WO2006090796A1 - トルク伝達構造、トラクションドライブ変速装置及び車両用操舵装置 - Google Patents

トルク伝達構造、トラクションドライブ変速装置及び車両用操舵装置 Download PDF

Info

Publication number
WO2006090796A1
WO2006090796A1 PCT/JP2006/303314 JP2006303314W WO2006090796A1 WO 2006090796 A1 WO2006090796 A1 WO 2006090796A1 JP 2006303314 W JP2006303314 W JP 2006303314W WO 2006090796 A1 WO2006090796 A1 WO 2006090796A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
transmission
shaft
torque
input shaft
Prior art date
Application number
PCT/JP2006/303314
Other languages
English (en)
French (fr)
Inventor
Yasuyoshi Tozaki
Takeshi Yoshimi
Akihiko Umeda
Hiroyuki Sonobe
Isamu Shiotsu
Takayoshi Hirayama
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP06714454A priority Critical patent/EP1852633B1/en
Priority to US11/576,483 priority patent/US8092333B2/en
Priority to JP2007504781A priority patent/JP4859827B2/ja
Publication of WO2006090796A1 publication Critical patent/WO2006090796A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/12Steering gears mechanical of rack-and-pinion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members

Definitions

  • the present invention relates to a torque transmission structure applied to, for example, a vehicle steering system, and to a traction drive transmission apparatus and a vehicle steering apparatus using the torque transmission structure.
  • a planetary roller transmission is known as a transmission that can perform a linear continuous transmission.
  • Patent Document 2 Japanese Patent Document 2
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-278866
  • Patent Document 2 Japanese Utility Model Publication No. 1 139161
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-58896
  • a vehicle steering system that sets the transmission ratio of the entire steering system to a desired value by interposing a speed increaser and a speed reducer in the torque transmission system, etc. is considered to be installed in a limited space called a vehicle. Then, since the speed increaser and the speed reducer are aligned on the same axis and become longer in the axial direction, a problem arises in terms of the compact toy kite. [0004] From such a background, for example, it can be used for a torque transmission path of a vehicle steering system, and generates a compact and durable high V, torque transmission structure that generates an axial pressing force that changes according to the transmitted torque. Development is desired.
  • the present invention has been made in view of the above-described circumstances, and the object of the present invention is to provide a durable and durable torque transmission structure, a compact and highly durable, variable speed traction. It is an object of the present invention to provide a multi-drive transmission device and a vehicle steering device using them. Another object of the present invention is to provide a compact and highly durable variable speed traction drive transmission that can freely change the gear ratio between the input and output shafts and increase the transmission torque of the output shaft. Another object of the present invention is to provide a vehicle steering apparatus using the same.
  • the present invention employs the following means in order to solve the above problems.
  • the torque transmission structure according to the present invention described in claim 1 is a torque transmission structure that transmits torque between opposing surfaces of two members arranged to rotate on the same axis.
  • a plurality of concave portions whose cross-sectional shape forms an inclined surface or a curved surface is provided between the opposing surfaces, and a pressure adjusting cam is disposed in the space of the concave portion.
  • a plurality of recesses whose cross-sectional shape forms an inclined surface or a curved surface is provided between the opposing surfaces, and the pressure adjusting cam is disposed in the space of the recess. Due to the action of a compact pressure adjusting cam incorporated between the opposing surfaces with almost no extension in the axial direction, it is possible to generate an axial pressing force that changes according to the transmitted torque.
  • a traction drive transmission apparatus utilizes a traction of a rolling element interposed between an input shaft and an output shaft, and changes the rotational speed of the input shaft to a desired value.
  • a traction drive transmission that changes the speed ratio and outputs the output shaft force, The rotation axis of the rolling element is tilted so as not to be orthogonal to the axis of the input shaft and the output shaft, and the preload applied to the rolling element is automatically changed according to the torque of the input shaft.
  • the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft and the output shaft, and the preload applied to the rolling element is applied to the input shaft.
  • a differential gear ratio that is connected to a traction input / output member of a rolling element and changes the gear ratio by controlling the rotational speed of the traction input / output member. Therefore, the preload applied to the inclined rolling elements is adjusted by the preload adjusting means according to the torque of the input shaft. That is, the preload adjusting mechanism generates a thrust load corresponding to the transmission torque, and this thrust load becomes a preload that presses the rolling element in the axial direction.
  • a differential gear ratio variable mechanism is provided, the gear ratio of the input / output shaft can be adjusted and set arbitrarily.
  • the invention according to claim 3 is provided with a transmission torque assisting mechanism for increasing the transmission torque by applying a rotational force to the output shaft of the traction drive transmission device force according to claim 2. To do.
  • the torque transmitted to the output shaft is output to a desired value by the action of the transmission torque assist mechanism.
  • the invention according to claim 4 is the traction drive transmission device according to claim 2 or 3, wherein the rolling element disposed in a cage includes an inner ring provided with the input shaft and the output shaft.
  • the preload adjusting means is interposed between the outer ring and the inner ring, and the gear ratio variable mechanism is connected to the retainer, thereby providing an input shaft.
  • the torque of the inner ring is transmitted to the outer ring serving as the output shaft through the rolling elements arranged in the rolling element holding part.
  • the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, the preload can be minimized when there is no input torque.
  • the gear ratio variable mechanism is connected to the cage of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable. Can do.
  • a transmission torque assist mechanism is connected to the output shaft provided on the outer ring, a large value torque obtained by increasing the transmission torque of the output shaft is output.
  • the invention according to claim 5 is the traction drive transmission device according to claim 2 or 3, wherein the rolling element disposed in a cage having the output shaft is provided with the input shaft.
  • the preload adjusting means is interposed between the inner ring and the outer ring, and the gear ratio variable mechanism is connected to the outer ring.
  • the torque of the inner ring is transmitted to the output shaft of the cage through the rolling elements arranged in the rolling element holder.
  • the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, so that the preload can be minimized when there is no input torque. it can.
  • the gear ratio variable mechanism is connected to the outer ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the transmission torque assist mechanism is connected to the output shaft provided in the cage, a large value torque obtained by increasing the transmission torque of the output shaft is output.
  • the invention according to claim 6 is the traction drive transmission device according to claim 2, wherein the rolling element disposed in a cage having the input shaft is provided with an inner ring and the output shaft.
  • the preload adjusting means is provided on the inner ring, and the speed ratio variable mechanism is connected to the inner ring, whereby the torque of the cage serving as the input shaft is It is transmitted to the outer ring serving as the output shaft through the rolling elements arranged in the rolling element holding part.
  • the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, the preload can be minimized when there is no input torque.
  • the gear ratio variable mechanism is connected to the inner ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the invention according to claim 8 is the traction drive transmission device according to claim 2 or 3, wherein the rolling element disposed in a cage having the input shaft is provided with the output shaft. Interposing between the inner ring and the outer ring, and providing the preload adjusting means on the inner ring; In addition, the gear ratio variable mechanism is connected to the outer ring, whereby the torque of the cage serving as the input shaft is transmitted via the rolling elements disposed in the rolling element holding portion. It is transmitted to the inner ring that is the output shaft. At this time, in the inner ring, since the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, the preload can be minimized when there is no input torque.
  • the gear ratio variable mechanism is connected to the outer ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the transmission torque assist mechanism is connected to the output shaft provided on the inner ring, a large value torque obtained by increasing the transmission torque of the output shaft is output.
  • the invention according to claim 9 is the traction drive transmission device according to claim 2, wherein the rolling element disposed in the retainer serving as the output shaft is an outer ring provided with an inner ring and the input shaft.
  • the preload adjusting means is provided on the inner ring, and the gear ratio variable mechanism is connected to the inner ring, whereby the torque of the outer ring serving as the input shaft is reduced by rolling elements. It is transmitted to a cage serving as an output shaft through rolling elements arranged in the holding unit.
  • the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, the preload can be minimized when there is no input torque.
  • the gear ratio variable mechanism is connected to the inner ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the rotational torque of the input shaft is converted into linear movement of the rack gear via the cage of the output shaft by forming a gear portion on the outer peripheral surface or side surface of the cage and engaging with the rack gear.
  • the invention according to claim 11 is the traction drive transmission device according to claim 2 or 3, wherein the rolling element disposed in a cage is connected to an inner ring provided with the output shaft and the input ring. It is interposed between an outer ring provided with a force shaft, the preload adjusting means is provided on the inner ring, and the gear ratio variable mechanism is connected to the retainer. The torque of the outer ring serving as the input shaft is transmitted to the inner ring serving as the output shaft through the rolling elements disposed in the rolling element holding portion. At this time, in the output shaft, since the preload adjusting means adjusts the preload acting on the rolling elements according to the torque of the input shaft, the preload can be minimized when there is no input torque.
  • the gear ratio variable mechanism is Since it is connected to the cage to perform differential rotation control, the input / output shaft speed ratio can be made variable.
  • the transmission torque assist mechanism is connected to the output shaft provided on the inner ring, a large value torque obtained by increasing the transmission torque of the output shaft is output.
  • a traction drive transmission uses a traction of a rolling element interposed between an input shaft and an output shaft, and changes the rotational speed of the input shaft to a desired gear ratio.
  • a traction drive transmission that outputs from an output shaft and performs two-stage shifting by connecting the input shaft and the output shaft symmetrically,
  • the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft and the output shaft, and a preload applied to the rolling element is connected to the first-stage transmission unit and the second-stage transmission unit.
  • a preload adjusting means that automatically changes according to the torque between the shafts, and a gear that is connected to the traction input / output member of the rolling element and controls the rotational speed of the traction input / output member to change the gear ratio. It is characterized by having a variable ratio mechanism!
  • the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft and the output shaft, and the preload applied to the rolling element is provided in the first manner.
  • Preload adjusting means that automatically changes according to the torque between the shafts connecting the first-stage transmission unit and the second-stage transmission unit, and the rotational speed of the traction input / output member connected to the traction input / output member of the rolling element Since it has a gear ratio variable mechanism that changes the gear ratio by performing control, the preload applied to the inclinedly arranged rolling elements is between the shafts that connect the first-stage transmission unit and the second-stage transmission unit. It is adjusted by the preload adjusting means that automatically changes according to the torque.
  • the gear ratio of the input / output shaft can be adjusted and set arbitrarily.
  • the input / output relationship by the traction drive is 1: 1 in the same rotation direction.
  • the invention described in claim 13 is provided with a transmission torque assist mechanism for increasing the transmission torque by applying a rotational force to the output shaft of the traction drive transmission device force described in claim 12. It is what.
  • the torque transmitted to the output shaft is desired by the action of the transmission torque assist mechanism.
  • An increase to the value of is output.
  • the invention according to claim 14 is the traction drive transmission according to claim 12 or 13, wherein the rolling element disposed in the first retainer is provided with a first inner ring provided with the input shaft; A first stage transmission unit interposed between a first outer ring provided with a connection output shaft, a second inner ring provided with the output shaft, and a connection input shaft between the rolling elements arranged in a second cage.
  • a second stage transmission portion interposed between the second outer ring and the second outer ring, the preload adjusting means is provided at a shaft connection portion between the connection output shaft and the connection input shaft, and the first retainer And the second retainer is fixed to the housing, whereby the torque of the first inner ring serving as the input shaft is A first outer shaft that serves as a connecting output shaft through rolling elements disposed in the rolling element holding part of the first cage. It is transmitted to the circle.
  • the torque transmitted to the second outer ring serving as the connection input shaft via the preload adjusting means is transmitted through the rolling elements disposed in the rolling element holding part of the second cage. Is transmitted to the second inner ring as an output shaft.
  • the preload adjusting means adjusts the preload acting on the rolling elements of the first-stage transmission section and the second-stage transmission section according to the torque of the connection output shaft. Can minimize the preload.
  • the gear ratio variable mechanism is connected to the cage of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the invention according to claim 15 is the traction drive transmission device according to claim 12 or 13, wherein the rolling element disposed in a first retainer having a connection output shaft is used as the input shaft.
  • a first stage transmission portion interposed between a first inner ring and a first outer ring provided with a rolling element disposed in a second cage having a connection input shaft, and the output shaft provided
  • a second speed change portion interposed between the second inner ring and the second outer ring, the preload adjusting means being provided at the shaft connecting portion between the connection output shaft and the connection input shaft
  • the transmission gear ratio variable mechanism is connected to an outer ring, and the second outer ring is fixed to a housing.
  • the torque transmitted to the second cage serving as the connection input shaft via the preload adjusting means is applied to the rolling element disposed in the rolling element holding unit of the second cage. Is transmitted to the second inner ring, which is the output shaft.
  • the preload adjusting means adjusts the preload acting on the rolling elements of the first stage transmission part and the second stage transmission part according to the torque of the connection output shaft. Preload can be minimized.
  • the gear ratio variable mechanism is connected to the outer ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the invention according to claim 16 is the traction drive transmission device according to claim 12 or 13, wherein the rolling element disposed in the first retainer having the input shaft is connected to an output shaft.
  • a second inner ring provided with an input shaft connected to the rolling elements disposed in a second retainer provided with the output shaft and a first stage transmission unit interposed between the first inner ring and the first outer ring
  • a second step transmission portion interposed between the second outer ring and the second outer ring
  • the preload adjusting means is provided at a shaft connecting portion between the connection output shaft and the connection input shaft
  • the first outer ring has the A gear ratio variable mechanism is connected
  • the second outer ring is fixed to the housing, whereby the torque of the first cage serving as the input shaft in the first stage transmission unit is the first A first output shaft that is a connected output shaft via rolling elements disposed in the rolling element holding part of the cage. It is transmitted to the wheels.
  • the torque transmitted to the second inner ring serving as the connection input shaft via the preload adjusting means is transmitted via the rolling elements disposed in the rolling element holding part of the second cage. Is transmitted to the second cage as an output shaft.
  • the preload adjusting means adjusts the preload acting on the rolling elements of the first stage transmission part and the second stage transmission part according to the torque of the connection output shaft. Preload can be minimized.
  • the gear ratio variable mechanism is connected to the outer ring of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable. The second insurance When the transmission torque assist mechanism is connected to the output shaft provided in the holding portion, a large value of torque obtained by increasing the transmission torque of the output shaft is output.
  • the invention according to claim 17 is the traction drive transmission according to claim 12 or 13, wherein the rolling element disposed in the first retainer is provided with a first inner ring provided with a connection output shaft.
  • a first speed change portion interposed between the first outer ring provided with the input shaft, a second inner ring provided with an input shaft connecting the rolling elements provided in a second cage, and the output shaft.
  • a second stage transmission portion interposed between the second outer ring and the second outer ring, the preload adjusting means is provided at a shaft connection portion between the connection output shaft and the connection input shaft, and the first retainer
  • the speed ratio variable mechanism is connected to the housing, and the second retainer is fixed to the housing, whereby the torque of the first outer ring serving as the input shaft is The first inner part that becomes the connecting output shaft through the rolling elements arranged in the rolling element holding part of the first cage. It is transmitted to the circle.
  • the torque transmitted to the second inner ring serving as the connection input shaft via the preload adjusting means is transmitted via the rolling elements disposed in the rolling element holding part of the second cage. Is transmitted to the second outer ring which is the output shaft.
  • the preload adjusting means adjusts the preload acting on the rolling elements of the first-stage transmission section and the second-stage transmission section according to the torque of the connection output shaft. Can minimize the preload.
  • the gear ratio variable mechanism is connected to the cage of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable.
  • the traction drive transmission utilizes a traction of a rolling element interposed between an input shaft and an output shaft, and changes the rotational speed of the input shaft to a desired gear ratio.
  • a traction drive transmission that outputs from an output shaft and connects the input shaft and the output shaft to perform a two-stage shift,
  • the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft and the output shaft, and a preload applied to the rolling element is connected to the first-stage transmission unit and the second-stage transmission unit.
  • Preload adjusting means for automatically changing according to the torque between the shafts A gear ratio variable mechanism that is connected to a traction input / output member of a rolling element and controls the rotational speed of the traction input / output member to change the gear ratio, and includes the first stage transmission unit and the second stage transmission.
  • the traction input / output members of the two parts are connected and integrated together, and a difference is provided in the gear ratio of both transmission parts.
  • the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft and the output shaft, and the preload applied to the rolling element is the first step.
  • a preload adjusting means that automatically changes according to the torque between the shafts connecting the transmission unit and the second stage transmission unit, and a traction input / output member of the rolling element are connected to control the rotational speed of the traction input / output member.
  • a gear ratio variable mechanism for changing the gear ratio, and connecting the traction input / output members of the first stage transmission unit and the second stage transmission unit together, and adjusting the transmission ratio of both transmission units.
  • the preload applied to the rolling elements arranged in an inclined manner is adjusted by a preload adjusting means that automatically changes according to the torque between the shafts connecting the first-stage transmission unit and the second-stage transmission unit. Will be.
  • a two-stage shift is performed by the first-stage transmission section and the second-stage transmission section, and the traction input / output members of both transmission sections are integrated to provide a difference in the transmission ratio.
  • the gear ratio of the input / output shaft can be adjusted and set arbitrarily by the mechanism, and the input / output relationship by the traction drive can be set to 1: 1 in the same rotational direction.
  • the invention according to claim 19 is the traction drive transmission device according to claim 18, wherein the rolling element disposed in the first cage having the input shaft is connected to the output shaft.
  • a first stage transmission unit interposed between the first inner ring and the outer ring coupling member provided with the rolling element disposed in the second cage having the output shaft, and a coupling input shaft.
  • a second speed change portion interposed between the second inner ring and the outer ring connecting member, the preload adjusting means being provided at the shaft connecting portion between the connection output shaft and the connection input shaft, and the outer ring connection.
  • the variable transmission ratio variable mechanism is connected to the member, whereby the torque of the first cage serving as the input shaft in the first stage transmission unit is the rolling element holding unit of the first cage.
  • the preload adjusting means adjusts the preload acting on the rolling elements of the first step shifting portion and the second step shifting portion according to the torque of the connecting output shaft. Can keep the preload to a minimum.
  • the gear ratio of the input / output shaft can be varied by connecting the gear ratio variable mechanism to the outer ring connecting member and performing differential rotation control. be able to.
  • the invention according to claim 20 is the traction drive transmission according to any one of claims 2 to 19, wherein the preload adjusting means is arranged so as to rotate on the same axis.
  • a torque transmission structure for transmitting torque between the opposing surfaces wherein a plurality of recesses whose cross-sectional shape forms an inclined surface or a curved surface is provided between the opposing surfaces, and a pressure adjusting cam is provided in the space of the recesses I like what I did.
  • the invention according to claim 21 is the traction drive transmission device according to any one of claims 2 to 21, wherein the speed ratio variable mechanism is a worm gear having a drive source capable of rotation control. It is preferable. This worm gear has a fail-safe function when input is input from the output shaft side.
  • the invention according to claim 22 is the traction drive transmission device according to any one of claims 2 to 21, wherein the speed ratio variable mechanism is arranged coaxially with the input shaft and the output shaft.
  • a planetary reduction mechanism using a hollow motor as a drive source is preferable, and the outer diameter of the device can be reduced.
  • the invention according to claim 23 is the traction drive transmission apparatus according to any one of claims 3 to 5, 8, 11, 13 to 17, and 20 to 22, wherein the transmission torque assist mechanism is a control unit. It is preferable that the worm gear is equipped with an electric drive means that is easy.
  • the vehicle steering apparatus of the present invention is characterized in that the driver's steering operation is transmitted to the steering wheel of the vehicle via the traction drive transmission device according to any one of claims 2 to 23. It is what.
  • the torque of the steering shaft generated by steering is adjusted so that the preload acting on the rolling element is adjusted by the preload adjusting means.
  • Preload Fluctuates to a large preload when abrupt steering is performed . For this reason, it can prevent that a big preload acts on a rolling element continuously.
  • the gear ratio variable mechanism is connected to the cage of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable, and the traction drive has a one-stage speed change. If the device is used, the axial length can be shortened, and if a two-stage traction drive device is used, the input / output relationship is 1: 1 in the same rotational direction.
  • the driver's steering operation force can be reduced by increasing the transmission torque output from the output shaft.
  • the traction drive transmission employing the torque transmission structure described above can vary the preload (axial pressing force) acting on the rolling elements of the traction drive according to the transmission torque between the input and output shafts. .
  • a large preload does not always act on the rolling elements, and therefore the life of the rolling elements can be improved.
  • a remarkable effect is obtained in that reliability and durability are improved by improving the life of the rolling elements. .
  • the differential gear ratio variable mechanism since the differential gear ratio variable mechanism is provided, an arbitrary gear ratio can be obtained between the input shaft and the output shaft by controlling the gear ratio variable mechanism.
  • a planetary reduction mechanism using a hollow motor disposed coaxially with the input shaft and the output shaft as a drive source is employed, a traction drive transmission device having a small outer dimension can be provided.
  • a transmission torque assist mechanism that applies transmission torque to the output shaft! / In case of speaking, the transmission torque output from the output shaft can be increased to a desired value and output.
  • the driver can The preload acting on the rolling elements is minimized when the vehicle is stopped without steering or when traveling straight, and the preload that changes according to the torque fluctuation on the input shaft (steering shaft) generated according to steering
  • the traction drive gearbox which uses a planetary reduction mechanism that uses a hollow motor arranged coaxially with the input and output shafts as the drive source, has a small installation space and is difficult to install. It is possible to provide a suitable vehicle steering apparatus.
  • a differential gear ratio variable mechanism is provided, the gear ratio between the input and output shafts can be arbitrarily changed, and therefore the optimum gear ratio according to the steering situation is set appropriately. can do. Specifically, when steering in parallel parking, etc., the gear ratio is increased so that a large steering angle can be obtained with a small steering amount, and during steering at high speeds, etc., the gear ratio is reduced to increase straight traveling performance. If the gear ratio variable mechanism is controlled and set to an optimum gear ratio, the operability of the steering device can be improved.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a traction drive transmission apparatus according to the present invention.
  • FIG. 2 is a perspective view showing an example of a schematic configuration of a vehicle steering apparatus in which the traction drive transmission of FIG. 1 is incorporated.
  • FIG. 3 is a cross-sectional view showing a first modification of the traction drive transmission device of FIG.
  • FIG. 4 is a cross-sectional view showing a second modification of the traction drive transmission device of FIG.
  • FIG. 5 is a cross-sectional view showing a third modification of the traction drive transmission device of FIG. 1.
  • FIG. 6 is a cross-sectional view showing a fourth modification of the traction drive transmission device of FIG. 1.
  • FIG. 7 is a cross-sectional view showing a fifth modification of the traction drive transmission device of FIG. 1.
  • FIG. 8 is a cross-sectional view showing a second embodiment of the traction drive transmission apparatus according to the present invention.
  • FIG. 9 is a cross-sectional view showing a first modification of the traction drive transmission device of FIG. 8.
  • FIG. 10 is a cross-sectional view showing a second modification of the traction drive transmission device of FIG. 8.
  • FIG. 11 is a cross-sectional view showing a third modification of the traction drive transmission device of FIG. 8.
  • FIG. 12 is a cross-sectional view showing a fourth modification of the traction drive transmission device of FIG.
  • FIG. 13 is a cross-sectional view showing a third embodiment of a traction drive transmission apparatus according to the present invention.
  • FIG. 14 is a sectional view showing a fourth embodiment of a traction drive transmission apparatus according to the present invention.
  • FIG. 15 is a cross-sectional view showing a first modification of the traction drive transmission device of FIG.
  • FIG. 16 is a cross-sectional view showing a second modification of the traction drive transmission device of FIG.
  • FIG. 17 is a cross-sectional view showing a third modification of the traction drive transmission device of FIG.
  • FIG. 18 is a sectional view showing a fifth embodiment of a traction drive transmission apparatus according to the present invention.
  • FIG. 19 is a cross-sectional view showing a first modification of the traction drive transmission device of FIG. 18.
  • 20 is a cross-sectional view showing a second modification of the traction drive transmission device of FIG.
  • FIG. 21 is a cross-sectional view showing a third modification of the traction drive transmission device of FIG. 18.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a traction drive transmission according to the present invention.
  • This traction drive transmission (hereinafter referred to as “transmission”) 10 uses the traction of the rolling element K interposed between the input shaft Si and the output shaft So to obtain the desired rotational speed of the input shaft Si. It has a function of changing the gear ratio to output from the output shaft So.
  • Traction is a tangential force that acts on the contact part of the rolling elements K that are arranged as a rotating body in a rolling and sliding state.
  • an inner ring 20 with an input shaft Si and an output shaft So are provided.
  • the traction drive mechanism TR is configured by interposing a plurality of rolling elements K held by the cage 40 between the outer ring 30 and the outer ring 30.
  • the traction drive mechanism TR can transmit torque from the inner ring 20 to the outer ring 30 via the rolling element K due to the rheological characteristics of the oil film formed on the contact surface between the inner ring 20 and the outer ring 30 and the rolling element K.
  • the rolling element K revolves outside the inner ring 20 while rotating.
  • the traction drive mechanism TR is housed in the housing 11 of the transmission 10, and the input shaft Si and the output shaft So arranged on the same axis project outside the forces at both ends of the housing 11.
  • the inner ring 20 has a two-part structure, and a pressure adjusting cam 50 is provided to transmit torque between the facing surfaces of two members arranged to rotate on the same axis. That is, the inner ring 20 is divided into an input shaft part 21 and an inner ring part 22, and a concave part 23 in which a cylindrical pressure regulating cam 50 is installed between the opposed surfaces 21a, 22a of the input shaft part 21 and the inner ring part 22. A plurality of sets are provided.
  • the recess 23 is a space formed by a pair of grooves provided at symmetrical positions on the opposing surfaces 21a and 22a, and the pressure adjusting cam 50 can roll and slide in the space. It is stored in a state.
  • a plurality of such recesses 23 are provided in such a manner that the axial center force is also radiated so as to have an equal pitch in the circumferential direction, but this number may be appropriately selected according to various conditions.
  • four sets of recesses 23 having a pitch of 90 degrees in the circumferential direction are provided. is there.
  • the concave portion 23 has a cross-sectional shape that forms an inclined surface or a curved surface.
  • a groove portion having an isosceles triangle cross section is provided on each of the facing surfaces 21a and 22a, and a concave portion 23 having a rectangular cross section is formed by overlapping a pair of facing groove portions.
  • the groove forming the recess 23 may be formed between the opposing surfaces, which need not be disposed at symmetrical positions of the opposing surfaces 21a and 22a.
  • the inner ring 20 has an input shaft portion 21 rotatably supported on the housing 11 via a bearing 12, and a torque generation source (not shown) is connected to the input shaft portion 21 protruding to the outside of the housing 11.
  • reference numeral 13 denotes an oil seal
  • 14 denotes a leaf spring that presses the input shaft portion 21 in the axial direction
  • 24 denotes an inner ring member fixed to the outer peripheral surface of the inner ring portion 22.
  • Such a torque transmission structure is a torque transmission structure that can suppress the extension in the axial direction to a minimum with the force that causes the cylindrical pressure adjusting cam 50 to be interposed between the opposing surfaces 21a and 22a.
  • Such a torque transmission structure functions as a preload adjusting means that automatically changes the preload applied to the rolling element K according to the torque of the input shaft Si in the traction drive mechanism TR.
  • the cage 40 includes a comb-shaped rolling element holding portion 42 on the inner periphery of a substantially ring-shaped main body 41, and the main body 41 is rotatably supported by the housing 11 via a pair of bearings 12. It is a member.
  • the rolling element K disposed in the rolling element holding part 42 is a tapered roller that is sandwiched between the comb parts and can rotate, and its rotation axis is inclined so as not to be orthogonal to the axis of the input shaft Si and the output shaft So. Yes.
  • the rolling element K includes an inner ring member 24 that supports the inner peripheral surface thereof in a rollable manner, and an outer ring that is fixed to an outer ring portion 31 of an outer ring 30 to be described later and supports the outer peripheral surface in a rollable manner.
  • the member 32 constitutes a tapered roller bearing that can revolve between the ring members 24 and 32 while the rolling element rotates.
  • the rolling element holding portion 42 that holds the rolling element rod is not limited to the above-described comb shape, and various modifications such as a ladder shape are possible.
  • the outer ring portion 31 and the output shaft portion 33 are an integral member, and the output shaft portion 33 is rotatably supported by the housing 11 via the bearing 12. It should be noted that the output shaft portion 33 projecting outside the housing 11 is connected to a driven side device, not shown in the figure, such as a rack and pinion device of a vehicle steering device.
  • the outer ring portion 33 is a substantially ring-shaped portion having one end opened, and an outer ring member 32 constituting the tapered roller bearing described above is fixed to the inner peripheral surface side thereof.
  • the cage 40 described above includes a gear portion 41a formed on the outer peripheral surface of the main body 41, and the gear portion 41a is coupled to and coupled to a worm gear 55 that functions as a gear ratio variable mechanism.
  • the worm gear 55 includes a drive source such as an electric motor (not shown), and can be variably controlled to a desired rotation speed. That is, by controlling the rotation speed of the worm gear 55, the rotation speed of the cage 40 that rotates integrally with the revolution of the rolling element K constituting the tapered roller bearing changes, so that the rotation between the input shaft Si and the output shaft So is changed.
  • This is a differential gear ratio variable mechanism that changes the gear ratio.
  • the retainer 40 is a component of the traction drive mechanism TR that transmits torque by traction
  • the worm gear is attached to the retainer 40 that is a traction input / output member in which the rolling element K operates under the influence of the traction. If the rotational speed control is performed with 55 connected, a differential gear ratio variable mechanism with a variable gear ratio can be obtained.
  • the axial pressing force is only an urging force that receives the force of the leaf spring 14 as well.
  • the preload applied to K (indicated by the arrow in the figure) is the minimum value. This preload is inclined so that the rotation axis of the rolling element K is not perpendicular to the axis of the input shaft Si and the output shaft So. This is the force acting on the contact surface with the pressing force of.
  • Such a biasing force of the leaf spring 14 is necessary to prevent the input shaft Si and the like from moving in the axial direction or to hold the pressure adjusting cam 50 in the recess 23. It is.
  • the pressure adjusting cam 50 between the opposing surfaces 21a and 22a exhibits a preload adjustment function that changes the preload according to the input torque.
  • the applied preload increases in proportion to the torque.
  • the rolling element K revolves outside the inner ring portion 22 together with the cage 40 while rotating.
  • torque is transmitted to the outer ring portion 31 by the traction between the rolling element K and the outer ring member 32 fixed to the outer ring portion 31, and the output shaft So rotates.
  • the rotation direction of the output shaft So is opposite to that of the input shaft Si.
  • the rotational speed of the input shaft Si changes according to the rotational speed of the worm gear 55 when output from the output shaft So via the traction gear mechanism TR connected to the worm gear 55 capable of variable control of the rotational speed.
  • the desired gear ratio can be obtained. That is, the gear ratio between the input and output shafts is not linear, and an arbitrary gear ratio can be selected and set within a predetermined range.
  • the above-described preload adjustment can be achieved by a configuration in which the cylindrical member pressure adjusting cam 50 is disposed between the input shaft portion 21 and the inner ring portion 22. Therefore, the transmission 10 extends in the axial direction and is enlarged. This makes it a compact device.
  • the transmission 10 having the above-described configuration requires a relatively small number of bearings, it can be easily assembled.
  • the worm gear Since the engine can be operated in a region where the rotational speed of 55 is relatively low, the operation noise can be suppressed to a low level. Since the transmission torque can also be set relatively low, it is advantageous in terms of life and durability.
  • FIG. 2 is a perspective view showing an outline of a vehicle steering apparatus ST as an application example of the transmission 10 described above.
  • the vehicle steering device ST is a device for bending by operating the traveling direction of the vehicle, and the direction of the steered wheels 61 and 61 can be changed by a steering operation that rotates the handle 60.
  • the operation of the handle 60 is input to the transmission 10 as the rotational torque of the upper steering shaft 62, and the output torque shifted by the transmission 10 operates the rack and pinion device 64 connected to the lower steering shaft 63. .
  • the direction of the steered wheels 61, 61 can be changed to a desired direction in conjunction with a link mechanism force S rack (not shown) connected to the rack and pion device 64.
  • the upper steering shaft 62 is connected to the input shaft Si of the transmission 10 and the lower steering shaft 63 is connected to the output shaft So of the transmission 10.
  • the torque generated by the operation of the handle 60 is transmitted from the upper steering shaft 62 to the input shaft Si, and the torque converted into the desired gear ratio in the transmission 10 is transmitted from the output shaft So.
  • the rack & pion device 64 can be operated by being transmitted to the lower steering shaft 63.
  • the handle 60 when the handle 60 is operated, for example, when the vehicle is stopped or traveling straight, the upper steering shaft 62 and the input shaft Si have no torque, so that they act on the rolling elements K. Preload is minimized. For this reason, the life of the rolling element K is improved, which is effective in improving the durability and reliability of the vehicle steering device ST.
  • the inner ring 20A provided with the input shaft Si is integrally structured, and the cage 40A provided with the output shaft So is divided into two parts so that the pressure regulating cam 50 is arranged between the joint surfaces.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the outer ring 30A.
  • the cage 40A having the output shaft So is divided into a holding portion main body 43 and an output shaft portion 44, so that the comb-shaped rolling element holding portion 42 provided on the holding portion main body 43 A conical rolling element K is installed.
  • a pressure adjusting cam 50 that functions as the above-described preload adjusting means is disposed between the opposed surfaces 43a, 44a of the holding portion main body 43 and the output shaft portion 44.
  • a rolling element K is interposed between the inner ring 20A and the outer ring 30A so that a preload (indicated by an arrow in the figure) acts on the inner ring 20A.
  • a cage 40A a thrust bearing 15 is disposed to enable relative rotation.
  • the worm gear 55 of the transmission gear ratio variable mechanism is coupled with a gear portion 30a formed on the outer peripheral surface of the outer ring 30A.
  • reference numeral 12 denotes a bearing
  • 13 denotes an oil seal
  • 14 denotes a leaf spring
  • 16 denotes a tapered roller bearing.
  • the torque of the inner ring 20A serving as the input shaft Si is output as the output shaft So of the retainer 40A via the rolling elements K disposed in the rolling element holder 42. It is transmitted to the shaft 4 4.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling element K in accordance with the torque of the input shaft Si. Can be minimized.
  • the preload is adjusted by the pressure adjusting cam 50 and is generated by the thrust load f acting on the thrust bearing 15 from the holding portion main body 43.
  • the worm gear 55 of the speed ratio variable mechanism is connected to the gear portion 30a of the outer ring 30A of the traction input / output member to perform differential rotation control, the speed ratio of the input / output shaft can be made variable.
  • the transmission 10A configured as described above has the same rotational direction of the input / output shaft. Has advantages. In addition, when compared under the same conditions, the surface pressure of the rolling element K can be suppressed to a low level, which is advantageous in terms of life and durability.
  • a comb-like rolling element holding portion 42 is provided in a cage 4OB provided with an input shaft Si, and the rolling element K disposed in the rolling element holding portion 42 is provided. It is interposed between the inner ring 20B having a two-part structure and the outer ring 30B serving as the output shaft So, and a pressure adjusting cam 50 as a preload adjusting means is provided between the opposed surfaces of the inner ring 20B, and a worm gear 55 of a variable speed ratio mechanism Concatenated structure.
  • the inner ring 20B is divided into an inner ring portion 22B and a gear forming shaft portion 25. Between the inner ring portion 22B and the opposing surfaces 22b of the gear forming shaft portion 25, the pressure adjusting cam 50 and the smallest A coil panel 17 for preloading is provided, and a gear portion 25a formed on the outer peripheral surface of the gear forming portion 25 is engaged with and connected to the worm gear 55 of the speed ratio variable mechanism.
  • a gear portion 34 is also formed on the outer peripheral surface of the outer ring 30B serving as the output shaft So.
  • the gear portion 34 may be engaged with the rack gear 70 to obtain an output in which the rotational motion is converted into a linear motion.
  • the gear portion 34 may be formed on the side surface of the outer ring 30B.
  • reference numeral 12 denotes a bearing
  • 13 denotes an oil seal
  • 15 denotes a thrust bearing
  • 16 denotes a conical roller bearing.
  • the torque of the cage 40B serving as the input shaft Si is applied to the outer ring 30B serving as the output shaft So via the rolling body K disposed in the rolling body holding portion 42. Communicated.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling elements K according to the torque of the input shaft Si, the preload can be minimized when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 25a of the gear forming portion 25 obtained by dividing the inner ring 2B of the traction input / output member to perform differential rotation control, so that the gear ratio of the input / output shaft can be adjusted. It can be variable.
  • the transmission 10B having the above-described configuration has the advantage that the rotation directions of the input and output shafts are the same, and thus the number of bearings required is reduced, so that assembly during manufacture is easy. Easy.
  • the worm gear 55 can be operated in a region where the rotational speed is relatively low, so that the operating noise can be suppressed to a low level.
  • the transmission torque of the input shaft Si where the cam 50 is installed can also be set relatively low, which is advantageous in terms of life and durability.
  • the rack gear 70 is provided and the rack and pion mechanism is built in, a more compact vehicle steering device can be realized.
  • a comb-shaped rolling element holding portion 42 is provided in a cage 4 OC having an input shaft Si, and the rolling element K disposed in the rolling element holding portion 42 is provided.
  • the inner ring 20C provided with the output shaft So is interposed between the outer ring 30C, the inner ring 20C is provided with a pressure adjusting cam 50 as a preload adjusting means, and the outer gear 30C is connected to a warm gear 55 as a gear ratio variable mechanism. It is said.
  • the inner ring 20C is divided into an inner ring part 22C and an output shaft part 26, and between the inner ring part 22C and the opposed surfaces 22c, 26c of the output shaft part 26, the pressure regulating cam 50 and the smallest A coil panel 17 for preloading is provided.
  • the torque of the cage 40C serving as the input shaft Si is transmitted through the rolling elements K provided in the rolling element holding section 42 to the inner ring portion 22C of the inner ring 20C serving as the output shaft So. Is transmitted to.
  • the preload adjusting cam 50 adjusts the preload acting on the rolling elements K according to the torque of the input shaft Si, so that the preload can be minimized when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 30a formed on the outer ring 30C of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable. it can.
  • the transmission 10C having the above-described configuration has the advantage that the rotation directions of the input and output shafts are the same, and the number of bearings required is reduced, so that assembly during manufacture is easy. Easy. In particular, when compared under the same conditions, the operation noise can be kept low because the worm gear 55 can be operated in a region where the rotational speed is low.
  • the fourth modification of the transmission according to the first embodiment described above will be described with reference to FIG.
  • symbol is attached
  • a comb-like rolling element holding portion 42 is provided in a cage 40D serving as an output shaft So, and the rolling element K disposed in the rolling element holding portion 42 is divided into two parts.
  • a pressure adjusting cam 50 as a preload adjusting means is provided between the opposed surfaces of the inner ring 20D, and a warm gear 55 of a variable speed ratio mechanism is connected. It is supposed to be configured.
  • the inner ring 20D is divided into an inner ring portion 22D and a gear forming portion 25, and a pressure adjusting cam 50 is disposed between the opposing surfaces 22d and 25d of the inner ring portion 22D and the gear forming portion 25.
  • a gear portion 25a formed on the outer peripheral surface of the gear forming portion 25 is coupled to and coupled with the worm gear 55 of the variable speed mechanism.
  • a gear portion 45 is also formed on the outer peripheral surface of the cage 40D serving as the output shaft So.
  • the gear portion 45 is engaged with the rack gear 70 to obtain an output obtained by converting the rotational motion into a linear motion. Good.
  • the gear portion 45 in this case may be formed on the side surface of the cage 40D.
  • reference numeral 12 denotes a bearing
  • 13 denotes an oil seal
  • 14 denotes a leaf spring that defines a minimum preload
  • 16 denotes a tapered roller bearing.
  • the torque of the outer ring 30D serving as the input shaft Si is transmitted to the cage 40D serving as the output shaft So via the rolling body K disposed in the rolling body holding section 42. Communicated.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling elements K according to the torque of the input shaft Si, the preload can be minimized when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 25a of the gear forming portion 25 obtained by dividing the inner ring 20D of the traction input member to perform differential rotation control, so that the gear ratio of the input / output shaft can be varied. It can be.
  • the transmission 10D configured as described above has an advantage that the rotation directions of the input and output shafts are the same.
  • the surface pressure of the rolling element K can be kept low, and the transmission torque of the input shaft Si where the pressure adjusting cam 50 is installed can be set low, which is extremely advantageous in terms of life and durability. become.
  • the rack gear 70 is provided to The stored configuration enables a more compact vehicle steering device.
  • the cage 40E is provided with a comb-like rolling element holding part 42, and the rolling element K disposed in the rolling element holding part 42 is connected to the output shaft So.
  • the pressure control cam 50 is provided as a preload adjusting means between the opposing surfaces of the inner ring 20E, and the gear ratio is variable in the retainer 40E.
  • a worm gear 55 is connected as a mechanism.
  • the inner ring portion 20E is divided into an inner ring portion 22E and an output shaft portion 26, and a pressure regulating cam 50 is disposed between the opposed surfaces 22e and 26e of the inner ring portion 22E and the output shaft portion 26.
  • a pressure regulating cam 50 is disposed between the opposed surfaces 22e and 26e of the inner ring portion 22E and the output shaft portion 26.
  • the torque of the outer ring 30D serving as the input shaft Si is transmitted to the inner ring portion 22E of the inner ring 20E serving as the output shaft So via the rolling element K disposed in the rolling element holding section 42. Is transmitted to.
  • the preload cam 50 adjusts the preload acting on the rolling element K according to the torque of the input shaft Si. Can be suppressed.
  • the worm gear 55 force S traction input / output member retainer 40E of the gear ratio variable mechanism is connected to the gear portion formed on the retainer 40E to perform differential rotation control, the gear ratio of the input / output shaft can be made variable. .
  • the transmission 10C having the above-described configuration can be operated in a region where the rotational speed of the worm gear 55 is relatively low when compared under the same conditions, so that driving noise can be suppressed low.
  • the transmission 10F is interposed between the input shaft Si and the output shaft So. Using the traction of the rolling element K, the rotation speed of the input shaft Si is changed to the desired gear ratio and output from the output shaft So, and the input shaft Si and the output shaft So are connected symmetrically in two steps. It is configured to do
  • the input shaft Si and the output shaft So projecting on both sides of the housing 11 are provided on the inner rings of the first-stage transmission unit TR1 and the second-stage transmission unit TR2 connected so as to be substantially bilaterally symmetrical in the axial direction.
  • the shaft portion is provided on the inner rings of the first-stage transmission unit TR1 and the second-stage transmission unit TR2 connected so as to be substantially bilaterally symmetrical in the axial direction.
  • the first-stage transmission unit TR1 is provided with a comb-like rolling element holding part 142 in the main body 141 of the first cage 140, and the rolling element K arranged in the rolling element holding part 142 is provided with an input shaft Si. It is configured to be interposed between one inner ring 120 and a first outer ring 130 provided with a connecting output shaft 131. Even in this case, the rolling element holding part 142 can be appropriately selected such as a ladder shape without being limited to a comb shape.
  • the second-stage transmission unit TR2 is provided with a comb-like rolling element holding part 242 on the main body 241 of the second cage 240, and the rolling element K arranged on the rolling element holding part 242 is provided with an output shaft So. It is configured to be interposed between the two inner rings 220 and the second outer ring 230 provided with the connecting input shaft 231. Also in this case, the rolling element holding part 242 can be appropriately selected such as a ladder shape without being limited to a comb shape.
  • the rolling element K described above has an arrangement in which the rotation axis is inclined so as not to be orthogonal to the axis of the input shaft Si and the output shaft So in both the first step transmission unit TR1 and the second step transmission unit TR2. Is done.
  • the shaft connecting portion that connects the connecting output shaft 131 of the first stage transmission unit TR1 and the end face of the connection input shaft 23 1 of the second stage transmission unit TR2 to face each other functions as a preload adjusting means.
  • Pressure regulating cam 50 is provided.
  • the pressure adjusting cam 50 is housed and installed in a slidable state in the space of the recess formed between the opposing surfaces of the shaft connecting portion, as in the first embodiment.
  • a plurality of such recesses are provided radially from the axis center so as to have an equal pitch in the circumferential direction, but this number may be selected appropriately according to various conditions.
  • the first cage 140 includes a gear portion 141a formed on the outer peripheral surface of the main body 141, and the gear portion 141a is coupled to the worm gear 55 that functions as a speed ratio variable mechanism. .
  • this configuration is the same as the traction drive described in the first embodiment.
  • the mechanism is combined so that the input / output axes are symmetrical.
  • the second cage 240 is an immovable member that is fixed to the housing 11 and forms a part thereof.
  • Reference numeral 12 in the drawing is a bearing, 13 is an oil seal, and 14 is a leaf spring.
  • the torque of the first inner ring 120 serving as the input shaft Si is arranged in the rolling element holding unit 142 of the first retainer 140. It is transmitted via a rolling element K to a first outer ring 130 having a connecting output shaft 131 by a traction drive. Thereafter, in the second-stage transmission unit TR2, torque is transmitted to the second outer ring 230 provided with the connecting input shaft 231 via the pressure adjusting cam 50 that functions as a preload adjusting means, and the rolling elements of the second retainer 240 are transferred. It is transmitted to the second inner ring 220 serving as the output shaft So via the rolling elements K provided in the holding part 242.
  • the pressure adjusting cam 50 is a first-stage transmission portion according to the torque of the connecting output shaft 131.
  • the preload acting on the rolling elements of the second-stage transmission unit is adjusted, the minimum preload defined by the leaf spring 14 can be suppressed when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 141a formed in the first holding portion 140 of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft is set to a desired value. Can be made variable.
  • the transmission 10F configured as described above shifts in the first step transmission unit TR1 and then performs a reverse shift in the second step transmission unit TR2, for example, the first step transmission unit TR1 increases the speed. After speeding up, the speed will be reduced by the second-stage transmission unit TR2, and the input / output relationship by microtraction will be 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10F described above can be operated in a region where the rotation speed of the worm gear 55 is low particularly when compared under the same conditions, so that driving noise can be suppressed low. Furthermore, since the number of bearings to be used should be small, it has the advantage of being easy to assemble.
  • a first modification of the transmission according to the second embodiment described above will be described with reference to FIG.
  • symbol is attached
  • a comb-like rolling element holding portion 142 is provided in a first cage 140A including a connection output shaft 143, and the rolling element provided in the rolling element holding portion 142 is provided.
  • the rolling element holding part 242 is provided, and the rolling element K disposed in the rolling element holding part 242 is connected to the second inner ring 220A provided with the output shaft So and the second outer ring (fixed to the housing 11 and integrated). And a second-stage transmission unit TR21 interposed between the two. Then, a pressure adjusting cam 50 that functions as a preload adjusting means is provided at the shaft connecting portion between the connecting output shaft 143 and the connecting input shaft 243, and a gear ratio variable mechanism is provided in the gear portion 30a formed in the first outer ring 130A. The worm gear 55 is connected. That is, this configuration is a combination of the traction drive mechanism of the first modification described in the first embodiment so that the input / output shafts are symmetrical.
  • the torque of the first inner ring 120A serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first cage 140A. Then, it is transmitted to the first holder 140A having the connecting output shaft 143 by the traction drive via the rolling element K. Thereafter, in the second stage transmission unit TR21, the torque force transmitted to the second holder 240A serving as the connection input shaft 243 via the pressure adjusting cam 50 functioning as a preload adjusting means.
  • the rolling element of the second holder 240A It is transmitted to the second inner ring 220A serving as the output shaft So by the traction drive via the rolling elements K provided in the holding part 242.
  • the pressure adjusting cam 50 corresponds to the torque of the connecting output shaft 143 in accordance with the first-stage transmission portion. Since the preload acting on the rolling elements K of TR11 and the second stage transmission unit TR21 is adjusted, the preload can be minimized when there is no input torque. Further, the worm gear 55 of the speed ratio variable mechanism is connected to the gear portion 30a formed on the first outer ring 130A of the traction input / output member to perform differential rotation control, so that the speed ratio of the input / output shaft is set to a desired value. It can be made variable.
  • the transmission 10G configured as described above shifts in the first step transmission unit TR11 and then performs a reverse shift in the second step transmission unit TR21, for example, increases in the first step transmission unit TR11. After speeding up, the speed will be reduced by the second-stage transmission unit TR21, and the input / output relationship by microtraction will be 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10G described above can be operated in a region where the number of rotations of the worm gear 55 is relatively low when compared under the same conditions, so that the driving noise can be suppressed low.
  • the first cage 140B having the input shaft Si is provided with a comb-like rolling element holding portion 142, and the rolling element K disposed in the rolling element holding portion 142 is provided.
  • the first inner ring 120B provided with the connecting output shaft 126 and the first outer ring 130B, and the second cage 240B having the output shaft So is comb-shaped.
  • a rolling element holding part 242 is provided, and the rolling element K disposed in the rolling element holding part 242 is fixed between the second inner ring 220B provided with the connecting input shaft 226 and the integral second outer ring fixed to the housing 11.
  • a second-stage transmission unit TR22 interposed between the two.
  • a pressure adjusting cam 50 functioning as a preload adjusting means is provided at the shaft connecting portion between the connecting output shaft 126 and the connecting input shaft 226, and the gear portion 30a formed on the first outer ring 130B functions as a gear ratio variable mechanism.
  • the worm gear 55 is connected. That is, this configuration is a combination of the traction drive mechanism of the third modified example described in the first embodiment so that the input / output axes are symmetrical.
  • the torque of the first cage 140B serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first cage 140B. It is transmitted to the first inner ring 120B having the connecting output shaft 126 via the rolling element K.
  • connection output unit 126 and the connection input unit 226 are connected via the pressure adjusting cam 50.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling elements K of the first step shifting portion TR12 and the second step shifting portion TR22 according to the torque of the connecting output shaft 126, so that the input torque is When not, the preload can be minimized.
  • the worm gear 55 of the speed ratio variable mechanism is connected to the gear portion 30a formed on the first outer ring 130B of the traction input / output member to perform differential rotation control, the speed ratio of the input / output shaft is set to a desired value. It can be made variable.
  • the transmission 10H configured as described above shifts in the first step transmission unit TR12 and then performs a reverse shift in the second step transmission unit TR22, for example, increases in the first step transmission unit TR12. After speeding up, the gear is decelerated at the second stage transmission section TR22, and the input / output relationship by microtraction is 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10H described above is easy to assemble because of the relatively small number of bearings. And when compared under the same conditions, the surface pressure of the rolling element K can be kept low, and the transmission torque of the input shaft Si where the pressure adjusting cam 50 is installed can be set low. Become advantageous.
  • the first cage 140C is provided with a comb-like rolling element holding portion 142, and the rolling element K disposed in the rolling element holding portion 142 is connected to the coupling output shaft 126.
  • a first-stage transmission TR13 interposed between the first inner ring 120C provided with the first outer ring 130C provided with the input shaft Si, and a comb-shaped rolling element holding part 242 provided in the second cage 240C, The second-stage speed change in which the rolling element K disposed in the rolling element holding portion 242 is interposed between the second inner ring 220C provided with the connecting input shaft 226 and the second outer ring 230C provided with the output shaft So.
  • Part TR23 Part TR23.
  • a pressure adjusting cam 50 that functions as a preload adjusting means is provided at the shaft connecting portion between the connecting output shaft 126 and the connecting input shaft 226, and the gear portion 4la formed in the first retainer 140C serves as a speed ratio variable mechanism.
  • the worm gear 55 that functions is connected. In other words, this configuration is the same as that of the fifth modification of the traction drive mechanism described in the first embodiment. Are combined such that the input / output axes are symmetrical.
  • the torque of the first outer ring 130C serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first retainer 140C. It is transmitted to the first inner ring 120C having the connecting output shaft 126 via the rolling element K. Thereafter, in the second stage transmission unit TR23, the torque force transmitted to the second inner ring 220C having the connection input shaft 226 via the pressure adjusting cam 50 functioning as a preload adjusting means is fixed to the housing 11 and integrated. It is transmitted to the second outer ring 230C serving as the output shaft So through the rolling element K provided in the rolling element holding part 242 provided in the stationary second cage formed in FIG.
  • the pressure adjusting cam 50 changes in the first stage according to the torque of the connection output shaft 126. Since the preload acting on the rolling elements K of the speed section TR13 and the second stage transmission section TR23 is adjusted, the preload can be minimized when there is no input torque. Further, since the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 41a formed in the first cage 140C of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be set to a desired value. The value can be variable.
  • the transmission 101 having such a configuration shifts in the first step transmission unit TR13 and then performs a reverse shift in the second step transmission unit TR23, for example, the first step transmission unit TR13 increases the speed. After speeding up, the speed will be decelerated at the second stage transmission section TR23, and the input / output relationship by microtraction will be 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 101 described above has a reduced life because the surface pressure of the rolling element K can be kept low and the transmission torque of the input shaft Si on which the pressure adjusting cam 50 is disposed can be set low when compared under the same conditions. It is advantageous in terms of durability. Further, since the worm gear 55 can be operated in a region where the rotational speed is relatively low, the operating noise can be suppressed low.
  • the transmission 10J described in this modification is modified by the worm gear 55 described above.
  • a configuration in which a planetary reduction mechanism 80 using a hollow motor M as a drive source is employed is different.
  • the transmission 10J is provided with a comb-like rolling element holding part 142 in the first cage 14 OD having the input shaft Si, and the rolling element K disposed in the rolling element holding part 142 is connected and output.
  • a pressure adjusting cam 50 that functions as a preload adjusting means is provided at the shaft connecting portion between the connecting output shaft 126 and the connecting input shaft 226, and a planetary reduction mechanism 80 that functions as a gear ratio variable mechanism is connected to the first outer ring 130D.
  • the configuration is as follows.
  • the configuration of the fourth modification is obtained by changing the worm gear 55 of the variable speed change mechanism to the planetary reduction mechanism 80 in the transmission 10H of the second modification described above.
  • symbol C in a figure is a locking mechanism part containing a clutch etc.
  • the planetary reduction mechanism 80 uses a hollow motor M disposed coaxially with the input shaft Si and the output shaft So as a drive source, and includes a sun roller 82 provided on the hollow motor shaft 81, and a plurality of planetary rollers 83. And a ring roller 84 disposed on the outer peripheral side of the planetary roller 83.
  • the input shaft Si provided in the first cage 140D is disposed so as to penetrate through the hollow motor shaft 81.
  • the hollow motor shaft 81 is provided with a sun roller 82 having a gear portion formed on the outer peripheral surface of the end on the rolling element holding portion 142 side.
  • a plurality of planetary rollers 83 that mesh with the gear portion are arranged at an equal pitch in the circumferential direction.
  • the first outer ring 130D and the spline are arranged on the outer peripheral side of each planetary roller 83.
  • a ring roller 84 connected by coupling or the like is disposed.
  • the ring roller 84 has a gear portion formed on the inner peripheral surface that meshes with the planetary roller 83!
  • the planetary reduction mechanism 80 configured as described above is configured so that when the sun roller 82 rotates integrally with the hollow motor shaft 81 by driving the hollow motor M, the number of teeth of the gear portion formed on the sun roller 82, the planet Depending on the number of teeth of the roller 83 and the number of teeth of the gear portion formed on the ring roller 84, the rotational speed of the sun roller 82 is shifted (decelerated) and transmitted to the ring roller 84.
  • the rotation of the ring roller 84 rotates the first outer ring 130D of the traction input / output member connected together. Therefore, similarly to the worm gear 55 of the above-described variable speed mechanism, differential rotation control can be performed to change the speed ratio of the input / output shaft to a desired value.
  • the differential rotational control is performed to change the speed ratio of the input / output shaft. Can be set easily.
  • the transmission 10J having a small outer dimension is suitable, for example, as a transmission of the vehicle steering apparatus ST in which it is difficult to secure an installation space.
  • the torque of the first holder 140D serving as the input shaft Si is arranged in the rolling element holding unit 142 of the first holder 140D. Then, it is transmitted to the first inner ring 120B having the connecting output shaft 126 via the rolling element K.
  • the pressure adjusting cam 50 corresponds to the torque of the connection output shaft 126. Since the preload acting on the rolling elements K of TR14 and the second stage transmission unit TR24 is adjusted, the preload can be minimized when there is no input torque. Also, since the planetary reduction mechanism 80, which is a gear ratio variable mechanism, is connected to the first outer ring 130D of the traction input / output member and performs differential rotation control, the gear ratio of the input / output shaft can be made variable to a desired value. Can do.
  • the transmission 10J having such a configuration shifts in the first stage transmission unit TR14 and then performs a reverse shift in the second stage transmission unit TR24, for example, the first stage transmission unit TR14 increases the speed. After speeding up, the speed is reduced at the second stage transmission unit TR24, and the input / output relationship by microtraction is 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the planetary reduction mechanism 80 described above is not limited to the transmission 10J having the configuration shown in FIG. 12, and can be employed in place of the worm gear 55 of each of the above-described embodiments and modifications. .
  • the transmission 10K uses the traction of the rolling element K interposed between the input shaft Si and the output shaft So, and changes the rotational speed of the input shaft Si to a desired gear ratio.
  • the input shaft Si and the output shaft So are connected to perform two-stage shifting.
  • this transmission 10K connects the traction input / output members of the first-stage transmission unit TR15 and the second-stage transmission unit TR25 together, and provides a difference in the transmission ratio between the two transmission units TR15 and TR25.
  • the other features are substantially the same as those of the transmission 10J in FIG. 11 described above.
  • the input shaft Si and the output shaft So projecting on both sides of the housing 11 are shaft portions provided in the cage of the first transmission portion TR15 and the second stage transmission portion TR25 that are connected in the axial direction.
  • the first cage 140E having the input shaft Si is provided with a comb-like rolling element holding portion 142A, and the rolling element K disposed in the rolling element holding portion 142A is connected to the coupling output shaft 126A.
  • the first rolling element TR 15 interposed between the first inner ring 120E provided with the outer ring connecting member 90 and the second cage 240E having the output shaft So and the comb-shaped rolling element holding part 242A are provided.
  • the rolling element K provided in the rolling element holding part 242A is provided with a second stage transmission part TR25 interposed between the second inner ring 220E provided with the connecting input shaft 226A and the outer ring connecting member 90.
  • a pressure regulating cam 50 that functions as a preload adjusting means is provided at the shaft coupling portion between the coupling output shaft 126A and the coupling input shaft 226A, and a planetary reduction mechanism 80 that functions as a gear ratio variable mechanism on the outer ring coupling member 90. It is set as the structure which connected.
  • the first-stage transmission unit TR15 and the second-stage transmission unit TR25 are connected by the outer ring connection member 90 as members corresponding to the first outer ring and the second outer ring that are the traction input / output members.
  • the planetary reduction mechanism 80 which is a variable speed change mechanism, is connected to the outer ring connecting member 90, and the inner ring locus diameters of the two transmission parts TR15 and TR25 are combined to make a difference in the gear ratio. It is set as the structure which provided. In this case, the difference provided in the transmission ratio between the two transmission units TR15 and TR25 may be slight.
  • the planetary reduction mechanism 80 uses a hollow motor M arranged coaxially with the input shaft Si and the output shaft So as a drive source, a sun roller 82 provided on the hollow motor shaft 81, and a plurality of planetary rollers 83. And a ring roller 84 disposed on the outer peripheral side of the planetary roller 83.
  • the input shaft Si provided in the first cage 140E is disposed so as to penetrate through the hollow motor shaft 81.
  • the hollow motor shaft 81 is provided with a sun roller 82 having a gear portion formed on the outer peripheral surface of the end on the rolling element holding portion 142 side.
  • a plurality of planetary rollers 83 that mesh with the gear portion are arranged at equal pitches in the circumferential direction.
  • the outer ring connecting member 90 and the spline are arranged on the outer peripheral side of each planetary roller 83.
  • a ring roller 84 connected by coupling or the like is provided.
  • the ring roller 84 has a gear portion formed on the inner peripheral surface thereof meshed with the planetary roller 83.
  • the planetary reduction mechanism 80 configured as described above is configured so that when the sun roller 82 rotates integrally with the hollow motor shaft 81 by driving the hollow motor M, the number of gear teeth formed on the sun roller 82, the planet Depending on the number of teeth of the roller 83 and the number of teeth of the gear portion formed on the ring roller 84, the rotational speed of the sun roller 82 is shifted (decelerated) and transmitted to the ring roller 84.
  • the rotation of the ring roller 84 rotates the outer ring connecting member 90 of the traction input / output member that is integrally connected, and there is a difference in the gear ratio between the two transmission units TR15 and TR25, so differential rotation control is performed. As a result, the gear ratio of the input / output shaft can be varied to a desired value.
  • the differential rotational control is performed to change the speed ratio of the input / output shaft. Can be set easily.
  • the hollow motor M is used and the input / output shaft passes through the hollow motor shaft 81, the force that eliminates a member that protrudes in the circumferential direction, such as the worm gear 55, is sufficient. Since the projecting amount can be minimized, the outer diameter dimension of the transmission 10K can be reduced and converted into a contour.
  • the transmission 10K having such a small outer dimension is suitable as a transmission of the vehicle steering apparatus ST in which it is difficult to secure an installation space, for example.
  • the transmission 10K configured as described above may use the worm gear 55 as a gear ratio variable mechanism, although the outer dimensions are large.
  • the transmission shown in the first embodiment of the present invention has an arrangement in which the rotation axis of the rolling element is inclined so as not to be orthogonal to the axes of the input shaft Si and the output shaft So.
  • the pressure adjusting cam 50 of the preload adjusting means for automatically changing the preload applied to the rolling element K according to the torque of the input shaft Si, and the traction input / output member of the rolling element K.
  • the differential gear ratio variable mechanism worm gear 55 that changes the gear ratio by controlling the rotational speed of the truss input / output member is provided, so that the preload applied to the inclined rolling elements is applied to the input shaft.
  • the pressure adjusting cam 50 is adjusted according to the torque of Si.
  • the pressure adjusting cam 50 generates a thrust load corresponding to the transmission torque, and this thrust load becomes a preload that presses the rolling element K in the axial direction.
  • this thrust load becomes a preload that presses the rolling element K in the axial direction.
  • the gear ratio of the input / output shaft can be adjusted and set arbitrarily.
  • the speed reducer shown in the second embodiment of the present invention has an arrangement in which the rotation axis of the rolling element K is inclined so as not to be orthogonal to the axis of the input shaft Si and the output shaft So, and A preload adjusting means 50 for automatically changing the preload applied to the moving body K according to the torque between the shafts connecting the first-stage transmission section and the second-stage transmission section, and the trough of the rolling element K And a worm gear 55 of a gear ratio variable mechanism that is connected to the gear input / output member and changes the gear ratio by controlling the rotational speed of the traction input / output member.
  • the preload to be adjusted is adjusted by the pressure adjusting cam 50 that automatically changes according to the torque between the shafts connecting the first stage transmission unit and the second stage transmission unit.
  • the gear ratio of the input / output shaft can be adjusted and set arbitrarily. In this case, since the two-stage shift is performed by the first-stage transmission section and the second-stage transmission section, the input / output relationship by the traction drive is 1: 1 in the same rotation direction.
  • FIG. 14 is a cross-sectional view showing a fourth embodiment of the traction drive transmission apparatus according to the present invention.
  • the above-described transmission is provided with a transmission torque assist mechanism that applies a rotational force to the output shaft So to increase the transmission torque.
  • symbol is attached
  • This transmission 10L is provided by adding a gear portion 35 positioned between the bearings 12 to the output shaft portion 33 of the transmission 10 described in the first embodiment (FIG. 1). It is.
  • the gear portion 35 is a portion that meshes with a transmission torque assist mechanism described later.
  • the output shaft portion 33 protruding outside the housing 11 is connected to a driven device, not shown in the figure, such as a rack and pinion device of a vehicle steering device.
  • the gear portion 35 of the outer ring 30 serving as the output shaft So is coupled with the worm gear 55A so as to function as a transmission torque assist mechanism that applies a rotational force to the output shaft So to increase the transmission torque.
  • the worm gear 55A is driven by a drive means such as a variable controllable electric motor, and rotates the mating output shaft So side to increase the output torque of the traction drive mechanism TR by applying a desired rotational torque. It is.
  • the transmission torque output from the output shaft So becomes a large output torque that is increased by applying a desired rotational torque from the worm gear 55A to the torque output from the input shaft Si via the traction drive mechanism TR. .
  • the transmission 10L configured as described above has a transmission torque assist function in addition to the function of the transmission 10 described in the first embodiment. That is, when the worm gear 55A applies a desired rotational force to the output shaft S o, the transmission torque output via the traction drive mechanism TR is finally output according to the applied rotational force. The output torque increases.
  • the transmission torque assist function increases the final output torque by controlling the worm gear 55A according to various conditions and applying the desired rotational force.
  • a transmission 10L having a (power assist function) is provided.
  • the handle 60 when the handle 60 is operated, for example, when the vehicle is stopped or traveling straight, the upper steering shaft 62 and the input shaft Si have no torque, and thus act on the rolling element K. Preload is minimized. For this reason, the life of the rolling element K is improved, which is effective in improving the durability and reliability of the vehicle steering device ST.
  • the operation of the handle 60 can be performed by eliminating or minimizing the application of the rotational torque during high-speed traveling, for example.
  • a low speed such as when parallel parking, etc.
  • a low speed such as when parallel parking
  • the inner ring 20A provided with the input shaft Si has an integral structure, and the cage 40A provided with the output shaft So is divided into two parts so that the pressure regulating cam 50 is arranged between the joint surfaces.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the outer ring 30A, and the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft portion of the retainer 40A.
  • the cage 40A equipped with the output shaft Si is connected to the holder main body 43 and the output shaft portion 44.
  • the split rolling structure is divided into two, and a conical rolling element K is disposed in a comb-shaped rolling element holding part 42 provided in the holding part main body 43.
  • a pressure adjusting cam 50 that functions as the above-described preload adjusting means is disposed between the opposed surfaces 43a, 44a of the holding portion main body 43 and the output shaft portion 44.
  • a rolling element K is interposed between the inner ring 20A and the outer ring 30A so that a preload (indicated by an arrow in the figure) acts on the inner ring 20A.
  • a cage 40A a thrust bearing 15 is disposed to enable relative rotation.
  • the worm gear 55 of the transmission ratio variable mechanism is coupled with the gear portion 30a formed on the outer peripheral surface of the outer ring 30A, and the worm gear 55A of the transmission torque assist mechanism is coupled with the gear portion 35 attached to the output shaft portion 44.
  • reference numeral 12 denotes a bearing
  • 13 denotes an oil seal
  • 14 denotes a leaf spring
  • 16 denotes a tapered roller bearing.
  • the torque of the inner ring 20A serving as the input shaft Si is output as the output shaft So of the retainer 40A via the rolling elements K disposed in the rolling element holder 42. It is transmitted to the shaft 4 4.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling element K in accordance with the torque of the input shaft Si. Can be minimized. Note that the preload in this case is adjusted by the pressure adjusting cam 50 and is generated by a thrust load acting on the thrust bearing 15 from the holding portion main body 43.
  • the gear ratio of the input / output shaft can be made variable.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the gear portion 35 that rotates integrally with the output shaft portion 44 to give a desired rotational torque, so that the transmission torque output from the output shaft So is increased. be able to.
  • the transmission 10M configured as described above has the advantage that the rotation directions of the input and output shafts are the same.
  • the surface pressure of the rolling element K can be suppressed to a low level, which is advantageous in terms of life and durability.
  • a comb-shaped rolling element holding portion 42 is provided in a cage 4 OB having an input shaft Si, and the rolling element K disposed in the rolling element holding portion 42 is provided.
  • the inner ring 20B provided with the output shaft So is interposed between the outer ring 30B, the inner ring 20B is provided with a pressure adjusting cam 50 as a preload adjusting means, and the outer gear 30B is connected to a warm gear 55 as a variable speed ratio mechanism.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft portion (the output shaft portion 26 described later) of the inner ring 20B.
  • reference numeral 12 denotes a bearing
  • 13 denotes an oil seal
  • 14 denotes a leaf spring
  • 15 denotes a thrust bearing
  • 16 denotes a tapered roller bearing.
  • the inner ring 20B in this case is divided into an inner ring portion 22B and an output shaft portion 26, and a pressure adjusting cam 50 is disposed between the opposed surfaces 22b and 26b of the inner ring portion 22B and the output shaft portion 26. Has been.
  • the torque of the cage 40B serving as the input shaft Si is transmitted through the rolling elements K provided in the rolling element holding section 42 to the inner ring portion 22B of the inner ring 20B serving as the output shaft So. Is transmitted to.
  • the pressure adjusting cam 50 adjusts the preload acting on the rolling element K according to the torque of the input shaft Si, the preload can be minimized when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 30a formed on the outer ring 30B of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft can be made variable. .
  • the transmission 10N configured as described above has the advantage that the rotational directions of the input / output shafts are the same, and the number of bearings required is small, so that assembly during manufacture is easy.
  • the operation noise can be kept low because the worm gear 55 can be operated in a low rotational speed region.
  • a comb-shaped rolling element holding portion 42 is provided in the cage 40C, and the rolling element K disposed in the rolling element holding portion 42 is connected to the output shaft So.
  • Two provided It is interposed between the split inner ring 20C and the outer ring 30C provided with the input shaft Si, and a pressure adjusting cam 50 is provided as a preload adjusting means between the opposing surfaces of the inner ring 20C.
  • 55 is connected, and the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft portion (the output shaft portion 26 described later) of the inner ring 20C.
  • reference numeral 12 is a bearing
  • 13 is an oil seal
  • 14 is a leaf spring
  • 16 is a tapered roller bearing.
  • the inner ring portion 20C is divided into an inner ring portion 22C and an output shaft portion 26, and a pressure adjusting cam 50 is disposed between the opposed surfaces 22c and 26c of the inner ring portion 22C and the output shaft portion 26. ing.
  • the torque of the outer ring 30C serving as the input shaft Si is transmitted through the rolling element K disposed in the rolling element holding section 42 to the inner ring portion 22C of the inner ring 20C serving as the output shaft So. Is transmitted to.
  • the preload cam 50 adjusts the preload acting on the rolling element K according to the torque of the input shaft Si. Can be suppressed.
  • the worm gear 55 force S traction input / output member retainer 40C of the gear ratio variable mechanism is connected to the gear portion 41a formed on the retainer 40C for differential rotation control, the gear ratio of the input / output shaft can be made variable. it can.
  • the transmission 10P having the above-described configuration can be operated in a region where the rotation speed of the worm gear 55 is relatively low when compared under the same conditions, so that driving noise can be suppressed low.
  • the transmission 10Q uses the traction of the rolling element K interposed between the input shaft Si and the output shaft So, and changes the rotational speed of the input shaft Si to a desired gear ratio.
  • the input shaft Si and the output shaft So are connected symmetrically to perform two-stage shifting.
  • the input shaft Si and the output shaft So projecting on both sides of the housing 11 are provided on the inner rings of the first-stage transmission unit TR1 and the second-stage transmission unit TR2 connected so as to be substantially bilaterally symmetrical in the axial direction.
  • the shaft portion is provided on the inner rings of the first-stage transmission unit TR1 and the second-stage transmission unit TR2 connected so as to be substantially bilaterally symmetrical in the axial direction.
  • the first-stage transmission unit TR1 is provided with a comb-like rolling element holding part 142 in the main body 141 of the first cage 140, and the rolling element K arranged in the rolling element holding part 142 is provided with an input shaft Si. It is configured to be interposed between one inner ring 120 and a first outer ring 130 provided with a connecting output shaft 131. Even in this case, the rolling element holding part 142 can be appropriately selected such as a ladder shape without being limited to a comb shape.
  • the second-stage transmission unit TR2 is provided with a comb-like rolling element holding part 242 on the main body portion (a part of the housing 11) of the second cage 240, and the rolling element K disposed on the rolling element holding part 242
  • the second inner ring 220 provided with the output shaft So and the second outer ring 230 provided with the connecting input shaft 231 are interposed.
  • the rolling element holding part 242 is not limited to a comb shape, and can be appropriately selected such as a ladder shape.
  • the rolling element K described above has an arrangement in which the rotation axis is inclined so as not to be orthogonal to the axis of the input shaft Si and the output shaft So in both the first step transmission unit TR1 and the second step transmission unit TR2. Is done.
  • the shaft connecting section that connects the connecting output shaft 131 of the first stage transmission section TR1 and the end face of the connection input shaft 23 1 of the second stage transmission section TR2 to face each other functions as a preload adjusting means.
  • Pressure regulating cam 50 is provided.
  • the pressure adjusting cam 50 is housed and installed in a slidable state in the space of the recess formed between the opposing surfaces of the shaft connecting portion, as in the first embodiment.
  • a plurality of such recesses are provided radially from the axis center so as to have an equal pitch in the circumferential direction, but this number may be selected appropriately according to various conditions.
  • the first cage 140 includes a gear portion 141a formed on the outer peripheral surface of the main body 141, and the gear portion 141a is coupled to the worm gear 55 that functions as a speed ratio variable mechanism. . That is, this configuration is a combination of the traction drive mechanism described in the first embodiment so that the input / output axes are symmetrical.
  • the second inner ring 220 provided with the output shaft So is provided with a gear portion 35 that rotates integrally.
  • the gear portion 35 is coupled to and coupled with the worm gear 55A of the transmission torque assist mechanism, and has a function of increasing a transmission torque output from the worm gear 55A by applying a desired rotational torque to the output shaft So.
  • the second cage 240 is an immovable member that is fixed to the housing 11 and forms a part thereof.
  • Reference numeral 12 in the drawing is a bearing, 13 is an oil seal, and 14 is a leaf spring.
  • the torque of the first inner ring 120 serving as the input shaft Si is arranged in the rolling element holding unit 142 of the first retainer 140. It is transmitted via a rolling element K to a first outer ring 130 having a connecting output shaft 131 by a traction drive. Thereafter, in the second-stage transmission unit TR2, torque is transmitted to the second outer ring 230 provided with the connecting input shaft 231 via the pressure adjusting cam 50 that functions as a preload adjusting means, and the rolling elements of the second retainer 240 are transferred. It is transmitted to the second inner ring 220 serving as the output shaft So via the rolling elements K provided in the holding part 242.
  • the pressure adjusting cam 50 is a first-stage transmission portion according to the torque of the connecting output shaft 131.
  • the preload acting on the rolling elements of the second-stage transmission unit is adjusted, the minimum preload defined by the leaf spring 14 can be suppressed when there is no input torque.
  • the worm gear 55 of the gear ratio variable mechanism is connected to the gear portion 141a formed in the first holding portion 140 of the traction input / output member to perform differential rotation control, the gear ratio of the input / output shaft is set to a desired value. Can be made variable.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the gear portion 35 that rotates integrally with the stage 2 inner ring 220 having the output shaft So, so that the output Since a desired rotational torque is applied to the shaft So according to the rotation of the worm gear 55A, the transmission torque output from the output shaft So can be increased.
  • the transmission 10Q having such a configuration shifts in the first stage transmission unit TR1 and then performs a reverse shift in the second stage transmission unit TR2, for example, the first stage transmission unit TR1 increased the speed. Later, the speed will be reduced by the second-stage transmission unit TR2, and the input / output relationship by microtraction will be 1: 1. For this reason, when this device is incorporated into the vehicle steering device ST, the current The rack & pion device 64 can be used as it is. Further, the transmission 10Q described above can be operated in a region where the rotation speed of the worm gear 55 is particularly low when compared under the same conditions, so that the driving noise can be suppressed low. Furthermore, since the number of bearings to be used should be small, it has the advantage of being easy to assemble.
  • a comb-like rolling element holding portion 142 is provided in a first cage 140A having a connection output shaft 143, and the rolling element provided in the rolling element holding portion 142 is provided.
  • the rolling element holding part 242 is provided, and the rolling element K disposed in the rolling element holding part 242 is connected to the second inner ring 220A provided with the output shaft So and the second outer ring (fixed to the housing 11 and integrated).
  • a second-stage transmission unit TR21 interposed between the two.
  • a pressure adjusting cam 50 that functions as a preload adjusting means is provided at the shaft connection portion between the connection output shaft 143 and the connection input shaft 243, and the gear ratio variable mechanism is provided in the gear portion 30a formed in the first outer ring 130A.
  • the worm gear 55 is connected. That is, this configuration is a combination of the traction drive mechanism of the first modified example described in the fourth embodiment so that the input / output axes are symmetrical.
  • the second inner ring 220A serving as the output shaft So is provided with a gear portion 35 that rotates integrally, and the worm gear 55A that functions as the above-described transmission torque assist mechanism is engaged with and coupled to the gear portion 35.
  • the torque of the first inner ring 120A serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first retainer 140A. Then, it is transmitted to the first holder 140A having the connecting output shaft 143 by the traction drive via the rolling element K. Thereafter, in the second-stage transmission unit TR21, the torque transmitted to the second holder 240A serving as the connection input shaft 243 via the pressure adjusting cam 50 functioning as a preload adjusting means 1S The rolling elements of the second holder 240A The traction is achieved via the rolling elements K arranged in the holding part 242. Is transmitted to the second inner ring 220A, which becomes the output shaft So.
  • the pressure adjusting cam 50 corresponds to the torque of the connecting output shaft 143 in accordance with the first-stage transmission portion. Since the preload acting on the rolling elements K of TR11 and the second stage transmission unit TR21 is adjusted, the preload can be minimized when there is no input torque.
  • the worm gear 55 of the speed ratio variable mechanism is the first outer ring 130 of the traction input / output member.
  • the input / output shaft speed change ratio can be made variable to a desired value.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft So to give a desired rotational force, the transmission torque output from the output shaft So can be increased.
  • the speed change device 10R configured as described above shifts in the first step transmission unit TR11 and then performs a reverse shift in the second step transmission unit TR21, for example, the first step transmission unit TR11 increases the speed. After speeding up, the speed will be reduced by the second-stage transmission unit TR21, and the input / output relationship by microtraction will be 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10R described above can be operated in a region where the number of rotations of the worm gear 55 is relatively low when compared under the same conditions, the operation noise can be suppressed low.
  • a comb-shaped rolling element holding portion 142 is provided in the first cage 140B having the input shaft Si, and the rolling element K disposed in the rolling element holding portion 142 is provided.
  • the first inner ring 120B provided with the connecting output shaft 126 and the first outer ring 130B, and the second cage 240B having the output shaft So is comb-shaped.
  • a rolling element holding part 242 is provided, and the rolling element K disposed in the rolling element holding part 242 is fixed between the second inner ring 220B provided with the connecting input shaft 226 and the integral second outer ring fixed to the housing 11.
  • a second stage transmission unit TR22 interposed between the two.
  • a pressure adjusting cam 50 that functions as a preload adjusting means is provided at the shaft connecting portion between the connecting output shaft 126 and the connecting input shaft 226, and the gear ratio variable mechanism is provided in the gear portion 30a formed in the first outer ring 130B.
  • the worm gear 55 functioning as a structure is connected. That is, this configuration is a combination of the traction drive mechanism of the second modification described in the fourth embodiment so that the input / output shafts are symmetrical.
  • the second cage 240B serving as the output shaft So is provided with a gear portion 35 that rotates integrally, and the worm gear 55A that functions as the transmission torque assist mechanism described above is coupled to the gear portion 35 and coupled thereto.
  • the torque of the first cage 140B serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first cage 140B. It is transmitted to the first inner ring 120B having the connecting output shaft 126 via the rolling element K.
  • the pressure adjusting cam 50 corresponds to the torque of the connection output shaft 126. Since the preload acting on the rolling elements K of TR12 and the second stage transmission unit TR22 is adjusted, the preload can be minimized when there is no input torque.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft So to give a desired rotational force, the transmission torque output from the output shaft So can be increased.
  • the speed change device 10S configured as described above shifts in the first step transmission unit TR12 and then performs a reverse shift in the second step transmission unit TR22, for example, increases in the first step transmission unit TR12. After speeding up, the speed will be reduced at the second stage transmission section TR22.
  • the output relationship is 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10S described above is easy to assemble because of the relatively small number of bearings. And when compared under the same conditions, the surface pressure of the rolling element K can be kept low, and the transmission torque of the input shaft Si where the pressure adjusting cam 50 is installed can be set low. Become advantageous.
  • the first cage 140C is provided with a comb-like rolling element holding portion 142, and the rolling element K disposed in the rolling element holding portion 142 is connected to the coupling output shaft 126.
  • a first-stage transmission TR13 interposed between the first inner ring 120C provided with the first outer ring 130C provided with the input shaft Si, and a comb-shaped rolling element holding part 242 provided in the second cage 240C, The second-stage speed change in which the rolling element K disposed in the rolling element holding portion 242 is interposed between the second inner ring 220C provided with the connecting input shaft 226 and the second outer ring 230C provided with the output shaft So.
  • Part TR23 Part TR23.
  • a pressure regulating cam 50 that functions as a preload adjusting means is provided at the shaft coupling portion between the coupling output shaft 126 and the coupling input shaft 226, and the gear ratio 141a formed in the first retainer 140C is a speed change ratio.
  • the worm gear 55 functioning as a variable mechanism is connected. That is, this configuration is a combination of the traction drive mechanism of the third modified example described in the fourth embodiment so that the input / output axes are symmetrical.
  • the second outer ring 230A serving as the output shaft So is provided with a gear portion 35 that rotates integrally, and the worm gear 55A that functions as the above-described transmission torque assist mechanism is engaged with and coupled to the gear portion 35.
  • the torque of the first outer ring 130C serving as the input shaft Si is disposed in the rolling element holding unit 142 of the first cage 140C. Then, it is transmitted to the first inner ring 120C having the connecting output shaft 126 via the rolling element K. Thereafter, in the second stage transmission unit TR23, the communication is performed via the pressure adjusting cam 50 that functions as a preload adjusting means. Torque force transmitted to the second inner ring 220C having the connection shaft 226. The torque force is fixed to the housing 11 and formed integrally with the rolling element holder 242 provided in the stationary second cage. It is transmitted to the second outer ring 230C serving as the output shaft So via the rolling element K.
  • the pressure adjusting cam 50 changes in the first stage according to the torque of the connection output shaft 126. Since the preload acting on the rolling elements K of the speed section TR13 and the second stage transmission section TR23 is adjusted, the preload can be minimized when there is no input torque.
  • the worm gear 55A of the transmission torque assist mechanism is connected to the output shaft So to give a desired rotational force, the transmission torque output from the output shaft So can be increased.
  • the transmission 10T having such a configuration shifts in the first stage transmission unit TR13 and then performs a reverse shift in the second stage transmission unit TR23, for example, the first stage transmission unit TR13 increases the speed. After speeding up, the speed will be decelerated at the second stage transmission section TR23, and the input / output relationship by microtraction will be 1: 1. Therefore, when this device is incorporated into the vehicle steering device ST, the current rack and pion device 64 can be used as it is.
  • the transmission 10G described above has a reduced life because the surface pressure of the rolling element K can be kept low and the transmission torque of the input shaft Si on which the pressure adjusting cam 50 is disposed can be set low when compared under the same conditions. It is advantageous in terms of durability. Further, since the worm gear 55 can be operated in a region where the rotational speed is relatively low, the operating noise can be suppressed low.
  • the transmission shown in the fourth embodiment of the present invention has an arrangement in which the rotation axis of the rolling element is inclined so as not to be orthogonal to the axis of the input shaft Si and the output shaft So.
  • a differential gear ratio that changes the gear ratio by controlling the number of revolutions of the input / output member of the torque.
  • Worm gear 55 of the variable mechanism and transmission that increases the transmission torque by applying a rotational force to the output shaft So.
  • the preload applied to the inclinedly arranged rolling elements is adjusted by the pressure adjusting cam 50 in accordance with the torque of the input shaft Si. That is, the pressure adjusting cam 50 generates a thrust load corresponding to the transmission torque, and this thrust load becomes a preload that presses the rolling element K in the axial direction.
  • the speed reducer shown in the fifth embodiment of the present invention has an arrangement in which the rotation axis of the rolling element K is inclined so as not to be orthogonal to the axes of the input shaft Si and the output shaft So, and A preload adjusting means 50 for automatically changing the preload applied to the moving body K according to the torque between the shafts connecting the first-stage transmission section and the second-stage transmission section, and the trough of the rolling element K
  • the worm gear 55 of the gear ratio variable mechanism that is connected to the gear I / O member and changes the gear ratio by controlling the rotation speed of the traction I / O member, and the transmission torque that increases the transmission torque by applying a rotational force to the output shaft So.
  • the auxiliary mechanism worm gear 55A Since the auxiliary mechanism worm gear 55A is provided, the preload applied to the inclinedly arranged rolling elements K is automatically determined according to the torque between the shafts connecting the first stage transmission unit and the second stage transmission unit. Adjusted by the pressure adjusting cam 50 It made. In addition, since it has a differential gear ratio variable mechanism, it can be set arbitrarily by adjusting the gear ratio of the input / output shaft, and the force is also applied to the output shaft So by the transmission torque assist mechanism. Therefore, the transmission torque output from the output shaft So can be increased. In this case, since the two-stage shift is performed by the first-stage transmission section and the second-stage transmission section, the input / output relationship by the traction drive is 1: 1 in the same rotation direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 コンパクトで耐久性が高い可変速のトラクションドライブ変速装置を提供する。入力軸Siと出力軸Soとの間に介在させた転動体Kのトラクションを利用し、入力軸Siの回転数を所望の変速比に変化させて出力軸Soから出力するトラクションドライブ変速装置10が、転動体Kの自転軸線が入力軸Si及び出力軸Soの軸線と直交しないよう傾斜させた配置とされ、転動体Kに付与する予圧を入力軸Siのトルクに応じて自動的に変化させる調圧カム50と、転動体Kのトラクション入出力部材である保持器40に連結され、保持器40の回転数制御を行って変速比を変化させるウォームギア55による差動式の変速比可変機構とを備えている。  

Description

明 細 書
トルク伝達構造、トラクシヨンドライブ変速装置及び車両用操舵装置 技術分野
[0001] 本発明は、たとえば車両の操舵系等に適用されるトルク伝達構造、そして、このトル ク伝達構造を用いたトラクシヨンドライブ変速装置及び車両用操舵装置に関する。 背景技術
[0002] 従来より、転がり滑り状態にある回転体の接触部に作用する接線力を利用し、入力 軸の回転数と出力軸の回転数との間に変速比をもってトルクの伝達を行うトラクシヨン ドライブ変速装置が知られている。このトラクシヨンドライブ変速装置においては、入 出力の変速比が線形となる。(たとえば、特許文献 1参照)
また、線形の無断変速が可能な変速装置としては、遊星ローラ式変速装置が知ら れている。(たとえば、特許文献 2参照)
また、増速機として機能する差動伝達機構を備えた操舵伝達系のトルク伝達経路 に減速機を介在させることにより、いったん増速した変速比を減速して最終的には操 舵系全体の伝達比をたとえば 1: 1に戻す車両用操舵装置が知られている。(たとえ ば、特許文献 3参照)
特許文献 1:特開 2003 - 278866号公報
特許文献 2 :実開平 1 139161号公報
特許文献 3:特開 2004 - 58896号公報
発明の開示
[0003] ところで、上述した従来のトラクシヨンドライブ変速装置や遊星ローラ式変速装置は 、入出力の変速比が所定の線形となるため、 1台の変速装置において予め設定され た線形の変速比とは異なる任意の変速比を実現することはできな力つた。
また、トルク伝達系等に増速機及び減速機を介在させて操舵系全体の伝達比を所 望の値に設定する車両用操舵装置は、車両という限られたスペースに設置されること を考慮すると、増速機及び減速機が同軸上に並んで軸方向に長くなるため、コンパ クトイ匕の面で問題が生じてくる。 [0004] このような背景から、たとえば車両用操舵装置のトルク伝達経路等に使用でき、伝 達するトルクに応じて変化する軸方向の押圧力を発生させるコンパクトで耐久性の高 V、トルク伝達構造の開発が望まれる。
また、入出力軸間の変速比を自由に変化させることができ、コンパクトで耐久性の 高いトラクシヨンドライブ変速装置及びこのトラクシヨンドライブ変速装置を用いた車両 用操舵装置の開発が望まれる。
また、入出力軸間の変速比を自由に変化させることができ、しかも出力軸の伝達ト ルクを増すことができるコンパクトで耐久性の高いトラクシヨンドライブ変速装置及びこ のトラクシヨンドライブ変速装置を用いた車両用操舵装置の開発が望まれる。
[0005] 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、コン ノ タトで耐久性の高 、トルク伝達構造、コンパクトで耐久性が高 、可変速のトラクショ ンドライブ変速装置、及びこれらを用いた車両用操舵装置を提供することにある。 また、本発明の目的は、入出力軸間の変速比を自由に変化させ、かつ、出力軸の 伝達トルクを増すことができる、コンパクトで耐久性の高い可変速のトラクシヨンドライ ブ変速装置、及びこれを用いた車両用操舵装置を提供することにある。
[0006] 本発明は、上記の問題を解決するため、下記の手段を採用した。
請求項 1に記載の本発明に係るトルク伝達構造は、同一軸線上を回転するように配 置された 2部材の対向面間でトルク伝達を行うトルク伝達構造において、
前記対向面の間に、断面形状が傾斜面または曲面を形成する凹部を複数組設け、 該凹部の空間に調圧カムを配設したことを特徴とするものである。
[0007] このようなトルク伝達構造によれば、前記対向面の間に、断面形状が傾斜面または 曲面を形成する凹部を複数組設け、該凹部の空間に調圧カムを配設したので、軸方 向の長さがほとんど延びることなく対向面間に組み込まれるコンパクトな調圧カムの 作用により、伝達するトルクに応じて変化する軸方向の押圧力を発生させることがで きる。
[0008] 請求項 2に記載の本発明に係るトラクシヨンドライブ変速装置は、入力軸と出力軸と の間に介在させた転動体のトラクシヨンを利用し、前記入力軸の回転数を所望の変 速比に変化させて前記出力軸力 出力するトラクシヨンドライブ変速装置であって、 前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、前記転動体に付与する予圧を前記入力軸のトルクに応じて自 動的に変化させる予圧調整手段と、前記転動体のトラクシヨン入出力部材に連結され 、該トラクシヨン入出力部材の回転数制御を行って前記変速比を変化させる差動式 の変速比可変機構とを備えていることを特徴とするものである。
[0009] このようなトラクシヨンドライブ変速装置によれば、転動体の自転軸線が入力軸及び 出力軸の軸線と直交しないよう傾斜させた配置とされ、かつ、転動体に付与する予圧 を入力軸のトルクに応じて自動的に変化させる予圧調整手段と、転動体のトラクショ ン入出力部材に連結され、該トラクシヨン入出力部材の回転数制御を行って変速比 を変化させる差動式の変速比可変機構とを備えて!/、るので、傾斜配置された転動体 に付与される予圧は、入力軸のトルクに応じて予圧調整手段が調整したものとなる。 すなわち、予圧調整機構が伝達トルクに応じたスラスト荷重を発生させ、このスラスト 荷重が転動体を軸方向に押圧する予圧となる。また、差動式の変速比可変機構を備 えているので、入出力軸の変速比を調整して任意に設定することができる。
[0010] 請求項 3に記載の発明は、請求項 2に記載のトラクシヨンドライブ変速装置力 前記 出力軸に回転力を付与して伝達トルクを増す伝達トルク補助機構を備えていることを 特徴とするものである。
この場合、出力軸に伝達されたトルクは、伝達トルク補助機構の作用によって所望 の値に増大したものが出力される。
[0011] 請求項 4に記載の発明は、請求項 2または 3に記載のトラクシヨンドライブ変速装置 において、保持器に配設された前記転動体を前記入力軸を設けた内輪と前記出力 軸を設けた外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに 、前記保持器に前記変速比可変機構を連結したことを特徴とするものであり、これに より、入力軸となる内輪のトルクは、転動体保持部に配設された転動体を介して出力 軸となる外輪に伝達される。このとき、入力軸においては、予圧調整手段が入力軸の トルクに応じて転動体に作用する予圧を調整するため、入力トルクがないときは予圧 を最小限に抑えることができる。また、変速比可変機構がトラクシヨン入出力部材の保 持器に連結されて差動の回転制御を行うので、入出力軸の変速比を可変とすること ができる。なお、外輪に設けられた出力軸に伝達トルク補助機構が連結されている場 合には、出力軸の伝達トルクを増した大きな値のトルクが出力される。
[0012] 請求項 5に記載の発明は、請求項 2または 3に記載のトラクシヨンドライブ変速装置 において、前記出力軸を備えている保持器に配設された前記転動体を前記入力軸 を設けた内輪と外輪との間に介在させ、前記保持器に前記予圧調整手段を設けると ともに、前記外輪に前記変速比可変機構を連結したことを特徴とするものであり、これ により、入力軸となる内輪のトルクは、転動体保持部に配設された転動体を介して保 持器の出力軸に伝達される。このとき、出力軸となる保持器においては、予圧調整手 段が入力軸のトルクに応じて転動体に作用する予圧を調整するため、入力トルクがな いときは予圧を最小限に抑えることができる。また、変速比可変機構がトラクシヨン入 出力部材の外輪に連結されて差動の回転制御を行うので、入出力軸の変速比を可 変とすることができる。なお、保持器に設けられた出力軸に伝達トルク補助機構が連 結されている場合は、出力軸の伝達トルクを増した大きな値のトルクが出力される。
[0013] 請求項 6に記載の発明は、請求項 2に記載のトラクシヨンドライブ変速装置において 、前記入力軸を備えている保持器に配設された前記転動体を内輪と前記出力軸を 設けた外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに前記 変速比可変機構を連結したことを特徴とするものであり、これにより、入力軸となる保 持器のトルクは、転動体保持部に配設された転動体を介して出力軸となる外輪に伝 達される。このとき、内輪においては、予圧調整手段が入力軸のトルクに応じて転動 体に作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えるこ とができる。また、変速比可変機構がトラクシヨン入出力部材の内輪に連結されて差 動の回転制御を行うので、入出力軸の変速比を可変とすることができる。
この場合、前記外輪の外周面もしくは側面にギア部を形成してラックギアと嚙合させ ることにより、入力軸の回転トルクは、出力軸の外輪を介してラックギアの直線運動に 変換される。
[0014] 請求項 8に記載の発明は、請求項 2または 3に記載のトラクシヨンドライブ変速装置 において、前記入力軸を備えている保持器に配設された前記転動体を前記出力軸 を設けた内輪と外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとと もに、前記外輪に前記変速比可変機構を連結したことを特徴とするものであり、これ により、入力軸となる保持器のトルクは、転動体保持部に配設された転動体を介して 出力軸となる内輪に伝達される。このとき、内輪においては、予圧調整手段が入力軸 のトルクに応じて転動体に作用する予圧を調整するため、入力トルクがないときは予 圧を最小限に抑えることができる。また、変速比可変機構がトラクシヨン入出力部材の 外輪に連結されて差動の回転制御を行うので、入出力軸の変速比を可変とすること ができる。なお、内輪に設けられた出力軸に伝達トルク補助機構が連結されている場 合には、出力軸の伝達トルクを増した大きな値のトルクが出力される。
[0015] 請求項 9に記載の発明は、請求項 2に記載のトラクシヨンドライブ変速装置において 、前記出力軸となる保持器に配設された前記転動体を内輪と前記入力軸を設けた外 輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに前記変速比可 変機構を連結したことを特徴とするものであり、これにより、入力軸となる外輪のトルク は、転動体保持部に配設された転動体を介して出力軸となる保持器に伝達される。 このとき、内輪においては、予圧調整手段が入力軸のトルクに応じて転動体に作用 する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えることができ る。また、変速比可変機構がトラクシヨン入出力部材の内輪に連結されて差動の回転 制御を行うので、入出力軸の変速比を可変とすることができる。
この場合、前記保持器の外周面もしくは側面にギア部を形成してラックギアと嚙合さ せることにより、入力軸の回転トルクは、出力軸の保持器を介してラックギアの直線運 動に変換される。
[0016] 請求項 11に記載の本発明は、請求項 2または 3に記載のトラクシヨンドライブ変速装 置において、保持器に配設された前記転動体を前記出力軸を設けた内輪と前記入 力軸を設けた外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるととも に、前記保持器に前記変速比可変機構を連結したことを特徴とするものであり、これ により、入力軸となる外輪のトルクは、転動体保持部に配設された転動体を介して出 力軸となる内輪に伝達される。このとき、出力軸においては、予圧調整手段が入力軸 のトルクに応じて転動体に作用する予圧を調整するため、入力トルクがないときは予 圧を最小限に抑えることができる。また、変速比可変機構がトラクシヨン入出力部材の 保持器に連結されて差動の回転制御を行うので、入出力軸の変速比を可変とするこ とができる。なお、内輪に設けられた出力軸に伝達トルク補助機構が連結されている 場合には、出力軸の伝達トルクを増した大きな値のトルクが出力される。
[0017] 本発明に係るトラクシヨンドライブ変速装置は、入力軸と出力軸との間に介在させた 転動体のトラクシヨンを利用し、前記入力軸の回転数を所望の変速比に変化させて 前記出力軸から出力するとともに、前記入力軸及び出力軸を左右対称に連結して 2 段階変速を行うトラクシヨンドライブ変速装置であって、
前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、前記転動体に付与する予圧を、第 1段階変速部及び第 2段階 変速部を連結する軸間のトルクに応じて自動的に変化させる予圧調整手段と、前記 転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入出力部材の回転数制 御を行って前記変速比を変化させる変速比可変機構と、を備えて!ヽることを特徴とす るものである。
[0018] このようなトラクシヨンドライブ変速装置によれば、転動体の自転軸線が入力軸及び 出力軸の軸線と直交しないよう傾斜させた配置とされ、かつ、転動体に付与する予圧 を、第 1段階変速部及び第 2段階変速部を連結する軸間のトルクに応じて自動的に 変化させる予圧調整手段と、転動体のトラクシヨン入出力部材に連結され、該トラクシ ヨン入出力部材の回転数制御を行って変速比を変化させる変速比可変機構とを備え ているので、傾斜配置された転動体に付与される予圧は、第 1段階変速部及び第 2 段階変速部を連結する軸間のトルクに応じて自動的に変化させる予圧調整手段が 調整したものとなる。また、差動式の変速比可変機構を備えているので、入出力軸の 変速比を調整して任意に設定することができる。この場合、第 1段変速部及び第 2段 変速部による 2段階変速を行うので、トラクシヨンドライブによる入出力関係は、同回 転方向に 1 : 1となる。
[0019] 請求項 13に記載の発明は、請求項 12に記載のトラクシヨンドライブ変速装置力 前 記出力軸に回転力を付与して伝達トルクを増す伝達トルク補助機構を備えていること を特徴とするものである。
この場合、出力軸に伝達されたトルクは、伝達トルク補助機構の作用によって所望 の値に増大したものが出力される。
[0020] 請求項 14に記載の発明は、請求項 12または 13に記載のトラクシヨンドライブ変速 装置において、第 1保持器に配設された前記転動体を前記入力軸を設けた第 1内輪 と連結出力軸を設けた第 1外輪との間に介在させた第 1段階変速部と、第 2保持器に 配設された前記転動体を前記出力軸を設けた第 2内輪と連結入力軸を設けた第 2外 輪との間に介在させた第 2段階変速部とを備え、前記連結出力軸と前記連結入力軸 との軸連結部に前記予圧調整手段を設けるとともに、前記第 1保持器に前記変速比 可変機構を連結し、前記第 2保持器をハウジングに固定したことを特徴とするもので あり、これにより、第 1段階変速部において、入力軸となる第 1内輪のトルクは、第 1保 持器の転動体保持部に配設された転動体を介して連結出力軸となる第 1外輪に伝 達される。
この後、第 2段階変速部においては、予圧調整手段を介して連結入力軸となる第 2 外輪に伝達されたトルクが、第 2保持器の転動体保持部に配設された転動体を介し て出力軸となる第 2内輪に伝達される。このとき、軸連結部においては、予圧調整手 段が連結出力軸のトルクに応じて第 1段階変速部及び第 2段階変速部の転動体に 作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えることが できる。また、変速比可変機構がトラクシヨン入出力部材の保持器に連結されて差動 の回転制御を行うので、入出力軸の変速比を可変とすることができる。なお、第 2内 輪に設けられた出力軸に伝達トルク補助機構が連結されている場合には、出力軸の 伝達トルクを増した大きな値のトルクが出力される。
[0021] 請求項 15に記載の発明は、請求項 12または 13に記載のトラクシヨンドライブ変速 装置において、連結出力軸を備えている第 1保持器に配設された前記転動体を前記 入力軸を設けた第 1内輪と第 1外輪との間に介在させた第 1段階変速部と、連結入力 軸を備えている第 2保持器に配設された前記転動体を前記出力軸を設けた第 2内輪 と第 2外輪との間に介在させた第 2段階変速部とを備え、前記連結出力軸と前記連 結入力軸との軸連結部に前記予圧調整手段を設けるとともに、前記第 1外輪に前記 変速比可変機構を連結し、前記第 2外輪をハウジングに固定したことを特徴とするも のであり、これにより、第 1段階変速部において、入力軸となる第 1内輪のトルクは、第 1保持器の転動体保持部に配設された転動体を介して連結出力軸となる第 1保持器 に伝達される。
この後、第 2段階変速部においては、予圧調整手段を介して連結入力軸となる第 2 保持器に伝達されたトルクが、第 2保持器の転動体保持部に配設された転動体を介 して出力軸となる第 2内輪に伝達される。このとき、軸連結部においては、予圧調整 手段が連結出力軸のトルクに応じて第 1段階変速部及び第 2段階変速部の転動体 に作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えること ができる。また、変速比可変機構がトラクシヨン入出力部材の外輪に連結されて差動 の回転制御を行うので、入出力軸の変速比を可変とすることができる。なお、第 2内 輪に設けられた出力軸に伝達トルク補助機構が連結されている場合には、出力軸の 伝達トルクを増した大きな値のトルクが出力される。
請求項 16に記載の発明は、請求項 12または 13に記載のトラクシヨンドライブ変速 装置において、前記入力軸を備えている第 1保持器に配設された前記転動体を連結 出力軸を設けた第 1内輪と第 1外輪との間に介在させた第 1段階変速部と、前記出力 軸を備えている第 2保持器に配設された前記転動体を連結入力軸を設けた第 2内輪 と第 2外輪との間に介在させた第 2段階変速部とを備え、前記連結出力軸と前記連 結入力軸との軸連結部に前記予圧調整手段を設けるとともに、前記第 1外輪に前記 変速比可変機構を連結し、前記第 2外輪をハウジングに固定したことを特徴とするも のであり、これにより、第 1段階変速部において、入力軸となる第 1保持器のトルクは、 第 1保持器の転動体保持部に配設された転動体を介して連結出力軸となる第 1内輪 に伝達される。
この後、第 2段階変速部においては、予圧調整手段を介して連結入力軸となる第 2 内輪に伝達されたトルクが、第 2保持器の転動体保持部に配設された転動体を介し て出力軸となる第 2保持器に伝達される。このとき、軸連結部においては、予圧調整 手段が連結出力軸のトルクに応じて第 1段階変速部及び第 2段階変速部の転動体 に作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えること ができる。また、変速比可変機構がトラクシヨン入出力部材の外輪に連結されて差動 の回転制御を行うので、入出力軸の変速比を可変とすることができる。なお、第 2保 持部に設けられた出力軸に伝達トルク補助機構が連結されている場合には、出力軸 の伝達トルクを増した大きな値のトルクが出力される。
[0023] 請求項 17に記載の発明は、請求項 12または 13に記載のトラクシヨンドライブ変速 装置において、第 1保持器に配設された前記転動体を連結出力軸を設けた第 1内輪 と前記入力軸を設けた第 1外輪との間に介在させた第 1段階変速部と、第 2保持器に 配設された前記転動体を連結入力軸を設けた第 2内輪と前記出力軸を設けた第 2外 輪との間に介在させた第 2段階変速部とを備え、前記連結出力軸と前記連結入力軸 との軸連結部に前記予圧調整手段を設けるとともに、前記第 1保持器に前記変速比 可変機構を連結し、前記第 2保持器をハウジングに固定したことを特徴とするもので あり、これにより、第 1段階変速部において、入力軸となる第 1外輪のトルクは、第 1保 持器の転動体保持部に配設された転動体を介して連結出力軸となる第 1内輪に伝 達される。
この後、第 2段階変速部においては、予圧調整手段を介して連結入力軸となる第 2 内輪に伝達されたトルクが、第 2保持器の転動体保持部に配設された転動体を介し て出力軸となる第 2外輪に伝達される。このとき、軸連結部においては、予圧調整手 段が連結出力軸のトルクに応じて第 1段階変速部及び第 2段階変速部の転動体に 作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えることが できる。また、変速比可変機構がトラクシヨン入出力部材の保持器に連結されて差動 の回転制御を行うので、入出力軸の変速比を可変とすることができる。なお、第 2外 輪に設けられた出力軸に伝達トルク補助機構が連結されている場合には、出力軸の 伝達トルクを増した大きな値のトルクが出力される。
[0024] 本発明に係るトラクシヨンドライブ変速装置は、入力軸と出力軸との間に介在させた 転動体のトラクシヨンを利用し、前記入力軸の回転数を所望の変速比に変化させて 前記出力軸から出力するとともに、前記入力軸及び出力軸を連結して 2段階変速を 行うトラクシヨンドライブ変速装置であって、
前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、前記転動体に付与する予圧を、第 1段階変速部及び第 2段階 変速部を連結する軸間のトルクに応じて自動的に変化させる予圧調整手段と、前記 転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入出力部材の回転数制 御を行って前記変速比を変化させる変速比可変機構とを備え、前記第 1段階変速部 及び前記第 2段階変速部のトラクシヨン入出力部材を連結して一体ィ匕するとともに、 両変速部の変速比に差を設けたことを特徴とするものである。
[0025] このようなトラクシヨンドライブ変速装置によれば、転動体の自転軸線が入力軸及び 出力軸の軸線と直交しないよう傾斜させた配置とされ、転動体に付与する予圧を、第 1段階変速部及び第 2段階変速部を連結する軸間のトルクに応じて自動的に変化さ せる予圧調整手段と、転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入 出力部材の回転数制御を行って前記変速比を変化させる変速比可変機構とを備え 、第 1段階変速部及び第 2段階変速部のトラクシヨン入出力部材を連結して一体ィ匕す るとともに、両変速部の変速比に差を設けたので、傾斜配置された転動体に付与さ れる予圧は、第 1段階変速部及び第 2段階変速部を連結する軸間のトルクに応じて 自動的に変化させる予圧調整手段が調整したものとなる。また、第 1段変速部及び第 2段変速部による 2段階変速を行い、両変速部のトラクシヨン入出力部材を一体ィ匕し て変速比に差を設けたので、差動式の変速比可変機構により入出力軸の変速比を 調整して任意に設定することができ、し力も、トラクシヨンドライブによる入出力関係を 同回転方向に 1: 1とすることができる。
[0026] 請求項 19に記載の発明は、請求項 18に記載のトラクシヨンドライブ変速装置にお いて、前記入力軸を備えている第 1保持器に配設された前記転動体を連結出力軸を 設けた第 1内輪と外輪連結部材との間に介在させた第 1段階変速部と、前記出力軸 を備えている第 2保持器に配設された前記転動体を連結入力軸を設けた第 2内輪と 前記外輪連結部材との間に介在させた第 2段階変速部とを備え、前記連結出力軸と 前記連結入力軸との軸連結部に前記予圧調整手段を設けるとともに、前記外輪連結 部材に前記変速比可変機構を連結したことを特徴とするものであり、これにより、第 1 段階変速部において、入力軸となる第 1保持器のトルクは、第 1保持器の転動体保持 部に配設された転動体を介して連結出力軸となる第 1内輪に伝達される。この後、第 2段階変速部においては、予圧調整手段を介して連結入力軸となる第 2内輪に伝達 されたトルクが、第 2保持器の転動体保持部に配設された転動体を介して出力軸とな る第 2保持器に伝達される。このとき、軸連結部においては、予圧調整手段が連結出 力軸のトルクに応じて第 1段階変速部及び第 2段階変速部の転動体に作用する予圧 を調整するため、入力トルクがないときは予圧を最小限に抑えることができる。また、 両変速部には変速比に差が設けられているので、変速比可変機構を外輪連結部材 に連結して差動の回転制御を行うことにより、入出力軸の変速比を可変とすることが できる。
[0027] 請求項 20に記載の発明は、請求項 2から 19のいずれかに記載のトラクシヨンドライ ブ変速装置において、前記予圧調整手段は、同一軸線上を回転するように配置され た 2部材の対向面間でトルク伝達を行うトルク伝達構造であって、前記対向面の間に 、断面形状が傾斜面または曲面を形成する凹部を複数組設け、該凹部の空間に調 圧カムを配設したものが好ま U、。
[0028] また、請求項 21に記載の発明は、請求項 2から 21のいずれかに記載のトラクシヨン ドライブ変速装置において、前記変速比可変機構は、回転制御可能な駆動源を備え たウォームギアであることが好ましい。このウォームギアは、出力軸側から入力が入つ た場合のフェールセーフ機能を有して 、る。
[0029] また、請求項 22に記載の発明は、請求項 2から 21のいずれかに記載のトラクシヨン ドライブ変速装置において、前記変速比可変機構は、前記入力軸及び前記出力軸 と同軸に配設された中空モータを駆動源とする遊星式減速機構であることが好ましく 、これにより、装置の外径寸法を小さくすることができる。
[0030] 請求項 23に記載の発明は、請求項 3〜5、 8、 11、 13〜17、 20〜22のいずれ力に 記載のトラクシヨンドライブ変速装置において、前記伝達トルク補助機構は、制御が 容易な電動の駆動手段を備えたウォームギアであることが好ましい。
[0031] 本発明の車両用操舵装置は、運転者のステアリング操作が、請求項 2から 23のい ずれかに記載のトラクシヨンドライブ変速装置を介して車両の操舵輪に伝達されること を特徴とするものである。
このような車両用操舵装置によれば、操舵により発生する操舵軸のトルクは、予圧 調整手段により転動体に作用する予圧が調整されるため、直進時のように操舵トルク が発生しない最小限の予圧力 急激な操舵を行った場合の大きな予圧まで変動する 。このため、転動体に対して、大きな予圧が継続して作用することを防止できる。また 、変速比可変機構がトラクシヨン入出力部材の保持器に連結されて差動の回転制御 を行うので、入出力軸の変速比を可変とすることができ、かつ、 1段階変速のトラクショ ンドライブ装置を採用すれば軸方向長さを短くでき、 2段階変速のトラクシヨンドライブ 装置を採用すれば入出力関係が同回転方向に 1 : 1となる。
さら〖こ、出力軸に伝達トルクを付与する伝達トルク補助機構を備えている場合には 、出力軸から出力される伝達トルクの増大により、運転者のステアリング操作力を軽 減することができる。
[0032] 上述した本発明によれば、同一軸線上を回転する 2部材の対向面間に設けられ、 断面形状が傾斜面または曲面を形成する複数の凹部間に調圧カムを配設した構成 により、調圧カムを介して 1次側 (入力側)部材から 2次側(出力軸側)部材にトルクを 伝達できるとともに、この伝達トルクに応じて 1次側部材から 2次側部材に作用する軸 方向の押圧力 (スラスト荷重)が変化し、かつ、軸方向に短くコンパクトなトルク伝達構 造を提供することができる。
[0033] 上述したトルク伝達構造を採用したトラクシヨンドライブ変速装置は、入出力軸間の 伝達トルクに応じてトラクションドライブの転動体に作用する予圧 (軸方向の押圧力) を変動させることができる。このため、入出力軸間の伝達トルクが変動するトラクシヨン ドライブ変速装置においては、転動体に常時大きな予圧が作用することはなぐ従つ て、転動体の寿命を向上させることができる。この結果、入力軸から出力軸へ転動体 を介してトルク伝達を行うトラクシヨンドライブ変速装置にお 、ては、転動体の寿命向 上により信頼性や耐久性が向上するという顕著な効果を得る。
また、差動式の変速比可変機構を備えているので、変速比可変機構を制御するこ とにより、入力軸と出力軸との間に任意の変速比を得ることもできる。特に、入力軸及 び出力軸と同軸に配設された中空モータを駆動源とする遊星式減速機構を採用す れば、外形寸法の小さいトラクシヨンドライブ変速装置を提供することが可能になる。 また、出力軸に伝達トルクを付与する伝達トルク補助機構を備えて!/ヽる場合には、 出力軸から出力される伝達トルクを所望の値に増大させて出力することができる。
[0034] また、上述したトラクシヨンドライブ変速装置を備えた車両用操舵装置は、運転者が 操舵を行わない停車時や直進走行時等には転動体に作用する予圧を最小とし、操 舵に応じて発生する入力軸 (操舵軸)側のトルク変動に応じて変化する予圧が転動 体に作用するようにしたので、装置のコンパクトィ匕とともに、転動体の寿命向上により 操舵装置の信頼性や耐久性も向上するという顕著な効果が得られる。特に、入力軸 及び出力軸と同軸に配設された中空モータを駆動源とする遊星式減速機構を採用 した外形寸法の小さ 、トラクシヨンドライブ変速装置は、設置スペースが狭く厳 、設 置環境に適した車両用操舵装置の提供を可能にする。
[0035] さらに、差動方式の変速比可変機構を備えているので、入出力軸間の変速比を任 意に変化させることができ、従って、操舵状況に応じた最適の変速比を適宜設定する ことができる。具体的には、縦列駐車時等の操舵時には変速比を大きくして少ない操 舵量で大きな操舵角を得られるようにし、高速走行時等の操舵時には変速比を小さく して直進走行性を増すなど、変速比可変機構を制御して最適な変速比に設定すれ ば、操舵装置の操作性を向上させることができる。
また、出力軸に伝達トルクを付与する伝達トルク補助機構を備えて!/ヽる場合には、 出力軸から出力される伝達トルクは所望の値に増大したものを出力することができる 。従って、運転者のステアリング操作力を軽減し、操作性を向上させた車両用操舵装 置を提供することができる。
図面の簡単な説明
[0036] [図 1]本発明に係るトラクシヨンドライブ変速装置について、第 1の実施形態を示す断 面図である。
[図 2]図 1のトラクシヨンドライブ変速装置を組み込んだ車両用操舵装置の概略構成 例を示す斜視図である。
[図 3]図 1のトラクシヨンドライブ変速装置について、その第 1変形例を示す断面図で ある。
[図 4]図 1のトラクシヨンドライブ変速装置について、その第 2変形例を示す断面図で ある。
[図 5]図 1のトラクシヨンドライブ変速装置について、その第 3変形例を示す断面図で ある。 [図 6]図 1のトラクシヨンドライブ変速装置について、その第 4変形例を示す断面図で ある。
[図 7]図 1のトラクシヨンドライブ変速装置について、その第 5変形例を示す断面図で ある。
[図 8]本発明に係るトラクシヨンドライブ変速装置について、第 2の実施形態を示す断 面図である。
[図 9]図 8のトラクシヨンドライブ変速装置について、その第 1変形例を示す断面図で ある。
[図 10]図 8のトラクシヨンドライブ変速装置について、その第 2変形例を示す断面図で ある。
[図 11]図 8のトラクシヨンドライブ変速装置について、その第 3変形例を示す断面図で ある。
[図 12]図 8のトラクシヨンドライブ変速装置について、その第 4変形例を示す断面図で ある。
[図 13]本発明に係るトラクシヨンドライブ変速装置について、第 3の実施形態を示す断 面図である。
[図 14]本発明に係るトラクシヨンドライブ変速装置について、第 4の実施形態を示す断 面図である。
[図 15]図 14のトラクシヨンドライブ変速装置について、その第 1変形例を示す断面図 である。
[図 16]図 14トラクシヨンドライブ変速装置について、その第 2変形例を示す断面図で ある。
[図 17]図 14のトラクシヨンドライブ変速装置について、その第 3変形例を示す断面図 である。
[図 18]本発明に係るトラクシヨンドライブ変速装置について、第 5の実施形態を示す断 面図である。
[図 19]図 18のトラクシヨンドライブ変速装置について、その第 1変形例を示す断面図 である。 [図 20]図 18のトラクシヨンドライブ変速装置について、その第 2変形例を示す断面図 である。
[図 21]図 18のトラクシヨンドライブ変速装置について、その第 3変形例を示す断面図 である。
発明を実施するための最良の形態
[0037] 以下、本発明に係るトルク伝達機構、トラクシヨンドライブ変速装置及び車両用操舵 装置の一実施形態を図面に基づいて説明する。
<第 1の実施形態 >
図 1は、本発明に係るトラクシヨンドライブ変速装置の第 1の実施形態を示す断面図 である。このトラクシヨンドライブ変速装置 (以下、「変速装置」と呼ぶ) 10は、入力軸 Si と出力軸 Soとの間に介在させた転動体 Kのトラクシヨンを利用し、入力軸 Siの回転数 を所望の変速比に変化させて出力軸 Soから出力する機能を有している。
トラクシヨンは、転がり滑り状態にある回転体として複数配設された転動体 Kの接触 部に作用する接線力であり、図示の例では、入力軸 Siを設けた内輪 20と、出力軸 So を設けた外輪 30との間に、保持器 40に保持された転動体 Kを複数介在させてトラク シヨンドライブ機構 TRが構成されている。このトラクシヨンドライブ機構 TRは、内輪 20 及び外輪 30と転動体 Kとの接触面にできる油膜のレオロジー特性により、内輪 20か ら転動体 Kを介して外輪 30にトルクを伝達することができる。このトルク伝達時にぉ ヽ て、転動体 Kは自転しながら内輪 20の外側を公転する。
[0038] トラクシヨンドライブ機構 TRは、変速装置 10のハウジング 11内に収納され、同一軸 線上に配置された入力軸 Si及び出力軸 Soがハウジング 11の両端部力 外部に突 出している。
内輪 20は二分割構造とされ、同一軸線上を回転するように配置された 2部材の対 向面間でトルク伝達を行うため、調圧カム 50が配設されている。すなわち、内輪 20は 入力軸部 21と内輪部 22とに分割され、入力軸部 21及び内輪部 22の対向面 21a, 2 2a間には、円柱形状とした調圧カム 50を設置する凹部 23が複数組設けられている。 この凹部 23は、対向面 21a, 22aの対称位置にそれぞれ設けられた一対の溝部が 一組となって形成する空間であり、この空間内に調圧カム 50が転がり滑り可能な状 態で収納される。このような凹部 23は、円周方向に等ピッチとなるよう軸中心力も放 射状に複数組設けられるが、この数は諸条件に応じて適宜選択すればよい。なお、 図示の例では、円周方向に 90度ピッチとした 4組の凹部 23が設けられ、各凹部 23は 、調圧カム 50が互いに干渉しないよう軸中心力も適当な距離を設けた位置にある。
[0039] また、凹部 23は、傾斜面または曲面を形成する断面形状とされる。図示の例では、 対向面 21a, 22aに各々断面形状を二等辺三角形とした溝部を設け、対向する一対 の溝部を重ね合わせることで矩形断面形状の凹部 23が形成されている。なお、凹部 23を形成する溝部は、対向面 21a, 22aの対称位置に配設する必要はなぐ対向面 間に凹部を形成できればょ 、。
また、内輪 20は、入力軸部 21がハウジング 11に軸受 12を介して回動可能に支持 され、ハウジング 11の外部に突出する入力軸部 21には、図示しないトルク発生源が 連結される。なお、図中の符号 13はオイルシール、 14は入力軸部 21を軸方向に押 圧する板ばね、 24は内輪部 22の外周面に固着された内側リング部材である。
[0040] この結果、凹部 23に設置された円柱形状の調圧カム 50は、入力軸部 21に入力を 受けると、くさび効果により内輪部 22を軸方向へ押す力、すなわちスラスト荷重を発 生させる。このスラスト荷重は、入力軸部 21に入力される軸トルクの大きさに応じて変 ィ匕するものである。従って、同一軸線上を回転するように配置された入力軸部 21及 び出力軸部 22の 2部材が対向する面間に複数の凹部 23を形成し、各凹部 23に調 圧カム 50を配設してトルク伝達を行う構成により、入力軸部 21に入力されるトルク変 動に応じて、内輪部 22に作用するスラスト荷重が変化するトルク伝達構造となる。こ のようなトルク伝達構造は、対向面 21a, 22a間に円柱形状の調圧カム 50を介在させ るものである力 、軸方向の延長を最小限に抑制できるトルク伝達構造となる。このよ うなトルク伝達構造は、トラクシヨンドライブ機構 TRにおいて、転動体 Kに付与する予 圧を入力軸 Siのトルクに応じて自動的に変化させる予圧調整手段として機能する。
[0041] 保持器 40は、略リング状とした本体 41の内周に櫛状の転動体保持部 42を備え、 本体 41がー対の軸受 12を介してハウジング 11に回動可能に支持された部材である 。転動体保持部 42に配置される転動体 Kは、櫛部に挟持されて自転可能な円錐ころ であり、その自転軸線は入力軸 Si及び出力軸 Soの軸線と直交しないように傾斜して いる。この転動体 Kは、その内周側の面を転動可能に支持する内側リング部材 24と、 後述する外輪 30の外輪部 31に固着されて外周側の面を転動可能に支持する外側 リング部材 32とにより、両リング部材 24, 32間を転動体 Κが自転しながら公転可能な 円錐ころ軸受を構成している。
この円錐ころ軸受にお 、ては、転動体 Κと内側リング部材 24及び転動体 Κと外側リ ング部材 32の接触面に薄い油膜が形成されてトラクシヨンドライブによるトルク伝達が 行われる。なお、転動体 Κを保持する転動体保持部 42については、上述した櫛状に 限定されることはなぐたとえば梯子状とするなど種々の変形例が可能である。
[0042] 外輪 30は、外輪部 31と出力軸部 33とが一体の部材であり、出力軸部 33がハウジ ング 11に軸受 12を介して回動可能に支持されている。なお、ハウジング 11の外部に 突出する出力軸部 33は、たとえば車両用操舵装置のラック &ピニオン装置のように、 図示しな!、被駆動側の装置と連結されて 、る。
また、外輪部 33は、一端が開口する略リング状の部分であり、その内周面側には、 上述した円錐ころ軸受を構成する外側リング部材 32が固着されている。
[0043] 上述した保持器 40は、本体 41の外周面に形成されたギア部 41aを備えており、こ のギア部 41aが変速比可変機構として機能するウォームギア 55と嚙合して連結され ている。このウォームギア 55は、図示しない電動機等の駆動源を備えており、所望の 回転数に可変制御することができる。すなわち、ウォームギア 55の回転数を制御する ことにより、円錐ころ軸受を構成する転動体 Kの公転と一体に回転する保持器 40の 回転数が変化するので、入力軸 Siと出力軸 Soとの間の変速比を変化させる差動式 の変速比可変機構となる。換言すれば、保持器 40はトラクシヨンによってトルク伝達 を行うトラクシヨンドライブ機構 TRの構成要素であるから、転動体 Kがトラクシヨンの影 響を受けて動作するトラクシヨン入出力部材である保持器 40にウォームギア 55を連 結して回転数制御を行えば、変速比を可変とした差動式の変速比可変機構となる。
[0044] このように構成された変速装置 10は、入力軸 Siにトルクの入力がない場合、軸方向 の押圧力としては、板ばね 14力も受ける付勢のみであり、この付勢により転動体 Kに 付与される予圧(図中に矢印で示す)が最小値となる。この予圧は、転動体 Kの自転 軸線が入力軸 Si及び出力軸 Soの軸線と直交しないように傾斜しているため、軸方向 の押圧力を成分として接触面に作用する力である。なお、このような板ばね 14の付 勢力は、入力軸 Si等が軸方向に移動するのを阻止したり、あるいは、調圧カム 50を 凹部 23内に保持しておくために必要となるものである。
[0045] 入力軸 Siにトルクを受けると、対向面 21a, 22a間の調圧カム 50が入力トルクに応 じて予圧を変化させる予圧調整機能を発揮するので、内輪部 22から転動体 Kに付 与する予圧がトルクに比例して上昇する。この結果、内輪部 22に固着された内側リン グ部材 24と転動体 Kとの間のトラクシヨンにより、転動体 Kは自転しながら保持器 40と 一体に内輪部 22の外側を公転する。さらに、転動体 Kと外輪部 31に固着された外側 リング部材 32との間のトラクシヨンにより、外輪部 31にトルクが伝達されて出力軸 So が回転する。なお、この場合、出力軸 Soの回転方向は入力軸 Siと逆方向になる。
[0046] このとき、ウォームギア 55が所望の回転数で回転することにより、嚙合する保持器 4 0の回転数、すなわち転動体 Kの公転回転数が影響を受けて変化するので、この転 動体 Kとのトラクシヨンにより回転する出力軸 Soの回転数も同様の影響を受けて変化 する。
従って、入力軸 Siの回転数は、回転数の可変制御が可能なウォームギア 55と連結 されたトラクシヨンドライブ機構 TRを介して出力軸 Soから出力する場合、ウォームギ ァ 55の回転数に応じて変化する所望の変速比を得ることができる。すなわち、入出 力軸間の変速比は線形にならず、所定の範囲内で任意の変速比を選択して設定す ることが可能になる。
[0047] また、転動体 Kに作用する予圧は、入力軸 Siにトルクの入力がない場合、板ばね 1 4の付勢に起因する最小値となるので、転動体 Kに対して、トルク伝達時に発生する 大きな予圧が常時作用するようなことはなぐ従って、転動体 Kの寿命を向上させるこ とがでさる。
また、上述した予圧調整は、入力軸部 21と内輪部 22との間に円柱形状部材の調 圧カム 50を配設する構成により達成できるため、変速装置 10が軸方向に延びて大 型化することのな 、コンパクトな装置となる。
し力も、上述した構成の変速装置 10は、必要となる軸受の数が比較的少なくてす むので、製造時の組立が容易である。また、同一条件で比較した場合、ウォームギア 55の回転数が比較的低い領域で運転できるため、運転騒音を低く抑えることができ 、さらに、転動体 Kの面圧を比較的低く抑えたり、調圧カム 50を配設する入力軸 Siの 伝達トルクも比較的低く設定できるので、寿命や耐久性の面で有利になる。
[0048] 図 2は、上述した変速装置 10の適用例として、車両用操舵装置 STの概要を示す 斜視図である。
車両用操舵装置 STは、車両の走行方向を操作して曲がるための装置であり、ハン ドル 60を回転させるステアリング操作により操舵輪 61, 61の向きを変化させることが できる。ハンドル 60の操作は、上部操舵軸 62の回転トルクとして変速装置 10に入力 され、この変速装置 10で変速された出力のトルクが下部操舵軸 63に連結されたラッ ク&ピユオン装置 64を動作させる。この結果、ラック &ピ-オン装置 64に連結された 図示省略のリンク機構力 Sラックと連動し、操舵輪 61, 61の向きを所望の方向へ変化さ せることができる。
[0049] このような車両用操舵装置 STにおいては、上部操舵軸 62が変速装置 10の入力軸 Siと連結され、下部操舵軸 63が変速装置 10の出力軸 Soに連結されている。
このため、ステアリング操作を行うと、ハンドル 60の操作により発生したトルクが上部 操舵軸 62から入力軸 Siに伝達され、変速装置 10内で所望の変速比に変換されたト ルクが出力軸 Soから下部操舵軸 63に伝達されてラック &ピ-オン装置 64を動作さ せることができる。
[0050] 従って、ハンドル 60が操作されて 、な 、場合、たとえば停車時や直進走行時等に おいては、上部操舵軸 62及び入力軸 Siにはトルクがないので、転動体 Kに作用する 予圧は最小となる。このため、転動体 Kの寿命が向上し、車両用操舵装置 STの耐久 性や信頼性の向上に有効である。
また、たとえば縦列駐車等のように、低速走行時にハンドル 60の操作量が大きくな る場合には、ウォームギア 55の回転数を制御して変速比を増すと、少ないハンドル 操作量で大きな操舵角を得ることができる。すなわち、入力軸 Siの回転数が大きく増 速されて出力軸 Soから出力されるようにウォームギア 55の回転数を調整すれば、小 さなハンドル操作量 (上部操舵軸 62の回転数)が増速されて下部操舵軸 63に出力さ れるので、ラック &ピ-オン装置 64のラック移動量を増して操舵輪 61, 61の向きを大 きく変化させることができるため、車両用操舵装置 STの操作性が向上する。
[0051] 次に、上述した第 1の実施形態に係る変速装置について、その第 1変形例を図 3に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Aにおいては、入力軸 Siを設けた内輪 20Aが 一体構造とされ、出力軸 Soを設けた保持器 40Aを 2分割構造として接合面間に調圧 カム 50を配設するとともに、外輪 30Aに変速比可変機構のウォームギア 55を連結し た点が上述した実施形態と異なって 、る。
[0052] すなわち、出力軸 Soを備えている保持器 40Aを保持部本体 43と出力軸部 44とに 分割した二分割構造とし、保持部本体 43に設けた櫛状の転動体保持部 42に円錐こ ろの転動体 Kを配設する。そして、保持部本体 43と出力軸部 44との対向面 43a, 44 a間に、上述した予圧調整手段として機能する調圧カム 50を配設する。
また、入力軸 Siを設けた内輪 20Aと外輪 30Aとの間には、予圧(図中に矢印で示 す)が作用するように転動体 Kを介在させてトラクシヨンによるトルク伝達を行い、内輪 20Aと保持器 40Aとの間には、スラスト軸受 15を配設して相対的な回転を可能として いる。さらに、変速比可変機構のウォームギア 55は、外輪 30Aの外周面に形成した ギア部 30aと嚙合して連結されている。なお、図中の符号 12は軸受、 13はオイルシ ール、 14は板ばね、 16は円錐ころ軸受である。
[0053] このような構成の変速装置 10Aでは、入力軸 Siとなる内輪 20Aのトルクは、転動体 保持部 42に配設された転動体 Kを介して保持器 40Aの出力軸 Soとなる出力軸部 4 4に伝達される。このとき、出力軸 Soとなる保持器 40Aにおいては、調圧カム 50が入 力軸 Siのトルクに応じて転動体 Kに作用する予圧を調整するため、入力トルクがな!ヽ ときは予圧を最小限に抑えることができる。なお、この場合の予圧は、調圧カム 50に より調整され、保持部本体 43からスラスト軸受 15に作用するスラスト荷重 fにより発生 する。また、変速比可変機構のウォームギア 55がトラクシヨン入出力部材の外輪 30A のギア部 30aに連結されて差動の回転制御を行うので、入出力軸の変速比を可変と することができる。
し力も、上述した構成の変速装置 10Aは、入出力軸の回転方向が同じになるという 利点を有している。また、同一条件で比較した場合、特に転動体 Kの面圧を力なり低 く抑えることができるため、寿命や耐久性の面で有利になる。
[0054] 次に、上述した第 1の実施形態に係る変速装置について、その第 2変形例を図 4に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Bにおいては、入力軸 Siを備えている保持器 4 OBに櫛状の転動体保持部 42を設け、この転動体保持部 42に配設された転動体 K を二分割構造とした内輪 20Bと出力軸 Soになる外輪 30Bとの間に介在させ、内輪 2 0Bの対向面間に予圧調整手段の調圧カム 50を設けるとともに、変速比可変機構の ウォームギア 55を連結した構成とされる。
[0055] この場合、内輪 20Bは内輪部 22Bとギア形成軸部 25とに二分割され、内輪部 22B 及びギア形成軸部 25の対向面 22b, 25b間には、調圧カム 50及び最小の予圧を規 定するコイルパネ 17が配設され、ギア形成部 25の外周面に形成されたギア部 25aは 、変速比可変機構のウォームギア 55と嚙合して連結されて 、る。
また、出力軸 Soとなる外輪 30Bの外周面にもギア部 34が形成され、たとえばこのギ ァ部 34をラックギア 70と嚙合させて回転運動を直線運動に変換した出力を得るよう にしてもよい。この場合、ギア部 34を形成するのは、外輪 30Bの側面でもよい。
なお、図中の符号 12は軸受、 13はオイルシール、 15はスラスト軸受、 16は円錐こ ろ軸受である。
[0056] このような構成の変速装置 10Bでは、入力軸 Siとなる保持器 40Bのトルクは、転動 体保持部 42に配設された転動体 Kを介して出力軸 Soとなる外輪 30Bに伝達される。 このとき、内輪 20Bにおいては、調圧カム 50が入力軸 Siのトルクに応じて転動体 Kに 作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えることが できる。また、変速比可変機構のウォームギア 55は、トラクシヨン入出力部材の内輪 2 Bを分割したギア形成部 25のギア部 25aに連結されて差動の回転制御を行うので、 入出力軸の変速比を可変とすることができる。
[0057] また、上述した構成の変速装置 10Bは、入出力軸の回転方向が同じになるという利 点を有するだけでなぐ必要となる軸受の数が少なくてすむので、製造時の組立が容 易である。また、同一条件で比較した場合、ウォームギア 55の回転数が比較的低い 領域で運転できるため、運転騒音を低く抑えることができ、さらに、転動体 Kの面圧を 比較的低く抑えたり、調圧カム 50を配設する入力軸 Siの伝達トルクも比較的低く設 定できるので、寿命や耐久性の面でも有利になる。特に、ラックギア 70を設けてラック &ピ-オン機構を内蔵した構成にすれば、よりコンパクトな車両用操舵装置を可能に する。
[0058] 次に、上述した第 1の実施形態に係る変速装置について、その第 3変形例を図 5に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Cにおいては、入力軸 Siを備えている保持器 4 OCに櫛状の転動体保持部 42を設け、この転動体保持部 42に配設された転動体 K を、出力軸 Soを設けた内輪 20Cと外輪 30Cとの間に介在させ、内輪 20Cに予圧調 整手段として調圧カム 50を設けるとともに、外輪 30Cに変速比可変機構としてウォー ムギア 55を連結した構成とされる。
[0059] この場合の内輪 20Cは、内輪部 22Cと出力軸部 26とに二分割され、内輪部 22C及 び出力軸部 26の対向面 22c, 26c間には、調圧カム 50及び最小の予圧を規定する コイルパネ 17が配設されている。
このような構成の変速装置 10Cでは、入力軸 Siとなる保持器 40Cのトルクは、転動 体保持部 42に配設された転動体 Kを介して出力軸 Soとなる内輪 20Cの内輪部 22C に伝達される。このとき、内輪 20Cにおいては、予調圧カム 50が入力軸 Siのトルクに 応じて転動体 Kに作用する予圧を調整するため、入力トルクがないときは予圧を最小 限に抑えることができる。また、変速比可変機構のウォームギア 55がトラクシヨン入出 力部材の外輪 30Cに形成されたギア部 30aに連結されて差動の回転制御を行うの で、入出力軸の変速比を可変とすることができる。
[0060] また、上述した構成の変速装置 10Cは、入出力軸の回転方向が同じになるという利 点を有するだけでなぐ必要となる軸受の数が少なくてすむので、製造時の組立が容 易である。特に、同一条件で比較した場合、ウォームギア 55の回転数が低い領域で 運転できるため、運転騒音を低く抑えることができる。 [0061] 次に、上述した第 1の実施形態に係る変速装置について、その第 4変形例を図 6に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Dにおいては、出力軸 Soとなる保持器 40Dに 櫛状の転動体保持部 42を設け、この転動体保持部 42に配設された転動体 Kを二分 割構造とした内輪 20Dと入力軸 Siを設けた外輪 30Dとの間に介在させ、内輪 20Dの 対向面間に予圧調整手段の調圧カム 50を設けるとともに、変速比可変機構のウォー ムギア 55を連結した構成とされる。
[0062] この場合、内輪 20Dは内輪部 22Dとギア形成部 25とに二分割され、内輪部 22D及 びギア形成部 25の対向面 22d, 25d間には調圧カム 50が配設され、ギア形成部 25 の外周面に形成されたギア部 25aは、変速可変機構のウォームギア 55と嚙合して連 結されている。
また、出力軸 Soとなる保持器 40Dの外周面にもギア部 45が形成され、たとえばこ のギア部 45をラックギア 70と嚙合させて回転運動を直線運動に変換した出力を得る ようにしてもよい。この場合のギア部 45は、保持器 40Dの側面に形成してもよい。 なお、図中の符号 12は軸受、 13はオイルシール、 14は最小予圧を規定している 板ばね、 16は円錐ころ軸受である。
[0063] このような構成の変速装置 10Dは、入力軸 Siとなる外輪 30Dのトルクは、転動体保 持部 42に配設された転動体 Kを介して出力軸 Soとなる保持器 40Dに伝達される。こ のとき、内輪 20Dにおいては、調圧カム 50が入力軸 Siのトルクに応じて転動体 Kに 作用する予圧を調整するため、入力トルクがないときは予圧を最小限に抑えることが できる。また、変速比可変機構のウォームギア 55は、トラクシヨン入力部材の内輪 20 Dを分割したギア形成部 25のギア部 25aに連結されて差動の回転制御を行うので、 入出力軸の変速比を可変とすることができる。
[0064] また、上述した構成の変速装置 10Dは、入出力軸の回転方向が同じになるという 利点を有している。そして、同一条件で比較した場合、転動体 Kの面圧を低く抑えた り、調圧カム 50を配設する入力軸 Siの伝達トルクも低く設定できるので、寿命や耐久 性の面で極めて有利になる。なお、ラックギア 70を設けてラック &ピ-オン機構を内 蔵した構成にすれば、よりコンパクトな車両用操舵装置を可能にする。
[0065] 次に、上述した第 1の実施形態に係る変速装置について、その第 5変形例を図 7に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Eにお 、ては、保持器 40Eに櫛状の転動体保 持部 42を設け、この転動体保持部 42に配設された転動体 Kを出力軸 Soを設けた二 分割構造の内輪 20Eと入力軸 Siを設けた外輪 30Eとの間に介在させ、内輪 20Eの 対向面間に予圧調整手段として調圧カム 50を設けるとともに、保持器 40Eに変速比 可変機構としてウォームギア 55を連結した構成とされる。
[0066] この場合、内輪部 20Eは内輪部 22Eと出力軸部 26とに二分割され、内輪部 22E及 び出力軸部 26の対向面間 22e, 26eには、調圧カム 50が配設されている。
このように構成された変速装置 10Eでは、入力軸 Siとなる外輪 30Dのトルクは、転 動体保持部 42に配設された転動体 Kを介して出力軸 Soとなる内輪 20Eの内輪部 2 2Eに伝達される。このとき、出力軸 Soとなる内輪 20Eにおいては、予圧カム 50が入 力軸 Siのトルクに応じて転動体 Kに作用する予圧を調整するため、入力トルクがな!ヽ ときは予圧を最小限に抑えることができる。また、変速比可変機構のウォームギア 55 力 Sトラクシヨン入出力部材の保持器 40Eに形成したギア部に連結されて差動の回転 制御を行うので、入出力軸の変速比を可変とすることができる。
また、上述した構成の変速装置 10Cは、同一条件で比較した場合、ウォームギア 5 5の回転数が比較的低い領域で運転できるため、運転騒音を低く抑えることができる
[0067] <第 2の実施形態 >
続いて、本発明に係る変速装置の第 2の実施形態を図面に基づいて説明する。以 下に説明する実施形態は、上述したトラクシヨンドライブ変速の入出力を二組接続す ることにより、第 1段階の変速とは逆の変速を第 2段階で行う二段変速の構成としたも のである。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説 明は省略する。
図 8に示す実施形態の変速装置 10Fは、入力軸 Siと出力軸 Soとの間に介在させた 転動体 Kのトラクシヨンを利用し、入力軸 Siの回転数を所望の変速比に変化させて出 力軸 Soから出力するとともに、入力軸 Si及び出力軸 Soを左右対称に連結して 2段階 変速を行うように構成されて 、る。
[0068] ハウジング 11の両側に突出する入力軸 Si及び出力軸 Soは、軸方向において実質 的に左右対称となるように連結した第 1段階変速部 TR1及び第 2段階変速部 TR2の 内輪に設けられた軸部である。
第 1段階変速部 TR1は、第 1保持器 140の本体 141に櫛状の転動体保持部 142を 設け、この転動体保持部 142に配設した転動体 Kを、入力軸 Siを設けた第 1内輪 12 0と連結出力軸 131を設けた第 1外輪 130との間に介在させた構成とされる。この場 合においても、転動体保持部 142は櫛状に限定されることはなぐ梯子状など適宜選 択することができる。
第 2段階変速部 TR2は、第 2保持器 240の本体 241に櫛状の転動体保持部 242を 設け、この転動体保持部 242に配設した転動体 Kを、出力軸 Soを設けた第 2内輪 22 0と連結入力軸 231を設けた第 2外輪 230との間に介在させた構成とされる。この場 合においても、転動体保持部 242は櫛状に限定されることはなぐ梯子状など適宜選 択することができる。
なお、上述した転動体 Kは、第 1段階変速部 TR1及び第 2段階変速部 TR2のいず れにおいても、自転軸線が入力軸 Si及び出力軸 Soの軸線と直交しないよう傾斜させ た配置とされる。
[0069] 第 1段階変速部 TR1の連結出力軸 131と、第 2段階変速部 TR2の連結入力軸 23 1との端部端面を対向させて連結する軸連結部には、予圧調整手段として機能する 調圧カム 50が設けられている。この調圧カム 50は、上述した第 1の実施形態と同様 に、軸連結部の対向面間に形成された凹部の空間に転がり滑り可能な状態で収納 設置される。このような凹部は、円周方向に等ピッチとなるよう軸中心から放射状に複 数組設けられるが、この数は諸条件に応じて適宜選択すればょ ヽ。
また、第 1保持器 140は、本体 141の外周面に形成されたギア部 141aを備えてお り、このギア部 141aが変速比可変機構として機能するウォームギア 55と嚙合して連 結されている。すなわち、この構成は、第 1の実施形態で説明したトラクシヨンドライブ 機構を、入出力軸が左右対称となるように組み合わせたものである。なお、第 2保持 器 240は、ハウジング 11に固定されてその一部を形成する不動の部材であり、図中 の符号 12は軸受、 13はオイルシール、 14は板ばねである。
[0070] このような変速装置 10Fによれば、第 1段階変速部 TR1において、入力軸 Siとなる 第 1内輪 120のトルクは、第 1保持器 140の転動体保持部 142に配設された転動体 Kを介して、トラクシヨンドライブにより連結出力軸 131を備えた第 1外輪 130に伝達さ れる。この後、第 2段階変速部 TR2においては、予圧調整手段として機能する調圧 カム 50を介して連結入力軸 231を備えた第 2外輪 230にトルクが伝達され、第 2保持 器 240の転動体保持部 242に配設された転動体 Kを介して出力軸 Soとなる第 2内輪 220に伝達される。
このとき、連結出力部 131と連結入力部 231との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 131のトルクに応じて第 1段階変速 部及び第 2段階変速部の転動体に作用する予圧を調整するため、入力トルクがない ときには、板ばね 14に規定される最小限の予圧に抑えることができる。また、変速比 可変機構のウォームギア 55がトラクシヨン入出力部材の第 1保持部 140に形成された ギア部 141aに連結されて差動の回転制御を行うので、入出力軸の変速比を所望の 値に可変とすることができる。
[0071] また、このような構成の変速装置 10Fは、第 1段階変速部 TR1で変速した後、第 2 段階変速部 TR2で逆向きの変速を行うので、たとえば第 1段階変速部 TR1で増速し た後に第 2段階変速部 TR2で減速することとなり、マイクロトラクシヨンによる入出力関 係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合には、現 状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Fは、同一条件で比較した場合、特にウォームギア 55 の回転数が低い領域で運転できるため、運転騒音を低く抑えることができる。さらに、 使用する軸受の数が少な ヽので、組立が容易になると 、う利点を有して 、る。
[0072] 次に、上述した第 2の実施形態に係る変速装置について、その第 1変形例を図 9に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。 この変形例で説明する変速装置 10Gにおいては、連結出力軸 143を備えている第 1保持器 140Aに櫛状の転動体保持部 142を設け、この転動体保持部 142に配設さ れた転動体 Kを、入力軸 Siを設けた第 1内輪 120Aと第 1外輪 130Aとの間に介在さ せた第 1段階変速部 TR11と、連結入力軸 243を備えている第 2保持器 240Aに櫛 状の転動体保持部 242を設け、この転動体保持部 242に配設された転動体 Kを、出 力軸 Soを設けた第 2内輪 220Aと第 2外輪 (ハウジング 11に固定されて一体)との間 に介在させた第 2段階変速部 TR21とを備えている。そして、連結出力軸 143と連結 入力軸 243との軸連結部に予圧調整手段として機能するを調圧カム 50を設けるとと もに、第 1外輪 130Aに形成したギア部 30aに変速比可変機構のウォームギア 55を 連結した構成とされる。すなわち、この構成は、第 1の実施形態で説明した第 1変形 例のトラクシヨンドライブ機構を、入出力軸が左右対称となるように組み合わせたもの である。
[0073] このような変速装置 10Gによれば、第 1段階変速部 TR11において、入力軸 Siとな る第 1内輪 120Aのトルクは、第 1保持器 140Aの転動体保持部 142に配設された転 動体 Kを介して、トラクシヨンドライブにより連結出力軸 143を備えた第 1保持器 140A に伝達される。この後、第 2段階変速部 TR21においては、予圧調整手段として機能 する調圧カム 50を介して連結入力軸 243となる第 2保持器 240Aに伝達されたトルク 力 第 2保持器 240Aの転動体保持部 242に配設された転動体 Kを介して、トラクショ ンドライブにより出力軸 Soとなる第 2内輪 220Aに伝達される。
このとき、連結出力軸 143と連結入力軸 243との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 143のトルクに応じて第 1段階変速 部 TR11及び第 2段階変速部 TR21の転動体 Kに作用する予圧を調整するため、入 力トルクがないときには予圧を最小限に抑えることができる。また、変速比可変機構 のウォームギア 55がトラクシヨン入出力部材の第 1外輪 130Aに形成されたギア部 30 aに連結されて差動の回転制御を行うので、入出力軸の変速比を所望の値に可変と することができる。
[0074] また、このような構成の変速装置 10Gは、第 1段階変速部 TR11で変速した後、第 2 段階変速部 TR21で逆向きの変速を行うので、たとえば第 1段階変速部 TR11で増 速した後に第 2段階変速部 TR21で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Gは、同一条件で比較した場合、ウォームギア 55の回 転数が比較的低い領域で運転できるため、運転騒音を低く抑えることができる。
[0075] 次に、上述した第 2の実施形態に係る変速装置について、その第 2変形例を図 10 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Hにおいては、入力軸 Siを備えている第 1保持 器 140Bに櫛状の転動体保持部 142を設け、この転動体保持部 142に配設された転 動体 Kを、連結出力軸 126を設けた第 1内輪 120Bと第 1外輪 130Bとの間に介在さ せた第 1段階変速部 TR12と、出力軸 Soを備えている第 2保持器 240Bに櫛状の転 動体保持部 242を設け、この転動体保持部 242に配設された転動体 Kを、連結入力 軸 226を設けた第 2内輪 220Bとハウジング 11に固定されて一体の第 2外輪との間に 介在させた第 2段階変速部 TR22とを備えている。そして、連結出力軸 126と連結入 力軸 226との軸連結部に予圧調整手段として機能する調圧カム 50を設けるとともに、 第 1外輪 130Bに形成したギア部 30aに変速比可変機構として機能するウォームギア 55を連結した構成とされる。すなわち、この構成は、第 1の実施形態で説明した第 3 変形例のトラクシヨンドライブ機構を、入出力軸が左右対称となるように組み合わせた ものである。
[0076] このような変速装置 10Hによれば、第 1段階変速部 TR12において、入力軸 Siとな る第 1保持器 140Bのトルクは、第 1保持器 140Bの転動体保持部 142に配設された 転動体 Kを介して連結出力軸 126を備えた第 1内輪 120Bに伝達される。
この後、第 2段階変速部 TR22においては、予圧調整手段として機能する調圧カム 50を介して連結入力軸 226を備えた第 2内輪 220Bにトルクが伝達され、さらに、第 2 保持器 240Bの転動体保持部 242に配設された転動体 Kを介して、出力軸 Soとなる 第 2保持器 240Bにトルクが伝達される。
このとき、連結出力部 126と連結入力部 226との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 126のトルクに応じて第 1段階変速 部 TR12及び第 2段階変速部 TR22の転動体 Kに作用する予圧を調整するため、入 力トルクがないときには予圧を最小限に抑えることができる。また、変速比可変機構 のウォームギア 55がトラクシヨン入出力部材の第 1外輪 130Bに形成されたギア部 30 aに連結されて差動の回転制御を行うので、入出力軸の変速比を所望の値に可変と することができる。
[0077] また、このような構成の変速装置 10Hは、第 1段階変速部 TR12で変速した後、第 2段階変速部 TR22で逆向きの変速を行うので、たとえば第 1段階変速部 TR12で増 速した後に第 2段階変速部 TR22で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Hは、比較的軸受の数が少ないため、組立が容易であ る。そして、同一条件で比較した場合、特に転動体 Kの面圧を低く抑え、かつ、調圧 カム 50を配設する入力軸 Siの伝達トルクも低く設定できるので、寿命や耐久性の面 で極めて有利になる。
[0078] 次に、上述した第 2の実施形態に係る変速装置について、その第 3変形例を図 11 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 101においては、第 1保持器 140Cに櫛状の転動 体保持部 142を設け、この転動体保持部 142に配設された転動体 Kを、連結出力軸 126を設けた第 1内輪 120Cと入力軸 Siを設けた第 1外輪 130Cとの間に介在させた 第 1段階変速部 TR13と、第 2保持器 240Cに櫛状の転動体保持部 242を設け、この 転動体保持部 242に配設された転動体 Kを、連結入力軸 226を設けた第 2内輪 220 Cと出力軸 Soを設けた第 2外輪 230Cとの間に介在させた第 2段階変速部 TR23とを 備えている。そして、連結出力軸 126と連結入力軸 226との軸連結部に予圧調整手 段として機能する調圧カム 50を設けるとともに、第 1保持器 140Cに形成したギア部 4 laに変速比可変機構として機能するウォームギア 55を連結した構成とされる。すな わち、この構成は、第 1の実施形態で説明した第 5変形例のトラクシヨンドライブ機構 を、入出力軸が左右対称となるように組み合わせたものである。
[0079] このような変速装置 101によれば、第 1段階変速部 TR13において、入力軸 Siとなる 第 1外輪 130Cのトルクは、第 1保持器 140Cの転動体保持部 142に配設された転動 体 Kを介して連結出力軸 126を備えた第 1内輪 120Cに伝達される。この後、第 2段 階変速部 TR23においては、予圧調整手段として機能する調圧カム 50を介して連結 入力軸 226を備えた第 2内輪 220Cに伝達されたトルク力 ハウジング 11に固定され て一体に形成された不動の第 2保持器に設けられている転動体保持部 242に配設さ れた転動体 Kを介して、出力軸 Soとなる第 2外輪 230Cに伝達される。
このとき、連結出力軸 126と連結入力軸 226との間が調圧カム 50を介して連結され る軸連結部においては、調圧カム 50が連結出力軸 126のトルクに応じて第 1段階変 速部 TR13及び第 2段階変速部 TR23の転動体 Kに作用する予圧を調整するため、 入力トルクがないときには予圧を最小限に抑えることができる。また、変速比可変機 構のウォームギア 55がトラクシヨン入出力部材の第 1保持器 140Cに形成されたギア 部 41aに連結されて差動の回転制御を行うので、入出力軸の変速比を所望の値に 可変とすることができる。
[0080] また、このような構成の変速装置 101は、第 1段階変速部 TR13で変速した後、第 2 段階変速部 TR23で逆向きの変速を行うので、たとえば第 1段階変速部 TR13で増 速した後に第 2段階変速部 TR23で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 101は、同一条件で比較した場合、転動体 Kの面圧を低く 抑え、かつ、調圧カム 50を配設する入力軸 Siの伝達トルクも低く設定できるので、寿 命や耐久性の面で有利になる。さらに、ウォームギア 55の回転数が比較的低い領域 で運転できるため、運転騒音を低く抑えることもできる。
[0081] 次に、上述した第 2の実施形態に係る変速装置について、その第 4変形例を図 12 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Jは、これまで説明したウォームギア 55による変 速比可変機構に代えて、中空モータ Mを駆動源とする遊星式減速機構 80を採用し た構成が異なっている。また、変速装置 10Jは、入力軸 Siを備えている第 1保持器 14 ODに櫛状の転動体保持部 142を設け、この転動体保持部 142に配設された転動体 Kを、連結出力軸 126を設けた第 1内輪 120Dと第 1外輪 130Dとの間に介在させた 第 1段階変速部 TR14と、出力軸 Soを備えている第 2保持器 240Dに櫛状の転動体 保持部 242を設け、この転動体保持部 242に配設された転動体 Kを、連結入力軸2 26を設けた第 2内輪 220Dとハウジング 11に固定されて一体の第 2外輪との間に介 在させた第 2段階変速部 TR24とを備えている。そして、連結出力軸 126と連結入力 軸 226との軸連結部に予圧調整手段として機能する調圧カム 50を設けるとともに、第 1外輪 130Dに変速比可変機構として機能する遊星式減速機構 80を連結した構成と される。すなわち、第 4変形例の構成は、上述した第 2変形例の変速装置 10Hにお いて、変速可変機構のウォームギア 55を遊星式減速機構 80に変更したものである。 なお、図中の符号 Cは、クラッチ等を包含するロック機構部である。
[0082] 遊星式減速機構 80は、入力軸 Si及び出力軸 Soと同軸に配設された中空モータ M を駆動源とし、中空モータ軸 81に設けた太陽ローラ 82と、複数の遊星ローラ 83と、 遊星ローラ 83の外周側に配設されたリングローラ 84とを具備して構成される。
第 1保持器 140Dに設けられた入力軸 Siは、中空モータ軸 81の内部を貫通して配 設されている。この中空モータ軸 81は、転動体保持部 142側の端部外周面にギア部 を形成した太陽ローラ 82が設けられている。太陽ローラ 82の外周には、ギア部と嚙 合する複数個の遊星ローラ 83が周方向へ等ピッチで配設され、さらに、各遊星ロー ラ 83の外周側には、第 1外輪 130Dとスプライン結合等により連結されたリングローラ 84が配設されている。このリングローラ 84は、内周面に形成されたギア部が遊星ロー ラ 83と嚼合して!/ヽる。
[0083] このような構成の遊星式減速機構 80は、中空モータ Mを駆動させることにより中空 モータ軸 81と一体に太陽ローラ 82が回転すると、太陽ローラ 82に形成したギア部の 歯数、遊星ローラ 83の歯数及びリングローラ 84に形成したギア部の歯数に応じて、 太陽ローラ 82の回転数が変速 (減速)されてリングローラ 84に伝達される。リングロー ラ 84の回転は、一体に連結されたトラクシヨン入出力部材の第 1外輪 130Dを回転さ せるので、上述した変速可変機構のウォームギア 55と同様に、差動の回転制御を行 つて入出力軸の変速比を所望の値に可変とすることができる。
[0084] すなわち、リングローラ 84及び第 1外輪 130Dに伝達される回転数は、中空モータ Mの回転数制御により変更可能であるから、差動の回転制御を行って入出力軸の変 速比を容易に設定することができる。
また、中空モータ Mを使用し、中空モータ軸 81内を入出力軸が貫通する構成とし たので、たとえばウォームギア 55のように周方向へ突出する部材をなくす力、あるい は突出量を最小にすることができるので、変速装置 1 OJの外径寸法を小さくしてコン ノタト化することができる。このように外形寸法の小さい変速装置 10Jは、たとえば設 置スペースの確保が困難な車両用操舵装置 STの変速装置として好適である。
[0085] このような変速装置 10Jによれば、第 1段階変速部 TR14において、入力軸 Siとなる 第 1保持器 140Dのトルクは、第 1保持器 140Dの転動体保持部 142に配設された転 動体 Kを介して連結出力軸 126を備えた第 1内輪 120Bに伝達される。
この後、第 2段階変速部 TR24においては、予圧調整手段として機能する調圧カム 50を介して連結入力軸 226を備えた第 2内輪 220Dにトルクが伝達され、さらに、第 2 保持器 240Dの転動体保持部 242に配設された転動体 Kを介して、出力軸 Soとなる 第 2保持器 240Bにトルクが伝達される。
このとき、連結出力部 126と連結入力部 226との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 126のトルクに応じて第 1段階変速 部 TR14及び第 2段階変速部 TR24の転動体 Kに作用する予圧を調整するため、入 力トルクがないときには予圧を最小限に抑えることができる。また、変速比可変機構 の遊星式減速機構 80がトラクシヨン入出力部材の第 1外輪 130Dに連結されて差動 の回転制御を行うので、入出力軸の変速比を所望の値に可変とすることができる。
[0086] また、このような構成の変速装置 10Jは、第 1段階変速部 TR14で変速した後、第 2 段階変速部 TR24で逆向きの変速を行うので、たとえば第 1段階変速部 TR14で増 速した後に第 2段階変速部 TR24で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。 なお、上述した遊星式減速機構 80は、図 12に示した構成の変速装置 10Jに限定さ れることはなぐ上述した各実施形態及び変形例のウォームギア 55に代えて採用す ることが可能である。
[0087] <第 3の実施形態 >
続いて、本発明に係る変速装置の第 3の実施形態を図面に基づいて説明する。以 下に説明する実施形態は、上述したトラクシヨンドライブ変速の入出力を左右対称に 二組接続することにより、第 1段階の変速とは逆の変速を同じ変速比で第 2段階に行 う二段変速の構成とした第 2の実施形態とは異なり、逆の変速を異なる変速比で行う 二段変速の構成としたものである。なお、上述した実施形態と同様の部分には同じ符 号を付し、その詳細な説明は省略する。
図 13に示す実施形態の変速装置 10Kは、入力軸 Siと出力軸 Soとの間に介在させ た転動体 Kのトラクシヨンを利用し、入力軸 Siの回転数を所望の変速比に変化させて 出力軸 Soから出力するとともに、入力軸 Si及び出力軸 Soを連結して 2段階変速を行 うように構成されている。すなわち、この変速装置 10Kは、第 1段階変速部 TR15及 び第 2段階変速部 TR25のトラクシヨン入出力部材を連結して一体ィ匕するとともに、両 変速部 TR15, TR25の変速比に差を設けたことに特徴があり、他の構成については 、上述した図 11の変速装置 10Jと実質的に同じである。
[0088] ハウジング 11の両側に突出する入力軸 Si及び出力軸 Soは、軸方向に連結された 第 1変速部 TR15及び第 2段階変速部 TR25の保持器に設けられた軸部である。 変速装置 10Kは、入力軸 Siを備えている第 1保持器 140Eに櫛状の転動体保持部 142Aを設け、この転動体保持部 142Aに配設された転動体 Kを、連結出力軸 126 Aを設けた第 1内輪 120Eと外輪連結部材 90との間に介在させた第 1段階変速部 TR 15と、出力軸 Soを備えている第 2保持器 240Eに櫛状の転動体保持部 242Aを設け 、この転動体保持部 242Aに配設された転動体 Kを、連結入力軸 226Aを設けた第 2 内輪 220Eと外輪連結部材 90との間に介在させた第 2段階変速部 TR25とを備えて いる。そして、連結出力軸 126Aと連結入力軸 226Aとの軸連結部に予圧調整手段 として機能する調圧カム 50を設けるとともに、外輪連結部材 90に変速比可変機構と して機能する遊星式減速機構 80を連結した構成とされる。 [0089] すなわち、この実施形態では、トラクシヨン入出力部材となる第 1外輪及び第 2外輪 に相当する部材として、第 1段階変速部 TR15及び第 2段階変速部 TR25を外輪連 結部材 90で連結して一体ィ匕し、この外輪連結部材 90に変速可変機構の遊星式減 速機構 80を連結するとともに、両変速部 TR15, TR25の内輪軌跡径等が異なるも のを組み合わせて変速比に差を設けた構成とされる。なお、この場合、両変速部 TR 15, TR25の変速比に設ける差は若干でよい。
[0090] 遊星式減速機構 80は、入力軸 Si及び出力軸 Soと同軸に配設された中空モータ M を駆動源とし、中空モータ軸 81に設けた太陽ローラ 82と、複数の遊星ローラ 83と、 遊星ローラ 83の外周側に配設されたリングローラ 84とを具備して構成される。
第 1保持器 140Eに設けられた入力軸 Siは、中空モータ軸 81の内部を貫通して配 設されている。この中空モータ軸 81は、転動体保持部 142側の端部外周面にギア部 を形成した太陽ローラ 82が設けられている。太陽ローラ 82の外周には、ギア部と嚙 合する複数個の遊星ローラ 83が周方向へ等ピッチで配設され、さらに、各遊星ロー ラ 83の外周側には、外輪連結部材 90とスプライン結合等により連結されたリングロー ラ 84が配設されている。このリングローラ 84は、内周面に形成されたギア部が遊星口 ーラ 83と嚙合している。
[0091] このような構成の遊星式減速機構 80は、中空モータ Mを駆動させることにより中空 モータ軸 81と一体に太陽ローラ 82が回転すると、太陽ローラ 82に形成したギア部の 歯数、遊星ローラ 83の歯数及びリングローラ 84に形成したギア部の歯数に応じて、 太陽ローラ 82の回転数が変速 (減速)されてリングローラ 84に伝達される。リングロー ラ 84の回転は、一体に連結されたトラクシヨン入出力部材の外輪連結部材 90を回転 させるとともに、両変速部 TR15, TR25の変速比には差があるので、差動の回転制 御を行って入出力軸の変速比を所望の値に可変とすることができる。
[0092] すなわち、リングローラ 84及び外輪連結部材 90に伝達される回転数は、中空モー タ Mの回転数制御により変更可能であるから、差動の回転制御を行って入出力軸の 変速比を容易に設定することができる。
また、中空モータ Mを使用し、中空モータ軸 81内を入出力軸が貫通する構成とし たので、たとえばウォームギア 55のように周方向へ突出する部材をなくす力、あるい は突出量を最小にすることができるので、変速装置 10Kの外径寸法を小さくしてコン ノタト化することができる。このように外形寸法の小さい変速装置 10Kは、たとえば設 置スペースの確保が困難な車両用操舵装置 STの変速装置として好適である。 なお、上述した構成の変速装置 10Kは、外形寸法は大きくなるものの、変速比可変 機構としてウォームギア 55を使用してもよい。
[0093] 以上説明したように、本発明における第 1の実施形態に示した変速装置は、転動体 の自転軸線が入力軸 Si及び出力軸 Soの軸線と直交しな 、よう傾斜させた配置とさ れ、かつ、転動体 Kに付与する予圧を入力軸 Siのトルクに応じて自動的に変化させ る予圧調整手段の調圧カム 50と、転動体 Kのトラクシヨン入出力部材に連結され、該 トラクシヨン入出力部材の回転数制御を行って変速比を変化させる差動式の変速比 可変機構のウォームギア 55とを備えて 、るので、傾斜配置された転動体に付与され る予圧は、入力軸 Siのトルクに応じて調圧カム 50が調整したものとなる。すなわち、 調圧カム 50が伝達トルクに応じたスラスト荷重を発生させ、このスラスト荷重が転動体 Kを軸方向に押圧する予圧となる。また、差動式の変速比可変機構を備えているの で、入出力軸の変速比を調整して任意に設定することができる。
[0094] また、本発明における第 2の実施形態に示した減速装置は、転動体 Kの自転軸線 が入力軸 Si及び出力軸 Soの軸線と直交しないよう傾斜させた配置とされ、かつ、転 動体 Kに付与する予圧を、第 1段階変速部及び第 2段階変速部を連結する軸間のト ルクに応じて自動的に変化させる予圧調整手段の調圧カム 50と、転動体 Kのトラクシ ヨン入出力部材に連結され、該トラクシヨン入出力部材の回転数制御を行って変速比 を変化させる変速比可変機構のウォームギア 55とを備えて 、るので、傾斜配置され た転動体 Kに付与される予圧は、第 1段階変速部及び第 2段階変速部を連結する軸 間のトルクに応じて自動的に変化させる調圧カム 50が調整したものとなる。また、差 動式の変速比可変機構を備えているので、入出力軸の変速比を調整して任意に設 定することができる。この場合、第 1段変速部及び第 2段変速部による 2段階変速を 行うので、トラクシヨンドライブによる入出力関係は、同回転方向に 1 : 1となる。
特に、変速比可変機構として中空モータで駆動する遊星式減速機構を採用すれば 、径方向の外径寸法を小さくして小型化することができる。 [0095] <第 4の実施形態 >
図 14は、本発明に係るトラクシヨンドライブ変速装置の第 4の実施形態を示す断面 図である。以下に説明する各実施形態は、上述した変速装置が、出力軸 Soに回転 力を付与して伝達トルクを増す伝達トルク補助機構を備えたものである。なお、上述 した各実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。 この変速装置 10Lは、上述した第 1の実施形態(図 1)で説明した変速装置 10の出 力軸部 33に、軸受 12の間に位置するギア部 35を追カ卩して設けたものである。このギ ァ部 35は、後述する伝達トルク補助機構と嚙合する部分である。なお、ハウジング 11 の外部に突出する出力軸部 33は、たとえば車両用操舵装置のラック &ピニオン装置 のように、図示しな!、被駆動側の装置と連結されて 、る。
[0096] 出力軸 Soとなる外輪 30のギア部 35には、出力軸 Soに回転力を付与して伝達トル クを増す伝達トルク補助機構として機能するように、ウォームギア 55Aが嚙合して連 結されている。このウォームギア 55Aは、可変制御可能な電動モータ等の駆動手段 により駆動され、嚙合する出力軸 So側を回転させてトラクシヨンドライブ機構 TRの出 力トルクに所望の回転トルクを付与して増大させるものである。
すなわち、出力軸 Soから出力される伝達トルクは、入力軸 Siからトラクシヨンドライブ 機構 TRを介して出力されるトルクに、ウォームギア 55 Aから所望の回転トルクを付与 されて増大した大きな出力トルクとなる。
[0097] このように構成された変速装置 10Lは、上述した第 1の実施形態で説明した変速装 置 10の機能に加えて、伝達トルク補助機能を備えたものとなる。すなわち、出力軸 S oに対してウォームギア 55Aが所望の回転力を付与すると、トラクシヨンドライブ機構 T Rを介して出力される伝達トルクは、付与された回転力に応じて最終的に出力軸 So 力 出力するトルクが増大する。
従って、入力軸 Siの入力トルクが小さくても、諸条件に応じてウォームギア 55Aを制 御して所望の回転力を付与することにより、最終的な出力トルクを増して大きくする伝 達トルク補助機能 (パワーアシスト機能)を備えた変速装置 10Lとなる。
[0098] また、このような変速装置 10Lを車両用操舵装置 STに採用してステアリング操作を 行うと、ハンドル 60の操作により発生したトルクが上部操舵軸 62から入力軸 Siに伝達 され、変速装置 10L内で所望の変速比に変換されるとともに、伝達トルクに所望の回 転トルクを付与して増大させた出力トルクが出力軸 Soから下部操舵軸 63に伝達され てラック &ピ-オン装置 64を動作させることができる。
[0099] 従って、ハンドル 60が操作されて 、な 、場合、たとえば停車時や直進走行時等に おいては、上部操舵軸 62及び入力軸 Siにはトルクがないので、転動体 Kに作用する 予圧は最小となる。このため、転動体 Kの寿命が向上し、車両用操舵装置 STの耐久 性や信頼性の向上に有効である。
また、たとえば縦列駐車等のように、低速走行時にハンドル 60の操作量が大きくな る場合には、ウォームギア 55の回転数を制御して変速比を増すと、少ないハンドル 操作量で大きな操舵角を得ることができる。すなわち、入力軸 Siの回転数が大きく増 速されて出力軸 Soから出力されるようにウォームギア 55の回転数を調整すれば、小 さなハンドル操作量 (上部操舵軸 62の回転数)が増速されて下部操舵軸 63に出力さ れるので、ラック &ピ-オン装置 64のラック移動量を増して操舵輪 61, 61の向きを大 きく変化させることができるため、車両用操舵装置 STの操作性が向上する。
[0100] また、走行状態等の諸条件に応じてウォームギア 55Aから付与する回転トルクを適 宜制御すれば、たとえば高速走行時には回転トルクの付与をなくすか最小とすること により、ハンドル 60の操作を重くして直進走行性を増し、あるいは、縦列駐車時等の ように低速でノヽンドル 60を操作する場合には、回転トルクを最大とすることにより操作 を軽くして操作性を向上させることが可能になる。
[0101] 次に、上述した第 4の実施形態に係る変速装置について、その第 1変形例を図 15 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Mにおいては、入力軸 Siを設けた内輪 20Aが 一体構造とされ、出力軸 Soを設けた保持器 40Aを 2分割構造として接合面間に調圧 カム 50を配設するとともに、外輪 30Aに変速比可変機構のウォームギア 55を連結し 、保持器 40Aの出力軸部分に伝達トルク補助機構のウォームギア 55Aを連結した点 が上述した実施形態と異なって!/、る。
[0102] すなわち、出力軸 Siを備えている保持器 40Aを保持部本体 43と出力軸部 44とに 分割した二分割構造とし、保持部本体 43に設けた櫛状の転動体保持部 42に円錐こ ろの転動体 Kを配設する。そして、保持部本体 43と出力軸部 44との対向面 43a, 44 a間に、上述した予圧調整手段として機能する調圧カム 50を配設する。
また、入力軸 Siを設けた内輪 20Aと外輪 30Aとの間には、予圧(図中に矢印で示 す)が作用するように転動体 Kを介在させてトラクシヨンによるトルク伝達を行い、内輪 20Aと保持器 40Aとの間には、スラスト軸受 15を配設して相対的な回転を可能として いる。さらに、変速比可変機構のウォームギア 55は、外輪 30Aの外周面に形成した ギア部 30aと嚙合して連結され、伝達トルク補助機構のウォームギア 55Aは、出力軸 部 44に取り付けたギア部 35と嚙合して連結されている。なお、図中の符号 12は軸受 、 13はオイルシール、 14は板ばね、 16は円錐ころ軸受である。
[0103] このような構成の変速装置 10Mでは、入力軸 Siとなる内輪 20Aのトルクは、転動体 保持部 42に配設された転動体 Kを介して保持器 40Aの出力軸 Soとなる出力軸部 4 4に伝達される。このとき、出力軸 Soとなる保持器 40Aにおいては、調圧カム 50が入 力軸 Siのトルクに応じて転動体 Kに作用する予圧を調整するため、入力トルクがな!ヽ ときは予圧を最小限に抑えることができる。なお、この場合の予圧は、調圧カム 50に より調整され、保持部本体 43からスラスト軸受 15に作用するスラスト荷重により発生 する。
[0104] また、変速比可変機構のウォームギア 55がトラクシヨン入出力部材の外輪 30Aのギ ァ部 30aに連結されて差動の回転制御を行うので、入出力軸の変速比を可変とする ことができ、さらに、伝達トルク補助機構のウォームギア 55Aが出力軸部 44と一体に 回転するギア部 35に連結されて所望の回転トルクを付与するので、出力軸 Soから出 力される伝達トルクを増大させることができる。
し力も、上述した構成の変速装置 10Mは、入出力軸の回転方向が同じになるという 利点を有している。また、同一条件で比較した場合、特に転動体 Kの面圧を力なり低 く抑えることができるため、寿命や耐久性の面で有利になる。
[0105] 次に、上述した第 4の実施形態に係る変速装置について、その第 2変形例を図 16 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。 この変形例で説明する変速装置 IONにおいては、入力軸 Siを備えている保持器 4 OBに櫛状の転動体保持部 42を設け、この転動体保持部 42に配設された転動体 K を、出力軸 Soを設けた内輪 20Bと外輪 30Bとの間に介在させ、内輪 20Bに予圧調 整手段として調圧カム 50を設けるとともに、外輪 30Bに変速比可変機構としてをゥォ ームギア 55を連結し、内輪 20Bの出力軸部分 (後述する出力軸部 26)に伝達トルク 補助機構のウォームギア 55Aを連結した構成とされる。なお、図中の符号 12は軸受 、 13はオイルシール、 14は板ばね、 15はスラスト軸受、 16は円錐ころ軸受である。
[0106] この場合の内輪 20Bは、内輪部 22Bと出力軸部 26とに二分割され、内輪部 22B及 び出力軸部 26の対向面 22b, 26b間には、調圧カム 50が配設されている。
このような構成の変速装置 10Nでは、入力軸 Siとなる保持器 40Bのトルクは、転動 体保持部 42に配設された転動体 Kを介して出力軸 Soとなる内輪 20Bの内輪部 22B に伝達される。このとき、内輪 20Bにおいては、調圧カム 50が入力軸 Siのトルクに応 じて転動体 Kに作用する予圧を調整するため、入力トルクがないときは予圧を最小限 に抑えることができる。また、変速比可変機構のウォームギア 55がトラクシヨン入出力 部材の外輪 30Bに形成されたギア部 30aに連結されて差動の回転制御を行うので、 入出力軸の変速比を可変とすることができる。
[0107] さらに、伝達トルク補助機構のウォームギア 55A力 内輪 20Bの出力軸部 26と一体 に回転するギア部 35に連結されて所望の回転トルクを付与するので、出力軸 Soから 出力される伝達トルクを増大させることができる。
また、上述した構成の変速装置 10Nは、入出力軸の回転方向が同じになるという 利点を有するだけでなぐ必要となる軸受の数が少なくてすむので、製造時の組立が 容易である。特に、同一条件で比較した場合、ウォームギア 55の回転数が低い領域 で運転できるため、運転騒音を低く抑えることができる。
[0108] 次に、上述した第 4の実施形態に係る変速装置について、その第 3変形例を図 17 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Pにお 、ては、保持器 40Cに櫛状の転動体保 持部 42を設け、この転動体保持部 42に配設された転動体 Kを出力軸 Soを設けた二 分割構造の内輪 20Cと入力軸 Siを設けた外輪 30Cとの間に介在させ、内輪 20Cの 対向面間に予圧調整手段として調圧カム 50を設けるとともに、保持器 40Cに変速比 可変機構としてウォームギア 55を連結し、内輪 20Cの出力軸部分 (後述する出力軸 部 26)に伝達トルク補助機構のウォームギア 55Aを連結した構成とされる。なお、図 中の符号 12は軸受、 13はオイルシール、 14は板ばね、 16は円錐ころ軸受である。
[0109] この場合、内輪部 20Cは内輪部 22Cと出力軸部 26とに二分割され、内輪部 22C 及び出力軸部 26の対向面 22c, 26c間には、調圧カム 50が配設されている。
このように構成された変速装置 10Pでは、入力軸 Siとなる外輪 30Cのトルクは、転 動体保持部 42に配設された転動体 Kを介して出力軸 Soとなる内輪 20Cの内輪部 2 2Cに伝達される。このとき、出力軸 Soとなる内輪 20Cにおいては、予圧カム 50が入 力軸 Siのトルクに応じて転動体 Kに作用する予圧を調整するため、入力トルクがな!ヽ ときは予圧を最小限に抑えることができる。また、変速比可変機構のウォームギア 55 力 Sトラクシヨン入出力部材の保持器 40Cに形成したギア部 41aに連結されて差動の 回転制御を行うので、入出力軸の変速比を可変とすることができる。
[0110] さらに、伝達トルク補助機構のウォームギア 55A力 内輪 20Cの出力軸部 26と一体 に回転するギア部 35に連結されて所望の回転トルクを付与するので、出力軸 Soから 出力される伝達トルクを増大させることができる。
また、上述した構成の変速装置 10Pは、同一条件で比較した場合、ウォームギア 5 5の回転数が比較的低い領域で運転できるため、運転騒音を低く抑えることができる
[0111] <第 5の実施形態 >
続いて、本発明に係る変速装置の第 5の実施形態を図面に基づいて説明する。以 下に説明する実施形態は、上述したトラクシヨンドライブ変速の入出力を二組接続す ることにより、第 1段階の変速とは逆の変速を第 2段階で行う二段変速の構成としたも のである。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説 明は省略する。
図 18に示す実施形態の変速装置 10Qは、入力軸 Siと出力軸 Soとの間に介在させ た転動体 Kのトラクシヨンを利用し、入力軸 Siの回転数を所望の変速比に変化させて 出力軸 Soから出力するとともに、入力軸 Si及び出力軸 Soを左右対称に連結して 2段 階変速を行うように構成されて 、る。
[0112] ハウジング 11の両側に突出する入力軸 Si及び出力軸 Soは、軸方向において実質 的に左右対称となるように連結した第 1段階変速部 TR1及び第 2段階変速部 TR2の 内輪に設けられた軸部である。
第 1段階変速部 TR1は、第 1保持器 140の本体 141に櫛状の転動体保持部 142を 設け、この転動体保持部 142に配設した転動体 Kを、入力軸 Siを設けた第 1内輪 12 0と連結出力軸 131を設けた第 1外輪 130との間に介在させた構成とされる。この場 合においても、転動体保持部 142は櫛状に限定されることはなぐ梯子状など適宜選 択することができる。
第 2段階変速部 TR2は、第 2保持器 240の本体部分 (ハウジング 11の一部)に櫛 状の転動体保持部 242を設け、この転動体保持部 242に配設した転動体 Kを、出力 軸 Soを設けた第 2内輪 220と連結入力軸 231を設けた第 2外輪 230との間に介在さ せた構成とされる。この場合においても、転動体保持部 242は櫛状に限定されること はなぐ梯子状など適宜選択することができる。
なお、上述した転動体 Kは、第 1段階変速部 TR1及び第 2段階変速部 TR2のいず れにおいても、自転軸線が入力軸 Si及び出力軸 Soの軸線と直交しないよう傾斜させ た配置とされる。
[0113] 第 1段階変速部 TR1の連結出力軸 131と、第 2段階変速部 TR2の連結入力軸 23 1との端部端面を対向させて連結する軸連結部には、予圧調整手段として機能する 調圧カム 50が設けられている。この調圧カム 50は、上述した第 1の実施形態と同様 に、軸連結部の対向面間に形成された凹部の空間に転がり滑り可能な状態で収納 設置される。このような凹部は、円周方向に等ピッチとなるよう軸中心から放射状に複 数組設けられるが、この数は諸条件に応じて適宜選択すればょ ヽ。
また、第 1保持器 140は、本体 141の外周面に形成されたギア部 141aを備えてお り、このギア部 141aが変速比可変機構として機能するウォームギア 55と嚙合して連 結されている。すなわち、この構成は、第 1の実施形態で説明したトラクシヨンドライブ 機構を、入出力軸が左右対称となるように組み合わせたものである。 [0114] さらに、出力軸 Soを備えた第 2内輪 220には、一体に回転するギア部 35が設けら れている。このギア部 35は、伝達トルク補助機構のウォームギア 55Aと嚙合して連結 され、ウォームギア 55Aから出力軸 Soに所望の回転トルクを付与して出力される伝達 トルクを増大させる機能を有している。なお、第 2保持器 240は、ハウジング 11に固定 されてその一部を形成する不動の部材であり、図中の符号 12は軸受、 13はオイルシ ール、 14は板ばねである。
[0115] このような変速装置 10Qによれば、第 1段階変速部 TR1において、入力軸 Siとなる 第 1内輪 120のトルクは、第 1保持器 140の転動体保持部 142に配設された転動体 Kを介して、トラクシヨンドライブにより連結出力軸 131を備えた第 1外輪 130に伝達さ れる。この後、第 2段階変速部 TR2においては、予圧調整手段として機能する調圧 カム 50を介して連結入力軸 231を備えた第 2外輪 230にトルクが伝達され、第 2保持 器 240の転動体保持部 242に配設された転動体 Kを介して出力軸 Soとなる第 2内輪 220に伝達される。
このとき、連結出力部 131と連結入力部 231との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 131のトルクに応じて第 1段階変速 部及び第 2段階変速部の転動体に作用する予圧を調整するため、入力トルクがない ときには、板ばね 14に規定される最小限の予圧に抑えることができる。また、変速比 可変機構のウォームギア 55がトラクシヨン入出力部材の第 1保持部 140に形成された ギア部 141aに連結されて差動の回転制御を行うので、入出力軸の変速比を所望の 値に可変とすることができる。
[0116] さらに、上述した変速装置 10Qにおいては、伝達トルク補助機構のウォームギア 55 Aが、出力軸 Soを備えている段 2内輪 220と一体に回転するギア部 35に連結されて いるので、出力軸 Soにはウォームギア 55Aの回転に応じて所望の回転トルクが付与 されるため、出力軸 Soから出力される伝達トルクを増大させることができる。
また、このような構成の変速装置 10Qは、第 1段階変速部 TR1で変速した後、第 2 段階変速部 TR2で逆向きの変速を行うので、たとえば第 1段階変速部 TR1で増速し た後に第 2段階変速部 TR2で減速することとなり、マイクロトラクシヨンによる入出力関 係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合には、現 状のラック &ピ-オン装置 64をそのまま生力して使用することができる。 また、上述した変速装置 10Qは、同一条件で比較した場合、特にウォームギア 55 の回転数が低い領域で運転できるため、運転騒音を低く抑えることができる。さらに、 使用する軸受の数が少な ヽので、組立が容易になると 、う利点を有して 、る。
[0117] 次に、上述した第 5の実施形態に係る変速装置について、その第 1変形例を図 19 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Rにおいては、連結出力軸 143を備えている第 1保持器 140Aに櫛状の転動体保持部 142を設け、この転動体保持部 142に配設さ れた転動体 Kを、入力軸 Siを設けた第 1内輪 120Aと第 1外輪 130Aとの間に介在さ せた第 1段階変速部 TR11と、連結入力軸 243を備えている第 2保持器 240Aに櫛 状の転動体保持部 242を設け、この転動体保持部 242に配設された転動体 Kを、出 力軸 Soを設けた第 2内輪 220Aと第 2外輪 (ハウジング 11に固定されて一体)との間 に介在させた第 2段階変速部 TR21とを備えている。
[0118] そして、連結出力軸 143と連結入力軸 243との軸連結部に予圧調整手段として機 能する調圧カム 50を設けるとともに、第 1外輪 130Aに形成したギア部 30aに変速比 可変機構のウォームギア 55を連結した構成とされる。すなわち、この構成は、第 4の 実施形態で説明した第 1変形例のトラクシヨンドライブ機構を、入出力軸が左右対称 となるように組み合わせたものである。
さらに、出力軸 Soとなる第 2内輪 220Aには一体に回転するギア部 35を設け、上述 した伝達トルク補助機構として機能するウォームギア 55Aがギア部 35と嚙合して連結 されている。
[0119] このような変速装置 10Rによれば、第 1段階変速部 TR11において、入力軸 Siとな る第 1内輪 120Aのトルクは、第 1保持器 140Aの転動体保持部 142に配設された転 動体 Kを介して、トラクシヨンドライブにより連結出力軸 143を備えた第 1保持器 140A に伝達される。この後、第 2段階変速部 TR21においては、予圧調整手段として機能 する調圧カム 50を介して連結入力軸 243となる第 2保持器 240Aに伝達されたトルク 1S 第 2保持器 240Aの転動体保持部 242に配設された転動体 Kを介して、トラクショ ンドライブにより出力軸 Soとなる第 2内輪 220Aに伝達される。
このとき、連結出力軸 143と連結入力軸 243との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 143のトルクに応じて第 1段階変速 部 TR11及び第 2段階変速部 TR21の転動体 Kに作用する予圧を調整するため、入 力トルクがないときには予圧を最小限に抑えることができる。
[0120] また、変速比可変機構のウォームギア 55がトラクシヨン入出力部材の第 1外輪 130
Aに形成されたギア部 30aに連結されて差動の回転制御を行うので、入出力軸の変 速比を所望の値に可変とすることができる。
さらに、伝達トルク補助機構のウォームギア 55Aが出力軸 Soと連結されて所望の回 転力を付与するので、出力軸 Soから出力される伝達トルクを増大させることができる
[0121] また、このような構成の変速装置 10Rは、第 1段階変速部 TR11で変速した後、第 2 段階変速部 TR21で逆向きの変速を行うので、たとえば第 1段階変速部 TR11で増 速した後に第 2段階変速部 TR21で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Rは、同一条件で比較した場合、ウォームギア 55の回 転数が比較的低い領域で運転できるため、運転騒音を低く抑えることができる。
[0122] 次に、上述した第 5実施形態に係る変速装置について、その第 2変形例を図 20に 基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、そ の詳細な説明は省略する。
この変形例で説明する変速装置 10Sにおいては、入力軸 Siを備えている第 1保持 器 140Bに櫛状の転動体保持部 142を設け、この転動体保持部 142に配設された転 動体 Kを、連結出力軸 126を設けた第 1内輪 120Bと第 1外輪 130Bとの間に介在さ せた第 1段階変速部 TR12と、出力軸 Soを備えている第 2保持器 240Bに櫛状の転 動体保持部 242を設け、この転動体保持部 242に配設された転動体 Kを、連結入力 軸 226を設けた第 2内輪 220Bとハウジング 11に固定されて一体の第 2外輪との間に 介在させた第 2段階変速部 TR22とを備えて 、る。 [0123] そして、連結出力軸 126と連結入力軸 226との軸連結部に予圧調整手段として機 能する調圧カム 50を設けるとともに、第 1外輪 130Bに形成したギア部 30aに変速比 可変機構として機能するウォームギア 55を連結した構成とされる。すなわち、この構 成は、第 4の実施形態で説明した第 2変形例のトラクシヨンドライブ機構を、入出力軸 が左右対称となるように組み合わせたものである。
さらに、出力軸 Soとなる第 2保持器 240Bには一体に回転するギア部 35を設け、上 述した伝達トルク補助機構として機能するウォームギア 55Aがギア部 35と嚙合して連 結されている。
[0124] このような変速装置 10Sによれば、第 1段階変速部 TR12において、入力軸 Siとな る第 1保持器 140Bのトルクは、第 1保持器 140Bの転動体保持部 142に配設された 転動体 Kを介して連結出力軸 126を備えた第 1内輪 120Bに伝達される。
この後、第 2段階変速部 TR22においては、予圧調整手段として機能する調圧カム 50を介して連結入力軸 226を備えた第 2内輪 220Bにトルクが伝達され、さらに、第 2 保持器 240Bの転動体保持部 242に配設された転動体 Kを介して、出力軸 Soとなる 第 2保持器 240Bにトルクが伝達される。
このとき、連結出力部 126と連結入力部 226との間を調圧カム 50を介して連結する 軸連結部においては、調圧カム 50が連結出力軸 126のトルクに応じて第 1段階変速 部 TR12及び第 2段階変速部 TR22の転動体 Kに作用する予圧を調整するため、入 力トルクがないときには予圧を最小限に抑えることができる。
[0125] また、変速比可変機構のウォームギア 55がトラクシヨン入出力部材の第 1外輪 130 Bに形成されたギア部 30aに連結されて差動の回転制御を行うので、入出力軸の変 速比を所望の値に可変とすることができる。
さらに、伝達トルク補助機構のウォームギア 55Aが出力軸 Soと連結されて所望の回 転力を付与するので、出力軸 Soから出力される伝達トルクを増大させることができる
[0126] また、このような構成の変速装置 10Sは、第 1段階変速部 TR12で変速した後、第 2 段階変速部 TR22で逆向きの変速を行うので、たとえば第 1段階変速部 TR12で増 速した後に第 2段階変速部 TR22で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Sは、比較的軸受の数が少ないため、組立が容易であ る。そして、同一条件で比較した場合、特に転動体 Kの面圧を低く抑え、かつ、調圧 カム 50を配設する入力軸 Siの伝達トルクも低く設定できるので、寿命や耐久性の面 で極めて有利になる。
[0127] 次に、上述した第 5の実施形態に係る変速装置について、その第 3変形例を図 21 に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、 その詳細な説明は省略する。
この変形例で説明する変速装置 10Tにおいては、第 1保持器 140Cに櫛状の転動 体保持部 142を設け、この転動体保持部 142に配設された転動体 Kを、連結出力軸 126を設けた第 1内輪 120Cと入力軸 Siを設けた第 1外輪 130Cとの間に介在させた 第 1段階変速部 TR13と、第 2保持器 240Cに櫛状の転動体保持部 242を設け、この 転動体保持部 242に配設された転動体 Kを、連結入力軸 226を設けた第 2内輪 220 Cと出力軸 Soを設けた第 2外輪 230Cとの間に介在させた第 2段階変速部 TR23とを 備えている。
[0128] そして、連結出力軸 126と連結入力軸 226との軸連結部に予圧調整手段として機 能する調圧カム 50を設けるとともに、第 1保持器 140Cに形成したギア部 141aに変 速比可変機構として機能するウォームギア 55を連結した構成とされる。すなわち、こ の構成は、第 4の実施形態で説明した第 3変形例のトラクシヨンドライブ機構を、入出 力軸が左右対称となるように組み合わせたものである。
さらに、出力軸 Soとなる第 2外輪 230Aには一体に回転するギア部 35を設け、上述 した伝達トルク補助機構として機能するウォームギア 55Aがギア部 35と嚙合して連結 されている。
[0129] このような変速装置 10Tによれば、第 1段階変速部 TR13において、入力軸 Siとな る第 1外輪 130Cのトルクは、第 1保持器 140Cの転動体保持部 142に配設された転 動体 Kを介して連結出力軸 126を備えた第 1内輪 120Cに伝達される。この後、第 2 段階変速部 TR23においては、予圧調整手段として機能する調圧カム 50を介して連 結入力軸 226を備えた第 2内輪 220Cに伝達されたトルク力 ハウジング 11に固定さ れて一体に形成されて不動の第 2保持器に設けられている転動体保持部 242に配 設された転動体 Kを介して、出力軸 Soとなる第 2外輪 230Cに伝達される。
このとき、連結出力軸 126と連結入力軸 226との間が調圧カム 50を介して連結され る軸連結部においては、調圧カム 50が連結出力軸 126のトルクに応じて第 1段階変 速部 TR13及び第 2段階変速部 TR23の転動体 Kに作用する予圧を調整するため、 入力トルクがないときには予圧を最小限に抑えることができる。
[0130] また、変速比可変機構のウォームギア 55がトラクシヨン入出力部材の第 1保持器 14 0Cに形成されたギア部 141aに連結されて差動の回転制御を行うので、入出力軸の 変速比を所望の値に可変とすることができる。
さらに、伝達トルク補助機構のウォームギア 55Aが出力軸 Soと連結されて所望の回 転力を付与するので、出力軸 Soから出力される伝達トルクを増大させることができる
[0131] また、このような構成の変速装置 10Tは、第 1段階変速部 TR13で変速した後、第 2 段階変速部 TR23で逆向きの変速を行うので、たとえば第 1段階変速部 TR13で増 速した後に第 2段階変速部 TR23で減速することとなり、マイクロトラクシヨンによる入 出力関係は 1 : 1となる。このため、この装置を車両用操舵装置 STに組み込む場合に は、現状のラック &ピ-オン装置 64をそのまま生力して使用することができる。
また、上述した変速装置 10Gは、同一条件で比較した場合、転動体 Kの面圧を低く 抑え、かつ、調圧カム 50を配設する入力軸 Siの伝達トルクも低く設定できるので、寿 命や耐久性の面で有利になる。さらに、ウォームギア 55の回転数が比較的低い領域 で運転できるため、運転騒音を低く抑えることもできる。
[0132] 以上説明したように、本発明における第 4の実施形態に示した変速装置は、転動体 の自転軸線が入力軸 Si及び出力軸 Soの軸線と直交しな 、よう傾斜させた配置とさ れ、かつ、転動体 Kに付与する予圧を入力軸 Siのトルクに応じて自動的に変化させ る予圧調整手段の調圧カム 50と、転動体 Kのトラクシヨン入出力部材に連結され、該 トラクシヨン入出力部材の回転数制御を行って変速比を変化させる差動式の変速比 可変機構のウォームギア 55と、出力軸 Soに回転力を付与して伝達トルクを増す伝達 トルク補助機構のウォームギア 55Aとを備えて 、るので、傾斜配置された転動体に付 与される予圧は、入力軸 Siのトルクに応じて調圧カム 50が調整したものとなる。すな わち、調圧カム 50が伝達トルクに応じたスラスト荷重を発生させ、このスラスト荷重が 転動体 Kを軸方向に押圧する予圧となる。
また、差動式の変速比可変機構を備えているので、入出力軸の変速比を調整して 任意に設定することができ、し力も、伝達トルク補助機構により出力軸 Soに回転力を 付与することができるので、出力軸 Soから出力する伝達トルクを増大させることもでき る。
[0133] また、本発明における第 5の実施形態に示した減速装置は、転動体 Kの自転軸線 が入力軸 Si及び出力軸 Soの軸線と直交しないよう傾斜させた配置とされ、かつ、転 動体 Kに付与する予圧を、第 1段階変速部及び第 2段階変速部を連結する軸間のト ルクに応じて自動的に変化させる予圧調整手段の調圧カム 50と、転動体 Kのトラクシ ヨン入出力部材に連結され、該トラクシヨン入出力部材の回転数制御を行って変速比 を変化させる変速比可変機構のウォームギア 55と、出力軸 Soに回転力を付与して 伝達トルクを増す伝達トルク補助機構のウォームギア 55Aとを備えて 、るので、傾斜 配置された転動体 Kに付与される予圧は、第 1段階変速部及び第 2段階変速部を連 結する軸間のトルクに応じて自動的に変化させる調圧カム 50が調整したものとなる。 また、差動式の変速比可変機構を備えているので、入出力軸の変速比を調整して 任意に設定することができ、し力も、伝達トルク補助機構により出力軸 Soに回転力を 付与することができるので、出力軸 Soから出力する伝達トルクを増大させることもでき る。この場合、第 1段変速部及び第 2段変速部による 2段階変速を行うので、トラクショ ンドライブによる入出力関係は、同回転方向に 1: 1となる。
[0134] なお、本発明は上述した実施形態に限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲内にお 、て適宜変更することができる。

Claims

請求の範囲
[1] 同一軸線上を回転するように配置された 2部材の対向面間でトルク伝達を行うトルク 伝達構造において、
前記対向面の間に、断面形状が傾斜面または曲面を形成する凹部を複数組設け、 該凹部の空間に調圧カムを配設したことを特徴とするトルク伝達構造。
[2] 入力軸と出力軸との間に介在させた転動体のトラクシヨンを利用し、前記入力軸の 回転数を所望の変速比に変化させて前記出力軸力 出力するトラクシヨンドライブ変 速装置であって、
前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、
前記転動体に付与する予圧を前記入力軸のトルクに応じて自動的に変化させる予 圧調整手段と、
前記転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入出力部材の回転 数制御を行って前記変速比を変化させる差動式の変速比可変機構とを備えているこ とを特徴とするトラクシヨンドライブ変速装置。
[3] 前記出力軸に回転力を付与して伝達トルクを増す伝達トルク補助機構を備えて 、 ることを特徴とする請求項 2に記載のトラクシヨンドライブ変速装置。
[4] 保持器に配設された前記転動体を前記入力軸を設けた内輪と前記出力軸を設け た外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに、前記保 持器に前記変速比可変機構を連結したことを特徴とする請求項 2または 3に記載のト ラタシヨンドライブ変速装置。
[5] 前記出力軸を備えて!/ヽる保持器に配設された前記転動体を前記入力軸を設けた 内輪と外輪との間に介在させ、前記保持器に前記予圧調整手段を設けるとともに、 前記外輪に前記変速比可変機構を連結したことを特徴とする請求項 2または 3に記 載のトラクシヨンドライブ変速装置。
[6] 前記入力軸を備えている保持器に配設された前記転動体を内輪と前記出力軸を 設けた外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに前記 変速比可変機構を連結したことを特徴とする請求項 2に記載のトラクシヨンドライブ変 速装置。
[7] 前記外輪の外周面もしくは側面にギア部を形成してラックギアと嚙合させたことを特 徴とする請求項 6に記載のトラクシヨンドライブ変速装置。
[8] 前記入力軸を備えて!/ヽる保持器に配設された前記転動体を前記出力軸を設けた 内輪と外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに、前 記外輪に前記変速比可変機構を連結したことを特徴とする請求項 2または 3に記載 のトラクシヨンドライブ変速装置。
[9] 前記出力軸となる保持器に配設された前記転動体を内輪と前記入力軸を設けた外 輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに前記変速比可 変機構を連結したことを特徴とする請求項 2に記載のトラクシヨンドライブ変速装置。
[10] 前記保持器の外周面もしくは側面にギア部を形成してラックギアと嚙合させたことを 特徴とする請求項 9に記載のトラクシヨンドライブ変速装置。
[11] 保持器に配設された前記転動体を前記出力軸を設けた内輪と前記入力軸を設け た外輪との間に介在させ、前記内輪に前記予圧調整手段を設けるとともに、前記保 持器に前記変速比可変機構を連結したことを特徴とする請求項 2または 3に記載のト ラタシヨンドライブ変速装置。
[12] 入力軸と出力軸との間に介在させた転動体のトラクシヨンを利用し、前記入力軸の 回転数を所望の変速比に変化させて前記出力軸力 出力するとともに、前記入力軸 及び出力軸を左右対称に連結して 2段階変速を行うトラクシヨンドライブ変速装置で あって、
前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、
前記転動体に付与する予圧を、第 1段階変速部及び第 2段階変速部を連結する軸 間のトルクに応じて自動的に変化させる予圧調整手段と、
前記転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入出力部材の回転 数制御を行って前記変速比を変化させる変速比可変機構と、
を備えていることを特徴とするトラクシヨンドライブ変速装置。
[13] 前記出力軸に回転力を付与して伝達トルクを増す伝達トルク補助機構を備えてい ることを特徴とする請求項 12に記載のトラクシヨンドライブ変速装置。
[14] 第 1保持器に配設された前記転動体を前記入力軸を設けた第 1内輪と連結出力軸 を設けた第 1外輪との間に介在させた第 1段階変速部と、
第 2保持器に配設された前記転動体を前記出力軸を設けた第 2内輪と連結入力軸 を設けた第 2外輪との間に介在させた第 2段階変速部とを備え、
前記連結出力軸と前記連結入力軸との軸連結部に前記予圧調整手段を設けるとと もに、前記第 1保持器に前記変速比可変機構を連結し、前記第 2保持器をハウジン グに固定したことを特徴とする請求項 12または 13に記載のトラクシヨンドライブ変速 装置。
[15] 連結出力軸を備えている第 1保持器に配設された前記転動体を前記入力軸を設け た第 1内輪と第 1外輪との間に介在させた第 1段階変速部と、
連結入力軸を備えている第 2保持器に配設された前記転動体を前記出力軸を設け た第 2内輪と第 2外輪との間に介在させた第 2段階変速部とを備え、
前記連結出力軸と前記連結入力軸との軸連結部に前記予圧調整手段を設けるとと もに、前記第 1外輪に前記変速比可変機構を連結し、前記第 2外輪をハウジングに 固定したことを特徴とする請求項 12または 13に記載のトラクシヨンドライブ変速装置。
[16] 前記入力軸を備えている第 1保持器に配設された前記転動体を連結出力軸を設け た第 1内輪と第 1外輪との間に介在させた第 1段階変速部と、
前記出力軸を備えている第 2保持器に配設された前記転動体を連結入力軸を設け た第 2内輪と第 2外輪との間に介在させた第 2段階変速部とを備え、
前記連結出力軸と前記連結入力軸との軸連結部に前記予圧調整手段を設けるとと もに、前記第 1外輪に前記変速比可変機構を連結し、前記第 2外輪をハウジングに 固定したことを特徴とする請求項 12または 13に記載のトラクシヨンドライブ変速装置。
[17] 第 1保持器に配設された前記転動体を連結出力軸を設けた第 1内輪と前記入力軸 を設けた第 1外輪との間に介在させた第 1段階変速部と、
第 2保持器に配設された前記転動体を連結入力軸を設けた第 2内輪と前記出力軸 を設けた第 2外輪との間に介在させた第 2段階変速部とを備え、
前記連結出力軸と前記連結入力軸との軸連結部に前記予圧調整手段を設けるとと もに、前記第 1保持器に前記変速比可変機構を連結し、前記第 2保持器をハウジン グに固定したことを特徴とする請求項 12または 13に記載のトラクシヨンドライブ変速 装置。
[18] 入力軸と出力軸との間に介在させた転動体のトラクシヨンを利用し、前記入力軸の 回転数を所望の変速比に変化させて前記出力軸力 出力するとともに、前記入力軸 及び出力軸を連結して 2段階変速を行うトラクシヨンドライブ変速装置であって、 前記転動体の自転軸線が前記入力軸及び前記出力軸の軸線と直交しないよう傾 斜させた配置とされ、
前記転動体に付与する予圧を、第 1段階変速部及び第 2段階変速部を連結する軸 間のトルクに応じて自動的に変化させる予圧調整手段と、
前記転動体のトラクシヨン入出力部材に連結され、該トラクシヨン入出力部材の回転 数制御を行って前記変速比を変化させる変速比可変機構とを備え、
前記第 1段階変速部及び前記第 2段階変速部のトラクシヨン入出力部材を連結して 一体化するとともに、両変速部の変速比に差を設けたことを特徴とするトラクシヨンドラ イブ変速装置。
[19] 前記入力軸を備えている第 1保持器に配設された前記転動体を連結出力軸を設け た第 1内輪と外輪連結部材との間に介在させた第 1段階変速部と、
前記出力軸を備えている第 2保持器に配設された前記転動体を連結入力軸を設け た第 2内輪と前記外輪連結部材との間に介在させた第 2段階変速部とを備え、 前記連結出力軸と前記連結入力軸との軸連結部に前記予圧調整手段を設けるとと もに、前記外輪連結部材に前記変速比可変機構を連結したことを特徴とする特徴と する請求項 18に記載のトラクシヨンドライブ変速装置。
[20] 前記予圧調整手段は、同一軸線上を回転するように配置された 2部材の対向面間 でトルク伝達を行うトルク伝達構造であって、前記対向面の間に、断面形状が傾斜面 または曲面を形成する凹部を複数組設け、該凹部の空間に調圧カムを配設してなる ことを特徴とする請求項 2から 19のいずれかに記載のトラクシヨンドライブ変速装置。
[21] 前記変速比可変機構が回転制御可能な駆動源を備えたウォームギアであることを 特徴とする請求項 2から 21のいずれかに記載のトラクシヨンドライブ変速装置。
[22] 前記変速比可変機構が、前記入力軸及び前記出力軸と同軸に配設された中空モ ータを駆動源とした遊星式減速機構であることを特徴とする請求項 2から 21のいずれ 力に記載のトラクシヨンドライブ変速装置。
[23] 前記伝達トルク補助機構が、駆動手段を備えたウォームギアであることを特徴とする 請求項 3〜5、 8、 11、 13〜17、 20〜22の!ヽずれ力に記載のトラクシヨンドライブ変 速装置。
[24] 運転者のステアリング操作力 請求項 2から 23のいずれかに記載のトラクシヨンドラ イブ変速装置を介して車両の操舵輪に伝達されることを特徴とする車両用操舵装置
PCT/JP2006/303314 2005-02-24 2006-02-23 トルク伝達構造、トラクションドライブ変速装置及び車両用操舵装置 WO2006090796A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06714454A EP1852633B1 (en) 2005-02-24 2006-02-23 Torque transmission structure, traction drive transmission device, and steering device for vehicle
US11/576,483 US8092333B2 (en) 2005-02-24 2006-02-23 Torque transmission structure, traction drive transmission device, and steering device for vehicle
JP2007504781A JP4859827B2 (ja) 2005-02-24 2006-02-23 トラクションドライブ変速装置及び車両用操舵装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005049730 2005-02-24
JP2005049729 2005-02-24
JP2005-049729 2005-02-24
JP2005-049730 2005-02-24
JP2005-233963 2005-08-12
JP2005233963 2005-08-12

Publications (1)

Publication Number Publication Date
WO2006090796A1 true WO2006090796A1 (ja) 2006-08-31

Family

ID=36927434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303314 WO2006090796A1 (ja) 2005-02-24 2006-02-23 トルク伝達構造、トラクションドライブ変速装置及び車両用操舵装置

Country Status (4)

Country Link
US (1) US8092333B2 (ja)
EP (2) EP2357383B1 (ja)
JP (1) JP4859827B2 (ja)
WO (1) WO2006090796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208863A (ja) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd トラクションドライブおよびその製造方法
CN111776064A (zh) * 2020-08-07 2020-10-16 湖北恒隆汽车系统集团有限公司 一种中卡商用车用的电动循环球转向器总成
CN113090725A (zh) * 2019-06-20 2021-07-09 成都中良川工科技有限公司 一种回转传动装置及传动方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0613941D0 (en) * 2006-07-13 2006-08-23 Pml Flightlink Ltd Electronically controlled motors
JP5232763B2 (ja) * 2009-12-10 2013-07-10 三菱重工業株式会社 マイクロトラクションドライブ
JP5077785B2 (ja) * 2010-08-06 2012-11-21 株式会社デンソー 操舵制御装置
DE102012019428A1 (de) * 2012-10-02 2014-04-03 Trw Automotive Gmbh Servolenksystem für Kraftfahrzeuge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288453A (ja) * 1993-02-03 1994-10-11 Mitsubishi Heavy Ind Ltd 直交形転がり伝動装置
JP2004116670A (ja) * 2002-09-26 2004-04-15 Ntn Corp 遊星ローラ式変速機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490311A (en) * 1966-11-19 1970-01-20 Asahi Seiki Mfg Friction-drive speed-reducing mechanism
JPS4621889Y1 (ja) * 1967-02-04 1971-07-28
JPS591955A (ja) * 1982-06-28 1984-01-07 Nippon Light Metal Co Ltd 太陽熱集熱器の断熱構造
JPS591955U (ja) * 1983-05-02 1984-01-07 三菱重工業株式会社 ころがり摩擦式遊星ロ−ラ装置
CN86203254U (zh) 1986-04-22 1987-07-22 浙江省苍南县机械厂 圆锥滚子摩擦减(增)速器
US4846008A (en) * 1986-12-29 1989-07-11 Excelermatic Inc. Traction roller transmission
US4802386A (en) * 1987-02-18 1989-02-07 Haack August F Precision rotary positioning mechanism
JPH01139161A (ja) * 1987-11-27 1989-05-31 Kokusan Enshinki Kk 遠心分離器の制御装置
JPH01139161U (ja) * 1988-03-16 1989-09-22
JPH06313468A (ja) * 1993-05-06 1994-11-08 Masaaki Yamashita 変速機
US5649897A (en) * 1994-11-02 1997-07-22 Terumo Kabushiki Kaisha Endoscope apparatus for compensating for change in polarization state during image transmission
JPH1172152A (ja) * 1997-07-02 1999-03-16 Nippon Seiko Kk 摩擦ローラ式変速機
US6455947B1 (en) * 2001-02-14 2002-09-24 Bae Systems Controls, Inc. Power combining apparatus for hybrid electric vehicle
JP4107471B2 (ja) * 2001-11-19 2008-06-25 三菱電機株式会社 車両用操舵装置
JP3659925B2 (ja) 2002-03-25 2005-06-15 三菱重工業株式会社 マイクロトラクションドライブ
JP2004058896A (ja) 2002-07-30 2004-02-26 Koyo Seiko Co Ltd 車両用操舵装置
JP3748547B2 (ja) * 2002-11-05 2006-02-22 三菱電機株式会社 車両用操舵装置
JP3950456B2 (ja) * 2004-06-10 2007-08-01 三菱重工業株式会社 遊星ローラ式無段変速機
US7111716B2 (en) * 2005-01-26 2006-09-26 Magna Powertrain Usa, Inc. Power-operated clutch actuator for torque transfer mechanisms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288453A (ja) * 1993-02-03 1994-10-11 Mitsubishi Heavy Ind Ltd 直交形転がり伝動装置
JP2004116670A (ja) * 2002-09-26 2004-04-15 Ntn Corp 遊星ローラ式変速機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852633A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208863A (ja) * 2007-02-23 2008-09-11 Mitsubishi Heavy Ind Ltd トラクションドライブおよびその製造方法
CN113090725A (zh) * 2019-06-20 2021-07-09 成都中良川工科技有限公司 一种回转传动装置及传动方法
CN113090725B (zh) * 2019-06-20 2022-09-27 成都中良川工科技有限公司 一种回转传动装置及传动方法
CN111776064A (zh) * 2020-08-07 2020-10-16 湖北恒隆汽车系统集团有限公司 一种中卡商用车用的电动循环球转向器总成

Also Published As

Publication number Publication date
EP2357383A1 (en) 2011-08-17
EP1852633A4 (en) 2011-05-25
JPWO2006090796A1 (ja) 2008-07-24
US20090075775A1 (en) 2009-03-19
EP2357383B1 (en) 2012-10-31
US8092333B2 (en) 2012-01-10
EP1852633A1 (en) 2007-11-07
EP1852633B1 (en) 2012-11-14
JP4859827B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
US7955210B2 (en) Drive mechanism for infinitely variable transmission
WO2006090796A1 (ja) トルク伝達構造、トラクションドライブ変速装置及び車両用操舵装置
JP3950456B2 (ja) 遊星ローラ式無段変速機
US6517461B2 (en) Infinitely variable transmission
JP3885650B2 (ja) 無段変速装置
CN101586645B (zh) 牵引传动变速装置及车辆用操舵装置
JP4281370B2 (ja) 無段変速装置
JP2002235832A (ja) 減速機付き差動装置
KR20000053646A (ko) 변속비 무한대의 무단 변속기
JP3914307B2 (ja) 無段変速可能な巻掛け式変速機
JP2010144762A (ja) 駆動力配分装置
JP3920398B2 (ja) 内接噛合遊星歯車構造
JPH06257646A (ja) 歯車減速機
JP4206724B2 (ja) トロイダル型無段変速機の組立方法
JP2000266154A (ja) 変速比無限大無段変速機
JPH11236955A (ja) 無段変速装置
JP4696770B2 (ja) 無段変速装置
JP4643581B2 (ja) 回転駆動トランスミッション
JP2006017145A (ja) 四輪駆動車用トロイダル型無段変速機
JP2005030490A (ja) 摩擦ローラ式減速機付きモータ減速機
JP4894698B2 (ja) 無段変速装置
JP4196621B2 (ja) トロイダル型無段変速機
KR0122117B1 (ko) 무단변속기(Tansmission for indefinitely variable speed changing)
JP2007255561A (ja) 無段変速装置
JP2007321804A (ja) 無段変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680000600.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007504781

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006714454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11576483

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006714454

Country of ref document: EP