WO2006075731A1 - 固体電解質スイッチング素子およびその製造方法ならびに集積回路 - Google Patents

固体電解質スイッチング素子およびその製造方法ならびに集積回路 Download PDF

Info

Publication number
WO2006075731A1
WO2006075731A1 PCT/JP2006/300420 JP2006300420W WO2006075731A1 WO 2006075731 A1 WO2006075731 A1 WO 2006075731A1 JP 2006300420 W JP2006300420 W JP 2006300420W WO 2006075731 A1 WO2006075731 A1 WO 2006075731A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrode
opening
wiring
layer
Prior art date
Application number
PCT/JP2006/300420
Other languages
English (en)
French (fr)
Inventor
Hiroshi Sunamura
Naoya Inoue
Toshitsugu Sakamoto
Hisao Kawaura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US11/814,053 priority Critical patent/US7804085B2/en
Priority to JP2006553000A priority patent/JP5211483B2/ja
Publication of WO2006075731A1 publication Critical patent/WO2006075731A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8822Sulfides, e.g. CuS
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • Solid electrolyte switching element manufacturing method thereof, and integrated circuit
  • the present invention relates to a solid electrolyte switching element having an electrode corresponding to a gate capable of supplying metal ions and electrodes corresponding to a source and a drain, a manufacturing method thereof, and an integrated circuit.
  • a programmable 'metallization' cell As a conventional solid electrolyte switch, it is disclosed in documents of US Pat. No. 5761115 and US Pat. No. 6,487,106.
  • PMC programmable 'metallization' cell
  • two electrodes are provided via a solid electrolyte in which an appropriate amount of metal ions is dissolved.
  • the solid electrolyte has a structure in which silver ions are introduced into a chalcogenide glass containing germanium or selenium.
  • a solid electrolyte switch is an element that controls the electrical resistance between two electrodes by causing a redox reaction of metal ions in the solid electrolyte by applying a voltage between the two electrodes.
  • the metal bridge when a positive voltage is applied to the state force sword electrode side where the metal bridge is formed, the metal bridge is oxidized and melted into the solid electrolyte as metal ions. And when this metal bridge is extinguished, the electrodes return to a state of high resistance electrically. Since the high resistance state and the low resistance state are maintained even when no voltage is applied, the solid electrolyte switch is a non-volatile switch having a very high on / off ratio, and is expected to be applied to a non-volatile memory.
  • the anode electrode also serves as a source of metal ions. For stable operation, it is preferable that it is easily ionized and contains a metal (such as silver).
  • the present invention has been made to solve the problems of the conventional techniques as described above, and prevents the influence of metal ions on other elements!
  • a solid electrolyte switching element and its manufacture It is an object to provide a method and an integrated circuit.
  • a solid electrolyte switching element of the present invention for achieving the above object is provided in contact with a first electrode and a second electrode, and a first electrode and a second electrode provided at a predetermined distance apart from each other.
  • the solid electrolyte layer, the third electrode provided in contact with the solid electrolyte layer and capable of supplying metal ions, and the first electrode, the second electrode, and the third electrode on the surface of the solid electrolyte layer
  • the metal diffusion prevention film covering the part is also in contact.
  • an integrated circuit of the present invention for achieving the above object includes the solid electrolyte switching element of the present invention and a multilayer wiring having a wiring and a via plug, and the third electrode is in the same layer as the wiring. With a solid electrolyte layer in the same layer as the via plug. is there.
  • the integrated circuit of the present invention includes the solid electrolyte switching element of the present invention, a multilayer wiring having a wiring and a via plug, the third electrode is provided in the same layer as the via plug, and the solid electrolyte layer is a wiring. Are provided in the same layer.
  • a method for manufacturing a solid electrolyte switching element of the present invention for achieving the above object includes a resist having a first opening pattern portion and a second opening pattern portion that are separated by a predetermined distance on an insulating layer. Forming an opening area of the first opening pattern portion and the second opening pattern portion by the first etching, and performing a second etching on the insulating layer using the resist as a mask to perform the first etching on the insulating layer.
  • the method for manufacturing a solid electrolyte switching element of the present invention includes a step of forming a resist having a first opening pattern portion and a second opening pattern portion that are separated from each other by a predetermined distance on the insulating layer, and the resist Performing a first etching on the insulating layer as a mask to form the first opening and the second opening in the insulating layer; and performing a second etching on the insulating layer to form the first opening and the second opening.
  • a step of expanding the opening area a step of forming a first electrode and a second electrode by embedding a wiring material in the first opening and the second opening after removing the resist, and a first electrode and a second electrode
  • a step of forming a solid electrolyte layer so as to be in contact with the substrate a step of forming a metal diffusion prevention film covering the solid electrolyte layer, a step of forming a third opening in the metal diffusion prevention film, and supplying metal ions New wiring material in the third opening And a step of forming a third electrode crowded because.
  • the surface of the solid electrolyte layer is in contact with any of the first electrode, the second electrode, and the third electrode, and the portion is covered with the metal diffusion prevention film.
  • the metal ions contained in the solid electrolyte layer can be prevented from leaking and diffusing.
  • Solid electrolyte switching element When provided in an integrated circuit, metal ions leaking out from the solid electrolyte layer to the surroundings can be prevented from affecting adjacent devices.
  • FIG. 1A is a plan view showing a configuration example of a solid electrolyte switching element of a first embodiment.
  • FIG. 1B is a cross-sectional view showing a configuration example of the solid electrolyte switching element of the first embodiment.
  • FIG. 2A is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2B is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2C is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2D is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2E is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2F is a sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2G is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 2H is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 21 is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the first embodiment.
  • FIG. 3 is a plan view and a cross-sectional view showing another configuration example of the solid electrolyte switching element of the first embodiment.
  • FIG. 4A is a plan view showing a configuration example of the solid electrolyte switching element of the second embodiment.
  • FIG. 4B is a cross-sectional view showing a configuration example of the solid electrolyte switching element of the second embodiment.
  • FIG. 5 is a cross-sectional view of an integrated circuit having a solid electrolyte switching structure and a via structure according to a second embodiment.
  • FIG. 6A is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6B is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6C is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6D is a cross-sectional view showing the method of manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6E is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6F is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6G is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6H is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 61 is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6J is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6K is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6L is a cross-sectional view showing a method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6M is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6N is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 60 is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 6P is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the second embodiment.
  • FIG. 7A is a plan view showing a structural example of a solid electrolyte switching element of a third embodiment.
  • FIG. 7B is a cross-sectional view showing a configuration example of the solid electrolyte switching element of the third embodiment.
  • FIG. 8 is a cross-sectional view of an integrated circuit having a solid electrolyte switching structure and a via structure according to a third embodiment.
  • FIG. 9A is a cross-sectional view showing a method for manufacturing the solid electrolyte switching element of the third embodiment.
  • FIG. 9B is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the third embodiment.
  • FIG. 9C is a cross-sectional view showing the method for manufacturing the solid electrolyte switching element of the third embodiment.
  • FIG. 9D is a cross-sectional view showing the method of manufacturing the solid electrolyte switching element of the third embodiment.
  • FIG. 10A is a plan view showing a configuration example of the solid electrolyte switching element of the fourth embodiment.
  • FIG. 10B is a sectional view showing an example of the configuration of the solid electrolyte switching element of the fourth embodiment.
  • FIG. 11 shows an integration having the solid electrolyte switching structure and the via structure of the fourth embodiment. It is sectional drawing of a circuit.
  • FIG. 12A is a plan view showing one structural example of a solid electrolyte switching element of a fifth embodiment.
  • FIG. 12B is a cross-sectional view showing one structural example of the solid electrolyte switching element of the fifth embodiment.
  • FIG. 13 is a cross-sectional view of an integrated circuit having a solid electrolyte switching structure and a via structure according to a fifth embodiment.
  • FIG. 14A is a plan view showing one structural example of the solid electrolyte switching element of the sixth embodiment.
  • FIG. 14B is a cross-sectional view showing one structural example of the solid electrolyte switching element of the sixth embodiment.
  • FIG. 15 is a cross-sectional view of an integrated circuit having a solid electrolyte switching structure and a via structure according to a sixth embodiment.
  • the solid electrolyte switching element of the present invention has a configuration in which a film for preventing metal diffusion from the solid electrolyte layer is provided.
  • FIG. 1A and FIG. 1B are diagrams showing a configuration example of the solid electrolyte switching element of the first embodiment.
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along a broken line aa ′ shown in FIG. 1A.
  • the solid electrolyte switching element 1 is a base insulating film.
  • An insulating layer (11) having a first opening (12) and a second opening (13) provided at a predetermined distance on the covered substrate (10) is formed, and a wiring material is embedded in the first opening (12).
  • a first wiring 14 and a second wiring 15 in which a wiring material is embedded in the second opening 13 are provided.
  • a solid electrolyte layer 16 is formed on the first wiring 14 and the second wiring 15, and a metal diffusion preventing film 17 for preventing metal diffusion is formed on the solid electrolyte layer 16.
  • a third wiring 18 that contacts the solid electrolyte layer 16 is formed on the metal diffusion prevention film 17 through an opening provided in the metal diffusion prevention film 17.
  • the third wiring 18 contains a material capable of supplying metal ions to the solid electrolyte layer 16.
  • the insulating layer 11 also has a function as a metal diffusion prevention film in addition to a function for ensuring electrical insulation.
  • the solid electrolyte layer 16 is covered with a metal diffusion prevention film 17 at a portion of the upper surface that does not contact the third wiring 18 and a side surface.
  • the third wiring 18 is not disposed in the aa 'portion of FIG. 1A, but for the sake of explanation, the third wiring 18 is provided in the cross-sectional view of FIG. 1B through the opening of the metal diffusion prevention film 17. 3 Wiring 18 is displayed.
  • the distance between the first wiring 14 and the second wiring 15 is smaller than the minimum value of the lithography limit. Therefore, it is smaller than the conventional structure.
  • the dimensions are currently less than 30nm.
  • the configurations shown in FIGS. 1A and 1B are examples.
  • the first wiring 14 and the second wiring 15 are embedded in the first opening 12 and the second opening 13 that are formed in the insulating layer 11 at a predetermined distance. If the solid electrolyte layer 16 is in contact with the first wiring 14 and the second wiring 15 and the third wiring 18 is in contact with the solid electrolyte layer 16, the arrangement is as shown in FIGS. 1A and 1B. It may be other than shown.
  • the first wiring 14 is a source electrode
  • the second wiring 15 is a drain electrode
  • the third wiring 18 is a gate electrode.
  • the solid electrolyte layer 16 is made of copper sulfide
  • the gate electrode wiring material is copper
  • the source electrode and drain electrode wiring material is titanium.
  • the copper of the gate electrode becomes a copper ion and dissolves in the solid electrolyte layer 16. Then, copper ions dissolved in the solid electrolyte layer 16 are deposited as copper on the surface of the drain electrode, and the deposited copper electrically connects the drain electrode and the source electrode. When the drain electrode and the source electrode are electrically connected, the solid electrolyte switching element is turned on.
  • the source electrode when the source electrode is grounded and a negative voltage is applied to the gate electrode in the ON state, copper deposited between the drain electrode and the source electrode dissolves in the solid electrolyte 16, and the drain electrode and the source The electrical connection of the electrode is broken.
  • the electrical connection between the drain electrode and the source electrode is broken, the solid electrolyte switching element is turned off.
  • the electrical characteristics change from the stage before the electrical connection is completely broken, the resistance between the drain electrode and the source electrode increases, the capacitance between the electrodes changes, and the electrical connection eventually breaks. .
  • the distance between the source electrode and the drain electrode is set to a dimension smaller than the minimum value of the lithography limit.
  • the distance between the source electrode and the drain electrode can be made sufficiently smaller than the distance between the gate electrode and the source electrode and the distance between the gate electrode and the drain electrode. Therefore, when switching from the off state to the on state, the source electrode and the drain electrode are connected before the deposited metal is connected between the gate electrode and the drain electrode. Since switching from the off state to the on state is more stable than before, stable switching operations can be repeated.
  • the portion has a function as a metal diffusion prevention film and the insulating layer 11 Since at least the metal diffusion preventing film 17 is covered with the shift, the metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent elements, and the solid electrolyte switching element of this embodiment can be used in a circuit integrated with other elements.
  • the insulating layer 11 is a metal diffusion prevention film
  • the insulating layer 11 may have a structure in which a plurality of insulating films are stacked. In this case, the uppermost insulating film functions as a metal diffusion prevention film. is doing.
  • FIGS. 1A and IB are a plan view and a cross-sectional view showing a method for manufacturing the solid electrolyte switching element of the present embodiment.
  • the sectional view shows a broken line aa ′ in the plan view.
  • a semiconductor circuit having a semiconductor element such as a transistor and a resistor is formed on a semiconductor substrate by a conventional integrated circuit manufacturing method, and a base insulating film for ensuring insulation between the semiconductor elements is formed.
  • the substrate on which the semiconductor circuit and the base insulating film for protecting the semiconductor circuit are formed is simply referred to as a substrate 10.
  • the reason why the insulating film for protecting the semiconductor circuit is provided is to electrically isolate the solid electrolyte switching element 1 from the semiconductor circuit.
  • the base insulating film may be an insulating material used in conventional integrated circuits!
  • a low dielectric constant insulating film which is a compound of silicon and oxygen and contains an arbitrary amount of hydrogen, fluorine, carbon and nitrogen is preferable.
  • a low dielectric constant insulating film is an insulating film having a dielectric constant lower than that of a silicon oxide film.
  • a plug (not shown) is provided at a portion where the semiconductor circuit and the solid electrolyte switching element 1 are electrically connected. Since the configuration and manufacturing method of the plug are the same as those in the prior art, a detailed description thereof is omitted here.
  • a silicon nitride insulating layer 11 is formed on a substrate 10 with a film thickness of 20 to: LO Onm.
  • the insulating layer 11 is not limited to silicon nitride, and may be a material in which an arbitrary amount of carbon is mixed. The insulating layer 11 suppresses diffusion of metal ions into the substrate 10.
  • a resist pattern having an opening is formed on the insulating layer 11 as follows. After applying a photoresist on the insulating layer 11, an exposure process is performed. Then, the exposed photoresist is developed to form a photoresist 21 having a first opening pattern 22 and a second opening pattern 23 as shown in FIG. 2B. The distance between the first opening pattern 22 and the second opening pattern 23 is set to the minimum limit distance in the lithographic process. Thereafter, first dry etching having isotropic etching characteristics is performed on the photoresist 21 to enlarge the opening areas of the first opening pattern 22 and the second opening pattern 23 (FIG. 2C). For the conditions of this first dry etching, It can be obtained by optimizing the etching gas using an etching apparatus.
  • the upper force of the first opening pattern 22 and the second opening pattern 23 with the increased opening area is also subjected to the second dry etching on the insulating layer 11, so that the insulating layer as shown in FIG. A first opening 12 and a second opening 13 are formed in 11.
  • the distance between the first opening 12 and the second opening 13 is smaller than the photoresist pattern 21 of FIG. 2B formed at the minimum value of the lithography limit.
  • the interval could be reduced to about 30-15 nm.
  • the first opening 12 and the second opening 13 separated by the minute distance are formed in the insulating layer 11 as shown in FIG. 2E. Is done.
  • a photoresist 21 having a first opening pattern 22 and a second opening pattern 23 is formed on the insulating layer 11.
  • the interval between the first opening pattern 22 and the second opening pattern 23 is formed at the minimum value of the photolithography limit as in the configuration shown in FIG. 2B.
  • the first dry etching with anisotropic etching characteristics is performed on the insulating layer 11 to correspond to the first preliminary opening and the second opening pattern 23 corresponding to the first opening pattern 22.
  • a second preliminary opening is formed in the insulating layer 11.
  • a second dry etching having isotropic etching characteristics is performed to enlarge the opening area of the first preliminary opening and the second preliminary opening, and the first opening 12 and the second opening 13 are formed. Formed on the insulating layer 11. Thereafter, the photoresist 21 is removed to produce the structure shown in FIG. 2E.
  • the distance between the first opening 12 and the second opening 13 can be formed at a distance that is even smaller than the minimum value of the lithography limit. And by optimizing the etching conditions, the interval could be reduced to about 30-15 nm.
  • the first wiring 14 and the second wiring 15 are formed as follows. After the wiring material is deposited so as to fill at least the first opening 12 and the second opening 13, the wiring material formed in parts other than the first opening 12 and the second opening 13 is removed.
  • the wiring material may be the same type of metal used for wiring of conventional integrated circuits. For example, it is sufficient that it can function as a wiring regardless of the type.
  • at least one of titanium and tantalum wiring containing one of the metals had consistency with other wiring.
  • the wiring using a laminated film of at least one of titanium and tantalum metals and nitrides of the metals was also compatible with other wirings.
  • CMP Chemical and Mechanical Polishing
  • the first wiring 14 embedded with the wiring material in the first opening 12 and the second wiring 15 embedded with the wiring material in the second opening 13 are insulated. Form in layer 11. The first wiring 14 and the second wiring 15 are separated by the minute distance.
  • a solid electrolyte layer 16 that contacts the first wiring 14 and the second wiring 15 is formed on the insulating layer 11 as follows. After depositing the solid electrolyte layer by laser vapor deposition or sputtering, unnecessary parts are removed. With these methods, the deposition temperature of the solid electrolyte layer is 350 degrees Celsius or less. The thickness of the solid electrolyte layer 16 may be about 5 to 200 nm.
  • the material of the solid electrolyte layer 16 is preferably a compound of a metal or semiconductor and a chalcogen element such as oxygen, sulfur, selenium and tellurium.
  • sulfides, oxides and oxysulfides of metals such as copper, tungsten, tantalum, molybdenum, chromium, titanium and cobalt are suitable.
  • Acid sulfides have an arbitrary sulfur-oxygen ratio.
  • a photoresist having a desired pattern is formed by an ordinary lithographic process. Then, dry or wet etching is performed to remove unnecessary portions of the solid electrolyte layer, and the pattern of the solid electrolyte layer 16 is formed. Then, the structure shown in FIG. 2G is obtained by removing the photoresist.
  • a metal diffusion prevention film 17 is formed so as to cover the solid electrolyte layer 16, and the metal diffusion prevention film 17 is patterned by a lithographic process and an etching process to form the structure shown in FIG. 2H. To do. At that time, the metal diffusion prevention film 17 covers the solid electrolyte layer 16.
  • the metal diffusion prevention film is formed by performing the lithographic process and the etching process. Although part of the formed metal diffusion prevention film is removed by patterning 17, the metal diffusion prevention film 17 may be left on the first wiring 14 and the second wiring 15.
  • a photoresist having a predetermined opening pattern is formed on the metal diffusion prevention film 17 in the lithographic process. At that time, the opening pattern is positioned above the solid electrolyte layer 16. After that, anisotropic etching is also performed on the upper force of the photoresist to form an opening in the metal diffusion prevention film 17. In this way, an opening is formed in the metal diffusion prevention film 17 to expose a part of the surface of the solid electrolyte layer 16, and then the photoresist is removed.
  • the third wiring 18 in contact with the solid electrolyte layer 16 is formed as follows. Although copper or a metal containing copper is used as a wiring material, copper is used here. Copper is formed to a thickness of 5 to 200 nm on at least the solid electrolyte layer 16. Subsequently, in the same manner as the method for forming the solid electrolyte layer 16, a photoresist having a desired pattern is formed on the copper in the same manner as a normal lithosphere, and dry or wet etching is performed to remove unnecessary portions of copper. The third wiring 18 is formed on the solid electrolyte layer 16 by removing it. Then, the structure shown in FIG. 21 is obtained by removing the photoresist.
  • the distance between the first wiring 14 and the second wiring 15 and the third wiring 18 should be set to a desired distance when forming a photoresist pattern corresponding to the third wiring 18 in the lithographic process. It can be controlled with. At this time, the photoresist pattern is set in consideration of the etching conversion difference, which is a dimensional difference when the photoresist pattern is transferred to copper.
  • the solid electrolyte switching element 1 shown in FIGS. 1A and 1B is manufactured by the manufacturing method described above.
  • the first wiring 14 and the second wiring 15 could be formed at a distance smaller than the minimum lithography limit. Further, the distances between the first wiring 14 and the second wiring 15 and the third wiring 18 can be controlled by the lithographic process.
  • FIG. 3 is a plan view and a sectional view showing another configuration example of the solid electrolyte switching element in the present embodiment. Note that the same reference numerals are given to the same components as those of the solid electrolyte switching element shown in FIGS. 1A and 1B, and detailed description thereof will be omitted.
  • the third wiring 18 is not disposed in the aa ′ portion of FIG. 3, the metal diffusion prevention film 17 is shown in the cross-sectional view of FIG. 3 for the sake of explanation as in the case of FIGS. 1A and 1B. Provided through the opening of The third wiring 18 is displayed.
  • the second insulating layer 31 is formed between the insulating layer 11 and the solid electrolyte layer 16.
  • the second insulating layer 31 is provided with a fourth opening 32 serving as an opening for bringing the solid electrolyte layer 16 into contact with the first wiring 14 and the second wiring 15.
  • the solid electrolyte layer 16 formed on the second insulating layer 31 is in contact with the first wiring 14 and the second wiring 15 through the fourth opening 32.
  • the region where metal can be deposited by metal ions supplied from the third wiring 18 is limited to the fixed electrolyte layer in the fourth opening 32. As a result, it is possible to operate in the off state force on state with the minimum amount of deposited metal, and the operation of the solid electrolyte switching element is further stabilized.
  • the second insulating layer 31 of the metal diffusion barrier film is formed.
  • a resist pattern having a predetermined opening is formed in the lithographic process.
  • the opening position is applied to a part of each of the first wiring 14 and the second wiring 15.
  • a fourth opening portion 32 is formed in the second insulating layer 31 by etching the resist pattern with an anisotropic force. By forming the fourth opening 32, a part of the surface of the first wiring 14 and the second wiring 15 is exposed.
  • the photoresist is removed, and the solid electrolyte layer 16 is formed in the same manner as described with reference to FIG. 2G.
  • FIG. 4A and FIG. 4B are diagrams showing a configuration example of the solid electrolyte switching element of the present embodiment.
  • 4A is a plan view thereof
  • FIG. 4B is a cross-sectional view taken along a broken line aa ′ shown in FIG. 4A.
  • the solid electrolyte switching element 101 includes a third wiring provided in the first wiring layer 103, a solid electrolyte layer 141 provided in the first insulating layer 104, This is a configuration having a first wiring 145 and a second wiring 146 provided in the second wiring layer 105.
  • the first wiring layer 103, the first insulating layer 104, and the second wiring layer 105 are sequentially formed.
  • the first wiring layer 103 includes a first protective insulating film 110, an interlayer insulating film 111, and a stop insulating film 11. 2 are formed in order.
  • the third wiring serving as an anode for supplying metal ions has a configuration including copper 132a and noria metal 131a for preventing copper diffusion.
  • the side wall and bottom surface of the copper 132a are covered with noria metal 13 la.
  • the third wiring is denoted by reference numeral 132a in the following, because the copper 132a formed of copper 132a and noria metal 131a plays an important role in the solid electrolyte switching element.
  • the noria metal 13 la is preferably a material containing at least V of titanium, titanium nitride, tantalum, and tantalum nitride. This is because these materials prevent copper diffusion. Therefore, the noria metal 131a not only functions as a wiring for conducting electrons, but also functions as a metal diffusion prevention film.
  • a second protective insulating film 113 In the first insulating layer 104, a second protective insulating film 113, a second interlayer insulating film 115, and a second stop insulating film 116 are formed in this order.
  • the solid electrolyte layer 141 is in contact with the copper of the third wiring 132a through the third opening 140 of the opening provided in the second protective insulating film 113.
  • the side wall of the solid electrolyte layer 141 is covered with a cover insulating film 114 that functions as a metal diffusion prevention film.
  • a third protective insulating film 117 having a function of a metal diffusion preventing film, an inter-layer insulating film 118, and a third stop insulating film 119 are sequentially formed.
  • the first wiring 145 and the second wiring 146 are formed on the third protective insulating film 117.
  • the first wiring 145 and the second wiring 146 are arranged apart from each other by a predetermined distance, and both wirings are in contact with the solid electrolyte layer 141.
  • the distance between the first wiring 145 and the second wiring 146 is smaller than the minimum value of the lithography limit as in the first embodiment. Specifically, it is 30 to 15 nm.
  • the bow I output wiring has a structure including copper 136 and barrier metal 135 for preventing diffusion of copper.
  • the side and bottom surfaces of copper 136 are covered with noria metal 135.
  • the thickness of the first insulating layer 104 is larger than the distance between the first wiring 145 and the second wiring 146. Also, the portion of the solid electrolyte layer 141 that is not in contact with any of the first wiring 141, the second wiring 146, and the third wiring S The insulating cover film 114 and the third protective insulating film 117 It ’s covered with a mess! [0059]
  • the solid electrolyte 141 is embedded in a multilayer insulating film in which a second protective insulating film 113, a second interlayer insulating film 115, and a second stop insulating film 116 are laminated.
  • the third wiring 132a is embedded in a multilayer insulating film in which the first protective insulating film 110, the interlayer insulating film 111, and the stop insulating film 112 are stacked.
  • first wiring 145 serving as a source electrode and second wiring 146 serving as a drain electrode are separated from each other by the minute distance. This distance is sufficiently smaller than the distance between the third wiring 132a serving as a gate electrode for supplying metal ions, the first wiring 145, and the second wiring 146, that is, the height of the via layer 104. The operation of the device became more stable.
  • the solid electrolyte layer 141 when the solid electrolyte layer 141 is in contact with any of the first wiring 141, the second wiring 146, and the third wiring, the local force S cover insulating film 114 and the third protective insulating film 117 are contacted.
  • metal diffusion prevention films since it is covered with one of the metal diffusion prevention films, metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent elements, and the solid electrolyte switching element of this embodiment can be used in a circuit integrated with other elements.
  • FIGS. 4A and 4B Next, a configuration applied to the solid electrolyte switching element 101 ⁇ product circuit shown in FIGS. 4A and 4B will be described. Here, a via structure for connecting semiconductor circuits as part of an integrated circuit is shown.
  • FIG. 5 is a cross-sectional view showing a solid electrolyte switching element and a via structure. Note that components similar to those illustrated in FIGS. 4A and 4B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the integrated circuit has a solid electrolyte switching element 101 and a via structure 102 for connecting wirings.
  • the via structure 102 includes a first circuit wiring provided in the first wiring layer 103, a second circuit wiring provided in the second wiring layer 105, the first circuit wiring, and the second circuit wiring. And via plugs to be connected.
  • the via plug is formed in the first insulating layer 104.
  • the layer in which the via plug is formed is called a via layer.
  • the first circuit wiring includes copper 132 and noria metal 131 for preventing copper diffusion.
  • the bottom and side walls of copper 132 ' are covered with barrier metal 131'.
  • the copper 132 ′ is the same material as the copper 132a of the third wiring, and the noria metal 131 is the same material as the barrier metal 131a of the third wiring.
  • the via plug has copper 134 and a rare metal 133 for preventing copper diffusion. Copper 134
  • the bottom and side walls of, are covered with NORA metal 133.
  • the second circuit wiring includes copper 136 and noria metal 135 for preventing diffusion of copper.
  • the integrated circuit shown in FIG. 5 has a structure in which a part of the multilayer wiring process can be shared in the manufacturing method of the solid electrolyte switching element 101 and the via structure 102.
  • a force via layer may be used as the wiring layer in the first wiring layer 103 and the second wiring layer 105 ⁇ product circuit. That is, a solid electrolyte switching element may be formed corresponding to a structure including two via layers and a wiring layer therebetween.
  • FIGS. 6A to 6P are cross-sectional views showing a method for manufacturing the solid electrolyte switching element and the via structure.
  • the first wiring layer 103 is formed as follows.
  • a first protective insulating film 110 for protecting a wiring (not shown) formed in the lower part, a first interlayer insulating film 111 to be a low dielectric constant film, and a first stop insulating film 112 are sequentially deposited.
  • the material of the first protective insulating film 110 include a material that suppresses diffusion of copper into the oxide film, such as silicon nitride or a material in which an arbitrary amount of carbon is mixed in the film. preferable.
  • the first protective insulating film 110 has an effect of ensuring hydrogen annealing resistance to the solid electrolyte layer 141 described later, in addition to the effect of suppressing the diffusion of copper into the oxide film. Film thickness Should be about 20 ⁇ : LOOnm.
  • the first interlayer insulating film 111 is a compound of silicon and oxygen, and is preferably a low dielectric constant insulating film to which any amount of hydrogen, fluorine, carbon, etc. is added. That's right. It is even better if the film contains pores. It is known that the dielectric constant is further reduced in a film containing voids in the film.
  • the pore size is preferably 2 nm or less.
  • the thickness of the first interlayer insulating film 111 is about 50 to 250 nm.
  • the first stop insulating film 112 may be a silicon oxide film and may have a thickness of about 50 to 200 nm.
  • the first stop insulating film 112 plays a role of CMP end point detection and protection of the first interlayer insulating film 111 during CMP.
  • openings are formed in the first protective insulating film 110, the first interlayer insulating film 111, and the first stop insulating film 112 as follows.
  • a photoresist is applied on the first stop insulating film 112
  • an exposure process is performed.
  • development processing is performed on the exposed photoresist to form a photoresist having an opening.
  • An opening is formed by etching through the photoresist. For example, in the 90 nm generation lithography technology, the diameter of the opening is about 80 to 200 nm.
  • a rare metal and a copper seed layer that becomes a part of copper are formed in the formed opening by a sputtering method.
  • Noralia metal 131a and barrier metal 131 are the same type of material.
  • the rare metals 131a and 131 are laminated films of tantalum nitride and tantalum, and are formed so as to cover the bottom and side walls of the opening.
  • the rare metals 131a, 131 prevent copper from diffusing into the first interlayer insulating film 111.
  • the film thickness of tantalum nitride and tantalum is about 5-30 nm.
  • the thickness of the copper seed layer is about 20-100 nm.
  • copper is formed on the copper seed layer by a plating method. Copper 132a and copper 132 ′ are formed in the same process. The film thickness of copper is about 300-800nm. Thereafter, the noble metal and copper on the first stop insulating film 112 are polished by CMP to remove unnecessary barrier metal and copper other than the opening.
  • barrier metal 131a, 131 'and copper 132a, 132' are embedded in the openings provided in first protective insulating film 110, first interlayer insulating film 111, and first stop insulating film 112
  • the first wiring layer 103 thus formed is formed.
  • a third wiring made of barrier metal 131a and copper 132a is formed in the solid electrolyte switching element formation region, and a barrier is formed in the via structure formation region.
  • a first circuit wiring made of a metal 131 'and copper 132' is formed.
  • a second protective insulating film 113 is formed on the first wiring layer 103 (FIG. 6A).
  • the second protective insulating film 113 has the same structure as the first protective insulating film 110 because it plays the same role as the first protective insulating film 110.
  • the film thickness is 20 ⁇ : LOOnm.
  • the second protective insulating film 113, the second interlayer insulating film 115, and the second interlayer insulating film 115 and the second stop insulating film 116 are sequentially formed on the second protective insulating film 113.
  • a first insulating layer 104 made of the second stop insulating film 116 is formed.
  • the thickness of the second interlayer insulating film 115 is about 50 to 250 nm.
  • the second interlayer insulating film 115 has the same structure as the first interlayer insulating film 111 because it plays the same role as the first interlayer insulating film 111.
  • the second stop insulating film 116 has the same configuration as the first stop insulating film 112 because it plays the same role as the first stop insulating film 112.
  • the film thickness is about 50 to 200 nm.
  • the third opening 140 is formed as follows. After applying a photoresist on the second stop insulating film 116, an exposure process is performed. Then, development processing is performed on the exposed photoresist to form a photoresist having an opening.
  • the third opening 140 is formed in the first insulating layer 104 by etching through the photoresist (FIG. 6 (b)). In the 90 ⁇ m generation lithography technology, the diameter of the third opening 140 is about 80 to 200 nm.
  • a cover insulating film 114 is deposited so as to completely cover the side wall and bottom surface of the third opening 140 (FIG. 6C). Since the cover insulating film 114 is preferably a film that plays the same role as the first protective insulating film 110, the cover insulating film 114 has the same structure as the first protective insulating film 110. The film thickness is 10-50nm.
  • the cover insulating film 114 formed on the second stop insulating film 116 and on the bottom surface of the third opening 140 is removed. Dry etching such as reactive ion etching is effective for highly anisotropic etching. In this manner, the cover insulating film 114 that completely covers only the side wall of the third opening 140 is formed (FIG. 6D).
  • the solid electrolyte layer 144 is formed so as to completely fill the third opening 140.
  • the formation method and material of the solid electrolyte layer 141 are the same as those in the first embodiment.
  • the thickness of the solid electrolyte layer 141 formed to fill the third opening 140 is set to The total thickness of the first insulating layer 104 including the protective insulating film 113, the second interlayer insulating film 115, and the second stop insulating film 116 is set to be equal to or greater than the sum.
  • the film thickness of the first insulating layer 104 is about 100 to 400 nm.
  • the material of the solid electrolyte layer 141 is the same as that of the first embodiment.
  • the deposition temperature is 350 degrees Celsius or less.
  • the solid electrolyte layer 141 is provided in the first insulating layer (via layer) 104 including the second protective insulating film 113, the second interlayer insulating film 115, and the second stop insulating film 116. It is formed by being embedded in the cover insulating film 114 in the opening 140 (FIG. 6F). As described above, the height of the solid electrolyte layer 141 is 100 to 400 nm.
  • via plugs are formed in the first insulating layer (via layer) 104 as follows.
  • a photoresist is applied on the second stop insulating film 116, an exposure process is performed.
  • the exposed photoresist is subjected to development processing to form a photoresist having an opening.
  • an opening 142 is formed in the first insulating layer 104 as shown in FIG. 6G (FIG. 6G).
  • the diameter of the opening 142 is about 80 to 200 nm.
  • a copper seed layer to be a part of the barrier metal 133 'and the copper 134' is formed in the formed opening 142 by a sputtering method.
  • the rare metal is a stacked structure of tantalum nitride and tantalum, and is formed so as to cover the bottom surface and the side wall of the opening 142.
  • Noria metal plays a role in preventing copper from diffusing into the first insulating layer 104.
  • the film thickness of tantalum nitride and tantalum is about 5 to 30 nm.
  • the film thickness of the copper seed layer is about 20-100 nm. After that, copper plating is performed (Fig. 6H). Copper film thickness is about 300-800nm
  • a third protective insulating film 117 is formed on the first insulating layer 104.
  • the third protective insulating film 117 is preferably a film that plays the same role as the first protective insulating film 110. 1
  • the structure is the same as that of the protective insulating film 110.
  • the film thickness is 20 ⁇ : LOOnm.
  • the first opening 143 and the second opening 144 separated by the minute distance are formed in the third protective insulating film 117 (FIG. 6K).
  • the distance between the first opening 143 and the second opening 144 can be made smaller than the minimum value of the lithography limit, and is formed to be about 30 to 15 nm by optimizing the conditions.
  • the first wiring 145 and the second wiring 146 are formed as follows.
  • a wiring material is deposited so as to cover the first opening 143, the second opening 144, and the third protective insulating film 117 (FIG. 6L).
  • the wiring material is not particularly limited as long as it is the same type of metal as that used in conventional integrated circuit wiring, and it may be used as a wiring material.
  • the wiring containing at least one of the metals of titanium and tantalum has good compatibility with other wiring.
  • the wiring formed by a laminated film of at least one of titanium and tantalum metal and a nitride of the metal was consistent with other wiring.
  • the wiring material formed in places other than the first opening 143 and the second opening 144 is removed by CMP. In this way, the first wiring 145 and the second wiring 146 are formed in the third protective insulating film 117 so as to be separated by the minute distance (FIG. 6M).
  • the second wiring layer 105 is formed as follows.
  • a third interlayer insulating film 118 and a third stop insulating film 119 are sequentially deposited on the third protective insulating film 117 (FIG. 6N).
  • the thickness of the third interlayer insulating film 118 is about 50 to 250 nm.
  • the third interlayer insulating film 118 has the same configuration as the first interlayer insulating film 111 because it plays the same role as the first interlayer insulating film 111.
  • the third stop insulating film 119 has the same configuration as the first stop insulating film 112 because it plays the same role as the first stop insulating film 112.
  • the film thickness is about 50 to 200 nm.
  • a development process is performed on the exposed photoresist to form a photoresist having an opening.
  • openings are formed in the third interlayer insulating film 118 and the third stop insulating film 119 on the first wiring 145 and the second wiring 146 in the solid electrolyte switching element formation region.
  • openings are formed in the third protective insulating film 117, the third interlayer insulating film 118, and the third stop insulating film 119.
  • Figure 60 In the 90 nm generation lithography technology, the diameter of the opening is about 80 to 200 nm. Note that when the opening was formed, etching was performed under the conditions for etching the insulating film, so that the first wiring 145 and the second wiring 146 were prevented from being scraped.
  • a noria metal and a copper seed layer that becomes a part of copper are formed by sputtering in the formed opening.
  • Noria metal 135 and barrier metal 135 are the same type of material.
  • Noria metal 135, 135 ′ is a laminated film of tantalum nitride and tantalum, and is formed so as to cover the bottom and side walls of the opening.
  • Noria metals 135 and 135 prevent copper from diffusing into the third interlayer insulating film 118.
  • the film thickness of tantalum nitride and tantalum is about 5-30 nm.
  • the thickness of the copper seed layer is about 20 to 1 OOnm.
  • the second wiring layer 105 is formed, the lead wiring made of NORIA metal 135 and copper 136 is formed in the solid electrolyte switching element formation region, and the NORIA metal 135 'and copper 136' is formed in the via structure forming region.
  • a second circuit wiring is formed ( Figure 6P).
  • the second protective insulating film 120, the fourth interlayer insulating film 121, the fourth stop insulating film 122, and the fifth protective insulating film 123 are formed on the second wiring layer 105.
  • a protective layer 106 is formed.
  • the fourth protective insulating film 120 and the fifth protective insulating film 123 have the same structure as that of the first protective insulating film 110 because they have the same role as the first protective insulating film 110.
  • the film thickness is about 20 ⁇ : LOOnm.
  • the fourth interlayer insulating film 121 has the same structure as the first interlayer insulating film 111 because it plays the same role as the first interlayer insulating film 111.
  • the film thickness is about 50 to 250 nm.
  • the fourth stop insulating film 122 has the same configuration as the first stop insulating film 112 because it plays the same role as the first stop insulating film 112.
  • the film thickness is about 50 to 200 nm.
  • the lead wiring may be formed on the first insulating layer 104 of the force formed on the second wiring layer 105. Further, the lead wiring may be provided in both the second wiring layer 105 and the first insulating layer 104.
  • the solid electrolyte switching element 101 of the present embodiment is manufactured by the manufacturing method described above. It is. A wiring structure in which the first wiring 145 and the second wiring 146 separated by a minute distance exceeding the lithography limit were embedded in the third protective insulating film 117 was realized. The distance between the third wiring 132a of the gate electrode and the first wiring 145 of the source electrode and the distance between the third wiring 132a of the gate electrode and the second wiring 146 of the drain electrode are determined by the thickness of the via layer 104. Force to be applied is sufficiently larger than the distance between the source electrode and the drain electrode.
  • the three-terminal solid electrolyte switching element 101 using the wiring structure formed by the above method has a distance between the source electrode and the drain electrode compared to the distance between the gate electrode and the source electrode (or the drain electrode). Became sufficiently small and stable switching operation could be repeated. Furthermore, in the structure in which the second insulating layer having the fourth opening is inserted between the third protective insulating film 117 and the solid electrolyte layer 141 in which the first wiring 145 and the second wiring 146 are embedded, metal ions are deposited. Since the possible area is limited to the 4th opening, it was effective in stabilizing the switching operation.
  • FIG. 7A and FIG. 7B are diagrams showing a configuration example of the solid electrolyte switching element of the present embodiment.
  • FIG. 7A is a plan view
  • FIG. 7B is a cross-sectional view taken along a broken line aa ′ shown in FIG. 7A.
  • a first wiring layer 203, a first insulating layer 204, a second wiring layer 205, and a protective layer 206 are sequentially formed on a substrate not shown in the drawing.
  • the solid electrolyte switching element of the present embodiment includes a first wiring 245, a second wiring 246, and a solid electrolyte layer 241 provided in the protective layer 206, and a third wiring provided in the second wiring layer 205. It is.
  • the protective layer 206 has a configuration in which a fourth protective insulating film 220, a fourth interlayer insulating film 221, a fourth stop insulating film 222, and a fifth protective insulating film 223 are formed in this order.
  • the first wiring 245 and the second wiring 246 are formed on the fourth protective insulating film 220.
  • the first wiring 245 and the second wiring 246 are arranged apart from each other by a predetermined distance, and both the wirings are in contact with the solid electrolyte layer 241.
  • the distance between the first wiring 245 and the second wiring 246 is smaller than the minimum value of the lithography limit as in the first embodiment. Specifically, it is 30 to 15 nm.
  • the solid electrolyte layer 241 is provided on the fourth interlayer insulating film 221 and the fourth stop insulating film 222, and is in contact with the first wiring 245 and the second wiring 246.
  • the side surface of the solid electrolyte layer 241 is covered with a force bar insulating film 214, and the upper surface of the solid electrolyte layer 241 is covered with a fifth protective insulating film 223. Further, the bottom surface of the solid electrolyte layer 241 is in contact with both the first wiring 245 and the second wiring 246, and the portion is covered with the fourth protective insulating film 220.
  • the fourth protective insulating film 220, the fifth protective insulating film 223, and the cover insulating film 214 have a function as a metal diffusion prevention film.
  • a third protective insulating film 217, a third interlayer insulating film 218, and a third stop insulating film 219 are formed in this order.
  • Lead wires for leading out the first wire 245 and the second wire 246 are provided in the third interlayer insulating film 218 and the third stop insulating film 219.
  • the lead wiring has a structure including copper 236 and noria metal 235 for preventing diffusion of copper.
  • the side and bottom surfaces of copper 236 are covered with noria metal 235.
  • a third wiring is provided in the third interlayer insulating film 218 and the third stop insulating film 219.
  • the third wiring has a structure including copper 236a and noria metal 235a for preventing diffusion of copper.
  • the side and bottom surfaces of copper 236a are covered with noria metal 235a.
  • the copper 236a of the third wiring is in contact with the solid electrolyte layer 241 through the third opening 240 provided in the fourth protective insulating film 220.
  • the third wiring since the force copper 236a formed by the copper 236a and the barrier metal 235a plays an important role in the solid electrolyte switching element, the third wiring is simply indicated by the symbol 236a below.
  • the distance between the third wiring 236a and the first wiring 245 and the second wiring 246 is made larger than the distance between the first wiring 245 and the second wiring 246.
  • the distance between the third wiring 236a and the first wiring 245 and the second wiring 246 is set in accordance with the lithographic process at the time of patterning the third wiring 236a.
  • a protective insulating film 210, an interlayer insulating film 211, and a stop insulating film 212 are formed in this order.
  • a second protective insulating film 213, a second interlayer insulating film 215, and a second stop insulating film 216 are formed in this order.
  • first wiring 245 serving as a source electrode and second wiring 246 serving as a drain electrode are separated from each other by the minute distance. Since this distance is smaller than the distance between the third wiring 236a serving as a gate electrode for supplying metal ions, the first wiring 245, and the second wiring 246, the operation of the solid electrolyte switching element is more stable.
  • the portion of the solid electrolyte layer 241 that is not in contact with any of the first wiring 245, the second wiring 246, and the third wiring is the fourth protective insulating film 220, the cover insulating film 214, and the fifth wiring. Since it is covered with one of the protective insulating films 223, metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent devices, and the solid electrolyte switching device of this embodiment can be used in a circuit integrated with other devices.
  • FIGS. 7A and 7B Next, a configuration in which the solid electrolyte switching element 201 shown in FIGS. 7A and 7B is applied to an integrated circuit will be described. Here, a via structure for connecting semiconductor circuits as part of an integrated circuit is shown.
  • FIG. 8 is a cross-sectional view showing a solid electrolyte switching element and a via structure. Note that components similar to those illustrated in FIGS. 7A and 7B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the integrated circuit has a solid electrolyte switching element 201 and a via structure 202 for connecting wirings.
  • the via structure 202 includes a first circuit wiring provided in the first wiring layer 203, a second circuit wiring provided in the second wiring layer 205, the first circuit wiring, and the second circuit wiring. And via plugs to be connected.
  • the via plug is formed in the first insulating layer 204.
  • the layer in which the via plug is formed is called a via layer.
  • the first circuit wiring has copper 232 and noria metal 231 to prevent copper diffusion.
  • the via plug has copper 234 and noria metal 233 'to prevent copper diffusion.
  • the second circuit wiring has copper 236 'and barrier metal 235 to prevent copper diffusion.
  • the bottom and side walls of copper 236 are covered with barrier metal 235.
  • This copper 236 ′ is the same material as the copper 136 of the lead wiring and the copper 236a of the third wiring
  • the noria metal 235 is the same material as the barrier metal 135 of the lead wiring and the barrier metal 235a of the third wiring.
  • the third wiring 236a for supplying metal ions to the solid electrolyte layer 241 and the solid electrolyte layer 241 formed thereon are 4 The positional relationship in the multilayer wiring with the first wiring 245 and the second wiring 246 embedded in the protective insulating film 220.
  • the third wiring 132 2a for supplying metal ions to the solid electrolyte layer 141 and the solid electrolyte layer 141 formed thereon, and the third protective insulating film 117 embedded in the first The positional relationship between the first wiring 145 and the second wiring 146 was within the same vertical axis.
  • the first wiring 245 and the second wiring 246 embedded in the fourth protective insulating film 220 are arranged below the solid electrolyte layer 241 and are similarly formed in the solid electrolyte layer 241.
  • the third wiring 236a arranged at the bottom of the circuit board is characterized by being arranged at a distant place in the plane! /
  • the distance between the first wiring 245 and the second wiring 246 and the third wiring 236a can be arbitrarily set at the position where the third wiring 236a is disposed.
  • the distance between the first wiring 145 and the second wiring 146 and the third wiring 132a is determined by the thickness of the solid electrolyte layer 141.
  • the solid electrolyte switching element of the present embodiment can easily control the distance between the first wiring 245 and the second wiring 246 and the third wiring 236a as compared with the second embodiment. Since the metal ions supplied from the third wiring 236a diffuse the distance, the switching characteristics can be determined by controlling the distance. As a result, the solid electrolyte solution in the integrated circuit It became possible to control the characteristics of the switching element. In particular, increasing the distance between the first wiring 245 and the second wiring 246 and the third wiring 236a as compared with the prior art was effective in making it difficult for the off-state force to switch to the on-state.
  • the portion where the element can be formed is not limited to the wiring layer.
  • FIGS. 9A to 9D are cross-sectional views showing a method for manufacturing the solid electrolyte switching element and the via structure. Note that detailed description of steps common to the second embodiment is omitted.
  • a first wiring layer 203 and a first insulating layer 204 are formed on a substrate (not shown) on which an insulating film is formed as the uppermost layer. At that time, in the region where the via structure 202 is formed, the first circuit wiring is formed in the first wiring layer 203 and the via plug is formed in the first insulating layer (via layer) 204 in the same manner as in the second embodiment.
  • a second wiring layer 205 is formed in the same manner as the second wiring layer 105 forming method of the second embodiment.
  • a third wiring is formed in the formation region of the solid electrolyte switching element 201 in addition to the lead wiring.
  • the method of forming the third wiring is the same as that of the lead wiring.
  • a fourth protective insulating layer 220 is formed on the second wiring layer 205 (FIG. 9A).
  • the fourth protective insulating film 220 is formed of silicon nitride or a material in which an arbitrary amount of carbon is mixed with silicon nitride.
  • the fourth protective insulating film 220 suppresses diffusion of copper into the oxide film.
  • the film thickness is 20 ⁇ : LOOnm. Since the third wiring is formed at a predetermined distance from the lead wiring, the third wiring is indicated by a broken line as shown in FIG. 9A.
  • the first wiring 245 and the second wiring 246 are formed in the fourth protective insulating film 220 apart from each other by the minute distance.
  • a fourth interlayer insulating film 221 and a fourth stop insulating film 22 are formed on the fourth protective insulating film 220. 2 are formed in order.
  • an exposure process is performed.
  • the exposed photoresist is developed to form a photoresist having an opening.
  • the third opening 247 is formed in the fourth interlayer insulating film 221 and the fourth stop insulating film 222 by performing etching through the photoresist.
  • the first wiring 245, the second wiring 246, and a part of the third wiring 236a were exposed.
  • a cover insulating film 214 is formed. Further, anisotropic etching is performed to leave the cover insulating film 214 on the side wall of the third opening 247. ( Figure 9C).
  • a fifth protective insulating film 223 is formed on the fourth stop insulating film 222 (FIG. 9D).
  • the fifth protective insulating film 223 plays the role of preventing copper diffusion similarly to the fourth protective insulating film 220, and is therefore formed of the same material as the fourth protective insulating film 220.
  • the solid electrolyte switching element 201 of the present embodiment is manufactured by the manufacturing method described above.
  • a wiring structure in which the first wiring 245 and the second wiring 246 separated by a minute distance exceeding the lithography limit were embedded in the insulating layer 220 was realized. Further, compared to the second embodiment, the distance between the third wiring 236a of the gate electrode and the first wiring 245 of the source electrode and the distance between the third wiring 236a of the gate electrode and the second wiring 246 of the drain electrode can be freely set. It became easy to control.
  • the portion where the element can be formed is not limited to the wiring layer, and the element formation is free.
  • elements can be formed after the completion of the multilayer wiring process. This, coupled with the reduction in the risk of introducing new materials, led to cost reductions.
  • the three-terminal solid electrolyte switching element 200 using the wiring structure formed by the above method could repeat a stable switching operation.
  • FIG. 10A and FIG. 10B are diagrams showing a configuration example of the solid electrolyte switching element of the present embodiment.
  • FIG. 10A is a plan view thereof
  • FIG. 10 is a cross-sectional view of a broken line &-& 'portion shown in FIG.
  • the solid electrolyte switching element 301 of the present embodiment has a configuration in which the thickness of the solid electrolyte layer of the third embodiment is made thinner than that of the third embodiment.
  • the thickness of the solid electrolyte layer can be controlled.
  • the first wiring layer 303 corresponds to the first wiring layer 203 of the third embodiment
  • the first insulating layer 304 corresponds to the first insulating layer 204
  • the second wiring layer 305 corresponds to the second wiring layer 205.
  • the protective layer 306 corresponds to the protective layer 206. Since the material and type of the film in each layer are the same as those in the third embodiment, detailed description thereof is omitted.
  • the upper surface and side surfaces of the solid electrolyte layer 341 are covered with the cover insulating film 314. Further, the bottom surface of the solid electrolyte layer 341 is in contact with the V and misalignment of the first wiring 345 and the second wiring 346, and the portion is covered with the fourth protective insulating film 320.
  • the fourth protective insulating film 320 and the cover insulating film 314 function as a metal diffusion prevention film.
  • the first wiring 345, the second wiring 346, and the third wiring in the solid electrolyte layer 341 are in contact with the displacement, and the portion is the fourth protection. Since it is covered with one of the metal diffusion prevention films of the insulating film 320 and the cover insulating film 314, metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent elements, and the solid electrolyte switching element of this embodiment can be used in a circuit integrated with other elements.
  • a solid electrolyte layer is formed on the fourth protective insulating film 320 to a desired thickness.
  • the solid electrolyte layer is processed into a desired pattern by the lithographic process and the etching process to form the solid electrolyte layer 341 shown in FIG. 10A.
  • a fourth interlayer insulating film 321, a fourth stop insulating film 322, and a fifth protective insulating film 323 are formed. In this way, the solid electrolyte switching element 301 shown in FIG. 10B is manufactured.
  • FIGS. 10A and 10B Next, a configuration applied to the solid electrolyte switching element 301 ⁇ product circuit shown in FIGS. 10A and 10B will be described. Here, a via structure for connecting semiconductor circuits as part of an integrated circuit is shown.
  • FIG. 11 is a cross-sectional view showing a solid electrolyte switching element and a via structure.
  • the integrated circuit has a solid electrolyte switching element 301 and a via structure 302 for connecting wirings. Since the via structure 302 corresponds to the via structure 202 of the third embodiment, detailed description thereof is omitted.
  • the difference between the solid electrolyte switching element of the present embodiment and the third embodiment is the processing method of the solid electrolyte layer 341.
  • the third opening provided in the three layers of the fourth protective insulating layer 220, the fourth interlayer insulating film 221 and the fourth stop insulating film 222 formed on the second wiring layer 205.
  • the solid electrolyte layer 241 is embedded in 247.
  • unnecessary portions of the solid electrolyte layer are removed.
  • the solid electrolyte layer 341 shown in FIGS. 10A, 10B, and 11 is formed.
  • the film thickness of the solid electrolyte layer 341 can be easily controlled as compared with the third embodiment. By controlling the thickness of the solid electrolyte layer 341, the amount of metal ions supplied to the first wiring 345 and the second wiring 346 can be controlled, and the switching characteristics can be adjusted. [0144] In addition, since the CMP method is not used for processing the solid electrolyte layer 341, damage to the solid electrolyte layer 341 is reduced, and the reliability of the solid electrolyte switching element in the integrated circuit is increased. In addition, the choice of the solid electrolyte layer 341 that can be used has expanded, and cost reduction has been realized.
  • FIG. 12A and FIG. 12B are diagrams showing a configuration example of the solid electrolyte switching element of the present embodiment.
  • FIG. 12A is a plan view thereof
  • FIG. 12 is a cross-sectional view of a broken line &-& 'portion shown in FIG.
  • the first wiring layer 403 corresponds to the first wiring layer 303 of the fourth embodiment
  • the first insulating layer 404 corresponds to the first insulating layer 304
  • the second wiring layer 405 Corresponds to the second wiring layer 305
  • the protective layer 406 corresponds to the protective layer 306. Since the types and materials of the films in each layer are the same as in the fourth embodiment, a detailed description thereof is omitted.
  • the solid electrolyte layer 441, the first wiring 445, and the second wiring 446 are provided in the second wiring layer 405.
  • a third wiring is provided in the first insulating layer 404.
  • the first wiring 445, the second wiring 446, and the third wiring lead-out wiring are provided in the first wiring layer 403.
  • the third wiring is configured to have copper 434a and noria metal 433a for preventing diffusion of copper.
  • a via plug for connecting each of the first wiring 445 and the second wiring 446 to the lead wiring is provided in the first insulating layer 404.
  • the upper surface and side surfaces of solid electrolyte layer 441 are covered with cover insulating film 414. Further, the bottom surface of the solid electrolyte layer 441 is in contact with the V and displacement of the first wiring 445 and the second wiring 446, and the portion is covered with the third protective insulating film 417.
  • the third protective insulating film 417 and the cover insulating film 414 have a function of a metal diffusion prevention film.
  • the main operation of the solid electrolyte switching element 401 of the present embodiment is the same as that of the first embodiment, and a detailed description thereof will be omitted.
  • the first wiring 445, the second wiring 446, and the third wiring in the solid electrolyte layer 441 are in contact with the displacement, and the portion is in the third holding state. Since the protective insulating film 417 and the cover insulating film 414 are covered with any of the metal diffusion preventing films! / Thereof, the metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent elements, and the solid electrolyte switching element of this embodiment can be used in a circuit integrated with other elements.
  • FIGS. 12A and 12B Next, a configuration in which the solid electrolyte switching element 401 shown in FIGS. 12A and 12B is applied to an integrated circuit will be described. Here, a via structure for connecting semiconductor circuits as part of an integrated circuit is shown.
  • FIG. 13 is a cross-sectional view showing a solid electrolyte switching element and a via structure.
  • the integrated circuit has a solid electrolyte switching element 401 and a via structure 402 for connecting wirings.
  • the via structure 402 includes a first circuit wiring provided in the first wiring layer 403, a second circuit wiring provided in the second wiring layer 405, the first circuit wiring, and the second circuit wiring. And via plugs to be connected.
  • the via plug is formed in the first insulating layer 404.
  • a layer in which the via plug is formed is referred to as a via layer.
  • the third wiring 336a for supplying metal ions to the solid electrolyte layer 341 is provided on the second wiring layer 305, whereas in this embodiment, metal ions are supplied to the solid electrolyte layer 441.
  • the third wiring 434a is provided in the first insulating layer (via layer) 404.
  • the third wiring is formed in the via layer. Therefore, the total amount of metal ions that can be supplied to the solid electrolyte layer 441 by adjusting the size of the via hole is the fourth. It becomes easier to control compared to the embodiment. This makes it easier to adjust the switching characteristics.
  • metals other than copper, which is a multilayer wiring material can be used, and the switching characteristics can be further adjusted by selecting the metal type.
  • FIG. 14A and FIG. 14B are diagrams showing a configuration example of the solid electrolyte switching element of the present embodiment.
  • FIG. 14A is a plan view thereof
  • FIG. 14 is a cross-sectional view of the broken line &-& 'portion shown in FIG.
  • the first wiring layer 503 corresponds to the first wiring layer 303 of the fourth embodiment
  • the first insulating layer 504 corresponds to the first insulating layer 304
  • the second wiring layer 505 Corresponds to the second wiring layer 305
  • the protective layer 506 corresponds to the protective layer 306. Since the types and materials of the films in each layer are the same as in the fourth embodiment, a detailed description thereof is omitted.
  • the solid electrolyte switching element 501 of the present embodiment includes a first wiring 545 and a solid electrolyte layer 541 provided in the second protective insulating film 513, and a second wiring provided in the first insulating layer 504. And a third wiring provided in the first wiring layer 503.
  • the third wiring is configured to have copper 532a and noria metal 53la for preventing diffusion of copper.
  • the second wiring is configured to have copper 534 and noria metal 533 to prevent copper diffusion.
  • the second wiring is indicated by reference numeral 533
  • the third wiring is indicated by reference numeral 532a.
  • the upper surface and side surfaces of the solid electrolyte layer 541 are covered with the cover insulating film 514. Further, the bottom surface of the solid electrolyte layer 541 is in contact with the displacement of the first wiring 545 and the third wiring 532a, and the portion is covered with the second protective insulating film 513.
  • the second protective insulating film 513 and the cover insulating film 514 function as a metal diffusion prevention film.
  • the first wiring 545, the second wiring 533, and the third wiring in the solid electrolyte layer 541 are in contact with the misalignment, and the portion is the second protection. Since it is covered with one of the metal diffusion prevention films of the insulating film 513 and the cover insulating film 514, metal ions do not diffuse around. Therefore, it is possible to prevent metal ions from affecting adjacent elements, and the solid electrolyte switching element of this embodiment can be used in a circuit integrated with other elements.
  • FIGS. 14A and 14B Next, a configuration in which the solid electrolyte switching element 501 shown in FIGS. 14A and 14B is applied to an integrated circuit will be described.
  • the semiconductor circuit A via structure for connecting paths is shown.
  • FIG. 15 is a cross-sectional view showing a solid electrolyte switching element and a via structure. Note that components similar to those illustrated in FIGS. 14A and 14B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the integrated circuit includes a solid electrolyte switching element 501 and a via structure 502 for connecting wirings.
  • the via structure 502 includes a first circuit wiring provided in the first wiring layer 503, a second circuit wiring provided in the second wiring layer 505, the first circuit wiring, and the second circuit wiring. And via plugs to be connected. Via plugs are formed in the first insulating layer 504. A layer in which the via plug is formed is referred to as a via layer.
  • the first wiring 545 is formed on the second protective insulating film 513
  • the second wiring 533 is formed on the three insulating films of the cover insulating film 514, the second interlayer insulating film 515, and the second stop insulating film 516. It is formed.
  • the first wiring 545 and the second wiring 533 are formed so as to sandwich the solid electrolyte layer 541.
  • the third wiring 532a is formed of a material capable of supplying metal ions.
  • the metal ions when the off-state force transitions to the on-state, the metal ions also diffuse in the third wiring 532a force in the solid electrolyte layer 541 and precipitate between the first wiring 545 and the second wiring 533, and the solid electrolyte switching element 501 OFF state force Switching action to ON state
  • the distance between the first wiring and the second wiring can be controlled by the film thickness of the solid electrolyte layer 541 compared to the case of the first to fifth embodiments. Is possible.
  • the layer separating the first wiring 545 and the second wiring 533 is formed of an insulating film containing a solid electrolyte. It may be a spacer layer configured. As a function of the inserted spacer layer, the first wiring 545 and the second wiring 533 can be electrically separated, and the first wiring 545 and the second wiring 533 come into contact with the solid electrolyte, and precipitates are formed. Ultimately can form.
  • a three-layer insulating film constituting the first wiring layer 503 is formed on a substrate (not shown) having an insulating film formed on the uppermost layer.
  • the lead wiring and the third wiring 532a are formed in the solid electrolyte switching element formation region, and the first circuit wiring is formed in the via structure 502 formation region.
  • the lead wiring has copper 532 and barrier metal 531, and the third wiring has copper 532a and noria metal 531a.
  • a second protective insulating film 513 is formed on the first wiring layer 503.
  • the second protective insulating film 513 is formed of silicon nitride or a material obtained by mixing an arbitrary amount of carbon into silicon nitride.
  • the second protective insulating film 513 suppresses diffusion of copper into the oxide film.
  • the film thickness is 20 ⁇ : LOOnm.
  • an opening is formed in the second protective insulating film 513 on the third wiring 532a by the lithographic process and the etching process so that a part of the third wiring 532a for supplying metal ions to the solid electrolyte layer 541 is exposed. Is provided.
  • a solid electrolyte layer 541 as shown in FIGS. 14A and 14B is formed by a lithographic process and an etching process.
  • a cover insulating film 514 is deposited so as to completely cover the solid electrolyte layer 541 and the second protective insulating film 513.
  • the cover insulating film 514 is formed using silicon nitride or a material obtained by mixing silicon nitride with an arbitrary amount of carbon.
  • the cover insulating film 514 suppresses diffusion of copper into the oxide film.
  • a second interlayer insulating film 515 and a second stop insulating film 516 are deposited on the cover insulating film 514.
  • the second wiring is formed on.
  • the second wiring has copper 534 and barrier metal 533 It is a configuration. Noria metal 533 covers the bottom and sides of copper 534. Further, when forming the second wiring, the second wiring is positioned so as to face the first wiring 545 through the solid electrolyte 541. Thereafter, as in the second embodiment, a lead-out wiring of the second wiring is formed in the solid electrolyte switching element 501 formation region of the second wiring layer 505, and the protective layer 506 is formed.
  • the solid electrolyte switching element 501 of the present embodiment is manufactured by the manufacturing method described above.
  • the first wiring 545 and the second wiring 533 separated by a minute distance exceeding the limit of lithography are separate insulating films.
  • the wiring structure formed in 1 was realized. What separates the first wiring 545 and the second wiring 533 is a solid electrolyte layer 541.
  • the distance between the first wiring and the second wiring separated by a minute distance is made possible only by controlling the thickness of the solid electrolyte layer 541.
  • the interval setting by the film thickness control is easier than the control by the dry etching as in the first embodiment, the manufacturing variation is reduced, and the yield of the solid electrolyte switching element in the integrated circuit is increased.
  • the distance between the third wiring 532a of the gate electrode and the first wiring 545 of the source electrode and the distance between the third wiring 532a of the gate electrode and the second wiring 533 of the drain electrode are freely controlled. It became easy. Since the metal ions supplied from the third wiring 532a diffuse the distance, the switching characteristics can be determined by controlling the distance. This makes it possible to control the characteristics of the solid electrolyte switching element in the integrated circuit. In particular, increasing the distance between the first wiring 545 and the second wiring 533 and the third wiring 532a as compared with the prior art was effective in making it difficult to switch to the off state force and the on state. Therefore, the solid electrolyte switching element 501 can repeat a more stable switching operation.
  • the first wiring is used as the source electrode and the second wiring is used as the drain electrode.
  • the second wiring is used as the source electrode and the first wiring is used as the drain. It may be an electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明のスイッチング素子は、所定の距離だけ離れて設けられた第1電極14および第2電極15と、第1電極14および第2電極15に接触して設けられた固体電解質層16と、固体電解質層16に接触して設けられ、金属イオンを供給可能な第3電極18と、固体電解質層16の表面のうち第1電極14、第2電極15および第3電極18のいずれにも接触していない部位を覆った金属拡散防止膜17とを有する構成である。このような構成にすることで、他の素子への金属イオンの影響を防ぐ。

Description

明 細 書
固体電解質スイッチング素子およびその製造方法ならびに集積回路 技術分野
[0001] 本発明は、金属イオンを供給可能なゲートに相当する電極とソースおよびドレイン に相当する電極を有する固体電解質スイッチング素子、およびその製造方法と、集 積回路に関する。
背景技術
[0002] 従来の固体電解質スィッチとして、プログラマブル'メタライゼーシヨン'セル(PMC) に適用された場合力 米国特許 5761115号および米国特許 6487106号の文献に 開示されている。 PMCでは、適当な量の金属イオンが溶け込んだ固体電解質を介し て 2つの電極が設けられている。上記文献中の実施例では、固体電解質は、ゲルマ -ゥムやセレンが含まれるカルコゲナイドガラス中に銀イオンが導入された構成であ る。固体電解質スィッチは、この 2つの電極間に電圧を印加することにより、固体電解 質中の金属イオンの酸化還元反応を引き起こし、 2つの電極間の電気抵抗を制御す る素子である。
[0003] この固体電解質スィッチの動作について簡単に説明する。初期状態では、 2つの 電極間は電気的に高抵抗の状態にあるが、その電極間に電圧を印加する。これによ り、相対的に負の電圧のかかる、一方の電極 (力ソード電極)側において固体電解質 中の金属イオンが還元されて金属原子として析出する。還元反応を続けることにより 、析出した金属がやがて他方の電極 (アノード電極)方向に成長する。そして、最終 的に電極間に金属ブリッジが形成され、電極間が電気的に低抵抗の状態になる。
[0004] 一方、金属ブリッジが形成された状態力 力ソード電極側に正の電圧を印加すると 、金属ブリッジが酸ィ匕されて金属イオンとして固体電解質中に溶け込む。そして、この 金属ブリッジが消滅した状態では、電極間が電気的に高抵抗の状態に戻る。高抵抗 状態と低抵抗状態はそれぞれ電圧を印加しない状態でも保持されるため、固体電解 質スィッチは、非常にオンオフ比の高い不揮発性のスィッチとなり、不揮発性メモリへ の応用が期待されている。また、アノード電極は金属イオンの供給源としての役割も 担っており、安定動作のためにはイオン化されやす 、金属 (銀など)が含まれて 、るこ とが好ましい。
発明の開示
[0005] 上述した 2端子型の固体電解質スィッチでは、オフ状態力 オン状態に遷移する際 、金属ブリッジが 2端子間に形成されると、 2端子間が低抵抗状態になり、大きな電流 力^端子間を流れることになる。そして、オン状態力 オフ状態に遷移する際にも低 抵抗状態のまま 2端子間にオフさせる電圧をかけるため、大きな電流が流れて電力 消費量が多くなるという問題があった。
[0006] 一方、その問題を解決するために、上記 2端子の他に制御用の端子を設けた 3端 子型の固体電解質スィッチがある。この固体電解質スィッチは、金属イオンを供給可 能なゲート電極に相当する電極とソースおよびドレイン電極に相当する 2つの電極の 間に電圧を印加することにより、ソースおよびドレイン電極近傍に金属の析出 ·溶解を 起こさせ、ソースおよびドレイン電極間の電気抵抗を制御するものである。この構造で は、ソースおよびドレイン電極間の抵抗をゲート電極に印加する電圧で制御できるの で、オンオフの切り替え時に必要以上の電流が流れることがな!、。
[0007] しかし、この 3端子型の固体電解質スィッチを集積化すると、固体電解質層や配線 層から、金属イオンが周囲に漏れ出し、隣接する素子に影響を与えるおそれがある。
[0008] 本発明は上述したような従来の技術が有する問題点を解決するためになされたも のであり、他の素子への金属イオンの影響を防!、だ固体電解質スイッチング素子お よびその製造方法と集積回路を提供することを目的とする。
[0009] 上記目的を達成するための本発明の固体電解質スイッチング素子は、所定の距離 だけ離れて設けられた第 1電極および第 2電極と、第 1電極および第 2電極に接触し て設けられた固体電解質層と、固体電解質層に接触して設けられ、金属イオンを供 給可能な第 3電極と、固体電解質層の表面のうち第 1電極、第 2電極および第 3電極 の ヽずれにも接触して 、な 、部位を覆った金属拡散防止膜とを有する構成である。
[0010] 一方、上記目的を達成するための本発明の集積回路は、上記本発明の固体電解 質スイッチング素子と、配線およびビアプラグを有する多層配線とを備え、第 3電極が 配線と同一層に設けられ、固体電解質層がビアプラグと同一層に設けられた構成で ある。
[0011] また、本発明の集積回路は、上記本発明の固体電解質スイッチング素子と、配線 およびビアプラグを有する多層配線とを備え、第 3電極がビアプラグと同一層に設け られ、固体電解質層が配線と同一層に設けられた構成である。
[0012] また、上記目的を達成するための本発明の固体電解質スイッチング素子の製造方 法は、絶縁層上に所定の距離だけ離れた第 1開口パターン部および第 2開口パター ン部を有するレジストを形成する工程と、第 1のエッチングにより第 1開口パターン部 および第 2開口パターン部の開口面積を拡大する工程と、レジストをマスクとして絶縁 層に第 2のエッチングを行って絶縁層に第 1開口部および第 2開口部を形成するェ 程と、レジストを除去した後、第 1開口部および第 2開口部に配線材料を埋め込んで 第 1電極および第 2電極を形成する工程と、第 1電極と第 2電極に接触するように固 体電解質層を形成する工程と、固体電解質層を覆う金属拡散防止膜を形成するェ 程と、金属拡散防止膜に第 3開口部を形成する工程と、金属イオンを供給可能な配 線材料を前記第 3開口部に埋め込んで第 3電極を形成する工程とを有するものであ る。
[0013] さらに、本発明の固体電解質スイッチング素子の製造方法は、絶縁層上に所定の 距離だけ離れた第 1開口パターン部および第 2開口パターン部を有するレジストを形 成する工程と、レジストをマスクとして絶縁層に第 1のエッチングを行って絶縁層に第 1開口部および第 2開口部を形成する工程と、絶縁層に第 2のエッチングを行って第 1開口部および第 2開口部の開口面積を拡大する工程と、レジストを除去した後、第 1 開口部および第 2開口部に配線材料を埋め込んで、第 1電極および第 2電極を形成 する工程と、第 1電極と第 2電極に接触するように固体電解質層を形成する工程と、 固体電解質層を覆う金属拡散防止膜を形成する工程と、金属拡散防止膜に第 3開 口部を形成する工程と、金属イオンを供給可能な配線材料を第 3開口部に埋め込ん で第 3電極を形成する工程とを有するものである。
[0014] 本発明では、固体電解質層の表面のうち第 1電極、第 2電極および第 3電極のいず れにも接触して 、な 、部位を金属拡散防止膜で覆って 、るため、固体電解質層に含 まれる金属イオンが漏れ出て拡散することを防げる。固体電解質スイッチング素子が 集積回路に設けられた場合には、固体電解質層から周囲に漏れ出た金属イオンが 隣接する素子に影響を与えることを防ぐことができる。
図面の簡単な説明
[図 1A]図 1Aは第 1実施形態の固体電解質スイッチング素子の一構成例を示す平面 図である。
[図 1B]図 1Bは第 1実施形態の固体電解質スイッチング素子の一構成例を示す断面 図である。
[図 2A]図 2Aは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2B]図 2Bは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2C]図 2Cは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2D]図 2Dは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2E]図 2Eは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2F]図 2Fは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2G]図 2Gは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 2H]図 2Hは第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 21]図 21は第 1実施形態の固体電解質スイッチング素子の製造方法を示す断面図 である。
[図 3]図 3は第 1実施形態の固体電解質スイッチング素子の他の構成例を示す平面 図および断面図である。
[図 4A]図 4Aは第 2実施形態の固体電解質スイッチング素子の一構成例を示す平面 図である。
[図 4B]図 4Bは第 2実施形態の固体電解質スイッチング素子の一構成例を示す断面 図である。
[図 5]図 5は第 2実施形態の固体電解質スイッチング構造とビア構造を有する集積回 路の断面図である。
[図 6A]図 6Aは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6B]図 6Bは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6C]図 6Cは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6D]図 6Dは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6E]図 6Eは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6F]図 6Fは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6G]図 6Gは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6H]図 6Hは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 61]図 61は第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面図 である。
[図 6J]図 6Jは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面図 である。
[図 6K]図 6Kは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6L]図 6Lは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6M]図 6Mは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断 面図である。
[図 6N]図 6Nは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 60]図 60は第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 6P]図 6Pは第 2実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 7A]図 7Aは第 3実施形態の固体電解質スイッチング素子の一構成例を示す平面 図である。
[図 7B]図 7Bは第 3実施形態の固体電解質スイッチング素子の一構成例を示す断面 図である。
[図 8]図 8は第 3実施形態の固体電解質スイッチング構造とビア構造を有する集積回 路の断面図である。
[図 9A]図 9Aは第 3実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 9B]図 9Bは第 3実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 9C]図 9Cは第 3実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 9D]図 9Dは第 3実施形態の固体電解質スイッチング素子の製造方法を示す断面 図である。
[図 10A]図 10Aは第 4実施形態の固体電解質スイッチング素子の一構成例を示す平 面図である。
[図 10B]図 10Bは第 4実施形態の固体電解質スイッチング素子の一構成例を示す断 面図である。
[図 11]図 11は第 4実施形態の固体電解質スイッチング構造とビア構造を有する集積 回路の断面図である。
[図 12A]図 12Aは第 5実施形態の固体電解質スイッチング素子の一構成例を示す平 面図である。
[図 12B]図 12Bは第 5実施形態の固体電解質スイッチング素子の一構成例を示す断 面図である。
[図 13]図 13は第 5実施形態の固体電解質スイッチング構造とビア構造を有する集積 回路の断面図である。
[図 14A]図 14Aは第 6実施形態の固体電解質スイッチング素子の一構成例を示す平 面図である。
[図 14B]図 14Bは第 6実施形態の固体電解質スイッチング素子の一構成例を示す断 面図である。
[図 15]図 15は第 6実施形態の固体電解質スイッチング構造とビア構造を有する集積 回路の断面図である。
符号の説明
[0016] 14 第 1配線
15 第 2配線
16 固体電解質層
17 金属拡散防止膜
18 第 3配線
発明を実施するための最良の形態
[0017] 本発明の固体電解質スイッチング素子は、固体電解質層からの金属拡散を防止す るための膜を設けた構成である。
[0018] (第 1実施形態)
本実施形態の固体電解質スイッチング素子の構成について説明する。
[0019] 図 1Aおよび図 1Bは、第 1実施形態の固体電解質スイッチング素子の一構成例を 示す図である。図 1 Aはその平面図であり、図 1Bは図 1 Aに示す破線 a— a'部の断面 図である。
[0020] 図 1Aおよび図 1Bに示すように、固体電解質スイッチング素子 1は、下地絶縁膜で 覆われた基板 10上に所定の距離だけ隔てて設けられた第 1開口部 12および第 2開 口部 13を有する絶縁層 11が形成され、第 1開口部 12に配線材料が埋め込まれた第 1配線 14と、第 2開口部 13に配線材料が埋め込まれた第 2配線 15とが設けられてい る。また、第 1配線 14および第 2配線 15の上に固体電解質層 16が形成され、固体電 解質層 16上に金属の拡散を防止するための金属拡散防止膜 17が形成されている。 そして、金属拡散防止膜 17の上には、金属拡散防止膜 17に設けられられた開口部 を介して固体電解質層 16に接触する第 3配線 18が形成されている。第 3配線 18は 固体電解質層 16に金属イオンを供給可能な材料を含有している。絶縁層 11は、電 気的絶縁性を確保するための機能だけでなぐ金属拡散防止膜としての機能も有し ている。
[0021] 固体電解質層 16は、上面のうち第 3配線 18と接触しない部位と、側面とが金属拡 散防止膜 17で覆われている。
[0022] なお、図 1Aの a— a'部に第 3配線 18が配置されていないが、説明のために図 1B の断面図に金属拡散防止膜 17の開口部を介して設けられた第 3配線 18を表示して いる。
[0023] 本発明では、第 1配線 14および第 2配線 15の間隔がリソグラフィ限界の最小値より も小さい寸法である。そのため、従来の構造よりも小さい。その寸法は現在の具体的 には、 30nm以下の寸法で形成されている。
[0024] なお、図 1 Aおよび図 1Bに示した構成は一例である。本発明の固体電解質スィッチ ング素子は、絶縁層 11に所定の距離だけ隔てて形成された第 1開口部 12および第 2開口部 13の中に第 1配線 14および第 2配線 15が埋め込められた構造であって、 固体電解質層 16が第 1配線 14および第 2配線 15に接しており、第 3配線 18が固体 電解質層 16に接して 、れば、その配置は図 1 Aおよび図 1Bに示す以外のものであ つてもよい。
[0025] 次に、図 1Aおよび図 1Bに示した固体電解質スイッチング素子 1の動作について説 明する。なお、ここでは、第 1配線 14をソース電極とし、第 2配線 15をドレイン電極とし 、第 3配線 18をゲート電極とする。また、固体電解質層 16の材料を硫化銅とし、ゲー ト電極の配線材料を銅とし、ソース電極およびドレイン電極の配線材料をチタンとす る。
[0026] ソース電極を接地してゲート電極に正の電圧を印加すると、ゲート電極の銅が銅ィ オンになって固体電解質層 16に溶解する。そして、固体電解質層 16に溶解した銅 イオンがドレイン電極の表面に銅になって析出し、析出した銅がドレイン電極とソース 電極を電気的に接続する。ドレイン電極とソース電極が電気的に接続することで、固 体電解質スイッチング素子がオン状態になる。
[0027] 一方、上記オン状態でソース電極を接地してゲート電極に負の電圧を印加すると、 ドレイン電極とソース電極との間に析出した銅が固体電解質 16に溶解し、ドレイン電 極とソース電極の電気的接続が切れる。ドレイン電極とソース電極の電気的接続が 切れることで、固体電解質スイッチング素子がオフ状態になる。なお、電気的接続が 完全に切れる前の段階からドレイン電極およびソース電極間の抵抗が大きくなつたり 、電極間容量が変化したりするなど電気特性が変化し、最終的に電気的接続が切れ る。
[0028] 固体電解質スイッチング素子は、ソース電極およびドレイン電極間の距離をリソダラ フィ限界の最小値よりも小さい寸法にしている。ゲート電極およびソース電極間の距 離と、ゲート電極およびドレイン電極間の距離に比べて、ソース電極およびドレイン電 極間の距離を十分に小さくすることができる。そのため、オフ状態からオン状態にスィ ツチングする際、析出する金属がゲート電極とドレイン電極の間で接続されてしまう前 に、ソース電極とドレイン電極が接続される。オフ状態からオン状態への切り替えが従 来よりも安定するため、安定なスイッチング動作を繰り返すことができる。
[0029] また、固体電解質層 16のうち第 1配線 14、第 2配線 15および第 3配線 18のいずれ にも接触して 、な 、部位が金属拡散防止膜としての機能を有する絶縁層 11と金属 拡散防止膜 17の少なくとも 、ずれかで覆われて 、るため、金属イオンが周囲に拡散 しない。そのため、金属イオンが隣接する素子に影響を与えることを防ぐことができ、 本実施形態の固体電解質スイッチング素子を、他の素子とともに集積した回路に用 いることが可能となる。
[0030] なお、絶縁層 11を金属拡散防止膜としたが、絶縁層 11は複数の絶縁膜が積層さ れた構成であってもよい。この場合、最上層の絶縁膜が金属拡散防止膜の機能を有 している。
[0031] 次に、図 1Aおよび図 IBに示した固体電解質スイッチング素子 1の製造方法につ いて説明する。図 2Aから図 21は本実施形態の固体電解質スイッチング素子の製造 方法を示す平面図および断面図である。断面図は平面図中の破線 a— a'部を示す。
[0032] 従来の集積回路の製造方法によりトランジスタおよび抵抗等の半導体素子を有す る半導体回路を半導体基板に形成し、半導体素子同士の絶縁性を確保するための 下地絶縁膜を形成する。このように半導体回路とそれを保護するための下地絶縁膜 が形成された基板を、単に基板 10と称する。このように半導体回路を保護するため の絶縁膜を設けるのは、固体電解質スイッチング素子 1と半導体回路とを電気的に 分離するためである。
[0033] 下地絶縁膜は、従来の集積回路で用いられる絶縁性の材料であればよ!、。例えば 、シリコンと酸素の化合物であって、任意の量の水素、フッ素、炭素および窒素を添 カロした低誘電率絶縁膜が好ましい。低誘電率絶縁膜とは、シリコン酸ィ匕膜よりも誘電 率の低い絶縁膜である。なお、半導体回路と固体電解質スイッチング素子 1を電気 的に接続する部分に関しては図に示さないプラグが設けられている。プラグの構成お よび製造方法については従来と同様なため、ここではその詳細な説明を省略する。
[0034] 図 2Aに示すように、基板 10の上にシリコンナイトライドの絶縁層 11を膜厚 20〜: LO Onm形成する。この絶縁層 11は、シリコンナイトライドに限らず、その中に任意の量 の炭素を混ぜ込んだ材料であってもよ 、。絶縁層 11は金属イオンが基板 10へ拡散 するのを抑制する。
[0035] 続、て、次のようにして絶縁層 11上に開口部を有するレジストパターンを形成する 。絶縁層 11上にフォトレジストを塗布した後、露光処理を行う。そして、露光後のフォ トレジストに現像処理を行って、図 2Bに示すように第 1開口部パターン 22および第 2 開口部パターン 23を有するフォトレジスト 21を形成する。第 1開口部パターン 22と第 2開口部パターン 23との間隔がリソグラフイエ程における最小限界の距離になるよう にしている。その後、フォトレジスト 21に対して等方的なエッチング特性を有する第 1 のドライエッチングを行って、第 1開口部パターン 22および第 2開口部パターン 23の 開口面積を拡大する(図 2C)。この第 1のドライエッチングの条件については、従来の エッチング装置を用いてエッチングガスの最適化により求めることが可能である。
[0036] そして、開口面積の拡大した第 1開口部パターン 22および第 2開口部パターン 23 の上力も絶縁層 11に対して第 2のドライエッチングを行うことで、図 2Dに示すように 絶縁層 11に第 1開口部 12および第 2開口部 13を形成する。第 1開口部 12および第 2開口部 13の間隔は、リソグラフィ限界の最小値に形成された図 2Bのフォトレジスト パターン 21よりもさらに小さい距離に形成されている。エッチング条件の最適化により その間隔を 30〜15nm程度にまで縮小できた。続いて、酸剥離やアツシングの処理 によりフォトレジストを除去することで、図 2Eに示すように、上記微小な距離だけ隔て られた第 1開口部 12および第 2開口部 13が絶縁層 11に形成される。
[0037] ここで、上記微小な距離だけ隔てられた第 1開口部 12および第 2開口部 13を絶縁 層 11に形成するための別の方法について説明する。第 1開口部パターン 22および 第 2開口部パターン 23を有するフォトレジスト 21を絶縁層 11上に形成する。第 1開口 部パターン 22と第 2開口部パターン 23との間隔は、図 2Bに示した構成と同様にフォ トリソ限界の最小値に形成されている。そして、絶縁層 11に対して異方性のエツチン グ特性の第 1のドライエッチングを行って、第 1開口部パターン 22に対応する第 1予 備開口部と第 2開口部パターン 23に対応する第 2予備開口部を絶縁層 11に形成す る。続いて、等方性のエッチング特性を有する第 2のドライエッチングを行って第 1予 備開口部と第 2予備開口部の開口面積を拡大させ、第 1開口部 12および第 2開口部 13を絶縁層 11に形成する。その後、フォトレジスト 21を除去して、図 2Eに示した構 造が作製される。
[0038] この方法でも、第 1開口部 12および第 2開口部 13の間隔をリソグラフィ限界の最小 値よりもさらに小さい距離に形成することができる。そして、エッチング条件の最適化 によりその間隔を 30〜 15nm程度にまで縮小できた。
[0039] 図 2Eに示したように第 1開口部 12および第 2開口部 13を絶縁層 11に形成した後、 次のようにして第 1配線 14および第 2配線 15を形成する。少なくとも第 1開口部 12お よび第 2開口部 13を埋め込むようにして配線材料を堆積させた後、第 1開口部 12お よび第 2開口部 13以外の部位に形成された配線材料を取り除く。
[0040] 配線材料としては、従来の集積回路の配線に用いられる金属と同種のものであれ ば特にその種類を問わず、配線としての機能を果たせればよい。特にチタンおよびタ ンタルの少なくとも 、ずれかの金属を含む配線は他の配線との整合性力 力つた。ま た、チタンおよびタンタルの少なくともいずれかの金属とその金属の窒化物との積層 膜による配線も他の配線と整合性がょカゝつた。
[0041] 第 1開口部 12および第 2開口部 13以外の部位に形成された配線材料を取り除くた めの方法として、従来の集積回路の配線形成工程で用いられる CMP (Chemical a nd Mechanical Polishing :化学 ·機械的研磨)法が好適である。 CMP法を用い て絶縁層 11の上面が露出するまで配線材料を研磨することで、第 1開口部 12および 第 2開口部 13以外の部位に形成された配線材料を取り除く。
[0042] このようにして、図 2Fに示すように、第 1開口部 12に配線材料が埋め込まれた第 1 配線 14と第 2開口部 13に配線材料が埋め込まれた第 2配線 15を絶縁層 11に形成 する。第 1配線 14と第 2配線 15とは上記微小な距離だけ離れている。
[0043] 続いて、第 1配線 14および第 2配線 15に接触する固体電界質層 16を次のようにし て絶縁層 11上に形成する。レーザー蒸着法またはスパッタリング法により固体電解 質層を成膜した後、不要な部位を取り除く。これらの方法であれば固体電解質層の 成膜温度は摂氏 350度以下である。固体電解質層 16の膜厚は 5〜200nm程度で あればよい。固体電解質層 16の材料としては、金属または半導体と、酸素、硫黄、セ レンおよびテルル等のカルコゲン元素との化合物が好ましい。特に、銅、タングステン 、タンタル、モリブデン、クロム、チタンおよびコバルト等の金属の硫化物、酸化物およ び酸硫ィ匕物などは好適である。酸硫ィ匕物は任意の硫黄—酸素比を持って 、る。
[0044] 絶縁層 11上に固体電解質層を形成した後、所望のパターンを有するフォトレジスト を通常のリソグラフイエ程で形成する。そして、ドライまたはウエットのエッチングを行つ て固体電解質層の不要な部位を取り除いて、固体電解質層 16のパターンを形成す る。その後、フォトレジストを除去することで、図 2Gに示す構造になる。
[0045] 続いて、固体電解質層 16を覆うようにして金属拡散防止膜 17を形成し、リソグラフ イエ程およびエッチング工程で金属拡散防止膜 17をパターユングして、図 2Hに示 す構造を形成する。その際、金属拡散防止膜 17が固体電解質層 16を覆うようにして いる。なお、ここで、リソグラフイエ程およびエッチング工程を行って金属拡散防止膜 17をパターユングして、形成した金属拡散防止膜の一部を除去しているが、第 1配 線 14および第 2配線 15上に金属拡散防止膜 17を残しておいてもよい。
[0046] さらに、リソグラフイエ程で所定の開口パターンを有するフォトレジストを金属拡散防 止膜 17上に形成する。その際、開口パターンが固体電解質層 16の上部に位置する ようにしている。その後、フォトレジストの上力も異方性のエッチングを行って開口部を 金属拡散防止膜 17に形成する。このようにして金属拡散防止膜 17に開口部を形成 して固体電解質層 16の表面の一部を露出させた後、フォトレジストを除去する。
[0047] 続いて、固体電解質層 16に接触する第 3配線 18を次のようにして形成する。配線 材料として銅、または銅を含む金属を用いるが、ここでは銅を用いる。少なくとも固体 電解質層 16上に銅を膜厚 5〜200nm形成する。続いて、固体電解質層 16の形成 方法と同様にして、銅の上に所望のパターンを有するフォトレジストを通常のリソダラ フイエ程で形成し、ドライまたはウエットのエッチングを行って銅の不要な部位を取り 除いて第 3配線 18を固体電解質層 16上に形成する。その後、フォトレジストを除去 することで、図 21に示す構造になる。なお、第 1配線 14および第 2配線 15と第 3配線 18との距離については、リソグラフイエ程で第 3配線 18に対応するフォトレジストのパ ターンを形成する際に所望の距離に設定することで制御可能である。その際、フォト レジストパターンが銅に転写されるときの寸法差であるエッチング変換差を考慮して、 フォトレジストのパターンを設定する。
[0048] 上述の製造方法により、図 1Aおよび図 1Bに示した固体電解質スイッチング素子 1 が作製される。第 1配線 14と第 2配線 15とをリソグラフィ限界の最小値よりも小さい距 離だけ離して形成することができた。また、第 1配線 14および第 2配線 15と第 3配線 1 8との距離をリソグラフイエ程で制御することができる。
[0049] なお、本実施形態の固体電解質スイッチング素子の他の構成例について説明する 。図 3は本実施形態における固体電解質スイッチング素子の他の構成例を示す平面 図および断面図である。なお、図 1 Aおよび図 1Bに示した固体電解質スイッチング素 子と同様な構成については同一の符号を付し、その詳細な説明を省略する。また、 図 3の a— a'部に第 3配線 18が配置されていないが、図 1Aおよび図 1Bの場合と同 様に、説明のために図 3の断面図に、金属拡散防止膜 17の開口部を介して設けられ た第 3配線 18を表示している。
[0050] 図 3に示す固体電解質スイッチング素子は、絶縁層 11と固体電解質層 16の間に 第 2絶縁層 31が形成されて!、る。第 2絶縁層 31には固体電解質層 16を第 1配線 14 および第 2配線 15に接触させるための開口部となる第 4開口部 32が設けられている 。第 2絶縁層 31上に形成された固体電解質層 16は第 4開口部 32を介して第 1配線 14および第 2配線 15に接触して 、る。図 3に示した固体電解質スイッチング素子は、 第 3配線 18から供給される金属イオンにより金属の析出可能な領域が第 4開口部 32 内の固定電解質層に限定される。そのため、必要最小限の金属の析出量でオフ状 態力 オン状態への動作が可能になり、固体電解質スイッチング素子の動作がより安 定化する。
[0051] 次に、図 3に示した固体電解質スイッチング素子の製造方法について簡単に説明 する。図 2Fに示したように第 1配線 14および第 2配線 15を形成した後、金属拡散防 止膜の第 2絶縁層 31を形成する。続いて、リソグラフイエ程で所定の開口を有するレ ジストパターンを形成する。その際、開口位置が第 1配線 14および第 2配線 15のそ れぞれの一部に力かるようにする。その後、レジストパターンの上力 異方性のエッチ ングを行って第 4開口部 32を第 2絶縁層 31に形成する。第 4開口部 32が形成される ことで、第 1配線 14および第 2配線 15の表面の一部が露出する。そして、フォトレジス トを除去し、図 2Gで説明したのと同様にして固体電解質層 16を形成する。
[0052] (第 2実施形態)
本実施形態の固体電解質スイッチング素子の構成について説明する。
[0053] 図 4Aおよび図 4Bは本実施形態の固体電解質スイッチング素子の一構成例を示 す図である。図 4Aはその平面図であり、図 4Bは図 4Aに示す破線 a— a'部の断面図 である。
[0054] 図 4Aおよび図 4Bに示すように、固体電解質スイッチング素子 101は、第 1配線層 1 03に設けられた第 3配線と、第 1絶縁層 104に設けられた固体電解質層 141と、第 2 配線層 105に設けられた第 1配線 145および第 2配線 146とを有する構成である。第 1配線層 103、第 1絶縁層 104および第 2配線層 105が順に形成されて 、る。
[0055] 第 1配線層 103は、第 1保護絶縁膜 110、層間絶縁膜 111およびストップ絶縁膜 11 2が順に形成されている。金属イオンを供給するためのアノードとなる第 3配線は、銅 132aと銅の拡散を防止するためのノリアメタル 131aとを有する構成である。銅 132a の側壁および底面はノリアメタル 13 laで覆われている。なお、第 3配線は銅 132aと ノリアメタル 131aで形成されている力 銅 132aが固体電解質スイッチング素子で重 要な役割を果たすため、以下では第 3配線を符号 132aで示す。ノリアメタル 13 laと しては、チタン、チタンナイトライド、タンタル、およびタンタルナイトライドの少なくとも V、ずれかを含む材料であることが望ま 、。これらの材料は銅の拡散を防止するから である。したがって、ノリアメタル 131aは、電子を伝導するための配線として機能を 有しているだけでなぐ金属拡散防止膜としての機能も有する。
[0056] 第 1絶縁層 104は、第 2保護絶縁膜 113、第 2層間絶縁膜 115および第 2ストップ絶 縁膜 116が順に形成されている。固体電解質層 141は第 2保護絶縁膜 113に設けら れた開口の第 3開口部 140を介して第 3配線 132aの銅と接触している。固体電解質 層 141の側壁は、金属拡散防止膜として機能するカバー絶縁膜 114で覆われている
[0057] 第 2配線層 105は、金属拡散防止膜の機能を有する第 3保護絶縁膜 117、第 3層 間絶縁膜 118および第 3ストップ絶縁膜 119が順に形成されている。第 1配線 145お よび第 2配線 146は第 3保護絶縁膜 117に形成されている。第 1配線 145と第 2配線 146は所定の距離だけ離れて配置され、両配線は固体電解質層 141と接触している 。第 1配線 145および第 2配線 146間の距離は、第 1実施形態と同様にリソグラフィ限 界の最小値よりも小さい寸法である。具体的には 30〜15nmである。第 1配線 145お よび第 2配線 146を引き出すための引出配線が第 3層間絶縁膜 118および第 3ストツ プ絶縁膜 119に設けられて 、る。弓 I出配線は銅 136と銅の拡散を防止するためのバ リアメタル 135とを有する構成である。銅 136の側壁および底面はノリアメタル 135で 覆われている。
[0058] 第 1絶縁層 104の厚さは第 1配線 145および第 2配線 146間の距離よりも大きい。ま た、固体電解質層 141のうち第 1配線 141、第 2配線 146および第 3配線のいずれか と接触しているところ以外の部位力 Sカバー絶縁膜 114および第 3保護絶縁膜 117のう ち!ヽずれかで覆われて!/、る。 [0059] 固体電解質 141は、第 2保護絶縁膜 113、第 2層間絶縁膜 115および第 2ストップ 絶縁膜 116が積層された多層絶縁膜に埋め込まれている。また、第 3配線 132aは、 第 1保護絶縁膜 110、層間絶縁膜 111およびストップ絶縁膜 112が積層された多層 絶縁膜に埋め込まれている。
[0060] なお、本実施形態の固体電解質スイッチング素子 101の動作は第 1実施形態の場 合と同様であるため、その詳細な説明を省略する。
[0061] 図 4Aおよび図 4Bに示した固体電解質スイッチング素子 101では、ソース電極とな る第 1配線 145とドレイン電極となる第 2配線 146が上記微小な距離だけ隔てられて いる。この距離は、金属イオンを供給するゲート電極となる第 3配線 132aと第 1配線 1 45および第 2配線 146との距離、すなわちビア層 104の高さに比べて十分小さいた め、固体電解質スイッチング素子の動作がより安定ィ匕した。
[0062] また、固体電解質層 141のうち第 1配線 141、第 2配線 146および第 3配線のいず れにも接触して 、な 、部位力 Sカバー絶縁膜 114および第 3保護絶縁膜 117の 、ず れかの金属拡散防止膜で覆われているため、金属イオンが周囲に拡散しない。その ため、金属イオンが隣接する素子に影響を与えることを防ぐことができ、本実施形態 の固体電解質スイッチング素子を、他の素子とともに集積した回路に用いることが可 能となる。
[0063] 次に、図 4Aおよび図 4Bに示した固体電解質スイッチング素子 101 ^^積回路に 適用した構成について説明する。なお、ここでは、集積回路の一部として半導体回路 同士を接続するためのビア構造を示す。
[0064] 図 5は固体電解質スイッチング素子とビア構造とを示す断面図である。なお、図 4A および図 4Bに示した構成と同様な構成については同一の符号を付し、その詳細な 説明を省略する。
[0065] 図 5に示すように、集積回路は、固体電解質スイッチング素子 101と、配線同士を 接続するためのビア構造 102とを有する構成である。ビア構造 102は、第 1配線層 10 3に設けられた第 1の回路配線と、第 2配線層 105に設けられた第 2の回路配線と、 第 1の回路配線および第 2の回路配線を接続するビアプラグとを有する。ビアプラグ は第 1絶縁層 104に形成されて 、る。このビアプラグが形成された層をビア層と称す る。
[0066] 第 1の回路配線は銅 132,と銅の拡散を防ぐためのノリアメタル 131,とを有する。
銅 132'の底面および側壁はバリアメタル 131 'で覆われている。この銅 132'は第 3 配線の銅 132aと同種の材料であり、ノリアメタル 131,は第 3配線のバリアメタル 131 aと同種の材料である。
[0067] ビアプラグは銅 134,と銅の拡散を防ぐためのノ リアメタル 133,とを有する。銅 134
,の底面および側壁はノ リアメタル 133,で覆われている。
[0068] 第 2の回路配線は銅 136,と銅の拡散を防ぐためのノリアメタル 135,とを有する。
銅 136'の底面および側壁はバリアメタル 135'で覆われている。この銅 136'は引出 配線の銅 136と同種の材料であり、ノリアメタル 135,は引出配線のバリアメタル 135 と同種の材料である。
[0069] 図 5に示した集積回路は、固体電解質スイッチング素子 101とビア構造 102の製造 方法において、多層配線工程の一部の工程を共通化できる構造になっている。
[0070] なお、図 4A、図 4Bおよび図 5に示す構成では、第 1配線層 103および第 2配線層 105 ^^積回路中の配線層とした力 ビア層であってもよい。つまり、 2層のビア層お よびその間の配線層からなる構造に対応して固体電解質スイッチング素子が形成さ れてもよい。
[0071] 次に、図 5に示した固体電解質スイッチング素子とビア構造の製造方法について説 明する。
[0072] 図 6Aから図 6Pは固体電解質スイッチング素子とビア構造の製造方法を示す断面 図である。
[0073] 第 1配線層 103を次のようにして形成する。
[0074] 下部に形成された配線 (不図示)を保護するための第 1保護絶縁膜 110、低誘電率 膜となる第 1層間絶縁膜 111、第 1ストップ絶縁膜 112を順に堆積する。第 1保護絶 縁膜 110の材料としては、例えば、シリコンナイトライド、または膜中に任意の量の炭 素を混ぜ込んだ材料など、銅の酸ィ匕膜中への拡散を抑制する材料が好ましい。なお 、この第 1保護絶縁膜 110には、銅の酸ィ匕膜中への拡散を抑制する効果に加えて、 後述の固体電解質層 141に対する水素ァニール耐性を確保する効果もある。膜厚 は 20〜: LOOnm程度であればよい。
[0075] 第 1層間絶縁膜 111は、シリコンと酸素の化合物であって、任意の量の水素、フッ 素、および炭素等の少なくとも 、ずれかを添加した低誘電率絶縁膜であることが好ま しい。空孔を含むような膜であればさらによい。膜中に空孔を含むような膜ではさらに 誘電率が下がることが知られている。空孔の大きさは、 2nm以下であることが好まし い。第 1層間絶縁膜 111の膜厚は、 50〜250nm程度である。第 1ストップ絶縁膜 11 2はシリコン酸ィ匕膜でよぐ膜厚は 50〜200nm程度でよい。第 1ストップ絶縁膜 112 は CMPの終点検出と CMP時の第 1層間絶縁膜 111の保護の役割を果たす。
[0076] 続いて、以下のようにして第 1保護絶縁膜 110、第 1層間絶縁膜 111、および第 1ス トップ絶縁膜 112に開口部を形成する。第 1ストップ絶縁膜 112上にフォトレジストを 塗布した後、露光処理を行う。そして、露光後のフォトレジストに現像処理を行って、 開口部を有するフォトレジストを形成する。そのフォトレジストを介してエッチングを行 うことにより、開口部を形成する。例えば、 90nm世代のリソグラフィ技術では、開口部 の直径は 80〜200nm程度である。
[0077] フォトレジストを除去した後、形成した開口部にノ リアメタルと、銅の一部となる銅シ 一ド層をスパッタリング法で形成する。ノ リアメタル 131aとバリアメタル 131,は同一種 類の材料となる。ノ リアメタル 131a、 131,はタンタルナイトライドとタンタルの積層膜 であり、開口部の底面および側壁を覆うように形成される。ノ リアメタル 131a、 131, は銅が第 1層間絶縁膜 111中へ拡散するのを防ぐ。タンタルナイトライドおよびタンタ ルの膜厚は 5〜30nm程度である。銅シード層の厚みは 20〜100nm程度である。
[0078] 続いて、銅シード層上に銅をメツキ法で形成する。銅 132aと銅 132'は同一工程で 形成される。銅の膜厚は 300〜800nm程度である。その後、 CMP法により第 1ストツ プ絶縁膜 112上のノ リアメタルおよび銅を研磨して、開口部以外の不要なバリアメタ ルおよび銅を除去する。
[0079] このようにして、第 1保護絶縁膜 110、第 1層間絶縁膜 111、および第 1ストップ絶縁 膜 112に設けられた開口部にバリアメタル 131a、 131'と銅 132a、 132'が埋め込ま れた第 1配線層 103が形成される。固体電解質スイッチング素子形成領域にはバリア メタル 131aおよび銅 132aからなる第 3配線が形成され、ビア構造形成領域にはバリ ァメタル 131'および銅 132'からなる第 1の回路配線が形成される。その後、第 1配線 層 103の上に第 2保護絶縁膜 113を形成する(図 6A)。第 2保護絶縁膜 113は第 1 保護絶縁膜 110と果たす役割が同じであるため第 1保護絶縁膜 110と同様な構成で ある。膜厚は 20〜: LOOnmである。
[0080] 続、て、第 2保護絶縁膜 113上に第 2層間絶縁膜 115および第 2ストップ絶縁膜 11 6を順に形成することで、第 2保護絶縁膜 113、第 2層間絶縁膜 115および第 2ストツ プ絶縁膜 116からなる第 1絶縁層 104が形成される。第 2層間絶縁膜 115の膜厚は 5 0〜250nm程度である。第 2層間絶縁膜 115は、第 1層間絶縁膜 111と果たす役割 が同じであるため第 1層間絶縁膜 111と同様な構成である。第 2ストップ絶縁膜 116 は、第 1ストップ絶縁膜 112と果たす役割が同じであるため第 1ストップ絶縁膜 112と 同様な構成である。膜厚は 50〜200nm程度である。
[0081] さらに、第 3開口部 140を次のようにして形成する。第 2ストップ絶縁膜 116上にフォ トレジストを塗布した後、露光処理を行う。そして、露光後のフォトレジストに現像処理 を行って、開口部を有するフォトレジストを形成する。そのフォトレジストを介してエツ チングを行うことにより、第 3開口部 140を第 1絶縁層 104に形成する(図 6Β)。 90η m世代のリソグラフィ技術では、第 3開口部 140の直径は 80〜200nm程度である。
[0082] 続いて、第 3開口部 140の側壁および底面を完全に覆うようにカバー絶縁膜 114を 堆積する(図 6C)。カバー絶縁膜 114は、第 1保護絶縁膜 110と同様の役割を果た す膜がよいため、第 1保護絶縁膜 110と同様な構成である。膜厚は 10〜50nmであ る。
[0083] さらに、異方性の高いエッチングを行うことにより、第 2ストップ絶縁膜 116上および 第 3開口部 140底面に形成されたカバー絶縁膜 114を除去する。異方性の高いエツ チングには、反応性イオンエッチングなどのドライエッチングが有効である。このように して、第 3開口部 140の側壁のみを完全に覆うカバー絶縁膜 114が形成される(図 6 D)。
[0084] 続いて、図 6Eに示すように、第 3開口部 140を完全に埋めるように固体電解質層 1 41を形成する。固体電解質層 141の形成方法および材料は第 1実施形態と同様で ある。第 3開口部 140を埋め込むために形成する固体電解質層 141の膜厚を、第 2 保護絶縁膜 113、第 2層間絶縁膜 115および第 2ストップ絶縁膜 116から構成される 第 1絶縁層 104の膜厚の総和以上にする。第 1絶縁層 104の膜厚は 100〜400nm 程度である。固体電解質層 141の材料は、第 1実施形態と同様である。成膜温度は 摂氏 350度以下である。
[0085] 成膜した固体電解質層 141のうち、 CMP法により第 3開口部 140以外の不要な固 体電解質層 141を除去した。このようにして、固体電解質層 141が、第 2保護絶縁膜 113、第 2層間絶縁膜 115および第 2ストップ絶縁膜 116から構成される第 1絶縁層 ( ビア層) 104に設けられた第 3開口部 140中のカバー絶縁膜 114内に埋め込まれて 形成される(図 6F)。上述したように、固体電解質層 141の高さは 100〜400nmとな る。
[0086] 続いて、第 1絶縁層(ビア層) 104にビアプラグを以下のようにして形成する。第 2ス トップ絶縁膜 116上にフォトレジストを塗布した後、露光処理を行う。そして、露光後 のフォトレジストに現像処理を行って、開口部を有するフォトレジストを形成する。その フォトレジストを介してエッチングを行うことにより、図 6Gに示すように開口部 142を第 1絶縁層 104に形成する(図 6G)。 90nm世代のリソグラフィ技術では、開口部 142の 直径は 80〜200nm程度である。
[0087] 形成した開口部 142にバリアメタル 133'および銅 134'の一部となる銅シード層をス ノ ッタリング法で形成する。ノ リアメタルは、タンタルナイドライドおよびタンタルの積 層構造であり、開口部 142の底面および側壁を覆うように形成される。ノリアメタルは 、銅が第 1絶縁層 104中へ拡散するのを防ぐ役割を果たしている。タンタルナイトライ ドおよびタンタルの膜厚は 5〜30nm程度である。銅シード層の膜厚は 20〜100nm 程度である。その後、銅メツキを行う(図 6H)。銅の膜厚は 300〜800nm程度である
[0088] 続いて、 CMP法により開口部 142以外の不要なノ リアメタルおよび銅を除去し、第 1絶縁層 104にバリアメタル 133'および銅 134'からなるビアプラグが形成される(図 6 1)。
[0089] その後、図 6Jに示すように第 1絶縁層 104の上に第 3保護絶縁膜 117を形成する。
第 3保護絶縁膜 117は第 1保護絶縁膜 110と同様の役割を果たす膜がよいため、第 1保護絶縁膜 110と同様な構成である。膜厚は 20〜: LOOnmである。
[0090] 続いて、第 1実施形態と同様にして、第 3保護絶縁膜 117に上記微小な距離だけ 隔てられた第 1開口部 143および第 2開口部 144を形成する(図 6K)。第 1開口部 14 3および第 2開口部 144を形成する際、固体電解質 141の表面の一部が露出するよ うにする。第 1開口部 143および第 2開口部 144の間隔を、リソグラフィ限界の最小値 よりも小さくでき、条件の最適化により 30〜15nm程度に形成した。
[0091] 第 1配線 145および第 2配線 146を以下のようにして形成する。第 1開口部 143、第 2開口部 144および第 3保護絶縁膜 117を覆うように配線材料を堆積させる(図 6L)。 配線材料としては、従来の集積回路の配線に用いられる金属と同種のものであれば 特にその種類を問わず、配線としての機能を果たせればよい。特にチタンおよびタン タルの少なくとも 、ずれかの金属を含む配線は他の配線との整合性がよ力つた。また 、チタンおよびタンタルの少なくともいずれかの金属とその金属の窒化物との積層膜 による配線も他の配線と整合性がょカゝつた。続いて、第 1開口部 143および第 2開口 部 144以外の箇所に形成された配線材料を CMP法により除去する。このようにして 第 3保護絶縁膜 117に上記微小な距離だけ離れて配置された第 1配線 145および 第 2配線 146が形成される(図 6M)。
[0092] さらに、第 2配線層 105を次のようにして形成する。第 3保護絶縁膜 117の上に第 3 層間絶縁膜 118および第 3ストップ絶縁膜 119を順に堆積する(図 6N)。第 3層間絶 縁膜 118の膜厚は 50〜250nm程度である。第 3層間絶縁膜 118は、第 1層間絶縁 膜 111と果たす役割が同じであるため第 1層間絶縁膜 111と同様な構成である。第 3 ストップ絶縁膜 119は、第 1ストップ絶縁膜 112と果たす役割が同じであるため第 1ス トップ絶縁膜 112と同様な構成である。膜厚は 50〜200nm程度である。
[0093] そして、第 3ストップ絶縁膜 119上にフォトレジストを塗布した後、露光処理を行う。
そして、露光後のフォトレジストに現像処理を行って、開口部を有するフォトレジストを 形成する。そのフォトレジストを介してエッチングを行うことにより、固体電解質スィッチ ング素子形成領域には第 1配線 145および第 2配線 146の上の第 3層間絶縁膜 118 および第 3ストップ絶縁膜 119に開口部を形成する。また、ビア構造形成領域には第 3保護絶縁膜 117、第 3層間絶縁膜 118および第 3ストップ絶縁膜 119に開口部を形 成する(図 60)。 90nm世代のリソグラフィ技術では、開口部の直径は 80〜200nm 程度である。なお、開口部を形成する際、絶縁膜をエッチングする条件でエッチング を行ったため、第 1配線 145および第 2配線 146に対する削れが抑制された。
[0094] フォトレジストを除去した後、形成した開口部にノリアメタルと、銅の一部となる銅シ 一ド層をスパッタリング法で形成する。ノリアメタル 135とバリアメタル 135,は同一種 類の材料となる。ノリアメタル 135、 135'はタンタルナイトライドとタンタルの積層膜で あり、開口部の底面および側壁を覆うように形成される。ノリアメタル 135、 135,は銅 が第 3層間絶縁膜 118中へ拡散するのを防ぐ。タンタルナイトライドおよびタンタルの 膜厚は 5〜 30nm程度である。銅シード層の厚みは 20〜 1 OOnm程度である。
[0095] 続いて、銅シード層上に銅をメツキ法で形成する。銅 136と銅 136'は同一工程で 形成される。銅の膜厚は 300〜800nm程度である。その後、 CMP法により第 3ストツ プ絶縁膜 119上のノリアメタルおよび銅を研磨して、開口部以外の不要なバリアメタ ルおよび銅を除去する。このようにして、第 2配線層 105が形成され、固体電解質スィ ツチング素子形成領域にノ リアメタル 135および銅 136からなる引出配線が形成され 、ビア構造形成領域にノリアメタル 135'および銅 136'からなる第 2の回路配線が形 成される(図 6P)。
[0096] その後、図 5に示したように、第 2配線層 105の上に第 4保護絶縁膜 120、第 4層間 絶縁膜 121、第 4ストップ絶縁膜 122および第 5保護絶縁膜 123からなる保護層 106 を形成する。第 4保護絶縁膜 120および第 5保護絶縁膜 123は第 1保護絶縁膜 110 と果たす役割が同じであるため第 1保護絶縁膜 110と同様な構成である。膜厚は 20 〜: LOOnm程度である。第 4層間絶縁膜 121は、第 1層間絶縁膜 111と果たす役割が 同じであるため第 1層間絶縁膜 111と同様な構成である。膜厚は 50〜250nm程度 である。第 4ストップ絶縁膜 122は、第 1ストップ絶縁膜 112と果たす役割が同じであ るため第 1ストップ絶縁膜 112と同様な構成である。膜厚は 50〜200nm程度である。
[0097] なお、本実施形態では引出配線を第 2配線層 105に形成した力 第 1絶縁層 104 の層に形成してもよい。また、引出配線を第 2配線層 105と第 1絶縁層 104の両方に 設けてもよい。
[0098] 上述した製造方法により、本実施形態の固体電解質スイッチング素子 101が作製さ れる。リソグラフィ限界を超えた微小な距離だけ隔てられた第 1配線 145および第 2配 線 146が第 3保護絶縁膜 117に埋め込まれた配線構造を実現できた。また、ゲート 電極の第 3配線 132aおよびソース電極の第 1配線 145間の距離と、ゲート電極の第 3配線 132aおよびドレイン電極の第 2配線 146間の距離は、ビア層 104の厚みで決 定される力 ソース電極およびドレイン電極間の距離に比べて十分大きい。
[0099] 以上の方法により形成された配線構造を用いた 3端子固体電解質スイッチング素 子 101は、ゲート電極およびソース電極(またはドレイン電極)間の距離に比べてソー ス電極およびドレイン電極間の距離が十分に小さくなり、安定なスイッチング動作を 繰り返すことができた。さらに、第 1配線 145および第 2配線 146が埋め込まれた第 3 保護絶縁膜 117と固体電解質層 141の間に、第 4開口部を有する第 2絶縁層を挿入 した構造は、金属イオンが析出可能な領域が第 4開口部内に限定されるため、スイツ チング動作の安定ィ匕に有効であった。
[0100] さらに、第 3配線 132aの形成工程をはじめとして、多層配線製造工程と共通化でき る工程が多いことと、追加マスク数が 2枚と最小限に抑えられたこと、絶縁膜中への原 子拡散の抑制および水素ァニール耐性の対策がなされたことにより、最小限の追カロ コストで製造ラインへの導入が可能となった。ここにおいて明らかにされたように、特 殊な工程は必要とされておらず、従来の集積回路の多層配線を形成する技術を有 するものであれば、以上の工程を問題なく行うことができるであろう。
[0101] (第 3実施形態)
本実施形態の固体電解質スイッチング素子の構成について説明する。
[0102] 図 7Aおよび図 7Bは本実施形態の固体電解質スイッチング素子の一構成例を示 す図である。図 7Aはその平面図であり、図 7Bは図 7Aに示す破線 a— a'部の断面図 である。
[0103] 図 7Aおよび図 7Bに示す構造では、図に示さない基板上に第 1配線層 203、第 1 絶縁層 204、第 2配線層 205および保護層 206が順に形成されている。本実施形態 の固体電解質スイッチング素子は、保護層 206に設けられた第 1配線 245、第 2配線 246および固体電解質層 241と、第 2配線層 205に設けられた第 3配線とを有する構 成である。 [0104] 保護層 206は、第 4保護絶縁膜 220、第 4層間絶縁膜 221、第 4ストップ絶縁膜 22 2、第 5保護絶縁膜 223が順に形成された構成である。第 1配線 245および第 2配線 246は第 4保護絶縁膜 220に形成されている。第 1配線 245と第 2配線 246は所定の 距離だけ離れて配置され、両配線は固体電解質層 241と接触している。第 1配線 24 5および第 2配線 246間の距離は、第 1実施形態と同様にリソグラフィ限界の最小値 よりも小さ 、寸法である。具体的には 30〜 15nmである。
[0105] 固体電解質層 241は、第 4層間絶縁膜 221および第 4ストップ絶縁膜 222に設けら れ、第 1配線 245および第 2配線 246と接触している。固体電解質層 241の側面は力 バー絶縁膜 214で覆われ、固体電解質層 241の上面は第 5保護絶縁膜 223で覆わ れている。また、固体電解質層 241の底面は、第 1配線 245および第 2配線 246のい ずれにも接触して 、な 、部位が第 4保護絶縁膜 220で覆われて 、る。第 4保護絶縁 膜 220、第 5保護絶縁膜 223およびカバー絶縁膜 214は金属拡散防止膜としての機 能を有している。
[0106] 第 2配線層 205は、第 3保護絶縁膜 217、第 3層間絶縁膜 218および第 3ストップ絶 縁膜 219が順に形成されている。第 1配線 245および第 2配線 246を引き出すため の引出配線が第 3層間絶縁膜 218および第 3ストップ絶縁膜 219に設けられている。 引出配線は銅 236と銅の拡散を防止するためのノリアメタル 235とを有する構成であ る。銅 236の側壁および底面はノリアメタル 235で覆われている。また、第 3配線が第 3層間絶縁膜 218および第 3ストップ絶縁膜 219に設けられている。第 3配線は銅 23 6aと銅の拡散を防止するためのノリアメタル 235aとを有する構成である。銅 236aの 側壁および底面はノリアメタル 235aで覆われている。第 3配線の銅 236aは、第 4保 護絶縁膜 220に設けられた第 3開口部 240を介して固体電解質層 241と接触してい る。なお、第 3配線は銅 236aとバリアメタル 235aで形成されている力 銅 236aが固 体電解質スイッチング素子で重要な役割を果たすため、以下では第 3配線を単に符 号 236aで示す。
[0107] 第 3配線 236aと第 1配線 245および第 2配線 246との距離を第 1配線 245および第 2配線 246間の距離よりも大きくしている。第 3配線 236aと第 1配線 245および第 2配 線 246との距離は第 3配線 236aをパターユングする際のリソグラフイエ程で設定され る。
[0108] 第 1配線層 203は、保護絶縁膜 210、層間絶縁膜 211およびストップ絶縁膜 212が 順に形成されている。第 1絶縁層 204は、第 2保護絶縁膜 213、第 2層間絶縁膜 215 および第 2ストップ絶縁膜 216が順に形成されている。
[0109] なお、本実施形態の固体電解質スイッチング素子 201の動作は第 1実施形態の場 合と同様であるため、その詳細な説明を省略する。
[0110] 図 7Aおよび図 7Bに示した固体電解質スイッチング素子 201では、ソース電極とな る第 1配線 245とドレイン電極となる第 2配線 246が上記微小な距離だけ隔てられて いる。この距離は、金属イオンを供給するゲート電極となる第 3配線 236aと第 1配線 2 45および第 2配線 246との距離よりも小さいため、固体電解質スイッチング素子の動 作がより安定ィ匕した。
[0111] また、固体電解質層 241のうち第 1配線 245、第 2配線 246および第 3配線のいず れにも接触していない部位が第 4保護絶縁膜 220、カバー絶縁膜 214および第 5保 護絶縁膜 223のいずれかで覆われているため、金属イオンが周囲に拡散しない。そ のため、金属イオンが隣接する素子に影響を与えることを防ぐことができ、本実施形 態の固体電解質スイッチング素子を、他の素子とともに集積した回路に用いることが 可能となる。
[0112] 次に、図 7Aおよび図 7Bに示した固体電解質スイッチング素子 201を集積回路に 適用した構成について説明する。なお、ここでは集積回路の一部として半導体回路 同士を接続するためのビア構造を示す。
[0113] 図 8は固体電解質スイッチング素子とビア構造とを示す断面図である。なお、図 7A および図 7Bに示した構成と同様な構成については同一の符号を付し、その詳細な 説明を省略する。
[0114] 図 8に示すように、集積回路は、固体電解質スイッチング素子 201と、配線同士を 接続するためのビア構造 202とを有する構成である。ビア構造 202は、第 1配線層 20 3に設けられた第 1の回路配線と、第 2配線層 205に設けられた第 2の回路配線と、 第 1の回路配線および第 2の回路配線を接続するビアプラグとを有する。ビアプラグ は第 1絶縁層 204に形成されて 、る。このビアプラグが形成された層をビア層と称す る。
[0115] 第 1の回路配線は銅 232,と銅の拡散を防ぐためのノリアメタル 231,とを有する。
銅 232'の底面および側壁はバリアメタル 231 'で覆われている。ビアプラグは銅 234 ,と銅の拡散を防ぐためのノリアメタル 233 'とを有する。銅 234 'の底面および側壁 はノリアメタル 233 'で覆われている。第 2の回路配線は銅 236 'と銅の拡散を防ぐた めのバリアメタル 235,とを有する。銅 236,の底面および側壁はバリアメタル 235,で 覆われている。この銅 236 'は引出配線の銅 136および第 3配線の銅 236aと同種の 材料であり、ノリアメタル 235,は引出配線のバリアメタル 135および第 3配線のバリア メタル 235aと同種の材料である。
[0116] 本実施形態の固体電解質スイッチング素子と第 2実施形態との相違は、固体電解 質層 241に金属イオンを供給する第 3配線 236aおよびその上部に形成された固体 電解質層 241と、第 4保護絶縁膜 220に埋め込まれた第 1配線 245および第 2配線 2 46との、多層配線内での位置関係である。
[0117] 第 2実施形態においては、固体電解質層 141に金属イオンを供給する第 3配線 13 2aおよびその上部に形成された固体電解質層 141と、第 3保護絶縁膜 117に埋め 込まれた第 1配線 145および第 2配線 146との位置関係は、同一鉛直軸内にあった 。これに対して、本実施形態においては、第 4保護絶縁膜 220に埋め込まれた第 1配 線 245および第 2配線 246は固体電解質層 241の下部に配置され、かつ同様に固 体電解質層 241の下部に配置された第 3配線 236aとは、面内の離れた箇所に配置 されて 、ることを特徴として!/、る。
[0118] 本実施形態では、第 1配線 245および第 2配線 246と第 3配線 236aとの距離につ いて第 3配線 236aを配置する位置で任意に設定可能である。これに対し、第 2実施 形態では、第 1配線 145および第 2配線 146と第 3配線 132aとの距離が固体電解質 層 141の膜厚で決まる。
[0119] 本実施形態の固体電解質スイッチング素子は、第 2実施形態と比べて、第 1配線 2 45および第 2配線 246と第 3配線 236aとの距離を制御することが容易となった。第 3 配線 236aより供給される金属イオンがその距離を拡散するため、その距離を制御す ることによりスイッチング特性を決定できる。これにより、集積回路中の固体電解質ス イッチング素子の特性を制御することが可能となった。特に、第 1配線 245および第 2 配線 246と第 3配線 236aとの距離を従来よりも大きくすることは、オフ状態力もオン状 態へのスイッチングを起こりにくくするのに有効であった。
[0120] また、第 1配線 245、第 2配線 246および第 3配線 236aの上部に固体電解質層 24 1が形成されるため、素子形成可能な箇所が配線層中に限らなくなり、素子形成の自 由度が高まった。このことにより近年の主流であるデュアルダマシンによる配線形成 工程にも十分対応可能となった。特に、多層配線工程完了後に素子を形成可能とな つた。このことは、新材料導入のリスク低減とも相まって、コスト低減にもつながった。
[0121] 次に、図 8に示した固体電解質スイッチング素子とビア構造の製造方法について説 明する。
[0122] 図 9Aから図 9Dは固体電解質スイッチング素子とビア構造の製造方法を示す断面 図である。なお、第 2実施形態と共通する工程についてはその詳細な説明を省略す る。
[0123] 最上層に絶縁膜が形成された基板 (不図示)の上に第 1配線層 203および第 1絶 縁層 204を形成する。その際、ビア構造 202形成領域では第 2実施形態と同様にし て第 1配線層 203に第 1の回路配線を形成し、第 1絶縁層(ビア層) 204にビアプラグ を形成する。
[0124] 続いて、第 2実施形態の第 2配線層 105の形成方法と同様にして第 2配線層 205を 形成する。その際、固体電解質スイッチング素子 201の形成領域には、引出配線の 他に第 3配線を形成する。この第 3配線の形成方法は引出配線と同様である。そして 、第 2配線層 205の上に第 4保護絶縁層 220を形成する(図 9A)。第 4保護絶縁膜 2 20を、シリコンナイトライド、またはシリコンナイトライドに任意の量の炭素を混ぜ込ん だ材料で形成する。第 4保護絶縁膜 220は銅の酸ィ匕膜中への拡散を抑制する。膜 厚は 20〜: LOOnmである。なお、第 3配線は引出配線から所定の距離だけ離れた位 置に形成されるため、図 9Aに示すように第 3配線を破線で示している。
[0125] その後、図 9Bに示すように、第 2実施形態と同様にして第 4保護絶縁膜 220に第 1 配線 245および第 2配線 246を上記微小な距離だけ離して形成する。
[0126] さらに、第 4保護絶縁膜 220上に第 4層間絶縁膜 221および第 4ストップ絶縁膜 22 2を順に形成する。第 4ストップ絶縁膜 222上にフォトレジストを塗布した後、露光処 理を行う。そして、露光後のフォトレジストに現像処理を行って、開口部を有するフォト レジストを形成する。そのフォトレジストを介してエッチングを行うことにより、第 4層間 絶縁膜 221および第 4ストップ絶縁膜 222に第 3開口部 247を形成する。第 3開口部 247を形成することにより、第 1配線 245、第 2配線 246および第 3配線 236aの一部 が露出した。フォトレジストを除去した後、カバー絶縁膜 214を形成する。さら〖こ、異 方性のエッチングを行って、カバー絶縁膜 214を第 3開口部 247の側壁に残す。(図 9C)。
[0127] 続いて、第 3開口部 247を埋めるように固体電解質層 241を成膜した後、 CMP法 により第 3開口部 247以外の不要な部位に形成された固体電解質層を除去した。そ して、第 4ストップ絶縁膜 222上に第 5保護絶縁膜 223を形成する(図 9D)。第 5保護 絶縁膜 223は、第 4保護絶縁膜 220と同様に銅の拡散を防ぐ役割を果たすため、第 4保護絶縁膜 220と同様な材料で形成される。
[0128] 上述した製造方法により、本実施形態の固体電解質スイッチング素子 201が作製さ れる。リソグラフィ限界を超えた微小な距離だけ隔てられた第 1配線 245および第 2配 線 246が絶縁層 220に埋め込まれた配線構造を実現できた。また、第 2実施形態と 比べて、ゲート電極の第 3配線 236aおよびソース電極の第 1配線 245間の距離と、 ゲート電極の第 3配線 236aおよびドレイン電極の第 2配線 246間の距離を自由に制 御することが容易となった。
[0129] また、第 1配線 245および第 2配線 246および第 3配線 236aの上部に固体電解質 層 241が形成されるため、素子形成可能な箇所が配線層中に限らなくなり、素子形 成の自由度が高まった。特に、多層配線工程完了後に素子を形成可能となった。こ のことは、新材料導入のリスク低減とも相まって、コスト低減にもつながった。以上の 方法により形成された配線構造を用いた 3端子固体電解質スイッチング素子 200は、 安定なスイッチング動作を繰り返すことができた。
[0130] さらに、第 3配線 236aの形成工程をはじめとして、多層配線製造工程と共通化でき る工程が多いことと、追加マスク数が 2枚と最小限に抑えられたこと、絶縁膜中への原 子拡散の抑制および水素ァニール耐性の対策がなされたことにより、最小限の追カロ コストで製造ラインへの導入が可能となった。上述したように、本実施形態では特殊 な工程を必要とせず、従来の集積回路の多層配線を形成する技術を有するものであ れば、以上の工程を問題なく行うことが可能である。
[0131] (第 4実施形態)
本実施形態の固体電解質スイッチング素子の構成について説明する。
[0132] 図 10Aおよび図 10Bは本実施形態の固体電解質スイッチング素子の一構成例を 示す図である。図 10Aはその平面図であり、図10 は図10八に示す破線&ー&'部の 断面図である。
[0133] 本実施形態の固体電解質スイッチング素子 301は、第 3実施形態の固体電解質層 の膜厚を第 3実施形態よりも薄くした構成である。本実施形態では、固体電解質層の 膜厚を制御可能にしている。なお、第 1配線層 303は第 3実施形態の第 1配線層 20 3に対応し、第 1絶縁層 304は第 1絶縁層 204に対応し、第 2配線層 305は第 2配線 層 205に対応し、保護層 306は保護層 206に対応している。各層における膜の材料 および種類は第 3実施形態と同様であるため、その詳細な説明を省略する。
[0134] 本実施形態では、固体電解質層 341の上面および側面はカバー絶縁膜 314で覆 われている。また、固体電解質層 341の底面は、第 1配線 345および第 2配線 346の V、ずれにも接触して 、な 、部位が第 4保護絶縁膜 320で覆われて 、る。第 4保護絶 縁膜 320およびカバー絶縁膜 314は金属拡散防止膜の機能を有している。
[0135] なお、本実施形態の固体電解質スイッチング素子 301の主な動作は第 1実施形態 の場合と同様であるため、その詳細な説明を省略する。
[0136] 本実施形態の固体電解質スイッチング素子 301は、固体電解質層 341のうち第 1 配線 345、第 2配線 346および第 3配線の 、ずれにも接触して 、な 、部位が第 4保 護絶縁膜 320およびカバー絶縁膜 314のいずれかの金属拡散防止膜で覆われてい るため、金属イオンが周囲に拡散しない。そのため、金属イオンが隣接する素子に影 響を与えることを防ぐことができ、本実施形態の固体電解質スイッチング素子を、他の 素子とともに集積した回路に用いることが可能となる。
[0137] 次に本実施形態の固体電解質スイッチング素子 301の製造方法について簡単に 説明する。固体電解質層 341の形成方法以外については第 3実施形態と同様であ るため、その詳細な説明を省略する。
[0138] 図 9Bで示した工程の後、固体電解質層を所望の膜厚だけ第 4保護絶縁膜 320に 形成する。リソグラフイエ程およびエッチング工程により所望のパターンに固体電解 質層を加工し、図 10Aに示す固体電解質層 341を形成する。そして、カバー絶縁膜 314を形成した後、第 4層間絶縁膜 321、第 4ストップ絶縁膜 322および第 5保護絶 縁膜 323を形成する。このようにして、図 10Bに示す固体電解質スイッチング素子 30 1が作製される。
[0139] 次に、図 10Aおよび図 10Bに示した固体電解質スイッチング素子 301 ^^積回路 に適用した構成について説明する。なお、ここでは集積回路の一部として半導体回 路同士を接続するためのビア構造を示す。
[0140] 図 11は固体電解質スイッチング素子とビア構造とを示す断面図である。なお、図 1
OAおよび図 10Bに示した構成と同様な構成については同一の符号を付し、その詳 細な説明を省略する。
[0141] 図 11に示すように、集積回路は、固体電解質スイッチング素子 301と、配線同士を 接続するためのビア構造 302とを有する構成である。なお、ビア構造 302は第 3実施 形態のビア構造 202と対応しているため、その詳細な説明を省略する。
[0142] 本実施形態の固体電解質スイッチング素子と第 3実施形態との相違は、固体電解 質層 341の加工方法である。第 3実施形態においては、第 2配線層 205上に形成さ れた、第 4保護絶縁層 220、第 4層間絶縁膜 221および第 4ストップ絶縁膜 222の 3 層に設けられた第 3開口部 247に固体電解質層 241が埋め込まれた構成である。こ れに対して、本実施形態においては、第 1配線 345、第 2配線 346および第 3配線に 接触するように固体電解質層を堆積した後、固体電解質層のうち不要な部位を除去 して、図 10A、図 10Bおよび図 11に示すような固体電解質層 341を形成することを 特徴としている。
[0143] 本実施形態の固体電解質スイッチング素子は、第 3実施形態と比べて、固体電解 質層 341の膜厚制御が容易となった。固体電解質層 341の膜厚制御により、第 1配 線 345および第 2配線 346に供給される金属イオンの量を制御することが可能となり 、スイッチング特性を調整することが可能となった。 [0144] また、固体電解質層 341の加工に CMP法を用いないため、固体電解質層 341へ のダメージが低減し、集積回路中の固体電解質スイッチング素子の信頼性が高まつ た。また、利用可能な固体電解質層 341の選択肢が広がり、コスト低下が実現できた
[0145] (第 5実施形態)
本実施形態の固体電解質スイッチング素子の構成について説明する。
[0146] 図 12Aおよび図 12Bは本実施形態の固体電解質スイッチング素子の一構成例を 示す図である。図 12Aはその平面図であり、図12 は図12八に示す破線&ー&'部の 断面図である。図 12Aおよび図 12Bに示す構造は、第 1配線層 403が第 4実施形態 の第 1配線層 303に対応し、第 1絶縁層 404が第 1絶縁層 304に対応し、第 2配線層 405が第 2配線層 305に対応し、保護層 406が保護層 306に対応している。各層に おける膜の種類および材料については第 4実施形態と同様であるため、その詳細な 説明を省略する。
[0147] 本実施形態の固体電解質スイッチング素子 401は、固体電解質層 441、第 1配線 4 45および第 2配線 446が第 2配線層 405に設けられている。また、第 3配線が第 1絶 縁層 404に設けられている。そして、第 1配線 445、第 2配線 446および第 3配線の 引出配線が第 1配線層 403に設けられている。第 3配線は銅 434aと銅の拡散を防止 するためのノリアメタル 433aとを有する構成である。さらに、第 1配線 445および第 2 配線 446のそれぞれを引出配線に接続するためのビアプラグが第 1絶縁層 404に設 けられている。
[0148] 本実施形態では、固体電解質層 441の上面および側面はカバー絶縁膜 414で覆 われている。また、固体電解質層 441の底面は、第 1配線 445および第 2配線 446の V、ずれにも接触して 、な 、部位が第 3保護絶縁膜 417で覆われて 、る。第 3保護絶 縁膜 417およびカバー絶縁膜 414は金属拡散防止膜の機能を有している。
[0149] なお、本実施形態の固体電解質スイッチング素子 401の主な動作は第 1実施形態 の場合と同様であるため、その詳細な説明を省略する。
[0150] 本実施形態の固体電解質スイッチング素子 401は、固体電解質層 441のうち第 1 配線 445、第 2配線 446および第 3配線の 、ずれにも接触して 、な 、部位が第 3保 護絶縁膜 417およびカバー絶縁膜 414の 、ずれかの金属拡散防止膜で覆われて!/ヽ るため、金属イオンが周囲に拡散しない。そのため、金属イオンが隣接する素子に影 響を与えることを防ぐことができ、本実施形態の固体電解質スイッチング素子を、他の 素子とともに集積した回路に用いることが可能となる。
[0151] 次に、図 12Aおよび図 12Bに示した固体電解質スイッチング素子 401を集積回路 に適用した構成について説明する。なお、ここでは集積回路の一部として半導体回 路同士を接続するためのビア構造を示す。
[0152] 図 13は固体電解質スイッチング素子とビア構造とを示す断面図である。なお、図 1
2Aおよび図 12Bに示した構成と同様な構成については同一の符号を付し、その詳 細な説明を省略する。
[0153] 図 13に示すように、集積回路は、固体電解質スイッチング素子 401と、配線同士を 接続するためのビア構造 402とを有する構成である。ビア構造 402は、第 1配線層 40 3に設けられた第 1の回路配線と、第 2配線層 405に設けられた第 2の回路配線と、 第 1の回路配線および第 2の回路配線を接続するビアプラグとを有する。ビアプラグ は第 1絶縁層 404に形成されて 、る。このビアプラグが形成された層をビア層と称す る。
[0154] 本実施形態の固体電解質スイッチング素子と第 4実施形態との相違点について説 明する。第 4実施形態では固体電解質層 341に金属イオンを供給する第 3配線 336 aが第 2配線層 305に設けられて ヽたのに対し、本実施形態では固体電解質層 441 に金属イオンを供給する第 3配線 434aが第 1絶縁層(ビア層) 404に設けられて 、る
[0155] 本実施形態の固体電解質スイッチング素子は、第 3配線をビア層に形成するように して 、るので、ビアホールのサイズ調整により固体電解質層 441に供給可能な金属 イオンの総量を第 4実施形態と比べてより制御しやすくなる。これにより、スイッチング 特性をより調整しやすくなる。また、供給可能な金属がビアプラグ形状に閉じ込めら れるため、多層配線材料である銅以外の金属も利用可能となり、金属種類を選ぶこと でスイッチング特性をさらに調整しやすくなる。
[0156] (第 6実施形態) 本実施形態の固体電解質スイッチング素子の構成について説明する。
[0157] 図 14Aおよび図 14Bは本実施形態の固体電解質スイッチング素子の一構成例を 示す図である。図 14Aはその平面図であり、図14 は図14八に示す破線&ー&'部の 断面図である。図 14Aおよび図 14Bに示す構造は、第 1配線層 503が第 4実施形態 の第 1配線層 303に対応し、第 1絶縁層 504が第 1絶縁層 304に対応し、第 2配線層 505が第 2配線層 305に対応し、保護層 506が保護層 306に対応している。各層に おける膜の種類および材料については第 4実施形態と同様であるため、その詳細な 説明を省略する。
[0158] 本実施形態の固体電解質スイッチング素子 501は、第 2保護絶縁膜 513に設けら れた第 1配線 545および固体電解質層 541と、第 1絶縁層 504に設けられた第 2配 線と、第 1配線層 503に設けられた第 3配線とを有する構成である。第 3配線は銅 53 2aと銅の拡散を防止するためのノリアメタル 53 laとを有する構成である。第 2配線は 銅 534と銅の拡散を防ぐためのノリアメタル 533とを有する構成である。以下では、 第 2配線を符号 533で示し、第 3配線を符号 532aで示す。
[0159] 本実施形態では、固体電解質層 541の上面および側面はカバー絶縁膜 514で覆 われている。また、固体電解質層 541の底面は、第 1配線 545および第 3配線 532a の 、ずれにも接触して 、な 、部位が第 2保護絶縁膜 513で覆われて 、る。第 2保護 絶縁膜 513およびカバー絶縁膜 514は金属拡散防止膜の機能を有している。
[0160] なお、本実施形態の固体電解質スイッチング素子 501の主な動作は第 1実施形態 の場合と同様であるため、その詳細な説明を省略する。
[0161] 本実施形態の固体電解質スイッチング素子 501は、固体電解質層 541のうち第 1 配線 545、第 2配線 533および第 3配線の 、ずれにも接触して 、な 、部位が第 2保 護絶縁膜 513およびカバー絶縁膜 514のいずれかの金属拡散防止膜で覆われてい るため、金属イオンが周囲に拡散しない。そのため、金属イオンが隣接する素子に影 響を与えることを防ぐことができ、本実施形態の固体電解質スイッチング素子を、他の 素子とともに集積した回路に用いることが可能となる。
[0162] 次に、図 14Aおよび図 14Bに示した固体電解質スイッチング素子 501を集積回路 に適用した構成について説明する。なお、ここでは集積回路の一部として半導体回 路同士を接続するためのビア構造を示す。
[0163] 図 15は固体電解質スイッチング素子とビア構造とを示す断面図である。なお、図 1 4Aおよび図 14Bに示した構成と同様な構成については同一の符号を付し、その詳 細な説明を省略する。
[0164] 図 15に示すように、集積回路は、固体電解質スイッチング素子 501と、配線同士を 接続するためのビア構造 502とを有する構成である。ビア構造 502は、第 1配線層 50 3に設けられた第 1の回路配線と、第 2配線層 505に設けられた第 2の回路配線と、 第 1の回路配線および第 2の回路配線を接続するビアプラグとを有する。ビアプラグ は第 1絶縁層 504に形成されている。このビアプラグが形成された層をビア層と称す る。
[0165] 本実施形態の固体電解質スイッチング素子と第 1実施形態から第 5実施形態との相 違点について説明する。最も大きな違いは、第 1配線と第 2配線の間隔の形成方法 である。第 1実施形態から第 5実施形態のうち代表例として第 1実施形態と比較すると 、第 1実施形態では第 1配線 14と第 2配線 15は微小な間隔だけ隔てられて絶縁層 1 1に形成されていた。これに対して、本実施形態では、第 1配線 545および第 2配線 5 33は固体電解質層 541により隔てられていることが特徴である。本実施形態では、 第 1配線 545は第 2保護絶縁膜 513に形成され、第 2配線 533はカバー絶縁膜 514 、第 2層間絶縁膜 515および第 2ストップ絶縁膜 516の 3層の絶縁膜に形成されてい る。そして、第 1配線 545および第 2配線 533は固体電解質層 541を挟むようにして 形成されている。また、第 3配線 532aは金属イオンを供給可能な材料で形成されて いる。そのため、オフ状態力もオン状態に遷移する際、金属イオンが第 3配線 532a 力も固体電解質層 541中を拡散し、第 1配線 545および第 2配線 533の間に析出し 、固体電解質スイッチング素子 501はオフ状態力 オン状態にスイッチング動作する
[0166] 本実施形態の固定電解質スイッチング素子は第 1実施形態から第 5実施形態の場 合と比べて、第 1配線と第 2配線の間隔を固体電解質層 541の膜厚で制御すること が可能である。
[0167] なお、第 1配線 545と第 2配線 533を隔てる層は、固体電解質を含んだ絶縁膜から 構成されるスぺーサ層であってもよい。挿入されたスぺーサ層の機能として、第 1配 線 545と第 2配線 533を電気的に分離でき、第 1配線 545と第 2配線 533が固体電解 質と接する部分にぉ 、て析出物を形成することができればよ 、。
[0168] 次に本実施形態の固体電解質スイッチング素子の製造方法について簡単に説明 する。なお、第 2実施形態や第 3実施形態と同様な工程についてはその詳細な説明 を省略する。
[0169] 最上層に絶縁膜が形成された基板 (不図示)の上に第 1配線層 503を構成する 3層 の絶縁膜を形成する。第 2実施形態と同様にして、固体電解質スイッチング素子形成 領域に引出配線と第 3配線 532aを形成し、ビア構造 502形成領域に第 1の回路配 線を形成する。引出配線は銅 532とバリアメタル 531とを有し、第 3配線は銅 532aと ノリアメタル 531aとを有する。
[0170] 続いて、第 1配線層 503の上に第 2保護絶縁膜 513を形成する。第 2保護絶縁膜 5 13を、シリコンナイトライド、またはシリコンナイトライドに任意の量の炭素を混ぜ込ん だ材料で形成する。第 2保護絶縁膜 513は銅の酸ィ匕膜中への拡散を抑制する。膜 厚は 20〜: LOOnmである。そして、第 2保護絶縁膜 513に、第 2実施形態と同様にし て、引出配線に接触する第 1配線 545を形成する。
[0171] その後、固体電解質層 541に金属イオンを供給する第 3配線 532aの一部が露出 するように、リソグラフイエ程とエッチング工程により第 3配線 532a上の第 2保護絶縁 膜 513に開口部を設ける。続いて、固体電解質層を堆積した後、リソグラフイエ程とェ ツチング工程により、図 14Aおよび図 14Bに示すような固体電解質層 541を形成す る。さら〖こ、固体電解質層 541および第 2保護絶縁膜 513を完全に覆うように、カバ 一絶縁膜 514を堆積する。カバー絶縁膜 514を、シリコンナイトライド、またはシリコン ナイトライドに任意の量の炭素を混ぜ込んだ材料で形成する。カバー絶縁膜 514は 銅の酸ィ匕膜中への拡散を抑制する。その後、カバー絶縁膜 514上に第 2層間絶縁 膜 515および第 2ストップ絶縁膜 516を堆積する。
[0172] 続いて、リソグラフイエ程およびエッチング工程により、カバー絶縁膜 514、第 2層間 絶縁膜 515および第 2ストップ絶縁膜に開口部を形成し、第 2実施形態と同様にして 、その開口部に第 2配線を形成する。第 2配線は銅 534とバリアメタル 533とを有する 構成である。ノリアメタル 533は銅 534の底面および側面を覆っている。また、第 2配 線を形成する際、第 2配線が第 1配線 545と固体電解質 541を介して対向する位置 になるようにしている。その後、第 2実施形態と同様にして、第 2配線層 505の固体電 解質スイッチング素子 501形成領域に第 2配線の引出配線を形成し、保護層 506を 形成する。
[0173] 上述の製造方法により、本実施形態の固体電解質スイッチング素子 501が作製さ れる。固体電解質層の膜厚をリソグラフィ限界の最小値よりも薄くすることで、リソダラ フィ限界を超えた微小な距離だけ隔てられた第 1配線 545および第 2配線 533がそ れぞれ別の絶縁膜に形成された配線構造を実現できた。第 1配線 545と第 2配線 53 3を隔てるものは、固体電解質層 541である。微小な間隔だけ隔てられた第 1配線と 第 2配線の間隔が固体電解質層 541の膜厚制御のみにより可能となった。膜厚制御 による間隔の設定は第 1実施形態のようなドライエッチングによる制御に比べて容易 であり、製造ばらつきが低減し、集積回路中の固体電解質スイッチング素子の歩留ま りがより高くなる。
[0174] また、ゲート電極の第 3配線 532aおよびソース電極の第 1配線 545間の距離と、ゲ ート電極の第 3配線 532aおよびドレイン電極の第 2配線 533間の距離を自由に制御 することが容易となった。第 3配線 532aより供給される金属イオンがその距離を拡散 するため、その距離を制御することによりスイッチング特性を決定できる。これにより、 集積回路中の固体電解質スイッチング素子の特性を制御することが可能となった。 特に、第 1配線 545および第 2配線 533と第 3配線 532aとの距離を従来よりも大きく することは、オフ状態力 オン状態へのスイッチングを起こりにくくするのに有効であ つた。したがって、固体電解質スイッチング素子 501は、より安定なスイッチング動作 を繰り返すことができる。
[0175] さらに、第 3配線 532aおよび第 2配線 533の形成工程をはじめとして、多層配線製 造工程と共通化できる工程が多いことと、絶縁膜中への原子拡散の抑制および水素 ァニール耐性の対策がなされたことにより、最小限の追加コストで製造ラインへの導 入が可能となった。上述したように、本実施形態では特殊な工程を必要とせず、従来 の集積回路の多層配線を形成する技術を有するものであれば、以上の工程を問題 なく行うことが可能である。
[0176] なお、上記第 1実施形態から第 6実施形態において、第 1配線をソース電極とし、第 2配線をドレイン電極として説明したが、第 2配線をソース電極とし、第 1配線をドレイ ン電極としてもよい。
[0177] また、本発明は上記実施例に限定されることなぐ発明の範囲内で種々の変形が可 能であり、それらも本発明の範囲内に含まれることはいうまでもない。

Claims

請求の範囲
[1] 所定の距離だけ離れて設けられた第 1電極および第 2電極と、
前記第 1電極および第 2電極に接触して設けられた固体電解質層と、
前記固体電解質層に接触して設けられ、金属イオンを供給可能な第 3電極と、 前記固体電解質層の表面のうち前記第 1電極、第 2電極および第 3電極のいずれ にも接触して 、な 、部位を覆った金属拡散防止膜と、
を有する固体電解質スイッチング素子。
[2] 金属拡散防止の機能を有する第 1絶縁層に設けられた第 1電極および第 2電極と、 前記第 1絶縁層よりも上層に設けられ、前記第 1電極および第 2電極に接触する固 体電解質層と、
前記固体電解質層を覆い、該固体電解質層の一部を露出させる開口部を有する 金属拡散防止膜と、
前記開口部を介して前記固体電解質層と接触し、金属イオンを供給可能な第 3電 極と、
を有する固体電解質スイッチング素子。
[3] 前記第 1絶縁層および固体電解質層の間に設けられ、該固体電解質層が前記第 1 電極および第 2電極と接触するための開口部が形成され、金属拡散防止の機能を有 する第 2絶縁層を備えた請求項 2記載の固体電解質スイッチング素子。
[4] 金属イオンを供給可能な第 3電極と、
前記第 3電極上に設けられ、該第 3電極と接触する固体電解質層と、
前記固体電解質層上に設けられ、該固体電解質層と接触する第 1電極および第 2 電極と、
前記固体電解質層の表面のうち前記第 1電極、第 2電極および第 3電極のいずれ にも接触して 、な 、部位を覆った金属拡散防止膜と、
を有する固体電解質スイッチング素子。
[5] 絶縁層に設けられた第 1電極および第 2電極、ならびに該絶縁層に設けられ、金属 イオンを供給可能な第 3電極を有する配線構造と、
前記配線構造上に設けられ、前記第 1電極、第 2電極および第 3電極に接触する 固体電解質層と、
前記固体電解質層の表面のうち前記第 1電極、第 2電極および第 3電極のいずれ にも接触して 、な 、部位を覆った金属拡散防止膜と、
を有する固体電解質スイッチング素子。
[6] 第 1絶縁層に設けられ、金属イオンを供給可能な第 3電極、ならびに該第 1絶縁層 上の第 2絶縁層に設けられた第 1電極および第 2電極を有する配線構造と、 前記配線構造上に設けられ、前記第 1電極、第 2電極および第 3電極に接触する 固体電解質層と、
前記固体電解質層の表面のうち前記第 1電極、第 2電極および第 3電極のいずれ にも接触して 、な 、部位を覆った金属拡散防止膜と、
を有する固体電解質スイッチング素子。
[7] 第 1電極と、
前記第 1電極上に設けられ、該第 1電極と接触し、固体電解質を含有するスぺーサ 層と、
前記スぺーサ層上に設けられ、該スぺーサ層と接触する第 2電極と、
前記スぺーサ層に接触して設けられ、金属イオンを供給可能な第 3電極と、 前記スぺーサ層の表面のうち前記第 1電極、第 2電極および第 3電極のいずれにも 接触して!/ヽな 、部位を覆った金属拡散防止膜と、
を有する固体電解質スイッチング素子。
[8] 前記スぺーサ層が絶縁膜を有する、請求項 7記載の固体電解質スイッチング素子
[9] 前記絶縁膜が、シリコンと任意量の窒素、酸素、炭素から構成される化合物、また は該化合物の組み合わせで構成される請求項 8記載の固体電解質スイッチング素子
[10] 金属拡散防止の機能を有する絶縁層に設けられた第 1電極と、
前記絶縁層上に設けられ、該第 1電極と接触する固体電解質層と、
前記固体電解質層を覆い、該固体電解質層の一部を露出させる開口部を有する 金属拡散防止膜と、 前記開口部を介して前記固体電解質層と接触する第 2電極と、
前記絶縁層に設けられた開口部を介して前記固体電解質層と接触し、金属イオン を供給可能な第 3電極と、
を有する固体電解質スイッチング素子。
[11] 前記第 3電極が銅を含む金属力もなる請求項 1から 10のいずれか 1項記載の固体 電解質スイッチング素子。
[12] 前記第 3電極が、前記固体電解質層と接触していない部位力 Sバリアメタルおよび金 属拡散防止膜の少なくとも 、ずれかで覆われて 、る、請求項 11記載の固体電解質 スイッチング素子。
[13] 前記バリアメタルが、タンタル、タンタルナイトライド、チタンおよびチタンナイトライド のうち少なくともいずれかを含む材料である、請求項 12記載の固体電解質スィッチン グ素子。
[14] 第 1電極および第 2電極が、タンタル、タンタルナイトライド、チタンおよびチタンナイ トライドのうち少なくともいずれかを含む材料である、請求項 1から 10のいずれか 1項 記載の固体電解質スイッチング素子。
[15] 前記第 1電極または第 2電極が銅を含む材料である、請求項 1から 10のいずれか 1 項記載の固体電解質スイッチング素子。
[16] 前記金属拡散防止膜が、シリコンと任意量の窒素、酸素、炭素から構成される化合 物膜である、請求項 1から 10のいずれ力 1項記載の固体電解質スイッチング素子。
[17] 前記第 1絶縁層が、シリコンと任意量の窒素、酸素、炭素から構成される化合物膜 である、請求項 2または 3記載の固体電解質スイッチング素子。
[18] 前記第 2絶縁層が、シリコンと任意量の窒素、酸素、炭素から構成される化合物膜 である、請求項 3記載の固体電解質スイッチング素子。
[19] 前記固体電解質および第 3電極の少なくともいずれか一方が、複数の絶縁膜が積 層された多層絶縁膜に埋め込まれた、請求項 1から 10のいずれか 1項記載の固体電 解質スイッチング素子。
[20] 前記多層絶縁膜は、シリコンと任意量の窒素、酸素、炭素から構成される化合物絶 縁膜、およびシリコン酸ィ匕膜よりも誘電率の低い低誘電率絶縁膜のうち少なくともい ずれかの絶縁膜を有する、請求項 19記載の固体電解質スイッチング素子。
[21] 前記低誘電率絶縁膜が、シリコンと酸素の化合物でフッ素、水素および炭素を含む 膜である、請求項 20記載の固体電解質スイッチング素子。
[22] 前記低誘電率絶縁膜が空孔を含む絶縁膜である、請求項 20記載の固体電解質ス イッチング素子。
[23] 前記空孔の直径が 2nm以下である、請求項 22記載の固体電解質スイッチング素 子。
[24] 前記固体電解質層が、金属または半導体元素とカルコゲン元素とを含む化合物で ある、請求項 1から 10のいずれか 1項記載の固体電解質スイッチング素子。
[25] 前記固体電解質層が、銅、タングステン、タンタル、モリブデン、クロム、チタンおよ びコバルト等の金属のうちいずれかの硫ィ匕物、酸化物、または任意の硫黄 酸素比 を持つ酸硫ィ匕物である、請求項 1から 10のいずれか 1項記載の固体電解質スィッチ ング素子。
[26] 前記 1から 10のいずれ力 1項記載の固体電解質スイッチング素子と、
配線およびビアプラグを有する多層配線とを備え、
前記第 3電極が前記配線と同一層に設けられ、
前記固体電解質層が前記ビアプラグと同一層に設けられた集積回路。
[27] 前記 1から 10のいずれ力 1項記載の固体電解質スイッチング素子と、
配線およびビアプラグを有する多層配線とを備え、
前記第 3電極が前記ビアプラグと同一層に設けられ、
前記固体電解質層が前記配線と同一層に設けられた集積回路。
[28] 前記 1から 10のいずれ力 1項記載の固体電解質スイッチング素子と、
複数の配線およびビアプラグを有する多層配線とを備え、
前記固体電解質層が、前記多層配線の最上配線層の上部の絶縁層と同一層に設 けられ、または該絶縁層の一部に埋め込まれて設けられた集積回路。
[29] 絶縁層上に所定の距離だけ離れた第 1開口パターン部および第 2開口パターン部 を有するレジストを形成する工程と、
第 1のエッチングにより前記第 1開口パターン部および第 2開口パターン部の開口 面積を拡大する工程と、
前記レジストをマスクとして前記絶縁層に第 2のエッチングを行って、該絶縁層に第 1開口部および第 2開口部を形成する工程と、
前記レジストを除去した後、前記第 1開口部および第 2開口部に配線材料を埋め込 んで、第 1電極および第 2電極を形成する工程と、
前記第 1電極と前記第 2電極に接触するように固体電解質層を形成する工程と、 前記固体電解質層を覆う金属拡散防止膜を形成する工程と、
前記金属拡散防止膜に第 3開口部を形成する工程と、
金属イオンを供給可能な配線材料を前記第 3開口部に埋め込んで第 3電極を形成 する工程と、
を有する固体電解質スイッチング素子の製造方法。
[30] 絶縁層上に所定の距離だけ離れた第 1開口パターン部および第 2開口パターン部 を有するレジストを形成する工程と、
前記レジストをマスクとして前記絶縁層に第 1のエッチングを行って、該絶縁層に第 1開口部および第 2開口部を形成する工程と、
前記絶縁層に第 2のエッチングを行って、前記第 1開口部および第 2開口部の開口 面積を拡大する工程と、
前記レジストを除去した後、前記第 1開口部および第 2開口部に配線材料を埋め込 んで、第 1電極および第 2電極を形成する工程と、
前記第 1電極と前記第 2電極に接触するように固体電解質層を形成する工程と、 前記固体電解質層を覆う金属拡散防止膜を形成する工程と、
前記金属拡散防止膜に第 3開口部を形成する工程と、
金属イオンを供給可能な配線材料を前記第 3開口部に埋め込んで第 3電極を形成 する工程と、
を有する固体電解質スイッチング素子の製造方法。
[31] 前記第 1電極および第 2電極の形成方法が、
少なくとも前記第 1開口部および第 2開口部に前記配線材料を埋め込む工程と、 前記第 1開口部と第 2開口部以外の箇所に形成された前記配線材料を取り除くェ 程とを有する請求項 29または 30に記載の固体電解質スイッチング素子の製造方法
[32] 第 1電極、第 2電極および第 3電極を有する固体電解質スイッチング素子の製造方 法であって、
第 1絶縁層に第 1の開口部を形成する工程と、
前記第 1の開口部に金属イオンの供給可能な配線材料を埋め込んで前記第 3電極 を形成する工程と、
前記第 1絶縁層上に第 2絶縁層を形成する工程と、
前記第 2絶縁層に第 2の開口部を形成する工程と、
前記第 2の開口部の側壁に金属拡散防止膜を形成する工程と、
前記第 2の開口部に固体電解質層を埋め込む工程と、
前記第 2絶縁層上に第 3絶縁層を形成する工程と、
前記第 3絶縁層上に所定の距離だけ離れた第 3開口パターン部および第 4開口パ ターン部を有するレジストを形成する工程と、
第 1のエッチングにより前記第 3開口パターン部および第 4開口パターン部の開口 面積を拡大する工程と、
前記レジストをマスクとして前記第 3絶縁層に第 2のエッチングを行って、該第 3絶縁 層に第 3の開口部および第 4の開口部を形成する工程と、
前記レジストを除去した後、前記第 3の開口部および第 4の開口部に配線材料を埋 め込んで前記第 1電極および第 2電極を形成する工程と、
を有する固体電解質スイッチング素子の製造方法。
[33] 第 1電極、第 2電極および第 3電極を有する固体電解質スイッチング素子の製造方 法であって、
第 1絶縁層に第 1の開口部を形成する工程と、
前記第 1の開口部に金属イオンの供給可能な配線材料を埋め込んで前記第 3電極 を形成する工程と、
前記第 1絶縁層上に第 2絶縁層を形成する工程と、
前記第 2絶縁層に第 2の開口部を形成する工程と、 前記第 2の開口部の側壁に金属拡散防止膜を形成する工程と、
前記第 2の開口部に固体電解質層を埋め込む工程と、
前記第 2絶縁層上に第 3絶縁層を形成する工程と、
前記第 3絶縁層上に所定の距離だけ離れた第 3開口パターン部および第 4開口パ ターン部を有するレジストを形成する工程と、
前記レジストをマスクとして前記第 3絶縁層に第 1のエッチングを行って、該第 3絶縁 層に第 3の開口部および第 4の開口部を形成する工程と、
前記第 3絶縁層に第 2のエッチングを行って、前記第 3の開口部および第 4の開口 部の開口面積を拡大する工程と、
前記レジストを除去した後、前記第 3の開口部および第 4の開口部に配線材料を埋 め込んで前記第 1電極および第 2電極を形成する工程と、
を有する固体電解質スイッチング素子の製造方法。
[34] 前記第 3電極の形成方法が、
少なくとも前記第 1の開口部に前記配線材料を埋め込む工程と、
前記第 1の開口部以外の箇所に形成された前記配線材料を取り除く工程とを有す る請求項 32または 33に記載の固体電解質スイッチング素子の製造方法。
[35] 前記第 1電極および第 2電極の形成方法が、
少なくとも前記第 3の開口部および第 4の開口部に前記配線材料を埋め込む工程 と、
前記第 3の開口部と第 4の開口部以外の箇所に形成された前記配線材料を取り除 く工程とを有する請求項 32または 33に記載の固体電解質スイッチング素子の製造 方法。
[36] 前記配線材料を取り除く工程で化学 ·機械的研磨法を用 ヽる、請求項 31に記載の 固体電解質スイッチング素子の製造方法。
[37] 前記配線材料を取り除く工程で化学 ·機械的研磨法を用 ヽる、請求項 34に記載の 固体電解質スイッチング素子の製造方法。
[38] 前記配線材料を取り除く工程で化学 ·機械的研磨法を用 ヽる、請求項 35に記載の 固体電解質スイッチング素子の製造方法。
PCT/JP2006/300420 2005-01-17 2006-01-16 固体電解質スイッチング素子およびその製造方法ならびに集積回路 WO2006075731A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/814,053 US7804085B2 (en) 2005-01-17 2006-01-16 Solid electrolyte switching element, and fabrication method of the solid electrolyte element, and integrated circuit
JP2006553000A JP5211483B2 (ja) 2005-01-17 2006-01-16 固体電解質スイッチング素子およびその製造方法ならびに集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005009430 2005-01-17
JP2005-009430 2005-01-17

Publications (1)

Publication Number Publication Date
WO2006075731A1 true WO2006075731A1 (ja) 2006-07-20

Family

ID=36677751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300420 WO2006075731A1 (ja) 2005-01-17 2006-01-16 固体電解質スイッチング素子およびその製造方法ならびに集積回路

Country Status (3)

Country Link
US (1) US7804085B2 (ja)
JP (1) JP5211483B2 (ja)
WO (1) WO2006075731A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051105A1 (ja) * 2007-10-19 2009-04-23 Nec Corporation スイッチング素子、およびスイッチング素子の製造方法
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ
WO2013103122A1 (ja) * 2012-01-05 2013-07-11 日本電気株式会社 スイッチング素子及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919146B2 (ja) * 2005-09-27 2012-04-18 独立行政法人産業技術総合研究所 スイッチング素子
JP5120874B2 (ja) * 2007-06-22 2013-01-16 株式会社船井電機新応用技術研究所 スイッチング素子
JP2009021436A (ja) * 2007-07-12 2009-01-29 Hitachi Ltd 半導体装置
JP5502339B2 (ja) * 2009-02-17 2014-05-28 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
KR20110008553A (ko) * 2009-07-20 2011-01-27 삼성전자주식회사 반도체 메모리 장치 및 그 제조 방법
US8737114B2 (en) * 2012-05-07 2014-05-27 Micron Technology, Inc. Switching device structures and methods
US10833270B1 (en) * 2019-05-07 2020-11-10 International Business Machines Corporation Lateral electrochemical cell with symmetric response for neuromorphic computing
CN110610984B (zh) * 2019-09-23 2023-04-07 中国科学院宁波材料技术与工程研究所 一种突触晶体管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2002536840A (ja) * 1999-02-11 2002-10-29 アリゾナ ボード オブ リージェンツ プログラマブルマイクロエレクトロニックデバイスおよびその形成およびプログラミング方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子
WO2003094227A1 (en) * 2002-04-30 2003-11-13 Japan Science And Technology Agency Solid electrolyte switching device, fpga using same, memory device, and method for manufacturing solid electrolyte switching device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239382A (ja) * 1990-02-16 1991-10-24 Seiko Epson Corp スイッチング用非線形抵抗素子の製造方法
US6487106B1 (en) 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
JP2001274160A (ja) 2000-03-24 2001-10-05 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2004031866A (ja) 2002-06-28 2004-01-29 Trecenti Technologies Inc 半導体集積回路装置
JP4156880B2 (ja) * 2002-08-02 2008-09-24 独立行政法人科学技術振興機構 電界効果トランジスタ
KR100778950B1 (ko) * 2003-07-18 2007-11-22 닛본 덴끼 가부시끼가이샤 스위칭 소자, 스위칭 소자의 구동 방법, 논리 집적 회로 및 메모리 소자
JP5135796B2 (ja) * 2004-12-28 2013-02-06 日本電気株式会社 スイッチング素子、および書き換え可能な論理集積回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512058A (ja) * 1996-05-30 2000-09-12 アクソン テクノロジーズ コーポレイション プログラマブルメタライゼーションセル構造およびその作製方法
JP2001525606A (ja) * 1997-12-04 2001-12-11 アクソン テクノロジーズ コーポレイション プログラム可能なサブサーフェス集合メタライゼーション構造およびその作製方法
JP2002536840A (ja) * 1999-02-11 2002-10-29 アリゾナ ボード オブ リージェンツ プログラマブルマイクロエレクトロニックデバイスおよびその形成およびプログラミング方法
JP2003092387A (ja) * 2001-09-19 2003-03-28 Akira Doi イオン伝導体のイオン伝導を利用した記憶素子
WO2003094227A1 (en) * 2002-04-30 2003-11-13 Japan Science And Technology Agency Solid electrolyte switching device, fpga using same, memory device, and method for manufacturing solid electrolyte switching device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAKAMOTO T. ET AL.: "A nonvolatile programmable solid electrolyte nanometer switch", SOLID-STATE CIRCUITS CONFERENCE, 2004. DIGEST OF TECHNICAL PAPERS. ISSCC. 2004 IEEE INTERNATIONAL, 15 February 2004 (2004-02-15), pages 290 - 299, XP010722267 *
SAKAMOTO T. ET AL.: "Nanometer-scale switches copper sulfide", APPLIED PHYSICS LETTERS, vol. 82, no. 18, 5 May 2003 (2003-05-05), pages 3032 - 3034, XP001170600 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051105A1 (ja) * 2007-10-19 2009-04-23 Nec Corporation スイッチング素子、およびスイッチング素子の製造方法
US8237147B2 (en) 2007-10-19 2012-08-07 Nec Corporation Switching element and manufacturing method thereof
WO2012039284A1 (ja) * 2010-09-22 2012-03-29 独立行政法人物質・材料研究機構 電気化学トランジスタ
JP2012069612A (ja) * 2010-09-22 2012-04-05 National Institute For Materials Science 電気化学トランジスタ
WO2013103122A1 (ja) * 2012-01-05 2013-07-11 日本電気株式会社 スイッチング素子及びその製造方法

Also Published As

Publication number Publication date
JPWO2006075731A1 (ja) 2008-06-12
US7804085B2 (en) 2010-09-28
JP5211483B2 (ja) 2013-06-12
US20090020742A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP5211483B2 (ja) 固体電解質スイッチング素子およびその製造方法ならびに集積回路
TWI575789B (zh) 電阻式隨機存取記憶胞及其製造方法
JP5502320B2 (ja) スイッチング素子およびスイッチング素子の製造方法
JP5565570B2 (ja) スイッチング素子、スイッチング素子の製造方法および半導体装置
JP2011238828A (ja) 半導体装置及びその製造方法
CN100452351C (zh) 制造半导体器件的方法
KR100621630B1 (ko) 이종 금속을 이용하는 다마신 공정
KR100297966B1 (ko) 다층 배선구조를 형성하는 방법
JP5999768B2 (ja) 半導体装置及びその製造方法
WO2013103122A1 (ja) スイッチング素子及びその製造方法
JP5493703B2 (ja) スイッチング素子およびスイッチング素子を用いた半導体装置
KR20020076810A (ko) 반도체소자의 구리 배선 제조방법
JP5807789B2 (ja) スイッチング素子、半導体装置およびそれぞれの製造方法
US20190181182A1 (en) Rectifying element and switching element having the rectifying element
TWI753433B (zh) 用於形成在立體記憶體元件中的接觸結構的方法
JP2004186590A (ja) 半導体装置及びその製造方法
KR20040061817A (ko) 반도체소자의 금속배선 형성방법
US10490743B2 (en) Crossbar switch and method of manufacturing the same and semiconductor device
US8237147B2 (en) Switching element and manufacturing method thereof
KR100334962B1 (ko) 반도체소자의 금속배선 형성방법_
US11804406B2 (en) Top via cut fill process for line extension reduction
KR100398570B1 (ko) 강유전체 커패시터의 제조방법
KR20050033340A (ko) 상변환 기억 소자의 형성 방법
KR20070045578A (ko) 반도체 소자의 제조방법
KR20030066999A (ko) 반도체 소자의 금속배선 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11814053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711701

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711701

Country of ref document: EP