒の平均アスペクト比、および引張り特性を調査した。これらの結果を表 6に示す。
[0174] また、試験片の高温特性として、室温での試験片表面の硬さと 0. 2%耐カ、および 、試験片を 290°C X 20秒熱処理した時の表面の硬さと 0. 2%耐カを各々測定し、こ の熱処理前後での試験片表面の硬さ変化 (硬さ減少量) Δ Ην(Ην)を求めた。引張 試験は下記引張条件にて、但し、圧延方向に対して 0° 方向で行なった。下記条件 にて、更に、成形後の缶胴のベータハード後の楕円変形量を測定した。これらの結 果も表 6に示す。 [0175] (引張試験による異方性測定)
試験片の引張試験を JIS Z 2201にしたがって行うとともに、試験片形状は JIS 5号試 験片で行った。クロスヘッド速度は 5mm/分で、試験片が破断するまで一定の速度で 行った。この際、試験片長手方向を、圧延方向に対して 0° 、45° 、90° の各方向 と各々した試験片をそれぞれ準備し、各試験片の引張強度と n値とを求めた。そして 、これら引張強度の内の最大値と最小値との差 (MPa)、これら n値 (ひずみ量 2〜4 %の間)の内の最大値と最小値との差を各々求めた。また、これら引張強度と n値の、 上記各方向の平均値も求めた。
[0176] (硬さ測定)
冷延板試料の硬さ測定は、マイクロビッカース硬度計にて、 lOOgの荷重をカ卩えて 4 箇所行い、硬さはそれらの平均値とした。
[0177] (楕円変形評価)
楕円変形の評価は、後述するように、上記ボトル缶胴用板材を DI成形したボトル缶 胴を、洗浄後、缶の実体温度が 300°Cに、 30秒で達する条件でベーキングした上で 、楕円変形度を調査した。楕円変形度調査は、ボトル缶胴の口部の径を順に円周方 向に調査し、その中での最大径力 最小径を減算した量を楕円変形量 (mm)として 求め、これを N= 10缶の平均値として評価した。なお、この楕円変形量は 4mm以下 を楕円変形性が合格と評価した。この楕円変形量が 4mmを超えると、缶製造工程に おける、後工程の搬送工程及びネッキング工程で、転倒及びジャムなどの不良が発 生し、缶の連続的で効率的な製造を困難にする。
[0178] 更に、ボトル缶胴用板材が基本的に満たすべき成形性として、耳率と DI (しごき)成 形性 (成形時の割れ発生回数)を測定、評価した。これらの結果も表 6に示す。
[0179] (耳率)
耳率は、実施例 1と同様に、このボトル缶胴用板材カもブランクを採取し、潤滑油 [ D. A. Stuart社製、ナルコ 147]を塗布した上で、エリクセン試験機によって、 40% 深絞り試験、カップ状に成形して調査した。試験条件は、実施例 1と同様にして平均 耳率を算出した。
[0180] (DI成形性) 実施例 1と同様に、成形缶 5万缶あたりの胴割れの発生個数を求め、 DI成形性を 評価した。全く存在しな力つたものを◎ (極めて良好)、 1缶以下であったものを〇(良 好)、 2乃至 4缶であったものを△ (概ね良好)、 5缶を超えたものを X (不良)として評 価し 7こ。
[0181] 表 6から明らかなように、発明例 101〜106は、本発明成分組成を有し、かつ、結晶 粒の平均アスペクト比が 3以上、圧延方向に対して 0° 、 45° 、 90° の各方向の引 張強度の内、最大値と最小値との差が 25MPa以下であり、圧延方向に対して 0° 、 45° 、 90° の各方向の引張り試験による n値の内、最大値と最小値との差が 0. 03 以下である異方性の小さ 、組織を有する。
[0182] この結果、発明例 101〜106は、表 6から明らかなように、 290°C X 20秒熱処理後( ベータハード後)の、硬さ変化 Λ Ηνが 30Hv以下であり、かつ、 0. 2%耐力が 215M Pa以上であり、硬度低下や強度低下が少なぐ高温特性に優れている。
[0183] 更に、発明例 101〜106は、耳率と DI成形性にも優れている。したがって、本発明 における高温特性の改良が、ボトル缶胴用板材が基本的に満たすべき成形性を阻 害していないことが分かる。
[0184] 以上の結果から、本件第 2の発明の各要件の臨界的な意義が分力る。
[0185] [表 4]
^〔〕〔a0186
Figure imgf000039_0001
*その他元素: Z r、 B i、 Sn、 Ga、 V、 C o、 N i、 C a - Mo、 B e、 Pb、 Wの総量
Figure imgf000040_0001
〔018
Figure imgf000040_0002
Figure imgf000041_0001
実施例 3
[0188] アルミ地金の他に缶材スクラップなども溶解原料として用いて、下記表 7に示す A Nの成分組成の Al合金の溶湯を溶解し、 DC铸造法にて板厚 600mm、幅 2100m mの铸塊を製造した。なお、表 7において「-」で示す元素含有量は検出限界以下で あることを示す。
[0189] この铸塊には、表 7に示す通り、発明例、比較例ともに、その他元素の総量として、 不可避的な不純物元素、 Zr Bi, Sn Ga, V, Co, Ni, Ca Mo, Be Pb, Wを、こ れらの元素の含有量の総和で 0. 03%以上含んで!/、る。
[0190] このため、先ず、主要構成元素(Mn、 Mg、 Fe、 Cu、 Si)や選択的な添加元素の各 成分バランスの設計によって、ボトル缶用アルミニウム合金冷延板として要求される、 強度、成形性等を満足する合金設計を行なった。その上で、 ΔΤの制御を行なうべく 、各例の熱力学的な平衡状態図計算を行って、アルミニウムの固液共存温度範囲△ Tを計算し、合金設計乃至修正を行なった。そして、前記表 7に示す、実際の A〜N のアルミニウム合金成分組成とした。
[0191] これら成分組成の铸塊を表 8に示す条件に従って、均熱処理を行なった。均熱処 理は、 1回目の均熱処理後に室温まで表 8に示す冷却速度にて冷却した後、再加熱 して 2回目の均熱処理を行う、 2回の均熱処理とした。
[0192] ここで、 1回目均熱条件の昇温速度は、実質上、特性に影響を及ぼす 300°Cから 最高温度までの昇温速度を指す。また、 1回目均熱条件の冷却速度は、実質上、特 性に影響を及ぼす最高温度から 300°Cまでの冷却速度を指す。この均熱処理後に、 熱間粗圧延として、スタンド数が 1個のリバース熱間粗圧延機、熱間仕上圧延機とし て、スタンド数力 個のタンデム式熱間圧延機を使用して、熱間圧延を行なった。そ の際、熱間粗圧延終了後に熱間仕上圧延を開始する時間は 3分以内とした。そして 、共通して熱間仕上圧延後の板厚を 2. 5mmとしたアルミニウム合金熱間圧延板を 製造した。
[0193] 得られた熱間圧延板を、中間焼鈍することなぐロールスタンドが 2段のタンデム圧 延機により 1回のみの通板で冷間圧延し、共通して、最終板厚 0. 3mmのボトル缶胴 用板材 (冷間圧延板)を製造した。この際、タンデム圧延機による冷延では、冷間圧 延直後のアルミニウム板の温度が 250°Cを超える温度に上昇しないように、ェマルジ ヨン水溶液を用い、アルミニウム板を強制的に冷却した。この冷間圧延後の仕上焼鈍 (最終焼鈍)は行なわなかった。
[0194] なお、比較例 210のみは、総冷延率は同じである力 比較のために、ロールスタン ドが 1段のシングル圧延機で 2回通板し、 1回目と 2回目とのパス間に、 150°C X 1時 間の中間焼鈍を施した。
[0195] 冷延後のボトル缶胴用板材 (コイル)から試験片を採取し、試験片の組織として、各 々前記した測定方法で、結晶粒の平均アスペクト比、 0. 5 m以上の金属間化合物 の平均サイズ (板厚中央部)、固液共存温度範囲 ΔΤを示差熱分析により、調査した 。これらの結果を表 9に示す。
[0196] また、試験片の高温特性として、室温での試験片表面の硬さと 0. 2%耐カ、および 、試験片を 290°C X 20秒熱処理した時の表面の硬さと 0. 2%耐カを各々測定し、こ の熱処理前後での試験片表面の硬さ変化 (硬さ減少量) Δ Ην(Ην)を求めた。更に、 成形後の缶胴のベータハード後の楕円変形量を測定した。これらの結果も表 9に示 す。
[0197] (0. 2%耐カ測定)
実施例 1と同様に、 0. 2%耐カ測定の引張試験は JIS Ζ 2201にしたがって行うととも に、試験片形状は JIS 5号試験片で行い、試験片長手方向が圧延方向と一致するよ うに作製した。また、クロスヘッド速度は 5mm/分で、試験片が破断するまで一定の 速度で行った。
[0198] (硬さ測定)
実施例 1と同様に、冷延板試料の硬さ測定は、マイクロビッカース硬度計にて、 100 gの荷重を加えて 4箇所行 、、硬さはそれらの平均値とした。
[0199] (楕円変形評価)
楕円変形の評価は、後述するように、実施例 1と同様にして行った。
[0200] 更に、ボトル缶胴用板材が基本的に満たすべき成形性として、耳率と DI (しごき)成 形性 (成形時の割れ発生回数)を測定、評価した。これらの結果も表 9に示す。
[0201] (耳率)
耳率は、実施例 1と同様に、このボトル缶胴用板材カもブランクを採取し、潤滑油 [ D. A. Stuart社製、ナルコ 147]を塗布した上で、エリクセン試験機によって、 40% 深絞り試験、カップ状に成形して調査した。試験条件は、ブランクの直径 =66. 7m m、ポンチの直径 =40mm、ダイス側肩部の Rを 2. Omm、ポンチの肩 R= 3. Omm 、しわ押さえ圧 =400kgfで行なった。
[0202] このように得られたカップの開口周縁部の 8方向(圧延方向を 0° として、 0° 方向、 45° 方向、 90° 方向、 135° 方向、 180° 方向、 225° 方向、 270° 方向、及び 3 15° 方向)に生じる山谷の形状を測定し、平均耳率を算出した。
[0203] 平均耳率の算出方法は、実施例 1に示す通りである。
[0204] (DI成形性)
実施例 1と同様に、成形缶 5万缶あたりの胴割れの発生個数を求め、 DI成形性を 評価した。全く存在しな力つたものを◎ (極めて良好)、 1缶以下であったものを〇(良 好)、 2乃至 4缶であったものを△ (概ね良好)、 5缶を超えたものを X (不良)として評 価し 7こ。
[0205] 表 9から明らかなように、発明例 201〜206は、本発明成分組成を有し、かつ、結晶 粒の平均アスペクト比が 3以上、 0. 5 m以上の分散粒子の平均粒子サイズが 5 μ m以下、アルミニウムの液相と固相の固液共存温度範囲を示す ΔΤ力 0°C以下であ る組織を有する。
[0206] この結果、発明例 201〜206は、表 9から明らかなように、 290°C X 20秒熱処理後( ベータハード後)の、硬さ変化 Λ Ηνが 30Hv以下であり、かつ、 0. 2%耐力が 270M Pa以上であり、硬度低下や強度低下が少なぐ高温特性に優れている。
[0207] 更に、発明例 201〜206は、耳率と DI成形性にも優れている。したがって、本発明 における高温特性の改良が、ボトル缶胴用板材が基本的に満たすべき成形性を阻 害していないことが分かる。
[0208] これに対して、比較例 207〜210は、本発明成分組成ではあるものの、均熱処理や 熱間圧延の条件が前記好ましい条件力も外れるために、結晶粒の平均アスペクト比 、0. 5 m以上の分散粒子の平均粒子サイズ、 ΔΤのいずれかが本発明の規定を外 れる組織となっている。この結果、上記発明例に比して、硬度低下や強度低下が大き ぐ高温特性が劣っている。
[0209] 比較例 207は 2回目の均熱温度が低過ぎる。また、熱間仕上げ圧延終了温度が低 過ぎる。比較例 208は熱間仕上げ圧延終了温度が低過ぎる。比較例 209は熱間仕 上げ圧延終了温度が低過ぎる。比較例 210は冷間圧延途中で中間焼鈍を施した。
[0210] 比較例 211〜220は、好ま 、製造条件で製造されて!、る。しかし、合金組成が本 発明成分組成から外れる。このため、結晶粒の平均アスペクト比、 0. 5 m以上の分 散粒子の平均粒子サイズ、 Δ Tの 、ずれかが本発明の規定を外れる組織となって!/ヽ る。この結果、上記発明例に比して、硬度低下や強度低下が大きぐ高温特性が劣 つている。また、成形性も低くなつている。
[0211] 以上の結果から、本発明の各要件の臨界的な意義が分かる。
[0212] [表 7]
Figure imgf000045_0001
Figure imgf000046_0001
〔〕0214
Figure imgf000046_0002
〔〕
Figure imgf000047_0001
産業上の利用可能性
以上説明したように、本発明は、 DI加工等の成形性の確保を前提に、より高温化短 時間化された高速化熱処理に対しても、塗装熱処理時の熱変形を防止し、熱処理後 の缶強度を確保するとともに、真円度が高いボトル缶を得ることができる、高温特性に 優れたボトル缶用アルミニウム合金冷延板を提供できる。したがって、ボトル缶のよう な、薄肉で熱処理されても、強度低下や変形が無いことが求められ、し力も成形性は そのまま維持する必要がある、厳 Uヽ要求特性用途に好適である。

Claims

請求の範囲
[1] Mn: 0. 7〜1. 5% (質量0 /0、以下同じ)、 Mg : 0. 8〜1. 7%、Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、Cu : 0. 1〜0. 6%を含有し、残部が A1及び不可避的不純物か らなる組成を有し、かつ、結晶粒組織を、板厚方向中央部の上面観察による結晶粒 の平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、 Cu固溶量力 熱フ ノールによる残查抽出法により粒子サイズが 0. 2 mを超える析出物と分離された溶 液中の Cu量として 0. 05〜0. 3%、 Mg固溶量が、熱フ ノールによる残查抽出法に より粒子サイズが 0. 2 mを超える析出物と分離された溶液中の Mg量として 0. 75 〜1. 6%であることを特徴とする、高温特性に優れたボトル缶用アルミニウム合金板
[2] 前記アルミニウム合金板力 更に、圧延方向に対して 0° 、45° 、90° の各方向の 引張り強度の内、最大値と最小値との差が 25MPa以下であり、圧延方向に対して 0 ° 、45° 、90° の各方向の引張り試験による n値の内、最大値と最小値との差が 0. 03以下である請求項 1に記載の、高温特性に優れたボトル缶用アルミニウム合金板
[3] 前記アルミニウム合金板の組織の 0. 5 μ m以上の分散粒子観察における分散粒 子の平均粒子サイズが 5 μ m以下であり、更に、アルミニウムの液相と固相の固液共 存温度範囲を示す Δ Τが 40°C以下であることを特徴とする、高温特性に優れたボト ル缶用アルミニウム合金板。
[4] 前記アルミニウム合金板が、更に、 Cr: 0. 001〜0. 3%、 Zn : 0. 05〜: L 0%から 選択された一種または二種を含有する請求項 1〜3のいずれかに記載の高温特性に 優れたボトル缶用アルミニウム合金板。
[5] 前記ァノレミニゥム合金板力 更に、 0. 005〜0. 20/0の Tiを単独で、又 ίま 0. 0001
〜0. 05%の Βと併せて含有する請求項 1〜4のいずれかに記載の高温特性に優れ たボトル缶用アルミニウム合金冷延板。
[6] 前記アルミニウム合金板の Μη固溶量力 熱フ ノールによる残查抽出法により粒 子サイズが 0. 2 /z mを超える析出物と分離された溶液中の Μη量として 0. 12〜0. 3 8%である請求項 1乃至 3のいずれか 1項に記載の高温特性に優れたボトル缶用ァ ルミ-ゥム合金冷延板。
[7] 前記アルミニウム合金板を 290°C X 20秒熱処理した時の、この熱処理前後でのァ ルミニゥム合金板の硬さ変化 Δ Hvが 30Hv以下であり、この熱処理後のアルミニウム 合金板の 0. 2%耐力が 215MPa以上である請求項 1〜6のいずれ力 1項に記載の 高温特性に優れたボトル缶用アルミニウム合金板。
[8] 前記アルミニウム合金冷延板が、熱間圧延板を、途中で焼鈍することなぐ最終の 板厚まで冷間圧延されたものである請求項 1〜7のいずれ力 1項に記載の高温特性 に優れたボトル缶用アルミニウム合金板。
[9] 前記アルミニウム合金冷延板を 290°C X 20秒熱処理した時の、この熱処理前後で のアルミニウム合金冷延板の硬さ変化 Δ Hvが 30Hv以下であり、この熱処理後のアル ミニゥム合金冷延板の 0. 2%耐力が 215MPa以上である請求項 1〜8のいずれか 1 項に記載の高温特性に優れたボトル缶用アルミニウム合金板。
[10] 前記アルミニウム合金冷延板が、熱間圧延板を、途中で焼鈍することなぐ最終の 板厚まで冷間圧延されたものである請求項 1〜9のいずれ力 1項に記載の高温特性 に優れたボトル缶用アルミニウム合金板。
[11] Mn: 0. 7〜1. 5% (質量0 /0、以下同じ)、 Mg : 0. 8〜1. 7%、Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、Cu : 0. 1〜0. 6%を含有し、残部が A1及び不可避的不純物か らなる組成を有し、かつ、
結晶粒組織を、板厚方向中央部の上面観察による結晶粒の平均アスペクト比が 3以 上の圧延方向に伸長させた組織とし、更に、圧延方向に対して 0° 、45° 、90° の 各方向の引張り強度の内、最大値と最小値との差が 25MPa以下であり、圧延方向に 対して 0° 、45° 、90° の各方向の引張り試験による n値の内、最大値と最小値との 差が 0. 03以下であることを特徴とする、高温特性に優れたボトル缶用アルミニウム合 金板。
[12] Mn: 0. 7〜1. 5% (質量0 /0、以下同じ)、 Mg : 0. 8〜1. 7%、Fe : 0. 1〜0. 7%、 Si: 0. 05〜0. 5%、Cu : 0. 1〜0. 6%を含有し、残部が A1及び不可避的不純物か らなる組成を有し、かつ、結晶粒組織を、板厚方向中央部の上面観察による結晶粒 の平均アスペクト比が 3以上の圧延方向に伸長させた組織とし、この組織の 0. 5 m 以上の分散粒子観察における分散粒子の平均粒子サイズが 5 μ m以下であり、更に
、アルミニウムの液相と固相の固液共存温度範囲を示す ΔΤ力 0°C以下であること を特徴とする、高温特性に優れたボトル缶用アルミニウム合金板。
[13] 前記アルミニウム合金冷延板が、更に、 Cr: 0. 001〜0. 3%、 Zn: 0. 05〜: L 0% 力も選択された一種または二種を含有する請求項 11又は 12に記載の高温特性に 優れたボトル缶用アルミニウム合金板。
[14] 前記アルミニウム合金冷延板が、更に、 0. 005-0. 2%の Tiを単独で、又は 0. 00
01-0. 05%の Bと併せて含有する請求項 11〜13のいずれ力 1項に記載の高温特 性に優れたボトル缶用アルミニウム合金板。
PCT/JP2006/304381 2005-03-25 2006-03-07 高温特性に優れたボトル缶用アルミニウム合金板 WO2006103887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/909,665 US20090053099A1 (en) 2005-03-25 2006-03-07 Aluminum alloy sheet with excellent high-temperature property for bottle can
EP06715351A EP1870481A4 (en) 2005-03-25 2006-03-07 ALUMINUM ALLOY PLATE WITH EXCELLENT HIGH-TEMPERATURE BEHAVIOR FOR BOTTLE BOX
CA002602657A CA2602657A1 (en) 2005-03-25 2006-03-07 Aluminum alloy sheet for bottle cans superior in high-temperature properties

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-089371 2005-03-25
JP2005089369A JP4019082B2 (ja) 2005-03-25 2005-03-25 高温特性に優れたボトル缶用アルミニウム合金板
JP2005089371A JP4019084B2 (ja) 2005-03-25 2005-03-25 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP2005-089370 2005-03-25
JP2005-089369 2005-03-25
JP2005089370A JP4019083B2 (ja) 2005-03-25 2005-03-25 高温特性に優れたボトル缶用アルミニウム合金冷延板

Publications (1)

Publication Number Publication Date
WO2006103887A1 true WO2006103887A1 (ja) 2006-10-05

Family

ID=37053153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304381 WO2006103887A1 (ja) 2005-03-25 2006-03-07 高温特性に優れたボトル缶用アルミニウム合金板

Country Status (5)

Country Link
US (1) US20090053099A1 (ja)
EP (3) EP2281911A1 (ja)
KR (1) KR100953799B1 (ja)
CA (1) CA2602657A1 (ja)
WO (1) WO2006103887A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703776A (zh) * 2012-06-08 2012-10-03 中铝瑞闽铝板带有限公司 Led电视机用铝合金基材及其生产方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120052666A (ko) * 2010-11-16 2012-05-24 삼성전자주식회사 바텀 샤시, 그 제조 방법 및 이를 포함하는 액정 표시 장치
JP5675447B2 (ja) 2011-03-10 2015-02-25 株式会社神戸製鋼所 樹脂被覆缶胴用アルミニウム合金板およびその製造方法
JP2012188703A (ja) * 2011-03-10 2012-10-04 Kobe Steel Ltd 樹脂被覆缶胴用アルミニウム合金板およびその製造方法
JP2013163835A (ja) * 2012-02-09 2013-08-22 Kobe Steel Ltd Di缶胴用アルミニウム合金板
US20150337413A1 (en) * 2012-11-30 2015-11-26 Inha-Industry Partnership Institute High heat-dissipating high strength aluminum alloy
JP5848694B2 (ja) * 2012-12-27 2016-01-27 株式会社神戸製鋼所 Di缶胴用アルミニウム合金板
FR3005664B1 (fr) 2013-05-17 2016-05-27 Constellium France Tole en alliage d'alliage pour bouteille metallique ou boitier d'aerosol
FR3016538B1 (fr) 2014-01-20 2016-07-15 Constellium France Procede de fabrication d'une boite-boisson, bouteille metallique ou boitier d'aerosol en alliage d'aluminium
BR112016024729B1 (pt) 2014-04-30 2021-04-06 Alcoa Usa Corp. Método de fabricação de recipiente de alumínio
BR112017003259A2 (pt) 2014-09-12 2017-11-28 Novelis Inc liga de alumínio, garrafa, lata, método para produzir uma folha de metal, e, produto.
ES2797023T3 (es) * 2014-12-19 2020-12-01 Novelis Inc Aleación de aluminio adecuada para la producción a alta velocidad de botella de aluminio y proceso de fabricación de la misma
KR20170118846A (ko) * 2015-03-13 2017-10-25 노벨리스 인크. 고도로 조형된 포장 제품용 알루미늄 합금 및 이를 제조하는 방법
RU2702888C1 (ru) * 2016-01-14 2019-10-11 Арконик Инк. Способы получения кованых изделий и других обработанных изделий
JP2019518867A (ja) * 2016-05-02 2019-07-04 ノベリス・インコーポレイテッドNovelis Inc. 向上した成形性を有するアルミニウム合金及び関連方法
US11433441B2 (en) 2016-08-30 2022-09-06 Kaiser Aluminum Warrick, Llc Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet
JP6311206B2 (ja) * 2017-04-21 2018-04-18 三菱アルミニウム株式会社 表面特性に優れる飲料缶ボディ用アルミニウム合金板の検査方法
CN110079715A (zh) * 2018-06-22 2019-08-02 东莞旭光五金氧化制品有限公司 一种高强度铝镁合金材料及其生产工艺
CN111044598A (zh) * 2018-11-28 2020-04-21 东莞东阳光科研发有限公司 铝箔中合金化金属元素固溶析出量及固溶度的测定方法
JP7329966B2 (ja) * 2019-05-23 2023-08-21 株式会社Uacj アルミニウム合金材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310837A (ja) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The 耳率の低いキャンボディ用アルミニウム合金板の製造方法
JPH11140576A (ja) * 1997-11-07 1999-05-25 Furukawa Electric Co Ltd:The フランジ長さのばらつきの小さい缶胴体用アルミニウム合金板およびその製造方法
JP2003342657A (ja) * 2002-03-20 2003-12-03 Kobe Steel Ltd アルミニウム系熱間圧延板及びそれを用いた缶胴用板材
JP2004244701A (ja) * 2003-02-17 2004-09-02 Kobe Steel Ltd 缶胴用アルミニウム合金冷間圧延板およびその素材として用いられるアルミニウム合金熱間圧延板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565583A (ja) * 1991-09-06 1993-03-19 Kobe Steel Ltd ベークハード性及び成形性に優れた軽量缶用缶胴材とその製造方法
JP4646164B2 (ja) 1999-09-30 2011-03-09 大和製罐株式会社 ボトル型缶の製造方法
JP2003277865A (ja) 2002-03-26 2003-10-02 Kobe Steel Ltd Di缶用アルミニウム合金板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310837A (ja) * 1997-05-12 1998-11-24 Furukawa Electric Co Ltd:The 耳率の低いキャンボディ用アルミニウム合金板の製造方法
JPH11140576A (ja) * 1997-11-07 1999-05-25 Furukawa Electric Co Ltd:The フランジ長さのばらつきの小さい缶胴体用アルミニウム合金板およびその製造方法
JP2003342657A (ja) * 2002-03-20 2003-12-03 Kobe Steel Ltd アルミニウム系熱間圧延板及びそれを用いた缶胴用板材
JP2004244701A (ja) * 2003-02-17 2004-09-02 Kobe Steel Ltd 缶胴用アルミニウム合金冷間圧延板およびその素材として用いられるアルミニウム合金熱間圧延板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1870481A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703776A (zh) * 2012-06-08 2012-10-03 中铝瑞闽铝板带有限公司 Led电视机用铝合金基材及其生产方法

Also Published As

Publication number Publication date
EP2281910A1 (en) 2011-02-09
KR100953799B1 (ko) 2010-04-21
EP1870481A1 (en) 2007-12-26
EP1870481A4 (en) 2008-05-28
EP2281911A1 (en) 2011-02-09
CA2602657A1 (en) 2006-10-05
KR20070107148A (ko) 2007-11-06
US20090053099A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2006103887A1 (ja) 高温特性に優れたボトル缶用アルミニウム合金板
CN100489133C (zh) 高温特性优良的瓶罐用铝合金板
JP3913260B1 (ja) ネック部成形性に優れたボトル缶用アルミニウム合金冷延板
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019083B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
WO2012043582A1 (ja) ボトル缶用アルミニウム合金冷延板
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP6054658B2 (ja) 缶ボディ用アルミニウム合金板及びその製造方法
WO2013118611A1 (ja) Di缶胴用アルミニウム合金板
JP5568031B2 (ja) ボトル缶用アルミニウム合金冷延板
JP4205458B2 (ja) アルミニウム系熱間圧延板及びそれを用いた缶胴用板材
JP4791072B2 (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP4328242B2 (ja) リジングマーク特性に優れたアルミニウム合金板
JP4019084B2 (ja) 高温特性に優れたボトル缶用アルミニウム合金冷延板
JP3838504B2 (ja) パネル成形用アルミニウム合金板およびその製造方法
JP6912886B2 (ja) 飲料缶胴用アルミニウム合金板及びその製造方法
JP2016180175A (ja) 製缶後の光沢性に優れた樹脂被覆絞りしごき缶用アルミニウム合金板および絞りしごき缶用樹脂被覆アルミニウム合金板
JP2002322530A (ja) 容器用アルミニウム箔およびその製造方法
JP6227691B2 (ja) Di缶胴用アルミニウム合金板の製造方法
JP2006283112A (ja) 飲料缶胴用アルミニウム合金板およびその製造方法
JP7426243B2 (ja) ボトル缶胴用アルミニウム合金板
WO2022239694A1 (ja) リングプル型キャップ用のアルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680004448.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2602657

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077021791

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11909665

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006715351

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715351

Country of ref document: EP