WO2006075639A1 - ディスク装置 - Google Patents

ディスク装置 Download PDF

Info

Publication number
WO2006075639A1
WO2006075639A1 PCT/JP2006/300251 JP2006300251W WO2006075639A1 WO 2006075639 A1 WO2006075639 A1 WO 2006075639A1 JP 2006300251 W JP2006300251 W JP 2006300251W WO 2006075639 A1 WO2006075639 A1 WO 2006075639A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
disk
head
hub
recording medium
Prior art date
Application number
PCT/JP2006/300251
Other languages
English (en)
French (fr)
Inventor
Kenichi Miyamori
Shigeo Obata
Hiromitsu Noda
Yoshihiro Ueno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006520573A priority Critical patent/JPWO2006075639A1/ja
Priority to US11/570,000 priority patent/US7787214B2/en
Publication of WO2006075639A1 publication Critical patent/WO2006075639A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/022Positioning or locking of single discs
    • G11B17/028Positioning or locking of single discs of discs rotating during transducing operation
    • G11B17/0287Positioning or locking of single discs of discs rotating during transducing operation by permanent connections, e.g. screws, rivets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/038Centering or locking of a plurality of discs in a single cartridge

Definitions

  • the present invention relates to a disk apparatus used for reading and writing information. More specifically, the disc-shaped recording medium provided in the disc device
  • the present invention relates to a thin clamp structure for fixing a disk to a disk in a disk device in which a head for recording and reproduction is disposed on at least one surface side of V, V).
  • FIG. 16 is a cross-sectional view showing a first example of a clamp structure in a conventional disk drive.
  • the clamp member 3 clamps the disc 1 between the disc pressing portion 3 g and the disc receiving surface 2 e of the hub 2 by the axial force of the screw 4.
  • the disc 1 is integrally fixed to the hub 2 by the frictional force of the contact portion of each member.
  • This disk shift is one of the factors that cause the runout of the disk 1.
  • a disk shift occurs, a large eccentricity occurs in the data track originally provided coaxially with the rotation center axis, making it difficult to accurately follow the data track of the magnetic head (not shown).
  • the present disc 1 Since the development trend of the technology aims to further reduce the flying height of the head against the flying height of several tens of nanometers (nm) of the head on the surface, the hub 2, the clamp member 3, and the disk 1
  • the surface roughness is fine, it is preferable, but the disk shift can not be suppressed by roughening the surface roughness of the hub 2 and one surface of the clamp member 3 or the disk 1 (increasing the coefficient of friction).
  • a method of increasing the axial force was adopted because the cost increase can not be avoided. .
  • the central axis of the disk pressing portion 3g is coaxial with the central axis of the disk 2 and the disk receiving surface 2e of the disk 2.
  • the disc 1 is inserted into a disc insertion portion 2 a which is a central projecting portion of the hub 2.
  • One side of the disk 1 is received by the disk receiving surface 2 e of the hub 2.
  • the clamp member 3 is mounted coaxially with the disk 1 on the other surface of the disk 1 and is clamped between the screw 4 and a screw (female screw) 2 c provided on the rotating shaft 9 of the hub 2.
  • the screw 4 is inserted into the female screw 2c of the rotary shaft 9 rotating the inner peripheral surface of the bearing sleeve 8. An axial force is generated when tightening.
  • the axial force is from the screw head bearing surface 4c to the bottom surface near the central hole 3a of the clamp member 3.
  • the pressure is transmitted to 3f, and the other side of the disk 1 is pressed by the disk pressing portion 3g, and the clamp member 3 coaxially and integrally fixes the disk 1 to the hub 2.
  • a permanent magnet 7 which is a component of a motor for rotating the hub 2 is fixed to an outer peripheral portion of the hub 2.
  • the hub 2 is made of a martensitic steel force.
  • the central hole of the disk 1 and the outer peripheral cylindrical portion of the hub insertion portion 9 a of the rotary shaft portion 9 slightly smaller than the central hole diameter of the disk 1 Position and fit.
  • the hub insertion portion 9a of the rotary shaft portion 9 and the clamp member 3 having a diameter slightly larger than the diameter of the hub insertion portion 9a Position and fit the center hole 3a.
  • Positioning is realized by arranging the hub insertion portion 9a and the clamp member 3 so as to have a force allowance.
  • a force gauge is provided to prevent the clamp member 3 from shifting in the direction perpendicular to the central axis (ie, in the radial direction of the disk 1).
  • the clamp member 3 is deformed by a thickness excluding a force allowance and is tightened by a screw 4.
  • FIG. 17 is a cross-sectional view showing a second example of the clamp structure in the conventional disk device.
  • the structure of the second example is different from the first example in that a plurality of screws are arranged on the circumference of the clamp member 3 in order to suppress the runout in the rotational axis direction of the disk 1 due to the inclination of the clamp member 3. It is the point which arranged four.
  • the above-described conventional disk device uses a disk provided with recording areas on both sides, in addition to a plurality of disks, in order to realize large capacity with the configuration provided with only one disk.
  • the configuration used is also adopted.
  • the disk and the spacer are alternately stacked between the groove and the clamp member, and the outer circumferential area of the clamp member pushes the disk and the spacer in the stacking direction.
  • the disk and the spacer are fixed to the hub.
  • FIG. 18 is a cross-sectional view showing a third example of the clamp structure in a conventional disk drive provided with a plurality of disks.
  • the groove 121 can rotate around the shaft 123 provided on the bracket 122 via the bearings 124, 125.
  • Rotor hub 126 is secured to hub 121 and shaft 123.
  • the stator 127 is attached to the shaft 123 and the hub 121 is
  • the rotor magnet 128 is mounted, and the hub 121 rotates with the rotor magnet 128 by supplying current to the stator coils.
  • the disc 100 directly contacts the flange 129 of the hub 121, the disc 110 interposes a spacer 130 with the disc 100, and the disc 120 interposes a spacer 131 with the disc 110.
  • the hubs 121 are respectively fitted.
  • the clamp 132 is fitted to the rotor hub 126 and is fixed to the groove 121 by the screw 133, and the disks 100, 110, 120 and the spacers 130, 131 are crimped toward the flange 12 9, These are fixed to the hub 121. Further, the flange 129 is provided with a protrusion 121a. The projecting portion 121 a is located outside the contact point between the spacer 130 and the disc 100 which occurs when the clamp 132 is attached, and is provided on the surface of the flange 129 facing the disc 100.
  • the projecting portion 121a is configured to generate a bending moment M in the opposite direction to the bending moment to deform the disc, thereby maintaining the disc in a flat state (for example, Japanese Patent Laid-Open Publication No. JP-A No. — See, eg, 1396 75).
  • the direction of the warp of the disc generated by clamping the disc and the amount of the warp can not be stably controlled.
  • the flying height of the head is not stable, and in the worst case, the head has another problem of contacting the disk.
  • FIG. 19 is a view showing the deformation of the disk by the clamp in the conventional disk device.
  • the thickness of the disc itself tends to be reduced with the recent reduction in thickness of the device, and as a result, the strength of the disc is lowered, and distortion and waviness in the circumferential direction of the disc increase.
  • the amount of warpage in the radial direction is increased.
  • Such distortion or waviness in the inner circumferential portion of the disk causes the floating gap between the head 20 and the disk 1 to fluctuate instantaneously due to the distortion or waviness in the inner circumferential portion of the disk during operation of the disk device. .
  • the head output changes in output corresponding to the number of screws for each rotation of the disk 1 as shown in FIG.
  • FIG. 20 is a diagram showing the head signal output in the conventional disk device.
  • the expansion and contraction due to the temperature change of the disk and clamp member or disc spacer Since the coefficient of linear expansion of the hub is larger than that of the disk, the contact point or the contact surface formed between the hub and the disk is formed by the attachment of the clamp member.
  • the distance R h from the center of rotation of the motor and the distance Rs from the center of rotation of the motor at the contact point or contact surface formed between the disk and the spacer ring change. As a result, the amount of warpage of the disc and the direction of warpage change.
  • the linear expansion coefficient of the martensitic SUS groove 2 is (9. 2 ⁇ 12 X 10 "6), the linear expansion coefficient such as the clamp member 3 made of glass or aluminum (6-7 in the case of glass. 2 X 10 _6, if made of aluminum, about 23. 5 X 10 -6) Because of the difference between the above, the distance Rh between the center of rotation shaft at the contact position between disc 1 and hub 2 and the distance Rs from the center of rotation at the contact position between disc 1 and clamp member 3 due to changes in ambient temperature.
  • the extension rate of the hub 2 is higher than that of the clamp member 3 when the temperature is high, so the rotation axis of the contact position between the disc 1 and the hub 2
  • the distance from the center Rh force will move to the outer peripheral part from the distance Rs from the rotation axis of the contact position between the disc 1 and the clamp member 3 and, as shown in FIG. 21B, toward the outer peripheral direction of the disc 1
  • the disc 1 warps in the direction of the clamp member 3.
  • the material of the disc 1 In the case of aluminum, the extension rate of the clamp member 3 is higher than the extension rate of the force hub 2 at the same high temperature, so the distance Rs from the center of rotation of the contact point between the disc 1 and the clamp member 3 is disc The distance from the rotation axis center of the contact position between the hub 1 and the hub 2 moves to the outer periphery from the center of rotation axis Rh, and as shown in FIG. 21C, the disc 1 is directed toward the hub 2 Conversely, in a low temperature environment, the opposite phenomenon to that at high temperature occurs, so the direction of warp of the disc changes with changes in material and temperature, so the flying state of the head changes and recording / reproduction of the head There is also the problem of causing problems.
  • the hub is deformed by the pressure of the clamp, and the disks are deformed in the radial direction to cause warpage.
  • the spindle motor also becomes smaller, the rigidity of the hub also decreases, and the thickness of the disk becomes thinner, so the deformation becomes larger.
  • the degree of deformation of the disk tends to further increase because the disk shifts to the inner diameter more than the area force for clamping the disk.
  • the contact point between the spacer 130 and the disk 100 generated when the clamp 132 is mounted is By providing the projecting portion 121a on the flange 129 so as to be positioned on the outer side, a bending moment M opposite to the bending moment for deforming the disc is generated. It is configured to live and keep the disc flat.
  • the clamp structure of this configuration ensures that the force disc is kept flat, which is considered to minimize disc deformation or to minimize disc deformation caused by environmental temperature changes. In addition to the fact that it is very difficult to completely eliminate the deformation of the disc, when a small deformation occurs in the disc, depending on the direction of the deformation, it may not be possible to obtain sufficient head output !, Also arose! /.
  • the present invention has been made to solve the problems described above, and in a disk apparatus having a disk clamping structure, the amount of deformation and the direction of deformation of the disk generated by clamping the disk are defined.
  • the head can be stably floated, and head output stability and reliability can be improved by suppressing a decrease in head output, etc., and distortion of the disk can be prevented, and temperature change can be prevented. It is an object of the present invention to provide a disk apparatus which has a fixed structure for a stable disk spindle and which can be easily made thinner and higher capacity.
  • the disk device of the present invention has a disk insertion portion having a cylindrical surface force and a disk receiving portion having a flat surface force at the outer peripheral portion of one end,
  • the disk-shaped recording medium is provided with a hub that is supported in place and an inner hole that engages with the disk insertion part, and is disposed opposite to one of the surfaces of the disk-shaped recording medium.
  • a clamping means for clamping a disc-shaped recording medium, and the disc receiving portion is constituted by an inclined surface.
  • the clamping means comprises a clamping member and a plurality of screws, and the clamping member placed on the top surface of the hub is tightened by the plurality of screws, and the recording medium is clamped by the clamping member.
  • Disk shape The shape of the central portion side of the recording medium has a convex shape when viewed from the side force on which the head is disposed, and a contact point or a contact point formed between the hub and the disc-shaped recording medium by mounting the clamp member. Assuming that the distance from the axial center of the contact surface is Rh and the distance from the rotational center of the contact point or contact surface formed between the disc-shaped recording medium and the clamp member is Rs, the relationship between Rh and Rs. If the head is disposed on the side of the disk receiving portion of the disk as viewed from the disk-like recording medium, Rs> Rh, and if the head is disposed on the side of the clamp member, Rs ⁇ Rh. It is also good.
  • the disk device has a convex shape when viewed from the side on which the head is disposed, as compared with a disk device in which a recording / reproducing head is present only on one side of the disk surface. This makes it possible to obtain stable head floating and to prevent contact between the head and the disk. Furthermore, by making the planar shape of the disc receiving portion convex with respect to the side force on which the head is disposed, the shape of the disc may be convex when viewed from the side on which the head is disposed with a simple configuration. Is possible.
  • making the disk into a convex shape means that the contact point formed between the hub and the disk by holding the disk, or the distance Rh from the rotation axis of the contact surface, the disk and the clamp member It is also possible to increase the side on which the head is disposed by looking at the disc as well as the relationship between the contact point formed between them and the distance Rs from the center of rotation of the contact surface. Therefore, it is possible to obtain stable head floating with a simple configuration and to prevent contact between the head and the disk.
  • the clamp means is a spacer ring, a clamp member and a plurality of screw forces, and the clamp member placed on the top surface of the hub is tightened with a plurality of screws.
  • the contact point formed between the hub and the disc-shaped recording medium or the rotation axis of the contact surface Assuming that the distance between the recording medium and the spacer ring is Rh and the distance from the center of the rotation axis of the contact point or surface formed between the disk-like recording medium and the spacer ring is Rs, the relationship between Rh and Rs is disk-like.
  • the configuration is Rs Rh. ing. Also, add to this configuration Even if the spacer ring is provided with a step on part of the side in contact with the disc-shaped recording medium, the spacer ring has a step on the side in contact with the disc-shaped recording medium and the side in contact with the clamp member. Even if the spacer ring is provided or the spacer ring is made of a material having a Vickers hardness of 500 or more and a Young's modulus of 200,000 NZmm 2 or more, the flatness of the spacer ring is 5 ⁇ m or less. Oh.
  • the contact point formed between the hub and the disc by holding the disc between the clamp member and the spacer ring, or the distance Rh from the rotation axis of the contact surface, and the disc and the spacer
  • the relationship between the contact point formed with the ser ring or the distance Rs from the center of the rotation axis of the contact surface is determined by the planar shape of the disc receiving portion by increasing the side where the head is disposed when viewed from the disc.
  • the area of contact with the disc and the clamp member is reduced, and the accuracy of the flatness of the contact surface can be increased, and the clamp member is elastically deformed, and the elastic force causes the disc to move through the spacer ring. Can be pressed into the disk receiver of the groove. Also, when the disc warps, it will not cause any extra distortion on the disc.
  • the head Along the radial direction of the disk-shaped recording medium, the head has a head element disposed at the center and air bearing rails disposed at both ends, and the distance between the head of the disk-shaped recording medium and the head element The distance between the surface of the disc-shaped recording medium and the air bearing rail should be increased.
  • the disk at both ends of the head is given by the distance between the head element provided in the approximate center of the head and the surface of the disc facing it. It can be enlarged. Thus, stable head floating and head output can be obtained, and contact between the head and the disk can be suppressed. Furthermore, even if the thickness of the disk is reduced, stable head floating and head output can be obtained. Therefore, it is possible to reduce the thickness and increase the capacity of the disk device.
  • FIG. 1 is a partial cross-sectional view showing a schematic structure of a disk drive according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a clamp structure of the disk apparatus in Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged sectional view showing a clamp structure of another disk drive according to Embodiment 1 of the present invention.
  • FIG. 4 is a partial cross-sectional view showing a schematic structure of a disk device in a second embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a clamp structure of a disk drive in a second embodiment of the present invention.
  • FIG. 6 is a correlation diagram showing the relationship between the contact point Rs of the clamp member and the disc formed by clamping the disc, the contact point Rh of the disc and the hub, and the amount of warpage of the disc.
  • FIG. 7 is an enlarged sectional view showing a clamp structure of another disk drive according to Embodiment 2 of the present invention.
  • FIG. 8 is a partial cross-sectional view showing a schematic structure of a disk drive in a third embodiment of the present invention.
  • FIG. 9 is an enlarged sectional view showing a clamp structure of a disk drive in a third embodiment of the present invention.
  • FIG. 10 is a correlation diagram showing the relationship between Rs and Rh of the disk apparatus and the curvature of the disk in the third embodiment of the present invention.
  • FIG. 11A is a view showing the relationship between the head flying height and the head gap when the warpage of the disk of the disk apparatus of the third embodiment of the present invention is concave with respect to the head.
  • FIG. 11B is a view showing the relationship between the head flying height and the head gap when the warpage of the disk is convex with respect to the head.
  • FIG. 12A is a view showing the relationship between the head floating amount and the head gap due to the warpage of the disk having a curvature equal to the curvature of the head of the disk apparatus in Embodiment 3 of the present invention.
  • FIG. 12B is a view showing the relationship between the head flying height and the head gap due to the warpage of a disk having a curvature larger than the curvature of the head.
  • FIG. 12C is a view showing the relationship between the head flying height and the head gap due to the warpage of a disk having a curvature smaller than the curvature of the head.
  • FIG. 13 is a view showing a deformation of the disk due to a clamp of the disk device in the third embodiment of the present invention.
  • FIG. 14 is a diagram showing a head signal output of the disk apparatus in the third embodiment of the present invention.
  • FIG. 15 is an enlarged sectional view showing a clamp structure of another disk drive in the third embodiment of the present invention.
  • FIG. 16 is a cross-sectional view showing a first example of a clamp structure in a conventional disk drive.
  • FIG. 17 is a cross-sectional view showing a second example of the clamp structure in the conventional disk drive.
  • FIG. 18 shows the clamp structure of a conventional disk drive provided with a plurality of disks. It is sectional drawing which shows a 3rd example.
  • FIG. 19 is a view showing a deformation of the disk by a clamp in the conventional disk device.
  • FIG. 20 is a diagram showing a head signal output in a conventional disk drive.
  • FIG. 21A is a cross-sectional view showing a deformed state of a disk due to a clamp at normal temperature in a conventional disk drive.
  • FIG. 21B is a cross-sectional view showing the deformed state of the disk due to the clamp at high temperature in the conventional disk device.
  • FIG. 21C is a cross-sectional view showing the deformed state of the disk due to the clamp at low temperature in the conventional disk drive.
  • FIG. 1 is a partial cross-sectional view showing a schematic structure of a disk drive according to Embodiment 1 of the present invention
  • FIG. 2 is an enlarged sectional view showing a clamp structure of the disk drive according to Embodiment 1 of the present invention
  • FIG. 10 is an enlarged cross sectional view showing a clamp structure of another disk drive in the first embodiment of the present invention.
  • FIG. 1 FIG. 2 and FIG. 3, the same reference numerals are given to the same components as in FIG.
  • a disc-shaped recording medium 1 having a hole on the inner peripheral side (hereinafter referred to as a disc-shaped recording medium)
  • the recording medium (abbreviated as disk) is inserted into the cylindrically projecting disk insertion portion 2 a of the hub 2.
  • One surface of the disk 1 is received by the upper surface of a disk receiving portion 2 e on the outer peripheral side of the disk insertion portion 2 a of the hub 2.
  • the disk receiving portion 2e is configured to be inclined by a predetermined angle as it goes to the outer peripheral side in the radial direction. In the configuration shown in FIG. 1 and FIG. 2, the outer peripheral side of the disk receiving portion 2e in the radial direction is inclined.
  • Clamping member 3 having the same material as hub 2 or material force having a linear expansion coefficient close to that of disk 1 has an inner hole through which disk insertion portion 2a of hub 2 is inserted in the same manner as disk 1. It is placed on the surface.
  • the clamp member 3 sandwiches the disc 1 and is provided at a plurality of locations on the hub 2 by means of the screw 4 so as to be clamped between the clamp member 3 and the screw portion 4a.
  • a plurality of screws and clamping members 3 constitute clamping means for clamping the disc 1.
  • the diameter of the screw head 4 b of the screw 4 is larger than the diameter of the hole provided in the clamp member 3, an axial force is generated when the screw 4 is tightened to the female screw 4 a of the screw 2.
  • the axial force is transmitted from the screw head seat 4c to the bottom 3f in the vicinity of the hole of the clamp member 3, and the disc pressing portion 3g is used!
  • the clamp member 3 coaxially and integrally fixes the disc 1 to the hub 2 by pressing the other side of the disc 1.
  • a head 20 is provided opposite to one flat surface of the disc 1 for levitation scanning on the disc 1 to read and reproduce signals recorded on the disc 1 or write and record signals on the disc 1.
  • a permanent magnet 7 which is a component of a motor for rotating the hub 2 is fixed to the outer peripheral portion of the hub 2.
  • the hub 2 is made of a martensitic steel force.
  • the planar shape of the disc receiving portion 2e is formed in a convex shape in view of the positional force at which the head 20 is disposed, so that the disc 1 is pressed against the disc receiving portion 2e by the axial force.
  • the disk apparatus in the first embodiment of the present invention since the disk 1 is deformed into a convex shape as viewed from the head 20 by clamping, the center of the disk 1 is obtained. Since the distance between the head 20 and the position on the outer peripheral side of the disc 1 is larger than the position height of the head and the flying height of the head 20, basically, if the head 20 is lifted from the disc 1, basically, The end of the head 20 never contacts the disc 1. Therefore, with the simple configuration as shown in FIGS. 1 and 2, stable head floating can be obtained, and contact between the head 20 and the disk 1 can be prevented. Further, in this configuration, the inclination angle of the disk receiving portion 2e is appropriately set so that the outer peripheral end of the hub 2 and the lower side surface of the disk 1 do not contact with each other.
  • a disk apparatus having a configuration in which a head 20 for recording / reproducing a signal is disposed on the clamp side, ie, above the disk 1, is exemplified.
  • a head 20 for recording and reproducing signals may be provided on the hub side, that is, on the lower side of the disc 1.
  • the shape of the upper side surface of the hub 2 receives the disk 1 on the upper side surface of the disk receiving portion 2e, and in the contacting portion in the opposite direction to FIG. 1 or 2, ie, the radial outer periphery of the disk receiving portion 2e It may be formed in a bowl shape inclined so that the side rises.
  • the inner peripheral side of the disk 1 is deformed to a convex shape which is the reverse of that in FIGS. 1 and 2 when viewed from the head 20 by clamping.
  • the distance between the head 20 and the position on the outer peripheral side of the disk 1 becomes larger. So, if the head 20 is lifted from the S disk 1, basically, the end of the head 20 does not come in contact with the disk 1. Therefore, with a simple configuration as shown in FIG. 3, it becomes possible to obtain stable head floating and to prevent contact between the head 20 and the disk 1.
  • FIGS. 4 to 7 is a partial sectional view showing a schematic structure of a disk drive according to Embodiment 2 of the present invention
  • FIG. 5 is an enlarged sectional view showing a clamp structure of the disk drive according to Embodiment 2 of the present invention
  • FIG. FIG. 7 is a correlation diagram showing the relationship between the contact point Rh of each of the clamp member and the disk and the disk and the hub formed by clamping and the amount of warpage of the disk
  • FIG. 7 is another disk drive of the second embodiment of the present invention. It is an expanded sectional view showing clamp structure.
  • FIGS. 4, 5 and 7 the disk device of the first embodiment of the present invention The same reference numerals are given to the same components as in FIG. 1, FIG. 2 and FIG.
  • the disc 1 having a hole on the inner peripheral side is inserted into the disc protruding portion 2 a of the hub 2 that protrudes in a cylindrical shape.
  • One surface of the disk 1 is located on the outer peripheral side of the disk insertion portion 2a of the hub 2, and is received by the upper surface of a disk receiving portion 2e projecting in a convex shape.
  • Clamping member 3 having the same material as hub 2 or material force having a linear expansion coefficient close to that of disk 1 has an inner hole through which disk insertion portion 2 a of hub 2 is passed. It is placed on the other side.
  • the clamp member 3 sandwiches the disc 1 and is provided at a plurality of locations on the hub 2 by the screw 4 and thus is clamped between the clamp member 3 and the screw portion 4a.
  • the plurality of screws and the clamp member 3 constitute clamping means for clamping the disc 1.
  • an axial force is generated when the screw 4 is tightened to the female screw 4a of the screw 2.
  • the axial force is transmitted from the screw head bearing surface 4c to the bottom 3f in the vicinity of the hole of the clamp member 3, and the disk pusher 3g holds the other surface of the disk 1 so that the clamp member 3 Fixed coaxially and integrally.
  • the head 20 faces one flat surface of the disc 1, levitates the top of the disc 1, reads and reproduces the signal recorded on the disc 1, and a head 20 for writing and recording the signal on the disc 1 It is arranged.
  • a permanent magnet 7 which is a component of a motor for rotating the hub 2 is fixed to the outer peripheral portion of the hub 2.
  • the hub 2 is made of a martensitic steel force.
  • a contact point 21 or a contact surface is formed between the disc receiving portion 2 e of the hub 2 and the lower side surface of the disc 1.
  • a contact point 22 or contact surface is formed between the pump member 3 and the disc pressing portion 3g.
  • the contact point 21 formed between the hub 2 and the disk 1 by holding the disk 1 or the rotation axis center of the contact surface The relationship between the distance Rh from 9c and the contact point 22 formed between the disk 1 and the clamp member 3 or the distance Rs from the rotation axis 9c of the contact surface Since the distance on the side to be disposed is increased, clamping makes the disk convex when viewed from the head 20. Since the distance between the head 20 and the position on the outer peripheral side of the disc 1 is larger than the position height of the central portion of the disc 1 and the flying height of the head 20, if the head 20 is lifted from the disc 1, the basic In other words, the end of the head 20 does not come in contact with the disk 1.
  • the hub 2 and the clamp member 3 of the same material, or by configuring the linear expansion coefficient of the hub 2 and the linear expansion coefficient of the clamp member 3 to be the same or substantially the same,
  • the contact point 21 formed between the disc receiver 2e of the hub 2 and the upper side surface of the disc 1 by mounting, or the distance Rh from the center of rotation axis 9c of the motor, and the lower side surface of the disc 1 and the clamp member 3 The positional relationship between the contact point 22 or the contact surface formed between and the distance Rs from the rotation axis center 9c of the motor changes regardless of the ambient temperature fluctuation.
  • the radial warpage of the disk 1 generated by clamping the disk 1 is determined by the positional relationship between Rh and Rs, in the disk device according to the second embodiment of the present invention, the ambient temperature environment of the device The change in radial warpage can be reduced regardless of the change in. Therefore, the change in radial warpage of the disk 1 due to temperature fluctuation is small. As a result, the radial direction of the disk 1 and the amount of warpage (angle) can be made constant regardless of the ambient temperature fluctuation, and the flying height of the head 20 is stabilized.
  • the linear expansion coefficient of the hub 2 is oc Z ° C.
  • the linear expansion coefficient of the clamp member 3 is ⁇ Z ° C.
  • the relationship between Rh and Rs at normal use temperature 25 ° C) is determined. That is,
  • the warping direction of the disk 1 is always in one direction within the range of the operation guarantee temperature. Conversely, when the linear expansion coefficient of each component is ( ⁇ > ⁇ , the relationship between Rh and Rs at the normal operating temperature (25 ° C.) is
  • the warping direction of the disc 1 is always in one direction within the guaranteed operating temperature range. Accordingly, the materials of the hub 2 and the clamp member 3 do not have to be limited to materials having the same linear expansion coefficient or substantially the same linear expansion coefficient.
  • the description will be given taking the disk apparatus having a configuration in which a head 20 for recording and reproducing a signal is disposed on the clamp side, ie, the upper side of the disk 1 as an example.
  • a head 20 for recording and reproducing signals may be provided on the hub side, that is, on the lower side of the disc 1.
  • the relationship between the distances Rh and Rs from the rotation axis center 9c to the contact point 21 and the contact point 22 may be set to satisfy the following relationship.
  • the contact point 21 formed between the hub 2 and the disk 1 by holding the disk 1 or the distance Rh from the rotation axis 9c of the contact surface is the distance from the disk 1 to the side on which the head 20 is disposed.
  • the disc 1 becomes a convex shape of a force which is opposite to that of FIGS. 4 and 5 when viewed from the head 20.
  • the distance between the head 20 and the position on the outer peripheral side of the disc 1 is larger than the position height of the central portion of the disc 1 and the flying height of the head 20, and the head 20 floats from the disc 1, Basically, the end of the head 20 never contacts the disc 1. Therefore, with the simple configuration as shown in FIG. 7, it is possible to obtain stable head floating and to prevent contact between the head 20 and the disk 1.
  • FIGS. 8 is a partial sectional view showing a schematic structure of a disk drive according to a third embodiment of the present invention
  • FIG. 9 is an enlarged sectional view showing a clamp structure of the disk drive according to a third embodiment of the present invention
  • FIG. 11 is a correlation diagram showing the relationship between the contact points of the clamping members and the disks and between the disks and the hub and the radius of curvature of the warp of the disks, which is formed by clamping and warping the disks
  • FIG. FIG. 12 is a diagram for explaining the relationship between the head flying height and the head gap in the case, FIG.
  • FIG. 12 is a diagram for explaining the relationship between the head flying height and the head gap due to the warp of the disk when the disk and the head have curvature.
  • FIG. 3 is a diagram showing a deformation of the disk due to a clamp of the disk device in the third embodiment of the present invention
  • FIG. 14 is a head signal output of the disk device in the third embodiment of the present invention It shows the FIG. 15 is an enlarged sectional view showing the clamp structure of another disk device in the third embodiment of the present invention.
  • FIG. 8 and FIG. 15 the same reference numerals as in FIGS. 1 to 5 and FIG. 7 for describing the configuration of the disk apparatus of the first and second embodiments of the present invention.
  • the disc 1 having a hole on the inner peripheral side is inserted into the cylindrically projecting disc insertion portion 2a of the groove 2 fixed to the rotation shaft 9.
  • One surface of the disk 1 is received by the upper surface of a disk receiving portion 2e on the outer peripheral side of the disk insertion portion 2a of the hub 2.
  • the clamp member 3 is placed on the top surface of the hub 2, sandwiches the disc 1 and the spacer ring 6, and is provided at a plurality of locations on the hub 2 by the screws 4, so that the clamps 3 are tightened with the screw 4 a .
  • the plurality of screws and the clamp member 3 and the spacer ring 6 constitute clamping means for clamping the disc 1.
  • the diameter of the screw head 4b of the screw 4 is larger than the diameter of the hole 3 ⁇ 4 provided in the clamp member 3, when the screw 4 is tightened to the female screw 4a of the screw 2, the axial force Occur.
  • the axial force is transmitted from the screw head bearing surface 4c to the spacer ring 6 via the bottom surface 3f in the vicinity of the hole of the clamp member 3 to coaxially and integrally fix the disc 1 to the hub 2.
  • a head 20 facing the flat surface of the disc 1 is levitated and scanned on the disc 1 to read and reproduce signals recorded on the disc 1 or write and record signals on the disc 1. It is done.
  • FIGS. 8 and 9 only the head 20 is shown by a rectangular element member. In fact, the head 20 is supported by a head support mechanism and a head support arm (not shown).
  • a permanent magnet 7 which is a component of a motor for rotating the hub 2 is fixed to the outer peripheral portion of the hub 2. In order to effectively use the magnetic force of the permanent magnet 7 and to suppress the leakage flux to the head 20, the hub 2 is made of martensitic steel force.
  • a contact point 21 or a contact surface is formed between the disk receiving portion 2 e of the hub 2 and the lower side surface of the disk 1 by holding the disk 1, and the upper side surface of the disk 1 and the space
  • a contact point 22 is formed between the surging 6 and the disc pressing portion 3h.
  • the distances from the rotation axis center 9c to the contact point 21 and the contact point 22 are Rh and Rs, respectively
  • the direction of warpage of the disc 1 and the amount of warpage are defined by the size of Rh and Rs.
  • the relationship between the size (amount) of warpage and Rh and Rs differs depending on the material, shape and temperature of the disk 1, hub 2 and clamp member 3, but the disk device in the third embodiment is also different from that in the second embodiment.
  • Disk unit The same relationship as in Figure 6 described for the disc provided in
  • the disk 1 provided in the disk apparatus according to the third embodiment shown in FIGS. 8 and 9 is curved in a curved shape having a curvature radius Dr.
  • the radius of curvature Dr is related to the difference between the distances Rh and Rs (Rs ⁇ Rh) from the rotation axis center 9c to the contact point 21 and the contact point 22, respectively.
  • the difference between the radius of curvature Dr and the distances Rh and Rs (Rs ⁇ Rh) is measured and plotted on the horizontal axis (Rs ⁇ Rh) and the vertical axis is the radius of curvature Dr, for example, A graph as shown in Fig. 10 is obtained. As shown in FIG.
  • the radius of curvature of the disk 1 can be controlled by adjusting the relative positional relationship between Rs and Rh.
  • the radius of curvature of the disk 1 shows a positive value, indicating that the disk 1 is warped to the head 20 side
  • (Rs ⁇ Rh) When the value is positive, the radius of curvature of disk 1 shows a negative value, indicating that disk 1 bends toward the hub side.
  • FIG. 11A is a diagram showing the relationship between the head flying height and the head gap when the warpage of the disk is concave with respect to the head
  • FIG. 11B is the head flying height when the warpage of the disk is convex with respect to the head
  • 12A shows the relationship between the head flying height and the head gap due to the warp of the disk having a curvature equal to that of the head
  • FIG. 12B shows the head due to the disk warp having a curvature larger than that of the head.
  • FIG. 12C is a diagram showing the relationship between the flying height and the head gap
  • FIG. 12C is a diagram showing the relationship between the flying height of the head and the head gap due to the warpage of the disk with a curvature smaller than the curvature of the head.
  • FIG. 11A shows a state in which the disc 1 is deformed in a concave shape as viewed from the head 20.
  • FIG. The surface of the head 20 facing the disc 1 is provided with an air bearing rail 20a for floating the head 20 at both ends in the radial direction of the disc 1, and a head element for recording and reproducing information in a substantially central portion.
  • the center rail 20b is formed.
  • the flying height of the head 20 is determined by the air bearing rails 20a provided on both sides of the head 20. Therefore, as shown in FIG.
  • FIG. 11B shows a state where the disc 1 is deformed in a convex shape as viewed from the head 20.
  • the flying height of the head 20 is Hh
  • the distance Hg between the disk 1 and the head element is Hg ⁇ Hh. Therefore, the flying height of the center rail 20b portion where the head element is provided becomes lower than the design value, and the head output increases. Therefore, when the surface of the head 20 facing the disk 1 is flat, that is, when the radius of curvature of the surface of the head 20 facing the disk 1 is infinite, the disk 1 warps due to clamping.
  • the output signal obtained from the head 20 becomes larger than the design value, and it is possible to obtain a good head output.
  • the surface of the head 20 facing the disk 1 is shaped to have a radius of curvature Hr in the radial direction of the disk 1 with the center rail 20b provided with the head elements as the apex.
  • the shape of the warp of the disk 1 generated by clamping is such that the radius of curvature Dr is equal to the radius of curvature Hr of the head 20 or larger than the radius of curvature Hr when viewed from the head 20 side, or convex on the head 20 side
  • the shape is As a result, the output signal obtained from the head 20 becomes larger than the design value, and a good head output can be obtained.
  • the absolute value of the curvature radius of the head 20 is 6125 mm. Therefore, the distance Rh from the rotation center 9c with respect to the contact point 11 formed between the hub 2 and the disk 1 so that the absolute value of the radius of curvature of the disk 1 is 6125 mm or more, and the disk 1
  • the disc 1 can be held by setting the relationship with the contact point 12 formed between the and the spacer ring 6, that is, the distance Rs from the rotation axis center 9c with respect to the center point of the contact surface. That is, from FIG.
  • the distance from the disk 1 to the side where the head 20 is disposed is increased. In other words, it is set to satisfy the following relationship.
  • the spacer ring 6 is processed with high accuracy in order to uniformly press the disc 1 so as not to cause distortion or waviness in the circumferential direction.
  • the flatness of the contact surface 6a of the spacer ring 6 in contact with the upper surface of the disk 1 is processed to 5 ⁇ m or less. Since the spacer ring 6 may have a simple shape such as an annular shape, it has a structure in which the flatness of the surface (contact surface 6 a) in contact with the upper side surface of the disc 1 is easily obtained. Also, when the disc 1 is warped, a spacer that contacts the upper surface of the disc 1 in order not to distort the disc.
  • the contact surface 6a of the ring 6 is provided with a step 6b on a part of the outer peripheral side. Further, the contact surface 6e of the spacer ring 6 in contact with the bottom surface 3f of the clamp member 3 is provided with a step 6d on a part of the outer peripheral side. Since the clamp member 3 can be elastically deformed by the step 6 d when the clamp member 3 is clamped and fixed to the groove 2 with the screw 4, in the disk device according to the third embodiment of the present invention, the clamp member The differences in the coefficients of linear expansion of the different materials such as 3, screw 4, disc 1, and groove 2 can minimize the loosening of screw 4 and the change in clamping force caused by temperature fluctuations. .
  • the hub 2 is formed of a magnetic material in order to reduce the leakage flux of the permanent magnet 7. Is desirable. Therefore, if the material of the spacer ring 6 is formed of a high hardness such as SUS 420, that is, a magnetic material having a Vickers hardness of 500 or more and a Young's modulus of 200,000 NZmm 2 or more, Embodiment 3 of the present invention shown in FIGS.
  • FIG. 13 is a view showing a deformation of the disk due to a clamp of the disk device according to the third embodiment of the present invention.
  • a clamp can be obtained.
  • Positional force of the contact point 22 formed between the disc ring 6 with the disc pressing portion 3h or the contact surface 6a with the distance Rs from the center of rotation axis 9c of the motor Force changes regardless of ambient temperature fluctuation Become.
  • the radial warpage of disk 1 generated by clamping disk 1 is determined by the positional relationship between Rh and Rs, in the disk device according to the third embodiment of the present invention, the change in the ambient temperature environment of the device Regardless of the change in radial warpage can be reduced.
  • the disc 1 is held. And the distance Rh from the center of rotation 9c of the contact point 21 or the contact surface formed between the disk receiver 2e of the hub 2 and the lower surface of the disk 1 Rh, the upper surface of the disk 1 and the spacer ring 6
  • the relationship between the contact point 22 formed with the disc pressing portion 3h of the disc or the distance Rs from the rotation axis center 9c of the contact surface 6a is the distance from the disc 1 to the side on which the head 20 is disposed. As it is enlarged, clamping makes the disk convex as seen from the head 20.
  • the shape of the components constituting the clamp mechanism for holding the disk 1 integrally with the groove 2 is simple, high-precision processing is possible, and disk distortion due to the clamp can be reduced. It is possible to reduce.
  • the disk 1 is held by making the hub 2 and the spacer ring 6 of the same material, or by making the linear expansion coefficient of the hub 2 and the linear expansion coefficient of the spacer ring 6 the same or substantially the same. The change in relative position where the both sides of the disk 1 contact the contact point 21 and the contact point 22 respectively decreases.
  • the warpage direction and the amount of warpage (angle) of the disc 1 in the radial direction and the curvature radius Dr of the warpage are constant regardless of the surrounding temperature change. And the flying height of the head 20 is stabilized.
  • FIG. 14 is a diagram showing the head signal output of the disk apparatus according to the third embodiment of the present invention.
  • the radius of curvature of the warp of disc 1 generated by clamping is determined in accordance with the radius of curvature of head 20, and the radius of curvature of disc 1 is in the range
  • the clamp configuration it is possible to obtain a stable head floating amount.
  • the head output does not decrease, and the disk device can be made thinner and higher in capacity.
  • the number of disks is described using an example of only one disk.
  • the number of disks is one. It is not limited to For example, in the case of a disk drive having two disks, equivalent spacer rings may be provided between the first and second disks.
  • the linear expansion coefficients of the hub 2 and the spacer ring 6 are substantially equal.
  • the disk apparatus of the third embodiment is not limited to this example.
  • the linear expansion coefficient of the hub 2 is aZ ° C.
  • the linear expansion coefficient of the clamp member is j8 Z ° C.
  • the approximate radius of the clamp position is R
  • the operation guarantee temperature of the disk drive is Tmin.
  • the absolute value of (Rs ⁇ Rh) may be set so that the following (Equation 1) is satisfied at a temperature T within the temperature range of Tmin force Tmax. .
  • the warping direction of the disc is always in one direction within the guaranteed operating temperature range. Therefore, the materials of the hub 2 and the spacer ring 6 do not have to be limited to materials having the same linear expansion coefficient or substantially the same linear expansion coefficient.
  • the disk apparatus shown in FIGS. 8 and 9 has a configuration in which a head 20 for recording and reproducing a signal is disposed on the clamp side, that is, the upper side of the disk 1.
  • a head 20 for reading a signal may be disposed below the disc 1 as shown in FIG.
  • the relationship between each of the distances Rh and Rs from the rotation axis center 9c to each of the contact points 21 and 22 may be set to satisfy the following relationship.
  • the direction of warpage of the disc 1, the amount of warpage, and the curvature radius Dr of warpage are calculated. Control can be done without a hitch. Therefore, also in the disk apparatus having a configuration in which the head 20 is disposed on the lower side of the disk 1 as shown in FIG. 15, the hub 2 and the disk 1 are held by holding the disk 1 using the spacer ring 6. And the distance Rh from the rotation axis 9c of the contact surface, or the contact point 22 formed between the disc 1 and the spacer ring 6, or the rotation axis of the contact surface 6a.
  • the distance from the disc 1 on the side where the head 20 is disposed is larger.
  • the disk 1 has a convex shape when viewed from the head 20 by performing a force clamp that is the reverse of FIGS. 8 and 9. Therefore, if the distance between the head 20 and the position on the outer peripheral side of the disc 1 becomes larger than the position height of the central portion of the disc 1 and the flying height of the head 20, the head 20 floats from the disc 1. Basically, the end of the head 20 never comes in contact with the disc 1. Therefore, with a simple configuration as shown in FIG. 15, it is possible to obtain stable head floating and to prevent contact between the head 20 and the disk 1.
  • the clamp mechanism for holding the disk 1 between the hub 2 and the spacer ring 6 is not limited to the configuration described in the embodiment of the present invention described above.
  • the disk apparatus of the present invention is a disk apparatus in which a recording / reproducing head is present only on one side of the disk surface.
  • the disk receiving section has a convex shape when viewed from the side on which the head is disposed, whereby the disk can be viewed from the side on which the head is disposed with a simple configuration. It is possible to make the shape of the convex shape. Therefore, it is possible to obtain stable head floating with a simple configuration and to prevent contact between the head and the disk.
  • the contact point formed between the hub and the disk by holding the disk, or the distance Rh of the rotation shaft center force of the contact surface, the disk and the clamp member does not depend on the planar shape of the disc receiving portion by enlarging the side where the head is disposed when viewed from the disc.
  • the contact point formed between the hub and the disk by holding the disk between the clamp member and the spacer ring, or the central force of the rotation axis of the contact surface
  • the relationship between the distance Rh and the contact point formed between the disk and the spacer, or the distance Rs between the center of rotation axis of the contact surface and the distance Rs By making the size larger, it becomes possible to make the shape of the disk convex as seen from the side on which the head is disposed regardless of the planar shape of the disk receiving portion, and a stable head regardless of the operating temperature environment. As well as being able to obtain surfacing, contact between the head and the disc can be prevented.
  • the disk deformation direction and amount are set so that the distance from the disk surface to the head element of the head is smaller than the distance from the disk surface to the air bearing rail of the head. Can be sandwiched between the groove and the spacer ring. As a result, stable head floating and head output can be obtained, and contact between the head and disk can be suppressed. As a result, even if the thickness of the disk is reduced, stable head floating and head output can be obtained, and the disk device can be made thinner and the capacity can be increased.
  • the disk apparatus of the present invention it is possible to reduce the deformation of the disk by fixing the disk to the disk through the spacer ring which can provide flatness with a simple shape. It becomes possible to provide a disk mounting structure, and by making the linear expansion coefficient of the hub and the linear expansion coefficient of the spacer ring the same or substantially the same, the clamp member can be mounted between the hub and the disk.
  • the contact point to be formed, or the distance Rh of the motor's axis of rotation of the contact surface, and the contact point formed between the disc and the spacer ring, or the distance of the motor's axis of rotation of the contact surface, Rs The relationship between the force and the force changes regardless of the temperature change around it.
  • the head has a stable flying height of the disk and has a fixed structure to the spindle of the disk, and it becomes possible to prevent the contact between the head and the disk, making it easy to achieve thinning and high capacity.
  • Disk device Is useful for an information recording and reproducing apparatus.

Abstract

 簡単な構成で安定的にディスクを固定可能なクランプ構造を有するディスク装置である。具体的には、一方の端部の外周部に円筒面からなるディスク挿入部と平面部からなるディスク受け部とを有し、かつ回転自在に支承されたハブと、ディスク挿入部と嵌合する内孔を有し、ディスクのいずれか片方の面に対向して配設され、ディスク上を浮揚走査し、ディスク上に記録された信号を読み取り、あるいはディスク上に信号を記録するヘッドと、ディスク受け部にて保持されたディスクと、ディスク受け部との間にディスクを挟持するクランプ手段とを備え、ディスク受け部が傾斜面で構成される。これにより、クランプすることで生じるディスクの変形量と変形方向とを規定し、かつ温度変化に関わらず安定なヘッド浮上量を得ることでディスクのゆがみの発生を防止して、ヘッド出力の低下等の抑止と信頼性を向上させることが可能になる。

Description

明 細 書
ディスク装置
技術分野
[0001] 本発明は、情報の読み取り、書き込みに用いられるディスク装置に関するものであ る。さら〖こ詳しくは、ディスク装置が備えるディスク状記録媒体 (以下、単にディスクとも
V、う)の少なくとも一方の面側に記録再生用のヘッドが配置されたディスク装置にお いて、ディスクをノヽブに固定する薄型のクランプ構造に関する。
背景技術
[0002] 近年、ディスク装置の高密度化が進み、小記録面積のディスク上にも大容量の情報 を記録できるようになってきたことから、モパイル機器等の記録媒体としてディスク装 置に利用するための各種技術の開発が進められてきている。また、モパイル機器の 記録媒体に必要な条件として、小型軽量であることはもちろん、その使用特性上、低 消費電力および耐衝撃性も求められて ヽる。
[0003] 図 16は、従来のディスク装置におけるクランプ構造の第 1の例を示す断面図である 。図 16において、クランプ部材 3は、そのディスク押圧部 3gとハブ 2のディスク受け面 2eとの間にねじ 4の軸力によりディスク 1を挟み込む。そして、それぞれの部材の接触 部分の摩擦力によってディスク 1がハブ 2に一体的に固定されている。この摩擦力を 超えるような大きな衝撃が加わった場合、ディスクシフトと称するクランプ部材 3とハブ 2に固定されているディスク 1の位置が大きくずれる現象が生ずることがある。このディ スクシフトは、ディスク 1の回転振れを発生させる要因の 1つである。ディスクシフトが 生じると、本来回転中心軸と同軸的に設けられているデータトラックに大きな偏心が 生じ、磁気ヘッド(図示せず)のデータトラックへの正確な追従が困難になる。
[0004] ハードディスクがモパイル機器の記録媒体として使用される場合、非動作時に 150 OGを超える衝撃が加わった後でも、正常な動作を保証するような耐衝撃性を要求さ れることが多い。耐衝撃性を高めるために以下のような構成が提案されている。例え ば、強い衝撃に起因するディスクシフトを防ぐには、図 16に示したようなディスク装置 において、ディスク 1を固定している前述の摩擦力を大きくすることが必要になるため 、摩擦係数を大きくするか、または、ねじ 4の軸力を大きくする方法が考えられ、以下 に述べる理由により、軸力を大きくする方法が従来は採用されていた。すなわち、第 一には、加工精度の向上要求に加えて、バリゃコンタミネーシヨンの付着等を抑止す るため、面粗さを細密にする必要があり、第二には、現行のディスク 1面上のヘッドの 数十ナノメータ (nm)の浮上量に対して、技術の開発傾向がさらなるヘッドの浮上量 を低下させることを目指していることから、ハブ 2、クランプ部材 3、およびディスク 1の 面粗さは細力 、方が好まし 、のであるが、ハブ 2およびクランプ部材 3またはディスク 1の一方の面の面粗さを粗く(摩擦係数を大きく)することによるディスクシフトの抑制 ができないこと、また、技術的にはデータ領域を除くクランプ領域のみ面粗さを粗くす る方法も可能であるが、コストアップが避けられないことによって、軸力を大きくする方 法が採用されていた。
[0005] ところが、軸力を大きくして耐衝撃性を高めると、クランプ部材 3を締め付けた際のク ランプ力に起因してディスク 1の回転同期振れが大きくなつてしまう。このことは、耐衝 撃性を高めるための条件と、クランプ力に起因するディスク 1の回転同期振れを解消 するための条件が相反することを意味している。それゆえ、耐衝撃性の向上と回転同 期振れの解消とを両立させることは、特に小型のディスク装置の開発において重要で ある。
[0006] さらに、クランプ力の増加に起因するディスク 1の回転同期振れを最小限に抑える ためには、ディスク押圧部 3gの中心軸をノヽブ 2のディスク受け面 2eとディスクの中心 軸と同軸に保つ必要がある。以下、上述した従来の磁気ディスク装置におけるクラン プ構造を用いて、これらの関係を説明する。
[0007] 図 16において、ディスク 1はハブ 2の中央突出部であるディスク挿入部 2aに挿入さ れる。ディスク 1の一方の面はハブ 2のディスク受け面 2eで受けられている。クランプ 部材 3は、ディスク 1と同軸的にディスク 1の他方の面上に載置され、ねじ 4と、ハブ 2 の回転軸部 9に設けられためねじ (雌ねじ) 2cとの間で締め付けられる。このとき、ね じ 4のねじ頭部 4bの直径はクランプ部材 3の中心孔 3aの直径よりも大きいので、ねじ 4を軸受スリーブ 8の内周面を回転する回転軸部 9のめねじ 2cに締め付けた際に軸 力が発生する。軸力は、ねじ頭部座面 4cからクランプ部材 3の中心孔 3a付近の底面 3fに伝わり、ディスク押圧部 3gにおいてディスク 1の他方の面を押さえてクランプ部材 3がディスク 1をハブ 2に同軸的、かつ一体的に固定する。また、ハブ 2の外周部には 、ハブ 2を回転させるためのモータの構成部品である永久磁石 7が固定されている。 この永久磁石 7の磁石の磁力を有効に使用し、かつヘッドへの漏れ磁束を抑制する ためにハブ 2は、マルテンサイト系の鋼材力 作成されている。
[0008] ディスク 1とハブ 2とを同軸的に搭載するために、ディスク 1の中心孔と、ディスク 1の 中心孔直径よりもわずかに小さい回転軸部 9のハブ揷入部 9aの外周円筒部と位置 決めし、嵌合させる。また、クランプ部材 3とハブ 2とを同軸的に搭載するために、回転 軸部 9のハブ揷入部 9aと、このハブ揷入部 9aの直径よりもわずかに大き 、直径を有 するクランプ部材 3の中心孔 3aとを位置決めして嵌合させる。位置決めは、ハブ挿入 部 9aとクランプ部材 3とが、力かり代を有するように配置することで実現される。力かり 代は、クランプ部材 3が中心軸に垂直な方向(すなわち、ディスク 1の半径方向)にず れないようにするために設けられる。クランプ部材 3は、力かり代を除いた厚みだけた わみ、ねじ 4により締め付けられる。
[0009] また、図 17は、従来のディスク装置におけるクランプ構造の第 2の例を示す断面図 である。第 2の例の構造が第 1の例と異なるのは、クランプ部材 3の傾きに起因するデ イスク 1の回転軸方向の振れを抑制するためにクランプ部材 3の円周上に複数本の ねじ 4を配した点である。
[0010] 上述した従来のディスク装置は、 1枚のディスクのみを備えた構成であった力 大容 量化を実現するために、記録領域を両面に設けたディスクを用いるほか、複数枚の ディスクを用いる構成も採用されて 、る。複数枚のディスクを備えたディスク装置では 、例えば、ディスクとスぺーサとをノヽブとクランプ部材との間に交互に積層し、クランプ 部材の外周領域によってディスクおよびスぺーサを積層方向に押し、ディスクおよび スぺーサをハブに固定する構成を用いている。図 18は複数枚のディスクを備えた従 来のディスク装置におけるクランプ構造の第 3の例を示す断面図である。
[0011] 図 18において、ノヽブ 121は、軸受 124、 125を介してブラケット 122に設けられたシ ャフト 123の周りに回転することができる。ロータハブ 126がハブ 121およびシャフト 1 23に固着されている。シャフト 123にはステータ 127が取り付けられ、ハブ 121には口 ータ磁石 128が取り付けられていて、ステータコイルに電流を供給することによって、 ハブ 121がロータ磁石 128とともに回転する。ディスク 100はハブ 121のフランジ 129 に直接接触し、ディスク 110はディスク 100との間にスぺーサ 130を介在して、デイス ク 120はディスク 110との間にスぺーサ 131を介在して、ハブ 121にそれぞれ嵌合さ れている。クランプ 132がロータハブ 126に嵌合されているとともに、ネジ 133によつ てノヽブ 121に固定され、ディスク 100、 110、 120とスぺーサ 130、 131をフランジ 12 9に向かって圧着して、これらをハブ 121に固定させている。さらに、フランジ 129に は突出部 121aが設けられている。この突出部 121aはクランプ 132を装着したときに 生じるスぺーサ 130とディスク 100との接触点よりも外側に位置し、フランジ 129のデ イスク 100に対向する表面に設けられている。この突出部 121aがディスクを変形させ ようとする曲げモーメントと反対向きの曲げモーメント Mを発生させて、ディスクをフラ ットに維持するように構成されている(例えば、 日本公開特許公報 特開平 6— 1396 75号公報参照)。
[0012] また、上述したような従来のディスク装置では、最近ますます増加しているディスク 記録密度の向上により、温度変化によるクランプ部材のずれにより、トラックずれが発 生し、再生できなくなるという問題が発生しており、この問題の対策として、クランプ部 材ゃディスクスぺーサをディスクと線膨張係数が略等しい材質で構成する方法が提 案されている(例えば、 日本公開特許公報 特開平 6— 168536号公報、特開 2002 133743号公報参照)。
[0013] さらに、ディスク装置をモパイル機器に搭載するために、装置そのものの薄型化が 望まれており、薄型化を実現するために、ディスクの厚みを薄くしたり、ディスクの片 側のみに記録再生用のヘッドを配置したり、ディスク 1枚当たりの記録容量を上げたり すると!/、つた方法が考えられて 、る。
[0014] し力しながら、上述した第 1の例の構成においては、ディスクをクランプすることによ つて発生するディスクの反りの方向、さらには、反りの量を安定的にコントロールでき ないという課題を有しており、このことにより、ヘッドの浮上量が安定しないという、最 悪の場合にはヘッドがディスクと接触するというさらに別の課題を抱えることになる。
[0015] また、別に提案されている第 2の例の構成、すなわち複数本のねじ 4を用いてデイス ク 1をノヽブ 2に固定するクランプ方法は、ねじ 4を締めることによるクランパの変形、ま たは、ディスク押圧力が不均一になり、図 19に示すように、ディスク内周部において ねじの本数だけ歪みやうねりを生ずるという新たな課題が出現する。尚、図 19は従来 のディスク装置におけるクランプによるディスクの変形を示す図である。
[0016] さらに、近年の装置の薄型化に伴いディスクそのものの厚みも薄くなる傾向にあり、 その結果、ディスクの強度も低くなり、ディスクの円周方向の歪みやうねりが大きくなる とともに、ディスクの半径方向の反り量が大きくなる。このようなディスク内周部の歪み やうねりは、ディスク装置の動作中にディスク内周部ではこの歪みやうねりが原因とな り瞬間的にヘッド 20とディスク 1との浮上隙間の変動を発生させる。例えば、クランプ 部材 3を締結するねじの本数が 3本の場合、ヘッド出力は図 20に示すようにディスク 1の一回転毎にねじの本数に対応する出力の変動が起こる。ヘッド出力の最小値を 最大値で除した値をパーセントで表した値をモジュレーションと呼び、モジユレーショ ンが小さくなると、その出力波の変動に応じて再生出力信号の SZNの劣化を招き、 データ再生パルスのタイムジッタ増加によるエラーレートの低下を生じ、データの記 録'再生が不正確となる。また、ヘッド 20の目的トラックへの位置決めやデータの書き 込み、読み取りが正確に行われなくなる。そして、浮上量の低下力もディスク 1とへッ ドとの接触等の故障が発生するといつた課題も生じている。尚、図 20は従来のデイス ク装置におけるヘッド信号出力図である。
[0017] さらに、ディスクと線膨張係数の略等 U、材質で、クランプ部材ゃディスクスぺーサ を構成する方法にぉ ヽては、ディスクとクランプ部材ゃディスクスぺーサの温度変化 による伸び縮みは同一の傾向で変化する力 ディスクと異なる材質で構成されている ハブの線膨張係数がディスクよりも大きいので、クランプ部材の装着によってハブとデ イスクの間に形成される接触点、あるいは接触面のモータの回転軸中心からの距離 R hと、ディスクとスぺーサリングの間に形成される接触点、あるいは接触面のモータの 回転軸中心からの距離 Rsが変化する。その結果、ディスクの反り量、また反り方向が 変化する。
[0018] 例えば、通常温度(25°C)で、図 21Aに示すようにディスク 1が反りのない略平坦に なるように調整されている場合、マルテンサイト系 SUS製ノヽブ 2の線膨張係数(9. 2 〜12 X 10"6)、ガラスまたはアルミ製のクランプ部材 3等の線膨張係数 (ガラス製の 場合で 6〜7. 2 X 10_6、アルミ製の場合、約 23. 5 X 10-6)との違いにより、ディスク 1とハブ 2との接触位置の回転軸中心力 の距離 Rhと、ディスク 1とクランプ部材 3側 との接触位置の回転軸中心からの距離 Rsが、周囲温度の変化により相対的に変化 する。すなわち、ディスク 1の材質がガラスの場合、高温になるとハブ 2の延び率がク ランプ部材 3の延び率よりも大きいので、ディスク 1とハブ 2との接触位置の回転軸中 心からの距離 Rh力 ディスク 1とクランプ部材 3との接触位置の回転軸中心からの距 離 Rsより外周部に移動することになり、図 21Bに示すように、ディスク 1の外周方向に 向かってディスク 1がクランプ部材 3の方向に反る。一方、ディスク 1の材質がアルミの 場合、同じように高温になるとクランプ部材 3の延び率力 ハブ 2の延び率よりも大き いので、ディスク 1とクランプ部材 3との接触位置の回転軸中心からの距離 Rsが、ディ スク 1とハブ 2との接触位置の回転軸中心からの距離 Rhより外周部に移動することに なり、図 21Cに示すようにディスク 1の外周方向に向力つてディスク 1がハブ 2の方向 に反る。逆に低温環境になると、高温時と逆の現象が生ずる。したがって、材質と温 度の変化によってディスクの反りの方向が変化するので、ヘッドの浮上状態が変化し てヘッドの記録再生に支障を来たすという課題もある。
[0019] 一方、複数枚のディスクを備えたディスク装置の構成においては、ハブがクランプの 加圧力によって変形し、ディスクが径方向に変形して反りが生じる。また、ディスク装 置が小型化すると、スピンドルモータも小型化し、ハブの剛性も低下するとともに、デ イスクの厚みも薄くなるため、変形もより大きくなる。そして大容量ィ匕を実現するために は、ディスクにおけるデータの記録密度を高めるだけでなぐデータ記録の分解能を 上げる必要があり、このために、ヘッドの浮上量は、非常に小さくなつている。さらに、 ディスクが小径化すると、ディスクをクランプする領域力 より内径にシフトするため、 ディスクが変形する度合いは、さらに増加する傾向にある。
[0020] また、図 18に示したような複数枚のディスクを備えた従来のディスク装置におけるク ランプ構造では、クランプ 132を装着したときに生じるスぺーサ 130とディスク 100と の接触点よりも外側に位置するように、フランジ 129に突出部 121aを設けることによ つて、ディスクを変形させようとする曲げモーメントと反対向きの曲げモーメント Mを発 生させて、ディスクをフラットに維持するように構成されている。さらに、この構成のクラ ンプ構造では、ディスクの変形を小さく抑える、あるいは、環境温度の変化によって発 生するディスクの変形を小さく抑えることが考慮されている力 ディスクを確実にフラッ トに維持し、ディスクの変形を全くなくすことは非常に難しいことに加えて、ディスクに 小さな変形が生じたとき、その変形の方向によっては、充分なヘッド出力が得られな くなることが生じると!、う課題も生じて!/、る。
[0021] さらに、上述した従来のディスク装置におけるクランプ構造では、ディスクの厚みが 薄くなるに伴い、クランプによるディスクの変形量や歪みが大きくなつて記録容量を上 げることができな 、、また安定的なヘッド浮上を得ることができな 、と 、う課題も出現し ている。
発明の開示
[0022] 本発明は、上述した課題を解決するためになされたものであり、ディスクのクランプ 構造を有するディスク装置において、ディスクをクランプすることによって発生するディ スクの変形量および変形方向を規定し、ヘッドを安定的に浮上させることを可能にし 、ヘッド出力の低下等を抑止してヘッド出力の安定性、信頼性を向上さるとともに、デ イスクのゆがみの発生を防止し、かつ温度変化に関わらず安定的なディスクのスピン ドルに対する固定構造を有し、薄型化、高容量ィヒを図ることが容易なディスク装置を 提供することを目的とする。
[0023] 上記の目的を達成するために、本発明のディスク装置は、一方の端部の外周部に 円筒面力 なるディスク挿入部と平面部力もなるディスク受け部とを有し、かつ回転自 在に支承されたハブと、ディスク挿入部と嵌合する内孔を有し、ディスク状記録媒体 のいずれか片方の面に対向して配設され、ディスク状記録媒体上を浮揚走査し、デ イスク状記録媒体上に記録された信号を読み取り、ある 、はディスク状記録媒体上に 信号を記録するヘッドと、ディスク受け部にて保持されたディスク状記録媒体と、ディ スク受け部との間にディスク状記録媒体を挟持するクランプ手段とを備え、ディスク受 け部は傾斜面で構成されている。また、クランプ手段は、クランプ部材および複数の ねじからなり、ハブの天面に載置されたクランプ部材を複数のねじにより締め付け、デ イスク状記録媒体を前記クランプ部材によって挟持する構成のみならず、ディスク状 記録媒体の中央部側の形状がヘッドを配設した側力 見て凸面形状を有して 、る構 成や、クランプ部材の装着によってハブとディスク状記録媒体の間に形成される接触 点または接触面の軸中心からの距離を Rhとし、ディスク状記録媒体とクランプ部材の 間に形成される接触点または接触面の回転軸中心からの距離を Rsとしたとき、距離 Rhと Rsとの関係がディスク状記録媒体から見てヘッドをノヽブのディスク受け部側に配 設する場合は Rs >Rhであり、ヘッドをクランプ部材側に配設する場合は Rs < Rhで ある構成を有してもよい。
[0024] これらの構成により、ディスク面の片側にのみ記録再生用のヘッドが存在するデイス ク装置にぉ ヽて、ヘッドが配設された側から見てディスクの形状を凸面形状にするこ とによって、安定したヘッド浮上を得ることが可能になるとともに、ヘッドとディスクの接 触を防止することが可能となる。さらに、ディスク受け部の平面形状をヘッドが配設さ れた側力 見て凸面形状にすることにより、簡単な構成でヘッドが配設された側から 見てディスクの形状を凸面形状にすることが可能となる。また、ディスクの形状を凸面 形状にすることは、ディスクを挟持したことによってハブとディスクとの間に形成される 接触点、あるいは接触面の回転軸中心からの距離 Rhと、ディスクとクランプ部材との 間に形成される接触点、あるいは接触面の回転軸中心からの距離 Rsとの関係をディ スクカも見てヘッドが配される側を大きくすることによつても可能になる。したがって、 簡単な構成で、安定したヘッド浮上を得ることが可能になるとともに、ヘッドとディスク の接触を防止することができる。
[0025] また、本発明のディスク装置の上記構成において、クランプ手段がスぺーサリング、 クランプ部材および複数のねじ力 なり、ハブの天面に載置されたクランプ部材を複 数のねじにより締め付け、ディスク状記録媒体と前記スぺーサリングをクランプ部材に よって挟持するようにしても、また、クランプ部材の装着によってハブとディスク状記録 媒体の間に形成される接触点または接触面の回転軸中心からの距離を Rhとし、ディ スク状記録媒体とスぺーサリングの間に形成される接触点または接触面の回転軸中 心からの距離を Rsとしたとき、距離 Rhと Rsとの関係は、ディスク状記録媒体から見て ヘッドがハブのディスク受け部側に配設される場合は Rs>Rhであり、ヘッドがスぺー サリング側に配設される場合は Rsく Rhである構成を有している。また、この構成に加 えて、スぺーサリングは、ディスク状記録媒体が接触する側の一部に段差を設けよう にしても、スぺーサリングは、ディスク状記録媒体に接触する面およびクランプ部材と 接触する面にそれぞれ段差を設けるようにしても、またスぺーサリングは、ビッカース 硬度 500以上、ヤング率 200000NZmm2以上の材質からなるようにしても、さらに、 スぺーサリングの平面度を 5 μ m以下とするようにしてもょ 、。
[0026] これらの構成により、ディスクを固定する際に、通常のクランプ部材の他に、スぺー サリングを介してディスクを固定する構造を採用しているので、簡単な形状で平面性 を出すことが可能なスぺーサリングを介してディスクをノヽブに固定することにより、ディ スク変形を低減することが可能となり、また、ハブの線膨張係数とスぺーサリングの線 膨張係数を同一、または略同一にしたことにより、クランプ部材の装着によってハブと ディスクの間に形成される接触点または接触面のモータの回転軸中心力ゝらの距離 R hと、ディスクとスぺーサリングの間に形成される接触点または接触面のモータの回転 軸中心からの距離を Rsの位置関係が、周囲の温度変化に関わらず変化しに《なる ので、温度変化によるディスクの半径方向の反りの変化が少なくなり、周囲の温度変 化に関わらず、ヘッドの浮上量を安定化させることが可能となる。また、クランプ部材 との間にスぺーサリングを介してディスクを挟持したことによってハブとディスクとの間 に形成される接触点、あるいは接触面の回転軸中心からの距離 Rhと、ディスクとスぺ ーサリングとの間に形成される接触点、あるいは接触面の回転軸中心からの距離 Rs との関係は、ディスクから見てヘッドが配される側が大きくすることにより、ディスク受け 部の平面形状によらず、ヘッドが配設された側力 見てディスクの形状を凸面形状に することが可能になるとともに、使用温度環境によらず、安定したヘッド浮上を得るこ とが可能になるとともに、ヘッドとディスクの接触を防止することが可能となる。さらに、 ディスクおよびクランプ部材にそれぞれ接触する面積が小さくなり、それらの接触面 の平坦度の精度を高くすることができるとともに、クランプ部材を弾性変形させ、その 弾性力によってスぺーサリングを介してディスクをノヽブのディスク受け部に押圧するこ とができる。また、ディスクが反ったときに、ディスクに余分な歪みを与えることもなくな る。
[0027] また、この目的を達成するために本発明のディスク装置の上記構成にぉ 、て、ディ スク状記録媒体の半径方向に沿ってヘッドは中央部に配設されたヘッドエレメントと 両端部に配設されたエアべアリングレールとを有し、ディスク状記録媒体の表面とへ ッドエレメントとの距離がディスク状記録媒体の表面とエアべアリングレールとの距離 よりち大さくなるようにすることちでさる。
[0028] この構成によって、ディスクの半径方向において、ディスクに対向するヘッドの面が 、平面であっても、あるいは、ディスク側に凸の形状を有していても、ヘッドの両端部 で、ディスクの半径方向にそれぞれ形成されたエアべァリングレールとそれらに対向 するディスクの表面との距離を、ヘッドの略中央部に設けられたヘッドエレメントとそ れに対向するディスクの表面との距離より大きくすることができる。これにより、安定し たヘッド浮上とヘッド出力を得ることができるとともに、ヘッドとディスクとの接触を抑止 することができる。さらに、ディスクの厚みを薄くしても、安定的なヘッド浮上およびへ ッド出力を得ることができる。したがって、ディスク装置の薄型化、高容量ィ匕を図ること ができる。
図面の簡単な説明
[0029] [図 1]図 1は本発明の実施の形態 1におけるディスク装置の概略構造を示す部分断 面図である。
[図 2]図 2は本発明の実施の形態 1におけるディスク装置のクランプ構造を示す拡大 断面図である。
[図 3]図 3は本発明の実施の形態 1における別のディスク装置のクランプ構造を示す 拡大断面図である。
[図 4]図 4は本発明の実施の形態 2におけるディスク装置の概略構造を示す部分断 面図である。
[図 5]図 5は本発明の実施の形態 2におけるディスク装置のクランプ構造を示す拡大 断面図である。
[図 6]図 6はディスクをクランプすることによって形成されるクランプ部材とディスクの接 触点 Rsとディスクとハブの接触点 Rhとディスクの反り量の関係を表す相関図である。
[図 7]図 7は本発明の実施の形態 2における別のディスク装置のクランプ構造を示す 拡大断面図である。 圆 8]図 8は本発明の実施の形態 3におけるディスク装置の概略構造を示す部分断 面図である。
圆 9]図 9は本発明の実施の形態 3におけるディスク装置のクランプ構造を示す拡大 断面図である。
[図 10]図 10は本発明の実施の形態 3におけるディスク装置の Rsと Rhとディスクの曲 率の関係を表す相関図である。
[図 11A]図 11Aは本発明の実施の形態 3におけるディスク装置のディスクの反りがへ ッドに対して凹形状である場合のヘッド浮上量とヘッドギャップの関係を示す図であ る。
[図 11B]図 11Bはディスクの反りがヘッドに対して凸形状である場合のヘッド浮上量と ヘッドギャップの関係を示す図である。
[図 12A]図 12Aは本発明の実施の形態 3におけるディスク装置のヘッドの曲率に等し い曲率のディスクの反りによるヘッド浮上量とヘッドギャップの関係を示す図である。
[図 12B]図 12Bはヘッドの曲率より大きい曲率のディスクの反りによるヘッド浮上量と ヘッドギャップの関係を示す図である。
[図 12C]図 12Cはヘッドの曲率より小さい曲率のディスクの反りによるヘッド浮上量と ヘッドギャップの関係を示す図である。
[図 13]図 13は本発明の実施の形態 3におけるディスク装置のクランプによるディスク の変形を示す図である。
[図 14]図 14は本発明の実施の形態 3におけるディスク装置のヘッド信号出力を示す 図である。
[図 15]図 15は本発明の実施の形態 3における別のディスク装置のクランプ構造を示 す拡大断面図である。
[図 16]図 16は従来のディスク装置におけるクランプ構造の第 1の例を示す断面図で ある。
[図 17]図 17は従来のディスク装置におけるクランプ構造の第 2の例を示す断面図で ある。
[図 18]図 18は複数枚のディスクを備えた従来のディスク装置におけるクランプ構造の 第 3の例を示す断面図である。
[図 19]図 19は従来のディスク装置におけるクランプによるディスクの変形を示す図で ある。
[図 20]図 20は従来のディスク装置におけるヘッド信号出力図である。
[図 21A]図 21Aは従来のディスク装置における通常温度時のクランプによるディスク の変形状態を示す断面図である。
[図 21B]図 21Bは従来のディスク装置における高温時のクランプによるディスクの変 形状態を示す断面図である。
[図 21C]図 21Cは従来のディスク装置における低温時のクランプによるディスクの変 形状態を示す断面図である。
符号の説明
1, 100, 110, 120 ディスク(ディスク状記録媒体)
2, 121 ノ、ブ
2a ディスク挿入部(中央突出部)
2c めねじ
2e ディスク受け部
3 クランプ部材
3a 中心孔
3f 底面
3g, 3h ディスク押圧部
4 ねじ
4a めねじ部
4b ねじ頭部
4c ねじ頭部座面
6 スぺーサリング
6a, 6e 接触面
6b, 6d 段差
7 永久磁石 8 軸受スリーブ
9 回転軸部
9a ハブ揷入部
9c 回転軸中心
20 ヘッド、
20a エアべアリングレール
20b センターレール
21, 22 接触点
121a 突出部
122 ブラケット
123 シャフト
124, 25 ベアリング
126 ロータハブ
127 ステータ
128 ロータ磁石
129 フランジ
130, 131 スぺーサ
132 クランプ
発明を実施するための最良の形態
[0031] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0032] (実施の形態 1)
本発明の実施の形態 1におけるディスク装置について、図 1〜図 3を用いて説明す る。図 1は本発明の実施の形態 1におけるディスク装置の概略構造を示す部分断面 図、図 2は本発明の実施の形態 1におけるディスク装置のクランプ構造を示す拡大断 面図、図 3は本発明の実施の形態 1における別のディスク装置のクランプ構造を示す 拡大断面図である。図 1、図 2、図 3中で、従来のディスク装置の構成を説明した図 1 6、図 17と同じ構成要素には同じ符号を付している。
[0033] 図 1、図 2において、内周側に孔部を有するディスク状記録媒体 1 (以下、ディスク状 記録媒体をディスクと略記する)はハブ 2の円筒状に突出するディスク挿入部 2aに挿 入される。ディスク 1の一方の面はハブ 2のディスク揷入部 2aの外周側にあるディスク 受け部 2eの上面で受けられている。このディスク受け部 2eは、半径方向の外周側に 向かうにしたがって所定の角度だけ傾斜するように構成されている。図 1、図 2に示し た構成では、ディスク受け部 2eの半径方向の外周側が下がるように傾斜がつけられ ている。ハブ 2と同一の素材、または、線膨張係数の近い素材力もなるクランプ部材 3 は、ディスク 1と同様にハブ 2のディスク挿入部 2aが揷通される内孔を有し、ディスク 1 の他方の面上に載置されている。ここで、クランプ部材 3は、ディスク 1を挟持して、ね じ 4によりハブ 2に複数箇所設けられためねじ部 4aとの間で締め付けられる。複数の ねじとクランプ部材 3がディスク 1をクランプするクランプ手段を構成して 、る。このとき 、ねじ 4のねじ頭部 4bの直径はクランプ部材 3に設けられた穴部の直径よりも大きい ので、ねじ 4をノ、ブ 2のめねじ部 4aに締め付けた際に軸力が発生する。軸力は、ねじ 頭部座面 4cからクランプ部材 3の穴部付近の底面 3fに伝わり、ディスク押圧部 3gに お!、てディスク 1の他方の面を押さえてクランプ部材 3がディスク 1をハブ 2に同軸的 かつ一体的に固定する。さらに、ディスク 1の一方の平面部に対向し、ディスク 1上を 浮揚走査し、ディスク 1上に記録された信号を読み取り再生し、あるいはディスク 1上 に信号を書き込み記録するヘッド 20が配設されている。そして、ハブ 2を回転させる ためのモータの構成部品である永久磁石 7がハブ 2の外周部に固定されている。この 永久磁石 7の磁石の磁力を有効に使用し、かつヘッド 20への漏れ磁束を抑制するた めにハブ 2は、マルテンサイト系の鋼材力 作成されて 、る。
[0034] ここで、ディスク受け部 2eの平面形状は、ヘッド 20が配設された位置力も見て凸面 形状に形成しているので、軸力によって、ディスク 1は、ディスク受け部 2eに押し付け られ、ディスク受け部 2eの形状に倣って変形する。すなわち、図 1、図 2の場合、ディ スク受け部 2eの形状が半径方向の外周側が下がるように傾斜がつけられて傘状に 形成されて ヽるので、ディスク 1の形状はヘッド 20が配設された位置から見て凸面形 状になる。
[0035] したがって、本発明の実施の形態 1におけるディスク装置によれば、クランプするこ とによってヘッド 20から見てディスク 1が凸面形状に変形するので、ディスク 1の中心 部の位置高さとヘッド 20の浮上高さと比較して、ヘッド 20とディスク 1の外周側の位 置との距離が大きくなるので、ヘッド 20がディスク 1から浮揚していれば、基本的に、 ヘッド 20の端部がディスク 1と接触することはない。したがって、図 1、図 2に示すよう な簡単な構成により、安定したヘッド浮上を得ることが可能になるとともに、ヘッド 20と ディスク 1の接触を防止することが可能となる。また、この構成においては、ハブ 2の外 周側端部とディスク 1の下側面とが接触しないように、ディスク受け部 2eの傾斜角を適 宜設定している。
[0036] なお、本発明の実施の形態 1のディスク装置にお!ヽては、クランプ側、すなわちディ スク 1の上側に信号を記録 ·再生するヘッド 20を配設する構成のディスク装置を例に 挙げて説明を行っている力 図 3に示すように、ハブ側、すなわちディスク 1の下側に 信号を記録 '再生するヘッド 20を配設してもよい。この場合、ハブ 2の上側面の形状 は、ディスク受け部 2eの上側面のディスク 1を受け、接触する部分において図 1、図 2 とは逆の向き、すなわちディスク受け部 2eの半径方向の外周側が上がるように傾斜さ せた擂鉢状に形成すればよい。そして、この構成のディスク装置では、クランプするこ とによってヘッド 20から見てディスク 1の内周側が図 1、図 2とは逆ではある力 凸面 形状に変形するので、ディスク 1の中心部の位置高さとヘッド 20の浮上高さと比較し て、ヘッド 20とディスク 1の外周側の位置との距離が大きくなる。それで、ヘッド 20力 S ディスク 1から浮揚していれば、基本的に、ヘッド 20の端部がディスク 1と接触すること はない。したがって、図 3に示すような簡単な構成により、安定したヘッド浮上を得るこ とが可能になるとともに、ヘッド 20とディスク 1の接触を防止することが可能となる。
[0037] (実施の形態 2)
続いて、本発明の実施の形態 2におけるディスク装置について、図 4〜図 7を用い て説明する。図 4は本発明の実施の形態 2におけるディスク装置の概略構造を示す 部分断面図、図 5は本発明の実施の形態 2におけるディスク装置のクランプ構造を示 す拡大断面図、図 6はディスクをクランプすることによって形成されるクランプ部材とデ イスクおよびディスクとハブのそれぞれの接触点 Rhとディスクの反り量の関係を表す 相関図、図 7は本発明の実施の形態 2における別のディスク装置のクランプ構造を示 す拡大断面図である。図 4、図 5、図 7中で、本発明の実施の形態 1のディスク装置の 構成を説明した図 1、図 2、図 3と同じ構成要素には同じ符号を付している。
[0038] 図 4、図 5において、内周側に孔部を有するディスク 1はハブ 2の円筒状に突出する ディスク揷入部 2aに挿入される。ディスク 1の一方の面はハブ 2のディスク揷入部 2a の外周側にあって凸字状に突出するディスク受け部 2eの上面で受けられている。ハ ブ 2と同一の素材、または、線膨張係数の近い素材力もなるクランプ部材 3は、デイス ク 1と同様にハブ 2のディスク揷入部 2aが揷通された内孔を有し、ディスク 1の他方の 面上に載置されている。ここで、クランプ部材 3は、ディスク 1を挟持して、ねじ 4により ハブ 2に複数箇所設けられためねじ部 4aとの間で締め付けられる。複数のねじとクラ ンプ部材 3がディスク 1をクランプするクランプ手段を構成している。このとき、ねじ 4の ねじ頭部 4bの直径はクランプ部材 3に設けられた穴部の直径よりも大きいので、ねじ 4をノ、ブ 2のめねじ部 4aに締め付けた際に軸力が発生する。軸力は、ねじ頭部座面 4 cからクランプ部材 3の穴部付近の底面 3fに伝わり、ディスク押圧部 3gにおいてディ スク 1の他方の面を押さえてクランプ部材 3がディスク 1をノヽブ 2に同軸的かつ一体的 に固定する。さらに、ディスク 1の一方の平面部に対向し、ディスク 1上を浮揚走査し、 ディスク 1上に記録された信号を読み取り再生し、ある 、はディスク 1上に信号を書き 込み記録するヘッド 20が配設されている。そして、ハブ 2を回転させるためのモータ の構成部品である永久磁石 7がハブ 2の外周部に固定されている。この永久磁石 7の 磁石の磁力を有効に使用し、かつヘッド 20への漏れ磁束を抑制するためにハブ 2は 、マルテンサイト系の鋼材力 作成されている。
[0039] ここで、ディスク 1を挟持したことによって、ハブ 2のディスク受け部 2eとディスク 1の 下側面との間には接触点 21、あるいは接触面が形成され、ディスク 1の上側面とクラ ンプ部材 3のディスク押圧部 3gとの間には接触点 22、あるいは接触面が形成される 。回転軸中心 9cから接触点 21、接触点 22までの距離をそれぞれ Rh、 Rsとしたとき、 Rh、 Rsの大きさによりディスク 1の反りの方向、および反り量が規定される。反りの大 きさ(量)と Rh、 Rsとの関係は、ディスク 1、ハブ 2、クランプ部材 3の材料、形状および 温度により異なるが、例えば、図 6に示すような関係が得られる。本発明の実施の形 態 2におけるディスク装置の構成を示す B4、 B5においては、ディスク 1から見てへッ ド 20が配設される側の距離が大きくなるように、すなわち、次に示す関係を満たすよ うに設定している。
[0040] [数 1]
R s > R h
[0041] そして、図 6に示したグラフを用いて Rsと Rhの関係を調整することにより、ディスク 1 の反りの方向、および反り量をコントロールすることができる。
[0042] したがって、本発明の実施の形態 2におけるディスク装置によれば、ディスク 1を挟 持したことによってハブ 2とディスク 1との間に形成される接触点 21、あるいは接触面 の回転軸中心 9cからの距離 Rhと、ディスク 1とクランプ部材 3との間に形成される接 触点 22、あるいは接触面の回転軸中心 9cからの距離 Rsとの関係は、ディスク 1から 見てヘッド 20が配設される側の距離を大きくしているので、クランプすることによって ヘッド 20から見てディスクが凸面形状になる。ディスク 1の中心部の位置高さとヘッド 20の浮上高さと比較して、ヘッド 20とディスク 1の外周側の位置との距離が大きくなる ので、ヘッド 20がディスク 1から浮揚していれば、基本的に、ヘッド 20の端部がディス ク 1と接触することはない。したがって、図 4、図 5に示すような簡単な構成により、安定 したヘッド浮上を得ることが可能になるとともに、ヘッド 20とディスク 1の接触を防止す ることが可能となる。また、この構成においても、ハブ 2の外周側端部とディスク 1の下 側面とが接触しないように、接触点 21と接触点 22の位置を適宜設定する必要がある
[0043] さらに、ハブ 2とクランプ部材 3を同一の材質、あるいは、ハブ 2の線膨張係数とクラ ンプ部材 3の線膨張係数を同一または略同一の材質で構成することにより、クランプ 部材 3の装着によってハブ 2のディスク受け部 2eとディスク 1の上側面との間に形成さ れる接触点 21または接触面のモータの回転軸中心 9cからの距離 Rhと、ディスク 1の 下側面とクランプ部材 3の間に形成される接触点 22または接触面のモータの回転軸 中心 9cからの距離 Rsとの位置関係が、周囲の温度変動に関わらず変化しに《なる 。ここで、ディスク 1をクランプすることによって発生するディスク 1の半径方向の反りは 、この Rhと Rsの位置関係で決まるので、本発明の実施の形態 2におけるディスク装 置では、装置の周囲温度環境の変化に関わらず、半径方向の反りの変化を少なくす ることができる。それ故、温度変動によるディスク 1の半径方向の反りの変化が少なく なるので、周囲の温度変動に関わらず、ディスク 1の半径方向の反り方向と反り量 (角 度)を一定にでき、ヘッド 20の浮上量が安定する。
[0044] また、本発明の実施の形態 2のディスク装置においては、上述したようにハブ 2とク ランプ部材 3の線膨張係数を略等しい素材で形成する例により説明しているが、本発 明の実施の形態 2のディスク装置はこの例に限定されるものではない。この例のほか に、例えば、ハブ 2の線膨張係数を oc Z°C、クランプ部材 3の線膨張係数を β Z°C、 クランプ位置の概略半径を R (例えば、 R= (RS+Rh)Z2と定義することができる)と すると、 β > αのとき、ディスク装置の動作保障温度を一 20°C〜80°Cとした場合、 - 20°Cにおいて、ディスク 1の反り量がゼロとなるように、通常使用温度(25°C)のときの Rhと Rsの関係を決めればょ 、ことになる。すなわち、
[0045] [数 2]
R s -R h≥ (2 5— (- 2 0)) X (β - ) XR = 4 5 X (β - α) X R
[0046] に設定すれば、動作保障温度の範囲内で、ディスク 1の反り方向は、常に一方の方 向となる。逆に、各構成部品の線膨張係数が、 (Χ > βのときは、同様に、通常使用温 度(25°C)のときの Rhと Rsの関係を
[0047] [数 3]
R s — Rh≥ (8 0 - 2 5) X (α - β ) XR= 5 5 X (α - β) XR
[0048] に設定すれば、動作保障温度範囲内で、ディスク 1の反り方向は、常に一方の方向と なる。したがって、ハブ 2とクランプ部材 3の材質は、線膨張係数が等しいか、あるい は線膨張係数が略同一の材料に限る必要はない。
[0049] さらには、本発明の実施の形態 2のディスク装置においては、クランプ側、すなわち ディスク 1の上側に信号を記録再生するヘッド 20を配する構成のディスク装置を例に 挙げて説明を行っている力 図 7に示すように、ハブ側、すなわちディスク 1の下側に 信号を記録再生するヘッド 20を配設してもよい。この場合、回転軸中心 9cから接触 点 21、接触点 22までのそれぞれの距離 Rh、 Rsの関係は、次に示す関係を満たすよ うに設定すればよい。
[0050] [数 4] R h > R s
[0051] そして、同様に、図 6に示したグラフを用いて Rsと Rhの関係を調整することにより、 ディスク 1の反りの方向、および反り量をコントロールすることができる。
[0052] したがって、この構成のディスク装置でも、ディスク 1を挟持したことによってハブ 2と ディスク 1との間に形成される接触点 21、あるいは接触面の回転軸中心 9cからの距 離 Rhと、ディスク 1とクランプ部材 3との間に形成される接触点 22、あるいは接触面の 回転軸中心 9cからの距離 Rsとの関係は、ディスク 1から見てヘッド 20が配設される側 の距離を大きくして 、るので、クランプすることによってヘッド 20から見てディスク 1が 図 4、図 5とは逆ではある力 凸面形状になる。それで、ディスク 1の中心部の位置高 さとヘッド 20の浮上高さと比較して、ヘッド 20とディスク 1の外周側の位置との距離が 大きくなり、ヘッド 20がディスク 1から浮揚していれば、基本的に、ヘッド 20の端部が ディスク 1と接触することはない。したがって、図 7に示すような簡単な構成により、安 定したヘッド浮上を得ることが可能になるとともに、ヘッド 20とディスク 1の接触を防止 することが可能となる。
[0053] (実施の形態 3)
引き続き、本発明の実施の形態 3におけるディスク装置について、図 8〜図 15を用 いて説明する。図 8は本発明の実施の形態 3におけるディスク装置の概略構造を示 す部分断面図、図 9は本発明の実施の形態 3におけるディスク装置のクランプ構造を 示す拡大断面図、図 10は図 6はディスクをクランプして反ることによって形成されるク ランプ部材とディスクおよびディスクとハブのそれぞれの接触点 Rhとディスクの反りの 曲率半径の関係を表す相関図、図 11はディスクに反りがある場合のヘッド浮上量と ヘッドギャップの関係を説明する図、図 12はディスクおよびヘッドが曲率を有して ヽ る場合のディスクの反りによるヘッド浮上量とヘッドギャップの関係を説明する図、図 1 3は本発明の実施の形態 3におけるディスク装置のクランプによるディスクの変形を示 す図、図 14は本発明の実施の形態 3におけるディスク装置のヘッド信号出力を示す 図、図 15は本発明の実施の形態 3における別のディスク装置のクランプ構造を示す 拡大断面図である。図 8、図 9、図 15中で、本発明の実施の形態 1、 2のディスク装置 の構成を説明した図 1〜図 5および図 7と同じ構成要素には同じ符号を付している。 [0054] 図 8、図 9において、内周側に孔部を有するディスク 1は回転軸部 9に固着されたノ、 ブ 2の円筒状に突出するディスク挿入部 2aに挿入される。ディスク 1の一方の面はハ ブ 2のディスク挿入部 2aの外周側にあるディスク受け部 2eの上面で受けられている。 ハブ 2と同一の素材、または、線膨張係数の近い素材力もなるスぺーサリング 6は、デ イスク 1と同様にハブ 2のディスク揷入部 2aが揷通された内孔を有し、ディスク 1の他 方の面上に載置されている。さらに、クランプ部材 3は、ハブ 2の天面上に載置され、 ディスク 1とスぺーサリング 6を挟持して、ねじ 4によりハブ 2に複数箇所設けられため ねじ部 4aとの間で締め付けられる。ここでは、複数のねじとクランプ部材 3およびスぺ ーサリング 6がディスク 1をクランプするクランプ手段を構成している。このとき、ねじ 4 のねじ頭部 4bの直径はクランプ部材 3に設けられた穴部 ¾の直径よりも大きいので、 ねじ 4をノ、ブ 2のめねじ部 4aに締め付けた際に軸力が発生する。軸力は、ねじ頭部 座面 4cからクランプ部材 3の穴部付近の底面 3fを介してスぺーサリング 6に伝わり、 ディスク 1をハブ 2に同軸的かつ一体的に固定する。さらに、ディスク 1の一方の平面 部に対向し、ディスク 1上を浮揚走査し、ディスク 1上に記録された信号を読み取り再 生し、あるいはディスク 1上に信号を書き込み記録するヘッド 20が配設されている。な お、図 8、図 9においては、ヘッド 20のみを矩形の要素部材で示している力 実際に はヘッド 20は図示しな 、ヘッド支持機構およびヘッド支持アームにより支持されて!ヽ る。そして、ハブ 2を回転させるためのモータの構成部品である永久磁石 7がハブ 2の 外周部に固定されている。この永久磁石 7の磁石の磁力を有効に使用し、かつヘッド 20への漏れ磁束を抑制するためにハブ 2は、マルテンサイト系の鋼材力 作成され ている。
[0055] ここで、ディスク 1を挟持したことによってハブ 2のディスク受け部 2eとディスク 1の下 側面との間には接触点 21、あるいは接触面が形成され、ディスク 1の上側面とスぺー サリング 6のディスク押圧部 3hとの間には接触点 22が形成される。回転軸中心 9cか ら接触点 21、接触点 22までの距離をそれぞれ Rh、 Rsとしたとき、 Rh、 Rsの大きさに よりディスク 1の反りの方向、および反り量が規定される。反りの大きさ(量)と Rh、 Rsと の関係は、ディスク 1、ハブ 2、クランプ部材 3の材料、形状および温度により異なるが 、実施の形態 3におけるディスク装置においても、実施の形態 2におけるディスク装置 に備わるディスクで説明した図 6と同様な関係が得られる。
[0056] ここで、図 8、図 9に示した実施の形態 3におけるディスク装置に備わるディスク 1が 曲率半径 Drを有する曲面形状で反っているとする。曲率半径 Drは回転軸中心 9cか ら接触点 21、接触点 22までのそれぞれ距離 Rh、 Rsの差 (Rs— Rh)に関係する。実 際に、曲率半径 Drと距離 Rh、 Rsの差 (Rs— Rh)を実測して、横軸に (Rs— Rh)、そ して縦軸に曲率半径 Drをとつてプロットすると、例えば、図 10に示すようなグラフが得 られる。図 10の結果からわ力るように、 Rsと Rhとの相対位置関係を調整することによ り、ディスク 1の曲率半径を制御することができる。ここで、(Rs— Rh)の値が負のとき は、ディスク 1の曲率半径は正の値を示し、ディスク 1がヘッド 20側に反っていることを 示し、また、(Rs— Rh)の値が正のときは、ディスク 1の曲率半径は負の値を示し、デ イスク 1がハブ側に反って ヽることを示す。
[0057] つぎに、ディスク 1の曲率半径とヘッド 20の浮上量との関係について、図 11Aから 図 12Cを用いて説明する。図 11Aはディスクの反りがヘッドに対して凹形状である場 合のヘッド浮上量とヘッドギャップの関係を示す図、図 11Bはディスクの反りがヘッド に対して凸形状である場合のヘッド浮上量とヘッドギャップの関係を示す図、図 12A はヘッドの曲率に等しい曲率のディスクの反りによるヘッド浮上量とヘッドギャップの 関係を示す図、図 12Bはヘッドの曲率より大きい曲率のディスクの反りによるヘッド浮 上量とヘッドギャップの関係を示す図、図 12Cはヘッドの曲率より小さい曲率のデイス クの反りによるヘッド浮上量とヘッドギャップの関係を示す図である。
[0058] 最初に、ディスク 1と対向するヘッド 20の面が平坦であるときのディスク 1の反りによ るヘッド浮上量とヘッドギャップの関係について説明する。図 11Aは、ディスク 1がへ ッド 20から見て凹形状に変形している状態を表している。ディスク 1と対向するヘッド 20の面には、ディスク 1の半径方向の両端部にヘッド 20を浮上させるためのエアべ アリングレール 20aと、略中央部に情報を記録再生するためのヘッドエレメントが設け られているセンターレール 20bとが形成されている。ヘッド 20の浮上量は、ヘッド 20 の両サイドに設けられて 、るエアべアリングレール 20aによって決まる。したがって、 図 11Aに示すように、ディスク 1の形状がヘッド 20から見て凹形状に変形しているとき は、ヘッド 20の浮上量を Hhとすると、ディスク 1とセンターレール 20bに設けられたへ ッドエレメントの距離 Hgは、 Hg>Hhとなる。したがって、ヘッドエレメントが設けられ ているセンターレール 20bの部分の浮上量が設計値より高くなる。その結果、充分な ヘッド出力が得られなくなる。
[0059] 一方、図 11Bは、ディスク 1が、ヘッド 20から見て凸形状に変形している状態を表し ている。上述の図 11Aと同様に、ヘッド 20の浮上量を Hhとすると、ディスク 1とヘッド エレメントの距離 Hgは、 Hgく Hhとなる。したがって、ヘッドエレメントが設けられてい るセンターレール 20b部分の浮上量が設計値より、低くなりヘッド出力が増加する。し たがって、ディスク 1と対向するヘッド 20の面が平坦であるとき、すなわち、ディスク 1と 対向するヘッド 20の面の曲率半径が無限大のとき、クランプすることによって発生す るディスク 1の反りの形状をヘッド 20側力も見て凸になるようにすることによって、へッ ド 20から得られる出力信号は設計値より大きくなるので、良好なヘッド出力を得ること が可能となる。
[0060] つぎに、ディスク 1と対向するヘッド 20の面がヘッドエレメントを設けたセッターレ一 ル 20bを頂点としてディスク 1の半径方向に曲率半径 Hrを持っている形状であるとき のディスク 1の反りによるヘッド浮上量とヘッドギャップの関係について、図 12Aから 図 12Cを用いて説明する。
[0061] 図 12Aに示すように、ディスク 1の反りの曲率半径 Drが、ヘッド 20の曲率半径 Hrと 等しい場合、ディスク 1からのヘッド 20の浮上量 Hhと、ディスク 1とセンターレール 20 bに設けられたヘッドエレメントとの距離 Hgが等しくなるので、ヘッド 20のヘッド出力 の低下は発生しない。また、図 12Bに示すように、ディスク 1の反りの曲率半径 Drが、 ヘッド 20の曲率半径 Hrより大きくなる場合、ディスク 1とヘッドエレメントとの距離 Hg は、ディスク 1からのヘッド 20の浮上量 Hhより小さくなるので、ヘッド 20のヘッド出力 は増加する。そして、図 12Cに示すように、ディスク 1の反りの曲率半径 Dr力 ヘッド 2 0の曲率半径 Hrより小さくなる場合、ディスク 1とヘッドエレメントとの距離 Hgは、ディ スク 1からのヘッド 20の浮上量 Hhより大きくなるので、ヘッド 20のヘッド出力は低下 する。
[0062] したがって、ディスク 1と対向するヘッド 20の面がヘッドエレメントを設けたセンター レール 20bを頂点としてディスク 1の半径方向に曲率半径 Hrを持っている形状である とき、クランプすることによって発生するディスク 1の反りの形状は、ヘッド 20側から見 て曲率半径 Drをヘッド 20の曲率半径 Hrと同一、または曲率半径 Hrより大きくする、 あるいはヘッド 20側に凸になる形状とする。これにより、ヘッド 20から得られる出力信 号は、設計値より大きくなり、良好なヘッド出力を得ることが可能となる。
[0063] 例えば、ヘッド 20のディスク 1の半径方向の幅を、 0. 7mm、ヘッドエレメントとヘッド 端部の高低差が 10nmの場合、ヘッド 20の曲率半径の絶対値は 6125mmとなる。し たがって、ディスク 1の曲率半径の絶対値が 6125mm以上になるように、ハブ 2とディ スク 1との間に形成される接触点 11に対する回転軸中心 9cからの距離 Rhと、デイス ク 1とスぺーサリング 6との間に形成される接触点 12、すなわち接触面の中心点に対 する回転軸中心 9cからの距離 Rsとの関係を設定して、ディスク 1を挟持すればよい。 すなわち、図 10より、ディスク 1の曲率半径の絶対値が 6125mm以上になる(Rs—R h)の範囲を求めると、 -0. 12mm≤(Rs-Rh)≤0. 12mmとなる。それ故、 Rsと R hとの差の絶対値を 0. 12mm以下(図 10に示すハッチング領域)に設定すれば、デ イスク 1の変形によってヘッド 20の出力低下が発生することを防止できる。
[0064] 本発明の実施の形態 3におけるディスク装置の構成においては、実施の形態 2に おけるディスク装置と同様に、ディスク 1から見てヘッド 20が配設される側の距離が大 きくなるように、すなわち、次に示す関係を満たすように設定している。
[0065] [数 5]
R s > R h
[0066] それで、実施の形態 2の発明と同様に、図 6および図 10に示したグラフを用いて Rs と Rhの関係を調整することにより、ディスク 1の反りの方向、反り量、およびディスク 1 の反りの曲率半径 Drをコントロールすることができる。
[0067] スぺーサリング 6は、ディスク 1に円周方向に歪みやうねりが生じないように均一に押 圧するために精度の高い加工が施されている。例えば、ディスク 1の上側面に接触す るスぺーサリング 6の接触面 6aの平面度を 5 μ m以下に加工している。このスぺーサ リング 6の形状は、円環形状のような単純形状でよいため、ディスク 1の上側面に接触 する面 (接触面 6a)の平坦度が出やすい構造になっている。また、ディスク 1が反った ときに、ディスクに歪みを与えないために、ディスク 1の上側面に接触するスぺーサリ ング 6の接触面 6aには外周側の一部に段差 6bを設けている。また、クランプ部材 3の 底面 3fに接触するスぺーサリング 6の接触面 6eにも外周側の一部に段差 6dを設け ている。この段差 6dにより、クランプ部材 3をねじ 4でノヽブ 2に挟持して固定するときに 、クランプ部材 3を弾性変形させることができるので、本発明の実施の形態 3における ディスク装置では、クランプ部材 3、ねじ 4、ディスク 1、およびノヽブ 2等の異なる材料の それぞれの線膨張係数の差によって温度変動時に生ずるねじ 4の緩み、さらには、ク ランプ力の変化を最小限に抑えることができる。
[0068] そして、モータを回転させるための永久磁石 7をノヽブ 2に一体的に保持することが 冬、、ので、永久磁石 7の漏れ磁束を低減するためにハブ 2は磁性材で形成すること が望ましい。それで、スぺーサリング 6の材質を SUS420等の高硬度、すなわち、ビッ カース硬度 500以上、ヤング率 200000NZmm2以上の磁性材で形成すれば、図 8 、図 9に示す本発明の実施の形態 3におけるディスク装置はスぺーサリング 6を介して ディスク 1を挟持する構成を有して ヽるので、ディスク 1にクランプ部材 3の円周方向 の歪みや変形 (うねり)がディスクのデータ形成領域に影響することはない。実際、図 13に示すように、クランプすることによるディスク 1への歪みやうねりの影響はほとんど 認められない。尚、図 13は本発明の実施の形態 3におけるディスク装置のクランプに よるディスクの変形を示す図である。
[0069] ここで、ハブ 2とスぺーサリング 6を同一の材質、あるいは、ハブ 2の線膨張係数とス ぺーサリング 6の線膨張係数を同一または略同一の材質で構成することにより、クラ ンプ部材 3の装着によってハブ 2のディスク受け部 2eとディスク 1の下側面と間に形成 される接触点 21または接触面のモータの回転軸中心 9cからの距離 Rhと、ディスク 1 の上側面とスぺーサリング 6のディスク押圧部 3hとの間に形成される接触点 22または 接触面 6aのモータの回転軸中心 9cからの距離 Rsとの位置関係力 周囲の温度変 動に関わらず変化しに《なる。したがって、ディスク 1をクランプすることによって発生 するディスク 1の半径方向の反りは、この Rhと Rsの位置関係で決まるので、本発明の 実施の形態 3におけるディスク装置では、装置の周囲温度環境の変化に関わらず、 半径方向の反りの変化を少なくすることができる。
[0070] すなわち、本発明の実施の形態 3におけるディスク装置によれば、ディスク 1を挟持 したことによってハブ 2のディスク受け部 2eとディスク 1の下側面との間に形成される 接触点 21または接触面の回転軸中心 9cからの距離 Rhと、ディスク 1の上側面とスぺ ーサリング 6のディスク押圧部 3hとの間に形成される接触点 22または接触面 6aの回 転軸中心 9cからの距離 Rsとの関係は、ディスク 1から見てヘッド 20が配設される側の 距離を大きくしているので、クランプすることによってヘッド 20から見てディスクが凸面 形状になる。ディスク 1の中心部の位置高さとヘッド 20の浮上高さと比較して、ヘッド 20とディスク 1の外周側の位置との距離が大きくなるので、ヘッド 20がディスク 1から 浮揚していれば、基本的に、ヘッド 20の端部がディスク 1と接触することはない。した がって、図 8、図 9に示すような簡単な構成により、安定したヘッド浮上を得ることが可 能になるとともに、ヘッド 20とディスク 1の接触を防止することが可能となる。また、この 構成においても、ハブ 2の外周側端部とディスク 1の下側面とが接触しないように、接 触点 21と接触点 22の位置を適宜設定する必要がある。
[0071] また、ディスク 1をノヽブ 2に一体的に保持するためのクランプ機構を構成する部品の 形状が単純であるので、精度の高い加工が可能となることにより、クランプによるディ スク歪みを少なくすることが可能である。さらには、ハブ 2とスぺーサリング 6を同一の 材質、あるいは、ハブ 2の線膨張係数とスぺーサリング 6の線膨張係数を同一または 略同一の材質で構成することにより、ディスク 1を保持しているディスク 1の両側の面 がそれぞれ接触点 21、接触点 22と接触する相対的な位置の変化が少なくなる。この 結果、温度変動によるディスク 1の半径方向の反りの変化が少なくなるので、周囲の 温度変動に関わらず、ディスク 1の半径方向の反り方向と反り量 (角度)および反りの 曲率半径 Drが一定になり、ヘッド 20の浮上量が安定する。
[0072] さらに、スぺーサリング 6を介してハブ 2と一体的に固定することにより、図 14に示す 例から判断できるように、ねじの締結による歪みやうねりといったモジュレーションが発 生せず、データ再生パルスのタイムジッタ増加によるエラーレートの低下が生じない。 その結果、データの記録 '再生が正確に行われることになる。そして、ヘッドの目的ト ラックへの位置決めやデータの書き込み、読み取りが正確に行われ、浮上量の低下 力もディスクとのコンタクト等が発生しに《なる。これにより、ディスクの厚みを薄くして も、安定的なヘッド浮上を得ることが可能になり、ディスク装置の薄型化'高容量化を 図ることが可能となる。尚、図 14は本発明の実施の形態 3におけるディスク装置のへ ッド信号出力を示す図である。
[0073] したがって、ディスク 1の厚みを薄くしても、クランプすることによって発生するデイス ク 1の反りの曲率半径をヘッド 20の曲率半径に対応させて決定し、ディスク 1の曲率 半径がその範囲内に収まるようにクランプの構成を決めることによって、安定的なへッ ド浮上量を得ることが可能となる。この結果、ヘッド出力の低下が生じなくなり、かつ ディスク装置の薄型化、高容量化を図ることが可能となる。
[0074] なお、本発明の実施の形態 3のディスク装置においては、図 8、図 9に示したように、 ディスクの枚数を 1枚のみの例で説明している力 ディスクの枚数は 1枚に限定される ものではない。例えば、 2枚のディスクを備えるディスク装置の場合、 1枚目と 2枚目の ディスクの間に同等のスぺーサリングを配設すればよい。
[0075] また、本発明の実施の形態 3のディスク装置においては、上述したようにハブ 2とス ぺーサリング 6の線膨張係数を略等しい素材で形成する例により説明しているが、本 発明の実施の形態 3のディスク装置はこの例に限定されるものではない。この例のほ かに、例えば、ハブ 2の線膨張係数を aZ°C、クランプ部材の線膨張係数を j8 Z°C、 クランプ位置の概略半径を Rとすると、ディスク装置の動作保障温度を Tmin (°C)〜 Tmax (°C)とした場合、 Tmin力 Tmaxの温度範囲内の温度 Tで次の(式 1)を満た すように、(Rs— Rh)の絶対値を設定すればよい。
[0076] 園
| R s - R h | + R X i α— β I X I Τ - 2 5 I ≤0 . 1 2 (式 1 )
[0077] 概略半径 Rを有効半径として、
[0078] [数 7]
R = ( R s + R h ) / 2
[0079] と定義し、常温を 25°Cとしており、 Tminおよび Tmaxのどちらの場合にも(式 1)を満 たすことが必要である。各構成部品の線膨張係数が、 j8く αのきは、 Tmin=— 20 °Cとし、ディスク 1の反り量がゼロとなるように、通常使用温度(25°C)のときの Rhと Rs の関係を求めて、 [0080] [数 8]
R s -R h≥ (2 5— (— 2 0)) x (β - a) XR=4 5 x (β— a) XR
[0081] に設定すれば、動作保障温度の範囲内で、ディスク 1の反り方向は、常に一方の方 向となる。逆に、各構成部品の線膨張係数が、 α > βのときは、 Tmax=80°Cとして 、同様に、通常使用温度(25°C)のときの Rhと Rsの関係を
[0082] [数 9]
R s — Rh≥ (8 0 - 2 5) X (α - β) XR = 5 5 X (a- ) XR
[0083] に設定すれば、動作保障温度範囲内で、ディスクの反り方向は、常に一方の方向と なる。したがって、ハブ 2とスぺーサリング 6の材質は、線膨張係数が等しいか、あるい は線膨張係数が略同一の材料に限る必要はない。
[0084] (式 1)を満足する(Rs— Rh)を求めることによって、例えば図 6、図 10に示されるよ うな測定結果を有するディスク装置に対して、設定すべきディスク 1の反りの量を規定 し、および反りの曲率半径を形成するためのディスク受け部 2eの距離 Rsとスぺーサリ ング 6の距離 Rhとの相対位置関係を求めることができる。なお、(式 1)における右辺 の数値 (0. 12mm)は、図 10に示されるような測定結果を有するディスク装置に該当 するもので、ディスク装置によってその値が変わるのは 、うまでもな!/、。
[0085] 本発明の実施の形態 3のディスク装置においては、クランプ側、すなわちディスク 1 の上側に信号を記録再生するヘッド 20を配する構成を有する図 8、図 9にしたデイス ク装置を例に挙げて説明を行って 、るが、図 15に示すようにディスク 1の下側に信号 を読み取りするヘッド 20を配してもよい。この場合、回転軸中心 9cから各接触点 21、 22までのそれぞれの距離 Rhと Rsの関係は、次に示す関係を満たすように設定すれ ばよい。
[0086] [数 10]
Rh>R s
[0087] この場合も、同様に、図 6および図 10に示したグラフを用いて Rsと Rhの関係を調整 することにより、ディスク 1の反りの方向、反り量、および反りの曲率半径 Drをコント口 一ノレすることができる。 [0088] したがって、ヘッド 20が図 15に示すようにディスク 1の下側に配置した構成のデイス ク装置においても、ディスク 1がスぺーサリング 6を用いて挟持されることによってハブ 2とディスク 1との間に形成される接触点 21、あるいは接触面の回転軸中心 9cからの 距離 Rhと、ディスク 1とスぺーサリング 6との間に形成される接触点 22、あるいは接触 面 6aの回転軸中心 9cからの距離 Rsとの関係は、ディスク 1から見てヘッド 20が配設 される側の距離の方が大きくなる。この構成の場合、図 8、図 9とは逆ではある力 クラ ンプすることによってヘッド 20から見てディスク 1が凸面形状になる。それ故、ディスク 1の中心部の位置高さとヘッド 20の浮上高さと比較して、ヘッド 20とディスク 1の外周 側の位置との距離が大きくなり、ヘッド 20がディスク 1から浮揚していれば、基本的に 、ヘッド 20の端部がディスク 1と接触することはない。したがって、図 15に示すような 簡単な構成により、安定したヘッド浮上を得ることが可能になるとともに、ヘッド 20とデ イスク 1の接触を防止することが可能となる。
[0089] なお、ディスク 1をハブ 2とスぺーサリングと 6の間に狭持するクランプ機構について も、上述した本発明の実施の形態に記述された構成に限定されない。
[0090] 上述したように、本発明のディスク装置は、ディスク面の片側にのみ記録再生用の ヘッドが存在するディスク装置にお!、て、ヘッドが配設された側から見てディスクの形 状を凸面形状にすることによって、安定したヘッド浮上を得ることが可能になるととも に、ヘッドとディスクの接触を防止することが可能できる。また、本発明のディスク装置 には、ディスク受け部の平面形状をヘッドが配設された側から見て凸面形状にするこ とにより、簡単な構成でヘッドが配設された側から見てディスクの形状を凸面形状に することが可能となる。したがって、簡単な構成で、安定したヘッド浮上を得ることが 可能になるとともに、ヘッドとディスクの接触を防止することが可能できる。また、本発 明のディスク装置は、ディスクを挟持したことによってハブとディスクとの間に形成され る接触点、あるいは接触面の回転軸中心力ゝらの距離 Rhと、ディスクとクランプ部材と の間に形成される接触点、あるいは接触面の回転軸中心からの距離 Rsとの関係は、 ディスクから見てヘッドが配される側を大きくすることにより、ディスク受け部の平面形 状によらず、ヘッドが配設された側から見てディスクの形状を凸面形状にすることによ つて、安定したヘッド浮上を得ることが可能になるとともに、ヘッドとディスクの接触を 防止することができる。さらに、本発明のディスク装置によれば、クランプ部材との間 にスぺーサリングを介してディスクを挟持したことによってハブとディスクとの間に形成 される接触点、あるいは接触面の回転軸中心力もの距離 Rhと、ディスクとスぺーサリ ングとの間に形成される接触点、あるいは接触面の回転軸中心力ゝらの距離 Rsとの関 係は、ディスク力 見てヘッドが配される側が大きくすることにより、ディスク受け部の 平面形状によらず、ヘッドが配設された側から見てディスクの形状を凸面形状にする ことが可能になるとともに、使用温度環境によらず、安定したヘッド浮上を得ることが 可能になるとともに、ヘッドとディスクの接触を防止することができる。
[0091] さらに、ディスク表面からヘッドのエアべアリングレールまでの距離よりも、ディスク表 面力 ヘッドのヘッドエレメントまでの距離が小さくなるように、ディスクの変形方向お よび変形量を設定してディスクをノヽブとスぺーサリングとの間に狭持することができる 。このため、安定したヘッド浮上とヘッド出力を得ることができるとともに、ヘッドとディ スクとの接触を抑止することが可能となる。この結果、ディスクの厚みを薄くしても、安 定的なヘッド浮上およびヘッド出力を得ることができ、ディスク装置の薄型化、高容量 ィ匕を図ることができる。
産業上の利用可能性
[0092] 本発明のディスク装置によれば、簡単な形状で平面性を出すことが可能なスぺー サリングを介してディスクをノヽブに固定することにより、ディスクの変形を低減すること が可能なディスク取り付け構造を提供することが可能となるとともに、ハブの線膨張係 数とスぺーサリングの線膨張係数を同一、または略同一にしたことにより、クランプ部 材の装着によってハブとディスクの間に形成される接触点、あるいは接触面のモータ の回転軸中心力ゝらの距離 Rhと、ディスクとスぺーサリングの間に形成される接触点、 あるいは接触面のモータの回転軸中心力もの距離 Rsの位置関係力 周囲の温度変 化に関わらず変化しに《なる。この結果、ディスクを保持しているディスク両面にお Vヽてそれぞれ接触する相対的な位置が変化しな!ヽので、温度変化によるディスクの 半径方向の反りの変化が少なくなり、周囲の温度変化に関わらず、ヘッドの浮上量が 安定的なディスクのスピンドルに対する固定構造を有し、ヘッドとディスクとの接触を 抑止することが可能となって、薄型化、高容量ィ匕を図ることが容易なディスク装置とし て情報記録再生装置に有用である。

Claims

請求の範囲
[1] 一方の端部の外周部に円筒面力 なるディスク挿入部と平面部力 なるディスク受け 部とを有し、かつ回転自在に支承されたハブと、
前記ディスク挿入部と嵌合する内孔を有し、前記ディスク受け部にて保持されたディ スク状記録媒体と、
前記ディスク状記録媒体の少なくとも一方の面に対向して配設され、前記ディスク状 記録媒体上を浮揚走査し、前記ディスク状記録媒体上に記録された信号を読み取り 、あるいは前記ディスク状記録媒体上に信号を記録するヘッドと、
前記ディスク受け部との間に前記ディスク状記録媒体を挟持するクランプ手段と を備え、
前記ディスク受け部が傾斜面で構成されているディスク装置。
[2] 前記クランプ手段は、クランプ部材および複数のネジからなり、前記ハブの天面に載 置された前記クランプ部材を複数の前記ネジにより締め付け、前記ディスク状記録媒 体を前記クランプ部材によって挟持する請求項 1に記載のディスク装置。
[3] 前記ディスク状記録媒体の中央部側の形状が、前記ヘッドを配設した側から見て凸 面形状を有して 、る請求項 2に記載のディスク装置。
[4] 前記クランプ部材の装着によって前記ハブと前記ディスク状記録媒体の間に形成さ れる接触点または接触面の前記回転軸中心力ゝらの距離を Rhとし、前記ディスク状記 録媒体と前記クランプ部材の間に形成される接触点または接触面の前記回転軸中 心からの距離を Rsとしたとき、前記距離 Rhと Rsとの関係は、前記ディスク状記録媒 体から見て前記ヘッドが前記ハブの前記ディスク受け部側に配設される場合は Rs > Rhであり、前記ヘッドが前記クランプ部材側に配設される場合は Rs < Rhである請求 項 2に記載のディスク装置。
[5] 前記クランプ手段は、スぺーサリング、クランプ部材および複数のネジからなり、前記 ハブの天面に載置された前記クランプ部材を複数の前記ネジにより締め付け、前記 ディスク状記録媒体と前記スぺーサリングを前記クランプ部材によって挟持する請求 項 1に記載のディスク装置。
[6] 前記クランプ部材の装着によって前記ハブと前記ディスク状記録媒体の間に形成さ れる接触点または接触面の回転軸中心からの距離を Rhとし、前記ディスク状記録媒 体と前記スぺーサリングの間に形成される接触点または接触面の前記回転軸中心か らの距離を Rsとしたとき、前記距離 Rhと Rsとの関係は、前記ディスク状記録媒体から 見て前記ヘッドが前記ハブの前記ディスク受け部側に配設される場合は Rs>Rhで あり、前記ヘッドが前記スぺーサリング側に配設される場合は Rs < Rhである請求項 5 に記載のディスク装置。
[7] 前記スぺーサリングは、前記ディスク状記録媒体に接触する面および前記クランプ部 材に接触する面にそれぞれ段差を有する円環形状である請求項 6に記載のディスク 装置。
[8] 前記スぺーサリングは、ビッカース硬度 500以上、ヤング率 200000NZmm2以上の 材質力 なる請求項 7に記載のディスク装置。
[9] 前記スぺーサリングの平面度は 5 μ m以下である請求項 7に記載のディスク装置。
[10] 前記ディスク状記録媒体の半径方向に沿って前記ヘッドは中央部に配設されたへッ ドエレメントと両端部に配設されたエアべアリングレールとを有し、
前記ディスク状記録媒体の表面と前記ヘッドエレメントとの距離が前記ディスク状記 録媒体の表面と前記エアべアリングレールとの距離よりも大きい請求項 2または請求 項 5に記載のディスク装置。
PCT/JP2006/300251 2005-01-13 2006-01-12 ディスク装置 WO2006075639A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006520573A JPWO2006075639A1 (ja) 2005-01-13 2006-01-12 ディスク装置
US11/570,000 US7787214B2 (en) 2005-01-13 2006-01-12 Disk device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-005913 2005-01-13
JP2005005913 2005-01-13
JP2005-065242 2005-03-09
JP2005065242 2005-03-09
JP2005-143749 2005-05-17
JP2005143749 2005-05-17

Publications (1)

Publication Number Publication Date
WO2006075639A1 true WO2006075639A1 (ja) 2006-07-20

Family

ID=36677664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300251 WO2006075639A1 (ja) 2005-01-13 2006-01-12 ディスク装置

Country Status (3)

Country Link
US (1) US7787214B2 (ja)
JP (1) JPWO2006075639A1 (ja)
WO (1) WO2006075639A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080488A (ja) * 2005-09-09 2007-03-29 Samsung Electronics Co Ltd ディスク装置のスピンドルモータ組立体
JP2009285761A (ja) * 2008-05-28 2009-12-10 Ryobi Ltd 打撃工具
JP7058358B1 (ja) * 2021-03-05 2022-04-21 株式会社Uacj 磁気ディスク装置および磁気ディスク装置を製造する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284514B1 (en) * 2010-06-28 2012-10-09 Western Digital Technologies, Inc. Disk drive having a clamp fastener with a convex head
US8908325B1 (en) * 2013-03-08 2014-12-09 Western Digital Technologies, Inc. Threaded disk clamping element with step on disk contact surface
US9466327B1 (en) 2015-09-29 2016-10-11 Seagate Technology Llc Color coded glass disc spacer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121043U (ja) * 1991-04-05 1992-10-29 アルプス電気株式会社 デイスク駆動装置
JPH0559640U (ja) * 1992-01-09 1993-08-06 株式会社三協精機製作所 ディスク駆動装置
JPH06119697A (ja) * 1992-10-07 1994-04-28 Toshiba Corp データ記録再生装置およびディスク固定方法
JPH0798912A (ja) * 1993-09-30 1995-04-11 Kyocera Corp 磁気ディスク基板用保持部材およびこれを用いた磁気ディスク装置
JPH08315533A (ja) * 1995-03-15 1996-11-29 Kyocera Corp 磁気ディスク基板用保持部材およびこれを用いた磁気ディスク装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300483A (ja) * 1988-05-30 1989-12-04 Hitachi Ltd 磁気ディスク装置
JP3220288B2 (ja) 1992-09-30 2001-10-22 京セラ株式会社 磁気ディスク基板用保持部材およびこれを用いた磁気ディスク装置
JPH06139675A (ja) 1992-10-27 1994-05-20 Hitachi Ltd ディスク形記憶媒体の駆動装置
JP2755156B2 (ja) * 1994-01-31 1998-05-20 日本電気株式会社 磁気ディスク装置
US5969902A (en) * 1995-03-15 1999-10-19 Kyocera Corporation Support magnetic disk substrate and magnetic disk unit using the support member composed of Forsterite and an iron based component
US5724208A (en) * 1996-04-30 1998-03-03 Kabushiki Kaisha Soode Nagano Hard disc spacer and hard disc clamp
US5790345A (en) * 1996-11-15 1998-08-04 Integral Peripherals, Inc. Disk clamp with tabs shaped to apply equal forces at equally spaced locations around an axis of rotation of a disk drive
JPH11296943A (ja) * 1998-04-08 1999-10-29 Sony Corp ディスク基板のクランプ装置及びクランプ方法
JP2000057727A (ja) * 1998-08-10 2000-02-25 Asahi Glass Co Ltd 磁気記録用ハードディスクの取付構造
US6381092B1 (en) * 2000-01-10 2002-04-30 Komag, Inc. Spacer rings to compensate for disk warpage
US20020034041A1 (en) * 2000-09-20 2002-03-21 Erming Luo Disc stack clamping with radially offset clamping surfaces
JP2002133743A (ja) 2000-10-26 2002-05-10 Internatl Business Mach Corp <Ibm> 情報記録ディスク装置用ディスククランプ、及び、情報記録ディスク装置
JP2002298479A (ja) * 2001-03-30 2002-10-11 Toshiba Corp ディスク押え機構とこの機構を用いたディスク装置および、ディスク押え方法
JP2006073083A (ja) * 2004-09-01 2006-03-16 Fujitsu Ltd 記録ディスク駆動装置向けスペーサおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121043U (ja) * 1991-04-05 1992-10-29 アルプス電気株式会社 デイスク駆動装置
JPH0559640U (ja) * 1992-01-09 1993-08-06 株式会社三協精機製作所 ディスク駆動装置
JPH06119697A (ja) * 1992-10-07 1994-04-28 Toshiba Corp データ記録再生装置およびディスク固定方法
JPH0798912A (ja) * 1993-09-30 1995-04-11 Kyocera Corp 磁気ディスク基板用保持部材およびこれを用いた磁気ディスク装置
JPH08315533A (ja) * 1995-03-15 1996-11-29 Kyocera Corp 磁気ディスク基板用保持部材およびこれを用いた磁気ディスク装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080488A (ja) * 2005-09-09 2007-03-29 Samsung Electronics Co Ltd ディスク装置のスピンドルモータ組立体
JP2009285761A (ja) * 2008-05-28 2009-12-10 Ryobi Ltd 打撃工具
JP7058358B1 (ja) * 2021-03-05 2022-04-21 株式会社Uacj 磁気ディスク装置および磁気ディスク装置を製造する方法
WO2022185892A1 (ja) * 2021-03-05 2022-09-09 株式会社Uacj 磁気ディスク装置および磁気ディスク装置を製造する方法

Also Published As

Publication number Publication date
US20090083772A1 (en) 2009-03-26
US7787214B2 (en) 2010-08-31
JPWO2006075639A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
US6208486B1 (en) Spindle motor flange land portion
US5459921A (en) Method of making a disc drive actuator arm with arm compliance compensation
US7030527B2 (en) Data storage device with mechanism to control rotation of spindle motor
WO2006075639A1 (ja) ディスク装置
JP4297902B2 (ja) ディスククランプ装置及びそれを有するディスク装置
KR100463902B1 (ko) 정보 기록 디스크 장치용 디스크 클램프 및 정보 기록디스크 장치
US6788495B2 (en) Disc pack assembly
US7511919B2 (en) Magnetic disk apparatus
JP2814975B2 (ja) 磁気ヘッド及び磁気ディスク装置
US7027260B2 (en) Disk spacer with gradually deepening groove formed only in a middle portion of an outer circumferential surface thereof
JP2002157858A (ja) スクイーズ空気膜による振動低減構造をもつ磁気ディスク装置
JPH04184758A (ja) ディスク駆動装置
CN100485797C (zh) 盘装置
US9196292B1 (en) Rotary spindle having a disk clamp bottom land facing and in contact with a shaft top land
JP2000268485A (ja) 情報記録再生装置
US20110170215A1 (en) Asymmetric disk clamp and spindle motor assembly including asymmetric disk clamp
JP2001331995A (ja) 磁気ディスク装置
JP2959483B2 (ja) 磁気ディスク組立体およびこれを用いた磁気ディスク装置
JPH09223346A (ja) データ記録装置
JPH1186486A (ja) ディスク装置
JPH04325979A (ja) ディスクおよび磁気ディスク装置
JP2008016150A (ja) 回転円板形記憶装置
JP2003217249A (ja) ディスク取り付け機構及び同機構を有するディスク装置
JP2001101823A (ja) ディスク状記録媒体
JPH09161436A (ja) 磁気ディスク装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520573

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11570000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000469.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711574

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711574

Country of ref document: EP