WO2006090597A1 - 液状炭化水素の水銀除去装置 - Google Patents

液状炭化水素の水銀除去装置 Download PDF

Info

Publication number
WO2006090597A1
WO2006090597A1 PCT/JP2006/302367 JP2006302367W WO2006090597A1 WO 2006090597 A1 WO2006090597 A1 WO 2006090597A1 JP 2006302367 W JP2006302367 W JP 2006302367W WO 2006090597 A1 WO2006090597 A1 WO 2006090597A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
hydrocarbon
liquid
liquid hydrocarbon
gas
Prior art date
Application number
PCT/JP2006/302367
Other languages
English (en)
French (fr)
Inventor
Hiromitsu Shibuya
Kazuo Sato
Yoshiyuki Yamaguchi
Senichiro Kaku
Original Assignee
Jgc Corporation
Sekiyushigen Kaihatsu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Corporation, Sekiyushigen Kaihatsu Kabushiki Kaisha filed Critical Jgc Corporation
Priority to AU2006216345A priority Critical patent/AU2006216345B2/en
Priority to US11/722,401 priority patent/US7968063B2/en
Priority to EP06713510A priority patent/EP2053116A4/en
Priority to JP2007504666A priority patent/JP5208497B2/ja
Publication of WO2006090597A1 publication Critical patent/WO2006090597A1/ja
Priority to NO20073600A priority patent/NO20073600L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for

Definitions

  • the present invention relates to a mercury removing apparatus for removing mercury components contained in liquid hydrocarbons derived from the ground such as crude oil and natural gas condensate.
  • Crude oil, natural gas condensate, etc. contain mercury components in the form of simple mercury, ionic mercury, organic mercury, etc. in a wide concentration range of 2 to 5000 wtppb.
  • mercury exists in the form of “elementary mercury”, “ionic mercury”, and “organic mercury”.
  • these three states of mercury are collectively defined as “mercury components”.
  • Ionic mercury and organic mercury are defined as “mercury compounds”.
  • the mercury component contained in this crude oil and the like has various adverse effects such as, for example, attacking aluminum equipment, poisoning the catalyst, and deteriorating the surrounding environment in the subsequent oil refining process. It may be necessary to remove this mercury component as much as possible.
  • Patent Document 1 Japanese Patent No. 2630732.
  • Patent Document 1 has a problem in that the equipment such as a distillation column for distilling liquid hydrocarbons is expensive. In addition, when a fraction obtained by distillation is subjected to an adsorption treatment, the adsorption treatment may be difficult because a component that significantly inhibits the adsorption has a high risk of being mixed into the fraction.
  • Patent Document 1 Japanese Patent No. 2630732
  • an object of the present invention is to obtain a mercury removing device that can reduce the cost of equipment for removing mercury components contained in liquid hydrocarbons such as crude oil and natural gas condensate.
  • a conversion device for converting a mercury component in a raw material liquid hydrocarbon into elemental mercury to obtain a first liquid hydrocarbon containing elemental mercury, and the first liquid carbonization. Hydrogen and the first stripping gas are brought into countercurrent contact to transfer elemental mercury in the first liquid hydrocarbon to the first stripping gas, thereby reducing the amount of elemental mercury.
  • a liquid hydrocarbon mercury removal device comprising a first stripping device for obtaining a hydrocarbon and a first gaseous hydrocarbon containing elemental mercury.
  • the second aspect of the present invention further includes a first adsorption device that adsorbs and removes the first gaseous hydrocarbon power elemental mercury to obtain a second gaseous hydrocarbon.
  • the liquid hydrocarbon mercury removing apparatus according to the first aspect of the present invention.
  • liquid hydrocarbon mercury removing apparatus according to the second aspect of the present invention, wherein the second gaseous hydrocarbon is used as the first stripping gas.
  • a fourth aspect of the present invention is a first gas-liquid separation unit that cools the first gaseous hydrocarbon and separates it into a third gaseous hydrocarbon and a third liquid hydrocarbon.
  • gas-liquid separation device and a second adsorption means for obtaining a fourth gaseous hydrocarbon by adsorbing and removing the third gaseous hydrocarbon power elemental mercury according to the first aspect of the present invention
  • a fifth aspect of the present invention is the mercury removal apparatus for liquid hydrocarbons according to the fourth aspect of the present invention, wherein the fourth gaseous hydrocarbon is used as the first stripping gas.
  • elemental mercury is adsorbed and removed from the third liquid hydrocarbon. 4.
  • a seventh aspect of the present invention is the liquid hydrocarbon mercury according to the fourth aspect of the present invention, wherein the third liquid hydrocarbon is introduced into the first stripping means together with the first liquid hydrocarbon. It is a removal device.
  • the raw liquid hydrocarbon is separated into a fifth gaseous hydrocarbon having a high mercury component concentration and a fifth liquid hydrocarbon having a low mercury component concentration.
  • the liquid hydrocarbon mercury removing apparatus according to the first aspect of the present invention, wherein a means (preliminary separation device) is provided in front of the converting means, and the fifth liquid hydrocarbon is introduced into the converting means. .
  • the preliminary separation means causes the raw liquid hydrocarbon and the second stripping gas to come in countercurrent contact with each other to cause the fifth gaseous hydrocarbon and the fifth liquid carbonization.
  • the mercury removal apparatus for liquid hydrocarbons according to the eighth aspect of the present invention which is a second stripping means for separating into hydrogen.
  • a tenth aspect of the present invention is the fifth aspect of the present invention, further comprising a fourth adsorption means for adsorbing and removing the mercury component in the fifth gaseous hydrocarbon power to obtain a sixth gaseous hydrocarbon.
  • the apparatus for removing mercury from a liquid hydrocarbon according to the embodiment of 8.
  • An eleventh aspect of the present invention is the liquid hydrocarbon mercury removing apparatus according to the tenth aspect of the present invention, wherein the sixth gaseous hydrocarbon is used as the first stripping gas.
  • a twelfth aspect of the present invention is the second gas-liquid separation means for cooling the fifth gaseous hydrocarbon and separating it into a seventh gaseous hydrocarbon and a sixth liquid hydrocarbon;
  • Mercury removal of liquid hydrocarbon according to the eighth aspect of the present invention further comprising a fifth adsorption means for adsorbing and removing a mercury component from the seventh gaseous hydrocarbon to obtain an eighth gaseous hydrocarbon Device.
  • a thirteenth aspect of the present invention is the liquid hydrocarbon mercury removing apparatus according to the twelfth aspect of the present invention, wherein the eighth gaseous hydrocarbon is used as the first stripping gas.
  • the sixth liquid hydrocarbon power also adsorbs and removes the mercury component
  • a fifteenth aspect of the present invention is the liquid hydrocarbon mercury removing apparatus according to the ninth aspect of the present invention, wherein the first gaseous hydrocarbon is used as the second stripping gas.
  • the mercury-containing compound in the mercury component in the raw liquid hydrocarbon is converted into elemental mercury, and the majority of the mercury component is converted into elemental mercury.
  • the first liquid hydrocarbon is obtained.
  • elemental mercury in the first liquid hydrocarbon moves to the first stripping gas, and the second liquid hydrocarbon.
  • the mercury content in it is greatly reduced.
  • the operation is easy and the equipment cost required for the first stripping means can be reduced.
  • the second gaseous hydrocarbon in which the elemental mercury in the first gaseous hydrocarbon is removed by the first adsorption means and the amount of elemental mercury is low which can be used as the first stripping gas. Therefore, it is not necessary to supply new stripping gas from the outside, and the necessary equipment is not required.
  • the third liquid hydrocarbon obtained by the first gas-liquid separation means has a low content of elemental mercury.
  • the fourth gaseous hydrocarbon obtained by the second adsorption means contains almost no elemental mercury, and this is used as the first stripping gas to introduce a new stripping gas from the outside. This eliminates the need for supply.
  • a fourth liquid hydrocarbon having a further reduced amount of elemental mercury can be obtained by the third adsorption means, and this can be used as a product.
  • the amount of elemental mercury in the third liquid hydrocarbon is slightly higher, and this is used as it is together with the first liquid hydrocarbon in the first stripping means.
  • the third liquid hydrocarbon can be used effectively, and the third adsorption means becomes unnecessary.
  • the mercury component since the preliminary separation means is provided, the mercury component, In particular, it can cope with a raw material liquid hydrocarbon containing a large amount of elemental mercury. If the second stripping means is used as the preliminary separating means, the equipment cost can be reduced.
  • a seventh liquid hydrocarbon having a further reduced amount of elemental mercury is obtained by the sixth adsorption means, which can be used as a product.
  • the first gaseous hydrocarbon can be effectively utilized by recycling the first gaseous hydrocarbon as the second stripping gas, There is no need to reprocess the first gaseous hydrocarbon.
  • FIG. 1 is a schematic configuration diagram showing a first example of a mercury removing apparatus of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a second example of the mercury removing apparatus of the present invention.
  • FIG. 3 is a schematic configuration diagram showing a third example of the mercury removing apparatus of the present invention.
  • FIG. 4 is a schematic configuration diagram showing a fourth example of the mercury removing apparatus of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a fifth example of the mercury removing apparatus of the present invention.
  • FIG. 6 is a schematic configuration diagram showing a sixth example of the mercury removing apparatus of the present invention.
  • FIG. 7 is a schematic configuration diagram showing a seventh example of the mercury removing apparatus of the present invention.
  • FIG. 8 is a schematic configuration diagram showing an eighth example of the mercury removing apparatus of the present invention.
  • FIG. 9 is a schematic configuration diagram showing a ninth example of the mercury removing apparatus of the present invention.
  • FIG. 1 shows a first example of the mercury removing apparatus of the present invention and corresponds to the first embodiment of the present invention.
  • Raw liquid hydrocarbons such as crude oil and natural gas condensate are sent from pipe 1 to conversion means 2.
  • This conversion means 2 may be any means as long as it has a function of converting a mercury compound into elemental mercury among the mercury components in the raw material liquid hydrocarbon. Specifically, iron, nickel, cobalt Catalyst towers packed with solid catalysts made by supporting metals such as molybdenum, tungsten, and palladium on a carrier such as alumina, silica, zeolite, and activated carbon are used.
  • the form of the solid catalyst may be a fluidized bed or a fixed bed.
  • an activated carbon catalyst (trade name MR-14) developed by JGC Corporation is particularly preferable. This activated carbon catalyst has the advantage that mercury-free compounds that use hydrogen can be converted to elemental mercury.
  • the reaction conditions in the conversion means 2 are a temperature of 140 to 250 ° C, a pressure of 0.2 to 2. OMPa'G, and a residence time of 5 to 80 minutes. “Pa′G” represents a gauge pressure.
  • the reaction in the conversion means 2 converts most of the mercury-rich compound in the raw material liquid hydrocarbon into elemental mercury, and most of the mercury component of the first liquid hydrocarbon derived from the conversion means 2 is obtained. It is single mercury.
  • the first liquid hydrocarbon derived from the conversion means 2 is introduced into the first stripping means 4 from the pipe 3.
  • the first stripping means 4 brings the first liquid hydrocarbon and the first stripping gas fed from the pipe 31 into countercurrent gas-liquid contact so that elemental mercury in the first liquid hydrocarbon is brought into contact. Transition to the first stripping gas.
  • the specific first stripping means 4 includes a Raschig ring, a pole ring, and an interlock.
  • the first liquid hydrocarbon is dropped from the top of the tower, the first bottom stripping gas is sent in, and the two are brought into gas-liquid contact on the surface of the packing, so that the single mercury in the first liquid hydrocarbon is removed.
  • the first stripping gas derive the first gaseous hydrocarbon containing elemental mercury from the top of the tower, and derive the second liquid hydrocarbon containing almost no elemental mercury from the tower bottom. Things are used.
  • the first stripping gas a gas such as nitrogen, methane, or city gas is used.
  • City gas is a gas of the gas group stipulated in the ministerial ordinance concerning the inspection of gas supplies based on the Japanese Gas Business Law. Specifically, it is made from natural gas, LP gas, coal, oil, etc. This is a mixed gas containing the gas to be produced.
  • the first stripping means 4 may be any of a packed tower, a plate tower, and a bubble tower, but is preferably a packed tower.
  • the stripping means 4 will be described using an example of a packed tower.
  • the temperature in the packed tower is 40-160. C, preferably 80-120. C, the pressure is 0.005 to 1.00 OMPa'G, preferably 0.01 to 0.05 MPa'G.
  • the first liquid hydrocarbon packed tower is supplied with 2,000 to 150,000 kgZm 2 'hr, preferably ⁇ 500,000 to 100,000 kgZm 2 ' hr.
  • the amount of gas supplied to the packed tower is 500 to 10,000 kgZm 2 'hr, preferably 800 to 5, OOOkgZm 2 '.
  • the gas Z liquid flow rate ratio which is the flow rate ratio of stripping gas to liquid hydrocarbon, is 0.05-2. OOkg- G / kg-, preferably 0.07-0.50 kg—GZkg—L It is. “Hr” represents time, G represents gas, and L represents liquid.
  • the second liquid hydrocarbon derived from the first stripping means 4 is taken out from the pipe 5 as a product containing almost no mercury component, and the first gas derived from the first stripping means 4 is used.
  • the hydrocarbons are discharged from pipe 6 and reprocessed separately.
  • FIG. 2 shows a second example of the mercury removing apparatus of the present invention, which corresponds to the second and third aspects of the present invention.
  • the apparatus of this example is the same as the apparatus shown in FIG. 1 except that the first adsorbing means 7 is provided after the first stripping means 4 and the first gaseous carbonization from the pipe 6 is provided in the first adsorbing means 7. Hydrogen Then, the single mercury contained in the first gaseous hydrocarbon is adsorbed and removed, and the second gaseous hydrocarbon with a reduced amount of single mercury is led out to the pipe 8, and this second gaseous hydrocarbon is further removed. Hydrogen carbonate is supplied to the first stripping means 4 as the first stripping gas.
  • a so-called adsorption tower is used for the first adsorption means 7, and the adsorbent packed in the adsorbent can be used without limitation on the type of adsorbent as long as it is gaseous and can adsorb mercury. Is possible. Specifically, a force that uses an adsorbent in which copper sulfide is supported on a carrier such as alumina, silica, zeolite, etc.
  • An adsorbent in which a molybdenum-based sulfide is supported on a carrier that also has a high specific surface area alumina force (for example, The adsorbent product name MR-3) developed by JGC Corporation is particularly suitable because of its excellent adsorption speed and adsorption capacity.
  • the linear velocity of the gas fluid to be treated relative to the adsorbent is 0.1 to 2.
  • Om / s ec preferably 0.2 to 0.6 mZsec, and the temperature is 0. ⁇ 120, preferably 0-80.
  • C pressure 0.05 to 0.200 MPa'G, preferably 0.01 to 0. lOMPa'G.
  • the first adsorption means 7 removes most of the elemental mercury contained in the first gaseous hydrocarbon here, and the second gaseous hydrocarbon containing almost no elemental mercury is obtained. . Therefore, the second gaseous hydrocarbon can be sent to the first stripping means 4 through the pipe 8 and recovered and used as the first stripping gas.
  • the supply amount of the first stripping gas and the supply amount of the first liquid hydrocarbon In order to balance the amount of gas and to prevent the first stripping gas from becoming heavy due to recycling, a part of the first stripping gas is discharged from the system 8 (purge). In some cases, it may be necessary to send a new stripping gas from outside the system to the pipe 8 (make-up).
  • the amount of the purge gas and the amount of make-up gas are approximately the second power determined by the supply amount of the raw liquid hydrocarbon, its properties, the amount of mercury component contained in it, the operating conditions of the first stripping means 4, etc. 0.1 to 20.Owt% of gaseous hydrocarbon, preferably 0.5 to 5.
  • gaseous hydrocarbons generated in the system are recovered and used.
  • the purge gas amount and makeup gas amount can also be handled by the same concept as described above even in the devices to be used, for example, the third and fourth examples described later.
  • the second gaseous hydrocarbon from the first adsorbing means 7 may not be necessarily reused as the first stripping gas, but may be partly or wholly discharged outside the system.
  • the recovered gaseous hydrocarbon when used as a stripping gas, a part or all of it may be used in the same manner as described above.
  • FIG. 3 shows a third example of the mercury removing apparatus according to the present invention, which corresponds to the fourth, fifth and seventh aspects of the present invention.
  • the first gas-liquid separating means 9 is provided after the first stripping means 4 in the apparatus shown in FIG. 1, and the second gas-liquid separating means 9 is further provided with the second gas-liquid separating means 9.
  • Adsorption means 10 is provided.
  • the first gaseous hydrocarbon derived from the first stripping means 4 is supplied to the first gas-liquid separation means 9 via the pipe 6.
  • the first gas-liquid separation means 9 is a cooler, a condenser, etc., which cools the first gaseous hydrocarbon to a temperature of 20 to 70 ° C., preferably 30 to 60 ° C.
  • the high-boiling hydrocarbons in the gaseous hydrocarbons are condensed and liquefied and led out from the pipe 11 as a third liquid hydrocarbon, while the low-boiling hydrocarbons in the first gaseous hydrocarbon are simultaneously removed. It is derived as a third gaseous hydrocarbon from the tube 12 as a gaseous state.
  • the raw material hydrocarbon has a high mercury content or the raw material hydrocarbon. Contains a lot of impurities! / Even if you speak, it is preferable because it can adsorb and remove mercury reliably!
  • the third gaseous hydrocarbon is sent from the pipe 12 to the second adsorption means 10, where the contained mercury is adsorbed and removed, and the pipe 13 has a low concentration of simple mercury. Derived as 4 gaseous hydrocarbons.
  • This second suction means 10 is the same as the first suction means 7 described above. The same conditions are applied as the adsorption conditions.
  • the second adsorption means 10 can be replaced with a scrubber that absorbs and removes elemental mercury in the third gaseous hydrocarbon with an aqueous solution of sodium sulfate.
  • the fourth gaseous hydrocarbon derived from the second adsorption means 10 contains almost no elemental mercury, it passes through the pipe 13 to the first stripping means 4. It is designed to be sent as 1 stripping gas.
  • the third liquid hydrocarbon passes through the pipe 11 and is sent to the first stripping means 4 together with the first liquid hydrocarbon.
  • the fourth gaseous hydrocarbon derived from the second adsorption means 10 may be discharged out of the system as it is, and also derived from the first gas-liquid separation means 9.
  • the third liquid hydrocarbon can be discharged out of the system as it is.
  • FIG. 4 shows a fourth example of the mercury removing apparatus according to the present invention, which corresponds to the sixth aspect of the present invention.
  • the apparatus of this example is the apparatus shown in FIG. 3 further provided with a third suction means 14.
  • the third liquid hydrocarbon derived from the first gas-liquid separation means 9 through the pipe 11 is sent to the third adsorption means 14 where the single mercury contained therein is adsorbed and removed.
  • a fourth liquid hydrocarbon can be obtained.
  • the third adsorption means 14 for the liquid hydrocarbon can be any means as long as it can adsorb and remove the mercury component in the liquid hydrocarbon.
  • one having the same configuration as the first or second adsorption means 7 and 10 applied to the above-described gaseous hydrocarbon can be used, and the adsorption conditions at that time are gaseous hydrocarbons.
  • the linear velocity is slower than that of the control, specifically 0.1-5. OcmZsec, preferably 0.2-3. Ocm / s ec. Other conditions, temperature 0-120. C, preferred ⁇ is 0-80. C, pressure 0.01 to 2.00 MPa'G, preferably 0.05 to: L OOMPa'G
  • the fourth liquid hydrocarbon derived from the third adsorbing means 14 through the pipe 15 contains almost no elemental mercury and is recovered as a product.
  • FIG. 5 shows a fifth example of the mercury removing apparatus of the present invention, which corresponds to the eighth and ninth aspects of the present invention.
  • a second stripping means 16 as a pre-separation means is further provided before the conversion means 2.
  • the raw liquid hydrocarbon from the pipe 17 is sent to the second stripping means 16, and the second stripping gas is sent from the pipe 18 to the second stripping means 16 at the same time. It has become.
  • the second stripping means 16 a packed tower having the same structure as the first stripping means 4 described above is used.
  • the operating conditions of the second stripping means 16 may be the same as those described for the first stripping means 4.
  • the raw liquid hydrocarbon and the second stripping gas are in countercurrent gas-liquid contact, and the single mercury in the mercury component contained in the raw liquid hydrocarbon is in the second strut.
  • the second stripping gas containing the single mercury is led out from the pipe 19 as a fifth gaseous hydrocarbon and is discharged out of the system.
  • the raw material liquid hydrocarbon is reduced in the amount of elemental mercury contained in it, and the mercury component is mostly contained as a mercury component and is led out from the pipe 20 as the fifth liquid hydrocarbon.
  • the fifth liquid hydrocarbon is sent to the conversion means 2 so that the mercury compound contained therein is converted into elemental mercury.
  • the force using the second stripping means 16 as the pre-separation means is preliminarily used by using a distillation means such as a distillation tower. It is also possible to separate and transfer to the fifth gaseous hydrocarbon.
  • FIG. 6 shows a sixth example of the mercury removing apparatus according to the present invention, which corresponds to the tenth and eleventh aspects of the present invention.
  • the apparatus of this example is the apparatus shown in FIG. 5 in which a fourth suction means 21 is further provided after the second stripping means 16.
  • the fifth gaseous hydrocarbon with a high amount of elemental mercury derived from the second stripping means 16 is sent from the pipe 19 to the fourth adsorption means 21, where the elemental substances contained therein are contained.
  • the adsorption tower used for the first, second, and third adsorption means 7, 10, and 14 described above is used, and the adsorption conditions are the same as those of the first adsorption means 21.
  • the same conditions as for adsorption means 7 apply.
  • the sixth gaseous hydrocarbon derived from the fourth adsorption means 21 contains almost no elemental mercury, it can be usefully used as the first stripping gas. Instead of using the sixth gaseous hydrocarbon as the first stripping gas, it can be discharged out of the system as it is.
  • FIG. 7 shows a seventh example of the mercury removing apparatus of the present invention, which corresponds to the twelfth and thirteenth aspects of the present invention.
  • a second gas-liquid separation means 23 is further provided downstream of the second stripping means 16, and a fifth gas-liquid separation means 23 is provided downstream of the second gas-liquid separation means 23.
  • Adsorption means 24 is provided.
  • the second gas-liquid separation means 23 is specifically a cooler or the like, and the fifth gaseous hydrocarbon is fed into the second gas-liquid separation means 23, and the temperature is 40-60. Cooled to ° C, the relatively high boiling point hydrocarbon in the fifth gaseous hydrocarbon is condensed and liquefied, and is led out from the pipe 25 as the sixth liquid hydrocarbon. The low-boiling point hydrocarbon in hydrogen is led out from the pipe 26 as the seventh gaseous hydrocarbon as it is. By this gas-liquid separation, a part of elemental mercury contained in the fifth gaseous hydrocarbon is transferred to the sixth liquid hydrocarbon, and the remaining part is transferred to the seventh gaseous hydrocarbon.
  • the seventh gaseous hydrocarbon is fed into the fifth adsorption means 24 through the pipe 26.
  • the fifth adsorption means 24 is an adsorption tower or the like as described above, and is filled with the same adsorbent, where the single mercury contained in the seventh gaseous hydrocarbon is adsorbed. Eighth gaseous hydrocarbons with reduced levels of elemental mercury are obtained.
  • the adsorption conditions here are the same as those of the first adsorption means 7.
  • the eighth gaseous hydrocarbon obtained from the fifth adsorption means 24 may be discharged out of the system as it is, and from the pipe 27 to the first stripping means 4 as shown in the figure. It can also be used as the first stripping gas.
  • FIG. 8 shows an eighth example of the mercury removing apparatus according to the present invention, which corresponds to the fourteenth and fifteenth aspects of the present invention.
  • the apparatus of this example is the same as the apparatus shown in FIG. 7, except that the sixth suction means 28 is provided.
  • the sixth liquid hydrocarbon is fed from the second gas-liquid separation means 23 to the sixth adsorption means 28 through the pipe 25, where the amount of elemental mercury contained therein is reduced, Liquid hydrocarbons are being extracted from the tube 29 as a product.
  • the same adsorption tower as the above is used, and the adsorption conditions are the same as those for the third adsorption means 14.
  • the first gaseous hydrocarbon discharged from the first stripping means 4 is introduced into the second stripping means 16 through the pipe 30 as the second stripping gas. It is configured as follows. However, it is not always necessary to use the first gaseous hydrocarbon as the second stripping gas.
  • the first gaseous hydrocarbon can be used as a fuel gas as it is, or it can be adsorbed to remove elemental mercury as necessary. After that, it can be discharged out of the system.
  • FIG. 9 shows a ninth example of the mercury removing apparatus of the present invention.
  • the apparatus of this example bisects the 8th gaseous hydrocarbon that is almost free of mercury components derived from the 5th adsorption means 24 in the apparatus shown in FIG. 1 is sent to stripping means 4 to be used as the first stripping gas, and the remainder is sent from the pipe 31 to the second stripping means 16 to be used as the second stripping gas here.
  • the first gaseous hydrocarbons discharged from the first stripping means 4 are sent to the second gas-liquid separation means 23 via the pipe 30 and from the second stripping means 16 to the pipe. Gas-liquid separation is performed in the second gas-liquid separation means 23 together with the fifth gaseous hydrocarbon sent via 19.
  • the second stripping means 16 contains almost no mercury component. Since the raw liquid hydrocarbon is stripped by the eighth gaseous hydrocarbon, the concentration of elemental mercury in the fifth liquid hydrocarbon derived from the second stripping means 16 is very low. Therefore, the risk of the phenomenon that the conversion means 2 changes to single mercury power S ionic mercury is reduced.
  • Natural gas condensate contained 520 wtppb of elemental mercury and 140 wtppb of ionic mercury.
  • the conversion means 2 includes a reaction tube made of a stainless steel pipe (SUS304) having a diameter of 1 inch.
  • SUS304 stainless steel pipe
  • the catalyst used was 20 ml of MR-14 produced by JGC Corporation.
  • the reaction conditions were a temperature of 200 ° C, a pressure of 0.6 MPa'G, and a residence time of the raw material liquid hydrocarbon of 25 minutes.
  • This packed tower is 1 inch in diameter and 2 in length
  • This column has a 50 mm column and is packed with Goodlo (registered trademark) packing as a packing material to a packing height of 200 mm.
  • Goodlow (registered trademark) packing is a kind of filler called mesh demister.
  • the stripping conditions were as follows: temperature 100 ° C, pressure 0.05 MPa'G, first liquid hydrocarbon supply 5,900kgZm 2 'hr, first stripping gas supply 1,800kg / m 2 -hr
  • the gas-liquid flow rate ratio was 0.31 kg-GZkg-L.
  • the fourth gaseous hydrocarbon from the second adsorption means 10 was collected and used.
  • a commercially available condenser was used as the first gas-liquid separation means 9, and the cooling temperature of the first gaseous hydrocarbon was set to 40 ° C.
  • An adsorption tower was used as the second adsorption means 10.
  • This adsorption tower was provided with a stainless steel (SUS304) column having an inner diameter of 1 inch, and MR-3 manufactured by JGC Corporation was packed in the column so as to have a packing height of 250 mm.
  • the adsorption conditions of the second adsorption means 10 are: temperature 40 ° C, pressure 0.02MPa'G, gas linear velocity 0.2 / sec.
  • the mercury component concentration in the second liquid hydrocarbon derived from the first stripping means 4 was 2. lwtppb. .
  • This second liquid hydrocarbon could be used as a product.
  • Example 1 when natural gas condensate, which is a raw material liquid hydrocarbon, is supplied directly to the first stripping means 4 that is not transferred by the conversion means 2, the first stripping means 4 is derived from the second stripping means.
  • the mercury component concentration in the liquid hydrocarbon was 147 wtppb.
  • Example 1 mercury in the raw liquid hydrocarbon was removed.
  • the natural gas condensate used in Example 1 was used as the raw material liquid hydrocarbon.
  • the conversion means 2, the first stripping means 4, the first gas-liquid separation means 9 and the second adsorption means 10 are the same in configuration as in the previous Example 1, and operating conditions in each of them. Was the same.
  • an adsorption tower was used as the third adsorption means 14.
  • This adsorption tower is equipped with a stainless steel (SUS304) column with an inner diameter of 20 mm and a length of 400 mm.
  • the column is filled with MR-3 manufactured by JGC Corporation to a height of 250 mm as an adsorbent. did.
  • the adsorption conditions of the third adsorption means 14 were a temperature of 40 ° C., a pressure of 0.5 MPa′G, and a liquid linear velocity of 0.5 cm Z sec.
  • the second liquid hydrocarbon from the first stripping means 4 and the fourth liquid hydrocarbon from the third adsorption means 14 can be collected as products, and the mercury component concentration of these mixtures can be obtained.
  • the mercury component concentration of these mixtures can be obtained.
  • Natural gas condensate was used as the raw material liquid hydrocarbon, the elemental mercury content was 2, 14 Owtppb, and the ionic mercury content was 300 wtppb.
  • a packed tower was used for the second stripping means 16 and the first stripping means 4.
  • This packed tower has a column with a diameter of 1 inch and a length of 250 mm, and is packed with Goodlow (registered trademark) packing as a packing material so as to have a packing height of 200 mm. .
  • the stripping conditions are as follows: temperature 100 ° C, pressure 0.05 MPa 'G, first liquid hydrocarbon flow rate 2,000 kg / m 2 -hr, first stripping gas flow rate 3,660 kg / m 2 -hr, Gas liquid flow ratio in the first stripping means 4 1. 83 kg—GZkg— L, raw material liquid hydrocarbon flow rate 2, 100 kg / m 2 -hr, supply amount of the second stripping gas 3 , 900 kg / m 2 -hr, the gas-liquid flow rate ratio in the second stripping means 16 was 1.86 kg-G / kg-L.
  • the conversion means 2 was provided with a reaction tube made of a stainless steel pipe (SUS304) having a 1-inch diameter, and 20 ml of MR-14 manufactured by JGC Corporation was used as the catalyst.
  • the reaction conditions were a temperature of 200 ° C, a pressure of 0.6 MPa 'G, and a residence time of the fifth liquid hydrocarbon of 25 minutes.
  • an adsorption tower was used for the fifth adsorption means 24.
  • This adsorption tower is equipped with a stainless steel (SUS304) column with an inner diameter of 20 mm and a length of 400 mm.
  • the column is filled with MR-3 manufactured by JGC Corporation to a height of 250 mm as an adsorbent. did.
  • the operating conditions of the fifth adsorption means 24 were as follows: temperature 20 ° C., pressure 0. OlMPa-G, gas linear velocity 0.2 mZsec.
  • an adsorption tower was used for the sixth adsorption means 28.
  • This adsorption tower is equipped with a stainless steel (SUS304) column with an inner diameter of 20 mm and a length of 400 mm.
  • the column is filled with MR-3 manufactured by JGC Corporation to a height of 250 mm as an adsorbent. did.
  • the operating conditions of the sixth adsorption means 28 are as follows: temperature 30 ° C, pressure 0.01 MPa 'G, liquid linear velocity 0.5c
  • a condenser was used for the second gas-liquid separation means 23, and the operating conditions were a cooling temperature of 30 ° C and an inlet gas temperature of 100 ° C.
  • the amount of elemental mercury in the fifth liquid hydrocarbon was 174 wtppb, and the amount of ionic mercury was 314 wtppb.
  • the amount of elemental mercury in the first liquid hydrocarbon was 404 wtppb and the amount of ionic mercury was 1.6 wtppb.
  • the amount of elemental mercury in the mixture of the second liquid hydrocarbon and the seventh liquid hydrocarbon, which is the final product was 0.6 wtppb, and the ionic mercury content was 1.7 wtppb.
  • mercury removing apparatus of the present invention equipment for removing mercury components contained in liquid hydrocarbons such as crude oil and natural gas condensate can be made inexpensive, which is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

 本発明の液状炭化水素の水銀除去装置は、原料液状炭化水素中の水銀成分を単体水銀に転換し、単体水銀を含む第1の液状炭化水素とする転換手段2と、前記第1の液状炭化水素と第1のストリッピングガスとを向流接触させて、第1の液状炭化水素中の単体水銀を第1のストリッピングガスに移行させ、単体水銀量が減少した第2の液状炭化水素と、単体水銀が含まれた第1のガス状炭化水素を得る第1のストリッピング手段4を備えることを特徴とする。

Description

明 細 書
液状炭化水素の水銀除去装置
技術分野
[0001] 本発明は、原油、天然ガスコンデンセートなどの地中由来の液状炭化水素に含ま れる水銀成分を除去するための水銀除去装置に関する。
本願は、 2005年 2月 24曰に曰本国に出願された特願 2005— 048581号に基づ く優先権を主張し、その内容をここに援用する。
背景技術
[0002] 原油、天然ガスコンデンセートなどには、 2〜5000wtppbと広い濃度範囲で、単体 水銀、イオン状水銀、有機水銀などの形態として水銀成分が含まれている。
原油などの液状炭化水素中では、水銀は、「単体水銀」と「イオン状水銀」と「有機 水銀」の状態で存在し、ここでは、この三状態の水銀を総じて「水銀成分」と定義し、「 イオン状水銀」と「有機水銀」を「水銀化合物」と定義する。
[0003] この原油等に含まれる水銀成分は、以後の石油精製工程等において、例えばアル ミニゥム製機器を侵す、触媒を被毒させる、周辺環境を悪化させるなどの種々の悪影 響を及ぼすため、この水銀成分をできる限り除去する必要がある場合がある。
このような原油等に含まれる水銀成分を除去する方法としては、特許文献 1 (特許 第 2630732号公報)に開示されたものがある。
[0004] この特許文献 1における除去方法は、原油等の液状炭化水素を触媒に接触させて 、これに含まれる水銀化合物を単体水銀に転換したのち、この液状炭化水素を蒸留 して 2以上の留分に分別する。そして、単体水銀含有量が低い留分をそのまま製品と して利用し、単体水銀含有量が高い留分を吸着処理し、単体水銀を除去する方法で ある。
[0005] し力しながら、この特許文献 1では、液状炭化水素を蒸留するための蒸留塔などの 設備に費用が嵩む問題があった。また、蒸留によって得られる留分を吸着処理する 場合、吸着を著しく阻害する成分も留分に混入するリスクが高いため、吸着処理が困 難になることがある。 特許文献 1:特許第 2630732号公報
発明の開示
発明が解決しょうとする課題
[0006] よって、本発明における課題は、原油、天然ガスコンデンセートなどの液状炭化水 素に含まれる水銀成分を除去するための設備を安価とすることができる水銀除去装 置を得ることにある。
課題を解決するための手段
[0007] カゝかる課題を解決するため、
本発明の第 1の態様は、原料液状炭化水素中の水銀成分を単体水銀に転換し、 単体水銀を含む第 1の液状炭化水素を得る転換手段(conversion device)と、 前記第 1の液状炭化水素と第 1のストリツビングガスとを向流接触させて、第 1の液 状炭化水素中の単体水銀を第 1のストリツビングガスに移行させ、単体水銀量が減少 した第 2の液状炭化水素と、単体水銀が含まれた第 1のガス状炭化水素とを得る第 1 のストリツビング手段 (stripping device)を備えた液状炭化水素の水銀除去装置である
[0008] 本発明の第 2の態様は、前記第 1のガス状炭化水素力 単体水銀を吸着除去し、 第 2のガス状炭化水素を得る第 1の吸着手段 (adsorption device)をさらに設けた本発 明の第 1の態様に記載の液状炭化水素の水銀除去装置である。
本発明の第 3の態様は、前記第 2のガス状炭化水素を前記第 1のストリツビングガス として用いる本発明の第 2の態様に記載の液状炭化水素の水銀除去装置である。
[0009] 本発明の第 4の態様は、前記第 1のガス状炭化水素を冷却して、第 3のガス状炭化 水素と第 3の液状炭化水素に分離する第 1の気液分離手段 (gas-liquid separation de vice)と、第 3のガス状炭化水素力 単体水銀を吸着除去して第 4のガス状炭化水素 を得る第 2の吸着手段とをさらに設けた本発明の第 1の態様に記載の液状炭化水素 の水銀除去装置である。
本発明の第 5の態様は、前記第 4のガス状炭化水素を前記第 1のストリツビングガス として用いる本発明の第 4の態様に記載の液状炭化水素の水銀除去装置である。
[0010] 本発明の第 6の態様は、前記第 3の液状炭化水素から単体水銀を吸着除去し、第 4の液状炭化水素を得る第 3の吸着手段をさらに設けた本発明の第 4の態様に記載 の液状炭化水素の水銀除去装置である。
本発明の第 7の態様は、前記第 3の液状炭化水素を第 1の液状炭化水素とともに第 1のストリツビング手段に導入するようにした本発明の第 4の態様に記載の液状炭化 水素の水銀除去装置である。
[0011] 本発明の第 8の態様は、前記原料液状炭化水素を水銀成分が高濃度の第 5のガス 状炭化水素と水銀成分が低濃度の第 5の液状炭化水素とに分離する予備分離手段 ( preliminary separation device)を転換手段の前段に設け、第 5の液状炭化水素を転 換手段に導入するようにした本発明の第 1の態様に記載の液状炭化水素の水銀除 去装置である。
本発明の第 9の態様は、前記予備分離手段が、前記原料液状炭化水素と第 2のス トリッピングガスとを向流接触させて前記第 5のガス状炭化水素と前記第 5の液状炭 化水素とに分離する第 2のストリツビング手段である本発明の第 8の態様に記載の液 状炭化水素の水銀除去装置である。
[0012] 本発明の第 10の態様は、前記第 5のガス状炭化水素力も水銀成分を吸着除去し、 第 6のガス状炭化水素を得る第 4の吸着手段をさらに設けた本発明の第 8の態様に 記載の液状炭化水素の水銀除去装置である。
本発明の第 11の態様は、前記第 6のガス状炭化水素を前記第 1のストリッピングガ スとして用いる本発明の第 10の態様に記載の液状炭化水素の水銀除去装置である
[0013] 本発明の第 12の態様は、前記第 5のガス状炭化水素を冷却し、第 7のガス状炭化 水素と第 6の液状炭化水素に分離する第 2の気液分離手段と、第 7のガス状炭化水 素から水銀成分を吸着除去し、第 8のガス状炭化水素を得る第 5の吸着手段をさらに 設けた本発明の第 8の態様に記載の液状炭化水素の水銀除去装置である。
本発明の第 13の態様は、前記第 8のガス状炭化水素を前記第 1のストリッピングガ スとして用いる本発明の第 12の態様に記載の液状炭化水素の水銀除去装置である
[0014] 本発明の第 14の態様は、前記第 6の液状炭化水素力も水銀成分を吸着除去し、 第 7の液状炭化水素を得る第 6の吸着手段をさらに設けた本発明の第 12の態様に 記載の液状炭化水素の水銀除去装置である。
本発明の第 15の態様は、前記第 1のガス状炭化水素を前記第 2のストリッピングガ スとして用いる本発明の第 9の態様に記載の液状炭化水素の水銀除去装置である。 発明の効果
[0015] 本発明の第 1の態様によれば、原料液状炭化水素中の水銀成分中の水銀ィ匕合物 が単体水銀に転換され、水銀成分の大部分が単体水銀に転換されることにより、第 1 の液状炭化水素が得られる。この第 1の液状炭化水素と第 1のストリツビングガスとを 向流接触させることにより、第 1の液状炭化水素中の単体水銀が第 1のストリツビング ガスに移行し、第 2の液状炭化水素中の水銀成分は大きく減少する。また、ストリッピ ングによって、単体水銀を移行させるようにしているので、運転操作が容易であり、第 1のストリツビング手段に要する設備費用を軽減できる。
[0016] 本発明の第 2および第 3の態様によれば、第 1のガス状炭化水素中の単体水銀が 第 1の吸着手段により除去され、単体水銀量が低い第 2のガス状炭化水素が得られ、 これを第 1のストリツビングガスとすることができる。よって、新たなストリツビングガスの 外部からの供給が不要となり、これに必要な設備も要しない。
[0017] 本発明の第 4および第 5の態様によれば、第 1の気液分離手段によって得られた第 3の液状炭化水素は、単体水銀の含有量が低いものとなる。また、第 2の吸着手段に よって得られる第 4のガス状炭化水素には、単体水銀がほとんど含まれず、これを第 1のストリツビングガスに用いて新たなストリツビングガスの外部からの供給を不要とす ることがでさる。
[0018] 本発明の第 6の態様によれば、さらに第 3の吸着手段によって単体水銀量がさらに 低減した第 4の液状炭化水素が得られ、これを製品とすることができる。
[0019] 本発明の第 7の態様によれば、第 3の液状炭化水素中の単体水銀量がやや多いも のとなるので、これをそのまま第 1の液状炭化水素とともに第 1のストリツビング手段の 供給側にリサイクルすることで、第 3の液状炭化水素を有効利用でき、さらに第 3の吸 着手段が不要になる。
[0020] 本発明の第 8および第 9の態様によれば、予備分離手段を設けたので、水銀成分、 特に単体水銀が多く含まれる原料液状炭化水素にも対応することができる。この予備 分離手段として第 2のストリツビング手段を用いれば、設備費用を抑えることができる。
[0021] 本発明の第 10および第 11の態様によれば、第 4の吸着手段により第 5のガス状炭 化水素中の単体水銀が除去され、単体水銀量が減少した第 6のガス状炭化水素が 得られ、これを第 1のストリツビングガスとして有効に利用できる。
[0022] 本発明の第 12および第 13の態様によれば、第 2の気液分離手段力も得られる第 6 の液状炭化水素の単体水銀量が低下しているので、これを製品とすることができる。 また、第 5の吸着手段への炭化水素供給量が減少するので、負荷が軽減される。さら に、第 8のガス状炭化水素中の単体水銀量が少ないので、これを第 1のストリツビング ガスに利用でき、新たなストリツビングガスの外部力もの供給が不要となる。
[0023] 本発明の第 14の態様によれば、第 6の吸着手段によりさらに単体水銀量が低下し た第 7の液状炭化水素が得られ、これを製品とすることができる。
[0024] 本発明の第 15の態様によれば、第 1のガス状炭化水素を第 2のストリツビングガスと してリサイクルすることにより、第 1のガス状炭化水素を有効に利用でき、第 1のガス状 炭化水素の再処理も不要となる。
図面の簡単な説明
[0025] [図 1]本発明の水銀除去装置の第 1の例を示す概略構成図である。
[図 2]本発明の水銀除去装置の第 2の例を示す概略構成図である。
[図 3]本発明の水銀除去装置の第 3の例を示す概略構成図である。
[図 4]本発明の水銀除去装置の第 4の例を示す概略構成図である。
[図 5]本発明の水銀除去装置の第 5の例を示す概略構成図である。
[図 6]本発明の水銀除去装置の第 6の例を示す概略構成図である。
[図 7]本発明の水銀除去装置の第 7の例を示す概略構成図である。
[図 8]本発明の水銀除去装置の第 8の例を示す概略構成図である。
[図 9]本発明の水銀除去装置の第 9の例を示す概略構成図である。
符号の説明
[0026] 2· · '転換手段、 4· · '第 1のストリツビング手段、 7· · '第 1の吸着手段、 9 · · '第 1の 気液分離手段、 10· · ·第 2の吸着手段、 14· · ·第 3の吸着手段、 16 · · ·第 2のストリツ ビング手段、 21 · · '第 4の吸着手段、 23 · · '第 2の気液分離手段、 24· · '第 5の吸着 手段、 28 · · ·第 6の吸着手段
発明を実施するための最良の形態
[0027] 以下、本発明を詳しく説明する。
(本発明の水銀除去装置の第 1の例)
図 1は、本発明の水銀除去装置の第 1の例を示すもので、本発明の第 1の態様に 対応するものである。
原油、天然ガスコンデンセートなどの原料液状炭化水素は、管 1から転換手段 2に 送り込まれる。
[0028] この転換手段 2は、原料液状炭化水素中の水銀成分の内、水銀化合物を単体水 銀に変換する機能を有すればいずれの手段でもよいが、具体的には鉄、ニッケル、 コバルト、モリブデン、タングステン、パラジウムなどの金属をアルミナ、シリカ、ゼオラ イト、活性炭などの担体に担持してなる固体触媒を充填した触媒塔などが用いられる
[0029] 固体触媒の形態は、流動床でも固定床でもよい。また、固体触媒として、特に日揮 株式会社が開発した活性炭系触媒 (商品名 MR— 14)が好ましい。この活性炭系触 媒には、水素を使用することなぐ水銀ィ匕合物を単体水銀に転換できる利点がある。
[0030] 転換手段 2内での反応条件は、温度 140〜250°C、圧力 0. 2〜2. OMPa'G、滞 留時間 5〜80分とされる。なお、「Pa'G」はゲージ圧を表す。
転換手段 2での反応により、原料液状炭化水素中の水銀ィヒ合物の大部分が単体 水銀に転換され、転換手段 2から導出される第 1の液状炭化水素の水銀成分の大部 分が単体水銀となっている。
[0031] 転換手段 2から導出された第 1の液状炭化水素は、管 3から第 1のストリツビング手 段 4に導入される。この第 1のストリツビング手段 4は、第 1の液状炭化水素と、管 31か ら送り込まれる第 1のストリツビングガスとを向流気液接触させて第 1の液状炭化水素 中の単体水銀を第 1のストリツビングガスに移行させるものである。
[0032] 具体的な第 1のストリツビング手段 4には、ラシヒリング、ポールリング、インターロック
(登録商標)サドル、ベルルサドル、グッドロー(登録商標)パッキングなどの充填物が 充填された充填塔、棚段塔、気泡塔などが用いられる。また、塔頂から第 1の液状炭 化水素を降らせ、塔底力 第 1のストリツビングガスを送り込み、充填物表面で両者を 気液接触させて、第 1の液状炭化水素中の単体水銀を第 1のストリツビングガスに移 行させ、塔頂から単体水銀を含む第 1のガス状炭化水素を導出し、塔底から単体水 銀がほとんど含まれない第 2の液状炭化水素を導出するものなどが用いられる。
[0033] 第 1のストリツビングガスとしては、窒素、メタン、都市ガスなどの気体が用いられる。
これらのガスには微量の水銀を含有してもよい。なお、都市ガスとは、 日本国のガス 事業法に基づくガス用品の検定などに関する省令に掲げるガスグループのガスであ つて、具体的には、天然ガス、 LPガス、または石炭、石油などから作られるガスを含 有する混合ガスをいう。
第 1のストリツビング手段 4としては、充填塔、棚段塔、気泡塔のいずれでもよいが、 好ましくは充填塔である。以下充填塔の例でストリツビング手段 4を説明する。
充填塔内での温度は 40〜160。C、好ましくは 80〜120。C、圧力は 0. 005〜1. 00 OMPa'G、好ましくは 0. 01〜0. 05MPa'Gとされる。第 1の液状炭化水素の充填 塔への供給量は、 2, 000〜150, 000kgZm2'hr、好まし <は 5, 000〜100, 000 kgZm2'hrとされ、第 1のストリツビングガスの充填塔への供給量は、 500〜10, 000 kgZm2'hr、好ましくは 800〜5, OOOkgZm2' とされる。また、液状炭化水素に対 するストリツビングガスの流量比であるガス Z液流量比としては、 0. 05-2. OOkg- G/kg- 好ましくは 0. 07〜0. 50kg— GZkg— Lである。なお、「hr」は時間、 G はガス、 Lは液を表す。
[0034] 第 1のストリツビング手段 4から導出された第 2の液状炭化水素は、管 5から水銀成 分をほとんど含まない製品として取り出され、第 1のストリツビング手段 4から導出され た第 1のガス状炭化水素は、管 6から排出され、別途再処理される。
[0035] (本発明の水銀除去装置の第 2の例)
図 2は、本発明の水銀除去装置の第 2の例を示すもので、本発明の第 2および第 3 の態様に対応するものを示して 、る。
この例の装置は、図 1に示した装置において、第 1のストリツビング手段 4の後段に 第 1の吸着手段 7を設け、この第 1の吸着手段 7に管 6からの第 1のガス状炭化水素を 送り込み、ここで第 1のガス状炭化水素に含まれている単体水銀を吸着除去し、単体 水銀量が低減した第 2のガス状炭化水素を管 8に導出し、さらにこの第 2のガス状炭 化水素を第 1のストリツビングガスとして第 1のストリツビング手段 4に供給するようにな つている。
[0036] 第 1の吸着手段 7には、いわゆる吸着塔が用いられ、これに充填される吸着剤とし ては、ガス状で水銀を吸着できるものであれば吸着剤の種類に制限なく用いることが できる。具体的には、アルミナ、シリカ、ゼォライトなどの担体に硫化銅を担持した吸 着剤などが用いられる力 高比表面積のアルミナ力もなる担体にモリブデン系硫ィ匕物 を担持した吸着剤 (例えば、 日揮株式会社が開発した吸着剤 商品名 MR— 3)が、 吸着速度、吸着容量に優れるため特に好適である。また、吸着条件は、吸着剤の種 類などによっても異なるが、吸着剤に対する被処理ガス流体の線速 0. 1〜2. Om/s ec、好ましくは 0. 2〜0. 6mZsec、温度0〜120で、好ましくは 0〜80。C、圧力 0. 0 05〜0. 200MPa'G、好ましくは 0. 01〜0. lOMPa'Gとされる。
[0037] 第 1の吸着手段 7により、第 1のガス状炭化水素に含まれる単体水銀の大部分がこ こで除去され、単体水銀がほとんど含まれない第 2のガス状炭化水素が得られる。こ のため、この第 2のガス状炭化水素を管 8により第 1のストリツビング手段 4に送り込み 、第 1のストリツビングガスとして回収利用することが可能になる。
[0038] このように、第 2のガス状炭化水素を第 1のストリツビングガスとして回収利用する際 に、第 1のストリツビングガスの供給量と第 1の液状炭化水素の供給量とのバランスを 取るため、およびリサイクルによって第 1のストリツビングガスが重質ィ匕することを防止 するため、第 1のストリツビングガスの一部を管 8から系外に排出し (パージ)、系外か ら新たなストリツビング用のガスを管 8に送り込む (メイクアップ)ことが必要になる場合 がある。
[0039] このパージガス量とメイクアップガス量は、原料液状炭化水素の供給量、その性状 、それに含まれる水銀成分量、第 1のストリツビング手段 4の操作条件などによって決 められる力 おおよそ第 2のガス状炭化水素の 0. 1〜20. Owt%、好ましくは 0. 5〜 5.
Figure imgf000009_0001
[0040] このような第 1のストリツビングガスとして、系内で生じるガス状炭化水素を回収利用 する装置、例えば後述する第 3の例、第 4の例の装置でも、パージガス量とメイクアツ プガス量は上記と同様の考え方で対応可能である。
なお、第 1の吸着手段 7からの第 2のガス状炭化水素は、必ずしも第 1のストリツピン グガスとして全量を再利用する必要はなぐ系外に一部または全量を排出してもよい 。以下、本発明においては、回収されるガス状炭化水素をストリツビングガスとして用 V、る場合、上記と同様にその一部でも全量を用いてもよ!、。
[0041] (本発明の水銀除去装置の第 3の例)
図 3は、本発明の水銀除去装置の第 3の例を示すもので、本発明の第 4、第 5およ び第 7の態様に対応するものを示して 、る。
この例の装置は、図 1に示した装置において、第 1のストリツビング手段 4の後段に 第 1の気液分離手段 9を設け、さらにこの第 1の気液分離手段 9の後段に第 2の吸着 手段 10を設けたものである。
[0042] 第 1のストリツビング手段 4から導出される第 1のガス状炭化水素は、管 6を経て第 1 の気液分離手段 9に供給される。この第 1の気液分離手段 9は、冷却器、凝縮器など であって、第 1のガス状炭化水素を温度 20〜70°C、好ましくは 30〜60°Cに冷却し、 第 1のガス状炭化水素中の高沸点の炭化水素を凝縮して液ィ匕し、第 3の液状炭化水 素として管 11から導出し、同時に第 1のガス状炭化水素中の低沸点の炭化水素を気 体状として管 12から第 3のガス状炭化水素として導き出すものである。
この第 1のストリツビング手段 4から導出される第 1のガス状炭化水素を冷却して気 液に分離する工程を採用することにより、原料の炭化水素中の水銀含有量が大きい 場合や原料炭化水素中に不純物が多く含まれて!/ヽる場合でも、確実に水銀を吸着 除去することができるので好まし!/、ものである。
[0043] この気液分離操作によって、第 1のガス状炭化水素中に含まれて 、た単体水銀の 多くの量が第 3のガス状炭化水素に含まれ、第 3の液状炭化水素中の単体水銀量は 少ないものとなる。
[0044] 第 3のガス状炭化水素は、管 12から第 2の吸着手段 10に送り込まれ、ここでこれ〖こ 含まれている単体水銀が吸着除去され、管 13から単体水銀濃度が低い第 4のガス 状炭化水素として導出される。この第 2の吸着手段 10は、先の第 1の吸着手段 7と同 様なものが用いられ、その吸着条件も同様な条件が適用される。なお、第 2の吸着手 段 10は、第 3のガス状炭化水素中の単体水銀を硫ィ匕ソーダ水溶液等により吸収除 去するスクラバーに替えることができる。
[0045] また、第 2の吸着手段 10から導出される第 4のガス状炭化水素は、単体水銀がほと んど含まれていないので、管 13を経て、第 1のストリツビング手段 4に第 1のストリッピ ングガスとして送り込まれるようになつている。
さらに、第 3の液状炭化水素は、管 11を通り第 1の液状炭化水素とともに第 1のスト リツビング手段 4に送り込まれるようになって 、る。
[0046] なお、この例では、第 2の吸着手段 10から導出される第 4のガス状炭化水素をその まま系外に排出してもよぐまた第 1の気液分離手段 9から導出される第 3の液状炭化 水素をそのまま系外に排出してもよ 、。
[0047] (本発明の水銀除去装置の第 4の例)
図 4は、本発明の水銀除去装置の第 4の例を示すもので、本発明の第 6の態様に 対応するものを示している。
この例の装置は、図 3に示した装置において、第 3の吸着手段 14をさらに設けたも のである。この装置では、第 1の気液分離手段 9から管 11を経て導出される第 3の液 状炭化水素を第 3の吸着手段 14に送り込み、ここでこれに含まれている単体水銀を 吸着除去し、第 4の液状炭化水素が得られるようになって ヽる。
[0048] この液状炭化水素を対象とした第 3の吸着手段 14は、液状の炭化水素中の水銀成 分を吸着除去できるものであればいずれの手段でも採用できる。具体的には、前記 したガス状炭化水素に適用した第 1あるいは第 2の吸着手段 7、 10と同様の構成のも のを使用することができ、その際の吸着条件は、ガス状炭化水素を対照とした場合と 比較して遅い線速、具体的には 0. 1〜5. OcmZsec、好ましくは 0. 2〜3. Ocm/s ecである。その他の条件、温度 0〜120。C、好まし <は 0〜80。C、圧力 0. 01〜2. 00 MPa'G、好ましくは 0. 05〜: L OOMPa'Gとされる。
第 3の吸着手段 14から管 15を介して導出される第 4の液状炭化水素は、単体水銀 がほとんど含まれないので、製品として回収される。
[0049] (本発明の水銀除去装置の第 5の例) 図 5は、本発明の水銀除去装置の第 5の例を示すもので、本発明の第 8および第 9 の態様に対応するものを示して 、る。
この例の装置は、図 1の装置において、転換手段 2の前段に予備分離手段としての 第 2のストリツビング手段 16をさらに設けたものである。
[0050] この装置では、管 17からの原料液状炭化水素が第 2のストリツビング手段 16に送り 込まれ、管 18から第 2のストリツビングガスが同時に第 2のストリツビング手段 16に送り 込まれるようになつている。第 2のストリツビング手段 16は、先に説明した第 1のストリツ ビング手段 4と同様の構造の充填塔などが用いられる。
[0051] 第 2のストリツビング手段 16での操作条件は、前記第 1のストリツビング手段 4で説明 した条件と同様でよい。
[0052] 第 2のストリツビング手段 16において、原料液状炭化水素と第 2のストリツビングガス とが向流気液接触し、原料液状炭化水素に含まれる水銀成分中の単体水銀が第 2 のストリツビングガスに移行し、この単体水銀が含まれる第 2のストリツビングガスは、 第 5のガス状炭化水素として管 19から導出され、系外に排出される。
[0053] また、原料液状炭化水素は、それに含まれる単体水銀量が減少し、水銀成分として 水銀ィ匕合物が大部分となって、管 20から第 5の液状炭化水素として導出され、この 第 5の液状炭化水素は転換手段 2に送り込まれ、これに含まれる水銀化合物が単体 水銀に変換されるようになって 、る。
[0054] この例では、予備分離手段として第 2のストリツビング手段 16を用いている力 これ 以外の予備分離手段として、蒸留塔などの蒸留手段を用いて、原料液状炭化水素 中の単体水銀を予備分離し、第 5のガス状炭化水素に移行させることも可能である。
[0055] (本発明の水銀除去装置の第 6の例)
図 6は、本発明の水銀除去装置の第 6の例を示すもので、本発明の第 10および第 11の態様に対応するものを示して 、る。
この例の装置は、図 5に示した装置において、第 2のストリツビング手段 16の後段に 第 4の吸着手段 21をさらに設けたものである。この装置では、第 2のストリツビング手 段 16から導出された単体水銀量が高い第 5のガス状炭化水素を管 19から第 4の吸 着手段 21に送り込み、ここでこれに含まれている単体水銀を吸着除去し、管 22から 単体水銀量が低い第 6のガス状炭化水素として導出し、さらにこの第 6のガス状炭化 水素を第 1のストリツビング手段 4のための第 1のストリツビングガスとして回収利用す るようになっている。
[0056] 第 4の吸着手段 21には、先に説明した第 1、第 2、第 3の吸着手段 7、 10、 14に用 いられる吸着塔などが用いられ、その吸着条件も第 1の吸着手段 7と同様な条件が適 用される。
第 4の吸着手段 21から導出される第 6のガス状炭化水素には単体水銀がほとんど 含まれていないので、第 1のストリツビングガスとして有用に使用することができる。 なお、第 6のガス状炭化水素を第 1のストリツビングガスとするのではなぐそのまま 系外に排出することもできる。
[0057] (本発明の水銀除去装置の第 7の例)
図 7は、本発明の水銀除去装置の第 7の例を示すもので、本発明の第 12および第 13に対応するものを示している。
この例の装置は、図 6に示した装置において、第 2のストリツビング手段 16の下流に 第 2の気液分離手段 23をさらに設け、この第 2の気液分離手段 23の下流に第 5の吸 着手段 24を設けたものである。
[0058] 第 2の気液分離手段 23は、具体的には冷却器などであって、この第 2の気液分離 手段 23に第 5のガス状炭化水素を送り込み、これを温度 40〜60°Cに冷却し、第 5の ガス状炭化水素中の比較的高沸点炭化水素を凝縮して液ィ匕し、第 6の液状炭化水 素として管 25から導出し、第 5のガス状炭化水素中の低沸点炭化水素をそのまま第 7のガス状炭化水素として管 26から導出するものである。この気液分離により、第 5の ガス状炭化水素中に含まれる単体水銀の一部は第 6の液状炭化水素に移行し、残 部は第 7のガス状炭化水素に移行する。
[0059] この第 7のガス状炭化水素は、管 26を介して第 5の吸着手段 24に送り込まれる。第 5の吸着手段 24は、先に説明したような吸着塔などであって、同様の吸着剤が充填 されたものが用いられ、ここで第 7のガス状炭化水素に含まれる単体水銀が吸着除去 され、単体水銀量が低下した第 8のガス状炭化水素が得られる。ここでの吸着条件は 、第 1の吸着手段 7と同様である。 [0060] 第 5の吸着手段 24から得られた第 8のガス状炭化水素は、そのまま系外に排出す るようにしてもよく、また図示のように管 27から第 1のストリツビング手段 4に送り、これ の第 1のストリツビングガスとして利用することもできる。
[0061] (本発明の水銀除去装置の第 8の例)
図 8は、本発明の水銀除去装置の第 8の例を示すもので、本発明の第 14および第 15の態様に対応するものを示している。
この例の装置は、図 7に示した装置において、第 6の吸着手段 28を設けたものであ る。この装置では、第 6の吸着手段 28に第 2の気液分離手段 23から管 25を介して第 6の液状炭化水素を送り込み、ここでこれに含まれる単体水銀量を低減し、第 7の液 状炭化水素が管 29から製品として取り出されるようになつている。第 6の吸着手段 28 には、先と同様の吸着塔などが用いられ、その吸着条件は、第 3の吸着手段 14と同 様である。
[0062] また、この例では、第 1のストリツビング手段 4から排出される第 1のガス状炭化水素 が管 30を介して第 2のストリツビング手段 16に第 2のストリツビングガスとして導入され るように構成されている。但し、必ずしも第 1のガス状炭化水素を第 2のストリツビング ガスとする必要はなぐ第 1のガス状炭化水素をそのまま燃料ガスとして利用したり、 必要に応じて吸着処理して単体水銀を除去してから、系外に排出することもできる。
[0063] (本発明の水銀除去装置の第 9の例)
図 9は、本発明の水銀除去装置の第 9の例を示すものである。この例の装置は、図 8に示した装置において、第 5の吸着手段 24から導出された水銀成分がほとんど含 まれない第 8のガス状炭化水素を二分し、その一部を管 27から第 1のストリツビング手 段 4に送り、第 1のストリツビングガスとして使用し、残部を管 31から第 2のストリツピン グ手段 16に送り、ここの第 2のストリツビングガスとして使用する。
[0064] また、第 1のストリツビング手段 4から排出される第 1のガス状炭化水素は、管 30を経 て、第 2の気液分離手段 23に送られ、第 2のストリツビング手段 16から管 19を経て送 られる第 5のガス状炭化水素とともに第 2の気液分離手段 23において、気液分離さ れるようになっている。
この装置では、第 2のストリツビング手段 16において、水銀成分をほとんど含まない 第 8のガス状炭化水素で原料液状炭化水素がストリツビングされるので、第 2のストリツ ビング手段 16から導出される第 5の液状炭化水素には単体水銀の濃度が非常に低 くなる。よって、転換手段 2において単体水銀力 Sイオン状水銀に変化する現象の起こ るリスクが低下する。
実施例
[0065] 以下、具体例を示す。
(実施例 1)
図 3に示した除去装置を使用して、原料液状炭化水素となる天然ガスコンデンセー ト (エラワンコンデンセート)中の水銀成分を除去した。
天然ガスコンデンセートには、単体水銀が 520wtppb、イオン状水銀が 140wtppb 含まれていた。
[0066] 転換手段 2には、管径 1インチのステンレス鋼管(SUS304)からなる反応筒を備え
、触媒には、 日揮 (株)製の MR— 14を 20ml用いた。反応条件は、温度 200°C、圧 力 0. 6MPa'G、原料液状炭化水素の滞留時間 25分とした。
[0067] 第 1のストリツビング手段 4には、充填塔を用いた。この充填塔は、径 1インチ、長さ 2
50mmのカラムを有し、このカラム内に充填物としてグッドロー(登録商標)パッキング を充填高さ 200mmとなるように充填したものである。グッドロー(登録商標)パッキン グとは、メッシュデミスターと呼ばれる充填材の 1種である。
[0068] ストリツビング条件としては、温度 100°C、圧力 0. 05MPa'G、第 1の液状炭化水素 の供給量 5, 900kgZm2'hr、第 1のストリツビングガスの供給量 1, 800kg/m2-hr
、ガス液流量比 0. 31kg— GZkg—Lとした。
第 1のストリツビングガスには、第 2の吸着手段 10からの第 4のガス状炭化水素を回 収して用いた。
[0069] 第 1の気液分離手段 9には、市販の凝縮器を用い、第 1のガス状炭化水素の冷却 温度は 40°Cとした。
また、第 2の吸着手段 10には、吸着塔を用いた。この吸着塔は、内径 1インチのス テンレス鋼 (SUS304)製のカラムを備え、このカラム内に吸着剤として日揮 (株)製の MR— 3を充填高さ 250mmとなるように充填した。 第 2の吸着手段 10の吸着条件は、温度 40°C、圧力 0. 02MPa'G、ガス線速 0. 2 / secとし 7こ。
[0070] 以上の操作条件により、上記天然ガスコンデンセートを転換手段 2に供給したところ 、第 1のストリツビング手段 4から導出された第 2の液状炭化水素中の水銀成分濃度 は 2. lwtppbとなった。この第 2の液状炭化水素は、製品として使用可能であった。
[0071] (比較例)
実施例 1にお 、て、原料液状炭化水素である天然ガスコンデンセートを転換手段 2 ではなぐ直接第 1のストリツビング手段 4に供給したところ、第 1のストリツビング手段 4 カゝら導出された第 2の液状炭化水素中の水銀成分濃度は、 147wtppbであった。
[0072] (実施例 2)
図 4に示した除去装置を用いて、原料液状炭化水素中の水銀を除去した。 原料液状炭化水素には、実施例 1で用いた天然ガスコンデンセートを使用した。 また、転換手段 2、第 1のストリツビング手段 4、第 1の気液分離手段 9および第 2の 吸着手段 10は、先の実施例 1と同様の構成のものを使用し、それぞれでの操作条件 も同様とした。
[0073] 第 3の吸着手段 14には、吸着塔を用いた。この吸着塔は、内径 20mm、長さ 400m mのステンレス鋼(SUS304)製のカラムを備え、このカラム内に吸着剤として日揮( 株)製の MR— 3を充填高さ 250mmとなるように充填した。
第 3の吸着手段 14の吸着条件は、温度 40°C、圧力 0. 5MPa'G、液線速 0. 5cm Z secとした。
[0074] その結果、第 1のストリツビング手段 4からの第 2の液状炭化水素と、第 3の吸着手段 14からの第 4の液状炭化水素とが製品として採取でき、これらの混合物の水銀成分 濃度は、 1. 6wtppbであった。
[0075] (実施例 3)
図 8に示した装置を用いて、原料液状炭化水素中の水銀を除去した。
原料液状炭化水素として天然ガスコンデンセートを用い、単体水銀含有量が 2, 14 Owtppb、イオン状水銀含有量が 300wtppbであった。
第 2のストリツビング手段 16および第 1のストリツビング手段 4には、充填塔を用いた [0076] この充填塔は、径 1インチ、長さ 250mmのカラムを有し、このカラム内に充填物とし てグッドロー(登録商標)パッキングを充填高さ 200mmとなるように充填したものであ る。
[0077] ストリツビング条件としては、温度 100°C、圧力 0. 05MPa ' G、第 1の液状炭化水素 の流量 2, 000kg/m2 -hr,第 1のストリツビングガスの流量 3, 660kg/m2-hr,第 1 のストリツビング手段 4におけるガス液流量比 1. 83kg— GZkg— L、原料液状炭化 水素の流量 2, 100kg/m2 -hr,第 2のストリツビングガスの供給量 3, 900kg/m2-h r、第 2のストリツビング手段 16におけるガス液流量比 1. 86kg— G/kg—Lとした。
[0078] 転換手段 2には、管径 1インチのステンレス鋼管(SUS304)からなる反応筒を備え 、触媒には、日揮 (株)製の MR— 14を 20ml用いた。反応条件は、温度 200°C、圧 力 0. 6MPa' G、第 5の液状炭化水素の滞留時間 25分とした。
[0079] 第 5の吸着手段 24には、吸着塔を用いた。この吸着塔は、内径 20mm、長さ 400m mのステンレス鋼(SUS304)製のカラムを備え、このカラム内に吸着剤として日揮( 株)製の MR— 3を充填高さ 250mmとなるように充填した。第 5の吸着手段 24の操作 条件は、温度 20°C、圧力 0. OlMPa- G,ガス線速 0. 2mZsecとした。
[0080] 第 6の吸着手段 28には、吸着塔を用いた。この吸着塔は、内径 20mm、長さ 400m mのステンレス鋼(SUS304)製のカラムを備え、このカラム内に吸着剤として日揮( 株)製の MR— 3を充填高さ 250mmとなるように充填した。
[0081] 第 6の吸着手段 28の操作条件は、温度 30°C、圧力 0. 01MPa ' G、液線速 0. 5c
/ secとし 7こ。
第 2の気液分離手段 23には、凝縮器を用い、その操作条件は、冷却温度 30°C、流 入ガス温度 100°Cとした。
[0082] その結果、第 5の液状炭化水素中の単体水銀量は 174wtppbで、イオン状水銀量 は 314wtppbであった。また、第 1の液状炭化水素中の単体水銀量は 404wtppbで 、イオン状水銀量は 1. 6wtppbであった。さらに、最終製品となる第 2の液状炭化水 素と第 7の液状炭化水素の混合物中の単体水銀量は 0. 6wtppbで、イオン状水銀 量は 1. 7wtppbであった。 産業上の利用可能性
本発明の水銀除去装置によれば、原油、天然ガスコンデンセートなどの液状炭化 水素に含まれる水銀成分を除去するための設備を安価とすることができるため、産業 上有用である。

Claims

請求の範囲
[1] 原料液状炭化水素中の水銀成分を単体水銀に転換し、単体水銀を含む第 1の液 状炭化水素を得る転換手段と、
前記第 1の液状炭化水素と第 1のストリツビングガスとを向流接触させて、第 1の液 状炭化水素中の単体水銀を第 1のストリツビングガスに移行させ、単体水銀量が減少 した第 2の液状炭化水素と、単体水銀が含まれた第 1のガス状炭化水素とを得る第 1 のストリツビング手段を備えた液状炭化水素の水銀除去装置。
[2] 前記第 1のガス状炭化水素から単体水銀を吸着除去し、第 2のガス状炭化水素を 得る第 1の吸着手段をさらに設けた請求項 1に記載の液状炭化水素の水銀除去装 置。
[3] 前記第 2のガス状炭化水素を前記第 1のストリツビングガスとして用いる請求項 2に 記載の液状炭化水素の水銀除去装置。
[4] 前記第 1のガス状炭化水素を冷却して、第 3のガス状炭化水素と第 3の液状炭化水 素に分離する第 1の気液分離手段と、第 3のガス状炭化水素から単体水銀を吸着除 去して第 4のガス状炭化水素を得る第 2の吸着手段とをさらに設けた請求項 1に記載 の液状炭化水素の水銀除去装置。
[5] 前記第 4のガス状炭化水素を前記第 1のストリツビングガスとして用いる請求項 4に 記載の液状炭化水素の水銀除去装置。
[6] 前記第 3の液状炭化水素から単体水銀を吸着除去し、第 4の液状炭化水素を得る 第 3の吸着手段をさらに設けた請求項 4に記載の液状炭化水素の水銀除去装置。
[7] 前記第 3の液状炭化水素を第 1の液状炭化水素とともに第 1のストリツビング手段に 導入するようにした請求項 4に記載の液状炭化水素の水銀除去装置。
[8] 前記原料液状炭化水素を水銀成分が高濃度の第 5のガス状炭化水素と水銀成分 が低濃度の第 5の液状炭化水素とに分離する予備分離手段を転換手段の前段に設 け、第 5の液状炭化水素を転換手段に導入するようにした請求項 1に記載の液状炭 化水素の水銀除去装置。
[9] 前記予備分離手段が、前記原料液状炭化水素と第 2のストリツビングガスとを向流 接触させて前記第 5のガス状炭化水素と前記第 5の液状炭化水素とに分離する第 2 のストリツビング手段である請求項 8に記載の液状炭化水素の水銀除去装置。
[10] 前記第 5のガス状炭化水素から水銀成分を吸着除去し、第 6のガス状炭化水素を 得る第 4の吸着手段をさらに設けた請求項 8に記載の液状炭化水素の水銀除去装 置。
[11] 前記第 6のガス状炭化水素を前記第 1のストリツビングガスとして用いる請求項 10に 記載の液状炭化水素の水銀除去装置。
[12] 前記第 5のガス状炭化水素を冷却し、第 7のガス状炭化水素と第 6の液状炭化水素 に分離する第 2の気液分離手段と、第 7のガス状炭化水素から水銀成分を吸着除去 し、第 8のガス状炭化水素を得る第 5の吸着手段をさらに設けた請求項 8に記載の液 状炭化水素の水銀除去装置。
[13] 前記第 8のガス状炭化水素を前記第 1のストリツビングガスとして用いる請求項 12に 記載の液状炭化水素の水銀除去装置。
[14] 前記第 6の液状炭化水素から水銀成分を吸着除去し、第 7の液状炭化水素を得る 第 6の吸着手段をさらに設けた請求項 12に記載の液状炭化水素の水銀除去装置。
[15] 前記第 1のガス状炭化水素を前記第 2のストリツビングガスとして用いる請求項 9に 記載の液状炭化水素の水銀除去装置。
PCT/JP2006/302367 2005-02-24 2006-02-10 液状炭化水素の水銀除去装置 WO2006090597A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2006216345A AU2006216345B2 (en) 2005-02-24 2006-02-10 Apparatus for removing mercury in liquid hydrocarbon
US11/722,401 US7968063B2 (en) 2005-02-24 2006-02-10 Mercury removal apparatus for liquid hydrocarbon
EP06713510A EP2053116A4 (en) 2005-02-24 2006-02-10 APPARATUS FOR REMOVING MERCURY FROM LIQUID HYDROCARBON
JP2007504666A JP5208497B2 (ja) 2005-02-24 2006-02-10 液状炭化水素の水銀除去装置
NO20073600A NO20073600L (no) 2005-02-24 2007-07-12 Anordning for fjerning av kvikksolv fra flytende hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005048581 2005-02-24
JP2005-048581 2005-02-24

Publications (1)

Publication Number Publication Date
WO2006090597A1 true WO2006090597A1 (ja) 2006-08-31

Family

ID=36927239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302367 WO2006090597A1 (ja) 2005-02-24 2006-02-10 液状炭化水素の水銀除去装置

Country Status (7)

Country Link
EP (1) EP2053116A4 (ja)
JP (1) JP5208497B2 (ja)
AU (1) AU2006216345B2 (ja)
MY (1) MY140738A (ja)
NO (1) NO20073600L (ja)
RU (1) RU2389752C2 (ja)
WO (1) WO2006090597A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268427A (ja) * 2006-03-31 2007-10-18 Nippon Instrument Kk 水銀還元用触媒、水銀変換ユニットおよびこれを用いた排気ガス中の全水銀測定装置
WO2010019510A2 (en) * 2008-08-11 2010-02-18 Conocophillips Company Mercury removal from crude oil
WO2011034791A1 (en) * 2009-09-18 2011-03-24 Conocophillips Company Mercury removal from water
US8080156B2 (en) 2008-08-11 2011-12-20 Conocophillips Company Mercury removal from crude oil
JP2013018841A (ja) * 2011-07-08 2013-01-31 Jgc Corp 液状炭化水素の水銀除去方法、及びその装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023196B2 (en) * 2013-03-14 2015-05-05 Chevron U.S.A. Inc. Process, method, and system for removing heavy metals from fluids

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962276A (en) * 1989-01-17 1990-10-09 Mobil Oil Corporation Process for removing mercury from water or hydrocarbon condensate
JPH02261895A (ja) * 1989-02-01 1990-10-24 Mobil Oil Corp 高温反応性吸着による炭化水素油からの水銀除去方法
JPH0326790A (ja) * 1989-06-23 1991-02-05 Jgc Corp 液状炭化水素中の水銀除去法
JPH0649458A (ja) * 1992-03-19 1994-02-22 Jgc Corp 炭化水素中の水銀化合物の分解方法及び除去方法
JPH0691129A (ja) * 1991-01-21 1994-04-05 Jgc Corp 不飽和炭化水素含有ガス中の水銀の除去方法
JP2630732B2 (ja) 1992-11-24 1997-07-16 アンスティテュ フランセ デュ ペトロール 炭化水素中の水銀および場合によっては砒素の除去方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633484B2 (ja) * 1993-12-22 1997-07-23 三井石油化学工業株式会社 液体炭化水素分中の水銀の除去方法
FR2803597B1 (fr) * 2000-01-07 2003-09-05 Inst Francais Du Petrole Procede de captation du mercure et d'arsenic d'une coupe d'hydrocarbures distillee
JP3847754B2 (ja) * 2004-02-03 2006-11-22 石油資源開発株式会社 蒸留塔を用いた水銀除去方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962276A (en) * 1989-01-17 1990-10-09 Mobil Oil Corporation Process for removing mercury from water or hydrocarbon condensate
JPH02261895A (ja) * 1989-02-01 1990-10-24 Mobil Oil Corp 高温反応性吸着による炭化水素油からの水銀除去方法
JPH0326790A (ja) * 1989-06-23 1991-02-05 Jgc Corp 液状炭化水素中の水銀除去法
JPH0691129A (ja) * 1991-01-21 1994-04-05 Jgc Corp 不飽和炭化水素含有ガス中の水銀の除去方法
JPH0649458A (ja) * 1992-03-19 1994-02-22 Jgc Corp 炭化水素中の水銀化合物の分解方法及び除去方法
JP2630732B2 (ja) 1992-11-24 1997-07-16 アンスティテュ フランセ デュ ペトロール 炭化水素中の水銀および場合によっては砒素の除去方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2053116A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268427A (ja) * 2006-03-31 2007-10-18 Nippon Instrument Kk 水銀還元用触媒、水銀変換ユニットおよびこれを用いた排気ガス中の全水銀測定装置
WO2010019510A2 (en) * 2008-08-11 2010-02-18 Conocophillips Company Mercury removal from crude oil
WO2010019282A2 (en) * 2008-08-11 2010-02-18 Conocophillips Company Mercury removal from crude oil
WO2010019282A3 (en) * 2008-08-11 2010-07-15 Conocophillips Company Mercury removal from crude oil
WO2010019510A3 (en) * 2008-08-11 2010-07-15 Conocophillips Company Mercury removal from crude oil
US8080156B2 (en) 2008-08-11 2011-12-20 Conocophillips Company Mercury removal from crude oil
WO2011034791A1 (en) * 2009-09-18 2011-03-24 Conocophillips Company Mercury removal from water
JP2013018841A (ja) * 2011-07-08 2013-01-31 Jgc Corp 液状炭化水素の水銀除去方法、及びその装置

Also Published As

Publication number Publication date
RU2007126478A (ru) 2009-01-20
NO20073600L (no) 2007-07-12
EP2053116A1 (en) 2009-04-29
EP2053116A4 (en) 2010-12-29
MY140738A (en) 2010-01-15
AU2006216345B2 (en) 2010-04-29
AU2006216345A1 (en) 2006-08-31
RU2389752C2 (ru) 2010-05-20
JP5208497B2 (ja) 2013-06-12
JPWO2006090597A1 (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
US7968063B2 (en) Mercury removal apparatus for liquid hydrocarbon
WO2006090597A1 (ja) 液状炭化水素の水銀除去装置
CN104607000B (zh) 一种炼厂干气中c2、c3组分、轻烃组分及氢气的回收方法
KR101455898B1 (ko) 탈황 방법 및 장치
US9011676B2 (en) Process for elimination of mercury contained in a hydrocarbon feed with hydrogen recycling
CN107789949A (zh) 一种负压变压吸附的气体分离方法
JP2008127569A5 (ja)
EP2838838A1 (en) Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
JP2017014437A (ja) 原料ガスの精製装置、及び精製方法
EP1302233A3 (en) Recovery of nitrogen and light hydrocarbons from polyalkene purge gas
IN2012DN00751A (ja)
WO2012101925A1 (ja) アンモニア精製システムおよびアンモニアの精製方法
CN103068778B (zh) 用于从流化催化裂化废气中回收乙烯的装置和方法
WO2021130530A1 (en) Regeneration schemes for a two-stage adsorption process for claus tail gas treatment
CN1027042C (zh) 从含酸性气体的气体混合物中除去酸性气体的方法
JP2017510454A (ja) 硫化水素ストリッパー中において硫化水素とアンモニアとを分離する能力が強化されたシステム及び方法
JP2008143775A (ja) 水素分離回収方法および水素分離回収設備
JP2003160573A (ja) プロピレンオキサイドの精製方法
JPH05124808A (ja) 高純度炭酸ガス精製プラントにおける原料ガスの処理方法
US9453174B2 (en) Apparatuses and methods for removing impurities from a hydrocarbon stream
JPS59116115A (ja) 一酸化炭素の回収方法
JPH06166639A (ja) 接触分解装置から副生する軽質ガスからのオレフィン類の回収方法
JP2021137758A (ja) 水素ガスの製造方法および水素ガスの製造装置
JP6585545B2 (ja) 水素ガス製造方法及び水素ガス製造装置
CN107075390B (zh) 吸收性回收c3+烃的烃处理装置及精制烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504666

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006713510

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006216345

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007126478

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006216345

Country of ref document: AU

Date of ref document: 20060210

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006216345

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE