WO2006090889A1 - 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法 - Google Patents

溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法 Download PDF

Info

Publication number
WO2006090889A1
WO2006090889A1 PCT/JP2006/303820 JP2006303820W WO2006090889A1 WO 2006090889 A1 WO2006090889 A1 WO 2006090889A1 JP 2006303820 W JP2006303820 W JP 2006303820W WO 2006090889 A1 WO2006090889 A1 WO 2006090889A1
Authority
WO
WIPO (PCT)
Prior art keywords
weld metal
hydrogen
steel pipe
welding
hydrogen concentration
Prior art date
Application number
PCT/JP2006/303820
Other languages
English (en)
French (fr)
Inventor
Eiji Tsuru
Takuya Hara
Hitoshi Asahi
Hiroshi Morimoto
Yoshio Terada
Tatsuya Yoshida
Kouichi Shinada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP06714941A priority Critical patent/EP1854562B1/en
Priority to US11/884,860 priority patent/US8653400B2/en
Priority to CN2006800060398A priority patent/CN101128273B/zh
Publication of WO2006090889A1 publication Critical patent/WO2006090889A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5185Tube making

Definitions

  • the present invention relates to a high strength welded steel pipe having a tensile strength in the circumferential direction of a base metal and a weld metal formed by arc welding, which is used for a natural gas / crude oil transportation line pipe and the like, of 8500 MPa or more, and its production. On the method. Background art
  • JP 0 3 — 3 1 1 3 2 1 This is disclosed in the gazette.
  • this Japanese Patent Laid-Open No. 2 0 3-3 1 1 3 2 1 describes that transverse cracks in the weld frequently occur in the preceding welded joint, the hydrogen concentration and welding residual stress No specific conditions are disclosed for prevention of lateral cracking by restraint.
  • the amount of diffusible hydrogen diffused in steel at room temperature and heated to 400 ° C or less, and hydrogen embrittlement cracking the amount of diffusible hydrogen is 5 cc or less per 100 g.
  • Proceedings of IPC 2004, October 4-8, 2004, IPC04-0585 Evaluation of Hydrogen Cracking Susceptibility in X120 Girth Welds It has been reported .
  • such knowledge describes gas welding in which steel pipes are welded in multiple passes. Even in the weld zone of seam welding, which is the subject of the present invention, hydrogen is still less than 5 cc per 100 g. It has been confirmed that embrittlement cracking occurs.
  • hydrogen trap sites such as VN are generated in the weld metal to reduce diffusible hydrogen harmful to cracking, and low-temperature transformation melts reduce residual stress at room temperature. There is a way.
  • the use of hydrogen trap sites is not always a useful method for high-strength materials, and the use of low-temperature transformation melts causes a significant cost increase. Disclosure of the invention
  • An object of the present invention is to prevent hydrogen-induced lateral cracking that occurs in the weld of a high-strength welded steel pipe that performs seam welding from the inside and outside surfaces.
  • Hydrogen embrittlement in welds Technology to prevent fracturing cracks includes diffusion of hydrogen or residual stress by heat treatment, reduction of residual stress by imparting plastic deformation, trapping of hydrogen trap, control of residual stress by component design of weld metal, etc.
  • Heating and cooling takes an excessive amount of time to heat up to a relatively high temperature, for example, 600 ° C. where residual stress is reduced, and special processing equipment is used to reduce residual stress due to plastic deformation. Therefore, improvement of metal materials will lead to a significant increase in costs due to the addition of alloy components.
  • the present invention regulates the hydrogen concentration of high strength welded steel pipes with a tensile strength of 8500 ° C or higher, particularly weld metal formed by the preceding seam welding, and is applied to the steel pipe shaft of the welded part that is hydrogen-induced cracking.
  • the present invention provides a technology that can prevent cracks in a perpendicular direction, that is, hydrogen embrittlement cracks.
  • the present invention has been made to solve the above problems, and the gist thereof is as follows.
  • a welded steel pipe manufactured by forming a steel sheet having a tensile strength of 85 O MPa or more into a cylindrical shape, seam welding the butt portion from the inner and outer surfaces, and then performing expansion or contraction correction.
  • the hydrogen concentration of the weld metal formed by the preceding weld is 0.2 cc or less per 100 g at normal temperature. High strength welded steel pipe with excellent embrittlement cracking characteristics.
  • a steel plate having a tensile strength of 85 O MPa or more was formed into a cylindrical shape, the butt portion was seam welded from the inner and outer surfaces, and the seam welding from the inner and outer surfaces was formed by preceding seam welding.
  • High strength welding with excellent resistance to hydrogen embrittlement cracking of the weld metal characterized in that the hydrogen concentration of the weld metal is 0.2 cc or less per 100 g at room temperature, and then pipe expansion or contraction correction is performed.
  • the hydrogen concentration of the weld metal formed by seam welding from the inner and outer surfaces by dehydrogenation treatment is 0.2 cc or less per 100 g at room temperature.
  • the hydrogen concentration of the weld metal formed by the preceding welding is 0.2 cc or less per 100 g at room temperature.
  • the heating temperature T [° C] for dehydrogenation is in the range of 150 to 500 ° C, and the heating time is calculated from the weld metal height h [mm] and the heating temperature T by the following formula:
  • Figure 1 shows the effect of hydrogen content and stress on hydrogen cracking.
  • Figure 2 shows the steel pipe size ⁇ 9 1 4 X 1 6 mm, tensile strength 8 5 0 MPa
  • FIG. 6 is a diagram showing the axial residual stress distribution at the seam welding center of a UOE steel pipe in relation to the position from the inner surface.
  • Figure 3 shows the position where the axial residual stress distribution was obtained.
  • Fig. 4 is a diagram showing the hydrogen concentration frequency distribution in the inner and outer surface weld metal.
  • Fig. 5 is a diagram showing the hydrogen concentration frequency distribution and crack occurrence rate in the inner surface weld metal.
  • Figure 6 shows the hydrogen concentration frequency distribution and crack generation rate of the outer surface weld metal.
  • Fig. 7 is a diagram showing the hydrogen concentration frequency distribution and crack generation rate of internally welded metal containing heat-treated material and oil dripping material.
  • the end of the steel plate is bent with a C press, bent into a U shape with a U press, and then pressed After that, usually after temporary attachment from the outer surface, inner welding is performed by submerged welding, then outer surface welding is performed, and roundness is adjusted by expanding or reducing the tube.
  • the thick steel plate (base material) that is the material of the UO E steel pipe described here has a steel composition of mass%, C: 0.02 to 0.10%, Si: 0.01 to 0. 6%, Mn: l. 5 to 2.5%, P: 0.0 15% or less, S: 0.0.03% or less, Ni: 0.1 to 2.0%, Mo: 0. 1 5 to 0 6 0%, N b • 0. 0 0 1 to 0.1 0%, T i: 0.0 0 5 to 0
  • the components were, by mass, C: 0.04 to 0.14%, Si: 0.05 to 0.4%, Mn: 1. 2 to 2.2%, P: 0.01% or less, S: 0.010% or less, Ni: 1.3 to 3.2%, Cr + Mo + V: 1.0 to 2.5%, T 1: 0. 0 0 3 to 0.0 5 0%, A 1: 0. 0 2% or less, B: 0.0 0 5% or less, 0: 0. 0 1 to 0. It contains 0 3% and consists of the balance Fe and inevitable impurities.
  • the inventor investigated the relationship between the amount of hydrogen and the stress at which hydrogen embrittlement cracking occurs in the weld metal of a high strength welded steel pipe having a tensile strength of 8500 MPa or more as follows.
  • a sample with a circumferential and axial size of 200 mm x 200 mm was taken from the welded steel pipe to contain the inner and outer surface weld metal, immediately cooled with dry ice and stored.
  • This sample From this weld metal, a round bar tensile specimen having a longitudinal direction parallel to the welding direction and a parallel part diameter of 6 mm was collected. These round bar tensile specimens were cadmium plated to prevent hydrogen from escaping.
  • Fig. 1 The results are shown in Fig. 1.
  • the amount of hydrogen was measured by the measurement method described above, that is, the amount of diffusible hydrogen collected by holding at 45 ° C for 72 hours was measured as 100 g This is expressed in terms of the volume of hydrogen contained in per unit [cc].
  • the vertical axis in Fig. 1 represents the stress ⁇ [MPa] by dividing the constant load applied to the specimen by the sectional area of the parallel part of the specimen.
  • the present inventor obtained the residual stress of the weld metal part before pipe expansion in the UOE process by numerical analysis simulation by the finite element method (hereinafter also referred to as FEA). This is because it is difficult to measure non-destructively the residual stress of weld metal that has been welded from inside and outside.
  • FEA finite element method
  • weld metal is formed by welding the inner surface and outer surface in this order, assuming the state before pipe expansion, and at the center line (weld center line) of the weld metal in the circumferential cross section of the steel pipe.
  • the distribution of axial residual stress in the thickness direction is shown by FEA.
  • the horizontal axis in Fig. 2 is the distance from the inner surface to the outer surface of the steel pipe, as schematically shown in Fig. 3.
  • the residual stress shows the maximum value on the inner weld metal side that was welded in advance, and that value reaches the yield strength of the weld metal.
  • the position where the residual stress is maximized coincides with the location where the transverse crack occurs.
  • the presence or absence of hydrogen embrittlement cracking in steel pipes with high strength weld metal depends on the strength of the weld metal, hydrogen concentration, residual stress, and residual stress in the presence of hydrogen. Since it depends on the loading time, the inventors made a high-strength welded steel pipe with a tensile strength of 85 O MPa or more, and the hydrogen concentration and laterality of the inner weld metal after a certain time at room temperature passed. We paid attention to the relationship of cracking.
  • Lateral cracks are left for 72 hours without expanding after inner and outer surface welding, and are detected by ultrasonic flaw detection in accordance with JISG 0 5 8 4, and depending on the position of the lateral cracks detected, It was specified whether the generated site was an internal weld metal or an external weld metal.
  • the hydrogen concentration was measured immediately after sampling. After extracting diffusible hydrogen by holding at 45 ° C for 72 hours, the hydrogen concentration was determined by the gas chromatograph method used in the hydrogen measurement method for steel welds stipulated in JISZ 3 1 1 8 It was measured . The hydrogen concentration was calculated as the concentration per 100 g by dividing the amount of diffusible hydrogen by the mass of the test piece.
  • Figure 4 shows the hydrogen concentration of the inner and outer weld metals in a frequency distribution.
  • Figure 4 shows the average value of hydrogen concentration measured by taking three samples from one steel pipe, less than 0.2, less than 0.2 to 0.4, less than 0.4 to less than 0.6, 0 It is classified into 6 to less than 0.8 and 0.8 to less than 1.0, and the hydrogen concentration of one steel pipe is defined as one frequency.
  • the hydrogen concentration of the inner surface weld metal is dispersed to 0.0 to 0.6 cc per 100 g
  • the hydrogen concentration of the outer surface weld metal is 0.6 to 1. O cc per 100 g. It can be seen that it was distributed.
  • the reason why the hydrogen concentration of the inner metal is lower than that of the outer surface is that the inner weld metal was also heated during the outer surface welding and hydrogen diffused.
  • Figure 5 shows the relationship between the hydrogen concentration frequency distribution of the inner weld metal and the probability of cracking. It was found that transverse cracking began to occur when the hydrogen concentration exceeded 0.2 c c per 100 g.
  • the crack occurrence probability is the probability that a lateral crack is detected in the inner weld metal of a steel pipe with the same average value of hydrogen concentration. For example, the average value of hydrogen concentration is 0.2 to 0.4. If it is less than cc, the frequency is 4 and the probability of cracking is 20%, which means that one of the four steel pipes has a transverse crack detected. Lateral cracks that occurred in the inner surface weld metal were detected by the ultrasonic flaw detection method in accordance with JIS G 0 5 8 4.
  • Figure 6 shows the relationship between the hydrogen concentration frequency distribution of the outer surface weld metal and the crack occurrence probability. Show. In the outer surface weld zone, cracks did not occur even though the hydrogen concentration was higher than the inner surface hydrogen concentration. The reason for this is that the residual stress peak shown in Fig. 2 occurs on the inner surface, suggesting the need to suppress the hydrogen concentration of the inner surface metal to a lower level.
  • the crack occurrence probability is the probability that a lateral crack is detected on the outer surface weld metal of the steel pipe with the same average value of the hydrogen concentration
  • the transverse crack is an ultrasonic wave in accordance with JISG 0 5 8 4 Detected by flaw detection.
  • Figure 7 shows the relationship between the hydrogen concentration frequency distribution and crack probability of the inner weld metal.
  • the hydrogen concentration was 0.2 cc or less per 100 g, there was no cracking from the weld metal.
  • the hydrogen concentration exceeded 0.4 cc per 100 g, transverse cracking was confirmed in all samples. From the above, it is clear that the occurrence of transverse cracks can be prevented stably by controlling the hydrogen concentration of the inner weld metal to less than 0.2 cc per 100 g. I got it.
  • Hydrogen-induced cracking occurs in the weld metal formed by the preceding shim welding near room temperature.
  • the transformation point of weld metal in high-strength welded steel pipes with a strength of 8500 MPa or more is 3 0 to 4 0 0 ° C.
  • the temperature of the weld metal exceeds 100 ° C
  • the residual stress of the inner surface weld metal is less than 500 MPa
  • the temperature drops below 100 ° C the residual stress of the inner surface weld metal
  • the outer surface weld metal has a residual stress of 60 O MPa at room temperature, there is no cracking even though the hydrogen concentration is 0.66 to 0.88 cc per 100 g. It is.
  • the hydrogen concentration of the inner surface weld metal is lower than that of the outer surface weld metal, and the residual stress of the inner surface weld metal above 100 ° C is lower than the residual stress of the outer surface weld metal at room temperature. Above C, hydrogen embrittlement cracks do not occur in the inner weld metal.
  • the temperature of the weld metal on the inner surface is less than 100 ° C, the hydrogen diffusion is extremely slow and the decrease in the hydrogen concentration is suppressed, and if the residual stress of the weld metal on the inner surface rises to exceed the tensile strength, transverse cracking occurs. It will occur. Therefore, defining the hydrogen concentration at room temperature has an important meaning for preventing hydrogen embrittlement cracking.
  • the present inventor also examined the possibility of cracking during the period from the preceding inner surface welding to the subsequent outer surface welding in the manufacturing process of the welded steel pipe.
  • the hydrogen concentration of the inner surface weld metal before the outer surface welding is equivalent to the hydrogen concentration of the outer surface shown in FIG. 4, and is in the range of 0.6 to 1. O cc per 100 g.
  • the hydrogen concentration of the inner surface weld metal before seam welding from the outer surface is much higher than the hydrogen concentration after the outer surface welding.
  • the maximum residual stress generated only by internal welding was 500 MPa, indicating that cracking did not occur despite the high hydrogen concentration. Therefore, in order to prevent hydrogen embrittlement cracking, it is necessary to keep the hydrogen concentration of the weld metal on the inner surface below 0.2 cc per 100 g from room temperature until the pipe expansion after the outer surface welding. It is.
  • a method for suppressing the hydrogen concentration of the weld metal of the high-strength welded steel pipe to less than 0.2 cc per 100 g for example, there is a method of post-heat treatment after external surface welding.
  • Prevention of hydrogen embrittlement cracking by post-heat treatment is preferably performed at a heating temperature of 200 ° C. or more and 400 ° C. or less, and a holding time at the heating temperature of 1 minute to 20 minutes. The effect can be obtained in a short time.
  • Other specific methods include preheating in seam welding, groove cleaning, degreasing and drying, extremely high level of flux drying, and hydrogen diffusion of weld metal on the inner surface by increasing the heat input of seam welding from the outer surface. Is mentioned.
  • the method of reducing the hydrogen concentration by post-heating the weld metal after seam welding from the inside and outside surfaces is an effective measure for preventing hydrogen embrittlement cracking, but requires relatively long heat treatment at a relatively high temperature. In particular, as the steel pipe becomes thicker, a longer treatment time is required. When the heating temperature is the same, the time required for heating increases in proportion to the square of the wall thickness.
  • the present inventor examined a method for preventing transverse cracking by a short heat treatment. As is clear from the residual stress distribution in Fig. 2 and the results in Figs. 5 and 6, in order to prevent transverse cracking, the hydrogen concentration in the inner surface weld metal formed by the preceding seam welding should be reduced. . First, after seam welding from the inner surface, the present inventor left it for one week to diffuse hydrogen, and then performed seam welding from the outer surface.
  • the hydrogen concentration of the inner surface weld metal after outer surface welding was 0.2 cc ZlOOg or less, and no transverse cracks were generated.
  • the hydrogen concentration of the inner surface weld metal was 0.2 cc ZlOOg or less, and no transverse cracks occurred.
  • the heating temperature for dehydrogenation is 150 ° C or less, the time required to reduce the hydrogen concentration to 0.2 cc / 100 g or less becomes long, and when it exceeds 500 ° C, high-strength welding is performed.
  • the toughness of steel pipe base metal deteriorates due to thermal effects.
  • the heating temperature for the dehydrogenation treatment is preferably within the range of 150 to 500 ° C.
  • the heating time for the dehydrogenation treatment is preferably longer than t in the following formula (1) based on the experimental results.
  • the hydrogen concentration of the inner surface weld metal after outer surface welding can be reduced to 0.2 cc / 100 g or less.
  • Table 1 shows steel pipe size * 7 1 1 X 1 3 t, ⁇ 7 6 2 X 1 6 t ⁇ 9 1 4 X 1 6 t, 1 1 1 8 ⁇ 1 9 ⁇ , ⁇ 1 2 1 9 ⁇ 1 9 1: Steel pipe strength 8 5 0 to 1 1 0 0 MPa, steel pipe strength 9 0 0 to 1 0 5 0 3 ⁇ 4 ⁇ 1100 £ forming process, bending roll (BR) forming process, seam welding in order of inner surface and outer surface Examples and comparative examples were shown. The tensile strength in Table 1 was measured by collecting API full thickness test pieces from the base material with the longitudinal direction as the circumferential direction.
  • the base material of the UO E steel pipe used in this example is mass%, C: 0.08%, Si: 0.15%, Mn: 1.85%, P: 0.01 1%, S: 0. 0 0 0 3%, Ni: 0.38%> Mo: 0.34%, Nb:
  • the welding wire used for the above welding is mass%, C: 0.041%, Si: 0.21%, Mn: 1.73%, Ni: 4.9%, C r + M o + V: 4.3%, T i: 0. 0 0 5%, A 1: 0.0 1
  • the occurrence of transverse cracking was detected by ultrasonic flaw detection in accordance with JISG 0 5 8 4 after leaving the outer surface welded and left for 72 hours until pipe expansion.
  • the hydrogen concentration was measured after inner surface welding and outer surface welding, and 4 hours after the outer surface welding in the period before the pipe expansion process. At that time, the hydrogen concentration was measured.
  • As a test piece for measuring the hydrogen concentration a 200 mm x 200 mm sample containing inner and outer weld metal was taken and stored in dry ice. A 5 mm x 5 mm x 40 mm test piece was taken from the inner surface weld metal of this sample, extracted with diffusible hydrogen at 45 ° C for 72 hours, and then measured using a gas chromatographic method. It was.
  • the gas chromatograph method the method used in the hydrogen measurement method for steel welds specified in JISZ 3 1 1 8 was used. Table 1 shows the hydrogen concentration as an average of the three specimens.
  • Table 2 shows the steel pipe sizes ⁇ 7 1 1 ⁇ 1 3 1 ;, ⁇ 7 6 2 X 1 6 t, 9 1 4 X 1 6 t, 1 1 1 8 X 1 9 t, ⁇ 1 2 1 9 ⁇ 1 9 1 :, Steel pipe strength 8 50 0 to 1 1 0 OMPa UOE E forming process, Bending roll (BR) Forming pipe, seam welding in order of inner surface and outer surface, and then applying the prescribed heat treatment Examples and comparative examples were shown.
  • Example 1 As shown in 7 to 35, when heated for more than the heating time required by the present invention, the hydrogen concentration becomes 0.2 cc / 100 g or less per 100 g, and hydrogen embrittlement occurs. Although cracking did not occur, as shown in Comparative Examples 36 to 42, when the time was short, the hydrogen concentration was 0.2 cc or more per 100 g, and cracking occurred. table 1
  • hydrogen embrittlement cracking can be prevented from occurring in a weld portion of a high strength welded steel pipe having a tensile strength of 8500 MPa or more, which is used for natural gas, crude oil transportation line pipes, and the like. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

本発明は、溶接部脆化割れ特性に優れた高強度溶接鋼管、及びその製造方法を提供するもので、引張強度が850MPa以上でシーム溶接を内外面から行い、その後、拡管あるいは縮管矯正を行う溶接鋼管の製造法において、前記鋼管の内外面で先行する溶接金属の水素濃度が前記矯正までの間に常温で100g当たり、0.2cc以下であることを特徴とする溶接金属の耐水素脆化割れ特性に優れた溶接鋼管の製造方法、及び先行する溶接金属の水素濃度が常温で100g当たり、0.2cc以下であることを特徴とする溶接金属の耐水素脆化割れ特性に優れた溶接鋼管。

Description

溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造 方法 技術分野
本発明は、 天然ガス · 原油輸送用ラインパイプ等に用いられる、 母材およびアーク溶接によって形成された溶接金属の周方向の引張 強度が 8 5 0 MP a以上である高強度溶接鋼管およびその製造方法に 関する。 背景技術
近年、 天然ガスを輸送する長距離パイプラインにおいて輸送の効 率化、 付帯設備のコス ト削減の観点から引張強度が 8 5 O MP a以上 である高強度大径ラインパイプの敷設が検討され始めてきた。 この ようなラインパイプは通常、 U O E方式、 U O C方式、 J 〇 E方式 やベンディ ングロール方式により、 鋼板を筒状にして突合せ部をシ ーム溶接して造管される。 この場合、 つなぎ目となるシ一ム溶接部 はサブマージアーク溶接により、 通常、 内面溶接、 外面溶接の順で 形成される。 しかしながら、 外面溶接後の非破壊検査でシーム溶接 部に鋼管軸方向に直角方向の割れ、 いわゆる横割れが散見される場 合がある。
このような横割れが残存した鋼管を凍土地帯で使用すると、 温度 の季節変動によって、 軸方向に管体の降伏強度を超えるような引張 応力が負荷されて破壊する危険性や、 繰り返しの応力負荷により割 れが進展して輸送流体が漏洩し、 大事故につながる危険性がある。 このため製造時の割れ発生を未然に防ぐか、 発生した割れを非破壊 検査により確実に検出し、 除去しなければならない。
シーム溶接部の横割れは、 高強度材の脆化割れの一種である。 こ の脆化割れは水素によるものが一般的であり、 水素脆化割れとも呼 ばれ、 強度が低下すると発生しにく くなる。 しかしながら、 シーム 溶接部の強度を低下させると脆化割れは起きにく くなるものの、 内 圧負荷時に選択的にシーム溶接部からの変形が促進され、 溶接部か らの破断に至る場合も想定される。 したがって、 溶接金属の強度を 母材強度以上に保ちながら水素脆化割れを防止する方法が必要とな つ 7こ。
水素脆化割れは水素濃度、 負荷応力、 材料特性、 特に強度に依存 するため、 複合的な効果によって水素脆化割れが発生しないように 、 これらを限界値以下に制御する必要がある。 水素濃度を低下させ る方法として溶接後、 1 0 0 °C以上、 好ましくは 2 0 0 °C以上に加 温し、 適切な時間だけ保持する方法、 いわゆる後熱は、 シーム溶接 後に溶接金属を加熱し、 横割れが発生する限界以下の水素濃度にな るように、 水素を拡散させる方法である。
このような観点から、 U〇 E鋼管の溶接金属の強度、 母材強度、 溶接条件を複合的に抑えることで高強度材のシーム溶接部の水素脆 化割れを防止する技術が特開 2 0 0 3 — 3 1 1 3 2 1号公報に開示 されている。 この特開 2 0 0 3 - 3 1 1 3 2 1号公報には溶接部の 横割れが先行するシ一ム溶接部で頻発することについては述べられ ているものの、 水素濃度、 溶接残留応力の抑制による横割れ防止に ついて、 具体的な条件は開示されていない。
また、 溶接後、 鋼管全体を焼入れ、 焼戻しすることで靭性の低下 、 及び凝固割れを防止する方法が特開昭 5 7 — 3 5 6 3 6号公報に 提案されているが、 水素濃度、 溶接残留応力については触れられて いない。 その他に水素脆化割れを誘起する要因である残留応力を緩 和させる方法として、 溶接後 7 0 0 °C程度まで加熱するいわゆる応 力除去焼純や、 ハンマーピーニングによる殴打などで溶接部に塑性 変形を与えることで残留応力を低下させる方法もあるが、 水素濃度 と残留応力の関係が横割れに及ぼす影響については不明であり、 耐 水素脆化割れ性は充分改善されていない。 また、 これらの方法は溶 接後、 直ちに行う必要があり、 製造工程、 製造コス トを考慮すると 必ずしもシーム溶接部への適用には適切な方法ではない。
常温で鋼中を拡散し、 4 0 0 °C以下までの加熱時に放出される拡 散性水素量と水素脆化割れとの関係については、 拡散性水素量が 1 0 0 g当たり 5 c c以下であれば 8 2 7 MPaを超えるような高強度 材においても水素脆化割れが起こらないことが Proceedings of IPC 2004, October 4 - 8, 2004, IPC04-0585 Evaluation of Hydrogen Cracking Susceptibility in X120 Girth Weldsに報告されている 。 しかし、 係る知見は鋼管同士を多パスで溶接するガス溶接につい て述べているものであり、 本発明が対象とするシーム溶接における 溶接部では 1 0 0 g当たり 5 c c以下であっても依然として水素脆 化割れが起こることが確認されている。
また、 溶接材料の改良点として、 VNなどの水素トラップサイ ト を溶接金属に生成させて、 割れに有害な拡散性水素を低減させる方 法や、 低温変態溶材により常温での残留応力を低下させる方法があ る。 しかし、 水素トラップサイ トの活用は高強度材では必ずしも有 用な方法でなく、 また、 低温変態溶材の使用は著しいコス ト上昇を 招く。 発明の開示
本発明は、 内外面からシーム溶接を行う高強度溶接鋼管の溶接部 に生じる、 水素起因の横割れの防止を課題とする。 溶接部の水素脆 化割れを防止する技術として、 熱処理による水素の拡散または残留 応力の低減、 塑性変形付与による残留応力の低減、 水素の トラップ サイ 卜付与、 溶接金属の成分設計による残留応力制御などがあるが
、 残留応力が低減するような比較的高温、 例えば 6 0 0 °Cにまで加 熱するには加熱冷却に過度な時間を要し、 また、 塑性変形による残 留応力低減には特別な加工装置が必要となり、 金属材料の改良は合 金成分の追加による著しいコス ト上昇を招く。
本発明は引張強度が 8 5 0 °C以上の高強度溶接鋼管の溶接金属、 特に先行するシーム溶接によって形成された溶接金属の水素濃度を 規定し、 水素誘起割れである溶接部の鋼管軸に直角な方向の割れ、 すなわち水素脆化割れを防止できる技術を提供するものである。
本発明は上記課題を解決するためになされたものであり、 その要 旨は以下のとおりである。
( 1 ) 引張強度が 8 5 O MPa以上の鋼板を筒状に成形し、 突合せ部 を内外面からシーム溶接し、 その後、 拡管または縮管矯正を行って 製造された溶接鋼管であって、 前記鋼管の内外面からのシーム溶接 のうち、 先行する溶接によって形成された溶接金属の水素濃度が常 温で 1 0 0 g当たり、 0 . 2 c c以下であることを特徴とする溶接 金属の耐水素脆化割れ特性に優れた高強度溶接鋼管。
( 2 ) 引張強度が 8 5 O MPa以上の鋼板を筒状に成形し、 突合せ部 を内外面からシ一ム溶接し、 前記内外面からのシーム溶接のうち、 先行するシーム溶接によって形成された溶接金属の水素濃度を常温 で 1 0 0 g当たり、 0 . 2 c c以下とし、 その後、 拡管または縮管 矯正を行うことを特徴とする溶接金属の耐水素脆化割れ特性に優れ た高強度溶接鋼管の製造方法。
( 3 ) 脱水素処理により、 内外面からのシーム溶接によって形成さ れた溶接金属の水素濃度を常温で 1 0 0 gあたり、 0 . 2 c c以下 とすることを特徴とする上記 ( 2 ) に記載の溶接金属の耐水素脆化 割れ特性に優れた高強度溶接鋼管の製造方法。
( 4 ) 脱水素処理により、 内外面からのシーム溶接のうち、 先行す る溶接によって形成された溶接金属の水素濃度を常温で 1 0 0 gあ たり、 0. 2 c c以下とすることを特徴とする上記 ( 2 ) に記載の 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管の製造方法
( 5 ) 脱水素処理の加熱温度 T [°C] が 1 5 0〜 5 0 0 °Cの範囲で あり、 加熱時間が溶接金属高さ h [mm] および前記加熱温度 Tか ら、 下記式 ( 1 ) により求められた t [ s ] 以上であることを特徴 とする上記 ( 3 ) または ( 4 ) に記載の溶接金属の耐水素脆化割れ 特性に優れた高強度溶接鋼管の製造方法。
t = ( h / 1 6 ) 2 / e x p (- 9 5 7 / ( 2 7 3 + T) ) , · · ( 1 ) 図面の簡単な説明
図 1は、 水素割れ発生におよぼす水素量と応力の影響。
図 2は、 鋼管サイズ Φ 9 1 4 X 1 6 mm、 引張強度 8 5 0 MPaの
UO E鋼管のシーム溶接中心での軸方向残留応力分布を内面からの 位置との関係で示した図である。
図 3は、 軸方向残留応力分布を求めた位置を示した図である。 図 4は、 内外面溶接金属での水素濃度度数分布を示した図である 図 5は、 内面溶接金属の水素濃度度数分布と割れ発生率を示した 図である。
図 6は、 外面溶接金属の水素濃度度数分布と割れ発生率を示した 図である。 図 7は、 熱処理材、 油滴下材を含む内面溶接金属の水素濃度度数 分布と割れ発生率を示した図である。 発明を実施するための最良の形態
引張強度が 8 5 OMPa以上である高強度溶接鋼管を UO E造管プ 口セスで製造する際には、 Cプレスで鋼板の端部を曲げ、 Uプレス で U字形状に曲げ、 次いで〇プレスにより筒状に成形し、 その後、 通常、 外面からの仮付け後、 サブマージ溶接による内面溶接を行い 、 続いて外面溶接を行い、 さらに拡管または縮管矯正により真円度 を整える。
この UO E鋼管のシ一ム溶接部の欠陥を、 J I S G 0 5 8 4 に準拠して、 超音波探傷によって検出すると、 頻度は少ないものの 横割れが散見された。 超音波探傷の結果によって、 欠陥が検出され た位置を特定すると、 横割れは先行して溶接した内面の溶接金属に 発生していることがわかった。 また、 横割れの破面を走査型電子顕 微鏡で観察した結果、 水素脆化割れ特有の破面を呈していることも わかった。
このことから高強度溶接鋼管のシ一ム溶接部に発生する横割れが 、 フラックス、 開先の結露、 大気中の水分などから溶接金属内に取 り込まれた水素と溶接残留応力による水素脆化割れであると結論づ けた。 しかし、 内面溶接を行った後、 外面溶接を行わずに超音波探 傷による欠陥の検出を試みたところ、 内面溶接ままでは横割れが発 生していないことがわかった。
ここで述べる UO E鋼管の素材となる厚鋼板 (母材) は、 その鋼 組成が、 質量%で、 C : 0. 0 2〜 0. 1 0 %、 S i : 0. 0 1〜 0. 6 %、 M n : l . 5〜 2. 5 %、 P : 0. 0 1 5 %以下、 S : 0. 0 0 3 %以下、 N i : 0. 1〜 2. 0 % , M o : 0. 1 5〜 0 . 6 0 %、 N b • 0. 0 0 1〜 0. 1 0 %、 T i : 0. 0 0 5〜 0
. 0 3 0 %、 A 1 : 0 . 0 6 %以下を含有し 、 さらに、 必要に応じ て B : 0 . 0 0 0 1〜 0. 0 0 5 %、 Ν • 0 . 0 0 0 1〜 0 . 0 0
6 %、 V : 0. 0 0 1〜 0 1 0 %、 C u • 0 . 0 1〜 1 • 0 %、
C r : 0 . 0 1 1 . 0 % 、 Z r : 0. 0 0 0 1〜 0. 0 0 5 %、
T a : 0 . 0 0 0 1〜 0. 0 0 5 %、 C a • 0. 0 0 0 1 〜 0. 0
1 %、 R E M : 0 . 0 0 0 1 〜 0. 0 1 % 、 M g : 0. 0 0 0 1〜
0. 0 0 6 %の 1種または 2種類以上を含有し、 残部 F eおよび不 可避的不純物からなる鋼を熱間制御圧延して得られたものである。
上記 U 〇 E鋼管の製造に際しては、 前述の鋼組成を有する J¥鋼板
(母材) を、 質 %で、 C 0. 0 1〜 0 • 1 2 %、 S i • 0. 3
%以下、 M n : 1 . 2〜 2 • 4 %、 N i • 4 . 0〜 8. 5 % 、 C r
+ M o + V : 3 • 0〜 5. 0 %、 T i : 0 0 0 5〜 0. 1 5 %、
A 1 : 0 • 0 2 %以下からなる溶接ワイャ一を用いて入熱 • 1 . 5 k J Zmm〜6. 3 k J /mmで溶接する。
このようにして得られた溶接金属については、 成分が、 質量%で 、 C : 0. 0 4〜 0. 1 4 %、 S i : 0. 0 5〜 0. 4 %、 M n : 1 . 2〜 2 . 2 %、 P : 0. 0 1 %以下、 S : 0 . 0 1 0 %以下、 N i : 1 . 3〜 3. 2 %、 C r +M o + V : 1 . 0〜 2. 5 %、 T 1 : 0. 0 0 3〜 0. 0 5 0 %、 A 1 : 0. 0 2 %以下、 B : 0 . 0 0 5 %以下、 0 : 0. 0 1〜 0. 0 3 %を含有し、 残部 F eおよ び不可避的不純物からなるものである。
本発明者は、 以下のようにして、 引張強度が 8 5 0 MPa以上であ る高強度溶接鋼管の溶接金属の水素脆化割れが発生する応力と水素 量の関係を調査した。 溶接鋼管から内外面溶接金属を含むように、 周方向と軸方向のサイズが 2 0 0 mm X 2 0 0 mmであるサンプル を採取し、 直ちにドライアイスで冷却し、 保存した。 このサンプル の溶接金属から、 長手方向が溶接方向と平行であり、 平行部の直径 が 6 m mである丸棒引張り試験片を採取した。 これらの丸棒引張り 試験片に、 水素が逃散しないようにカ ドミウムめっきを施した。 次 に、 この引張り試験片に一定荷重を 2 4 0時間負荷し、 破断の有無 、 すなわち水素脆化割れ発生の有無を調べた。 更に、 同様にして採 取した平行部直径が 6 m mの丸棒引張り試験片を用いて、 J I S Z 3 1 1 8の鋼溶接部の水素測定方法で採用されているガスクロ マトグラフ法に準拠して水素量を測定した。
結果を図 1 に示すが、 水素量は、 上記の測定方法によって測定し た、 即ち 4 5 °Cで 7 2時間保持して捕集した拡散性水素の量を、 試 験片 1 0 0 g当りに含まれる水素の体積 [ c c ] で表したものであ る。 図 1 の縦軸は、 試験片に負荷した定荷重を試験片の平行部の断 面積で除して、 応力 σ [MP a] で表したものである。
図 1 に示したように、 負荷された応力が高い場合は少量の水素で 水素脆化割れが発生し、 応力が低ければ水素量が多くても水素脆化 割れが発生しない。 また、 図 1から、 水素量 H [ c c ] と引張り応 力 σ [MPa] が、
( H - 0 . 1 ) X ( σ — 5 5 0 ) ≤ 4 5
を満足する場合には、 水素脆化割れは発生しないと推定できる。 し たがって、 先行するシーム溶接によって形成された溶接金属に含有 される水素量を Η [ c c ] 、 該溶接金属に負荷される引張り残留応 力を [MPa] が上記式の関係を満足すれば、 高強度溶接鋼管の水素 脆化割れを防止することができる。
そこで、 本発明者は、 U〇 E工程における拡管前の溶接金属部の 残留応力を有限要素法 (以下、 F E Aともいう。 ) による数値解析 シミュレーショ ンで求めた。 これは、 内外面からシ一ム溶接した溶 接金属の残留応力を非破壊で実測することが困難であるためである 図 2に、 内面、 外面の順でシ一ム溶接して溶接金属を形成し、 拡 管前の状態を仮定し、 鋼管の周方向の断面における溶接金属の中心 線 (溶接中心線) での軸方向の残留応力の肉厚方向の分布を FEAで 求めた結果を示す。 なお、 図 2の横軸は、 図 3に模式的に示したよ うに、 鋼管の内面から外面への距離である。
図 2に示したように、 残留応力は先行して溶接した、 内面溶接金 属側で最大値を示し、 その値は溶接金属の降伏強度に達する。 また 、 残留応力が最大になる位置は横割れの発生個所と一致する。 ここ で、 図 1に示したように、 高強度の溶接金属を有する鋼管の水素脆 化割れの発生の有無は、 溶接金属の強度、 水素濃度、 残留応力、 水 素の存在下で残留応力が負荷される時間によって決まることから、 発明者らは引張強度が 8 5 O MPa以上である高強度溶接鋼管を造管 し、 常温で一定の時間が経過した後の内面溶接金属の水素濃度と横 割れ発生の関係に着目した。
横割れは、 内面溶接および外面溶接の終了後、 拡管せずに 7 2時 間放置し、 J I S G 0 5 8 4に準拠して超音波探傷法により検 出し、 検出された横割れの位置によって、 発生した部位が内面溶接 金属であるか、 外面溶接金属であるかを特定した。
また、 横割れは、 シーム溶接を施してから、 拡管または縮管矯正 までの間に発生するため、 先行して内面からシーム溶接した後、 外 面からシ一ム溶接し、 その後、 拡管または縮管矯正せず、 4時間が 経過して溶接金属が常温近傍になった時点で内面および外面の溶接 金属の水素濃度を測定した。 水素濃度を測定するため、 溶接鋼管か ら内外面溶接金属を含むように、 周方向と軸方向のサイズが 2 0 0 m m X 2 0 0 m mであるサンプルを採取し、 直ちにドライアイスで 冷却し、 保存した。 このサンプルの内面溶接金属および外面溶接金 属から 5 mmX 5 mm X 4 0 mmの試験片を採取した。 拡散性水素 の放出を抑制するため、 水素濃度の測定は、 試験片の採取後、 直ち に行った。 水素濃度は、 4 5 °Cで 7 2時間保持して拡散性水素を抽 出した後、 J I S Z 3 1 1 8に規定されている鋼溶接部の水素 測定方法で採用されているガスクロマトグラフ法によって測定した 。 水素濃度は、 拡散性水素量を試験片の質量で除して、 1 0 0 g当 たりの濃度として算出した。
図 4に内面溶接金属および外面溶接金属の水素濃度を度数分布で 示す。 図 4は、 1本の鋼管から 3本の試料を採取して測定した水素 濃度の平均値を、 0. 2未満、 0. 2〜 0. 4未満、 0. 4〜 0. 6未満、 0. 6〜 0. 8未満、 0. 8〜 1. 0未満に分類し、 1本 の鋼管の水素濃度を 1度数としたものである。 図 3から、 内面溶接 金属の水素濃度は 1 0 0 g当たり、 0. 0〜 0. 6 c c に分散し、 外面溶接金属の水素濃度は 1 0 0 g当たり、 0. 6〜 1. O c c に 分布していたことがわかる。 内面金属の水素濃度が外面に比べて低 い理由は外面溶接時に内面溶接金属も加温され、 水素が拡散したこ とである。
図 5に内面溶接金属の水素濃度度数分布と割れ発生確率の関係を 示す。 水素濃度が 1 0 0 g当たり、 0. 2 c c を超えると横割れが 発生し始めることがわかった。 ここで、 割れ発生確率とは、 水素濃 度の平均値が同等レベルの鋼管の内面溶接金属に横割れが検出され る確率であり、 例えば、 水素濃度の平均値が 0. 2〜 0. 4 c c未 満の場合、 度数が 4、 割れ発生確率が 2 0 %であり、 鋼管 4本のう ち、 1本に横割れが検出されたことを意味する。 なお、 内面溶接金 属に発生した横割れは、 J I S G 0 5 8 4に準拠して超音波探 傷法によつて検出した。
図 6に外面溶接金属の水素濃度度数分布と割れ発生確率の関係を 示す。 外面溶接部では水素濃度が内面の水素濃度より高いにもかか わらず、 割れは発生しなかった。 この理由は図 2 に示めす残留応力 のピークが内面側で起こっていることに起因し、 内面金属の水素濃 度をより低いレベル抑制することの必要性を示唆している。 こ こで 、 割れ発生確率とは、 水素濃度の平均値が同等レベルの鋼管の外面 溶接金属に横割れが検出される確率であり、 横割れは、 J I S G 0 5 8 4に準拠して超音波探傷法によって検出した。
次に、 内面からシーム溶接した後、 外面からシ一ム溶接し、 拡管 または縮径矯正までの間に 1 5 0 〜 2 5 0 °Cに加熱して水素濃度を 低下させた溶接金属の横割れと水素濃度を調査した。 横割れは超音 波探傷法、 水素濃度は、 4 5 °Cで 7 2時間保持して拡散性水素を抽 出し、 J I S Z 3 1 1 8に規定されている鋼溶接部の水素測定 方法で採用されているガスグロマトグラフ法に準拠して水素量を測 定し、 試料の質量 1 0 0 g当りの常温の水素の体積として算出した 。 この場合、 内面溶接金属の水素濃度は 1 0 0 g当たり、 0 . 2 c c以下であつた。
比較のため、 先行する内面からのシーム溶接の前に開先面に油を 付着させて内面外面からシーム溶接して、 内面溶接金属の水素濃度 を高め、 同様に溶接金属の横割れと水素濃度を調査した。 その結果 、 内面溶接金属の水素濃度は 1 0 0 g当たり、 0 . 3 c c以上であ つた。
図 7 に、 内面溶接金属の水素濃度度数分布と割れ確率の関係を示 す。 水素濃度が 1 0 0 g当たり、 0 . 2 c c以下であると溶接金属 からの割れ発生は皆無であった。 一方、 水素濃度が 1 0 0 g当たり 、 0 . 4 c c を超えるとすべてのサンプルに横割れを確認した。 以上から内面溶接金属の水素濃度を 1 0 0 g当たり、 0 . 2 c c 以下に制御することで安定的に横割れ発生を防止できることがわか つた。 引張強度が 8 5 0 MPa以上である高強度溶接鋼管では、 金属 組織による耐水素割れ特性の改善を図ると、 溶接金属の強度が低下 する可能性が高く、 水素濃度の低減は極めて効果的である。
本発明の高強度溶接鋼管の製造方法において常温での水素濃度を 規定した必要性を次に述べる。
水素起因の割れは、 先行するシ一ム溶接によって形成された溶接 金属に、 常温近傍で発生する。 強度が 8 5 0 MPa以上の高強度溶接 鋼管の溶接金属の変態点は 3 0 0〜 4 0 0 °Cである。 この場合、 溶 接金属の温度が 1 0 0 °C超である時には内面溶接金属の残留応力は 5 0 0 MPa以下であり、 温度が 1 0 0 °C以下に低下すると内面溶接 金属の残留応力は上昇して 8 0 0 MPaを超えることが数値解析によ つて明らかになった。
一方、 外面溶接金属は常温での残留応力が 6 0 O MPaであるため 、 水素濃度が 1 0 0 g当たり、 0. 6 6〜 0. 8 8 c cであるにも かかわらず、 割れ発生は皆無である。 内面溶接金属の水素濃度は外 面溶接金属より も低く、 内面溶接金属の 1 0 0 °C以上での残留応力 は、 外面溶接金属の常温での残留応力より も低いことから、 1 0 0 °C以上では内面溶接金属に水素脆化割れが発生することはない。 し かし、 内面溶接金属の温度が 1 0 0 °C以下では水素の拡散は著しく 遅くなつて水素濃度の低下が抑制され、 さらに内面溶接金属の残留 応力が引張強度を超えるまで上昇すると横割れ発生に至る。 したが つて、 常温での水素濃度を規定することには、 水素脆化割れを防止 するための重要な意味がある。
次に、 少なく とも外面溶接後、 拡管または縮径矯正の矯正加工前 までの間、 内面溶接金属の水素濃度を 1 0 0 g当たり、 0. 2 c c以下とすることの必要性について述べる。
拡管または縮径矯正の矯正加工工程ではより良好な真円度を得る ために通常 1 %程度の拡管または縮径矯正を行う。 これにより溶接 金属の残留応力は大きく解放され、 内面金属の残留応力の最大値も
5 0 O MPa以下にまで激減する。 この程度にまで残留応力が低下す ると、 通常の条件でのシ一ム溶接によって導入される水素濃度では 水素脆化割れは発生しない。 また、 水素脆化割れは後行するシーム 溶接から矯正加工工程までの期間に常温近傍で発生していることが 調査の結果、 明確となり、 内面溶接を先行して行い、 拡管により矯 正加工する場合、 少なく とも外面溶接後、 拡管に至るまでの期間に 常温で内面溶接金属の水素濃度を 1 0 0 g当たり、 0 . 2 c c とす ることが必要であるという結論に至った。
本発明者は、 溶接鋼管の製造過程で先行する内面溶接からその後 に続く外面溶接までの期間に割れが発生する可能性についても検討 した。 外面溶接前の内面溶接金属の水素濃度は、 図 4に示す外面の 水素濃度と同等であり、 1 0 0 g当たり、 0 . 6〜 1 . O c cの範 囲である。 すなわち、 外面からシ一ム溶接する前の内面溶接金属の 水素濃度は、 外面溶接後の水素濃度に比べ、 はるかに高い水準にあ る。 しかし、 内面溶接のみによって生じる残留応力は最大で 5 0 0 MP aであり、 水素濃度が高いにもかかわらず、 割れ発生に至らない ことがわかった。 従って、 水素脆化割れ防止には、 外面からのシ一 ム溶接後、 拡管前まで、 常温での、 内面溶接金属の水素濃度を 1 0 0 g当たり、 0 . 2 c c以下にすることが必要である。
以上の高強度溶接鋼管の残留応力による水素脆化割れ発生のメカ ニズムは、 U O E鋼管の製造において、 シ一ム溶接をサブマージァ —ク溶接によって行い、 内面からの溶接を先行して行い、 その後外 面から溶接した場合を想定したものである。 なお、 本発明には、 外 面溶接が先行し、 内面溶接が追従した場合も含まれる。 また、 鋼管 の成形法として U〇 E成形プロセスを例に示したが、 ベンディ ング ロールや J O Cによる成形法でも引張強度 8 5 0 MP a以上の溶接鋼 管であれば、 本発明に含まれる。
シ一ム溶接部への予熱または後熱を行わずに高強度溶接鋼管を製 造する場合、 開先に油の付着のない通常の環境では図 5に示すよう に 2 0 %の確率で割れが発生している。 この場合、 溶接金属に水素 が導入される原因は開先面への結露、 フラックス中の水分などが考 えられ、 通常の製造工程では避けられないレベルである。
高強度溶接鋼管の溶接金属の水素濃度を 1 0 0 g当たり、 0 . 2 c c以下に抑える方法として、 例えば、 外面溶接後、 後熱処理する 方法がある。 後熱処理による水素脆化割れの防止は、 加熱温度を 2 0 0 °C以上、 4 0 0 °C以下、 加熱温度での保持時間を 1分から 2 0 分とすることが好ましく、 高温で加熱するほど短時間で効果が得ら れる。 その他の具体的な方法として、 シーム溶接における予熱、 開 先の洗浄、 脱脂及び乾燥、 極めて高水準でのフラックスの乾燥、 外 面からのシーム溶接の大入熱化による内面溶接金属の水素拡散など が挙げられる。
内外面からのシーム溶接後に溶接金属を後熱して水素濃度を低下 させる方法は、 水素脆化割れの防止に有効な対策であるが、 比較的 、 高温で長時間の熱処理が必要である。 特に鋼管の厚肉化に伴い、 さらに長時間の処理が必要になり、 加熱温度が同じである場合、 肉 厚の二乗に比例して加熱に要する時間が長くなる。
U O E工程で高強度溶接鋼管を量産する場合、 熱処理時間は生産 性に直接影響するため、 1分でも短い方が良い。 そこで、 本発明者 は、 短時間の熱処理で横割れを防止する方法を検討した。 図 2の残 留応力分布、 図 5、 6の結果から明らかなように、 横割れを防止す るには、 先行するシーム溶接によって形成された内面溶接金属中の 水素濃度を低下させれば良い。 まず、 本発明者は、 内面からのシーム溶接後、 1週間放置して水 素を拡散させ、 その後に外面からシーム溶接を行った。 その結果、 外面溶接後の内面溶接金属の水素濃度は 0. 2 c c Z l O O g以 下であり、 横割れは全く発生しなかった。 次に、 内面からのシーム 溶接後、 1 5 0〜 5 0 0 °Cに加熱し、 加熱温度に到達した後、 保持 せず冷却する脱水素処理を実施し、 その後外面からシーム溶接を行 つた。 この場合、 内面溶接金属の水素濃度は 0. 2 c c Z l O O g以下で横割れは全く発生しなかった。
脱水素処理の加熱温度は、 1 5 0 °C以下では水素濃度を 0. 2 c c / 1 0 0 g以下に低下させるのに要する時間が長くなり、 5 0 0 °cを超えると高強度溶接鋼管の母材が靭性が熱影響によって劣化 する。 そのため、 脱水素処理の加熱温度は 1 5 0 ~ 5 0 0 °Cの範囲 内とすることが好ましい。
脱水素処理の加熱時間については、 実験結果に基づいて、 次式 ( 1 ) の tより長時間とすることが好ましい。 これにより、 外面溶接 後の内面溶接金属の水素濃度を 0. 2 c c / 1 0 0 g以下とする ことができる。
t = ( h / 1 6 ) 2 X e x p ( ( 1 7 0 0 0 / ( 2 7 3 + T) ) — 3 0 ) · · · ( 1 )
ここで、 t 加熱時間 [s] 、 h 溶接金属高さ [mm] 、 T 加熱温度 [°C] である。 実施例
以下に本発明を実施例によって詳細に説明する。 なお、 ここで Ψ は直径、 t は肉厚を意味する。
表 1 に鋼管サイズ * 7 1 1 X 1 3 t 、 φ 7 6 2 X 1 6 t ^ 9 1 4 X 1 6 t 、 1 1 1 8 Χ 1 9 ί , Φ 1 2 1 9 Χ 1 9 1:、 鋼管強度 8 5 0〜 1 1 0 0 MPa、 鋼管強度 9 0 0〜 1 0 5 0 ¾ ^の11〇 £成形 プロセス、 ベンディ ングロール (B R) 成形プロセスにより造管し 、 内面、 外面の順番でシーム溶接したときの実施例と比較例を示し た。 なお、 表 1 の引張強度は母材から長手方向を周方向として A P I全厚試験片を採取し、 測定したものである。
本実施例に用いた UO E鋼管の母材は、 質量%で、 C : 0. 0 8 %、 S i : 0. 1 5 %、 M n : 1. 8 5 %、 P : 0. 0 1 1 %、 S : 0. 0 0 0 3 %, N i : 0. 3 8 % > M o : 0. 3 4 %、 N b :
0. 0 2 9 %、 T i : 0. 0 1 3 %、 A 1 : 0. 0 2 %、 B : 0. 0 0 0 8 %、 N : 0. 0 0 2 5 %、 V : 0. 0 5 9 %、 C u : 0. 1 0 %、 C r : 0. 4 5 %を含み、 残部 F eおよび不可避的不純物 からなる成分組成を有していた。
また、 溶接金属については、 質量%で、 C : 0. 0 6 1 %、 S i : 0. 2 6 %, M n : 1. 6 8 %、 P : 0. 0 1 %、 S : 0 %、 N
1 : 2. 4 %、 C r +M o + V : 1. 9 %、 T i : 0. 0 2 %、 A 1 : 0. 0 1— 3 %、 B : 0. 0 0 0 9 %、 O : 0. 0 1 5 %を含み 、 残部 F eおよび不可避的不純物からなる成分組成を有していた。
なお、 上記溶接に用いた溶接ワイヤーは、 質量%で、 C : 0. 0 4 1 %、 S i : 0. 2 1 %, M n : 1. 7 3 %、 N i : 4. 9 %、 C r +M o + V : 4. 3 %、 T i : 0. 0 0 5 %, A 1 : 0. 0 1
2 %以下を含み、 残部 F eおよび不可避的不純物からなる成分組成 を有しており、 溶接条件としての入熱量は 2. 8 k J / mmであつ た。
横割れ発生は外面溶接終了後、 拡管までの間 7 2時間放置し、 J I S G 0 5 8 4に準拠して、 超音波探傷により検出した。 水素 濃度の測定には内面溶接後、 外面溶接を施し、 拡管工程に至る以前 の期間において外面溶接後、 4時間が経過し、 溶接金属が常温近傍 になった時点で水素濃度を測定した。 水素濃度を測定するための試 験片は内外面溶接金属を含む 2 0 0 mm X 2 0 0 mmのサンプルを 採取し、 ドライアイス中に保存した。 かかるサンプルの内面溶接金 属から 5 mmX 5 mmX 4 0 mmの試験片を採取し、 4 5 °Cで 7 2 時間保持の条件で拡散性水素抽出した後、 ガスクロマトグラフ法を 用いて測定を行った。 ガスクロマトグラフ法は、 J I S Z 3 1 1 8で規定されている鋼溶接部の水素測定方法で使用している方法 を用いた。 表 1 中には水素濃度を 3試験片の平均値で示す。
水素濃度が 1 0 0 g当たり、 0. 2 c c以下の鋼管では水素脆化 割れは皆無であった。 これに対し、 水素濃度が 1 0 0 g当たり、 0 . 2超〜 0. 4 c cでは割れが発生する場合と発生しない場合が混 在し、 1 0 0 g当たり、 0. 4 c c を超えるとすべての鋼管に対し て割れが観察された。 こ こで水素濃度が 1 0 0 g当たり、 0. 2超 〜 0. 4 c cのサンプルは、 内外面を溶接した後、 2 0 0 °Cで 3分 間保持する後熱を施した場合を含む。 水素濃度が 1 0 0 g当たり、 0. 4 c c を超えるサンプルに関しては熱処理は施されていない。 表 2に鋼管サイズ Φ 7 1 1 Χ 1 3 1;、 φ 7 6 2 X 1 6 t , 9 1 4 X 1 6 t、 1 1 1 8 X 1 9 t , φ 1 2 1 9 Χ 1 9 1:、 鋼管強度 8 5 0〜 1 1 0 OMPaの UO E成形プロセス、 ベンディングロール (B R) 成形プロセスにより造管し、 内面、 外面の順番でシーム溶 接した後、 所定の熱処理を施したときの実施例と比較例を示した。 実施例 1 7〜 3 5に示すように本発明で必要とされる加熱時間以 上に加熱された場合、 水素濃度が 1 0 0 g当たり、 0. 2 c c / 1 0 0 g以下となり水素脆化割れは発生していないが、 比較例 3 6 〜 4 2に示すように時間が短い場合は水素濃度が 1 0 0 g当たり、 0. 2 c c以上となり割れが発生している。 表 1
Figure imgf000020_0001
表 2
Figure imgf000021_0001
産業上の利用可能性
本発明によれば、 天然ガス , 原油輸送用ラインパイプ等に用いら れる、 引張強度が 8 5 0 MP a以上である高強度溶接鋼管の溶接部で の水素脆化割れの発生を防止することが可能となる。

Claims

1. 引張強度が 8 5 O MPa以上の鋼板を筒状に成形し、 突合せ部 を内外面からシ一ム溶接し、 その後、 拡管または縮管矯正を行って 製造された溶接鋼管であって、 前記鋼管の内外面からのシ一ム溶接 のうち、 先行する溶接によって形成された溶接金属の水素濃度が常 請
温で 1 0 0 g当たり、 0. 2 c c以下であることを特徴とする溶接 金属の耐水素脆化割れ特性に優れた高強度溶接鋼管。
2. 引張強度が 8 5 OMPa以上の鋼板を筒状に成形し、 突合せ部 を内外面からシ一ム溶接し、 前記内外面からのシ一ム溶接のうち、 先行するシーム溶接によって形成された溶囲接金属の水素濃度を常温 で 1 0 0 g当たり、 0. 2 c c以下とし、 その後、 拡管または縮管 矯正を行う ことを特徴とする溶接金属の耐水素脆化割れ特性に優れ た高強度溶接鋼管の製造方法。
3. 脱水素処理により、 内外面からのシーム溶接によって形成さ れた溶接金属の水素濃度を常温で 1 0 0 gあたり、 0. 2 c c以下 とすることを特徴とする請求項 2に記載の溶接金属の耐水素脆化割 れ特性に優れた高強度溶接鋼管の製造方法。
4. 脱水素処理により、 内外面からのシーム溶接のうち、 先行す る溶接によって形成された溶接金属の水素濃度を常温で 1 0 0 gあ たり、 0. 2 c c以下とすることを特徴とする請求項 2に記載の溶 接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管の製造方法。
5. 脱水素処理の加熱温度 T [°C] が 1 5 0〜 5 0 0 °Cの範囲で あり、 加熱時間が溶接金属高さ h [mm] および前記加熱温度 Tか ら、 下記式 ( 1 ) により求められた t [ s ] 以上であることを特徴 とする請求項 3または 4に記載の溶接金属の耐水素脆化割れ特性に 優れた高強度溶接鋼管の製造方法。 ( T ) · · ·
( ( + ε L z ) Z 9 6 - ) d x 9 / 2 ( 9 I / q ) = ; Z8C0C/900Zdf/X3d 688060/900Z OAV
PCT/JP2006/303820 2005-02-25 2006-02-22 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法 WO2006090889A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06714941A EP1854562B1 (en) 2005-02-25 2006-02-22 Method of production of a high-strength welded steel pipe excellent in hydrogen embrittlement cracking resistance of weld metal
US11/884,860 US8653400B2 (en) 2005-02-25 2006-02-22 High strength welded steel tube superior in hydrogen embrittlement cracking resistance of weld metal and method of production of same
CN2006800060398A CN101128273B (zh) 2005-02-25 2006-02-22 焊接金属的耐氢脆开裂特性优良的高强度焊接钢管及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-050911 2005-02-25
JP2005050911 2005-02-25
JP2006025897A JP4403145B2 (ja) 2005-02-25 2006-02-02 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法
JP2006-025897 2006-02-02

Publications (1)

Publication Number Publication Date
WO2006090889A1 true WO2006090889A1 (ja) 2006-08-31

Family

ID=36927517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303820 WO2006090889A1 (ja) 2005-02-25 2006-02-22 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法

Country Status (6)

Country Link
US (1) US8653400B2 (ja)
EP (1) EP1854562B1 (ja)
JP (1) JP4403145B2 (ja)
KR (2) KR101066719B1 (ja)
CN (1) CN101128273B (ja)
WO (1) WO2006090889A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916940B2 (ja) * 2007-04-10 2012-04-18 新日本製鐵株式会社 溶接鋼管の熱処理方法及び熱処理装置
EP2151296A4 (en) * 2007-05-25 2015-10-28 Nippon Steel & Sumitomo Metal Corp UOE STEEL PIPE AND PROCESS FOR PRODUCING THE SAME
JP2011031249A (ja) * 2009-07-29 2011-02-17 Kobe Steel Ltd 高張力鋼板のレーザ溶接方法
WO2011076383A1 (en) * 2009-12-21 2011-06-30 Tata Steel Ijmuiden B.V. High strength hot dip galvanised steel strip
JP2012006069A (ja) * 2010-06-28 2012-01-12 Jfe Steel Corp 圧潰特性に優れた鋼管
CN102492395B (zh) * 2011-11-29 2013-11-06 重庆红宇摩擦制品有限公司 加入高回弹石墨的低金属摩擦材料的配方及制备方法
JP2013193124A (ja) * 2012-03-22 2013-09-30 Hitachi Zosen Corp 構造用鋼材の溶接方法及び溶接鋼構造物
WO2015147684A1 (ru) 2014-03-28 2015-10-01 Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" Способ сварки трубопроводов из высокопрочных труб с контролируемым тепловложением
CA2964729C (en) 2014-11-19 2020-03-10 Nippon Steel & Sumitomo Metal Corporation Laser welded joint, vehicle component, manufacturing method of laser welded joint, and manufacturing method of vehicle component
JP6705249B2 (ja) * 2016-03-29 2020-06-03 日本製鉄株式会社 テーラードブランク材からなるプレス成形品の製造方法
CN106736262A (zh) * 2016-11-24 2017-05-31 唐山开元特种焊接设备有限公司 H型钢生产工艺
CN107991455B (zh) * 2017-10-12 2020-11-24 江阴兴澄特种钢铁有限公司 一种检验与研究hic试样裂纹的可靠方法
CN110446582B (zh) 2018-03-27 2020-07-28 日本制铁株式会社 埋弧焊用Ni基合金丝以及焊接接头的制造方法
CN110446583B (zh) * 2018-03-27 2021-01-12 日本制铁株式会社 电焊条用的Ni基合金焊芯、电焊条以及电焊条的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161328A (ja) * 1997-08-28 1999-03-05 Sumitomo Metal Ind Ltd 高Mn鋼鋳片、その連続鋳造方法および高張力鋼材の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166321A (en) 1980-05-27 1981-12-21 Nippon Steel Corp Manufacture of nonrefined high tensile steel
JPS5735636A (en) 1980-08-14 1982-02-26 Nippon Kokan Kk <Nkk> Production of high tensile steel pipe
US4475963A (en) * 1981-02-05 1984-10-09 Kabushiki Kaisha Kobe Seiko Sho Method for postweld heat treatment
JPS62124219A (ja) 1985-11-22 1987-06-05 Nisshin Steel Co Ltd フエライト系ステンレス鋼板のテイグ溶接加工方法
US5091628A (en) * 1989-09-11 1992-02-25 The Lincoln Electric Company Low hydrogen basic metal cored electrode
CN1113724C (zh) 1999-02-04 2003-07-09 魏国章 一种防止珠光体耐热钢产生焊接裂纹的焊接方法
JP2001001148A (ja) 1999-04-21 2001-01-09 Kawasaki Steel Corp 900MPa以上級厚肉高張力鋼板のガスシールドアーク溶接方法
JP3896031B2 (ja) * 2002-04-25 2007-03-22 新日本製鐵株式会社 高強度uoe鋼管の製造方法
US10532435B2 (en) * 2003-06-17 2020-01-14 Hobart Brothers Llc Filler composition for high yield strength base metals
JP4564245B2 (ja) * 2003-07-25 2010-10-20 新日本製鐵株式会社 溶接金属の低温割れ性に優れた超高強度溶接継手及び高強度溶接鋼管の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161328A (ja) * 1997-08-28 1999-03-05 Sumitomo Metal Ind Ltd 高Mn鋼鋳片、その連続鋳造方法および高張力鋼材の製造方法

Also Published As

Publication number Publication date
EP1854562B1 (en) 2012-05-02
KR20100080636A (ko) 2010-07-09
KR20070098944A (ko) 2007-10-05
EP1854562A1 (en) 2007-11-14
CN101128273A (zh) 2008-02-20
CN101128273B (zh) 2011-07-06
US20080257008A1 (en) 2008-10-23
KR101066719B1 (ko) 2011-09-21
JP4403145B2 (ja) 2010-01-20
JP2006263814A (ja) 2006-10-05
KR100991636B1 (ko) 2010-11-04
EP1854562A4 (en) 2009-04-15
US8653400B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
WO2006090889A1 (ja) 溶接金属の耐水素脆化割れ特性に優れた高強度溶接鋼管とその製造方法
RU2653031C2 (ru) Сталь для высокодеформируемых труб магистральных трубопроводов с высокой стойкостью к деформационному старению и водородному охрупчиванию, способ их изготовления и сварная стальная труба
RU2630725C2 (ru) Свариваемая электрической контактной сваркой стальная труба, обладающая превосходным сопротивлением водородному растрескиванию (hic) и низкотемпературной ударной вязкостью получаемого электрической контактной сваркой сварного соединения, и способ ее производства
JP6597901B2 (ja) 耐応力腐食割れ性に優れたボイラー用電縫鋼管及びその製造方法
JP2006263814A5 (ja)
Sun et al. Effects of heat-treatment and hot-dip galvanizing on mechanical properties of RHS
WO1997036711A1 (fr) Procede de soudage par diffusion de materiaux metalliques
KR101766293B1 (ko) 고탄소 전봉 용접 강관의 제조 방법 및 자동차 부품
JP5000148B2 (ja) 溶接鋼管の製造方法
JP2007044710A (ja) 耐低温割れ性に優れたuo鋼管の製造方法およびuo鋼管
Poznyakov et al. Weldability of sparcely-alloyed steels 06GBD and 06G2B
JP2008307594A (ja) 変形能に優れたラインパイプ用uoe鋼管
JP4026554B2 (ja) 低炭素ステンレス鋼管の配管溶接継手とその製造方法
JP2005023354A (ja) 低炭素ステンレス鋼管の配管溶接継手とその製造方法
JP4751027B2 (ja) 溶接部脆化割れ特性に優れた高強度溶接鋼管
JP5263378B2 (ja) 溶接鋼管の製造方法
JP3679179B2 (ja) 耐震性に優れた鋼管
JP4860722B2 (ja) 耐横割れ性に優れた高強度uo鋼管のシーム溶接方法
US20100129680A1 (en) Uoe steel pipe and a method for its manufacture
JPH09196243A (ja) 耐震性に優れた鋼管
Chen et al. The Evolution and Determination of Mechanical Properties during the Manufacturing Process of High Strength Spirally Welded Pipe
JP2000178689A (ja) 耐座屈特性に優れた鋼管及びその製造方法
JPH1052713A (ja) 耐震性に優れた鋼管及びその製造方法
JPH1180900A (ja) 耐震性の優れた鋼管
JPH09316599A (ja) 耐震性に優れた鋼管及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11884860

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006714941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680006039.8

Country of ref document: CN

Ref document number: 1020077019342

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020107014340

Country of ref document: KR