WO2022185892A1 - 磁気ディスク装置および磁気ディスク装置を製造する方法 - Google Patents
磁気ディスク装置および磁気ディスク装置を製造する方法 Download PDFInfo
- Publication number
- WO2022185892A1 WO2022185892A1 PCT/JP2022/005725 JP2022005725W WO2022185892A1 WO 2022185892 A1 WO2022185892 A1 WO 2022185892A1 JP 2022005725 W JP2022005725 W JP 2022005725W WO 2022185892 A1 WO2022185892 A1 WO 2022185892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic disk
- spacer
- clamp
- contact
- height
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 327
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title description 18
- 125000006850 spacer group Chemical group 0.000 claims abstract description 133
- 230000002093 peripheral effect Effects 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 description 76
- 239000011521 glass Substances 0.000 description 26
- 229910000838 Al alloy Inorganic materials 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 7
- 230000035939 shock Effects 0.000 description 7
- 238000005498 polishing Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 5
- 239000011573 trace mineral Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007772 electroless plating Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003426 chemical strengthening reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/02—Details
- G11B17/038—Centering or locking of a plurality of discs in a single cartridge
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B17/00—Guiding record carriers not specifically of filamentary or web form, or of supports therefor
- G11B17/02—Details
- G11B17/022—Positioning or locking of single discs
- G11B17/028—Positioning or locking of single discs of discs rotating during transducing operation
- G11B17/0287—Positioning or locking of single discs of discs rotating during transducing operation by permanent connections, e.g. screws, rivets
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B19/00—Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
- G11B19/20—Driving; Starting; Stopping; Control thereof
- G11B19/2009—Turntables, hubs and motors for disk drives; Mounting of motors in the drive
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B23/00—Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B25/00—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
- G11B25/04—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card
- G11B25/043—Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using flat record carriers, e.g. disc, card using rotating discs
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/02—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/12—Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/14—Reducing influence of physical parameters, e.g. temperature change, moisture, dust
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/74—Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
- G11B5/82—Disk carriers
Definitions
- the present invention relates to a magnetic disk device and a method of manufacturing a magnetic disk device.
- HDD Hard Disk Drive
- Document 1 discloses glass for information recording media that is stably fixed to the hub of an SPM (spindle motor) and that does not break even when a magnetic disk recording device incorporating the SPM is subjected to a strong impact.
- a substrate is disclosed.
- the present invention has been made in view of such circumstances, and aims to provide a magnetic disk device having excellent shock resistance and high data capacity, and a method of manufacturing a magnetic disk device.
- a magnetic disk device includes: a plurality of disk-shaped magnetic disks having a through hole in the center; a spacer disposed between the magnetic disks and having a through hole in the center; a hub inserted into the through holes of the magnetic disk and the spacer; a clamp that presses and holds the magnetic disk and the spacer, In the surface where the magnetic disk contacts the spacer or the clamp, the planar height of the upper surface of the magnetic disk in contact with the outer peripheral portion of the spacer or the clamp is the magnetic disk contacting the inner peripheral portion of the spacer or the clamp. Lower than the plane height of the top surface of the disk.
- At least the magnetic disk arranged at the uppermost part is such that, on the surface where the magnetic disk and the clamp come into contact, the plane height of the upper surface of the magnetic disk in contact with the outer circumference of the clamp is equal to the inner circumference of the clamp. It is preferably lower than the planar height of the top surface of the magnetic disk that contacts.
- the thickness of the magnetic disk is preferably 0.48 mm or less.
- the thickness of the magnetic disk is preferably 0.36 mm or less.
- a method for manufacturing a magnetic disk device includes: a plurality of disk-shaped magnetic disks having a through hole in the center; a spacer disposed between the magnetic disks and having a through hole in the center; a hub inserted into the through holes of the magnetic disk and the spacer; a clamp that presses and holds the magnetic disk and the spacer; A method of manufacturing a magnetic disk device comprising measuring the planar height of the upper surface of the magnetic disk in contact with the outer peripheral portion of the spacer or the clamp and the planar height of the upper surface of the magnetic disk in contact with the inner peripheral portion of the spacer or the clamp; The magnetic disk is placed in the hub such that the planar height of the upper surface of the magnetic disk in contact with the outer peripheral portion of the spacer or the clamp is lower than the planar height of the upper surface of the magnetic disk in contact with the inner peripheral portion of the spacer. inserting into Prepare.
- the present invention it is possible to provide a magnetic disk device having excellent shock resistance and high data capacity, and a method of manufacturing the magnetic disk device.
- FIG. 1A is a top view showing a magnetic disk device according to an embodiment
- FIG. 1B is a side view showing the magnetic disk device
- FIG. 3 is a cross-sectional view showing a magnetic disk and spacers included in the magnetic disk device according to the embodiment
- FIG. 2 is an enlarged cross-sectional view showing a magnetic disk and spacers included in the magnetic disk device according to the embodiment
- FIG. It is a figure which shows that the impact was applied to the magnetic disk with which the magnetic disk apparatus which concerns on embodiment is provided.
- a magnetic disk device (HDD: Hard Disk Drive) and spacers according to embodiments of the present invention will be described below with reference to the drawings.
- the magnetic disk device 100 of this embodiment is a box-shaped recording/reproducing device, and as shown in FIGS. a head stack assembly 40; a voice coil motor 50; a ramp load 60; a clamp 70; 2, the magnetic disk device 100 includes a plurality of spacers 80 arranged between the plurality of magnetic disks 30, a hub 90 for rotating the plurality of magnetic disks 30 around the rotation axis Z, Prepare.
- the dimensions of the magnetic disk drive 100 are defined by a common standard.
- a 3.5-inch magnetic disk drive with dimensions complying with the SFF-8301 standard is preferably used.
- the height H of the housing 10 is defined as 26.1 mm, the width W as 101.6 mm, and the depth D as 147 mm.
- the housing 10 is generally made of metal, has a cubic box shape with one side open, and includes a base 20, a magnetic disk 30, a head stack assembly 40, a voice coil motor 50, and a lamp.
- a load 60, a clamp 70, and necessary members such as a spindle motor and a circuit board are sealed by a top cover (not shown).
- the base 20 is located at the bottom of the housing 10, and is the part on which the voice coil motor 50, the spindle motor, the circuit board, etc. are mounted.
- the base 20 and the housing 10 are often integrated.
- the magnetic disk 30 is a disk-shaped medium having a through hole in the center for magnetically recording information, and is composed of a substrate, an underlayer, a magnetic layer, a protective layer, and a lubricating layer. and rotates around the rotation axis Z.
- Perpendicular magnetic recording (PMR) and shingled magnetic recording (SMR) are preferably used as magnetic recording methods. Technologies such as a heat assisted magnetic recording method (HAMR) and a microwave assisted magnetic recording method (MAMR) are being developed in order to achieve even higher capacities.
- HAMR heat assisted magnetic recording method
- MAMR microwave assisted magnetic recording method
- the substrate an aluminum alloy substrate or a glass substrate is preferably used. Details of the aluminum alloy substrate and the glass substrate will be described later.
- the thickness Td of the magnetic disk 30 is preferably 0.2 mm or more and 1.75 mm or less, more preferably 0.2 mm or more and 0.50 mm or less, still more preferably 0.2 mm or more and 0.48 mm or less. Preferably, it is 0.2 mm or more and 0.36 mm or less.
- the outer diameter 2 ⁇ Rd of the magnetic disk 30 is preferably 95 mm or 97 mm, and the inner diameter is 25 mm.
- the number N of the magnetic disks 30 included in the magnetic disk device 100 of the present embodiment is preferably 8 or more and 16 or less.
- the head stack assembly 40 has an arm 41 and a head section 42 attached to the tip of the arm 41 .
- a laser element is mounted on the head section 42
- a microwave generating element is mounted on the head section 42.
- the voice coil motor 50 is a driving motor that rotates the head stack assembly 40 .
- the ramp load 60 is a part made of resin, and is mounted at a position closest to the magnetic disk 30 on the outer peripheral side of the magnetic disk 30 for the purpose of withdrawing the head portion 42 when the magnetic disk device 100 is not in operation. It is.
- the clamp 70 has projections 71 on the surface facing the upper surface of the magnetic disk 30 that contact the magnetic disk 30, and presses and holds the plurality of magnetic disks 30 and the spacers 80 against the hub 90. is fixed.
- the magnetic disk 30 is fixed by the clamp 70 .
- the fastening member 72 is, for example, a screw or a T6-T8 size hexalobe screw. Note that the diameter of the bolt is M2 or the like.
- the spacer 80 is a ring-shaped thin plate and is arranged between the multiple magnetic disks 30 .
- the role of the spacer 80 is to secure the intervals between the plurality of magnetic disks 30 and to contact and adhere closely to the magnetic disks 30 , so that the hub 90 is not in direct contact with the hub 90 or the clamp 70 . It is to transmit the rotational driving force. For this reason, the shape of the spacer 80 is desired to have a small degree of flatness on both surfaces of the spacer 80 .
- the distance between the magnetic disks 30, that is, the thickness Ts of the spacer should be at least 1 mm or more, preferably 1.5 mm, more preferably 1.6 mm or more.
- the spacer 80 preferably has a chamfered portion 81 at the boundary between the surface and the inner and outer peripheral end faces (hereinafter referred to as the inner and outer peripheral portions of the spacer) for the purpose of deburring. This is because when the magnetic disk 30 and the spacer 80 are laminated, there is a concern that burrs on the inner and outer peripheral portions of the spacer 80 may come into contact with the magnetic disk 30 and cause scratches.
- Rso is the outer radius of the spacer 80
- Rsi is the inner radius of the spacer 80
- Lso is the length of the chamfered portion 81 on the outer periphery of the spacer 80
- Lsi is the length of the chamfered portion 82 on the inner periphery of the spacer 80
- the contact portion 83 is a portion where the spacer 80 and the magnetic disk 30 contact each other. Since the chamfered portions 81 and 82 of the spacer 80 do not contribute to contact with the magnetic disk 30 and do not contribute to the role of transmitting the rotational driving force of the hub 90 to the magnetic disk 30, the length of the chamfered portions 81 and 82 of the spacer 80 is Lso and Lsi are preferably as small as possible, specifically 0.1 mm or less.
- the material forming the spacer 80 is desirably selected from materials that reduce the difference in thermal expansion coefficient between the spacer 80 and the magnetic disk 30 . If the difference between the thermal expansion coefficients of the two is large, positional deviation between the spacer 80 and the surface of the magnetic disk 30 will occur when the environmental temperature changes during the operation of the magnetic disk 30, causing read/write errors.
- the spacer 80 is preferably made of aluminum.
- the spacer 80 is preferably made of glass, stainless steel, titanium, or the like.
- the spacer 80 preferably has conductivity.
- glass is used for the spacer 80, it is desirable that the surface and side surfaces of the spacer 80 made of glass be provided with a metal film such as Ni--P plating.
- Rd is the outer radius of the magnetic disk
- Td is the thickness of the magnetic disk
- Rso is the outer radius of the spacer
- Ts is the thickness of the spacer 80
- T be the height.
- the inner diameter of the magnetic disk 30 and the inner diameter 2 ⁇ Rsi of the spacer 80 are, for example, 25 mm.
- the outer diameter 2 ⁇ Rso of the spacer 80 is preferably 32 mm or more and 65 mm or less. As a result, the data area in the magnetic disk device 100 can be expanded while maintaining the impact resistance and fluttering resistance of the magnetic disk device 100 .
- parts such as the base 20, the circuit board, the spindle motor, the clamp 70, the hub 90, and the top cover are mounted in the space inside the device.
- the stacking height T of the magnetic disk 30 and the spacer 80 is preferably 20 mm or less, more preferably 19 mm or less.
- the lower limit of the thickness Td of the magnetic disk 30 is 0.3 mm
- the lower limit of the thickness Ts of the spacer 80 is 1 mm
- the upper limit of the lamination height T of the magnetic disk 30 and the spacer 80 is 20 mm. Therefore, the upper limit of the number N of the magnetic disks 30 is 16 sheets. Also, in order to increase the capacity of the magnetic disk device 100, the number N of the magnetic disks 30 is preferably eight or more.
- the hub 90 is made of a non-ferromagnetic metal such as an aluminum alloy, and has a shape in which a cylindrical small-diameter portion 91 and a large-diameter portion 92 are connected in the direction of the rotation axis Z. It is rotated by a spindle motor as a central axis.
- the diameter of the small diameter portion 91 is the same as the inner diameter of the magnetic disk 30 and the inner diameter 2Rsi of the spacer 80 . Together with the clamp 70 , the large-diameter portion 92 sandwiches and fixes the magnetic disk 30 and the spacer 80 .
- the magnetic disk 30 is a disc-shaped medium for magnetically recording information, and is composed of a substrate, an underlayer, a magnetic layer, a protective layer, and a lubricating layer.
- An aluminum alloy substrate or a glass substrate is preferably used as the substrate.
- Al alloy substrate As the aluminum alloy substrate, a conventionally used Al--Mg alloy such as JIS5086 alloy is preferably used because of its high strength. Alternatively, an Al—Fe alloy is preferably used because of its high rigidity.
- the Al-Mg alloy contains Mg: 1.0 to 6.5% by mass, Cu: 0.070% by mass or less, Zn: 0.60% by mass or less, Fe: 0.50 % by mass or less, Si: 0.50 mass % or less, Cr: 0.20 mass % or less, Mn: 0.50 mass % or less, Zr: 0.20 mass % or less.
- the balance is an aluminum alloy composed of aluminum, unavoidable impurities, and other trace elements.
- Other trace elements include Be, Sr, etc., and if each of them is 0.1% by mass or less, the effect of the present disclosure is not impaired.
- the Al—Fe alloy contains Fe as an essential element and one or two of Mn and Ni as optional elements, and the total content of these Fe, Mn and Ni is 1.00 to 7.00. 00% by mass, and further, Si: 14.0% by mass or less, Zn: 0.7% by mass or less, Cu: 1.0% by mass or less, Mg: 3.5% by mass or less, Cr: 0 .30% by mass or less and Zr: 0.20% by mass or less, which further contains one or more elements, and the balance is aluminum and inevitable impurities and other trace elements.
- Other trace elements include Be, Sr, etc., and if each of them is 0.1% by mass or less, the effect of the present disclosure is not impaired.
- a semi-continuous casting method is used to produce an ingot, which is hot-rolled and cold-rolled to produce a plate material of a desired thickness.
- a plate material is produced by continuous casting and then cold-rolled to produce a plate material having a desired thickness.
- a heat treatment may be applied to the ingot for the purpose of homogenizing the structure.
- the sheet material may be subjected to heat treatment before cold rolling, during cold rolling, or after cold rolling.
- the plate material produced as described above is stamped with a press to produce a disk-shaped blank having desired inner diameter and outer diameter. After that, in order to reduce the flatness of the blanks, the blanks are laminated together, a load is applied to the laminated blanks, and heat treatment is performed.
- the inner diameter and outer diameter of the blank are cut with a lathe to produce a T-sub having a desired inner diameter, outer diameter and chamfered length. Further, the surfaces of both sides of the blank may be machined to form a T-sub with a desired thickness. Furthermore, the T-sub may be subjected to heat treatment for the purpose of removing processing strain generated inside the material due to cutting.
- the surfaces of both sides of the T-sub are ground by a grinding machine to produce a G-sub of a desired thickness. Further, the G-sub may be subjected to heat treatment for the purpose of removing processing strain generated inside the material due to grinding.
- an M-sub is produced by depositing a desired thickness of plating on all surfaces of the G-sub, including the surface, side surfaces, and chamfered surfaces.
- pretreatment is performed on the G sub for the purpose of improving plating adhesion.
- plating treatment is performed.
- Ni—P electroless plating is preferably used for plating.
- the M-sub may be heat-treated for the purpose of removing the internal stress of the Ni—P electroless plating.
- the lower limit of the thickness of the aluminum alloy substrate produced by this method is 0.3 mm. This is due to the thickness of a component called a carrier that holds the aluminum alloy substrate during polishing with a polishing machine.
- the thickness of the carrier can be arbitrarily selected as long as it is equal to or greater than the thickness of the aluminum alloy substrate, which is the work piece. From the viewpoint of carrier strength, the thickness of the carrier is preferably 0.3 mm or more. Therefore, the lower limit of the thickness of the aluminum alloy substrate, which is the workpiece, is 0.3 mm.
- a carrier made of a resin such as an aramid resin or an epoxy resin is preferably used. For the purpose of improving strength, a fibrous reinforcing material such as carbon fiber or glass fiber may be contained.
- the magnetic disk 30 is obtained.
- Aluminosilicate glass is preferably used as the glass substrate because of its high hardness.
- the aluminosilicate glass contains SiO 2 : 55 to 70% by mass as a main component, Al 2 O 3 : 25% by mass or less, Li 2 O: 12% by mass or less, and Na 2 O: 12% by mass or less.
- K 2 O 8% by mass or less
- MgO 7% by mass or less
- CaO 10% by mass or less
- ZrO 2 10% by mass or less
- TiO 2 1% by mass or less.
- the balance consists of unavoidable impurities and other trace elements.
- a glass material prepared with a predetermined chemical composition is melted, and the molten mass is press-molded from both sides by a direct press method to produce a glass base plate having a desired thickness.
- the production of the glass base plate is not limited to the direct press method, and may be a float method, a fusion method, a redraw method, or the like.
- this glass base plate is annularly cored, and the inner diameter portion and outer diameter portion are further polished to form an annular glass plate having desired inner diameter dimensions, outer diameter dimensions, and chamfer length.
- annular glass substrate having a desired plate thickness and flatness.
- both surfaces of this annular glass substrate are polished by a polishing machine to produce a substrate having a desired thickness, that is, a glass substrate.
- a chemical strengthening treatment using a sodium nitrate solution, a potassium nitrate solution, or the like may be performed during the polishing process.
- the lower limit of the thickness of the glass substrate produced by this method is 0.3 mm. This is due to the thickness of a part called a carrier that holds the glass substrate during polishing with a polishing machine.
- the thickness of the carrier can be arbitrarily selected as long as it is equal to or greater than the thickness of the glass substrate to be processed. From the viewpoint of carrier strength, the thickness of the carrier is preferably 0.3 mm or more. Therefore, the lower limit of the thickness of the glass substrate, which is the object to be processed, is 0.3 mm.
- a carrier made of a resin such as an aramid resin or an epoxy resin is preferably used.
- a fibrous reinforcing material such as carbon fiber or glass fiber may be contained.
- the magnetic disk 30 When the magnetic disk device 100 receives an external impact, the magnetic disk 30 is bent, and the magnetic disk 30 collides with, for example, the ramp load 60, as shown in FIG.
- the ramp load 60 is made of resin and mounted at a position closest to the magnetic disk 30 on the outer peripheral side of the magnetic disk 30 for the purpose of retracting the head portion 42 when the magnetic disk device 100 is not in operation. is a part of If the magnetic disk 30 collides with the ramp road 60, a part of the ramp road 60 may be chipped to generate foreign matter, or the magnetic disk 30 may be scratched, resulting in failure.
- the magnetic disk 30 rotates at high speed. Its rotation speed is, for example, 7200 rpm.
- turbulence occurs in the gas inside the magnetic disk 30 device, causing the magnetic disk 30 to vibrate. This vibration phenomenon is called fluttering. Vibration of the magnetic disk 30 lowers the positional accuracy of the head unit 42 and causes reading errors.
- a technique of filling the magnetic disk device 100 with helium instead of air is known.
- the impact resistance of the magnetic disk 30 is indicated by the amount of deflection of the magnetic disk 30 when the magnetic disk 30 receives acceleration due to impact.
- the fluttering resistance of the magnetic disk 30 is indicated by the amount of deflection of the magnetic disk 30 when subjected to gas turbulence generated by the high-speed rotation of the magnetic disk 30 .
- the impact resistance and fluttering resistance of the magnetic disk 30 are determined by whether the magnetic disk 30 is flexible or not.
- the plane height H1 and the plane height H2 are measured with the contact portion 83 as a reference, for example.
- the plane height H1 of the upper surface of the magnetic disk 30 in contact with the outer circumference of the clamp 70 is equal to the inner circumference of the clamp 70 on the surface where the magnetic disk 30 and the clamp 70 contact each other. is lower than the planar height H2 of the upper surface of the magnetic disk 30 that contacts the .
- the upper surface of the magnetic disk 30 is the surface near the clamp 70 .
- At least the uppermost magnetic disk 30 has a plane height H1 lower than a plane height H2 on the surface where the magnetic disk 30 and the clamp 70 contact each other. More preferably, more than half of the total number of magnetic disks 30 mounted has a planar height H1 lower than a planar height H2 on the surface where the magnetic disks 30 and the spacer 80 contact each other. . More preferably, all the magnetic disks 30 have a plane height H1 lower than a plane height H2 at the contact surface between the magnetic disks 30 and the spacers 80 .
- the plane height H1 and the plane height H2 of the upper surface of the magnetic disk 30 as described above, impact resistance can be improved.
- planar height H1 of the magnetic disk 30 in contact with the outer peripheral portion of the spacer 80 is higher than the planar height H2 of the magnetic disk 30 in contact with the inner peripheral portion of the spacer 80, the outer peripheral spacer 80 and The gap with the lower surface of the magnetic disk 30 becomes large. In this state, if an external impact is applied to the magnetic disk device 100 from the bottom to the top, the magnetic disk 30 is greatly deformed, resulting in a decrease in impact resistance. On the other hand, if the plane height H1 of the magnetic disk in contact with the outer peripheral portion of the spacer 80 is lower than the plane height H2 of the magnetic disk 30 in contact with the inner peripheral portion of the spacer 80, the spacer 80 on the outer peripheral portion will not and the lower surface of the magnetic disk 30 becomes smaller.
- the difference (H1-H2) between the planar height H1 of the magnetic disk in contact with the outer periphery of the spacer 80 and the planar height H2 of the magnetic disk in contact with the inner periphery of the spacer 80 is preferably -3.0 ⁇ m or less. , and more preferably ⁇ 4.0 ⁇ m or less. There is no particular lower limit, but it is about -15 ⁇ m.
- the plane height H1 of the upper surface of the magnetic disk 30 in contact with the outer peripheral portion of the spacer 80 and the planar height H2 of the upper surface of the magnetic disk 30 in contact with the inner peripheral portion of the spacer 80 are determined.
- the magnetic A step of inserting the disk 30 and the spacer 80 into the hub 90 and a step of fixing the magnetic disk 30 and the spacer 80 to the hub 90 with the clamp 70 are provided.
- the process of measuring the plane heights H1 and H2 is performed as follows.
- the plane heights H1 and H2 are expressed by the peak height and valley depth of the entire surface of the magnetic disk 30 with respect to a certain reference plane (0 ⁇ m).
- a reference plane the spacer 80 arranged below is shown as a reference.
- the plane height H1 of the magnetic disk 30 in contact with the outer circumference of the spacer 80 is the position of the magnetic disk 30 in contact with the outer circumference of the spacer 80 (for example, the position of the outer radius Rsso ), the height difference was measured in the circumferential direction, and the maximum peak height or maximum valley depth was calculated.
- the plane height H2 of the magnetic disk in contact with the inner circumference of the spacer 80 is the position of the magnetic disk 30 in contact with the inner circumference of the spacer 80 after measuring the plane height of the entire substrate (for example, the inner radius Rssi position), the height difference is measured in the circumferential direction, and the maximum peak height or maximum valley depth is calculated.
- the maximum peak height is the highest value in the outer peripheral portion or the inner peripheral portion
- the maximum valley depth is the lowest value in the outer peripheral portion or the inner peripheral portion.
- the difference between H1 (maximum valley depth) and H2 (maximum peak height) is represented by H1-H2, and the value is greater than 0 ⁇ m.
- the plane height H1 of the magnetic disk 30 in contact with the outer periphery of the spacer 80 is lower than the plane height H2 of the magnetic disk 30 in contact with the inner periphery of the spacer 80 .
- the maximum peak height of the outer peripheral portion is larger than the maximum valley depth of the inner peripheral portion, the difference between H1 (maximum peak height) and H2 (maximum valley depth) is represented by H1-H2.
- a planar height H1 of the magnetic disk 30 in contact is defined to be higher than a planar height H2 of the magnetic disk 30 in contact with the inner peripheral portion of the spacer 80 .
- the plane height H1 is higher than the plane height H2, the thickness of the magnetic disk 30 is constant, so when the magnetic disk 30 is reversed and measured, the plane height H1 is lower than the plane height H2.
- the process of inserting the magnetic disk 30 and spacer 80 into the hub 90 will be described.
- the step of measuring the plane heights H1 and H2 if the measured plane height H1 is lower than the plane height H2, the magnetic disk 30 is inserted into the hub 90 as it is.
- the magnetic disk 30 is turned over and the magnetic disk 30 is inserted into the hub 90 .
- the magnetic disk 30 and the spacer 80 are fixed to the hub 90 by the clamp 70 .
- the plane height H1 of the upper surface of the magnetic disk 30 in contact with the outer peripheral portion of the spacer 80 is To provide a 3.5-inch magnetic disk drive having excellent shock resistance and high data capacity by improving shock resistance without reducing the recording area by lowering the plane height H2 of be able to.
- the concept of the present embodiment that the planar height H1 of the upper surface of the magnetic disk 30 in contact with the outer peripheral portion of the spacer 80 is lower than the planar height H2 of the upper surface of the magnetic disk 30 in contact with the inner peripheral portion of the spacer 80 is , 3.5-inch magnetic disk device 100, and can be applied to magnetic disk devices 100 of any size.
- the type of the magnetic disk 30 is not limited to the magnetic disk 30 made of an aluminum alloy substrate and a glass substrate, and can be applied to all kinds of magnetic disks 30 .
- the magnetic disk device 100 is a 3.5-inch magnetic disk device
- the magnetic disk device 100 may be a device other than a 3.5-inch device. It may be a 5-inch magnetic disk device.
- a plated aluminum alloy substrate having the composition shown in Table 1 and a glass substrate having the composition shown in Table 2 were produced.
- the magnetic disk substrate 31 has an inner diameter of 25 mm, an outer diameter of 97 mm, and a plate thickness of 0.50 mm.
- the difference (H1- H2), Examples 1 to 8 and Comparative Examples 1 to 8 are shown in Table 1, and Examples 9 to 10 and Comparative Examples 9 to 10 are shown in Table 2.
- the plane heights H1 and H2 were measured with a non-contact flatness measuring instrument (MESA) (manufactured by ZyGO).
- MEA non-contact flatness measuring instrument
- the surface A of the magnetic disk substrate 31 faces up (the side closer to the clamp 70 shown in FIG. 2 in the Z direction faces up), and is fixed to the hub 90 with the spacer 80 and the clamp 70.
- the amount of deflection due to the impact of the outer peripheral position of the magnetic disk substrate 31 (distance r1 from the substrate center: 44.2 mm) and the inner peripheral position of the magnetic disk substrate 31 (distance r2 from the substrate center: 23 mm) was measured by applying an impact from bottom to top with an acceleration of 55 to 60 G and an action time of 2.7 to 3.0 ms using a capacitive distance sensor.
- the spacer 80 was made of aluminum and had an outer diameter of 32 mm, an inner diameter of 25 mm, and a thickness of 1.7 mm.
- the amount of deflection at the outer and inner peripheral positions of the magnetic disk substrate 31 due to the impact was actually measured, and the difference between the deflection amounts at the outer and inner peripheral positions ("outer peripheral deflection” - “inner peripheral deflection”) was calculated. , the maximum absolute value divided by the acceleration (“maximum absolute value of the difference in deflection amount”/“acceleration”, hereinafter referred to as the maximum deflection amount).
- Example 1 the measurement was performed with the A surface facing up, and in Comparative Example 1, the measurement was performed with the surface B, which is the back surface of the magnetic disk substrate 31 as in Example 1, facing up.
- Example 1 and Comparative Example 1 were each measured three times.
- Comparative Examples 2 to 10 measurements were made with the surface B, which is the rear surface of the same magnetic disk substrate 31 as in Examples 2 to 10, facing up.
- each of Examples 2 to 10 and Comparative Examples 2 to 10 was measured three times. After that, the average value of the maximum deflection amount of a total of six times in Example 1 and Comparative Example 1 was calculated, and this average value was taken as 100%, and the average value of the relative values of the maximum deflection amount measured three times in Example 1.
- the maximum deflection amount of the average values of Examples 2 to 10 and Comparative Examples 2 to 10 is set to 100%, and the relative values of the maximum deflection amounts of Examples 2 to 10 and Comparative Examples 2 to 10 and the relative value of the maximum deflection amount of If the maximum amount of deflection of the magnetic disk substrate 31 due to the impact is large, it will strongly collide with parts in the magnetic disk device, for example, the ramp road, and a part of the ramp road will be chipped to generate foreign matter, or the magnetic disk will be scratched. may stick and cause malfunction. The smaller the maximum deflection of the substrate, the better the impact resistance.
- Example 1 As magnetic disk substrates 31, aluminum alloy substrates having compositions shown in Example 1 in Table 1 were produced with different plate thicknesses.
- the magnetic disk substrate 31 had an inner diameter of 25 mm, an outer diameter of 97 mm, and a plate thickness of 0.35 mm.
- the difference (H1- H2), Example 11 and Comparative Example 11 are shown in Table 3. Measurements of H1 and H2 were performed in the same manner as in the first example described above.
- the surface A of the magnetic disk substrate 31 faces up (the side closer to the clamp 70 shown in FIG. 2 in the Z direction faces up), and is fixed to the hub 90 with the spacer 80 and the clamp 70.
- the amount of deflection due to the impact of the outer peripheral position of the magnetic disk substrate 31 (distance r1 from the substrate center: 44.2 mm) and the inner peripheral position of the magnetic disk substrate 31 (distance r2 from the substrate center: 23 mm) was measured by applying an impact from bottom to top with an acceleration of 31 to 33 G and an action time of 3.6 to 3.85 ms using a capacitive distance sensor.
- the spacer 80 was made of aluminum and had an outer diameter of 32 mm, an inner diameter of 25 mm, and a thickness of 1.7 mm.
- the amount of deflection at the outer and inner peripheral positions of the magnetic disk substrate 31 due to the impact was actually measured, and the difference between the deflection amounts at the outer and inner peripheral positions ("outer peripheral deflection” - “inner peripheral deflection”) was calculated. , the maximum absolute value divided by the acceleration (“maximum absolute value of the difference in deflection amount”/“acceleration”, hereinafter referred to as the maximum deflection amount).
- Example 11 the measurement was performed with the A side facing up, and in Comparative Example 11, the measurement was performed with the side B, which is the back surface of the magnetic disk substrate 31 as in Example 11, facing up.
- Example 11 and Comparative Example 11 were each measured three times.
- Comparative Example 11 measurements were made with the surface B, which is the rear surface of the same magnetic disk substrate 31 as in Example 11, facing up.
- the average value of Example 11 and Comparative Example 11 was calculated, and the maximum deflection amount of the average value of Example 11 and Comparative Example 11 was set to 100%, and the relative value of the maximum deflection amount of Example 11 and Comparative Example 11 was calculated. asked.
- the maximum amount of deflection of the magnetic disk substrate 31 due to the impact is large, it will strongly collide with parts in the magnetic disk device, for example, the ramp road, and a part of the ramp road will be chipped to generate foreign matter, or the magnetic disk will be scratched. may stick and cause malfunction.
- the maximum amount of deflection of the magnetic disk substrate is was found to be small and the impact resistance to be good.
- the difference (H1-H2) between the planar height H1 of the magnetic disk substrate 31 in contact with the outer peripheral portion of the spacer 80 and the planar height H2 of the magnetic disk substrate 31 in contact with the inner peripheral portion of the spacer 80. is -3.0 ⁇ m or less, the impact resistance is further improved.
- the maximum amount of deflection of the magnetic disk substrate is small when the plane height H1 is lower than the plane height H2, as in the case where the plate thickness is 0.50 mm. , the impact resistance was found to be good. Therefore, when the plane height H1 is lower than the plane height H2 regardless of the plate thickness, the maximum amount of deflection of the magnetic disk substrate is small and the impact resistance is considered to be good.
- the planar height H1 of the magnetic disk substrate 31 in contact with the outer peripheral portion of the spacer 80 is higher than the planar height H2 of the magnetic disk substrate 31 in contact with the inner peripheral portion of the spacer 80, the maximum amount of deflection is It was large and had poor impact resistance.
- the planar height H1 of the upper surface of the magnetic disk substrate 31 in contact with the outer peripheral portion of the spacer 80 is lower than the planar height H2 of the upper surface of the magnetic disk substrate 31 in contact with the inner peripheral portion of the spacer 80.
- the magnetic disk substrate 31 is different from the magnetic disk 30 in that it does not include a magnetic layer or the like, but is considered to be equivalent to the magnetic disk 30 in terms of impact resistance and the like.
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
中央部に貫通孔を有する円盤形状の複数の磁気ディスクと、
前記磁気ディスクの間に配置され、中央部に貫通孔を有するスペーサと、
前記磁気ディスクおよび前記スペーサの貫通孔に挿入されるハブと、
前記磁気ディスクおよび前記スペーサを押し付け保持するクランプと、を備え、
前記磁気ディスクと前記スペーサまたは前記クランプとが接触する面において、前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さが、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの上面の平面高さよりも低い。
中央部に貫通孔を有する円盤形状の複数の磁気ディスクと、
前記磁気ディスクの間に配置され、中央部に貫通孔を有するスペーサと、
前記磁気ディスクおよび前記スペーサの貫通孔に挿入されるハブと、
前記磁気ディスクおよび前記スペーサを押し付け保持するクランプと、
を備える磁気ディスク装置を製造する方法であって、
前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さと、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの上面の平面高さと、を測定する工程と、
前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さが、前記スペーサの内周部に接する前記磁気ディスクの上面の平面高さよりも低くなる配置で、前記磁気ディスクを前記ハブに挿入する工程と、
を備える。
アルミニウム合金基板は、従来から使用されているJIS5086合金等のAl-Mg系合金が、強度が強く好適に用いられる。あるいは、Al-Fe系合金が、剛性が高く好適に用いられる。
ガラス基板は、アルミノシリケートガラスが、硬度が強く好適に用いられる。具体的には、アルミノシリケートガラスは、SiO2:55~70質量%を主成分として、Al2O3:25質量%以下、Li2O:12質量%以下、Na2O:12質量%以下、K2O:8質量%以下、MgO:7質量%以下、CaO:10質量%以下、ZrO2:10質量%以下、TiO2:1質量%以下の1種又は2種以上を含有し、残部が不可避不純物やその他の微量元素からなる。
磁気ディスク装置100が外部から衝撃を受けた場合、図4に示すように、磁気ディスク30にたわみが生じ、磁気ディスク30と例えばランプロード60が衝突する。ランプロード60は、上述したように、磁気ディスク装置100の非動作時にヘッド部42を退避させることを目的に、磁気ディスク30外周部側で磁気ディスク30に最も接近した位置に搭載される樹脂製の部品である。磁気ディスク30とランプロード60が衝突すると、ランプロード60の一部が欠けて異物が発生したり、磁気ディスク30にキズがついたりし、故障の原因となる。磁気ディスク30の剛性が高いほど、たわみ量は小さくなり、故障の発生確率は低減する。すなわち、磁気ディスク30の剛性が高いほど、耐衝撃性が向上する。
磁気ディスク装置100の動作中に、磁気ディスク30は高速回転する。その回転数は例えば7200rpmである。磁気ディスク30が高速回転すると磁気ディスク30装置内の気体に乱流が生じ、磁気ディスク30が振動する。この振動現象をフラッタリングと呼ぶ。磁気ディスク30が振動すると、ヘッド部42の位置精度が低下し、読み取りエラーの原因となる。磁気ディスク30の剛性が高いほど、振動量は小さくなり、読み書きエラーの確率は低減する。すなわち、磁気ディスク30の剛性が高いほど、耐フラッタリング性が向上する。なお、磁気ディスク装置100内の気体の乱流を低減させる目的で、磁気ディスク装置100内に空気に代わりヘリウムを充填する技術が知られている。
磁気ディスク30の耐衝撃性は、磁気ディスク30が衝撃による加速度を受けた際の磁気ディスク30のたわみ量の大小で示される。磁気ディスク30の耐フラッタリング性は、磁気ディスク30が高速回転することにより発生した気体の乱流を受けた際の磁気ディスク30のたわみ量の大小で示される。すなわち、磁気ディスク30の耐衝撃性と耐フラッタリング性は、磁気ディスク30がたわみ易いか否かで決まる。
磁気ディスク30とスペーサ80が接触する面において、図3に示すように、スペーサ80の外周部に接する磁気ディスク30の上面の平面高さH1が、スペーサ80の内周部に接する磁気ディスク30の上面の平面高さH2よりも低いこととする。平面高さH1および平面高さH2は、例えば、接触部83を基準として計測される。なお、最上部に配置された磁気ディスク30では、磁気ディスク30とクランプ70が接触する面において、クランプ70の外周部に接する磁気ディスク30の上面の平面高さH1が、クランプ70の内周部に接する磁気ディスク30の上面の平面高さH2よりも低いこととする。なお、磁気ディスク30の上面は、クランプ70に近い面をいう。好ましくは、少なくとも最上部に配置される磁気ディスク30は、磁気ディスク30とクランプ70が接触する面において、平面高さH1が平面高さH2よりも低い。より好ましくは、搭載される磁気ディスク30の総数の2分の1より多い枚数の磁気ディスク30は、磁気ディスク30とスペーサ80が接触する面において、平面高さH1が平面高さH2よりも低い。さらに好ましくは、全ての磁気ディスク30は、磁気ディスク30とスペーサ80が接触する面において、平面高さH1が平面高さH2よりも低い。磁気ディスク30の上面の平面高さH1および平面高さH2を上記の通り規定することで、耐衝撃性を向上させることができる。スペーサ80の外周部に接する磁気ディスク30の平面高さH1が、スペーサ80の内周部に接する磁気ディスク30の平面高さH2よりも高い場合は、締結した際に、外周部のスペーサ80と磁気ディスク30の下面との隙間が大きくなる。この状態で、磁気ディスク装置100に外部から下から上に衝撃が加わると、磁気ディスク30が大きく変形するため、耐衝撃性が低下する。一方、スペーサ80の外周部に接する磁気ディスクの平面高さH1が、スペーサ80の内周部に接する磁気ディスク30の平面高さH2よりも低い場合は、締結した際に、外周部のスペーサ80と磁気ディスク30の下面との隙間が小さくなる。この状態で、磁気ディスク装置100に外部から下から上に衝撃が加わると、隙間が小さいため、磁気ディスク30が直ぐにスペーサ80に接触し、磁気ディスク30が大きく変形するのを防ぐ効果を発揮し、耐衝撃性が向上する。なお、上面を上にして磁気ディスク装置100を落下等した場合、磁気ディスク装置100には、外部から下から上に衝撃が加わる。このため、磁気ディスク装置100には、外部から上から下に衝撃が加わる確率より、外部から下から上に衝撃が加わる確率が高いと考えられる。従って、磁気ディスク30の平面高さH1が、平面高さH2よりも低いことで、優れた耐衝撃性を得ることができる。スペーサ80の外周部に接する磁気ディスクの平面高さH1と、スペーサ80の内周部に接する磁気ディスクの平面高さH2の差(H1-H2)は、-3.0μm以下であることが好ましく、より好ましくは、-4.0μm以下である。なお、下限値は特に設けないが、-15μm程度である。
磁気ディスク装置100を製造する方法は、スペーサ80の外周部に接する磁気ディスク30の上面の平面高さH1と、スペーサ80の内周部に接する磁気ディスク30の上面の平面高さH2と、を測定する工程と、スペーサ80の外周部に接する磁気ディスク30の上面の平面高さH1が、スペーサ80の内周部に接する磁気ディスク30の上面の平面高さH2よりも低くなる配置で、磁気ディスク30およびスペーサ80をハブ90に挿入する工程と、クランプ70により磁気ディスク30およびスペーサ80をハブ90に固定する工程と、備える。
上述の実施の形態では、磁気ディスク装置100が3.5インチ磁気ディスク装置である例について説明したが、磁気ディスク装置100は、3.5インチ以外の装置であってもよく、例えば、2.5インチ磁気ディスク装置であってもよい。
磁気ディスク用基板31として、表1に示す組成のめっき付きアルミニウム合金基板と、表2に示す組成のガラス基板を作製した。磁気ディスク用基板31のサイズは、内径:25mm、外径:97mm、板厚:0.50mmとした。磁気ディスク用基板31のスペーサ80の外周部に接する磁気ディスク用基板31の平面高さH1と、スペーサ80の内周部に接する磁気ディスク用基板31の平面高さH2と、の差(H1-H2)について、実施例1~8および比較例1~8を表1、実施例9~10および比較例9~10を表2に示す。実施例1~10について、H1とH2の測定は、図3に示すように、表面(面A)にて実施した。H1はスペーサ80と磁気ディスク用基板31の接触部の外半径Rsso=15.8(公差+0、-0.5mm)にて測定を実施した。H2はスペーサ80と磁気ディスク用基板31の接触部の内半径Rssi=12.7(公差+0.5、-0mm)にて測定を実施した。平面高さH1およびH2の測定は、非接触平坦度測定機(MESA)(ZyGO社製)にて行った。
磁気ディスク用基板31として、表1の実施例1に示す組成のアルミニウム合金基板の板厚違いを作製した。磁気ディスク用基板31のサイズは、内径:25mm、外径:97mm、板厚:0.35mmとした。磁気ディスク用基板31のスペーサ80の外周部に接する磁気ディスク用基板31の平面高さH1と、スペーサ80の内周部に接する磁気ディスク用基板31の平面高さH2と、の差(H1-H2)について、実施例11および比較例11を表3に示す。H1とH2の測定は、上述した第1の実施例と同様に実施した。
20 基台
30 磁気ディスク
31 磁気ディスク用基板
40 ヘッドスタックアッセンブリ
41 アーム
42 ヘッド部
50 ボイスコイルモータ
60 ランプロード
70 クランプ
71 突起部
72 締結部材
80 スペーサ
81、82 面取り部
83 接触部
90 ハブ
91 小径部
92 大径部
100 磁気ディスク装置
D 奥行
W 幅
H 高さ
N 枚数
Z 回転軸
Rd 外半径
Td、Ts 厚さ
T 積層高さ
Rsi Rssi 内半径
Rso Rsso 外半径
Claims (6)
- 中央部に貫通孔を有する円盤形状の複数の磁気ディスクと、
前記磁気ディスクの間に配置され、中央部に貫通孔を有するスペーサと、
前記磁気ディスクおよび前記スペーサの貫通孔に挿入されるハブと、
前記磁気ディスクおよび前記スペーサを押し付け保持するクランプと、を備え、
前記磁気ディスクと前記スペーサまたは前記クランプとが接触する面において、前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さが、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの上面の平面高さよりも低い、
ことを特徴とする磁気ディスク装置。 - 前記磁気ディスクと前記スペーサまたは前記クランプとが接触する面において、前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの平面高さと、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの平面高さと、の差が-3.0μm以下である、
ことを特徴とする請求項1に記載の磁気ディスク装置。 - 少なくとも最上部に配置される前記磁気ディスクは、前記磁気ディスクと前記クランプとが接触する面において、前記クランプの外周部に接する前記磁気ディスクの上面の平面高さが、前記クランプの内周部に接する前記磁気ディスクの上面の平面高さよりも低い、
ことを特徴とする請求項1または2に記載の磁気ディスク装置。 - 前記磁気ディスクの厚さが0.48mm以下である、
ことを特徴とする請求項1から3の何れか1項に記載の磁気ディスク装置。 - 前記磁気ディスクの厚さが0.36mm以下である、
ことを特徴とする請求項1から3の何れか1項に記載の磁気ディスク装置。 - 中央部に貫通孔を有する円盤形状の複数の磁気ディスクと、
前記磁気ディスクの間に配置され、中央部に貫通孔を有するスペーサと、
前記磁気ディスクおよび前記スペーサの貫通孔に挿入されるハブと、
前記磁気ディスクおよび前記スペーサを押し付け保持するクランプと、
を備える磁気ディスク装置を製造する方法であって、
前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さと、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの上面の平面高さと、を測定する工程と、
前記スペーサまたは前記クランプの外周部に接する前記磁気ディスクの上面の平面高さが、前記スペーサまたは前記クランプの内周部に接する前記磁気ディスクの上面の平面高さよりも低くなる配置で、前記磁気ディスクを前記ハブに挿入する工程と、
を備えることを特徴とする磁気ディスク装置を製造する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/547,621 US20240170017A1 (en) | 2021-03-05 | 2022-02-14 | Magnetic disk device and method for manufacturing magnetic disk device |
JP2023503687A JPWO2022185892A5 (ja) | 2022-02-14 | 磁気ディスク装置 | |
CN202280018010.0A CN116897394A (zh) | 2021-03-05 | 2022-02-14 | 磁盘装置及制造磁盘装置的方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-035203 | 2021-03-05 | ||
JP2021035203A JP7058358B1 (ja) | 2021-03-05 | 2021-03-05 | 磁気ディスク装置および磁気ディスク装置を製造する方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185892A1 true WO2022185892A1 (ja) | 2022-09-09 |
Family
ID=81291820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/005725 WO2022185892A1 (ja) | 2021-03-05 | 2022-02-14 | 磁気ディスク装置および磁気ディスク装置を製造する方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240170017A1 (ja) |
JP (1) | JP7058358B1 (ja) |
CN (1) | CN116897394A (ja) |
WO (1) | WO2022185892A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006075639A1 (ja) * | 2005-01-13 | 2006-07-20 | Matsushita Electric Industrial Co., Ltd. | ディスク装置 |
WO2008139537A1 (ja) * | 2007-04-27 | 2008-11-20 | Fujitsu Limited | 記憶媒体駆動装置 |
JP2010211909A (ja) * | 2009-03-11 | 2010-09-24 | Hitachi Global Storage Technologies Netherlands Bv | ディスクスタックアセンブリ |
JP2010267347A (ja) * | 2009-05-15 | 2010-11-25 | Toshiba Storage Device Corp | 記憶装置および環状スペーサ |
JP2013030268A (ja) * | 2012-11-05 | 2013-02-07 | Hoya Corp | 磁気ディスク用ガラス基板及び磁気ディスク |
JP2018156710A (ja) * | 2017-03-17 | 2018-10-04 | 日新製鋼株式会社 | ハードディスク用スペーサー部品の製造方法 |
-
2021
- 2021-03-05 JP JP2021035203A patent/JP7058358B1/ja active Active
-
2022
- 2022-02-14 WO PCT/JP2022/005725 patent/WO2022185892A1/ja active Application Filing
- 2022-02-14 US US18/547,621 patent/US20240170017A1/en active Pending
- 2022-02-14 CN CN202280018010.0A patent/CN116897394A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006075639A1 (ja) * | 2005-01-13 | 2006-07-20 | Matsushita Electric Industrial Co., Ltd. | ディスク装置 |
WO2008139537A1 (ja) * | 2007-04-27 | 2008-11-20 | Fujitsu Limited | 記憶媒体駆動装置 |
JP2010211909A (ja) * | 2009-03-11 | 2010-09-24 | Hitachi Global Storage Technologies Netherlands Bv | ディスクスタックアセンブリ |
JP2010267347A (ja) * | 2009-05-15 | 2010-11-25 | Toshiba Storage Device Corp | 記憶装置および環状スペーサ |
JP2013030268A (ja) * | 2012-11-05 | 2013-02-07 | Hoya Corp | 磁気ディスク用ガラス基板及び磁気ディスク |
JP2018156710A (ja) * | 2017-03-17 | 2018-10-04 | 日新製鋼株式会社 | ハードディスク用スペーサー部品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240170017A1 (en) | 2024-05-23 |
JP7058358B1 (ja) | 2022-04-21 |
JPWO2022185892A1 (ja) | 2022-09-09 |
CN116897394A (zh) | 2023-10-17 |
JP2022135415A (ja) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6212030B1 (en) | Magnetic disk drive having means for reducing disk deformation | |
JP6467118B1 (ja) | 磁気ディスク用基板及び磁気ディスク | |
CN111383667A (zh) | 磁记录介质用基板、磁记录介质、硬盘驱动器 | |
JP6975862B2 (ja) | 磁気ディスク用基板及び磁気ディスク | |
CN111383668A (zh) | 磁记录介质用基板、磁记录介质、硬盘驱动器 | |
US6982852B2 (en) | Carriage arm assembly for magnetic disk drive | |
US20070000119A1 (en) | Method of manufacturing rotary driving device and the same device | |
CN111378963A (zh) | 磁记录介质用铝合金基板、磁记录介质用基板、磁记录介质、硬盘驱动器 | |
US20070159717A1 (en) | Hard-Disk Drive Device | |
WO2022185892A1 (ja) | 磁気ディスク装置および磁気ディスク装置を製造する方法 | |
WO2022196314A1 (ja) | 磁気ディスク装置および磁気ディスク装置を製造する方法 | |
JP7069279B1 (ja) | 磁気ディスク装置 | |
JP5486039B2 (ja) | 磁気ディスク装置に用いるスペーサーおよび磁気ディスク装置 | |
US20230110750A1 (en) | Carrier and method for manufacturing substrate | |
WO2011162279A1 (ja) | 磁気記録媒体およびその製造方法 | |
JP2009515286A (ja) | 読み出し/書き込み時の振動を抑制する光ディスク及びその製造方法 | |
JP2014067475A (ja) | ハードディスクドライブ用ベースプレート及びその製造方法、ハードディスクドライブ | |
JP2022090912A (ja) | 磁気ディスク基板および磁気ディスク | |
JPH10208241A (ja) | 磁気ディスク及びその製造方法 | |
JP2000173042A (ja) | 情報記録媒体用基板及び情報記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22762949 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503687 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18547621 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280018010.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22762949 Country of ref document: EP Kind code of ref document: A1 |