WO2006098044A1 - ポリイミド長尺フィルム、ポリイミドフィルムロール及びこれらの製造方法 - Google Patents

ポリイミド長尺フィルム、ポリイミドフィルムロール及びこれらの製造方法 Download PDF

Info

Publication number
WO2006098044A1
WO2006098044A1 PCT/JP2005/012627 JP2005012627W WO2006098044A1 WO 2006098044 A1 WO2006098044 A1 WO 2006098044A1 JP 2005012627 W JP2005012627 W JP 2005012627W WO 2006098044 A1 WO2006098044 A1 WO 2006098044A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyimide
temperature
residue
roll
Prior art date
Application number
PCT/JP2005/012627
Other languages
English (en)
French (fr)
Inventor
Masayuki Tsutsumi
Hiroko Oyama
Satoshi Maeda
Keizo Kawahara
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2006098044A1 publication Critical patent/WO2006098044A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0271Mechanical force other than pressure, e.g. shearing or pulling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path

Definitions

  • the present invention relates to a polyimide long film, a polyimide film roll, and a method for producing the same, which suppresses a difference in physical properties between the front and back surfaces of the film and is excellent in heat resistance with little curling at high temperatures.
  • the present invention relates to a polyimide long film, a polyimide film roll useful as a base material for FPC (Flexible Printed Circuit Board), TAB tape, COF tape film, and a method for producing these films.
  • FPC Flexible Printed Circuit Board
  • Ceramics have been used in the past as materials for electronic components such as information communication equipment (broadcast equipment, mobile radio, mobile communication equipment, etc.), radar, and high-speed information processing equipment.
  • the base material made of ceramic has heat resistance, and can cope with the recent increase in the frequency band of information communication equipment (reaching the GHz band).
  • ceramics are not flexible and cannot be thinned, so the fields that can be used are limited.
  • a film made of polytetrafluoroethylene can handle high frequencies, but it cannot be made thin because of its low modulus of elasticity, its adhesion to metal conductors and resistors on the surface is poor, and linear expansion
  • the fact that the coefficient is large and the dimensional change due to temperature changes is not suitable and is not suitable for the production of circuits with fine wiring has become a problem, and the actual situation is that the fields that can be used are limited.
  • a polyimide long film 3 3 ', 4, 4' Proposed a long polyimide film consisting of polyimide containing nzophenone tetracarboxylic acid and p-phenylenediamine and p-diaminodiphenylether (4, 4, monooxydianiline) as the diamine component in the main chain.
  • Biphenyltetracarboxylic dianhydride or pyromellitic dianhydride is used as the aromatic tetracarboxylic acid component, and aromatic diamine component is used as the polymer.
  • the resulting polyimide long film has also been proposed (Japanese Patent Laid-Open No. 09-18887 3).
  • base materials made of conventionally known polyimide long films and polyimide benzoxazole films are inferior in terms of shape maintenance and stiffness compared to ceramic base materials, and electrons due to differences in physical properties in the film.
  • warpage and distortion were likely to occur during componentization.
  • measures were taken to reduce the apparent warping of the film by heat treatment under stretching.
  • processing at a high temperature is required especially when applied as an electronic component. Therefore, the problem that occurred when curling occurred due to the manifestation of the potential strain was not solved. Therefore, even if the film has little apparent warpage, a film that curls when processed causes a decrease in production yield, and it is often difficult to obtain high-quality electronic components.
  • the present invention is a polyimide long film excellent in flatness and homogeneity suitable as a base material for electronic components, and excellent in heat resistance with little warpage and strength even when subjected to high temperature processing,
  • the purpose of the present invention is to provide a polyimide film roll and a production method thereof.
  • the inventors of the present invention have found that a polyimide long film having a curl degree at 300 ° C. of 10% or less.
  • FPC Flexible Printed Circuit Board
  • TAB tape Thermal Printed Circuit Board
  • COF tape film with minimal warping and curling even when processed at high temperatures. It came.
  • this invention consists of the following structures.
  • a polyimide long film characterized in that the curl degree after heat treatment at 100 ° C. is 10% or less.
  • Polyimide long film according to the above 1 or 2 characterized by comprising a polyimide obtained by reacting an aromatic tetracarboxylic acid with an aromatic diamine.
  • Polyimide is an aromatic tetracarboxylic acid.
  • the polyimide long film as described in 3 above which has at least a pyromellitic acid residue as a residue and at least a diaminodiphenyl ether residue as an aromatic diamine residue.
  • the above 4 characterized in that it further has a bifunil tetracarboxylic acid residue as an aromatic tetracarboxylic acid residue, and further has a p-phenylenediamine residue as an aromatic diamine residue.
  • Polyimide long film as described.
  • Polyimide has at least a biphenyltetracarboxylic acid residue as an aromatic tetracarboxylic acid residue and at least a phenyldiamine residue as an aromatic diamine residue.
  • the described polyimide long film.
  • An organic solvent solution containing a polyimide precursor material is cast onto a support to form a coating film, and then the coating film is heated and dried to form a precursor film, and the precursor film is applied to the precursor film.
  • the imidization ratio IM A on one side (A side) of the precursor film and the other side (B side) is characterized in that the coating film is heated and dried so that the imidation ratio IM B of the side) satisfies the relationship of the following formula.
  • the polyimide long film obtained by the production method according to any one of the above 7 to 13,
  • a method for producing a polyimide film tool wherein the film is wound into a roll shape with the A-side facing in a ridge with a winding tension of 10 ON or more so that the radius of curvature is in the range of 30 to 60 Omm.
  • a polyimide film roll characterized by comprising:
  • the polyimide film roll according to any one of 16 to 19 above, comprising a long film of polyimide obtained by reacting an aromatic diamine and an aromatic tetracarboxylic acid.
  • Fig. 1 is a schematic diagram showing a method for measuring the curl degree of a polyimide long film.
  • A is a plan view
  • (b) is a section indicated by a_a in (a) before hot air treatment.
  • C is a sectional view indicated by aa in (a) after hot air treatment.
  • the hatching in (a) is performed to distinguish the region between the test piece 1 and the alumina ceramic plate 2.
  • the polyimide long film of the present invention is characterized in that the curl degree after heat treatment at 300 ° C. is 10% or less.
  • the degree of curl of the film at 300 ° C. means the degree of deformation in the thickness direction with respect to the surface direction of the film after performing a predetermined heat treatment. Specifically, as shown in FIG. , 5 OmmX 5 Omm test piece 1 was treated with hot air at 300 ° C for 10 minutes, then placed on a flat surface (alumina / ceramic plate 2) so that the test piece 1 was concave, and test piece 1
  • the average value of the distance from each vertex to the plane (h1, h2, h3, h4: unit mm) is the curl amount (mm), and the center ( It is a value expressed as a percentage (%) of the curl amount with respect to the distance (35.36 mm) to the diagonal of the test piece 1.
  • Specimen 1 has two points in the width direction (1/3 and 2/3 of the length) at a pitch that is 1/5 of the total length of the polyimide film roll or long film. A total of 10 points are sampled as the center point, and the measured value is the average value of 10 points. However, if there is not enough film to sample 10 points, sample at equal intervals as much as possible.
  • Curl degree (%) 1 0 0 X (curl amount) 3 5. 3 6
  • the curl degree after heat treatment at 300 ° C. is usually 10% or less, more preferably 8% or less, further preferably 6% or less, and particularly preferably 5% or less.
  • the content exceeds 10%
  • an electronic component based on the polyimide film according to the present invention is produced (especially, a process of soldering an electronic member to be processed at a high temperature)
  • a distortion inherent in the film appears.
  • curling may occur, causing problems such as floating of the position of the electronic member, and may cause problems in assembly with the housing and connector connection.
  • the polyimide long film of the present invention is preferably composed of a polyimide obtained by reacting an aromatic diamine with an aromatic tetracarboxylic acid.
  • Polyimides include those having at least pyromellitic acid residues as aromatic tetracarboxylic acid residues and at least diaminodiphenyl ether residues as aromatic diamine residues, or aromatic tetracarboxylic acid residues.
  • a residue having at least a biphenyltetracarboxylic acid residue as a carboxylic acid residue and a residue having at least a phenylenediamine residue as an aromatic diamine residue is preferable, and as a residue of an aromatic tetracarboxylic acid It may have a pyromellitic acid residue and a bibiphenyltetracarboxylic acid residue, and may have a diaminodiphenyl ether residue and a phenylenediamine residue as a residue of aromatic diamines.
  • the polyimide may have other aromatic tetracarboxylic acid residues and other aromatic diamine residues other than those described above.
  • the pyromellitic acid residue is a polyamic acid or a polyimide obtained by reacting a functional derivative such as pyromellitic acid, its anhydride or a halide thereof with an aromatic diamine.
  • a functional derivative such as pyromellitic acid, its anhydride or a halide thereof
  • the diaminodiphenyl ether residue is a group derived from diaminodiphenyl ether in a polyamic acid or a polyimide obtained by reacting diaminodiphenyl ether or various derivatives thereof with aromatic tetracarboxylic acids.
  • the biphenyltetracarboxylic acid residue is a polyamido acid obtained by reacting a functional derivative such as biphenyltetracarboxylic acid, an anhydride thereof or a halide thereof with an aromatic diamine. Or a group derived from biphenyltetracarboxylic acid in polyimide.
  • the phenylenediamine residue is a polyamidic acid obtained by reacting phenylenediamine or various derivatives thereof with an aromatic tetracarboxylic acid or a phenylenediamine-derived group in the polyimide.
  • other aromatic tetracarboxylic acid residues and other aromatic diamine residues also have the same meaning as described above.
  • reaction includes a ring-opening polyaddition reaction between an aromatic diamine and an aromatic tetraforce ruponic acid in a solvent for obtaining an aromatic polyamic acid solution, and from this aromatic polyamic acid solution. It includes an imidization reaction to obtain a polyimide precursor film (green film).
  • the polyimide long film is produced by forming a polyimide precursor film (green film) from an aromatic polyamic acid solution and then subjecting it to high-temperature heat treatment or dehydration condensation (imidization).
  • the imide rate IM A of polyimide precursor film one surface of the (green film) (A side), and the imide ratio of the other surface (B surface) IM B A polyimide precursor film (green film) that satisfies the relationship of the following formula is manufactured, and then the polyimide precursor film (green film) is converted into an imide.
  • the imidation ratio of the green film is measured by the following method. ⁇ Measurement method of imidization ratio>
  • the specific wavelength of 1 778 cm- 1 (near) is adopted, and the absorbance of the measurement surface at that wavelength is assumed to be I 1778 .
  • specific wavelength 1478 cm- 1 was used as a reference, the absorbance of the measured surface at the wavelength of the I 478.
  • the measurement position is an arbitrary point in the longitudinal direction of the film, and is 2 points in the width direction (1/3 and 2/3 points of the width), and the measured value is the average of the two points.
  • the aromatic polyamidic acid is composed of the above aromatic tetracarboxylic acids (collectively referred to as acids, anhydrides and functional derivatives, hereinafter also referred to as aromatic tetracarboxylic acids) and aromatic diamines (hereinafter also referred to as aromatic diamines).
  • aromatic tetracarboxylic acids collectively referred to as acids, anhydrides and functional derivatives, hereinafter also referred to as aromatic tetracarboxylic acids
  • aromatic diamines hereinafter also referred to as aromatic diamines
  • a substantially equimolar amount preferably at a polymerization temperature of 90 ° C. or less, for 1 minute to several days in an inert organic solvent.
  • the aromatic tetracarboxylic acid and the aromatic diamine may be added to the organic solvent as a mixture or as a solution, or the organic solvent may be added to the mixture.
  • the organic solvent dissolves part or all of the polymerization components, and preferably dissolves the copoly
  • Preferred solvents include N, N-dimethylformamide and N, N-dimethylacetamide.
  • Other useful solvents of this type are N, N-jetylformamide and N, N-jetylacetamide.
  • Other solvents that can be used include dimethyl sulfoxide, N-methyl-2-pyrrolidone, N-cyclohexyl-1-pyrrolidone, and the like. Solvents can be used alone, in combination with each other, or in combination with poor solvents such as benzene, benzonitrile, dioxane and the like.
  • the amount of the solvent used is preferably in the range of 75 to 90% by mass of the aromatic polyamic acid solution. This is because this concentration gives the optimum molecular weight.
  • the aromatic tetracarboxylic acid component and the aromatic diamine component need not be used in equimolar amounts. In order to adjust the molecular weight, the molar ratio of aromatic tetracarboxylic acid to aromatic diamine (aromatic tetracarboxylic acid / aromatic diamine) is in the range of 0.90 to 1.10.
  • the aromatic polyamic acid solution produced as described above contains 5 to 40% by mass, preferably 10 to 25% by mass of the polyamic acid polymer.
  • diaminodiphenyl ether and phenylenediamine are particularly preferable diamines.
  • diamino diphenyl ether, 4, 4, over diamino diphenyl ether (DADE), 3, 3, include one diamino diphenyl eh ether and 3, 4 5 over diamino diphenyl ether.
  • phenylenediamine include p-phenylenediamine and m-phenylenediamine.
  • p-phenylenediamine can be used.
  • phenol diamines can be used in addition to these diamino diphenyl ethers.
  • other aromatic diamines may be appropriately selected and used.
  • pyromellitic acids pyromellitic acid, its dianhydride (PMDA) and their lower alcohol esters
  • bifurtetracarboxylic acids biphenyltetracarboxylic acid
  • Carboxylic acid, its dianhydride (PMDA) and their lower alcohol esters are preferably used as essential components.
  • Biphenyltetracarboxylic acids include 3,3,4,4, -biphenyltetracarboxylic acid and 3,3,4,4'-biphenyltetracarboxylic acid anhydride.
  • biphenyltetracarboxylic acids can be used in addition to pyromellitic acid.
  • other aromatic tetracarboxylic acids may be appropriately selected and used.
  • pyromellitic acids preferably pyromellitic anhydride
  • Bifuenirutetora force carboxylic acids preferably 3, 3 ,, 4,4′-biphenyltetracarboxylic anhydride
  • other aromatic tetraforce rubonic acids with respect to the total aromatic tetracarboxylic acid are 0 to It is preferable to use 50 mol%.
  • biphenyl tetracarboxylic acids are 50 to 100 moles relative to wholly aromatic tetracarboxylic acids. / 0
  • Other aromatic tetracarboxylic acids may be used in an amount of 0 to 50 mol% based on the total aromatic tetracarponic acids. When these mole% ratios exceed the above range, the balance as a heat-resistant polyimide long film such as flexibility, rigidity, strength, elastic modulus water absorption, hygroscopic expansion coefficient, and elongation is lost, which is not preferable.
  • aromatic diamines other than the former two with respect to the total aromatic diamines.
  • phenylenediamines may be used in an amount of 50 to 100 mol% with respect to the wholly aromatic diamines
  • other aromatic diamines may be used in an amount of 0 to 50 mol% with respect to the wholly aromatic diamines. .
  • aromatic diamines and aromatic tetracarboxylic acids are not specifically limited, For example, it is shown below.
  • aromatic diamines other than the above include, for example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5-amino-2- (m —Aminophenyl) benzoxazole, 6-amino 1- (m-aminophenyl) benzoxazole, 4, 4'-bis (3-aminophenoxy) biphenyl, bis [4-1- (3-aminophenoxy) phenyl] ketone, bis [ 4-1- (3-Aminophenoxy) phenyl] sulfide, bis [4-1- (3-Aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-Aminophenoxy) phenyl] propane, 2,2-bis [4- (3-Aminophenoxy) phenyl] 1,1,1,3,3,3-Hexaphnoleo mouth pro.
  • a part or all of the hydrogen atoms on the aromatic ring in the aromatic diamine are a halogen atom, an alkyl group or alkoxyl group having 1 to 3 carbon atoms, a cyan group, or a part of hydrogen atoms of the alkyl group or alkoxyl group, or Alkyl group having 1 to 3 carbon atoms or alkoxy, all substituted with halogen atoms And aromatic diamines substituted with a ru group.
  • aromatic tetracarboxylic acids include bisphenol A bis (trimellitic acid monoester anhydride), 2,2-bis [41 ((3,4-dicarboxyphenoxy) pheny ⁇ ] propanoic anhydride 3, 4, 3, 4 'monobenzophenone tetracarboxylic dianhydride, 3, 3, 4, 4'-diphenylsulfone tetracarboxylic dianhydride, 1, 4, 5, 8— Naphthalenetetracarboxylic dianhydride, 2, 3, 6, 7-naphthalenetetracarboxylic dianhydride, 4, 4, mono-oxydiphthalenoic anhydride, 3, 3, 4, 4, 4, monodimethyldiphenylsilane tetracarboxylic Acid dianhydride, 1, 2, 3, 4, 4-furantetracarboxylic dianhydride, 4, 4, monobis (3,4-dicarboxyphenoxy) diphenylpropanoic acid dianhydride, 4, 4 Hexafluoroisopropylid
  • the method for producing the specific green film is not particularly limited. Examples of suitable examples include the following methods.
  • the direction of volatilization of the solvent is limited to the surface in contact with air. It tends to be smaller than the imidization rate of the contact surface.
  • the difference in the imidization ratio between the front and back sides of the green film is within an allowable range.
  • the imidization rate of green film increases when heat energy is added more than necessary while the amount of solvent is high and the degree of freedom of polyamic acid molecules is high.
  • the amount of heat applied, the volatilization rate of the solvent, the difference in the amount of solvent on the front and back sides, etc. are applied to the drying conditions when the polyamic acid solution is coated on the support and dried to obtain a self-supporting green film. It is necessary to control the drying conditions while managing. By this control, it is possible to obtain a green film in which the green film front and back surface imidization ratio and the difference are within a predetermined range.
  • the difference in the imidization ratio between the front and back surfaces of these green films is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less. Furthermore, it is preferable that these imidization ratios are controlled in the range of 1 to 15 on both sides.
  • the amount of residual solvent relative to the total mass of the dried green film is controlled to control the imidization ratio of the front and back surfaces.
  • a green film having a difference within a predetermined range can be obtained.
  • the amount of residual solvent with respect to the total mass of the green film after drying is preferably 25 to 50% by mass, more preferably 35 to 50% by mass. If the residual solvent amount is lower than 25% by mass, the imidization rate on one side of the green film becomes too high, making it difficult to obtain a green film with a small difference in imidization rate between the front and back surfaces. The green film tends to become brittle due to the force ⁇ molecular weight drop. On the other hand, if it exceeds 50% by mass, the self-supporting property is insufficient and the film is often difficult to transport.
  • drying devices such as hot air, hot nitrogen, far infrared rays, and high frequency induction heating can be used.
  • the following temperature control is required as drying conditions.
  • the constant rate drying is performed in order to keep the imidization rate range and the difference between the front and back surfaces of the green film within the specified range. It is preferable to operate so that the solvent is volatilized uniformly from the entire coating film by lengthening the conditions. Constant rate drying is a drying region where the coating film surface is a free liquid surface and the volatilization of the solvent is governed by mass transfer in the outside world. Under drying conditions where the surface of the coating is solidified and the rate of solvent diffusion within the coating is rate-limiting, differences in physical properties between the front and back surfaces are likely to occur. Such a preferable dry state varies depending on the type and thickness of the support.
  • the atmospheric temperature above the coating film (green film) on the support (the coating film side) is usually Dry the coating under conditions where the ambient temperature on the opposite side (opposite side of the coating) is 1 to 55 ° C higher.
  • the direction from the coating film to the support is defined as the downward direction, and vice versa. This description in the vertical direction is intended to concisely express the position of the area of interest.
  • the “atmosphere temperature on the paint film side” is the temperature in the region (usually the space) from directly above the paint film to the top 3 O mm above the paint film surface, and 5 to 3 O mm upward from the paint film.
  • “Atmosphere temperature on the opposite side” is the temperature in the region (often including the support and the lower part of the support) from directly below the coating (support part) to the lower 30 mm of the coating. By measuring the temperature at a position 5 to 30 mm below the coating film with a thermocouple, the ambient temperature on the opposite side can be determined.
  • the ambient temperature on the opposite side is higher by 1 to 55 ° C than the ambient temperature on the coating surface side, a high-quality film can be obtained even if the drying temperature itself is increased and the drying speed of the coating film is increased. be able to.
  • the atmospheric temperature on the opposite side is lower than the atmospheric temperature on the coating film side, or if the difference between the atmospheric temperature on the coating film side and the atmospheric temperature on the opposite side is less than 1 ° C, the vicinity of the coating film surface is first. After drying into a film, it becomes like a “lid”, and then there is a concern that the evaporation of the solvent to be evaporated from the vicinity of the support is hindered and the internal structure of the film is distorted.
  • the ambient temperature on the opposite side is higher than the ambient temperature on the coating film side and the temperature difference is greater than 55 ° C.
  • the atmospheric temperature on the opposite side of the coating surface is preferably 5 to 55 ° C higher, more preferably 10 to 50 ° C higher, more preferably 1 Increase by 5 to 4 5 ° C.
  • the atmospheric temperature on the coating surface side is preferably 80 to 105 ° C, and more preferably 90 to L05 ° C.
  • the ambient temperature on the opposite surface side is preferably 85 to 105 ° C, more preferably 100 to 105 ° C.
  • the setting of the atmospheric temperature as described above may be performed throughout the entire process of drying the coating film, or may be performed in a part of the process of drying the coating film.
  • the effective drying length is preferably 10 to 100%, more preferably 15 to 100%. What is necessary is just to set atmospheric temperature.
  • the total drying time is 10 to 90 minutes, preferably 15 to 45 minutes.
  • the green film that has undergone the drying step is then subjected to an imidization step, but may be either inline or offline.
  • the green film When off-line is adopted, the green film is wound up once. At that time, curling can be reduced by winding the green film around the tubular body so that the Darin film is inside (support is outside).
  • the “precursor film (green film)” is a film having a residual solvent amount of about 50% by mass or less, although it depends on the thickness and molecular weight. Specifically, it is a coating on a support.
  • a film obtained by drying a membrane refers to a film after being peeled off from a support until it is heated to 50 ° C or higher.
  • the peeling atmosphere is already 50 ° C or higher, it means the film from immediately after peeling until it is heated to the peeling atmosphere temperature + 30 ° C or higher.
  • the green film obtained by such a method with the imidization ratio of the front and back surfaces and the difference thereof controlled within a predetermined range is imidized under predetermined conditions, so that the 300 ° C. of the present invention can be obtained.
  • Polyimide long film with low curl after heat treatment can be obtained.
  • a conventionally known imidation reaction can be appropriately used.
  • the imidation reaction proceeds by subjecting it to a heat treatment (so-called thermal ring-closing method), or a ring-closing catalyst and a dehydration are added to the polyamic acid solution.
  • the chemical ring closure method can be exemplified in which an imidation reaction is performed by the action of the ring closure catalyst and the dehydrating agent in the presence of the above-mentioned ring closing catalyst.
  • a thermal ring closure method is preferred.
  • the heating maximum temperature of the thermal ring closure method is exemplified by 100 to 500 ° C, and preferably 200 to 4820 ° C. If the maximum heating temperature is lower than this range, it will be difficult to close the ring sufficiently, and if it is higher than this range, deterioration will progress and the film will become brittle.
  • a more preferred embodiment is a two-stage heat treatment in which treatment is carried out at 150 to 250 ° C. for 3 to 20 minutes and then treated at 35 to 50 ° C. for 3 to 20 minutes.
  • the condition for partially proceeding with the imidization reaction is preferably a heat treatment at 100 to 200 ° C. for 3 to 20 minutes, and the condition for allowing the imidization reaction to be carried out completely. Is preferably a heat treatment for 3 to 20 minutes at 200 to 400 ° C.
  • the drying process and imidization process described above are performed by holding both ends of the film with pin tenter clips. At that time, in order to maintain the uniformity of the film, it is desirable to make the tension in the width direction and the longitudinal direction of the film as uniform as possible.
  • both ends of the film can be pressed with a brush, and the pin can pierce the film uniformly.
  • the brush is preferably a fibrous material that is rigid and heat resistant, and a high-strength, high-modulus monofilament can be used.
  • the timing for adding the ring-closing catalyst to the polyamic acid solution is not particularly limited, and it may be added in advance before the polymerization reaction for obtaining the polyamic acid.
  • Specific examples of the ring closure catalyst include aliphatic tertiary amines such as trimethylamine and triethylamine, and heterocyclic tertiary amines such as isoquinoline, pyridine, and betapicoline. At least one amine selected from tertiary amines is preferred.
  • the amount of the ring-closing catalyst used per mole of polyamic acid is not particularly limited, but is preferably 0.5 to 8 moles.
  • the timing of adding the dehydrating agent to the polyamic acid solution is not particularly limited, and may be added in advance before the polymerization reaction for obtaining the polyamic acid.
  • Specific examples of the dehydrating agent include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride, butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride. Among them, acetic anhydride, Benzoic anhydride or mixtures thereof are preferred.
  • the amount of dehydrating agent used per mole of polyamic acid is not particularly limited, but is preferably 0.1 to 4 moles. When using a dehydrating agent, such as acetylacetone
  • a lagging agent may be used in combination.
  • the thickness of the polyimide long film is not particularly limited, it is usually 1 to 150 ⁇ , preferably 3 to 50 ⁇ in consideration of the use for a printed wiring board base substrate described later. This thickness can be easily controlled by the coating amount when the polyamic acid solution is applied to the support and the concentration of the polyamic acid solution.
  • the polyimide long film obtained by the production method of the present invention preferably has a higher absorption ratio than the B surface, and is wound around a tubular object with the A surface in the cage to further reduce the degree of curling.
  • a film roll can be obtained.
  • the radius of curvature is preferably in the range of 3 Omm to 60 Omm. If the radius of curvature exceeds this range, the curd degree of the polyimide film may increase.
  • the above-mentioned absorption ratio means the degree of orientation of polyimide molecules with respect to the film surface from the film surface (or back surface, hereinafter the same) to a depth of about 3 / zm.
  • polarization ATR measurement with FT-IR Measurement equipment: Digi 1 ab, FT S-6 OA / 8 96, etc.
  • IRE is a diamond
  • incident angle is 45 °
  • resolution is 4 c-number of integrations 1 28 at peak of 1480 cm- 1 when measured on the film surface (aromatic ring vibration)
  • the absorption coefficient in each direction (Kx, 1 ⁇ 7 and 1: 2) is obtained and defined by the following equation. (However, Kappakai the MD direction, Ky is the TD direction, kappa Zeta show respectively an absorption coefficient in the thickness direction.) '
  • the measured value shall be two points in the width direction at any point on the film (1/3 and 2/3 of the width), and the measured value shall be the average of the two points.
  • the surface having the larger absorption ratio is the A surface and the surface having the smaller absorption ratio is the B surface.
  • the winding tension is 10 ON or more, preferably 15 ON or more and 50 ON or less.
  • the radius of curvature is relatively large, 30 to 60 O mm, preferably 80 to 30 O mm, and the winding tension is 10 ON or more. Can be adopted. .
  • the larger the film radius of curvature the higher the winding tension. It is desirable to increase it (reducing the winding tension on the winding core side and increasing the winding tension on the winding side).
  • Polyimide long films are heat treated during the green film drying and imidization processes. At that time, if there are processing spots in the width direction of the film, there will be a difference in physical properties in the width direction of the film, which will cause curling.
  • the present invention it is desirable to control the unevenness in the width direction of the ambient temperature in the dryer within the central temperature within ⁇ 5 ° C, preferably within ⁇ 3 ° C, and more preferably within ⁇ 2 ° C.
  • the ambient temperature is 5 mn from the surface of the support!
  • the distance between the detection edge in the width direction is preferably about 5 cm to 10 cm.
  • a known thermocouple such as alumel chromel may be used.
  • the ambient temperature on the opposite side can be set 5 to 55 ° C. higher than the ambient temperature on the coated surface side. In this case as well, it is important to keep the temperature within ⁇ 5 ° C from the center temperature on each side of the support.
  • the center temperature is the arithmetic average value of the Celsius temperature measured at each detection end, and the temperature measured at each detection end in the width direction perpendicular to the direction of travel of the support is within ⁇ 5 ° C. What is present is a range calculated based on the numerical value of the central value.
  • the polyimide long film produced under such conditions has excellent flatness at an extremely high temperature with a curl degree measured under the above conditions of 10% or less.
  • the thickness of the polyimide long film of the present invention is not particularly limited, but it is usually 1 to 150 Atm, preferably 0.3 to 50 m in consideration of use as a base material for an electronic substrate. This thickness can be easily controlled by the amount of the polyamic acid solution applied to the support and the concentration of the polyamic acid solution.
  • the polyimide long film of the present invention it is preferable to improve the slipperiness of the film by imparting fine irregularities to the film surface, for example, by adding a lubricant to the polyimide.
  • inorganic or organic fine particles having an average particle diameter of about 0.03 to 3 ⁇ can be used.
  • specific examples include titanium oxide, alumina, silica, calcium carbonate, calcium phosphate, calcium hydrogen phosphate, pyrophosphoric acid.
  • examples include calcium, magnesium oxide, calcium oxide, and clay minerals.
  • the polyimide long film of the present invention is usually an unstretched film, but may be stretched uniaxially or biaxially.
  • the non-stretched film refers to a film obtained without intentionally applying a mechanical external force in the surface expansion direction of the film by tenter stretching, tool stretching, inflation stretching, or the like.
  • the roll obtained by rolling up the polyimide long film according to the present invention preferably has a winding tension of 10 ON or more and a curvature radius of 30 to 60 Omm.
  • the polyimide long film obtained by the above method is less warped and distorted and has excellent flatness. In the present invention, these characteristics are homogeneous in the longitudinal direction of the film. It is a thing. That is, it is necessary that the coefficient of variation (standard deviation X 100 / average value) (CV%) of the linear expansion coefficient of the film on the outer side and the core side is 25% or less. Such a fluctuation rate is preferably 20% or less, more preferably 15% or less.
  • the long film means a film having a length of 30 m or more, preferably 10 Om or more.
  • the method for measuring the linear expansion coefficient is as follows.
  • the polyimide long film For the polyimide long film to be measured, measure the expansion / contraction ratio in the MD direction and TD direction under the following conditions. For example, 30 ° C to 45 ° C, 45 ° (: to 60 ° C, 15 ° Stretch rate at intervals of C Measure the Z temperature and perform this measurement up to 300 ° C.
  • Specimen sampling is performed at 2 points in the width direction of the polyimide film roll (1Z3 and 2/3 of the length), with a total pitch of 1/5 of the total length in the longitudinal direction. .
  • the film warps in the winding direction when unwound, so-called whistling occurs, and the warp is different between the core side and the outer side film. It is.
  • the roll of the polyimide long film according to the present invention has a very small physical property difference between the winding core side and the winding outer side, and the difference between the maximum value and the minimum value of the warp degree of the film at each part is 5 Excellent homogeneity such as% or less.
  • the warp degree (apparent warp degree) of the film is specifically, as shown in FIG. 1, a polyimide long film in which a 5 Omm ⁇ 5 Omm test piece is unwound from a roll.
  • Warpage (mm) (h 1 + h 2 + h 3 + h 4) / 4
  • a printed wiring board base substrate will be described as an example using the polyimide long film of the present invention.
  • the “base substrate for a printed wiring board” is a substantially flat substrate having a structure in which a metal layer is laminated on at least one surface of an insulating plate.
  • the metal layer to be laminated may be a metal layer for a circuit intended to form a circuit by processing such as etching, or heat radiation etc. together with an insulating plate without any post-processing. It may be a metal layer used for the purpose.
  • base substrate for printed wiring board examples include FPC, TAB carrier tape, COF base material, CSP base material, etc. It is preferable because it can be utilized.
  • the metal laminated on at least one side of the polyimide long film is not particularly limited, and is preferably copper, aluminum, stainless steel or the like.
  • the lamination means is not particularly limited, and the following means are exemplified.
  • a means of attaching a metal plate to a polyimide film using an adhesive (2) A means for forming a metal layer on a polyimide long film using vacuum coating techniques such as vapor deposition, sputtering and ion plating.
  • a metal layer can be laminated on at least one side of a polyimide long film by using these means alone or in combination.
  • the base metal may be a simple substance or an alloy such as Cu, Ni, Cr, Mo, Zn, Ti, Ag, Au, and Fe.
  • a good conductor such as Cu may be further deposited on the base metal as a conductive layer by sputtering.
  • the thickness of the underlying layer and the conductive layer is preferably 100 to 500 A.
  • Cu is preferable as the metal for electroplating.
  • the thickness of the metal layer is not particularly limited, but when the metal layer is used for a circuit (conductive), the thickness of the metal layer is preferably 1 to 1 75 ⁇ , more preferably Three
  • the thickness of the metal layer is preferably 50 to 300 / xm.
  • the surface roughness of the surface of the metal layer bonded to the polyimide is not particularly limited, but the centerline average roughness (hereinafter referred to as Ra) in JISB 0 60 1 (Definition and display of surface roughness). And the ten-point average roughness (hereinafter referred to as R z), which is less than . ⁇ ⁇ ⁇ for Ra and less than 1.0 m for R z The effect of improving the adhesion with the metal layer is large and preferable.
  • An inorganic coating such as a simple metal or a metal oxide may be formed on the surface of the metal layer used in the present invention. Also, the surface of the metal layer is treated with a coupling agent (aminosilane, epoxysilane, etc.), sand plast treatment, and hole treatment.
  • a coupling agent aminosilane, epoxysilane, etc.
  • sand plast treatment sand plast treatment
  • a polyimide long film may be subjected to hounging treatment, corona treatment, plasma treatment, etching treatment, and the like.
  • the polyimide long film of the present invention is excellent in flatness and homogeneity. Even when the polyimide long film is processed into, for example, a printed wiring board, warping and distortion are caused. There will be no.
  • display drivers, high-speed computing devices, graphic controllers, and high-capacity memory devices that require warping, small deformation, and particularly high-density fine wiring It is useful as a substrate for mounting, etc. Further, it is useful as a film for sputtering deposition as a film exposed to high temperature.
  • the measurement was performed using a micrometer (Millitron (registered trademark) 1 2 4 5 D, manufactured by Finelfu).
  • TMHQ P-phenylenediamine (trimellitic acid monoester anhydride)
  • OD A 4,4'-diaminodiphenyl etherol
  • a A Acetic anhydride
  • Abbreviation GF stands for polyimide precursor film (green film)
  • abbreviation IF stands for polyimide film
  • abbreviation IM A stands for A-side imidization rate
  • IM B stands for B-side imidization rate. Show.
  • a container equipped with a nitrogen inlet tube, a thermometer, and a stirring rod was purged with nitrogen, and then ODA was added.
  • DMAC is added and completely dissolved
  • PMDA is added
  • ODA and PMDA as monomers are polymerized in DMAC at a molar ratio of 1 1 so that the monomer charge concentration is 15% by mass.
  • the mixture was stirred at 25 ° C. for 5 hours to obtain a brown viscous polyamic acid solution.
  • 15 parts by mass of AA and 3 parts by mass of IQ are mixed with 100 parts by mass of the resulting polyamic acid solution, and this is mixed with a polyester film (Cosmo Shine) with a thickness of 1 88 micron and a width of 80 Omm.
  • a 4 100 (manufactured by Toyobo Co., Ltd.) coated on the non-lubricating surface to a width of 74 Omm (squeegee / belt gap is 430 ⁇ ) and has four drying zones And dried
  • Each zone has three rows of slit-shaped air outlets above and below the film, and the hot air temperature between each air outlet can be controlled within a range of plus or minus 1.5 ° C, and the air volume difference can be controlled within a range of plus or minus 3%. It is set as follows. In the width direction, the width is controlled to be within ⁇ 1 ° C for a width equivalent to 1.2 times the effective width of the film.
  • the temperature 30 mm above and below the film was set as follows. Leveling zone Temperature 25 ° C, no air flow
  • the air volume is the sum of the air volumes from the outlets for each zone.
  • the surface of the coating reached the dry touch shortly after entering the fourth zone, and since then, the drying has progressed in a decelerating manner.
  • the lower temperature and air volume are set higher than the upper one to promote the diffusion of the solvent in the coating film.
  • the polyamic acid film that became self-supporting after drying was peeled from the polyester film to obtain a green film.
  • the temperature of the peeling atmosphere was 27 ° C.
  • Table 1 shows the thickness of the obtained green film, I IM A — IM B I and the residual solvent ratio obtained from IM A and IM B measured values.
  • the obtained green film is passed through a continuous heat treatment furnace in which nitrogen is replaced while holding both ends with a pin tenter, and the first stage is heated at 180 ° C for 5 minutes and at a heating rate of 4 ° 0 seconds. Then, as the second stage, the imidization reaction was advanced by applying two stages of heating at 400 ° C for 5 minutes. Then, the polyimide film which shows brown was obtained by cooling to room temperature in 5 minutes.
  • Table 1 shows the thickness and curl degree of the resulting polyimide film.
  • the obtained polyimide film was rolled up into a film roll.
  • Table 1 shows the winding conditions (winding tension, winding method and roll radius of curvature). Table 1 shows the rate of change of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the wound side and core side of the resulting mouthpiece.
  • a container equipped with a nitrogen inlet tube, a thermometer, and a stirring rod was purged with nitrogen, and then ODA was added.
  • PMDA is added and ODA and PMDA as monomers are polymerized in DMAC at a molar ratio of 1/1, resulting in a monomer concentration of 15% by mass.
  • a brown viscous polyamidic acid solution was obtained.
  • the obtained polyamic acid solution was coated on a stainless belt (the gap between the squeegee / belt was 450 / zm) and dried in the same manner as in Example 1.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain a green film with a thickness of 5 1.6 / im. Measure IM A and IM B of the obtained green film. IM A — IM B
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, and the first stage was heated at 180 ° C for 3 minutes, the heating rate was 4 seconds, and the second stage was heated at 460 ° C. Two-stage heating was performed under the condition of 5 minutes to proceed with the imidization reaction. Thereafter, the mixture was cooled to room temperature in 5 minutes to obtain a 25.2 ⁇ thick polyimide film having a brown color.
  • the measured curl degree of this polyimide film was 2.6%. Further, the obtained polyimide film was rolled up under the conditions described in Table 1 to obtain a film roll. Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the heel outer side and core side of the obtained mouth. (Examples 3 and 4)
  • PMDAZB PD AZODAZP—PDA is 1 / 0.5 / 1 as PMDAZB PD AZODAZP—PDA is used as the aromatic tetracarboxylic dianhydride component, using PMDA and B PDA as the diamine component, and OD A and P—PDA.
  • Polymerization was carried out in DMF at a molar ratio of /0.5, and a DMF solution of polyamic acid was prepared so that the monomer charge concentration was 16% by mass.
  • the obtained polyamic acid solution was coated on a stainless steel belt (the gap between the squeegee Z belt was 400 / zm) and dried in the same manner as in Example 1.
  • the polyamic acid film that became self-supporting after drying was peeled from the stainless steel belt to obtain green films with thicknesses of 51.4 / zm (Example 3) and 53.3 m (Example 4), respectively. It was.
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, the first stage was 180 for 3 minutes, the temperature was raised at a rate of 4 ° CZ seconds, and the second stage was 2 at 460 ° C.
  • the imidation reaction was allowed to proceed by two-stage heating under the conditions of minutes. Thereafter, the mixture was cooled to room temperature in 5 minutes to obtain a polyimide film having a brown color of 25 ⁇ .
  • the degree of curl of this polyimide film was measured, it was 4.2 in Example 3 and 9.2 in Example 4.
  • Table 1 shows the maximum and minimum values of the coefficient of linear expansion coefficient and the degree of warpage of the film on the roll outer side and core side of the roll obtained.
  • B PDA, PMDA and TMHQ are used as aromatic tetracarboxylic dianhydride components
  • ODA and P-PDA are used as diamine components
  • five types of monomers are PMD A / B PDA TMHQZODA NO P-PDA.
  • Polymerization was carried out in DMF at a molar ratio of 3/0. 2/1 / 0.5 to prepare a DMF solution of polyamidic acid with a monomer charge concentration of 15 mass ° / 0 .
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, the first stage was 180 for 3 minutes, the temperature was raised at a rate of 4 ° C / sec, and the second stage was 460 ° C. Two-stage heating was performed under conditions of 2 minutes to proceed with the imidization reaction. Thereafter, the mixture was cooled to room temperature in 5 minutes to obtain a 32.5 ⁇ polyiminophenol having a brown color. The measured degree of curl of this polyimide film was 4.8%.
  • Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warpage of the film on the outer side and the core side of the obtained roll.
  • PMDA and B PDA are used as aromatic tetracarboxylic dianhydride components, and four types of monomers, ODA and P—PDA, are used as the diamine components.
  • the obtained polyamic acid solution was coated on a stainless steel belt (the gap between the squeegee belts was 430 ⁇ ), and was dried with the same temperature setting and air volume setting in the same drying apparatus as in Example 1.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain a green film having a thickness of 35.6 ⁇ m.
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, and the first stage was heated at 180 ° C for 3 minutes and the heating rate was 4 ° C / sec.
  • the imidation reaction was allowed to proceed by two-stage heating at C for 2 minutes. Then in 5 minutes By cooling to room temperature, a 19.7 ⁇ thick polyimide film having a brown color was obtained.
  • the curl degree of this polyimide film was measured and found to be 4.5%.
  • Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the heel side and core side of the obtained roll.
  • Example 1 100 parts by mass of the polyamic acid solution obtained in Example 1 was mixed at a ratio of 15 parts by mass of soot and 3 parts by mass of IQ, and this was coated on a stainless steel belt (between squeegino belts). The gap was 43 ⁇ ), and drying was performed using the same drying apparatus as in the examples.
  • the drying conditions (temperature was 3 Omm above and below the film) were as follows.
  • Zone 3 1 plate / span 1 20 ° C on both top and bottom
  • the length of each zone is the same, and the total drying time is 9 minutes.
  • the air volume is the sum of the air volumes from the outlets for each zone.
  • the surface of the coating film is dry to the touch at the center of the second zone.
  • Each of the obtained green films was passed through a continuous heat treatment furnace purged with nitrogen.
  • the first stage was heated at 180 ° C for 3 minutes, the heating rate was 4 ° C for Z seconds, and the second stage was heated for 2 minutes at 400 ° C for 2 minutes. Made progress. Then, each polyimide film which exhibits brown was obtained by cooling to room temperature in 5 minutes.
  • Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the heel side and core side of the obtained roll.
  • the polyamic acid solution obtained in Example 3 was mixed at a ratio of 17 parts by weight of AA and 4 parts by weight of IQ with respect to 100 parts by weight of the polyamic acid solution, and this was coated on a stainless steel belt (between the squeegee Z belt). The gap was 4 30; zm). Drying and heat treatment were performed in the same manner as in Comparative Examples 2, 3, and 7 to obtain each polyimide film and film roll having a brown color.
  • Example 2 The polyamidic acid solution obtained in Example 2 was coated on a stainless steel belt (the squeegee / belt gap was 45 5 ⁇ ), and dried by variously changing the drying method.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain three types of green films having the thicknesses shown in Table 1, Comparative Example 4, Comparative Example 5, and Comparative Example 6.
  • each green film obtained was passed through a continuous heat treatment furnace purged with nitrogen, and the first stage was heated at 180 ° C. for 3 minutes and the heating rate was 4 ° C. Z seconds to form the second stage 4 2 at 60 ° C
  • the imidation reaction was allowed to proceed by applying two stages of heating under the conditions of minutes. Then, each polyimide film which exhibits brown was obtained by cooling to room temperature in 5 minutes. When the curl degree of each polyimide film was measured, it was 10.2% in Comparative Example 4, 11.2% in Comparative Example 5, and 14.5% in Comparative Example 6.
  • Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the winding side and core side of the obtained mouthpiece.
  • a container equipped with a nitrogen inlet tube, a thermometer, and a stirring rod was purged with nitrogen, and then ODA was added.
  • DMAC is added and completely dissolved
  • PMDA is added
  • ODA and PMDA as monomers are polymerized in DMAC at a molar ratio of 1/1, so that the monomer charge concentration is 15% by mass.
  • the mixture was stirred at 25 ° C for 5 hours to obtain a brown viscous polyamidic acid solution.
  • the obtained polyamic acid solution was coated on a stainless belt (the gap between the squeegee Z belt was 450 / im) and dried under the following drying conditions (the temperature was 3 Omm above and below the film).
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain a green film having a thickness of 54.5 m.
  • the IM A and IM B of the obtained green film were measured and I 11 ⁇ -11 ⁇
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, the first stage was 180 for 3 minutes, the temperature was raised at a rate of 4 ° C / sec, and the second stage was 460 ° C. Two-stage heating was performed under the condition of 5 minutes to proceed with the imidization reaction. Thereafter, the mixture was cooled to room temperature in 5 minutes, to obtain a polyimidinophenol having a brown color of 30.4 ⁇ .
  • the imidization process was stretched 1.8 times in the TD direction, the first stage was 180 ° C for 3 minutes, then the temperature was raised at a rate of 5 ° CZ seconds, and the second stage was 1 at 430 ° C.
  • a polyimide film was obtained under the same conditions as in Example 1 except that the imidization reaction was advanced by applying two-stage heating under the conditions of minutes.
  • the curl degree of this polyimide film was measured and found to be 10.9%. Further, the obtained polyimide film was rolled up under the conditions shown in Table 1 to form a film mouth. Table 1 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the heel side and the core side of the obtained mouthpiece.
  • a test single-sided copper-clad multilayer circuit board was prototyped using the polyimide films obtained in each Example and Comparative Example.
  • Table 1 shows the evaluation results. ⁇ in the table indicates that the electronic parts are soldered in place.
  • indicates that the electronic parts were soldered at almost the specified position (checked by image processing), indicating that there was no problem in the energization test.
  • indicates that a position shift was observed for a small electronic member, and that an abnormality was observed even in the energization test.
  • X indicates a position shift for a small electronic member, and a position difference from the substrate for a large electronic member. A float was observed, indicating that an abnormality was also observed in the energization test.
  • a vessel equipped with a nitrogen inlet tube, a thermometer, and a stirring rod was purged with nitrogen, and P—P D A was then added.
  • DMA C is added and completely dissolved
  • BPDA is added
  • P-PDA and BPDA as monomers are polymerized in DCM at a molar ratio of 1 to 1, and the monomer charge concentration is 15%.
  • the mixture was stirred at 25 ° C. for 5 hours, and a brown viscous polyamic acid solution was obtained.
  • the resulting polyamidic acid solution was mixed at a ratio of 15 parts by weight of AA and 3 parts by weight of IQ to 100 parts by weight of this, and this was mixed with a polyester having a thickness of 18 8 microns and a width of 80 O mm.
  • Norefinolem Cosmo Shine A 4 1 0 0 (Toyobo Co., Ltd.) coated on the surface not containing lubricant to a width of 7 4 O mm (gap between squeegee / belt is 4 3 0 / zm) and passed through a continuous drying oven with four drying zones.
  • Each zone has three rows of slit-shaped air outlets above and below the film, and the hot air temperature between each air outlet can be controlled within ⁇ 1.5 ° C, and the air flow difference can be controlled within the range of ⁇ 3%. It is set as follows. In the width direction, the width is controlled to be within ⁇ 1 ° C for a width equivalent to 1.2 times the effective width of the film.
  • the temperature 30 mm above and below the film was set as follows.
  • Zone 1 Upper temperature 1 0 5 ° C, Lower temperature 1 0 5 ° C Air volume 20m 3 Z min.
  • the air volume is the sum of the air volumes from the outlets for each zone.
  • the surface of the coating reached the dry touch shortly after entering the fourth zone, and since then, the drying has progressed in a decelerating manner.
  • the lower temperature and air volume are set higher than the upper one to promote the diffusion of the solvent in the coating film.
  • thermocouple supported at a position of 1 Omm above the film at the part directly below the air outlet in the center of each zone, and it was confirmed that it was within ⁇ 1.5 ° C. Yes.
  • the polyamic acid film that became self-supporting after drying was peeled from the polyester film to obtain a green film.
  • the peeling atmosphere temperature was 27 ° C.
  • the obtained green film thickness, IM A, the I IM A _ IM B U residual solvent ratio obtained from the IM B measurements are shown in Table 2.
  • the obtained green film is passed through a continuous heat treatment furnace in which nitrogen is replaced while holding both ends with a pin tenter.
  • the first stage is 180 ° C for 5 minutes, and then the heating rate is 4 ° CZ seconds.
  • the temperature was raised and the second stage was heated at 400 ° C for 5 minutes under the condition of 5 minutes to proceed with the imidization reaction.
  • the polyimide film which exhibits brown color was obtained by cooling to room temperature in 5 minutes.
  • the obtained polyimide film was rolled up into a film roll.
  • Table 2 shows the winding conditions (winding tension, winding method and roll radius of curvature). Table 2 shows the rate of change of the linear expansion coefficient and the maximum and minimum values of the warpage of the film on the heel side and core side of the roll obtained.
  • a vessel equipped with a nitrogen inlet tube, a thermometer, and a stirring rod was purged with nitrogen, and P—P D A was then added.
  • DMA C is added and completely dissolved
  • BPDA is added
  • P-PDA and BPDA as monomers are polymerized in DCM at a molar ratio of 1/1, and the monomer concentration is 15
  • the mixture was stirred at 25 ° C. for 5 hours, and a brown viscous polyamic acid solution was obtained.
  • the obtained polyamic acid solution was coated on stainless steel benoret (the gap between squeegee Z benoret was 45 / im) and dried in the same manner as in Example 8.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain a green film.
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, and the temperature was raised at 180 ° C. for 3 minutes as the first stage and then at a heating rate of 4 ° C./second. Two-stage heating was performed at 60 ° C for 5 minutes to proceed with the imidization reaction. Then, the polyimide film which exhibits brown was obtained by cooling to room temperature in 5 minutes. Table 2 shows the thickness and curl degree of the obtained polyimide film.
  • Table 2 shows the winding conditions (winding tension, winding method and roll curvature radius). Table 2 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the outer side and the core side of the roll obtained.
  • the length of each zone is the same, and the total drying time is 9 minutes.
  • the air volume is the sum of the air volumes from the outlets for each zone.
  • the polyamic acid film which became self-supporting after drying was peeled off from the stainless steel belt, and three types of green films having the thicknesses shown in Table 2, Comparative Example 9, Comparative Example 10 and Comparative Example 11 were obtained.
  • Each green film obtained was passed through a continuous heat treatment furnace purged with nitrogen, and the first stage was heated at 180 ° C for 3 minutes, and then the temperature was raised at a rate of temperature rise of 4 ° CZ seconds. Two stages of heating were applied at C for 2 minutes to allow the imidation reaction to proceed. Thereafter, each polyimide film exhibiting a brown color was obtained by cooling to room temperature in 5 minutes. Table 2 shows the thickness and curl degree of the obtained polyimide film.
  • the obtained polyimide film was rolled up into a film roll.
  • Rolling conditions winding tension, winding method and roll curvature radius
  • Table 2 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the wound side and core side of the obtained mouthpiece.
  • the polyamic acid solution obtained in Example 9 was coated on a stainless steel belt (the gap between the squeegee and the belt was 4500 zm), and dried by variously changing the drying method.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt, and three types of green films with the thicknesses shown in Table 2, Comparative Example 1 2, Comparative Example 1 3 and Comparative Example 14 were obtained. .
  • Each green film obtained was passed through a continuous heat treatment furnace purged with nitrogen, and the temperature was raised at 180 ° C. for 3 minutes as the first stage and then at a heating rate of 4 ° C. Z seconds for 4 minutes as the second stage. Two-stage heating was performed at 60 ° C for 2 minutes to proceed with the imidation reaction. Thereafter, each polyimide film exhibiting a brown color was obtained by cooling to room temperature in 5 minutes. Table 2 shows the thickness and curl degree of the resulting polyimide film.
  • Table 2 shows the winding conditions (winding tension, winding method and roll radius of curvature).
  • Table 2 shows the fluctuation rate of the linear expansion coefficient and the maximum and minimum values of the warp degree of the film on the heel outer side and the core side of the obtained mouth.
  • Zone 1 Upper temperature 1 0 5 ° (, Lower temperature 1 0 5 ° C Air volume 20m 3 Z min.
  • the polyamic acid film that became self-supporting after drying was peeled off from the stainless steel belt to obtain a green film.
  • the obtained green film was passed through a continuous heat treatment furnace purged with nitrogen, and the first stage was 1 minute at 80 ° C for 3 minutes, and then the temperature was raised at a heating rate of 4 ° CZ seconds and the second stage was 460 ° C. In two minutes, the imidation reaction proceeded under conditions of 5 minutes. Then, each polyimide film which exhibits brown was obtained by cooling to room temperature in 5 minutes. Table 2 shows the thickness and curl degree of the resulting polyimide film.
  • Table 2 shows the fluctuation rate of the coefficient of linear expansion and the maximum and minimum values of the warp degree of the film on the winding side and core side of the obtained mouthpiece.
  • Example 9 The polyamic acid solution obtained in Example 9 was coated on a stainless steel belt, and dried and imidized by a drying method under the drying condition C (same conditions as in Example 10).
  • Table 2 shows the thickness and curl degree of the resulting polyimide film. Furthermore, Table 2 shows the fluctuation rate of the linear expansion coefficient and the maximum value and the minimum value of the warp degree of the film on the outer side and the core side of the obtained polyimide film roll.
  • Example 1 5 The imidization treatment was stretched 1.8 times in the TD direction, the first stage was 1 at 80 ° C for 3 minutes, the temperature was raised at a rate of 5 ° C / sec, and the second stage was 1 at 430 ° C.
  • a polyimide film was obtained under the same conditions as in Example 8, except that heating was performed in two stages under the conditions of minutes, the imidization reaction was advanced, and the drying condition C was used.
  • the curl degree of this polyimide film was measured and found to be 12.4%. Further, the obtained polyimide film was rolled up under the conditions described in Table 2 to obtain a film roll. Table 2 shows the maximum and minimum values of the coefficient of linear expansion coefficient and the degree of warping of the film on the roll outer side and core side of the roll obtained.
  • a test single-sided copper-clad multilayer circuit board was prototyped using the polyimide films obtained in each Example and Comparative Example.
  • Table 2 shows the results.
  • indicates that the electronic member is soldered in place (checked by image processing), and there was no problem in the energization test.
  • The electronic member was soldered almost in place (checked by image processing) There was no problem due to the energization test.
  • was misaligned for small electronic parts, and the energization test was also abnormal.
  • X was misaligned for small electronic parts. This shows that the electronic component was found to be lifted from the board and abnormalities were also observed in the current test.
  • a test single-sided copper-clad multilayer circuit board was prototyped using the polyimide films obtained in each Example and Comparative Example.
  • Table 2 shows the evaluation results.
  • indicates that the electronic component is soldered in place (checked by image processing) and indicates that there was no problem in the energization test.
  • indicates that the electronic component is soldered almost in place (image Check in the processing), it indicates that there was no problem in the energization test, ⁇ indicates that a position shift was found for a small-sized electronic member, an abnormality was also observed in the energization test, and X indicates a small-sized electronic component This shows that the position of the member is misaligned, and that the electronic member with a large size is lifted from the substrate.
  • An electronic component using a polyimide long film as a base material for example, a printed wiring board, has a line width of 5 to 30 ⁇ , a line width of 5 to 3 ⁇ on one or both sides of a polyimide long film.
  • a wiring pattern having a thickness of about 3 to 40 ⁇ is formed.
  • the base film is subjected to vapor deposition, sputtering, other heat treatments, and chemical chemical treatments, and in most cases, one side is first subjected to these treatments.
  • the polyimide long film of the present invention has a physical property difference between the front and back surfaces, in particular, a curl degree after 300 ° C.
  • the polyimide long film hardly warps or distorts particularly when subjected to high-temperature treatment.
  • the polyimide long film of the present invention is used as a base material for electronic parts and the like exposed to high temperatures, the base material is unlikely to be warped or distorted during its production, and high-quality electronic parts can be manufactured. It is extremely meaningful in industry because it can improve yield. Note that this application is based on Japanese Patent Application Nos. 2005-71134 and 20 05-71135 filed in Japan, the contents of which are incorporated in full herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリイミドの前駆体物質を含む有機溶媒溶液を支持体上に流延塗布して塗膜を形成し、前駆体フィルムの一方面側(A面側)のイミド化率IMAと、他方面側(B面側)のイミド化率IMBとの差が5以下となるように塗膜を加熱乾燥し、次いで得られた前駆体フィルムに熱処理を施すことでポリイミド長尺フィルムが得られる。得られたフィルムのA面側を巻内にして曲率半径が30~600mmの範囲になるように100N以上の巻き張力でロール状に巻き上げることでポリイミドフィルムロールが得られる。得られたポリイミド長尺フィルムおよびポリイミドフィルムロールは、300℃で熱処理後のカール度が10%以下であり、またフィルムの線膨張係数の変動率(CV%)が25%以下である。

Description

明細書
ポリイミ ド長尺フィルム、 ポリイミ ドフィルム口ール
及びこれらの製造方法 技術分野
本発明は、 フィルム表裏面の物性差を抑制し、 高温でのカールの少ない耐熱性 に優れたポリイミ ド長尺フィルム、 ポリイミドフィルムロール及びこれらの製造 方法に関し、 より詳細には近年の電子機器の小型軽量化に伴い F P C (フレキシ ブルプリント配線板)、 T A Bテープ、 C O Fテープフィルムの基材として有用な ポリイミ ド長尺フィルム、 ポリイミ ドフィルムロール及びこれらの製造方法に関 する。 背景技術
情報通信機器 (放送機器、移動体無線、携帯通信機器等)、 レーダーや高速情報 処理装置などといった電子部品の基材の材料として、 従来、 セラミックが用いら れていた。 セラミックからなる基材は耐熱性を有し、 近年の情報通信機器の信号 帯域の高周波数化 (G H z帯に達する) にも対応し得る。 しカゝし、 セラミックは フレキシブルでなく、 薄くできないので使用できる分野が限定される。
そのため、 有機材料からなるフィルムを電子部品の基材として用いる検討がな され、 ポリイミ ドからなるフィルム、 ポリテトラフルォロエチレンからなるフィ ルムが提案されている。 ポリイミ ドからなるフィルムは耐熱性に優れ、 また、 強 靭であるのでフィルムを薄くできるという長所を備える一方、 高周波の信号への 適用において、 信号強度の低下や信号伝達の遅れなどといった問題が懸念される 。 ポリテトラブルォロエチレンからなるフィルムは、 高周波にも対応し得るが、 弾性率が低いのでフィルムを薄くできない点、 表面への金属導体や抵抗体などと の接着性が悪いという点、 線膨張係数が大きく温度変化による寸法変化が著しく て微細な配線をもつ回路の製造に適さない点等が問題となり、 使用できる分野が 限定されているのが実情であった。
また、 ポリイミ ド長尺フィルムとして、 酸成分としての 3, 3 ', 4 , 4 ' 一べ ンゾフエノンテ トラカルボン酸と、 ジアミン成分としての p—フエ二レンジアミ ン、 p—ジアミノジフエ二ルエーテル (4, 4, 一ォキシジァニリン) とを構成 単位として主鎖に有するポリイミ ドからなるポリイミ ド長尺フィルムが提案され ている (特開平 0 9— 3 2 8 5 4 4号公報)。芳香族テトラカルボン酸成分として ビフエニルテトラカルボン酸二無水物及ぴ 又はピロメリット酸ニ無水物を用い 、 芳香族ジァミン成分として; —フエ二レンジァミン及び Z又はジアミノジフエ ニルエーテルを用いて重合 ·脱水させて得たポリィミ ド長尺フィルムも提案され ている (特開平 0 9— 1 8 8 7 6 3号公報)。
また、 弾性率の高いポリイミ ド長尺フィルムとして、 ベンゾォキサゾール環を 主鎖に有するポリイミ ドからなるポリイミ ドベンゾォキサゾールフィルムが提案 されている (特開平 0 6— 0 5 6 9 9 2号公報)。
さらに、 ポリイミ ド長尺フィルム表裏の配向の比を所定値以下にすることで 2 5 °Cにおけるカールの少ないポリイミ ド長尺フィルムも提案されている (特開 2 0 0ひ一 0 8 5 0 0 7号公報)。 発明の開示
しかし、 従来公知のポリイミド長尺フィルムやポリイミ ドベンゾォキサゾール フィルムからなる基材は、 セラミックからなる基材に比べて形状維持性、 スティ フネスの点で劣るうえ、 フィルム内の物性差による電子部品化の際に反りや歪み が生じやすいといった問題があった。 またフィルムの反りや歪を解消すべく、 延 伸下で熱処理すること等により見かけ上のフィルムの反りを軽減する方策が採ら れていた。 し力 し、 見かけ上のフィルムの反り、 即ち顕在化したフィルムの反り 等は解消できたとしても、 特に電子部品として応用される際に高温での加工が必 要となるが、 かかる高温処理によつて潜在的に存在する歪が顕在化してカールが 発生するといつた問題は解決されていなかった。 従って、 たとえ見かけ上の反り が少ないフィルムであっても加工する際にカールが生じるフィルムは生産上の歩 留まり低下につながり、 また高品質な電子部品が得難い場合が多かった。
本発明は、 電子部品の基材として好適である平面性及び均質性に優れ、 しかも 高温処理しても反りや力ールの少ない耐熱性に優れたポリイミ ド長尺フィルム、 ポリイミ ドフィルムロール、 及びそれらの製造方法を提供することを目的とする 本発明者らは鋭意検討した結果、 3 0 0 °Cでのカール度が 1 0 %以下であるポ リイミ ド長尺フィルムが高温処理しても反りやカールが少なく、 耐熱性に優れて おり、 F P C (フレキシブルプリント配線板)、 T A Bテープ、 C O Fテープブイ ルムの基材として有用であることを見出し、 本発明を完成するに至った。
すなわち本発明は、 下記の構成からなる。
1 . 3 0 0 °C熱処理後のカール度が 1 0 %以下であることを特徴とするポリイミ ド長尺フィルム。
2 . 3 0 0 °C熱処理後のカール度が 8 %以下であることを特徴とする上記 1記載 のポリイミ ド長尺フィルム。
3 . 芳香族テトラカルボン酸類と、 芳香族ジァミン類とを反応させて得られるポ リイミ ドからなることを特徴とする上記 1又は 2記載のポリイミ ド長尺フィルム 4 . ポリイミドが芳香族テトラカルボン酸類の残基としてピロメリット酸残基を 少なくとも有し、 かつ芳香族ジァミン類の残基としてジアミノジフエ二ルエーテ ル残基を少なくとも有することを特徴とする上記 3記載のポリイミ ド長尺フィル ム。
5 . 芳香族テトラカルボン酸類の残基としてさらにビフユニルテトラカルボン酸 残基を有し、 かつ芳香族ジァミン類の残基としてさらに p—フエ二レンジァミン 残基を有することを特徴とする上記 4記載のポリイミ ド長尺フィルム。
6 . ポリイミドが芳香族テトラカルボン酸類の残基としてビフエ二ルテトラカル ボン酸残基を少なくとも有し、 かつ芳香族ジァミン類の残基としてフエ二レンジ ァミン残基を少なくとも有することを特徴とする上記 3記載のポリイミド長尺フ イルム。
7 . ポリイミドの前駆体物質を含む有機溶媒溶液を支持体上に流延塗布して塗膜 を形成し、 次いで当該塗膜を加熱乾燥して前駆体フィルムを形成し、 そして当該 前駆体フィルムに熱処理を施すポリィミ ド長尺フィルムの製造方法において、 前駆体フィルムの一方面側 (A面側) のイミ ド化率 I MAと、 他方面側 (B面 側) のイミ ド化率 IMBとが下記式の関係を満足するように塗膜を加熱乾燥する ことを特徴とするポリイミド長尺フィルムの製造方法。
式 1 ; I I MA— I MB I≤ 5
8. 塗膜面側の雰囲気温度よりもその反対面側の雰囲気温度を 1〜55°C高くし て加熱乾燥することを特徴とする上記 7記載のポリイミド長尺フィルムの製造方 法。
9. 加熱乾燥時間がトータルで 10〜 90分であることを特徴とする上記 7又は 8記載のポリイミド長尺フィルムの製造方法。
10. 塗膜面側の雰囲気温度が 80〜105 °Cであることを特徴とする上記 8又 は 9記載のポリイミ ド長尺フィルムの製造方法。
1 1. 前駆体フィルムの残留溶媒量が当該前駆体フィルムの全質量に対して 25 〜50質量%であることを特徴とする上記 7〜10のいずれかに記載のポリイミ ド長尺フィルムの製造方法。
12. ポリイミ ドの前駆体物質が少なくともピロメリット酸残基とジアミノジフ ェュルエーテル残基とを有するものであることを特徴とする上記 7〜1 1のいず れかに記載のポリィミド長尺フィルムの製造方法。
13. ポリイミ ドの前駆体物質が少なくともビフエ二ルテトラカルボン酸残基と フエ二レンジァミン残基とを有するものであることを特徴とする上記 7〜 1 2の いずれかに記載のポリイミ ド長尺フィルムの製造方法。
14. ポリイミ ド長尺フィルムをロール状に卷き上げるポリイミドフィルムロー ルの製造方法において、
ポリイミ ド長尺フィルムとして上記 7〜 13のいずれかに記載の製造方法によ り得られたポリイミ ド長尺フィルムを用い、
曲率半径が 30〜60 Ommの範囲になるように 10 ON以上の巻き張力で A 面側を卷内にしてロール状に巻き上げることを特徴とするポリィミ ドフィルム口 ールの製造方法。
15. 曲率半径が 80〜30 Ommであることを特徴とする上記 14記載のポリ ィミ ドフィルムロールの製造方法。
16. 線膨張係数の変動率 (CV%) が 25%以下のポリイミ ド長尺フィルムか らなることを特徴とするポリイミ ドフィルムロール。
1 7. 曲率半径が 80-30 Ommであることを特徴とする上記 1 6記載のポリ ィ ミ ドフイノレムローノレ。
18. 300°C熱処理後のカール度が 10%以下であることを特徴とする上記 1 6又は 1 7記載のポリイミ ドフィルム口ール。
1 9. 反り度の最大値と最小値の差が 5%以下であることを特徴とする上記 1 6 〜18のいずれかに記載のポリイミドフィルムロール。
20. 芳香族ジァミン類と、 芳香族テトラカルボン酸類とを反応させて得られる ポリイミ ドの長尺フィルムからなることを特徴とする上記 1 6〜 1 9のいずれか に記載のポリイミドフィルムロール。 図面の簡単な説明
図 1は、 ポリイミ ド長尺フィルムのカール度の測定方法を示した模式図である (a) は平面図であり、 (b) は熱風処理前の (a) における a _ aで示される断 面図であり、 (c) は熱風処理後の (a) における a— aで示される断面図である 。 なお、 ( a ) におけるハツチングは、試験片 1とアルミナ 'セラミック板 2との 領域を区別するために施したものである。 発明を実施するための最良の形態
以下、 本発明のポリイミド長尺フィルムについて説明する。
本発明のポリイミ ド長尺フィルムは、 300°Cで熱処理した後のカール度が 1 0%以下であることを第一の特徴とする。
本発明において、 300°Cにおけるフィルムのカール度とは、 所定の熱処理を 行った後のフィルムの面方向に対する厚さ方向への変形度合を意味し、 具体的に は、 図 1に示すように、 5 OmmX 5 Ommの試験片 1を、 300°Cで 1 0分間 熱風処理した後に、 平面 (アルミナ ·セラミック板 2) 上に試験片 1を凹状とな るように静置し、 試験片 1の各頂点から平面までの距離 (h 1、 h 2、 h 3、 h 4 :単位 mm) の平均値をカール量 (mm) とし、 試験片 1の各頂点から中心 ( 試験片 1の対角線上の中点) までの距離 (3 5 . 3 6 mm) に対するカール量の 百分率 (%) で表される値である。
試験片 1は、 ポリイミ ドフィルムロール若しくは長尺フィルムの全長に対して 5分の 1の長さピッチで幅方向における 2点 (幅長の 1 3と 2 / 3の点) を試 験片の中心点として計 1 0点をサンプリングし、 測定値は 1 0点の平均値とする 但し、 1 0点のサンプリングをするに十分なフィルムがない場合は、 可能な限 り等間隔でサンプリングする。
具体的には、 次式によって算出される。
カール量 (mm) = ( h l + h 2 + h 3 + h 4 ) / 4
カール度 (%) = 1 0 0 X (カール量) 3 5 . 3 6
本発明における 3 0 0 °C熱処理後のカール度は通常 1 0 %以下、 より好ましく は 8 %以下、 更に好ましくは 6 %以下、 特に好ましくは 5 %以下である。 また、 1 0 %を超えると、 本発明にかかるポリイミドフィルムを基材とする電子部品を 製造する際(特に、高温で処理する電子部材をはんだ付けする工程)、 フィルムに 内在する歪が発現してカールが発生し、 電子部材の位置ズレゃ浮きなどの問題が 生じ、 さらに筐体との組み立て、 コネクタ接続などに支障を生じる場合がある。 本発明のポリイミ ド長尺フィルムは、 芳香族ジァミン類と、 芳香族テトラカル ボン酸類とを反応させて得られるポリイミ ドからなるものが好ましい。 ポリイミ ドとしては、 芳香族テトラカルボン酸類の残基としてピロメリット酸残基を少な くとも有し、 かつ芳香族ジァミン類の残基としてジアミノジフエニルエーテル残 基を少なくとも有するもの、 或いは芳香族テトラカルボン酸類の残基としてビフ ェニルテトラカルボン酸残基を少なくとも有し、 かつ芳香族ジァミン類の残基と してフエ二レンジァミン残基を少なくとも有するものが好ましく、 芳香族テトラ カルボン酸類の残基としてピロメリツト酸残基おょぴビフエニルテトラカルボン 酸残基を有し、 かつ芳香族ジァミン類の残基としてジアミノジフエニルエーテル 残基おょぴフエ二レンジァミン残基を有するものであってもよい。 なお、 ポリイ ミドは、 上記以外のその他芳香族テトラカルボン酸残基およびその他芳香族ジァ ミン残基を有していてもよい。 本発明において、 ピロメリット酸残基とは、 ピロメリット酸、 その無水物また はこれらのハロゲン化物などの官能性誘導体と、 芳香族ジァミンとの反応によつ て得られるポリアミ ド酸もしくはポリイミ ドにおけるピロメリット酸由来の基を いう。 ジアミノジフエュルエーテル残基とは、 ジアミノジフエニルエーテルまた はその各種誘導体と、 芳香族テトラカルボン酸類との反応によって得られるポリ アミド酸もしくはポリイミ ドにおけるジアミノジフエ二ルエーテル由来の基をい ラ。
また、 本発明において、 ビフエニルテトラカルボン酸残基とは、 ビフエ二ルテ トラカルボン酸、 その無水物またはこれらのハロゲン化物などの官能性誘導体と 、 芳香族ジァミンとの反応によって得られるポリアミ ド酸もしくはポリイミ ドに おけるビフエニルテトラカルボン酸由来の基をいう。 フエエレンジァミン残基と は、 フエ二レンジァミンまたはその各種誘導体と、 芳香族テトラカルボン酸類と の反応によって得られるポリアミ ド酸もしくはポリイミ ドにおけるフエュレンジ ァミン由来の基をいう。 さらに、 本発明においては、 その他芳香族テトラカルボ ン酸残基、 およびその他芳香族ジァミン残基においても、 上述と同様の意味を表 すものである。
上述の 「反応」 には、 芳香族ポリアミ ド酸溶液を得るための溶媒中での芳香族 ジァミン類と芳香族テトラ力ルポン酸類との開環重付加反応、 この芳香族ポリァ ミ ド酸溶液からポリイミ ド前駆体フィルム (グリーンフィルム) を得るためのィ ミド化反応が含まれる。
次に、 本発明のポリイミ ド長尺フィルムの製造方法について説明する。
本発明において、 ポリイミ ド長尺フィルムは、 芳香族ポリアミ ド酸溶液からポ リイミ ド前駆体フィルム (グリーンフィルム) を成形した後に高温熱処理もしく は脱水縮合 (イミド化) することにより製造される。
好ましい製造例としては、 ポリイミ ド前駆体フィルム (グリーンフィルム) の 一方面側 (A面側) のイミ ド化率 I MAと、 他方面側 (B面側) のイミ ド化率 I MBとが下記式の関係を満たすポリイミド前駆体フィルム (グリーンフィルム) を製造し、 次いで該ポリイミ ド前駆体フィルム (グリーンフィルム) をイミ ド化 することが挙げられる。 式 1 ; I I MA - I MB I ≤ 5
本発明において、 グリーンフィルムのイミド化率の測定は下記の方法による。 <ィミ ド化率の測定方法 >
2 cmX 2 c mの大きさの測定対象フィルムを採取し、 測定対象面を AT R結 晶と密着させて I R測定装置にセットし下記特定波長吸光度を測定して下記の式 によって、 測定フィルム対象面のイミ ド化率を得る。
イミ ド特定波長として 1 778 cm— 1 (付近) を採用し、 その波長における測 定面の吸光度を; I 1778とする。 基準として芳香族環特定波長 1478 cm— 1付 近を採用し、 その波長における測定面の吸光度を I 478とする。
装置 ; FT— I R FT S 6 OA/8 96 (株式会社デジラボジャパン) 測定条件; 1回反射 ATRアタッチメント (S I LVER GATE)
ATR結晶 Ge
入射角 45°
検出器 DTGS
分解能 4 cm一1
積算回数 1 28回
式 2 ; I M= { 1 λ/ 1 (450)} X 1 00
式 2において、 Ι λ= (λ 17781478 ) であり、 I (450) は同一組成 のポリイミ ド前駆体フィルムを 450 °Cで 1 5分間熱閉環ィミ ド化したフィルム を同様にして測定した (え 1778Ζλ 1478) の値である。
Α面のィミド化率 IMを I MAとし、 B面のィミ ド化率 I Mを I MBとして式 2 からこれらの値を測定し得る。 IMAと IMBとの差は、 絶対値を以つて示すもの である。
測定位置は、 フィルムの長手方向の任意の箇所であって、 幅方向における 2点 (幅長の 1/3と 2/3の点) とし、 測定値は 2点の平均値とする。
芳香族ポリアミ ド酸は、 上記芳香族テトラカルボン酸類 (酸、 無水物、 官能性 誘導体を総称する、 以下、 芳香族テトラカルボン酸ともいう) と、 芳香族ジアミ ン類 (以下、 芳香族ジァミンともいう) との実質的に等モル量を好ましくは 90 °C以下の重合温度において 1分〜数日間不活性有機溶媒中で反応 ·重合させるこ とにより製造される。 芳香族テトラカルボン酸と芳香族ジァミンとは混合物とし てそのままあるいは溶液として有機溶媒に加えてもよいし、 あるいは有機溶媒を 上記混合物に加えてもよい。 有機溶媒は重合成分の一部又は全部を溶解するもの であり、 そして好ましくはコポリアミ ド酸重合物を溶解するものである。
好ましい溶媒には、 N, N—ジメチルホルムアミドおよび N, N—ジメチルァ セトアミ ドがある。 この種の溶媒のうちで他の有用な溶媒は、 N, N—ジェチル ホルムアミ ドおよび N, N—ジェチルァセトアミ ドである。 用いることのできる 他の溶媒としては、 ジメチルスルホキシド、 N—メチルー 2—ピロリ ドン、 N— シクロへキシル一 2—ピロリ ドンなどが挙げられる。 溶媒は単独で、 お互いに組 み合わせて、 あるいはベンゼン、 ベンゾニトリル、 ジォキサンなどのような貧溶 媒と組み合わせて用いることができる。
溶媒の使用量は、 芳香族ポリアミド酸溶液の 7 5〜9 0質量%の範囲にあるこ とが好ましい。 というのはこの濃度は最適の分子量を与えるからである。 芳香族 テトラカルボン酸成分と芳香族ジァミン類成分は絶対的に等モル量で用いる必要 はない。 分子量を調整するために、 芳香族テトラカルボン酸と芳香族ジァミンと のモル比 (芳香族テトラカルボン酸/芳香族ジァミン) は 0 . 9 0〜1 . 1 0の 範囲にある。
上述したようにして製造した芳香族ポリアミド酸溶液は 5〜4 0質量%、 好ま しくは 1 0〜2 5質量%のポリアミド酸重合体を含有する。
本発明においては、 特にこれら芳香族ジァミン類の中でジアミノジフエニルェ 一テル、 フエ二レンジァミンが好適なジァミンである。 ジアミノジフエニルエー テルの具体例としては、 4, 4, ージアミノジフエニルエーテル (D A D E )、 3 , 3, 一ジアミノジフエエルエーテルおよび 3, 4 5 ージアミノジフエニルエー テルが挙げられる。 フエ二レンジァミンの具体例としては、 p—フエ二レンジァ ミン、 m—フエ二レンジァミンが挙げられ、 好ましくは p—フエ二レンジァミン が使用できる。
好ましい態様として、 これらのジァミノジフエニルエーテルに加えてフエユレ ンジァミン類が使用できる。 さらに、 これらの芳香族ジァミン類に加えて他の芳 香族ジァミンを適宜選択使用してもよい。 本発明においては、 芳香族テトラカルボン酸類の中でピロメリット酸類 (ピロ メリット酸、 その二無水物 (P MD A) ならびにそれらの低級アルコールエステ ル)、 あるいはビフエュルテトラカルボン酸類(ビフエニルテトラカルボン酸、 そ の二無水物 (P MD A) ならびにそれらの低級アルコールエステル) を必須成分 とすることが好ましい。 ビフエニルテトラカルボン酸類としては、 3, 3,, 4, 4, ービフエニルテ トラカルボン酸、 3 , 3,, 4, 4 ' —ビフエニルテトラカル ボン酸無水物が挙げられる。
好ましい態様として、 ピロメリット酸に加えてビフエ二ルテトラカルボン酸類 を使用できる。 さらに、 これらの芳香族テトラカルボン酸類に加えて他の芳香族 テトラカルボン酸類を適宜選択使用してもよい。
本発明においては、 ピロメリット酸類 (好ましくはピロメリット酸無水物) を 全芳香族テトラカルボン酸類に対して 5 0〜1 0 0モル0 /0、 ビフエニルテトラ力 ルボン酸類 (好ましくは 3, 3,, 4, 4 ' ービフエ-ルテトラカルボン酸無水物 ) を全芳香族テトラカルボン酸類に対して 0〜 5 0モル%、 他の芳香族テトラ力 ルボン酸類を全芳香族テトラカルボン酸類に対して 0〜 5 0モル%使用すること が好ましい。 また、 ビフヱニルテトラカルボン酸類を全芳香族テトラカルボン酸 類に対して 5 0〜 1 0 0モル。 /0、 他の芳香族テトラカルボン酸類を全芳香族テト ラカルポン酸類に対して 0〜 5 0モル%使用してもよレ、。 これらのモル%比が上 記範囲を超える場合、 可撓性、 剛直性、 強度、 弾性率吸水率性、 吸湿膨脹係数、 伸度などの耐熱性ポリイミ ド長尺フィルムとしてのバランスが崩れ好ましくない また、 本発明においては、 ジアミノジフエ二ルエーテル類を全芳香族ジァミン 類に対して 5 0〜 1 0 0モル0 /0、 フエ二レンジァミン類を全芳香族ジァミン類に 対して 0〜5 0モル%、 前 2者以外の他の芳香族ジァミン類を全芳香族ジァミン 類に対して 0〜5 0モル%使用することが好ましい。 また、 フエ二レンジァミン 類を全芳香族ジァミン類に対して 5 0〜1 0 0モル%、 他の芳香族ジァミン類を 全芳香族ジァミン類に対して 0〜 5 0モル%使用してもよい。 これらのモル%比 がこの範囲を超える場合、 可撓性、 剛直性、 強度、 弾性率吸水率性、 吸湿膨脹係 数、 伸度などの耐熱性ポリイミド長尺フィルムと してのバランスが崩れ好ましく
0 ない。
前記の芳香族ジァミン類、 芳香族テトラカルボン酸類以外に使用できるものは 特に限定されないが、 例えば以下に示すものである。
前記以外の芳香族ジァミン類としては、 例えば、 5—アミノー 2— (p—アミ ノフエニル) ベンゾォキサゾール、 6—ァミノ一 2— (p—ァミノフエニル) ベ ンゾォキサゾール、 5—ァミノ一 2— (m—ァミノフエニル) ベンゾォキサゾー ル、 6—ァミノ一 2— (m—ァミノフエニル) ベンゾォキサゾール、 4, 4' - ビス (3—アミノフエノキシ) ビフエニル、 ビス [4一 (3—ァミノフエノキシ ) フエニル] ケトン、 ビス [4一 (3—アミノフエノキシ) フエニル] スルフィ ド、 ビス [4一 (3—アミノフエノキシ) フエニル] スルホン、 2, 2—ビス [ 4— (3—アミノフエノキシ) フエニル] プロパン、 2, 2—ビス [4— (3— アミノフエノキシ) フエニル] 一 1, 1, 1, 3, 3, 3—へキサフノレオ口プロ ハ。ン、 3, 3, 一ジアミノジフエニノレスノレフイ ド、 3, 3, ージアミノジフエ二 ルスルホキシド、 3, 4, ージアミノジフエニルスルホキシド、 4, 4 ' ージァ ミノジフエニノレスノレホキシド、 3, 3, 一ジアミノジフエニノレスノレホン、 3, 4 , ージアミノジフエニノレスノレホン、 4, 4, ージアミノジフエニノレスノレホン、 3 , 3, 一ジァミノべンゾフエノン、 3, 4 ' ージァミノべンゾフエノン、 4, 4 , 一ジァミノべンゾフエノン、 3, 3, ージアミノジフエニルメタン、 3, 4 ' —ジアミノジフエニルメタン、 4, 4, 一ジアミノジフエュルメタン、 ビス [4 - (4—アミノフエノキシ) フエニル] メタン、 1, 1一ビス [4— (4—アミ ノフエノキシ) フエエル] ェタン、 1, 2—ビス [4— (4一アミノブエノキシ ) フエュル] ェタン、 1, 1 _ビス [4— (4一アミノフエノキシ) フエニル] プロパン、 1, 2—ビス [4一 (4一アミノフエノキシ) フエニル] プロパン、 1, 3—ビス [4一 (4—アミノフエノキシ) フエニル] プロパン、 2, 2—ビ ス [4— (4—アミノフエノキシ) フエニル] プロパンが挙げられる。
さらに、 上記芳香族ジァミンにおける芳香環上の水素原子の一部もしくは全て がハロゲン原子、 炭素数 1〜 3のアルキル基もしくはアルコキシル基、 シァノ基 、 又はアルキル基もしくはアルコキシル基の水素原子の一部もしくは全部がハロ ゲン原子で置換された炭素数 1〜 3のハロゲン化アルキル基もしくはアルコキシ ル基で置換された芳香族ジァミン等が挙げられる。
前記以外の芳香族テトラカルボン酸類としては、 ビスフエノール Aビス (トリ メリット酸モノエステル酸無水物)、 2 , 2—ビス [ 4一 (3 , 4—ジカルボキシ フエノキシ) フェニ^/] プロパン酸無水物、 3, 3 ,, 4 , 4 ' 一べンゾフエノン テトラカルボン酸二無水物、 3, 3,, 4 , 4 ' ージフエニルスルホンテトラカル ボン酸二無水物、 1 , 4, 5 , 8—ナフタレンテトラカルボン酸二無水物、 2, 3 , 6, 7—ナフタレンテトラカルボン酸二無水物、 4、 4, 一ォキシジフタノレ 酸無水物、 3, 3 ,, 4 , 4, 一ジメチルジフエニルシランテトラカルボン酸二無 水物、 1 , 2, 3 , 4—フランテトラカルボン酸二無水物、 4, 4, 一ビス (3 , 4—ジカルボキシフエノキシ) ジフエ-ルプロパン酸二無水物、 4, 4, 一へ キサフルォロイソプロピリデンジフタル酸無水物などが挙げられる。
上記の特定グリーンフィルムを製造する方法は、 特に限定されるものではない 力 好適な例としては下記の方法が挙げられる。
グリーンフィルムが自己支持性を有する程度にまで乾燥する際に、 溶媒の揮発 する方向が空気に接する面に限られるためにグリーンフィルムの空気に接してい る面のイミ ド化率が、 支持体に接する面のイミ ド化率より小さくなる傾向にある 。 表裏面の配向差が小さいポリイミドフィルムを得るためには、 グリーンフィル ムの表裏のイミ ド化率差が許容範囲内であることが必要である。 グリーンフィル ムのイミド化率は、 溶媒量が多く、 ポリアミ ド酸分子の自由度が高い状態の内に 熱エネルギーが必要以上に加えられると高くなる。 表裏のイミ ド化率の差を許容 範囲内に抑えるには、 必要最低限の加熱により溶媒を、 表裏から極力均一に除去 することが求められる。 そのために、 ポリアミド酸溶液を支持体上にコーティン グし、 乾燥して自己支持性となったグリーンフィルムを得る際の乾燥条件につい ては加える熱量、 溶媒の揮発速度、 表裏の溶媒量差等を管理しつつ乾燥条件を制 御する必要があり、 この制御によって、 グリーンフィルム表裏面のイミ ド化率と その差が所定範囲にあるグリーンフィルムを得ることができる。
これらのグリーンフィルムにおける表裏面のイミ ド化率の差は、 好ましくは 5 以下であり、 より好ましくは 4以下であり、 さらに好ましくは 3以下である。 さ らに、 これらのイミ ド化率が表裏共に 1〜 1 5の範囲に制御することが好ましい
2 グリーンフィルム表裏面のイミ ド化率の差が 5を超えるときは、 潜在的に存在 するフィルム内部の歪が残存し、 3 0 0 °Cに熱処理した後にカールが発生し、 製 品化に不向きなポリイミ ド長尺フィルムとなる。
また、 得られるグリーンフィルムが自己支持性を有する程度にまで塗膜を乾燥 する際に、 乾燥後のグリーンフィルムの全質量に対する残留溶媒量を制御するこ とにより表裏面のィミ ド化率とその差が所定の範囲のグリーンフィルムを得るこ とができる。 具体的には、 乾燥後のグリーンフィルムの全質量に対する残留溶媒 量は、 好ましくは 2 5〜 5 0質量%であり、 より好ましくは 3 5〜 5 0質量%と することが肝要である。 当該残留溶媒量が 2 5質量%より低い場合は、 グリーン フィルムの一方面側のイミド化率が相対的に高くなりすぎ、 表裏面のイミド化率 の差が小さいグリーンフィルムを得ることが困難になるばかり力 \ 分子量低下に より、 グリーンフィルムが脆くなりやすい。 また、 5 0質量%を超える場合は、 自己支持性が不十分となり、 フィルムの搬送が困難になる場合が多い。
このような条件を達成するためには熱風、 熱窒素、 遠赤外線、 高周波誘導加熱 などの乾燥装置を使用することができるが、 乾燥条件として以下の温度制御が要 求される。
熱風乾燥を行う場合は、 グリーンフィルムが自己支持性を有する程度にまで塗 膜を乾燥する際に、 グリーンフィルム表裏面のイミ ド化率の範囲およびその差を 所定範囲にするために、 定率乾燥条件を長くし、 塗膜全体から均一に溶剤が揮発 するように操作することが好ましい。 定率乾燥とは塗膜表面が自由液面からなり 、 溶剤の揮発が外界の物質移動で支配される乾燥領域である。 塗膜表面が乾燥固 化し、 塗膜内での溶剤拡散が律速となる乾燥条件では、 表裏の物性差が出やすく なる。 かかる好ましい乾燥状態は、 支持体の種類や厚みによっても異なってくる 1K 温度設定および風量設定において、 通常支持体上の塗膜 (グリーンフィルム ) の上側 (塗膜面側) の雰囲気温度よりも、 反対側 (塗膜面の反対面側) の雰囲 気温度が 1〜5 5 °C高い条件下で塗膜を乾燥する。 雰囲気温度の説明においては 、 塗膜から支持体へ向う方向を下方向、 その逆を上方向として方向を定義する。 このような上下方向の記載は着目すべき領域の位置を簡潔に表現するためになさ
3 れるものであり、 実際の製造における塗膜の絶対的な方向を特定するためのもの ではない。
「塗膜面側の雰囲気温度」 とは、 塗膜の直上から塗膜面の上方 3 O mmに至る 領域 (通常は空間部分) の温度であり、 塗膜から上方向に 5〜 3 O mm離れた位 置の温度を熱電対などで計測することで、 塗膜面側の雰囲気温度を求めることが できる。
「反対側の雰囲気温度」 とは、 塗膜の直下 (支持体部分) から塗膜の下方 3 0 mmに至る領域 (支持体および支持体の下方の部分を含むことが多い) の温度で あり、 塗膜から下方向に 5〜 3 0 mm離れた位置の温度を熱電対などで計測する ことで、 反対側の雰囲気温度を求めることができる。
乾燥時に、 塗膜面側の雰囲気温度よりも反対側の雰囲気温度を 1〜5 5 °C高く すれば、 乾燥温度自体を高く して塗膜の乾燥速度を高めても高品質なフィルムを 得ることができる。 塗膜面側の雰囲気温度よりも反対側の雰囲気温度が低いか、 あるいは、 塗膜面側の雰囲気温度と反対側の雰囲気温度の差が 1 °C未満であると 、 塗膜面付近が先に乾燥してフィルム化して 「蓋」 のようになってしまい、 その 後に、 支持体付近から蒸発すべき溶剤の蒸散を妨げて、 フィルムの内部構造に歪 が生じることが懸念される。 反対側の雰囲気温度が塗膜面側の雰囲気温度よりも 高く、 その温度差が 5 5 °Cより大きくすることは、 装置上、 経済上に不利となり 望ましくない。 好ましくは、 乾燥時に、 塗膜面側の雰囲気温度よりも反対側の雰 囲気温度を好ましくは 5 ~ 5 5 °C高く し、 より好ましくは 1 0〜5 0 °C高く し、 更に好ましくは 1 5〜4 5 °C高くする。
塗膜面側の雰囲気温度は、 具体的には、 好ましくは 8 0〜 1 0 5 °Cであり、 よ り好ましくは 9 0〜: L 0 5 °Cである。
反対面側の雰囲気温度は、 具体的には、 好ましくは 8 5〜1 0 5 °Cであり、 よ り好ましくは 1 0 0〜 1 0 5 °Cである。
上記のような雰囲気温度の設定は、 塗膜の乾燥の全工程にわたつてなされても よいし、 塗膜乾燥の一部の工程でなされてもよい。 塗膜の乾燥をトンネル炉等の 連続式乾燥機で行う場合、 乾燥有効長の、 好ましくは 1 0〜 1 0 0 %、 より好ま しくは 1 5〜 1 0 0 %の長さにおいて、 上述の雰囲気温度を設定すればよい。
4 乾燥時間は、 トータルで 1 0〜9 0分、 望ましくは 1 5〜4 5分である。 乾燥工程を経たグリーンフィルムは、 次いでイミド化工程に供せられるが、 ィ ンライン及ぴオフラインのいずれの方法でもよい。
オフラインを採用する場合はグリーンフィルムを一旦巻取るが、 その際、 ダリ ーンフィルムが内側 (支持体が外側) となるようにして管状物に巻き取ることに よりカールの軽減を図ることができる。
いずれの場合も曲率半径が 3 O mm以下とならないように搬送、 ないし巻き取 りを行うことが好ましい。
本発明において、 「前駆体フィルム (グリーンフィルム)」 とは、 厚みや分子量 により左右されるが、 残留溶媒量が約 5 0質量%以下のフィルムであり、 具体的 には、 支持体上の塗膜を乾燥して得られるフィルムであって、 支持体から剥離後 5 0 °C以上に加熱されるまでの間のフィルムをいう。 また剥離する雰囲気が既に 5 0 °C以上の場合には、 剥離直後から剥離雰囲気温度 + 3 0 °C以上に加熱される までの間のフィルムをいう。
このような方法で得られた表裏面のイミ ド化率とその差が所定の範囲に制御さ れたグリーンフィルムを所定の条件でィミ ド化することで、 本発明の 3 0 0 °C熱 処理後のカール度の低いポリィミ ド長尺フィルムが得られる。
その具体的なィミ ド化方法としては、 従来公知のィミ ド化反応を適宜用いるこ とが可能である。 例えば、 閉環触媒や脱水剤を含まないポリアミ ド酸溶液を用い て、 加熱処理に供することでイミ ド化反応を進行させる方法 (所謂、 熱閉環法) や、 ポリアミ ド酸溶液に閉環触媒および脱水剤を含有させておいて、 上記閉環触 媒および脱水剤の作用によってイミ ド化反応を行わせる、 化学閉環法を挙げるこ とができるが、 ポリイミ ド長尺フィルムの 3 0 0 °C熱処理後のカール度が 1 0 % 以下のポリイミ ド長尺フィルムを得るためには、 熱閉環法が好ましい。
熱閉環法の加熱最高温度は、 1 0 0〜5 0 0 °Cが例示され、 好ましくは 2 0 0 〜4 8 0 °Cである。 加熱最高温度がこの範囲より低いと充分に閉環されづらくな り、 またこの範囲より高いと劣化が進行し、 フィルムが脆くなりやすくなる。 よ り好ましい態様としては、 1 5 0〜2 5 0 °Cで 3〜2 0分間処理した後に 3 5 0 〜5 0 0 °Cで 3〜2 0分間処理する 2段階熱処理が挙げられる。
5 化学閉環法では、 ポリアミ ド酸溶液を支持体に塗布した後、 イミ ド化反応を一 部進行させて自己支持性を有するフィルムを形成し、 次いで加熱によってイミ ド 化を完全に行わせることができる。 この場合、 イミ ド化反応を一部進行させる条 件としては、 好ましくは 1 0 0〜 2 0 0 °Cによる 3〜 2 0分間の熱処理であり、 イミド化反応を完全に行わせるための条件は、 好ましくは 2 0 0〜4 0 0 °Cによ る 3〜 2 0分間の熱処理である。
上述の乾燥処理及びィミド化処理はフィルム両端をピンテンターゃクリップで 把持して実施される。 その際、 フィルムの均一性を保持するためには、 可能な限 りフィルムの幅方向及び長手方向の張力を均一にすることが望ましい。
具体的には、 フィルムをピンテンターに供する直前に、 フィルム両端部をブラ シで押さえ、 ピンが均一にフィルムに突き刺さるような工夫を挙げることができ る。 ブラシは、 剛直で耐熱性のある繊維状のものが望ましく、 高強度高弾性率モ ノフィラメントを採用することができる。
上述したイミ ド化処理の条件 (温度、 時間、 張力) を満たすことにより、 フィ ルム内部 (表裏や平面方向) の配向歪の発生を抑制することができる。
閉環触媒をポリアミ ド酸溶液に加えるタイミングは特に限定はなく、 ポリアミ ド酸を得るための重合反応を行う前に予め加えておいてもよい。 閉環触媒の具体 例としては、 トリメチルァミン、 トリェチルァミンなどといった脂肪族第 3級ァ ミンゃ、 イソキノリン、 ピリジン、 ベータピコリンなどといった複素環式第 3級 ァミンなどが挙げられ、 中でも、 複素環式第 3級ァミンから選ばれる少なくとも 一種のァミンが好ましい。 ポリアミド酸 1モルに対する閉環触媒の使用量は特に 限定はないが、 好ましくは 0 . 5〜8モルである。
脱水剤をポリアミ ド酸溶液に加えるタイミングも特に限定はなく、 ポリアミ ド 酸を得るための重合反応を行う前に予め加えておいてもよい。 脱水剤の具体例と しては、 無水酢酸、 無水プロピオン酸、 無水酪酸などといった脂肪族カルボン酸 無水物や、 無水安息香酸などといった芳香族カルボン酸無水物などが挙げられ、 中でも、 無水酢酸、 無水安息香酸あるいはそれらの混合物が好ましい。 また、 ポ リアミ ド酸 1モルに対する脱水剤の使用量は特に限定はないが、 好ましくは 0 . 1〜4モルである。 脱水剤を用いる場合には、 ァセチルアセトンなどといったゲ
6 ル化遅延剤を併用してもよい。
ポリイミ ド長尺フィルムの厚さは特に限定されないが、 後述するプリント配線 基板用ベース基板に用いることを考慮すると、 通常 1〜 1 50 μπι、 好ましくは 3〜50 μηιである。 この厚さはポリアミ ド酸溶液を支持体に塗布する際の塗布 量や、 ポリアミ ド酸溶液の濃度によって容易に制御し得る。
本発明の製造方法によって得られるポリイミド長尺フィルムは、 好ましくは吸 収比が B面より大きい傾向にある A面を卷内にして管状物に巻き取ることで、 更 にカール度の小さいポリイミ ドフィルムロールを得ることができる。 A面を卷内 にして管状物に巻き取る場合、 その曲率半径は 3 Ommから 60 Ommの範囲と することが好ましい。 曲率半径がこの範囲を超えるとポリイミ ドフィルムのカー ル度が大きくなる場合がある。
なお、 上述の吸収比とは、 フィルム表面 (又は裏面、 以下同様である) から 3 /zm程度の深さまでのポリイミ ド分子のイミド環面のフィルム面に対する配向度 合を意味する。 具体的には、 FT— I R (測定装置: D i g i 1 a b社製、 FT S— 6 OA/8 96等) により偏光 A T R測定を、 一回反射 A T Rアタッチメン トを g o l d e n g a t e M k I I ( S P E C A C社製)、 I R Eをダイァモ ンド、 入射角を 45° 、 分解能を 4 c - 積算回数 1 28回の条件でフィルム 表面について測定を行った場合の 1480 cm—1付近に現れるピーク (芳香環振 動) における各方向の吸収係数 (Kx、 1^7ぉょび1: 2 ) を求め、 次式により定 義されるものである。 (但し、 Κχは MD方向、 Kyは TD方向、 Κ Ζは厚み方向 の吸収係数をそれぞれ示す。)'
吸収比 = (Κ X + y ) /2 XK z
測定値は、 フィルムの任意の箇所における幅方向における 2点 (幅長の 1/3と 2/3の点) とし、 測定値は 2点の平均値とする。
そして、 本発明においては、 吸収比が大きい方の面を A面、 吸収比が小さい方 の面を B面とすることが望ましい。
更に、 巻き張力は 10 ON以上、 好ましくは 1 5 ON以上 50 ON以下とする ことが望ましい。
従って、 ポリイミ ド長尺フィルムをロール卷きする際に、 カール改善を図るた
7 めの好適態様として A面を卷内にし、 曲率半径を 3 0〜6 0 O mm、 好ましくは 8 0〜 3 0 O mmと比較的大きく し、 更に巻き張力を 1 0 O N以上とする方法が 採用できる。 .
また、 巻き取られたフィルムの卷芯側 (ロール内層部側) と卷外側 (ロール外 層部側) の物性差を極力軽減させるために、 フィルムの曲率半径が大きくなれば なるほど卷き張力を大きく (巻き芯側の卷き張力を小さく、 卷き外側の卷き張力 を大きく) していくことが望ましい。
更に、 グリーンフィルムのイミ ド化をオフラインで行う場合には、 当該グリー ンフィルムが内側 (支持体が外側) となるようにして卷き取る方法が採用できる 。
ポリイミ ド長尺フィルムは、 グリーンフィルムの乾燥工程やイミ ド化工程で熱 による処理が施されている。 その際、 フィルムの幅方向に処理斑があると、 フィ ルムの幅方向における物性差が生じ、 カールの発生原因となる。
そこで、 本発明では、 乾燥機内における雰囲気温度の幅方向のムラを中心温度 ± 5 °C以内、 好ましくは ± 3 °C以内、 さらに好ましくは ± 2 °C以内に制御するこ とが望ましい。
ここに雰囲気温度とは、 支持体の表面から 5 mn!〜 3 O mmの等距離だけ離れ た位置において、 熱電対、 サーモラベルなどで測定した温度をいう。 また、 本発 明では幅方向に温度検出端を 8ないし 6 4ポイント設けることが好ましい。 特に幅方向の検出端と検出端の間隔は 5 c m〜l 0 c m程度にすることが好ま しい。 検出端としては、 公知のアルメルクロメル等の熱伝対を用いれば良い。 本発明においては、 塗布面側の雰囲気温度に対し、 反対側の雰囲気温度を 5〜 5 5 °C高く設定することができる。 この場合も、 支持体の各々の側での温度の中 心温度から ± 5 °Cの範囲とすることが肝要である。 中心温度は各検出端にて測定 された摂氏温度の算術平均値であり、 支持体の走行する方向と直交する幅方向に おける各検出端にて測定された温度が ± 5 °Cの範囲であることは、 該中心値の数 値に基づいて算定された範囲となる。
このような条件で製造されたポリイミ ド長尺フィルムは、 前記の条件で測定し たカール度が 1 0 %以下の極めて高温における平面性に優れたものとなる。
8 本発明のポリイミ ド長尺フィルムの厚さは特に限定されないが、 電子基板の基 材に用いることを考慮すると、 通常 1~1 50 At m、 好ましくは.3〜 50 mで ある。 この厚さはポリアミド酸溶液を支持体に塗布する際の塗布量や、 ポリアミ ド酸溶液の濃度によって容易に制御し得る。
本発明のポリイミ ド長尺フィルムには、 滑剤をポリイミ ド中に添加含有せしめ るなどしてフィルム表面に微細な凹凸を付与しフィルムの滑り性を改善すること が好ましい。
滑剤としては、 無機や有機の 0. 03〜3 μηι程度の平均粒子径を有する微粒 子が使用でき、 具体例として、 酸化チタン、 アルミナ、 シリカ、 炭酸カルシウム 、 燐酸カルシウム、 燐酸水素カルシウム、 ピロ燐酸カルシウム、 酸化マグネシゥ ム、 酸化カルシウム、 粘土鉱物などが挙げられる。
本発明のポリイミ ド長尺フィルムは、 通常は無延伸フィルムであるが、 1軸又 は 2軸に延伸しても構わない。 ここで、 無延伸フィルムとは、 テンター延伸、 口 ール延伸、 インフレーション延伸などによってフィルムの面拡張方向に機械的な 外力を意図的に加えずに得られるフィルムをいう。
次に、 本発明に係るポリイミ ドフィルムロールについて説明する。
本発明に係るポリイミ ド長尺フィルムを卷き上げたロールは、 上述したとおり 、 卷き張力が 10 ON以上で、 かつ曲率半径が 30〜60 Ommのものであるこ とが望ましい。 そして、 上記方法により得られたポリイミ ド長尺フィルムは、 反 りや歪が少なく、 しかも平面性に優れたものであるが、 本発明においては、 これ らの特性はフィルムの長手方向に対して均質なものである。 すなわち、 巻外側と 巻芯側のフィルムの線膨張係数の変動率 (標準偏差 X 100/平均値) (CV%) が 25%以下であることを要する。 かかる変動率は、 好ましくは 20%以下、 更 に好ましくは 1 5%以下である。 ここで、 長尺フィルムとは、 30m以上、 好ま しくは 10 Om以上の長さを有するフィルムを意味する。
線膨張係数の測定法は以下の通りである。
測定対象のポリイミド長尺フィルムについて、 下記条件にて MD方向おょぴ T D方向の伸縮率を測定し、 例えば、 30°C〜45°C、 45° (:〜 60°Cというよう に 15 °Cの間隔での伸縮率 Z温度を測定し、 この測定を 300°Cまで行い、 全測
9 定値の平均値を線膨張係数 (CTE) として算出した。
装置名 MACサイエンス社製 ΤΜΑ 4000 S
料; Κ δ 20 mm
試料幅 2 mm
昇温開始温度 25°C
昇温終了温度 400°C
昇温速度 5 °C/ m i n
雰囲気 ァノレゴン
試料片のサンプリングは、 ポリイミ ドフィルムロールの幅方向の 2点 (幅長の 1Z3と 2/3の点) を長手方向に全長に対して 5分の 1の長さピッチで計 10 点とする。
そして 1 0点についての変動率を算出する。
通常、 フィルムをロール卷きすると、 解反時にフィルムが巻き方向に反る、 所 謂卷きぐせが生じ、 その反りは卷き芯側のものと卷き外側のフィルムとで差があ るものである。 このように、 本発明に係るポリイミ ド長尺フィルムのロールは巻 き芯側と巻き外側の物性差は極めて小さいものであり、 各部位におけるフィルム の反り度の最大値と最小値の差は 5 %以下といった均質性に優れたものとなる。 本発明において、 フィルムの反り度 (見かけ上の反り度) とは、 具体的には、 図 1に示すように、 5 OmmX 5 Ommの試験片を、 ロールから解反したポリイ ミ ド長尺フィルム試験片を平面上に凹状となるように静置し、 試験片の各頂点か ら平面までの距離 (h i、 h 2S h 3、 h 4 :単位 mm) の平均値を反り量 (m m) とし、 試験片の各頂点から中心 (対角線上の中点) までの距離 (3 5. 36 mm) に対する反り量の百分率 (%) で表される値である。
具体的には、 次式によって算出される。
反り量 (mm) = ( h 1 + h 2 + h 3 + h 4 ) /4
反り度 (%) = 1 00 X (力ール量) / 3 5. 36
試料片のサンプリングは、 ポリイミ ドフィルムロールの幅方向における 2点 ( 幅長の 1/3と 2 3の点) を長手方向に全長に対して 5分の 1の長さピッチで 計 10点とする。 本発明のポリイミ ド長尺フィルムを用いた例としてプリント配線基板用ベース 基板を説明する。
ここで、 「プリント配線基板用ベース基板」 とは、絶縁板の少なくとも片面に金 属層を積層してなる構成の略平板状の基板である。 積層される金属層は、 エッチ ング等の加工によって回路を形成することが意図される回路用の金属層であって もよいし、 特に後加工をせずに絶縁板と一緒になつて放熱等の目的に用いられる 金属層であってもよい。
「プリント配線基板用ベース基板」 の用途としては、 F P C、 T A B用キヤリ ァテープ、 C O F用基材、 C S P用基材等が挙げられ、 カール度が小さいという 本発明のポリイミ ド長尺フィルムの特徴を活かすことができるため好ましい。 ポリイミ ド長尺フィルムの少なくとも片面に積層される金属は特に限定はなく 、 好ましくは銅、 アルミニウム、 ステンレス鋼などである。 積層手段は特に問わ ず、 以下のような手段が例示される。
( 1 ) 接着剤を用いて、 ポリイミ ド長尺フィルムに金属板を貼り付ける手段。 ( 2 ) ポリイミ ド長尺フィルムに蒸着、 スパッタリング、 イオンプレーティング などの真空コーティング技術を用いて金属層を形成する手段。
( 3 ) 無電解めつき、 電気めつきなどの湿式メツキ法により金属層をポリイミ ド 長尺フィルムに形成する手段。
これらの手段を単独で、 あるいは組み合わせることによってポリイミ ド長尺フ イルムの少なくとも片面に金属層を積層することができる。
なかでも、 金属層を積層する方法としては、 スパッタリングにより下地金属層 を形成し、 電気めつきにて厚付けする方法が好ましい態様として挙げられる。 この場合、 下地金属としては C u、 N i、 C r、 M o、 Z n、 T i、 A g、 A u、 F e等の単体又は合金を用いることができる。 また、 下地金属の上に導電化 層として C u等の良導体をさらにスパッタリングにて付着させてもよい。
下地層おょぴ導電化層の厚みは、 好ましくは 1 0 0〜5 0 0 O Aである。 電気めつきする金属としては、 C uが好ましい。
金属層の厚さは特に制限はないが、 当該金属層を回路用 (導電性) とする場合 には、 その金属層の厚さは好ましくは 1〜1 7 5 μ πιであり、 より好ましくは 3
2 〜1 0 5 μ πιである。 金属層を貼合わせたポリイミ ド長尺フィルムを放熱基板と して用いる場合には、 金属層の厚さは、 好ましくは 5 0〜3 0 0 0 /x mである。 この金属層のポリィミドと接着される表面の表面粗さについては特に限定されな いが、 J I S B 0 6 0 1 (表面粗さの定義と表示) における、 中心線平均粗 さ (以下、 R aと記載する) および十点平均粗さ (以下 R zと記載する) で表示 される値が、 R aについては 0 . Ι μ πι以下、 R zについては 1 . 0 m以下で あるものがフィルムと金属層との接着性向上の効果が大きく好ましい。
本発明で使用する金属層の表面には、 金属単体や金属酸化物などといった無機 物の塗膜を形成してもよい。 また、 金属層の表面を、 カップリング剤 (アミノシ ラン、 エポキシシランなど) による処理、 サンドプラスト処理、 ホーリング処理
、 コロナ処理、 プラズマ処理、 エッチング処理などに供してもよい。 同様に、 ポ リイミ ド長尺フィルムの表面をホーユング処理、 コロナ処理、 プラズマ処理、 ェ ッチング処理などに供してもよい。
以上述べてきたように、 本発明のポリイミ ド長尺フィルムは平面性及び均質性 に優れたものであり当該ポリィミ ド長尺フィルムを例えばプリント配線板などに 加工した場合であっても反りや歪みのないものとなる。 また多層化した際にも均 質な積層加工が行われるため、 反り、 変形の小さい、 特に高密度な微細配線が要 求されるディスプレイドライバー、 高速の演算装置、 グラフィックコントローラ 、 高容量のメモリー素子、 等を搭載する基板として有用であり、 さらに高温に曝 されるフィルムとしてスパッタリングゃ蒸着用のフィルムに有用である。
[実施例]
以下、 実施例及び比較例を示して本発明をより具体的に説明するが、 本発明は 以下の実施例によって限定されるものではない。 なお、 以下の実施例における物 性の評価方法は以下の通りであり、 3 0 0 °Cで熱処理した後のカール度、 イミ ド 化率、 線膨張係数、 反り度、 吸収比は前記した方法の通りである。
1 . ポリイミ ド長尺フィルムの厚さ
マイクロメーター (ファインリューフ社製、 ミリ トロン (登録商標) 1 2 4 5 D ) を用いて測定した。
実施例などで使用する化合物の略称を下記する。 P MD A: ピロメリット酸二無水物
TMHQ : P—フエ二レンビス (トリメリツト酸モノエステル酸無水物) OD A: 4 , 4 ' ージアミノジフエニルエーテノレ
P— PDA : パラフエ二レンジァミン
B PDA: 3 , 3,, 4, 4 ' ービフエニルテトラカルボン酸二無水物
DMF :ジメチルホルムアミ ド
DMAC : ジメチルァセ トアミ ド
A A:無水酢酸
I Q : イソキノ リン
また、 略称 GFはポリイミ ド前駆体フィルム (グリーンフィルム) を、 略称 I Fはポリイミドフィルムを、 略称 I MAは A面のィミ ド化率を、 I MBは B面のィ ミ ド化率をそれぞれ示す。
(実施例 1 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 ODAを入れた 。 次いで、 DMACを加えて完全に溶解させてから、 PMDAを加えて、 モノマ 一としての ODAと PMDAとが 1 1のモル比で DMA C中重合し、 モノマー 仕込濃度が 1 5質量%となるようにし、 25°Cにて 5時間攪拌すると、 褐色の粘 調なポリアミド酸溶液が得られた。 得られたポリアミ ド酸溶液 100質量部に対 して A Aを 1 5質量部、 I Qを 3質量部の割合で混合し、 これを厚さ 1 88ミク ロン、 幅 80 Ommのポリエステルフィルム (コスモシャイン A 4 100 (東洋 紡績株式会社製))の滑剤を含まない面に幅 74 Ommとなるようにコーティング し (スキージ /ベルト間のギャップは、 430 μπι)、 4つの乾燥ゾーンを有する 連続式乾燥炉に通して乾燥した。
各ゾーンはフィルムを挟んで上下に各 3列のスリット状の吹き出し口を有し、 各吹き出し口間の熱風温度はプラスマイナス 1. 5°C、 風量差はプラスマイナス 3%の範囲で制御できるよう設定されている。 また幅方向についてはフィルム有 効幅の 1. 2倍に相当する幅までの間、 プラスマイナス 1°C以内となるように制 御がなされている。
フィルムから上下 30 mm離れた温度を以下の通り設定した。 レべリングゾーン 温度 25 °C、 風量なし
第 1ゾーン 上側温度 105 °C、 下側温度 105 °C
風量 上下とも 20m3
第 2ゾーン 上側温度 100°C、 下側温度 100°C
風量 上下とも 30m3/分
第 3ゾーン 上側温度 95 °C、 下側温度 100 °C
風量 上下とも 20m3
第 4ゾーン 上側温度 90°C、 下側温度 100°C
上側風量 1 5m3/分、 下側風量 20m3Z分 各ゾーンの長さは同じであり、 総乾燥時間は 18分である。
また風量は各ゾーン毎の吹き出し口からの風量の総計である。
かかる乾燥条件において、 第 3ゾーンまでは塗膜表面が指触乾燥状態には至ら ず、 ほぼ定率乾燥条件となっていることが確認されている。
塗膜表面は第 4ゾーンに入ってまもなく指触乾燥に至り以後は減率乾燥的に乾 燥が進行している。 この際に下側の温度、 風量を上側より多めに設定し、 塗膜内 の溶媒の拡散を促進している。
なお、 各ゾーン中央の吹き出し口の真下に当たる部分でフィルム上 1 Ommの 位置に支持された熱電対により、 10 cm間隔でモニターがなされプラスマイナ ス 1. 5°C以内であることが確認されている。
乾燥後に自己支持性となったポリアミド酸フィルムをポリエステルフィルムか ら剥離して、 グリーンフィルムを得た。 剥離雰囲気の温度は 27°Cであった。 得られたグリーンフィルムの厚み、 IMA、 IMB測定値から求めた I IMA— I MB I、 残溶媒率を表 1に示す。
得られたグリーンフィルムを、 ピンテンターにて両端を把持した状態で窒素置 換された連続式の熱処理炉に通し、 第 1段が 180°Cで 5分、 昇温速度 4°〇 秒 で昇温して第 2段として 400°Cで 5分の条件で 2段階の加熱を施して、 イミド 化反応を進行させた。 その後、 5分間で室温にまで冷却することで、 褐色を呈す るポリイミ ドフィルムを得た。
なお、 グリーンフィルムを熱処理する際に、 芳香族ポリアミ ド製モノフィラメ ントス トランドからなるブラシをブイルム両端部に接するように設け、 ピンテン ターのピンにフィルム両端が均一に突き刺さるようにした。
得られたポリイミ ドフィルムの厚み、 カール度を表 1に示す。
更に、 得られたポリイミドフィルムをロール状に巻き上げフィルムロールとし た。
巻き上げ条件 (卷き取りテンション、 卷取り方法及びロール曲率半径) は表 1 のとおりである。 得られた口一ルの巻外側と卷芯側のフィルムの線膨張係数の変 動率及び反り度の最大値と最小値を表 1に示す。
(実施例 2 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 ODAを入れた 。 次いで、 DMACを加えて完全に溶解させてから、 PMDAを加えて、 モノマ 一としての ODAと PMDAとが 1/1のモル比で DMA C中重合し、 モノマー 仕込濃度が 1 5質量%となるようにし、 25 °Cにて 5時間攪拌すると、 褐色の粘 調なポリアミ ド酸溶液が得られた。 得られたポリアミ ド酸溶液をステンレスベル ト上にコーティングし (スキージ /ベルト間のギャップは、 450 /zm)、実施例 1と同様の方法で乾燥した。 乾燥後に自己支持性となったポリアミ ド酸フィルム をステンレスベルトから剥離して、 厚さ 5 1. 6 /imのグリーンフィルムを得た 得られたグリーンフィルムの I MA、 IMBを測定し、 I IMA— IMB | を算出 したところ 3. 2であった。.
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段が 1 80 °Cで 3分、 昇温速度 4で 秒で昇温して第 2段として 460 °Cで 5分 の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で 室温にまで冷却することで、 褐色を呈する厚さ 25. 2 μπιのポリイミ ドフィル ムを得た。
このポリイミ ドフィルムのカール度を測定したところ 2. 6%であった。 更に、 得られたポリイミドフィルムを表 1に記載の条件でロール状に卷き上げ フィルムロールとした。 得られた口一ルの卷外側と卷芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。 (実施例 3、 4)
芳香族テトラカルボン酸二無水物成分として PMDAと B PDAを用い、 ジァ ミン成分として OD Aと P— PDAを用い、 4種のモノマーを PMDAZB PD AZODAZP— PDAとが 1/0. 5/1/0. 5のモル比で DMF中重合し 、 モノマー仕込濃度が、 16質量%となるようにして、 ポリアミド酸の DMF溶 液を作製した。 得られたポリアミ ド酸溶液をステンレスベルト上にコーティング し(スキージ Zベルト間のギャップは、 400 /zm)、実施例 1と同様の方法で乾 燥した。 乾燥後に自己支持性とな όたポリアミ ド酸フィルムをステンレスベルト から剥離して、 厚さ 5 1. 4/zm (実施例 3)、 53. 3 m (実施例 4 ) のグリ ーンフィルムをそれぞれ得た。
得られたグリーンフィルムの I MA、 IMBを測定し、 I 1^^ー 11^^ | を算出 したところ、 実施例 3では 4. 3であり、 実施例 4では 4. 8であった。
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段が 180でで 3分、 昇温速度 4 °CZ秒で昇温して第 2段として 460 °Cで 2分 の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で 室温にまで冷却することで、 褐色を呈する厚さ 25 μπιのポリイミ ドフィルムを 得た。 このポリイミ ドフィルムのカール度を測定したところ、 実施例 3では 4. 2であり、 実施例 4では 9. 2であった。
更に、 得られたポリイミ ドフィルムを表 1に記載の条件でロール状に巻き上げ フィルムロールとした。 得られたロールの巻外側と巻芯側のフィルムの線膨張係 数の変動率及ぴ反り度の最大値と最小値を表 1に示す。
(実施例 5 )
芳香族テトラカルボン酸二無水物成分として B PDAと PMDAと TMHQを 用い、 ジァミン成分として ODAと P— PDAを用い、 5種のモノマーを PMD A/B PDAノ TMHQZODAノ P— PDAとが 1 0. 3/0. 2/1/0 . 5のモル比で DM F中重合し、 モノマー仕込濃度が 15質量 °/0となるようにし て、 ポリアミ ド酸の DMF溶液を作製した。 得られたポリアミド酸溶液 100 質量部に対して AAを 1 3質量部、 I Qを 3質量部の割合で混合し、 これをステ ンレスベルト上にコーティングし (スキージ Zベルト間のギャップは、 430/ m)、所定の方法で乾燥した。乾燥後に自己支持性となったポリアミ ド酸フィルム をステンレスベルトから剥離して、 厚さ 58. 6 μπιのグリーンフイノレムを得た 得られたグリーンフィルムの I ΜΑ、 ΙΜΒを測定し、 I ΙΜΑ— ΙΜΒ | を算出 したところ 4. 7であった。
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段が 180でで 3分、 昇温速度 4 °C /秒で昇温して第 2段として 460 °Cで 2分 の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で 室温にまで冷却することで、 褐色を呈する厚さ 30. 2 μπιのポリイミ ドフィノレ ムを得た。 このポリイミ ドフィルムのカール度を測定したところ 4. 8%であつ た。
更に、 得られたポリイミ ドフィルムを表 1に記載の条件でロール状に巻き上げ フィルムロールとした。 得られたロールの卷外側と巻芯側のフィルムの線膨張係 数の変動率と反り度の最大値と最小値を表 1に示す。
(実施例 6 )
芳香族テトラカルボン酸二無水物成分として PMDAと B PDAを用い、 ジァ ミン成分として ODAと P— PDAの 4種のモノマーを PMDAZB PDA/O 0 ー?0 とが1 0. 5/1/0. 5のモル比で DMF中重合し、 モノ マー仕込濃度が 15質量%となるようにして、 ポリアミ ド酸の DM F溶液を作製 した。 得られたポリアミ ド酸溶液をステンレスベルト上にコーティングし (スキ ージ ベルト間のギャップは、 430 μΐη)、実施例 1同様の乾燥装置にて、 同様 の温度設定、 風量設定で乾燥した。
乾燥後に自己支持性となったポリアミド酸フイルムをステンレスベルトから剥 離して、 厚さ 35. 6 μ mのグリーンフィルムを得た。
得られたグリーンフィルムの I MA、 IMBを測定し、 I IMA— IMB | を算出 したところ 4. 5であった。
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段が 1 80 °Cで 3分、 昇温速度 4 °C /秒で昇温して第 2段として 400 °Cで 2分 の条件で 2段階の加熱を施して、 イミド化反応を進行させた。 その後、 5分間で 室温にまで冷却することで、 褐色を呈する厚さ 1 9. 7 μπιのポリイミ ドフィル ムを得た。 このポリイミ ドフィルムのカール度を測定したところ 4. 5%であつ た。
更に、 得られたポリイミ ドフィルムを表 1に記載の条件でロール状に巻き上げ フィルムロールとした。 得られたロールの卷外側と卷芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。
(比較例 2, 3, 7)
実施例 1で得られたポリアミ ド酸溶液 1 00質量部に対して ΑΑを 1 5質量部 、 I Qを 3質量部の割合で混合し、 これをステンレスベルト上にコーティングし (スキージノベルト間のギャップは、 43 Ο μπι)、実施例と同様の乾燥装置にて 乾燥を行った、 なお乾燥条件 (温度はフィルムから上下 3 Omm離れた温度) は 以下の通りである。
レベリングゾ一ン 温度 25°C、 風量なし
第 1ゾーン 温度 上下とも 1 10 °C
風量 上下とも 2 Om3/分
第 2ゾーン 温度 上下とも 1 20 °C
風量 上下とも 2 Om3/分
第 3ゾーン 1皿/ス 上下とも 1 20°C
風量 上下とも 2 Om3/分
第 4ゾーン 温度 上下とも 1 20 °C
風量 上下とも 2 Om3/分
各ゾーンの長さは同じであり、 総乾燥時間は 9分である。
また風量は各ゾーン毎の吹き出し口からの風量の総計である。
かかる乾燥条件においては、 第 2ゾーン中央で塗膜表面が指触乾燥状態に至り
、 以後は減率乾燥的な乾燥が行われている物と推察される。
乾燥後に自己支持性となったポリアミド酸フィルムをステンレスベルトから剥 離して、 表 1に示す厚さのグリーンフィルム 3種、 比較例 2、 比較例 3、 比較例
7を得た。
得られた各グリーンフィルムの I MA、 I MBを測定し、 I IMA— IMB | を算 出したところ、 比較例 2では 8 . 9、 比較例 3では 5 . 1、 比較例 7では 5 . 1 でめった o
得られた各グリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第
1段が 1 8 0 °Cで 3分、 昇温速度 4 °CZ秒で昇温して第 2段として 4 0 0 °Cで 2 分の条件で 2段階の加熱を施して、 イミド化反応を進行させた。 その後、 5分間 で室温にまで冷却することで、 褐色を呈する各ポリイミ ドフィルムを得た。
この各ポリイミ ドフィルムのカール度を測定したところ、 比較例 2では 1 2 . 4 %、 比較例 3では 1 5 . 7 %、 比較例 7では 1 2 . 8 %であつた。
また、 得られたポリイミドフィルムを表 1に記載の条件でロール状に卷き上げ フィルムロールとした。 得られたロールの卷外側と卷芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。
(比較例 1 )
実施例 3で得られたポリアミド酸溶液 1 0 0質量部に対して AAを 1 7質量部 、 I Qを 4質量部の割合で混合し、 これをステンレスベルト上にコーティングし (スキージ Zベルト間のギャップは、 4 3 0 ;z m)、 比較例 2, 3 , 7と同様の方 法で乾燥、 熱処理を行い褐色を呈する各ポリイミ ドフィルムとフィルムロールを 得た。
結果を表 1に示す。
(比較例 4〜 6 )
実施例 2で得られたポリアミ ド酸溶液をステンレスベルト上にコーティングし (スキージ /ベルト間のギャップは、 4 5 Ο μ πι)、乾燥方法を種々変更して乾燥 した。 乾燥後に自己支持性となったポリアミド酸フィルムをステンレスベルトか ら剥離して、 表 1に示す厚さのグリーンフィルム 3種、 比較例 4、 比較例 5、 比 較例 6を得た。
得られた各グリーンフィルムの I ΜΑ、 Ι ΜΒを測定し、 1 I MA— I ΜΒ | を算 出したところ比較例 4では 5 . 5、 比較例 5では 6 . 9、 比較例 6では 6 . 9で あった。
得られた各グリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1段が 1 8 0 °Cで 3分、 昇温速度 4 °CZ秒で昇温して第 2段として 4 6 0 °Cで 2 分の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間 で室温にまで冷却することで、 褐色を呈する各ポリイミドフィルムを得た。 この各ポリイミ ドフィルムのカール度を測定したところ、 比較例 4では 10. 2 %、 比較例 5では 1 1. 2 %、 比較例 6では 14. 5 %であつた。
また、 得られたポリイミドフィルムを表 1に記載の条件でロール状に巻き上げ フィルム口ールとした。 得られた口一ルの巻外側と卷芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。
(実施例 7 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 ODAを入れた 。 次いで、 DMACを加えて完全に溶解させてから、 PMDAを加えて、 モノマ 一としての ODAと PMDAとが 1/ 1のモル比で DMA C中重合し、 モノマー 仕込濃度が 15質量%となるようにし、 25°Cにて 5時間攪拌すると、 褐色の粘 調なポリアミ ド酸溶液が得られた。 得られたポリアミ ド酸溶液をステンレスベル ト上にコーティングし (スキージ Zベルト間のギャップは、 450 /i m)、下記の 乾燥条件 (温度はフィルムから上下 3 Omm離れた温度) で乾燥した。
レべリングゾーン 温度 25 °C、 風量なし
第 1ゾーン 上側温度 105°C、 下側温度 105°C
風量 上下とも 2 Om3//分
第 2ゾーン 上側温度 100°C、 下側温度 100°C
風量 上下とも 30m3 / /分
第 3ゾーン 上側温度 95 °C、 下側温度 100 °C
風量 上下とも 20m3 / /分
第 4ゾーン 上側温度 90°C、 下側温度 100°C
上側風量 1 5m3/分、 下側風量 20m3 分 総乾燥時間 27分。
乾燥後に自己支持性となったポリアミ ド酸フィルムをステンレスベルトから剥 離して、 厚さ 54. 5 mのグリーンフィルムを得た。
得られたグリーンフィルムの I MA、 IMBを測定し、 I 11^^ー11^^ | を算出 したところ 4. 9であった。 得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段が 180でで 3分、 昇温速度 4 °C /秒で昇温して第 2段として 460 °Cで 5分 の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で 室温にまで冷却することで、 褐色を呈する厚さ 30. 4 μπιのポリイミ ドフィノレ ムを得た。
このポリイミ ドフイルムのカール度を測定したところ、 9. 1%であった。 更に、 得られたポリイミ ドフィルムを表 1に記載の条件でロール状に巻き上げ フィルム口ールとした。 得られた口一ルの卷外側と巻芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。
(比較例 8 )
ィミ ド化処理を TD方向に 1. 8倍延伸し、 第 1段として 180°Cで 3分、 そ の後昇温速度 5 °CZ秒で昇温し第 2段として 430 °Cで 1分の条件で 2段階の加 熱を施してイミ ド化反応を進行させたこと以外は、 実施例 1と同様の条件でポリ ィミ ドフィルムを得た。
このポリイミ ドフィルムのカール度を測定したところ、 10. 9%であった。 更に、 得られたポリイミ ドフィルムを表 1に記載の条件でロール状に卷き上げ フィルム口ールとした。 得られた口一ルの卷外側と巻芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 1に示す。
3
Figure imgf000033_0001
各実施例及び比較例で得られたポリイミ ドフィルムを用いてテスト用片面銅張 積層回路基板を試作した。
表 1に評価結果を示す。 表中◎は電子部材が所定位置にはんだ付けされており
(画像処理でチェック)、通電テストでも問題はなかったことを示し、〇は電子部 材がほぼ所定位置にはんだ付けされており (画像処理でチェック)、通電テストで 問題はなかったことを示し、 △はサイズの小さい電子部材について位置ズレが認 められ、 通電テス トでも異常が認められたことを示し、 Xはサイズの小さい電子 部材では位置ズレが、 サイズの大きい電子部材では基板からの浮きが認められ、 通電テストにおいても異常が認められたことを示す。
(実施例 8 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 P— P D Aを入 れた。 次いで、 DMA Cを加えて完全に溶解させてから、 B P D Aを加えて、 モ ノマーとしての P— P D Aと B P D Aとが 1ノ1のモル比で D MA C中重合し、 モノマー仕込濃度が 1 5質量%となるようにし、 2 5 °Cにて 5時間攪拌すると、 褐色の粘調なポリアミド酸溶液が得られた。 得られたポリアミ ド酸溶液 1 0 0質 量部に対して A Aを 1 5質量部、 I Qを 3質量部の割合で混合し、 これを厚さ 1 8 8ミクロン、 幅 8 0 O mmのポリエステノレフイノレム (コスモシャイン A 4 1 0 0 (東洋紡績株式会社製))の滑剤を含まない面に幅 7 4 O mmとなるようにコー ティングし (スキージ /ベルト間のギャップは、 4 3 0 /z m)、 4つの乾燥ゾーン を有する連続式乾燥炉に通して乾燥した。
各ゾーンはフィルムを挟んで上下に各 3列のスリット状の吹き出し口を有し、 各吹き出し口間の熱風温度はプラスマイナス 1 . 5 °C、 風量差はプラスマイナス 3 %の範囲で制御できるよう設定されている。 また幅方向についてはフィルム有 効幅の 1 . 2倍に相当する幅までの間、 プラスマイナス 1 °C以内となるように制 御がなされている。
フィルムから上下 3 0 mm離れた温度を以下の通り設定した。
乾燥条件 A
レべリングゾーン 温度 2 5 °C、 風量なし
第 1ゾーン 上側温度 1 0 5 °C、 下側温度 1 0 5 °C 風量 上下とも 20m3Z分
第 2ゾーン 上側温度 100 °C、 下側温度 100 °C
風量 上下とも 30m3Z分
第 3ゾーン 上側温度 95 °C、 下側温度 100°C
風量 上下とも 20m3/分
第 4ゾーン 上側温度 90 ° (:、 下側温度 100 °C
上側風量 1 5 m3/分、 下側風量 20 m3 分 各ゾーンの長さは同じであり、 総乾燥時間は 18分である。
また風量は各ゾーン毎の吹き出し口からの風量の総計である。
かかる乾燥条件において、 第 3ゾーンまでは塗膜表面が指触乾燥状態には至らず 、 ほぼ定率乾燥条件となっていることが確認されている。
塗膜表面は第 4ゾーンに入ってまもなく指触乾燥に至り以後は減率乾燥的に乾 燥が進行している。 この際に下側の温度、 風量を上側より多めに設定し、 塗膜内 の溶媒の拡散を促進している。
なお、 各ゾーン中央の吹き出し口の真下に当たる部分でフィルム上 1 Ommの 位置に支持された熱電対により、 10 cm間隔でモニターがなされプラスマイナ ス 1. 5 °C以内であることが確認されている。
乾燥後に自己支持性となったポリアミ ド酸フィルムをポリエステルフィルムか ら剥離して、 グリーンフィルムを得た。 剥離雰囲気温度は 27 °Cであった。 得られたグリーンフィルムの厚み、 IMA、 IMB測定値から求めた I IMA_ IMB U残溶媒率を表 2に示す。
得られたグリーンフィルムを、 ピンテンターにて両端を把持した状態で窒素置 換された連続式の熱処理炉に通し、 第 1段として 180°Cで 5分、 その後昇温速 度 4°CZ秒で昇温し第 2段として 400°Cで 5分の条件で 2段階の加熱を施して 、 イミ ド化反応を進行させた。 その後、 5分間で室温にまで冷却することで、 褐 色を呈するポリイミ ドフィルムを得た。
なお、 グリーンフィルムを熱処理する際に、 芳香族ポリアミ ド製モノフィラメ ントストランドからなるブラシをフィルム両端部に接するように設け、 ピンテン ターのピンにフィルム両端が均一に突き刺さるようにした。 得られたポリイミ ドフィルムの厚み、 カール度を表 2に示す。
更に、 得られたポリイミドフィルムをロール状に巻き上げフィルムロールとし た。
巻き上げ条件 (卷き取りテンション、 卷取り方法及びロール曲率半径) は表 2 のとおりである。 得られたロールの卷外側と卷芯側のフィルムの線膨張係数の変 動率及び反り度の最大値と最小値を表 2に示す。
(実施例 9 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 P— P D Aを入 れた。 次いで、 DMA Cを加えて完全に溶解させてから、 B P D Aを加えて、 モ ノマーとしての P— P D Aと B P D Aとが 1 / 1のモル比で D MA C中重合し、 モノマー仕込濃度が 1 5質量%となるようにし、 2 5 °Cにて 5時間攪拌すると、 褐色の粘調なポリアミド酸溶液が得られた。 得られたポリアミ ド酸溶液をステン レスべノレト上にコーティングし (スキージ Zベノレト間のギャップは、 4 5 0 /i m )、実施例 8と同様の方法で乾燥した。乾燥後に自己支持性となったポリアミ ド酸 フィルムをステンレスベルトから剥離してグリーンフィルムを得た。
得られたグリーンフィルムの厚み、 I MA、 I MB測定値から求めた I I MA— I MB I、 残溶媒率を表 2に示す。
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段として 1 8 0 °Cで 3分、 その後昇温速度 4 °C/秒で昇温し第 2段として 4 6 0 °Cで 5分の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で室温にまで冷却することで、 褐色を呈するポリイミ ドフィルムを得た。 得られたポリイミドフィルムの厚み、 カール度を表 2に示す。
更に、 得られたポリイミ ドフィルムをロール状に巻き上げフィルムロールとし た。 巻き上げ条件 (巻き取りテンション、 卷取り方法及びロール曲率半径) は表 2のとおりである。 得られたロールの卷外側と卷芯側のフィルムの線膨張係数の 変動率及び反り度の最大値と最小値を表 2に示す。
(比較例 9〜: L 1 )
実施例 8で得られたポリアミ ド酸溶液 1 0 0質量部に対して AAを 1 5質量部 、 I Qを 3質量部の割合で混合し、 これをステンレスベルト上にコーティングし (スキージ /ベルト間のギャップは、 430 zm)、実施例と同様の乾燥装置にて 乾燥を行った。 なお乾燥条件 (温度はフィルムから上下 3 Omm離れた温度) は 以下の通りである。
乾燥条件 B
レベリングゾ一ン 温度 25°C、 風量なし
第 1ゾーン 温度 上下とも 1 10°C
風量 上下とも 2 Om3 //分
第 2ゾーン 温度 上下とも 1 20 °C
風量 上下とも 20m3Z分
第 3ゾーン 温度 上下とも 1 20°C
風量 上下とも 2 Om3ノ分
第 4ゾーン 温度 上下とも 1 20°C
風量 上下とも 20m3Z分
各ゾーンの長さは同じであり、 総乾燥時間は 9分である。
また風量は各ゾーン毎の吹き出し口からの風量の総計である。
かかる乾燥条件においては、 第 2ゾーン中央で塗膜表面が指触乾燥状態に至り 、 以後は減率乾燥的な乾燥が行われている物と推察される。
乾燥後に自己支持性となったポリアミド酸フィルムをステンレスベルトから剥 離して、 表 2に示す厚さのグリーンフィルム 3種、 比較例 9、 比較例 1 0、 比較 例 1 1を得た。
得られた各グリーンフィルムの I MA、 IMBを測定し、 その I I MA— I MB Iを求めた。 結果を表 2に示す。
得られた各グリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1段として 180 °Cで 3分、 その後昇温速度 4 °CZ秒で昇温し第 2段として 40 0°Cで 2分の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後 、 5分間で室温にまで冷却することで、 褐色を呈する各ポリイミ ドフィルムを得 た。 得られたポリイミドフィルムの厚み、 カール度を表 2に示す。
更に、 得られたポリイミ ドフィルムをロール状に卷き上げフィルムロールとし た。 卷き上げ条件 (巻き取りテンション、 卷取り方法及びロール曲率半径) は表 2のとおりである。 得られた口一ルの巻外側と卷芯側のフィルムの線膨張係数の 変動率及び反り度の最大値と最小値を表 2に示す。
(比較例 1 2〜 1 4 )
実施例 9で得られたポリアミド酸溶液をステンレスベルト上にコーティングし (スキージ /ベルト間のギャップは、 4 5 0 z m)、乾燥方法を種々変更して乾燥 した。 乾燥後に自己支持性となったポリアミ ド酸フィルムをステンレスベルトか ら剥離して、 表 2に示す厚さのグリーンフィルム 3種、 比較例 1 2、 比較例 1 3 、 比較例 1 4を得た。
得られた各グリーンフィルムの I MA、 I MBを測定した。
得られた各グリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1段として 1 8 0 °Cで 3分、 その後昇温速度 4 °CZ秒で昇温し第 2段として 4 6 0 °Cで 2分の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後 、 5分間で室温にまで冷却することで、 褐色を呈する各ポリイミ ドフィルムを得 た。 得られたポリイミ ドフィルムの厚み、 カール度を表 2に示す。
更に、 得られたポリイミ ドフィルムをロール状に巻き上げフィルムロールとし た。 巻き上げ条件 (卷き取りテンション、 巻取り方法及びロール曲率半径) は表 2のとおりである。 得られた口一ルの卷外側と卷芯側のフィルムの線膨張係数の 変動率及び反り度の最大値と最小値を表 2に示す。
(実施例 1 0 )
窒素導入管、 温度計、 攪拌棒を備えた容器を窒素置換した後、 P— P D Aを入 れた。 次いで、 DMA Cを加えて完全に溶解させてから、 B P D Aを加えて、 モ ノマーとしての P— P D Aと B P D Aとが l Z lのモル比で D MA C中重合し、 モノマー仕込濃度が 1 5質量。 /0となるようにし、 2 5 °Cにて 5時間攪拌すると、 褐色の粘調なポリアミド酸溶液が得られた。 得られたポリアミ ド酸溶液をステン レスベルト上にコーティングし (スキージ /ベルト間のギャップは、 4 5 0 // m )、 下記の乾燥条件 (温度はフィルムから上下 3 O mm離れた温度) で乾燥した。 乾燥条件 C
レべリングゾーン 温度 2 5 °C、 風量なし
第 1ゾーン 上側温度 1 0 5 ° (、 下側温度 1 0 5 °C 風量 上下とも 20m3Z分
第 2ゾーン 上側温度 1 00°C、 下側温度 1 00°C
風量 上下とも 3 Om3,分
第 3ゾーン 上側温度 9 5 °C、 下側温度 1 00°C
風量 上下とも 2 Om3,分
第 4ゾーン 上側温度 90 °C、 下側温度 1 00 °C
上側風量 Ι δπι3,分、 下側風量 2 Om3 分 総乾燥時間 27分。
乾燥後に自己支持性となったポリアミ ド酸フィルムをステンレスベルトから剥 離して、 グリーンフィルムを得た。
得られたグリーンフィルムの I MA、 IMBを測定し、 I IMA— IMB | を求め た。 結果を表 2に示す。
得られたグリーンフィルムを、 窒素置換された連続式の熱処理炉に通し、 第 1 段として 1 80 °Cで 3分、 その後昇温速度 4 °CZ秒で昇温し第 2段として 460 °Cで 5分の条件で 2段階の加熱を施して、 イミ ド化反応を進行させた。 その後、 5分間で室温にまで冷却することで、 褐色を呈する各ポリイミ ドフィルムを得た 。 得られたポリイミ ドフィルムの厚み、 カール度を表 2に示す。
更に、 得られたポリイミドフィルムを表 2に記載の条件でロール状に卷き上げ フィルム口ールとした。 得られた口一ルの巻外側と卷芯側のフィルムの線膨張係 数の変動率及び反り度の最大値と最小値を表 2に示す。
(実施例 1 1 )
実施例 9で得られたポリアミ ド酸溶液をステンレスベルト上にコーティングし 、 乾燥条件 C (実施例 1 0と同一条件) の乾燥方法にて乾燥、 イミ ド化処理をし た。
得られたグリーンフィルムの I MA、 I MBを測定し、 I IMA— I MB | を求め た。 結果を表 2に示す。 得られたポリイミ ドフィルムの厚み、 カール度を表 2に 示す。 更に、 得られたポリイミドフィルムロールの卷外側と卷芯側のフィルムの 線膨張係数の変動率及び反り度の最大値と最小値を表 2に示す。
(比較例 1 5 ) イミ ド化処理を TD方向に 1. 8倍延伸し、 第 1段が 1 80°Cで 3分、 昇温速 度 5°C/秒で昇温して第 2段として 430°Cで 1分の条件で 2段階の加熱を施し て、 イミド化反応を進行させ乾燥条件 Cを用いた以外は実施例 8と同様の条件で ポリイミドフィルムを得た。
このポリイミ ドフィルムのカール度を測定したところ、 12. 4%であった。 更に、 得られたポリイミ ドフィルムを表 2に記載の条件でロール状に巻き上げ フィルムロールとした。 得られたロールの巻外側と巻芯側のフィルムの線膨張係 数の変動率及ぴ反り度の最大値と最小値を表 2に示す。
Figure imgf000041_0001
各実施例及び比較例で得られたポリイミ ドフィルムを用いてテスト用片面銅張 積層回路基板を試作した。
表 2にその結果を示す。 表中◎は電子部材は所定位置にはんだ付けされており (画像処理でチェック)、通電テストも問題はなかった、〇は電子部材はほぼ所定 位置にはんだ付けされており (画像処理でチェック)、通電テストによる問題はな かった、 △はサイズの小さい電子部材について位置ズレが認められ、 通電テス ト も異常が認められた、 Xはサイズの小さい電子部材は位置ズレが、 サイズの大き い電子部材は基板からの浮きが認められ、 通電テストにおいても異常が認められ た、 を示す。
各実施例及び比較例で得られたポリイミ ドフィルムを用いてテスト用片面銅張 積層回路基板を試作した。
表 2に評価結果を示す。 表中◎は電子部材が所定位置にはんだ付けされており (画像処理でチェック)、通電テストでも問題はなかったことを示し、〇は電子部 材がほぼ所定位置にはんだ付けされており (画像処理でチェック)、通電テストで 問題はなかったことを示し、 △はサイズの小さい電子部材について位置ズレが認 められ、 通電テス トでも異常が認められたことを示し、 Xはサイズの小さい電子 部材では位置ズレが、 サイズの大きい電子部材では基板からの浮きが認められ、 通電テストにおいても異常が認められたことを示す。 産業上の利用可能性
ポリイミ ド長尺フィルムを基材として使用した電子部品、 例としてプリント配 線板は、 ポリイミド長尺フィルムの片面又は両面に、 例えば線幅 5〜3 0 μ ιη、 線間 5〜3 Ο μ πι、 厚さが 3 ~ 4 0 μ πι程度の配線パターンが形成されたもので ある。 このパターン形成時において蒸着やスパッタリング、 その他の熱処理、 化 学薬品処理が基材フィルムに施され、 この各種処理時に片面がまずそれら処理を 受ける場合が殆どである。 本発明のポリイミド長尺フィルムは、 その表裏面の物 性差、 特に表裏面の 3 0 0 °C熱処理後のカール度、 さらにフィルムの幅方向及ぴ 長手方向における物性差を所定値以下とすることで、 特に高温処理に対してポリ イミド長尺フィルムが反りや歪みを殆ど生じず、 その結果、 得られたプリント配
4 線板は品質が向上し、 歩留まりも向上する。 この様に耐熱性フィルムとしてのポ リイミ ド長尺フィルムは熱に曝される場合が多く、 その熱に対するフィルムの 3 0 o°c熱処理後のカール度の低さが工業製品の基材などに使用される際に極めて 重要な品質となる。
本発明のポリイミ ド長尺フィルムを、 高温に曝される電子部品などの基材とし て使用すれば、 その製造時に該基材の反りや歪みが発生し難く、 高品質の電子部 品製造や歩留まり向上が実現できるため産業上極めて有意義である。 なお、 本出願は、 日本で出願された特願 2005-71134およぴ特願 20 05 - 71135を基礎としており、 それらの内容は本明細書にすべて包含され るものである。

Claims

請求の範囲
1 . 3 0 0 °C熱処理後のカール度が 1 0 %以下であることを特徴とするポリイミ ド長尺フィルム。
2 . 3 0 0 °C熱処理後のカール度が 8 %以下であることを特徴とする請求項 1記 載のポリイミ ド長尺フィルム。
3 . 芳香族テトラカルボン酸類と、 芳香族ジァミン類とを反応させて得られるポ リイミ ドからなることを特徴とする請求項 1又は 2記載のポリイミ ド長尺フィル ム。
4 . ポリイミ ドが芳香族テトラカルボン酸類の残基としてピロメリット酸残基を 少なくとも有し、 かつ芳香族ジァミン類の残基としてジァミノジフエニルェーテ ル残基を少なくとも有することを特徴とする請求項 3記載のポリイミ ド長尺フィ ノレム。
5 . 芳香族テトラカルボン酸類の残基としてさらにビフヱニルテトラカルボン酸 残基を有し、 かつ芳香族ジァミン類の残基としてさらに p—フエ レンジァミン 残基を有することを特徴とする請求項 4記載のポリイミ ド長尺フィルム。
6 . ポリイミドが芳香族テトラカルボン酸類の残基としてビフエ二ルテトラカル ボン酸残基を少なくとも有し、 かつ芳香族ジァミン類の残基としてフエ二レンジ ァミン残基を少なくとも有することを特徴とする請求項 3記載のポリイミ ド長尺 フィルム。
7 . ポリイミ ドの前駆体物質を含む有機溶媒溶液を支持体上に流延塗布して塗膜 を形成し、 次いで当該塗膜を加熱乾燥して前駆体フィルムを形成し、 そして当該 前駆体フィルムに熱処理を施すポリィミド長尺フィルムの製造方法において、 前駆体フィルムの一方面側 (A面側) のイミ ド化率 I MAと、 他方面側 (B面 側) のイミ ド化率 I MBとが下記式の関係を満足するように塗膜を加熱乾燥する ことを特徴とするポリイミド長尺フィルムの製造方法。
式 1 ; I I MA— I MB I ≤ 5
8 . 塗膜面側の雰囲気温度よりもその反対面側の雰囲気温度を 1〜5 5 °C高くし て加熱乾燥することを特徴とする請求項 7記載のポリイミ ド長尺フィルムの製造 方法。
9. 加熱乾燥時間がトータルで 10〜90分であることを特徴とする請求項 7又 は 8記載のポリイミ ド長尺フィルムの製造方法。
10. 塗膜面側の雰囲気温度が 80〜105 °Cであることを特徴とする請求項 8 又は 9記載のポリイミ ド長尺フィルムの製造方法。
1 1. 前駆体フィルムの残留溶媒量が当該前駆体フィルムの全質量に対して 25 ~50質量%であることを特徴とする請求項 7〜 10のいずれか一項に記載のポ リイミ ド長尺フィルムの製造方法。
12. ポリイミ ドの前駆体物質が少なくともピロメリット酸残基とジアミノジフ ェニルエーテル残基とを有するものであることを特徴とする請求項 7〜 1 1のい ずれか一項に記載のポリイミ ド長尺フィルムの製造方法。
13. ポリイミ ドの前駆体物質が少なくともビフエニルテトラカルボン酸残基と フエ二レンジァミン残基とを有するものであることを特徴とする請求項 7〜 12 のいずれか一項に記載のポリイミ ド長尺フィルムの製造方法。
14. ポリイミ ド長尺フィルムをロール状に巻き上げるポリイミ ドフィルムロー ルの製造方法において、
ポリイミ ド長尺フィルムとして請求項 7〜13のいずれか一項に記載の製造方 法により得られたポリイ ミド長尺フィルムを用い、
曲率半径が 30〜 60 Ommの範囲になるように 100 N以上の卷き張力で A 面側を巻内にして口ール状に卷き上げることを特徴とするポリイミ ドフィルム口 —ルの製造方法。
15. 曲率半径が 80〜30 Ommであることを特徴とする請求項 14記載のポ リイミ ドフィルム口ールの製造方法。
16. 線膨張係数の変動率 (CV%) が 25%以下のポリイミ ド長尺フィルムか らなることを特徴とするポリイミ ドフィルム口ール。
17. 曲率半径が 80〜 30 Ommであることを特徴とする請求項 16記載のポ リイミ ドフイノレムロール。
18. 300°C熱処理後のカール度が 10°/0以下であることを特徴とする請求項 16又は 17記載のポリイミ ドフィルム口ール。
19. 反り度の最大値と最小値の差が 5%以下であることを特徴とする請求項 1 6〜1 8のいずれか一項に記載のポリイミ ドフィルムロール。
2 0 . 芳香族ジァミン類と、 芳香族テトラカルボン酸類とを反応させて得られる ポリイミドの長尺フィルムからなることを特徴とする請求項 1 6〜1 9のいずれ か一項に記載のポリイミ ドフィルムロール。
PCT/JP2005/012627 2005-03-14 2005-07-01 ポリイミド長尺フィルム、ポリイミドフィルムロール及びこれらの製造方法 WO2006098044A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005071135 2005-03-14
JP2005-071134 2005-03-14
JP2005071134 2005-03-14
JP2005-071135 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006098044A1 true WO2006098044A1 (ja) 2006-09-21

Family

ID=36991403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012627 WO2006098044A1 (ja) 2005-03-14 2005-07-01 ポリイミド長尺フィルム、ポリイミドフィルムロール及びこれらの製造方法

Country Status (1)

Country Link
WO (1) WO2006098044A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
CN114121341A (zh) * 2021-11-10 2022-03-01 江苏泰祥电线电缆有限公司 一种电线用聚酰亚胺、聚四氟乙烯绝缘复合膜及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111359A (ja) * 1984-11-06 1986-05-29 Ube Ind Ltd ポリイミド膜
JPH1077353A (ja) * 1995-10-03 1998-03-24 Ube Ind Ltd 芳香族ポリイミドフィルム及び銅箔積層フィルム
JP2000085007A (ja) * 1998-09-10 2000-03-28 Du Pont Toray Co Ltd 二軸配向ポリイミドフィルムおよびその製造方法
JP2003206353A (ja) * 2002-01-10 2003-07-22 Du Pont Toray Co Ltd ポリイミドフィルム、およびこれを基材とした金属配線板
JP2004068002A (ja) * 2002-06-13 2004-03-04 Du Pont Toray Co Ltd ポリイミド混交フィルムの製造方法およびこれを基材とした金属配線回路板
JP2005064030A (ja) * 2003-08-12 2005-03-10 Kaneka Corp Tab用テープの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111359A (ja) * 1984-11-06 1986-05-29 Ube Ind Ltd ポリイミド膜
JPH1077353A (ja) * 1995-10-03 1998-03-24 Ube Ind Ltd 芳香族ポリイミドフィルム及び銅箔積層フィルム
JP2000085007A (ja) * 1998-09-10 2000-03-28 Du Pont Toray Co Ltd 二軸配向ポリイミドフィルムおよびその製造方法
JP2003206353A (ja) * 2002-01-10 2003-07-22 Du Pont Toray Co Ltd ポリイミドフィルム、およびこれを基材とした金属配線板
JP2004068002A (ja) * 2002-06-13 2004-03-04 Du Pont Toray Co Ltd ポリイミド混交フィルムの製造方法およびこれを基材とした金属配線回路板
JP2005064030A (ja) * 2003-08-12 2005-03-10 Kaneka Corp Tab用テープの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004496A1 (en) * 2006-07-06 2008-01-10 Toray Industries, Inc. Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
CN114121341A (zh) * 2021-11-10 2022-03-01 江苏泰祥电线电缆有限公司 一种电线用聚酰亚胺、聚四氟乙烯绝缘复合膜及制备方法

Similar Documents

Publication Publication Date Title
TWI408200B (zh) 新穎之聚醯亞胺膜、使用其所得之黏著膜、及可撓性金屬貼合積層板
US20070071910A1 (en) Organic insulating film having controlled molecular orientation, and adhesive film, flexible metal-clad laminate, multilayer flexible metal-clad laminate, coverlay film, tab tape, and COF base tape including the organic insulating film
WO2006114902A1 (ja) 接着シート、金属積層シート及びプリント配線板
WO2006115258A1 (ja) 新規なポリイミドフィルムおよびその利用
KR20130111951A (ko) 폴리이미드 필름의 제조 방법, 폴리이미드 필름, 및 그 폴리이미드 필름을 사용하여 제조한 적층체
JP4967497B2 (ja) ポリイミドフィルム
JP7212480B2 (ja) ポリイミドフィルム、金属張積層板及び回路基板
WO2006001270A1 (ja) 新規なポリイミドフィルム
US20080097073A1 (en) Novel Polyimide Film With Improved Adhesiveness
JP2007098904A (ja) ポリイミドフィルムの製造方法
JP3858892B2 (ja) ポリイミドフィルム
JP3912619B2 (ja) 接着シート、金属積層シートおよびプリント配線板
JP4807073B2 (ja) ポリイミドフィルムの製造方法
JP2006291157A (ja) ポリイミドフィルムロールの製造方法
JP4977953B2 (ja) ポリイミド前駆体フィルム、ポリイミドフィルムの製造方法およびポリイミドフィルム
KR20090013921A (ko) 전자기기 부품용 폴리이미드 필름
JP2014201632A (ja) ポリイミドフィルム、および、その製造方法
KR101210739B1 (ko) 연성 금속 피복 적층판
WO2006098044A1 (ja) ポリイミド長尺フィルム、ポリイミドフィルムロール及びこれらの製造方法
JP2006291164A (ja) ポリイミドフィルム及びその製造方法並びにポリイミドフィルムロール及びその製造方法
KR20210038331A (ko) 폴리이미드 필름, 금속 피복 적층판 및 회로 기판
TW202104372A (zh) 聚醯亞胺薄膜
JP4649960B2 (ja) ポリイミドフィルムおよびその製造方法
JP2006291165A (ja) ポリイミドフィルム及びその製造方法並びにポリイミドフィルムロール及びその製造方法
JP2006321981A (ja) 接着シート、金属積層シートおよびプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05757927

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5757927

Country of ref document: EP