WO2006087943A1 - フェノール類の精製方法 - Google Patents
フェノール類の精製方法 Download PDFInfo
- Publication number
- WO2006087943A1 WO2006087943A1 PCT/JP2006/302083 JP2006302083W WO2006087943A1 WO 2006087943 A1 WO2006087943 A1 WO 2006087943A1 JP 2006302083 W JP2006302083 W JP 2006302083W WO 2006087943 A1 WO2006087943 A1 WO 2006087943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenols
- acid decomposition
- hydroperoxide
- phenol
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/74—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
- C07C37/76—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation by steam distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/70—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
- C07C37/74—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
- C07C37/80—Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation by extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/68—Purification; separation; Use of additives, e.g. for stabilisation
- C07C37/86—Purification; separation; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification
Definitions
- the present invention relates to a method for purifying phenols that removes impurities in acid decomposition products obtained by acidolysis of alkylaryl hydroperoxide to produce high-purity phenols.
- the present invention also relates to a method for purifying phenols that removes impurities in crude phenol obtained from acid decomposition products of tamen hydroperoxide and produces high-purity phenols.
- Phenolic compounds are a process of oxidizing alkylbenzene to alkylaryl hydroperoxide, a process of concentrating the oxidation reaction product of alkylbenzene, a process of cleaving the concentrated liquid to phenols and ketones with an acid catalyst, It is produced through a step of neutralizing the acid cleavage product and a step of distilling and separating the acid cleavage product.
- Acid decomposition products in this method are mainly composed of phenol and acetone, as well as various by-products such as ⁇ -methylstyrene, acetophenone, tamil phenol, a-dimethylphenol carbinol, unreacted cumene, and trace amounts of hydroxyacetone.
- HA hydroxyacetone
- the use of phenol includes the use as a raw material for production of diphenylpropane, polycarbonate, etc. High purity phenol is required as these raw materials.
- Such high-purity phenol must reduce the content of impurity hydroxyacetone (HA) to 3 Oppm or less, preferably 10 ppm or less.
- the total amount of other aliphatic and aromatic carboxylic compounds contained must be reduced to 10 ppm or less, preferably 50 ppm or less.
- the neutralized product of the acid decomposition product must be acetone.
- a phenol fraction from which most of low-boiling substances such as benzene, tamen, water, ⁇ -methylstyrene, and high-boiling substances such as acetophenone and a-dimethylphenol carbinol are removed by fractional distillation, and the phenol fraction Purification is carried out to remove aliphatic compounds such as hydroxyacetone (HA) and aromatic carbonyl compounds such as phenolpropionaldehyde (PPA).
- HA hydroxyacetone
- PPA phenolpropionaldehyde
- Patent Document 1 As a conventional purification method of high-purity phenol, for example, Japanese Patent Publication No. 37-11664 (Patent Document 1), a crude phenol (containing 200 ppm of hydroxyacetone) is brought into contact with an active alumina catalyst at 360 ° C. Has proposed a method in which hydroxyacetone and phenol are reacted to form 2-methylbenzofuran (2-MBF), and then phenol and 2-methylbenzofuran are separated by steam distillation.
- Patent Document 2 discloses a method of using activated alumina for purification of talesol.
- Patent Document 3 discloses that a carbonyl compound is converted to another compound by contacting crude phenol with a silica-alumina catalyst at 150 to 250 ° C. There has been proposed a method for distilling and separating the compound and phenol.
- Patent Document 4 a crude phenol not containing water and an acidic ion exchange resin catalyst are brought into contact at 80 to 150 ° C. to convert the carbonyl compound into another compound. A method for distilling the compound and phenol after conversion has been proposed.
- Patent Document 1 Japanese Patent Publication No. 37-11664
- Patent Document 2 Japanese Patent Publication No. 54-1289
- Patent Document 3 Japanese Patent Publication No.42-12250
- Patent Document 4 British Patent No. 1231991 Disclosure of the invention
- the present invention solves the above-mentioned problems in the conventional method, and acid degradation products of alkylaryl hydroperoxide or acid degradation products of tamen hydroperoxide under mild reaction conditions
- a crude phenol obtained from a product with a Group VB or Group VIIB metal oxide exhibiting an activity peculiar to the impurities contained in the product, it is possible to prevent the loss of useful components and to prevent the presence of impurities that are impurities.
- Acid decomposition product of alkyl aryl hydroperoxide is obtained by contacting acid decomposition product obtained by acid decomposition of alkyl aryl hydroperoxide with Group V Group VI or Group VIIB metal oxide.
- Alkaline aqueous solution is added to the acid decomposition product obtained by acid decomposition of alkylaryl hydroperoxide, and one or more selected from Group VB and Group VIIB metal oxides in the presence of oxygen-containing gas.
- the aliphatic carboxylic compound and the soot or aromatic carbonyl compound in the acid decomposition product of the alkylaryl hydroperoxide to be converted into a higher boiling point compound, and then the reaction solution.
- a method for purifying phenols is provided in which the high-boiling point compound and phenols are separated by distillation after neutralization of the compound.
- At least one selected from alkylaryl hydroperoxide, catamen hydroperoxide, ethylbenzene hydroperoxide, secondary butylbenzene hydroperoxide, cyclone hydroperoxide and diisopropylbenzene hydroperoxide is provided.
- the alkylaryl hydroperoxide force, tamen hydroperoxide, and phenols are phenols.
- a method for purifying phenols is provided.
- the alkaline aqueous solution power is at least one selected from sodium hydroxide aqueous solution and sodium phenoxide aqueous solution.
- a method for purifying phenols is provided.
- an alkaline aqueous solution in an amount effective for maintaining the pH of the acid decomposition product at about 4-12.
- a method for purifying phenols containing sucrose is provided.
- a metal oxide comprising at least one selected from Group B and Group VIIB metal oxides,
- a method for purifying phenols that are contacted at 50 to 150 ° C is provided.
- the crude phenol obtained from the acid decomposition product of tamen hydroperoxide is contacted with a Group VB metal oxide or a Group VIIB metal oxide catalyst, and the aliphatic power compound in the crude phenol is combined.
- a process for purifying phenols is provided in which is converted to higher boiling compounds and then these high boiling compounds and phenol are separated by distillation.
- a method for purifying phenols in which a crude phenol and a metal oxide catalyst are contacted at a temperature of 100 to 250 ° C. for 30 to 180 minutes.
- the Group VB metal oxide and the Group VIIB metal oxide are vanadium, niobium, tantalum.
- phenols which are metal oxides selected from the group forces of manganese and rhenium.
- any one of the first to tenth aspects of the invention Provided is a method for purifying phenols in which the distillation separation of phenols from the reaction product after the metal oxide contact treatment is steam distillation or organic solvent extraction distillation.
- the phenols and alkenylbenzene, which are useful components are eliminated by contacting the acid decomposition product of alkylaryl hydroperoxide with a specific metal oxide. It is possible to convert an aliphatic carbocyclic compound and Z or aromatic carbocyclic compound, which are contained as impurities under mild reaction conditions, into a high-boiling compound.
- the acid decomposition product strength of tamenhydroperoxide is brought into contact with the crude phenol obtained and a specific metal oxide catalyst to bring about a useful component, fluoric acid. While suppressing the disappearance of enol and ⁇ -methylstyrene, it is possible to convert an aliphatic carboxylic compound contained as an impurity to a high boiling point compound under mild reaction conditions.
- the acid decomposition product to be purified in the present invention is, for example, a product obtained by acid decomposition of tamen hydroperoxide obtained by an oxidation reaction of cumene, and its composition is as follows. is there.
- the crude phenol to be purified in the present invention is obtained by acid-decomposing tamen hydroperoxide obtained by cumene acid-oxidation reaction, from the neutralized product of the acid decomposition product, for example, acetone, Fractionation of most low boiling point substances such as tamen, water, ⁇ -methylstyrene and most high boiling point substances such as acetophenone and ⁇ - dimethylphenol carbinol. Is obtained.
- the a-methylstyrene content in the crude phenol is preferably 15% by weight or less.
- the above acid decomposition product or crude phenol contains hydroxyacetone (HA), other aliphatic carbonyls, aromatic carbo- yls and other compounds as impurities.
- HA hydroxyacetone
- the metal oxide used as a catalyst in the present invention is a metal oxide of Group VB and Group VIIB, particularly a metal oxide selected from the group consisting of vanadium, niobium, tantalum, manganese and rhenium. Can be used.
- niobium trioxide nibanadium tetroxide, hynibanadium pentoxide, niobium monoxide, niobium trioxide, niobium dioxide, niobium pentoxide, tantalum monoxide, tantalum dioxide, Tantalum pentoxide, manganese monoxide, trimanganese tetroxide, dimanganese trioxide, manganese dioxide, dimanganese heptaoxide, dirhenium monoxide, rhenium monoxide, dirhenium trioxide, rhenium dioxide, rhenium pentoxide, tri Among the powers such as rhenium oxide and dirhenium heptaoxide, the use of manganese oxides such as manganese dioxide and trimanganese tetroxide and vanadate oxides such as pentanoic acid nivanadium is preferable. In addition, it is also possible to use a
- the metal oxide can be used in the form of powder as it is, but it is supported on alumina, silica, or silica 'alumina support having a shape such as a heart-shaped or granular form.
- the metal oxide itself can be formed into such a shape and used.
- an acid decomposition sodium hydroxide aqueous solution or a sodium phenoxide aqueous solution is added to the acid decomposition product of the alkylaryl hydroperoxide under an oxygen-containing gas atmosphere condition to generate the acid decomposition product.
- the metal oxide catalyst By contacting the product with the metal oxide catalyst, the aliphatic carbonyl compound and Z or aromatic carbonyl compound in the acid decomposition product are converted to a high boiling point compound under mild reaction conditions.
- the reaction temperature at this time is suitably 50 to 150 ° C, preferably in the state heated to 70 to 130 ° C, and brought into contact with the metal oxide catalyst under atmospheric pressure or pressure in the presence of oxygen-containing gas. .
- the contact time is suitably 5 to 60 minutes, more preferably 10 to 30 minutes. Generally short for high temperature and high pressure In the case of time, low temperature, and low pressure, it is preferable to contact for a long time.
- the contacting method is not limited, and the contacting can be performed by any method such as a batch method or a continuous method.
- the catalyst packed bed may be a fluidized bed or a fixed bed.
- LHSV 1 to 12 hr-1 is suitable for the flow rate when the acid decomposition product adjusted to pH by adding an alkaline aqueous solution is passed through the catalyst packed bed, and more preferably LHSV 2 to 6 hr- 1 .
- aliphatic carboxylic compounds such as hydroxyacetone (HA) and aromatics such as ⁇ -phenolpropionaldehyde (a PPA) in acid decomposition products
- HA hydroxyacetone
- PPA ⁇ -phenolpropionaldehyde
- Carbonyl compounds and other carbonyl compounds are converted into compounds such as higher-boiling multimers or acid products.
- useful components such as phenol and ⁇ -methylstyrene are hardly lost.
- the metal oxide used as a catalyst exhibits a specific activity for the conversion of aliphatic and aromatic carbo- yl compounds, and the pH during the reaction with sodium hydroxide aqueous solution or sodium phenoxide aqueous solution. This is because these reactions are greatly promoted by adjusting the pH and a high conversion rate can be obtained under mild reaction conditions.
- the crude phenol obtained from the acid decomposition product of the tamen hydroperoxide and the metal oxide catalyst are brought into contact with each other, thereby bringing the crude phenol into the crude phenol.
- Aliphatic carbonyl compounds can be converted to high boiling compounds. That is, the crude phenol is brought into contact with the metal oxide catalyst under atmospheric pressure or pressure in a state where the crude phenol is heated to 40 ° C or higher, preferably 100 to 250 ° C.
- the contact time is not limited, but is suitably 30 to 180 minutes, and more preferably 30 to 120 minutes. In general, it is preferable to contact for a short time when the temperature is high and high, and for a long time when the temperature is low and low.
- the contact method is not limited, and contact can be made by any method such as a batch method or a continuous method.
- the catalyst packed bed may be a fluidized bed or a fixed bed.
- the flow rate when the crude phenol is passed through the catalyst packed layer is suitably LHSV 6 to 0.3 hr- 1 , more preferably LHSV 2 to 0.5 hr- 1 .
- aliphatic carbo-loupe compounds such as hydroxyacetone (HA) and other impurities in the crude phenol have higher boiling points than compounds such as multimers.
- HA hydroxyacetone
- compounds such as multimers 3
- 5-trimethylcyclohexanone and 4- Convert to isopentylcyclohexanone.
- useful components such as phenol and ⁇ -methylstyrene are hardly lost. It is presumed that this is because the metal oxide used as a catalyst has an activity peculiar to the conversion of an aliphatic carbonyl compound and has acid strength as an acid catalyst.
- the force ruponyl impurity in the acid decomposition product or the crude phenol is converted to the high boiling point compound as described above. It can be easily separated from phenols, and high-purity phenol can be obtained.
- the distillation separation method include steam distillation and organic solvent extraction distillation.
- the crude acid decomposition product adjusted to ⁇ 7 by adding sodium hydroxide aqueous solution to the acid decomposition product of tamen hydroperoxide was used as a raw material.
- the composition of the crude acid decomposition product was as follows: acetonitrile 42.0%, cumene 10.9%, a-methylstyrene 2.0%, phenol 37.5%, water
- HA hydroxyacetone
- PPA ⁇ -phenolpropionaldehyde
- This crude acid decomposition product 60 Og was charged into a 100 ml stainless steel autoclave, the inside of the autoclave was pressurized to 0.5 MPa with air, and then gradually heated with stirring to a temperature of 100 ° C. For 30 minutes. As a result of analyzing the obtained product, it was found that HA was 970 ppm and ⁇ -PPA lOOOOppm.
- a mixed solution (pH l 0.3) of 55.2 g of the above crude acid decomposition product and 1.2 g of an aqueous sodium phenoxide solution and manganese dioxide 3. Og were charged into a 100 ml stainless steel autoclave. Next, after the inside of the autoclave was pressurized to 0.5 MPa with air, it was gradually heated with stirring and reacted at a temperature of 80 ° C. for 30 minutes. As a result of analyzing the obtained product, HA was 10 ppm, and ⁇ - ⁇ was 80 ppm. In addition, formation of ⁇ -methylstyrene dimer and cumylphenol was not observed. Thus, it was found that the carbon dioxide compound, which is an impurity that does not lose useful components, can be significantly reduced by adding manganese dioxide.
- Example 1 the reaction was carried out in the same manner as in Example 1 except that pentanoic acid vanadium was used in place of diacidic manganese. As a result of analyzing the obtained product, it was 9 ppm for HA and 70 ppm for ⁇ - ⁇ . In addition, formation of ⁇ -methylstyrene dimer and amylphenol was not observed. In this way, vanadium pentoxide obtained almost the same result as that of manganese dioxide.
- Example 3 The reaction mixture obtained in Example 3 was allowed to stand, and the reaction solution and manganese dioxide were separated. Next, 100 ml of stainless steel was prepared by mixing the manganese oxide diacid excluding the reaction solution obtained above with a newly prepared mixture of the crude acid decomposition product 51. Og and aqueous sodium phenoxide solution 6. Og.
- the autoclave made was charged in an air atmosphere. After sealing the autoclave, it was gradually heated with stirring and reacted at a temperature of 110 ° C for 30 minutes. Obtained As a result of analyzing the product, HA was 5 ppm or less, and ⁇ -PPA was 56 ppm. In addition, formation of ⁇ -methylstyrene dimer and amylphenol was not observed. As described above, even when manganese dioxide was used twice, there was no decrease in the performance of the manganese dioxide catalyst.
- Example 4 The reaction procedure of Example 4 was repeated 8 times. As a result of analyzing the obtained product, ⁇ A was 5 ppm or less and ⁇ - ⁇ 54 ppm. In addition, ⁇ -methylstyrene dimer and amylphenol were not formed. Thus, even if manganese dioxide was used repeatedly 8 times, the performance of the diacid-manganese catalyst was not reduced.
- Example 6 the reaction was carried out in the same manner as in Example 6 except that tetraacid-trimanganese was used instead of diacid-manganese. As a result, the soot was 5 ppm or less and the total carbonyl was 3 Oppm or less. The amount of 2-methylbenzofuran produced was 0.5 mol% with respect to HA, and the formation of a-methylstyrene dimer and tamphenol was not observed. [Example 8]
- Example 6 the reaction was carried out in the same manner as in Example 6 except that oxalate nivanadium was used in place of manganese dioxide.
- HA was 5 ppm or less and total carbonyl was 30 ppm or less.
- the amount of 2-methylbenzofuran produced was 1.5 mol% with respect to HA, and the formation of a-methylstyrene dimer and tamilphenol was not observed.
- Example 6 instead of diacid-manganese, hydrogen exchange with an acidity function of H ⁇ -8.2
- the reaction was performed in the same manner as in Example 6 except that mordenite-type zeolite was used. As a result, the amount of 2-methylbenzofuran produced was 70 mol% with respect to HA, and a-methylstyrene was condensed or polymerized in its entirety.
- Example 6 the acidity function was adjusted to + 4.0 ⁇ H 6 instead of diacid-manganese.
- the reaction was carried out in the same manner as in Example 6 except that the obtained ⁇ -alumina was used. As a result, the amount of soot in the reaction solution was 2000 ppm, and it was found that the reaction did not proceed sufficiently.
- Example 6 the reaction was performed in the same manner as in Example 6 except that cation exchange resin (Amberlyst-15R) was used instead of manganese dioxide and that the reaction temperature was 120 ° C.
- cation exchange resin Amberlyst-15R
- the amount of 2-methylbenzofuran produced was 90 mol% with respect to HA, and a-methylstyrene was condensed or polymerized in its entirety.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
アルキルアリールヒドロペルオキシドの酸分解生成物またはクメンヒドロペルオキシドの酸分解生成物より得られる粗フェノールから、フェノール、α-メチルスチレンなどの有用成分を消失させることなく、脂肪族および/または芳香族カルボニル化合物を分離し、フェノール類を精製する方法を提供する。
本発明に係るフェノール類の精製方法は、アルキルアリールヒドロペルオキシドの酸分解生成物と、第VB族または第VIIB族金属酸化物とを接触させて、アルキルアリールヒドロペルオキシド酸分解生成物中の脂肪族および/または芳香族カルボニル化合物を高沸点化合物に転化し、次いでこれらの化合物とフェノール類とを蒸留により分離する。
また、本発明に係るフェノールの精製方法は、クメンヒドロペルオキシドの酸分解生成物より得られる粗フェノールと、第VB族または第VIIB族金属酸化物とを接触させて、粗フェノール中の脂肪族カルボニル化合物を高沸点化合物に転化し、次いでこれらの化合物とフェノールとを蒸留により分離する。
Description
明 細 書
フエノール類の精製方法
技術分野
[0001] 本発明は、アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成 物中の不純物を除去し、高純度のフ ノール類を製造するフ ノール類の精製方法 に関する。
また、本発明は、タメンヒドロペルォキシドの酸分解生成物カゝら得られる粗フエノー ル中の不純物を除去し、高純度フ ノールを製造するフ ノール類の精製方法に関 する。
背景技術
[0002] フエノール類は、アルキルベンゼンをアルキルァリールヒドロペルォキシドに酸化す る工程、アルキルベンゼンの酸化反応生成物を濃縮する工程、濃縮液を酸触媒でフ ェノール類とケトンに開裂反応させる工程、酸開裂生成物を中和する工程および酸 開裂生成物を蒸留分離する工程を経て製造される。
フエノールの製造方法として、たとえばクメンの酸ィ匕によって得られるタメンヒドロべ ルォキシドを酸分解する方法が知られている。この方法における酸分解生成物は、フ ェノールおよびアセトンを主成分とする他、 α—メチルスチレン、ァセトフエノン、タミル フエノール、 aージメチルフエ-ルカルビノール、未反応のクメンなどの各種副生成 物および微量のヒドロキシアセトン(HA)、 a フエ-ルプロピオンアルデヒド( α—Ρ PA)などの各種カルボ-ル化合物を含有している。ところで、フエノールの用途として は、ジフエニルプロパン、ポリカーボネートなどの製造原料としての使用が挙げられる 力 これらの原料としては高純度のフ ノールが要求される。
[0003] このような高純度フエノールは、不純物であるヒドロキシアセトン(HA)の含有量を 3 Oppm以下、好ましくは lOppm以下に低減する必要がある。また、含有する他の脂肪 族および芳香族カルボ-ル化合物の総量 (HA以外の全カルボ-ル)を lOOppm以 下、好ましくは 50ppm以下に低減する必要がある。
このような高純度フエノールを得るためには、酸分解生成物の中和物から、アセトン
、タメン、水、 α -メチルスチレンなどの低沸点物質およびァセトフエノン、 a—ジメチ ルフエ二ルカルビノールなどの高沸点物質の大部分を分別蒸留により除去したフエノ ール留分とし、さらに該フエノール留分力 ヒドロキシアセトン (HA)などの脂肪族力 ルポ-ル化合物およびひ フエ-ルプロピオンアルデヒド(ひ PPA)などの芳香族 カルボ二ルイ匕合物を除去する精製が行われて 、る。
[0004] し力しながら、これらのカルボ-ル化合物は、フエノールから除去することが特に難 しぐしたがって製品フエノールの品質を悪ィ匕させている。
従来の高純度フエノールの精製方法としては、たとえば特公昭 37— 11664号公報 (特許文献 1)には、粗フエノール (ヒドロキシアセトン 200ppm含有)を、 360°Cにて活 性アルミナ触媒と接触させることにより、ヒドロキシアセトンとフエノールとを反応させ 2 メチルベンゾフラン(2— MBF)とし、次いで水蒸気蒸留にてフエノールと 2—メチ ルベンゾフランとを分離する方法が提案されている。また、特公昭 54— 1289号公報 (特許文献 2)には、タレゾールの精製に活性アルミナを用いる方法が開示されている
[0005] この他、特公昭 42— 12250号公報(特許文献 3)には、粗フエノールを 150〜250 °Cにてシリカ ·アルミナ触媒と接触させることによりカルボニル化合物を他の化合物に 転化し、該化合物とフエノールとを蒸留分離する方法が提案されている。また、ィギリ ス特許第 1231991号公報 (特許文献 4)には、水を含まない粗フエノールと酸性ィォ ン交換樹脂触媒とを 80〜 150°Cにて接触させ、カルボニル化合物を他の化合物に 転化後、該化合物とフエノールとを蒸留分離する方法が提案されている。
[0006] しかしながら、上記の方法では、粗フエノール中の有用成分であるフエノールおよ び α—メチルスチレンが不純物と反応したり、あるいはそれぞれが縮合してタミルフエ ノールないしォレフィンの 2量ィ匕物を生成したりして、有用成分が消失するなどの問 題点があった。
特許文献 1:特公昭 37— 11664号公報
特許文献 2:特公昭 54 - 1289号公報
特許文献 3:特公昭 42— 12250号公報
特許文献 4:イギリス特許第 1231991号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、従来法における上記の問題点を解決し、穏和な反応条件下にて、アル キルァリールヒドロペルォキシドの酸分解生成物またはタメンヒドロペルォキシドの酸 分解生成物から得られる粗フエノールと、それに含有される不純物に特有な活性を 示す第 VB族または第 VIIB族金属酸化物とを接触させることにより、有用成分の消失 を招くことなぐかつ不純物であるカルボ二ルイヒ合物を高沸点化合物へ転ィヒさせ、蒸 留により該高沸点化合物とフ ノール類とを分離し高純度のフ ノール類を製造する ことができるフエノール類の精製方法を提供することを目的とする。
課題を解決するための手段
[0008] すなわち、本発明の第 1の発明によれば、
アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物と、第 V Β族または第 VIIB族金属酸ィ匕物とを接触させて、アルキルァリールヒドロペルォキシ ドの酸分解生成物中の脂肪族カルボニル化合物および Ζまたは芳香族カルボニル 化合物をより高沸点の化合物に転化させ、次いでこれらの高沸点化合物とフ ノー ル類とを蒸留により分離するフエノール類の精製方法が提供される。
[0009] また、本発明の第 2の発明によれば、第 1の発明において、
アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物にアル カリ水溶液を添加し、含酸素ガス共存下にて第 VB族および第 VIIB族金属酸化物よ り選ばれる 1種以上からなる金属酸化物と接触させて、アルキルァリールヒドロペルォ キシドの酸分解生成物中の脂肪族カルボ-ル化合物および Ζまたは芳香族カルボ ニル化合物をより高沸点の化合物に転化させ、次いで反応液を中和した後、該高沸 点化合物とフエノール類とを蒸留により分離するフエノール類の精製方法が提供され る。
[0010] また、本発明の第 3の発明によれば、第 1または第 2の発明において、
アルキルァリールヒドロペルォキシドカ タメンヒドロペルォキシド、ェチルベンゼンヒ ドロペルォキシド、セカンダリーブチルベンゼンヒドロペルォキシド、サイメンヒドロペル ォキシドおよびジイソプロピルベンゼンヒドロペルォキシドから選ばれる少なくとも 1種
であるフ ノール類の精製方法が提供される。
[0011] さらに、本発明の第 4の発明によれば、第 1ないし第 3のいずれかの発明において、 アルキルァリールヒドロペルォキシド力 タメンヒドロペルォキシド、フエノール類がフ ェノールであるフエノール類の精製方法が提供される。
また、本発明の第 5の発明によれば、第 2ないし第 4のいずれかの発明において、 アルカリ水溶液力 水酸ィ匕ナトリウム水溶液およびナトリウムフエノキシド類水溶液か ら選ばれる少なくとも 1種であるフエノール類の精製方法が提供される。
[0012] また、本発明の第 6の発明によれば、第 2ないし第 5のいずれかの発明において、 酸分解生成物の pHを約 4〜 12に維持するのに有効な量のアルカリ水溶液を添カロ するフエノール類の精製方法が提供される。
また、本発明の第 7の発明によれば、第 1ないし第 6のいずれかの発明において、 アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物と、第 V
B族および第 VIIB族金属酸化物より選ばれる 1種以上からなる金属酸化物とを、温度
50〜 150°Cで接触させるフエノール類の精製方法が提供される。
[0013] さらに、本発明の第 8の発明によれば、第 1の発明において、
タメンヒドロペルォキシドの酸分解生成物より得られる粗フエノールと、第 VB族金属 酸化物または第 VIIB族金属酸化物触媒とを接触させて、粗フエノール中の脂肪族力 ルポ二ルイヒ合物をより高沸点の化合物に転ィヒさせ、次いでこれらの高沸点化合物と フエノールとを蒸留により分離するフエノール類の精製方法が提供される。
[0014] また、本発明の第 9の発明によれば、第 8の発明において、
粗フエノールと金属酸ィ匕物触媒とを、温度 100〜250°Cにて 30〜180分間接触さ せるフエノール類の精製方法が提供される。
また、本発明の第 10の発明によれば、第 1ないし第 9のいずれかの発明において、 第 VB族金属酸化物および第 VIIB族金属酸化物が、バナジウム、ニオブ、タンタル
、マンガンおよびレニウム力もなる群力も選ばれる金属の酸ィ匕物であるフエノール類 の精製方法が提供される。
[0015] また、本発明の第 11の発明によれば、第 1ないし第 10のいずれかの発明において
金属酸化物接触処理後の反応生成物からのフエノール類の蒸留分離が、水蒸気 蒸留または有機溶媒抽出蒸留であるフ ノール類の精製方法が提供される。
発明の効果
[0016] 本発明の方法によれば、アルキルァリールヒドロペルォキシドの酸分解生成物と特 定の金属酸ィ匕物とを接触させることにより、有用成分であるフエノール類およびアル ケニルベンゼンの消失を抑制しつつ、温和な反応条件下にて不純物として含有され る脂肪族カルボ二ルイヒ合物および Zまたは芳香族カルボ二ルイヒ合物を高沸点化合 物〖こ転ィ匕させることができる。
[0017] また、本発明の方法によれば、タメンヒドロペルォキシドの酸分解生成物力 得られ る粗フエノールと特定の金属酸ィ匕物触媒とを接触させることにより、有用成分であるフ ェノールおよび α—メチルスチレンの消失を抑制しつつ、温和な反応条件下にて不 純物として含有される脂肪族カルボ-ル化合物を高沸点化合物に転化させることが できる。
次いで、上記高沸点化合物力 フ ノール類を蒸留により分離することにより、容易 に高純度フエノール類を製造することができる。
発明を実施するための最良の形態
[0018] 本発明において精製の対象となる酸分解生成物は、たとえばクメンの酸化反応によ つて得られたタメンヒドロペルォキシドを酸分解した生成物であって、その組成は以下 通りである。
アセトン 29. 0〜46. 1%
フエノール 47. 0〜36. 0%
クメン 11. 1〜 7. 8%
α—メチルスチレン 4. 5〜 1. 2%
その他 8. 4〜 8. 9wt%
また、本発明において精製の対象となる粗フエノールは、クメンの酸ィ匕反応によって 得られたタメンヒドロペルォキシドを酸分解し、その酸分解生成物の中和物から、たと えばアセトン、タメン、水、 α—メチルスチレンなどの低沸点物質の大部分およびァセ トフエノン、 αージメチルフエ-ルカルビノールなどの高沸点物質の大部分を分別蒸
留して得られるものである。粗フエノール中の a—メチルスチレンの含有量は、好まし くは 15重量%以下であることが望ま U、。
[0019] 上記の酸分解生成物または粗フエノールには、ヒドロキシアセトン (HA)、その他の 脂肪族カルボニル、芳香族カルボ-ルおよびその他の化合物が不純物として含まれ る。
本発明において触媒として用いる金属酸ィ匕物は、第 VB族および第 VIIB族の金属 酸化物であって、特にバナジウム、ニオブ、タンタル、マンガンおよびレニウムからな る群力 選ばれる金属の酸ィ匕物を用いることができる。それらの具体例としては、三 酸ィ匕ニバナジウム、四酸ィヒニバナジウム、五酸ィヒニバナジウム、一酸化ニオブ、三 酸化二ニオブ、二酸化ニオブ、五酸化二ニオブ、一酸化タンタル、二酸化タンタル、 五酸化二タンタル、一酸化マンガン、四酸化三マンガン、三酸化二マンガン、二酸化 マンガン、七酸化二マンガン、一酸化二レニウム、一酸化レニウム、三酸化二レニゥ ム、二酸化レニウム、五酸化レニウム、三酸化レニウム、七酸化二レニウムなどが挙げ られる力 中でも二酸化マンガン、四酸化三マンガンなどのマンガン酸化物および五 酸ィ匕ニバナジウムなどのバナジウム酸ィ匕物の使用が好ましい。この他、上記の金属 を 2種類以上混合した複合ィ匕合物の酸ィ匕物を用いることもできる。
[0020] 本発明においては、金属酸ィ匕物は粉末状のものをそのまま使用することもできるが 、ハ-カム状または粒状などの形状を有するアルミナ、シリカまたはシリカ'アルミナ担 体に担持させるか、または金属酸化物自体をこのような形状に成形して用いることも できる。
本発明では、好ましくは、前記アルキルァリールヒドロペルォキシドの酸分解生成物 に含酸素ガス雰囲気条件下にて水酸ィ匕ナトリウム水溶液またはナトリウムフエノキシド 類水溶液を添加し、該酸分解生成物と上記金属酸化物触媒とを接触させることにより 、酸分解生成物中の脂肪族カルボニル化合物および Zまたは芳香族カルボニル化 合物を温和な反応条件下にて高沸点化合物に転化する。このときの反応温度は 50 〜150°Cが適当であり、好ましくは 70〜130°Cに加熱した状態で、含酸素ガス共存 下での大気圧または加圧下に、金属酸化物触媒と接触させる。接触時間は、 5〜60 分間が適当であり、さらには 10〜30分間が好ましい。一般に高温、高圧の場合は短
時間、低温、低圧の場合は長時間接触させるのが好ましい。
[0021] 接触の方法は制限されず、回分法、連続法など任意の方法で接触させることがで きる。また、触媒充填層は流動床でも固定床でもよい。アルカリ水溶液を添加し pHを 調整した酸分解生成物を触媒充填層に通過させるときの流速は、 LHSV l〜12hr— 1が適当であり、さらには LHSV 2〜6hr— 1が好ましい。
このような反応条件下で触媒と接触することにより、酸分解生成物中のヒドロキシァ セトン(HA)などの脂肪族カルボ-ル化合物および α -フエ-ルプロピオンアルデヒド ( a PPA)などの芳香族カルボニル化合物、その他のカルボニル化合物は、それ よりも高沸点の多量体または酸ィ匕生成物などの化合物に転ィ匕する。このときフエノー ル、 α—メチルスチレンなどの有用成分はほとんど消失しない。これは触媒として用 いる金属酸化物が脂肪族カルボ-ルおよび芳香族カルボ-ル化合物の転化に特有 の活性を示し、さらに水酸ィ匕ナトリウム水溶液またはナトリウムフエノキシド類水溶液で 反応時の pHを調整することにより、これらの反応が大幅に促進され温和な反応条件 で高 、転ィ匕率を得ることができるためである。
[0022] また、本発明にお 、ては、前記タメンヒドロペルォキシドの酸分解生成物から得られ る粗フエノールと上記金属酸ィ匕物触媒とを接触させることにより、粗フエノール中の脂 肪族カルボ二ルイ匕合物を高沸点化合物に転ィ匕することができる。すなわち、粗フエノ ールを 40°C以上、好ましくは 100〜250°Cに加熱した状態にて、大気圧または加圧 下に、金属酸化物触媒と接触させる。接触時間は制限されないが、 30〜180分間が 適当であり、さらには 30〜120分間が好ましい。一般に高温、高圧の場合は短時間 、低温、低圧の場合は長時間接触させるのが好ましい。
[0023] この際、接触の方法は制限されず、回分法、連続法など任意の方法で接触させるこ とができる。また、触媒充填層は流動床でも固定床でもよい。粗フ ノールを触媒充 填層に通過させるときの流速は、 LHSV 6〜0. 3hr— 1が適当であり、さらには LHSV 2〜0. 5hr— 1が好ましい。
上記のような金属酸化物触媒との接触により、粗フエノール中のヒドロキシアセトン( HA)などの脂肪族カルボ-ルイ匕合物およびその他の不純物は、それよりも高沸点で ある多量体などの化合物、たとえば、 3, 3, 5—トリメチルシクロへキサノンおよび 4—
イソペンチルシクロへキサノンなどに転化する。このときフエノール、 α—メチルスチレ ンなどの有用成分はほとんど消失しない。これは触媒として用いる金属酸化物が脂 肪族カルボニル化合物の転化に特有の活性を示し、酸触媒的な酸強度を有して 、 な!、ためであると推測される。
[0024] 上記金属酸化物触媒との接触により、酸分解生成物中または粗フ ノール中の力 ルポニル不純物は前記のような高沸点化合物に転ィ匕しているため、これらは後段の 蒸留でフエノール類と容易に分離でき、高純度フエノールを得ることができる。蒸留分 離の方法としては、水蒸気蒸留、有機溶媒抽出蒸留などが挙げられる。
実施例
[0025] 次に本発明の方法を、実施例をあげて具体的に説明する。実施例において、不純 物である種々のカルボ-ル化合物および主成分は、ガスクロマトグラフィーなどによつ て定量し、処理前後の各不純物の濃度を求めた。
[比較例 1]
タメンヒドロペルォキシドの酸分解生成物に水酸ィ匕ナトリウム水溶液を添カ卩し ρΗ7に 調整した粗酸分解生成物を原料として用いた。該粗酸分解生成物の組成は、ァセト ン 42. 0%、クメン 10. 9%、 a—メチルスチレン 2. 0%、フエノール 37. 5%、水
5. 0%、ヒドロキシアセトン(HA) 1000ppm、 α -フエ-ルプロピオンアルデヒド( a PPA) 1200ppm、その他 2. 4%であった。
[0026] この粗酸分解生成物 60. Ogを 100mlのステンレス製オートクレーブに仕込み、ォ 一トクレーブ内を空気で 0. 5MPaに加圧した後、攪拌しながら徐々に加熱し、温度 1 00°Cにて 30分間反応させた。得られた生成物を分析した結果、 HA 970ppm、 α - PPA l lOOppmであった。
[比較例 2]
上記粗酸分解生成物 58. 2gとナトリウムフエノキシド水溶液 (濃度 30. 2%) 1. 8g とを混合し、 100mlのステンレス製オートクレーブに仕込んだ。この時の混合液の pH は約 10. 3であった。次に、オートクレープ内を空気で 0. 5MPaに加圧した後、攪拌 しながら徐々に加熱し、温度 80°Cにて 30分間反応させた。得られた生成物を分析し た結果、 HA 750ppm、 a -PPA 800ppmであった。
[0027] [実施例 1]
上記粗酸分解生成物 55. 2gとナトリウムフエノキシド水溶液 1. 2gとの混合液 (pHl 0. 3)および二酸化マンガン 3. Ogを 100mlのステンレス製オートクレーブに仕込ん だ。次に、オートクレープ内を空気で 0. 5MPaに加圧した後、攪拌しながら徐々にカロ 熱し、温度 80°Cにて 30分間反応させた。得られた生成物を分析した結果、 HA 10 ppm、 α -ΡΡΑ 80ppmであった。また、 α—メチルスチレンの 2量体およびクミルフ ェノールの生成は認められなかった。このように二酸化マンガンの添カ卩により、有用 成分を消失することなぐ不純物であるカルボ二ルイ匕合物を大幅に減少することがで きることが判明した。
[0028] [実施例 2]
実施例 1において、二酸ィ匕マンガンに代えて、五酸ィ匕バナジウムを用いたこと以外 は、実施例 1と同様に反応を行った。得られた生成物を分析した結果、 HA 9ppm、 α -ΡΡΑ 70ppmであった。また、 α—メチルスチレンの 2量体およびタミルフエノー ルの生成は認められなかった。このように五酸化バナジウムについても二酸化マンガ ンとほぼ同等の結果が得られた。
[0029] [実施例 3]
上記粗酸分解生成物 51. Ogとナトリウムフエノキシド水溶液 6. Ogとの混合液 (pH 10. 8)および二酸化マンガン 3. Ogを 100mlのステンレス製オートクレーブに空気雰 囲気下にて仕込んだ。次に、オートクレープを密閉した後、攪拌しながら徐々に加熱 し、温度 110°Cにて 30分間反応させた。得られた生成物を分析した結果、 HA 5pp m以下、 a - PPA 50ppmであった。また、 α—メチルスチレンの 2量体およびタミル フエノールの生成は認められなかった。
[0030] [実施例 4]
実施例 3で得られた反応混合物を静置し、反応液と二酸化マンガンとを分離させた 。次いで、上記で得られた反応液を除いた二酸ィ匕マンガンと、新たに調製した上記 粗酸分解生成物 51. Ogとナトリウムフエノキシド水溶液 6. Ogとの混合液とを 100ml のステンレス製オートクレープに空気雰囲気下にて仕込んだ。オートクレープを密閉 した後、攪拌しながら徐々に加熱し、温度 110°Cにて 30分間反応させた。得られた
生成物を分析した結果、 HA 5ppm以下、 α - PPA 56ppmであった。また、 α—メ チルスチレンの 2量体およびタミルフエノールの生成は認められなかった。このように 二酸化マンガンを 2回繰返し使用しても、二酸ィ匕マンガン触媒の性能の低下はみら れなかった。
[0031] [実施例 5]
実施例 4の反応操作を 8回繰返して行った。 得られた生成物を分析した結果、 Η A 5ppm以下、 α -ΡΡΑ 54ppmであった。また、 α—メチルスチレンの 2量体およ びタミルフエノールの生成は認められなかった。このように二酸化マンガンを 8回繰返 し使用しても、二酸ィ匕マンガン触媒の性能の低下はみられなかった。
[0032] [実施例 6]
タメンヒドロペルォキシドの酸分解生成物を中和後、蒸留してアセトン、水、クメンお よび α—メチルスチレンの低沸点物の大部分と、ァセトフエノンおよび α—ジメチルカ ルビノールの高沸点物の大部分とを除去することにより粗フエノールを得た。得られ た粗フエノールは、 0. 3重量%の ΗΑ、 1〜2重量%の α—メチルスチレンおよび全 カルボ-ル (メシチルォキシド換算)として他のカルボニル化合物 0. 2重量%を含ん でいた。
[0033] この粗フエノール 50gを 100mlのステンレス製オートクレーブ入れ、さらに粉状の二 酸ィ匕マンガン lgを添加し、オートクレープ内を窒素で置換後、攪拌しながら徐々にカロ 熱し、温度 170°Cにて 2時間反応させた。得られた生成物を分析したところ、 HAは 5 ppm以下、全カルボニルは 30ppm以下であった。また、 2—メチルベンゾフランの生 成量は HAに対して 0. 5mol%にすぎず、また、 α—メチルスチレンの 2量体および タミルフエノールの生成は認められなかった。
[0034] [実施例 7]
実施例 6において、二酸ィ匕マンガンに代えて、四酸ィ匕三マンガンを用いたこと以外 は、実施例 6と同様に反応を行った。その結果、 ΗΑは 5ppm以下、全カルボニルは 3 Oppm以下であった。また、 2—メチルベンゾフランの生成量は HAに対し 0. 5mol% であり、 aーメチルスチレンの 2量体およびタミルフエノールの生成は認められなかつ
[0035] [実施例 8]
実施例 6において、二酸ィ匕マンガンに代えて、五酸ィ匕ニバナジウムを用いたこと以 外は、実施例 6と同様に反応を行った。その結果、 HAは 5ppm以下、全カルボニル は 30ppm以下であった。また、 2—メチルベンゾフランの生成量は HAに対し 1. 5m ol%であり、 aーメチルスチレンの 2量体およびタミルフエノールの生成は認められな かった。
[0036] [比較例 3]
実施例 6において、二酸ィ匕マンガンに代えて、酸度関数が H≤- 8. 2の水素交換
0
モルデナイト型ゼオライトを用いたこと以外は、実施例 6と同様に反応を行った。その 結果、 2—メチルベンゾフランの生成量は HAに対して 70mol%であり、 aーメチルス チレンは、全量縮合ないし重合した。
[0037] [比較例 4]
実施例 6において、二酸ィ匕マンガンに代えて、酸度関数が +4. 0≤Hく 6に調整さ
0
れた γ —アルミナを用いたこと以外は、実施例 6と同様に反応を行った。その結果、 反応液中の ΗΑは 2000ppmであり、十分に反応が進行しなかったことが判明した。
[比較例 5]
実施例 6において、二酸ィ匕マンガンに代えて、陽イオン交換榭脂 (Amberlyst— 1 5R)を用い、かつ反応温度を 120°Cとしたこと以外は、実施例 6と同様に反応を行つ た。その結果、 2—メチルベンゾフランの生成量は HAに対し 90mol%であり、 aーメ チルスチレンは、全量縮合ないし重合した。
Claims
[1] アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物と、第 V B族または第 VIIB族金属酸ィ匕物とを接触させて、アルキルァリールヒドロペルォキシ ドの酸分解生成物中の脂肪族カルボニル化合物および Ζまたは芳香族カルボニル 化合物をより高沸点の化合物に転化させ、次いでこれらの高沸点化合物とフ ノー ル類とを蒸留により分離するフ ノール類の精製方法。
[2] アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物にアル カリ水溶液を添加し、含酸素ガス共存下にて第 VB族および第 VIIB族金属酸化物よ り選ばれる 1種以上からなる金属酸化物と接触させて、アルキルァリールヒドロペルォ キシドの酸分解生成物中の脂肪族カルボ-ル化合物および Ζまたは芳香族カルボ ニル化合物をより高沸点の化合物に転化させ、次いで反応液を中和した後、該高沸 点化合物とフ ノール類とを蒸留により分離することを特徴とする請求項 1に記載のフ ェノール類の精製方法。
[3] 前記アルキルァリールヒドロペルォキシド力 タメンヒドロペルォキシド、ェチルベン ゼンヒドロペルォキシド、セカンダリーブチルベンゼンヒドロペルォキシド、サイメンヒド 口ペルォキシドおよびジイソプロピルベンゼンヒドロペルォキシドから選ばれる少なくと も 1種であることを特徴とする請求項 1または 2に記載のフエノール類の精製方法。
[4] 前記アルキルァリールヒドロペルォキシド力 タメンヒドロペルォキシド、フエノール類 がフエノールであることを特徴とする請求項 1な 、し 3の 、ずれ力 1項に記載のフエノ ール類の精製方法。
[5] 前記アルカリ水溶液が、水酸ィ匕ナトリウム水溶液およびナトリウムフエノキシド類水溶 液力 選ばれる少なくとも 1種であることを特徴とする請求項 2ないし 4のいずれ力 1項 に記載のフエノール類の精製方法。
[6] 酸分解生成物の ρΗを約 4〜 12に維持するのに有効な量のアルカリ水溶液を添カロ することを特徴とする請求項 2な 、し 5の 、ずれ力 1項に記載のフ ノール類の精製 方法。
[7] アルキルァリールヒドロペルォキシドの酸分解により得られる酸分解生成物と、第 V Β族および第 VIIB族金属酸化物より選ばれる 1種以上からなる金属酸化物とを、温度
50〜150°Cで接触させることを特徴とする請求項 1ないし 6のいずれ力 1項に記載の フエノール類の精製方法。
[8] タメンヒドロペルォキシドの酸分解生成物より得られる粗フエノールと、第 VB族金属 酸化物または第 VIIB族金属酸化物触媒とを接触させて、粗フエノール中の脂肪族力 ルポ二ルイヒ合物をより高沸点の化合物に転ィヒさせ、次いでこれらの高沸点化合物と フエノールとを蒸留により分離することを特徴とする請求項 1に記載のフエノール類の 精製方法。
[9] 粗フエノールと金属酸ィ匕物触媒とを、温度 100〜250°Cにて 30〜180分間接触さ せることを特徴とする請求項 8に記載のフエノール類の精製方法。
[10] 第 VB族金属酸化物および第 VIIB族金属酸化物が、バナジウム、ニオブ、タンタル 、マンガンおよびレニウム力もなる群力も選ばれる金属の酸ィ匕物であることを特徴とす る請求項 1な 、し 9の 、ずれか 1項に記載のフエノール類の精製方法。
[11] 金属酸化物接触処理後の反応生成物からのフエノール類の蒸留分離が、水蒸気 蒸留または有機溶媒抽出蒸留であることを特徴とする請求項 1ないし 10のいずれか 1項に記載のフエノール類の精製方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800056000A CN101128411B (zh) | 2005-02-21 | 2006-02-07 | 酚类的精制方法 |
JP2007503621A JP4949226B2 (ja) | 2005-02-21 | 2006-02-07 | フェノール類の精製方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005043986 | 2005-02-21 | ||
JP2005-043986 | 2005-02-21 | ||
JP2005-305478 | 2005-10-20 | ||
JP2005305478 | 2005-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006087943A1 true WO2006087943A1 (ja) | 2006-08-24 |
Family
ID=36916351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/302083 WO2006087943A1 (ja) | 2005-02-21 | 2006-02-07 | フェノール類の精製方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4949226B2 (ja) |
CN (1) | CN101128411B (ja) |
TW (1) | TW200640844A (ja) |
WO (1) | WO2006087943A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013154147A1 (ja) * | 2012-04-13 | 2013-10-17 | 三井化学株式会社 | フェノールの精製方法 |
JP2016060708A (ja) * | 2014-09-17 | 2016-04-25 | 三井化学株式会社 | 粗フェノール中のヒドロキシアセトンを低減させる方法、ヒドロキシアセトンが少ない粗フェノールの製造方法および高純度フェノールの製造方法 |
KR20170047030A (ko) * | 2015-10-22 | 2017-05-04 | 주식회사 엘지화학 | 페놀 정제 방법 |
CN106810424A (zh) * | 2017-02-16 | 2017-06-09 | 重庆西南制药二厂有限责任公司 | 一种医药级苯酚的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252547A (ja) * | 1987-04-09 | 1988-10-19 | Mitsui Petrochem Ind Ltd | フエノ−ル蒸留残渣分解用触媒 |
JPS63253041A (ja) * | 1987-04-09 | 1988-10-20 | Mitsui Petrochem Ind Ltd | フエノ−ル蒸留残渣からの有用物質の回収方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1183331B (it) * | 1985-02-08 | 1987-10-22 | Anic Spa | Procedimento per la purificazione di fenolo |
ES2023703B3 (es) * | 1987-04-09 | 1992-02-01 | Mitsui Petrochemical Ind | Catalizadores para pirolisis catolitica de residuo de destilacion de fenol y procedimiento para recuperar sustancias utiles por pirolisis del mismo. |
JPH05286879A (ja) * | 1992-04-03 | 1993-11-02 | Mitsui Petrochem Ind Ltd | 高純度フェノールの製造方法 |
RU2111203C1 (ru) * | 1993-12-01 | 1998-05-20 | Закошанский Владимир Михайлович | Способ очистки фенола от органических примесей |
JP3948845B2 (ja) * | 1998-12-09 | 2007-07-25 | 三井化学株式会社 | 粗フェノール液の処理方法 |
-
2006
- 2006-02-07 JP JP2007503621A patent/JP4949226B2/ja active Active
- 2006-02-07 WO PCT/JP2006/302083 patent/WO2006087943A1/ja not_active Application Discontinuation
- 2006-02-07 CN CN2006800056000A patent/CN101128411B/zh not_active Expired - Fee Related
- 2006-02-20 TW TW095105596A patent/TW200640844A/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252547A (ja) * | 1987-04-09 | 1988-10-19 | Mitsui Petrochem Ind Ltd | フエノ−ル蒸留残渣分解用触媒 |
JPS63253041A (ja) * | 1987-04-09 | 1988-10-20 | Mitsui Petrochem Ind Ltd | フエノ−ル蒸留残渣からの有用物質の回収方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013154147A1 (ja) * | 2012-04-13 | 2013-10-17 | 三井化学株式会社 | フェノールの精製方法 |
KR20140131361A (ko) * | 2012-04-13 | 2014-11-12 | 미쓰이 가가쿠 가부시키가이샤 | 페놀의 정제 방법 |
CN104203888A (zh) * | 2012-04-13 | 2014-12-10 | 三井化学株式会社 | 苯酚的精制方法 |
US9029609B2 (en) | 2012-04-13 | 2015-05-12 | Mitsui Chemicals, Inc. | Phenol purification process |
JPWO2013154147A1 (ja) * | 2012-04-13 | 2015-12-17 | 三井化学株式会社 | フェノールの精製方法 |
CN104203888B (zh) * | 2012-04-13 | 2016-02-03 | 三井化学株式会社 | 苯酚的精制方法 |
KR101602594B1 (ko) * | 2012-04-13 | 2016-03-10 | 미쓰이 가가쿠 가부시키가이샤 | 페놀의 정제 방법 |
JP2016060708A (ja) * | 2014-09-17 | 2016-04-25 | 三井化学株式会社 | 粗フェノール中のヒドロキシアセトンを低減させる方法、ヒドロキシアセトンが少ない粗フェノールの製造方法および高純度フェノールの製造方法 |
KR20170047030A (ko) * | 2015-10-22 | 2017-05-04 | 주식회사 엘지화학 | 페놀 정제 방법 |
KR102011715B1 (ko) | 2015-10-22 | 2019-08-19 | 주식회사 엘지화학 | 페놀 정제 방법 |
CN106810424A (zh) * | 2017-02-16 | 2017-06-09 | 重庆西南制药二厂有限责任公司 | 一种医药级苯酚的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101128411B (zh) | 2010-12-29 |
JPWO2006087943A1 (ja) | 2008-07-03 |
CN101128411A (zh) | 2008-02-20 |
JP4949226B2 (ja) | 2012-06-06 |
TW200640844A (en) | 2006-12-01 |
TWI333485B (ja) | 2010-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI469958B (zh) | 酚的製造方法 | |
JP3243623B2 (ja) | プロピレンオキシドとスチレンモノマーの共製造法 | |
CA1097375A (en) | Process for preparing resorcinol | |
JPS5814411B2 (ja) | フエノ−ル類の精製法 | |
WO2006087943A1 (ja) | フェノール類の精製方法 | |
JPH05286879A (ja) | 高純度フェノールの製造方法 | |
US4262150A (en) | Process for the recovery of phenol from a reaction mixture resulting from the acid cleavage of cumene hydroperoxide | |
CS277195B6 (en) | Cyclohexanol and/or cyclohexanone production method | |
US4283568A (en) | Process for the recovery of phenol from a reaction mixture resulting from the acid cleavage of cumene hydroperoxide | |
JPS59489B2 (ja) | ジハイドロパ−オキサイドの分解法 | |
WO2013154147A1 (ja) | フェノールの精製方法 | |
JPH08208544A (ja) | フェノールタール廃棄物減少法 | |
JPS6353979B2 (ja) | ||
JP4996861B2 (ja) | 回収フェノール類の精製方法 | |
JP6294798B2 (ja) | 粗フェノール中のヒドロキシアセトンを低減させる方法、ヒドロキシアセトンが少ない粗フェノールの製造方法および高純度フェノールの製造方法 | |
JP2016530264A (ja) | p−シメンの製造方法 | |
JP6616530B2 (ja) | フェノールの精製方法 | |
EP0284424B1 (en) | Process for producing hydroxybenzenes | |
RU2402520C1 (ru) | Способ получения смеси циклогексанола и циклогексанона | |
JP2746421B2 (ja) | フロログルシンおよびレゾルシンの製造方法 | |
RU2266275C1 (ru) | Способ очистки фенола от примесей | |
CA1063622A (en) | PROCESS FOR THE PREPARATION OF.alpha.,.alpha.,.alpha.',.alpha.',-TETRAMETHYL-PHENYLENE-BISCARBINOLS | |
JPH037649B2 (ja) | ||
JPS59141530A (ja) | レゾルシンの製造方法 | |
JPS6034528B2 (ja) | レゾルシン製造における高沸点副生物の処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2007503621 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 200680005600.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06713226 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6713226 Country of ref document: EP |