WO2006070690A1 - 自動車用電線 - Google Patents
自動車用電線 Download PDFInfo
- Publication number
- WO2006070690A1 WO2006070690A1 PCT/JP2005/023624 JP2005023624W WO2006070690A1 WO 2006070690 A1 WO2006070690 A1 WO 2006070690A1 JP 2005023624 W JP2005023624 W JP 2005023624W WO 2006070690 A1 WO2006070690 A1 WO 2006070690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- copper
- stainless steel
- cross
- outer peripheral
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/0207—Wire harnesses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
Definitions
- the present invention relates to an automobile electric wire, and more particularly to an automobile electric wire having a structure having a core wire portion made of stainless steel wire and an outer peripheral wire portion made of copper wire.
- Wires for internal wiring (wire harnesses) used for electrical connection of electrical components of automobiles are thin in diameter, and have low corrosion resistance and good contact with terminals. It is required to have excellent mechanical properties, that is, sufficient tensile strength and good bending properties. Therefore, simply by forming a multi-core wire by bundling a number of stainless steel fine wires with good corrosion resistance and mechanical properties and a copper fine wire with good electrical conductivity, a stainless steel fine wire is used as a core wire, and a large number of copper wires around it.
- Various inventions have been made such as arranging the fine wires, and further, setting the ratio of the cross-sectional areas of the stainless fine wires and the copper fine wires within a predetermined range (Patent Document 1).
- Patent Document 1 JP-A-9-147631
- the insulation coating having unevenness on the outer peripheral surface of the conductive portion is thin, and the diameter is thin and light. Accordingly, an electric wire with low strength and low cost has been desired.
- a stainless steel core wire is composed of a plurality of fine wires (hereinafter referred to as “stainless steel wires”), and the number of the wires is also described. And the number of copper thin wires on the outer periphery (hereinafter referred to as “copper wire”).
- the cross-sectional area of the stainless steel wire and the copper wire is also devised.
- the entire wire is compressed from the outside toward the center and reduced in diameter in a state where the copper wires are arranged in a single layer and in close contact with each other on the outer periphery of the core portion made of stainless steel wires.
- the insulation coating is made thinner.
- the core wire portion comprising four stainless steel wires arranged in close contact with each other;
- An automotive electric wire having an outer peripheral line portion made of eight copper wires arranged in close contact with each other around the core wire portion.
- the stainless steel wire in the core wire portion is mainly responsible for the tensile strength
- the copper wire in the outer peripheral wire portion is mainly responsible for the electrical conductivity (electric conduction).
- the tensile strength and conductivity are high.
- each strand is closely arranged, it takes over the tensile force as one body, while deformation due to bending occurs in each strand, so the balance between tensile strength and flexibility is maintained. It is.
- the core wire portion is composed of four wires.
- the copper wires on the outer periphery are arranged in close contact with each other, there is little fear of this, and as a result, good electrical contact with the terminals is ensured.
- the invention according to claim 2 is the above-described automobile electric wire, wherein the core wire portion is formed by spirally brazing four stainless steel wires having the same cross-sectional area, and the outer peripheral wire.
- the portion is an electric wire for an automobile characterized in that eight copper strands having the same cross-sectional area are spirally brazed around the stainless steel strand.
- the stainless steel wires are brazed (twisted), the stress bending characteristics are improved. In other words, the bending fatigue strength (the number of bending resistances) that can be simply bent with a small force is improved.
- the copper wire is spirally brazed to the core wire portion, the elongation and bending characteristics are improved by the same principle as the spring and coil.
- copper wire is brazed to a core portion made of a stainless steel wire with high strength, so it will not break even when exposed to intense or vibration.
- the pitch of the copper wire brazing is the same as that of the stainless steel wire, the adjustment of the machine will be somewhat less, and if it is different, the copper wire will be inserted into the recess (groove) between the stainless steel wires of the core wire. The line never drops.
- the brazing pitch of the copper wire is in the range of 20 to 40 times the layer core diameter (diameter of the circle passing through the center of the eight copper wires on the outer periphery of the core wire), preferably 20 to 34 About double is appropriate in terms of relaxation of stress generated during bending, prevention of increase in electrical resistance, and manufacturing. Also, the number of copper wires is just twice the number of stainless steel wires, so brazing Is easy and contributes to the circular cross-section of the wire.
- the copper wire is brazed to the outer periphery of the core wire portion, there is less risk of a stainless steel wire having a lower conductivity than the copper wire directly contacting the terminal.
- the invention according to claim 3 is the above-described automobile electric wire, wherein the copper wire has a larger cross-sectional area than the stainless steel wire.
- the copper wire to be brazed has a cross-sectional area larger than that of the stainless steel wire to be brazed, and the diameter is larger if the cross-section is circular. The copper wire does not enter into the recesses.
- the invention according to claim 4 is the above-described automotive electric wire, wherein the cross-sectional shape of the entire eight copper wires arranged in close contact with each other constituting the outer peripheral wire portion.
- the outer diameter of the copper wire force S is reduced because it is formed in an S-pipe shape.
- Wiring in a narrow car is improved. At this time, if the cross-sectional area of the copper wire is larger than the cross-sectional area of the stainless steel wire, the softer copper wire can be compressed more easily than stainless steel, and unnecessary processing into the stainless steel wire is possible. Hardening or the like hardly occurs.
- the outer peripheral line becomes smooth, the thickness of the insulation coating becomes uniform, which also contributes to reducing the diameter and weight of the wire.
- each strand has a pipe-like cross-sectional shape as a whole, when the automobile wire is bent, each strand is bent individually, so the outermost copper strand There will be no great bending stress around the circumference.
- the invention according to claim 5 is the above-described automobile electric wire, wherein the formation of the cross-sectional shape of the entire eight copper wires in the outer peripheral wire portion is due to compression from the outside toward the core wire portion. This is an electric wire for automobiles.
- the formation of the cross-sectional shape of the entire eight copper wires is made of eight copper wires. This is done by compressing the whole strand from the outside in the direction of the core wire at the same time, so it has a tighter and more orderly cross-sectional shape, unlike molding such as pre-molded copper strands. .
- the copper wire deforms and hardens while being reduced to some extent due to compression, but the elongation increases due to the softening treatment.
- the breakage due to excessive tension contributes to the stainless steel wire breaking first.
- the invention according to claim 6 provides:
- Core wires made of four stainless steel wires arranged in close contact by brazing, and 8 wires arranged in close contact with each other by being spirally brazed around the core wire.
- An outer peripheral wire portion made of a copper wire,
- the electric wire for automobile is characterized in that the cross-sectional shape of the entire eight copper wires constituting the outer peripheral wire portion is formed in a pipe shape.
- the invention of this claim is an invention in which the invention of the best mode among the inventions of claims 1 to 4 is regarded as one invention. For this reason, the same effect as that of the invention of claim 4 is exhibited and the effect is obtained.
- the invention according to claim 7 is the electric wire for an automobile, and constitutes the outer peripheral line portion.
- An automotive electric wire characterized in that the cross-sectional shape of the entire eight copper wires is formed by compression in the direction of the core wire portion from the outside.
- the invention of this claim is an invention in which the invention of the best mode among the inventions of claims 1 to 5 is regarded as one invention. For this reason, the same effect as that of the invention of claim 5 is exhibited and the effect is obtained.
- the invention according to claim 8 is the above-described automotive electric wire, wherein the total cross-sectional area of the stainless steel wire is A, and the total cross-sectional area of the copper wire is B, 13% ⁇ ⁇ A
- the ratio of the cross-sectional area of the stainless steel wire and the copper wire is optimized. Therefore, the electric wire for automobiles has an excellent balance of conductivity, tensile strength, and bending characteristics.
- the invention according to claim 9 is the electric wire for an automobile, wherein the copper wire has a diameter corresponding to 0.170 mm ⁇ 10%,
- the stainless steel wire is an automobile electric wire characterized by having a diameter in a range of 0.130 mm ⁇ 20%.
- the invention according to the present invention has excellent electrical conductivity, tensile strength, bending characteristics, and the balance thereof as an automobile electric wire having a nominal cross-sectional area of about 0.22 mm 2 . For this reason, it can be used in place of automobile wires with a current nominal cross-sectional area of about 0.5 mm 2 .
- the diameter is equivalent to 0.170 mm means “the same cross-sectional area as the strand having a diameter of 0.170 mm”.
- the invention according to claim 10 is the above-described automotive electric wire, wherein the total cross-sectional area of the copper wire constituting the outer peripheral wire portion is within a range of 0.15 mm 2 to 0.22 mm 2 . It is an electric wire for automobiles.
- the invention according to claim 11 is the above-described automotive electric wire, wherein the outer circumferential line portion has an insulating coating having a thickness of 0.33 mm or less. It is an electric wire.
- the invention according to claim 12 is the above-mentioned automotive electric wire, wherein the thickness of the insulating coating is in the range of 0.2 mm ⁇ 10%.
- the insulating coating is thinner, it becomes a lighter and thinner automobile electric wire.
- the outer periphery is compressed into a circular shape, thin insulation can be applied.
- the stainless steel wire is somewhat hardened and the elongation is slightly reduced. Less.
- the core diameter of the copper wire may be larger than the brazing diameter of the stainless steel wire. Even if a person gains an excessive tensile force due to an error, the stainless steel wire breaks first. As a result, the stainless steel wire is not broken and the copper wire is broken, and the risk that the user is not aware of this and is energized is reduced.
- the invention according to claim 13 is the above-mentioned automobile electric wire, wherein the stainless steel wire has an elongation of 15% or more and a tensile strength of 650 MPa or more. is there.
- the elongation is preferably 17% or more and about 20%, and the tensile strength is preferably 1050 MPa or more. In particular, the tensile strength is more preferably lOOMPa or more.
- the stainless steel material used in the production of the electric wire for automobiles has an elongation of 30% or more, preferably about 35 to 40%, a tensile strength of 700 to 800 MPa, and preferably 950 to 970 MPa. Something is appropriate.
- the invention according to claim 14 is the electric wire for an automobile, wherein the copper wire is elongated.
- the (breaking) elongation of the copper wire is larger than that of the stainless steel wire and is brazed with a large diameter, so that a large tensile force acts due to an error in field construction. Even if the stainless steel wire is not broken, the copper wire is not broken. For this reason, there is no danger when electricity flows through only the stainless steel wire due to erroneous energization and heat is generated.
- copper as the material of the copper wire used in the production of the electric wire for automobiles has a tensile strength of 400-
- Hard copper of about 450MPa is preferred.
- the invention according to claim 15 is characterized in that four stainless steel wires having an elongation of 15% or more, a tensile strength of 650 MPa or more, a diameter within a range of 0.130 mm ⁇ 20%, and the same cross-sectional area are screwed. A core part brazed into a spiral,
- Eight copper strands having an elongation of 19% or more, a tensile strength of 220 MPa or more, a diameter equivalent to 0.170 mm ⁇ 10%, and the same cross-sectional area on the outer periphery of the formed core wire portion are single and mutual.
- the outer copper wire has a cross-sectional shape that is pipe-shaped, and the outer shape of the copper wire is pipe-shaped.
- An automobile electric wire characterized by having an insulating coating formed on the outer periphery of the outer peripheral line portion with a thickness of 0.2 mm and 10% earth.
- the invention according to claim 16 is a stainless steel wire selection step of selecting a stainless steel wire having a soft material and a diameter of 0.130 mm ⁇ 20% as a material material,
- a copper wire selection step for selecting, as a material material, a copper wire made of hard copper and having a diameter within a range equivalent to 0.170 mm ⁇ 10%;
- the stainless steel core wire having tensile strength is formed by brazing four strands, so that extremely good bending fatigue characteristics are maintained while maintaining sufficient tensile strength. It becomes the electric wire for automobiles.
- the core wire portion is composed of four wires.
- the outer copper wires are arranged in close contact with each other, there is little fear of this, and as a result, good electrical contact with the terminals is ensured.
- the outer surface of the outer peripheral wire portion consisting only of the copper wire becomes almost smooth due to the compression in the direction of the core wire portion, the film thickness of the insulating coating layer on the outer periphery can be reduced, and the outer It will be a more excellent electric wire for automobiles in terms of both diameter reduction and weight reduction.
- the insulation coating to connect to the terminals, there is a recess between the copper wires on the outer periphery, so the surface becomes smooth, and as a result, insulation is made in the recesses between the thin wires like a normal multi-core wire. Work without any remaining coating will be easier.
- the electric wire nominal cross-sectional area of 0. 22 mm 2 of the present invention conventional nominal cross-sectional area of 0 ⁇ 5 mm 2 General (80 ° C) and
- wires AVSSf, AVSSH, AVSSX, etc.
- the weight of the engine harness can be reduced by more than 15 percent. It becomes possible.
- FIG. 1 is a conceptual diagram of a cross section of an automotive electric wire according to a first embodiment of the present invention.
- FIG. 2 is a conceptual diagram of a cross section of the automobile wire shown in FIG. 1 before compression.
- FIG. 3 is a diagram conceptually showing a pressing force acting on each strand when the outer peripheral line portion of the electric wire shown in FIG. 1 is compressed by pressing.
- FIG. 1 shows a cross-section of the completed state of the automotive electric wire 10 of the present embodiment.
- 20 is a core wire portion composed of a total of four stainless steel wires
- 30 is a peripheral wire portion formed by bringing a total of eight copper wires 31 into close contact by compression
- 40 is an insulation wire. It is a coating.
- the cross section of each stainless steel wire 21 of the core wire portion 20 remains substantially circular, but the copper wires of the outer peripheral wire portion 30 are integrated by pressing, and are almost ring-shaped as a whole. It has become. For this reason, the insulation coating 30 on the outer periphery is thinner than a multi-core wire having the same nominal cross-sectional area.
- the core wire portion 20 is formed by brazing four stainless steel wires 21 having a diameter of 0.140 mm in a spiral shape, and the pitch of the spiral is about 7 mm (one rotation at 7 mm).
- the stainless steel used here is stainless steel for springs, high strength, heat resistance, and springs in terms of cost, tensile strength, and elongation.
- This stainless steel wire has a breaking strength of 940 MPa or more and an elongation of at least 30% before processing.
- SUS304 or SUS316 can be used as the stainless steel spring.
- the tensile strength of the stainless steel wire will drop to 650 MPa or more in the worst case.
- the outer peripheral wire portion 30 is made of hard copper having a tensile strength of 400 MPa or more on the outer periphery of the core wire portion 20, and all eight copper wire wires 31 having a diameter of 0.190 mm are spirally brazed in the same direction.
- the core wire is compressed (pressed) and integrated in the direction of the core wire until the cross-sectional area of the copper wire becomes a cross-sectional area equivalent to a wire with a diameter of 0.183 mm.
- the cross-section of the outer periphery is almost ring-shaped and the cross-sectional area is reduced by approximately 10%.
- the brazing direction of the copper wire 31 is the same as that of the core wire portion 20, but the pitch is 14 mm.
- the pitch is larger than that of the stainless steel wire 21 because the wire is thicker and the pitch is better when the pitch is changed so that the recesses between the stainless steel wires 21 of the core wire portion 20 do not drop.
- the eight copper wires 31 are hard copper. For this reason, when compressing from the outside into the core wire direction using a die, even hard copper is easily formed into a pipe shape because it is copper, but unlike soft copper, it extends excessively in the wire length direction. This makes it easier to work.
- FIG. 2 shows a state before the automotive electric wire 10 shown in FIG. 1 is compressed by pressing.
- eight copper fine wires (referred to as thin wires to distinguish them from before compression) 32 are formed in a single layer on the outer periphery of the core wire portion 20 formed by twisting four stainless steel wires 21, and are simply connected to each other. It is a metal wire 11 that is just struck in contact with the wire. And the core wire part 20 of this metal wire 11 and the outside Pull the circumferential line 30 from one end to force it to pass through the pore dies, and at the same time, eight copper thin wires 32 are simultaneously and equally distributed in the center direction as indicated by the arrow P from the outer edge line formed by them. Press on. As a result of this pressing, all of the eight copper fine wires 32 are uniformly deformed and brought into close contact with each other, forming a copper wire 31 and forming a substantially ring-shaped outer peripheral wire portion 30.
- FIG. Fig. 3 conceptually shows the force generated in each part when a pressing force P acts on the 1Z4 of the metal wire 11 before compression shown in Fig. 2 from the outer edge line of the copper thin wire 32 toward the center. is there.
- each copper fine wire 32 has a force to move toward the center of the metal wire 11 by the pressing force P, and the other copper fine wires 32 adjacent to each other interfere with each other.
- the repulsive force P ', P " is received from the copper thin wires 32 on both sides.
- the copper thin wires 32 receive a large pressing force on the outer peripheral side, particularly on the outer peripheral side from the parts that contact each other, and the radius of curvature of the outer peripheral end becomes large (flattened), and the mutual contact parts are also flattened. The radius of curvature increases.
- the entire cross section becomes a copper wire (compressed conductor) 31 that is a 1/8 element of the ring-shaped outer peripheral wire portion 30.
- Adhesion with 21 is made moderately, that is, it resists the tensile force as a whole and bends each strand for bending.
- An insulating coating 40 is formed by covering an outer peripheral line portion 30 that has become almost flat due to pressing with an insulating material obtained by adding 160 parts by weight of magnesium hydroxide as a flame retardant to 100 parts by weight of an olefin polymer to a thickness of 0.2 mm. Formed.
- the insulating material include polyethylene and polypropylene.
- a bending fracture test of the electric wire having the above structure was performed.
- the test was performed at a speed of 90 times / minute, bending 90 degrees to the left and right, with one reciprocation being one time. On this basis, it was inspected every 500 times whether or not the stainless steel wire or copper wire was broken or misaligned.
- test results showed that there was no abnormality up to 1000 times, and the copper wire force broke for the first time at 1500 times. At 2000 times, all copper wires were broken, but it was confirmed that they had sufficient bending fatigue strength.
- the strength of the harness assembly for automobiles is stricter than the strength of the crimped part.
- the nominal cross-sectional area of 0. 5 mm 2 is not smaller than 70N.
- the strength generally drops to 70%, so a minimum tensile strength of 100N is required.
- the automobile wire of the present embodiment has a conductor strength of 100 N (breaking strength is 110 N). As a result, it was found that the request was fully met.
- the thickness of the insulation coating is 0.2 mm.
- the diameter is 1. Omm and the weight is 2.9 gZm, and the diameter is reduced while maintaining sufficient strength.
- the outer diameter is 1.2 mm and the weight is 3.5 gzm.
- a conventional automobile wire with a nominal cross-sectional area of 0.5 mm 2 is a bundle of 19 copper wires with an outer diameter of 0.19 mm.
- This wire has a tensile breaking load of 120 N or more, and in the bending test, it was not broken up to 1000 times, and 11 wires were broken at 1500 times. For this reason, the embodiment of the present invention is not inferior in terms of mechanical strength.
- the outer diameter of the wire is 1.6 mm and the weight is 7. lg Z mm. .
- a pure copper strand with an outer diameter of 0.215 mm was brazed to the outer periphery of one strand, and the wires were united by compression, and an electric wire coated with a 0.2 mm thick insulating material was prototyped.
- the wire had a thin outer diameter of 0.95 mm.
- the tensile breaking force was as low as 65 N.
- An automobile electric wire was manufactured by spirally braiding six copper wires with an outer diameter of 0.203 mm on the outer periphery of a stainless steel wire with an outer diameter of 0.23 mm.
- the tensile strength was only 76N. Also, the bending fatigue strength was low compared to the embodiment of the present invention. The reason is that the ratio of the cross-sectional area of the stainless steel wire to the total cross-sectional area of the metal part including the copper wire is as low as 14%.
- the tensile strength was about 110N, which met the requirements. It seems that the cross-sectional area of the stainless steel wire accounts for about 24% of the total cross-sectional area of the metal part including the copper wire. However, since the diameter of the stainless steel wire was large, the bending fatigue strength was reduced. In addition, in the connection test to the terminal, a so-called bottom protrusion occurred in which the stainless steel wire directly contacted the terminal.
- an automotive electric wire having an insulation coating thickness of 0.3 mm was manufactured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Insulated Conductors (AREA)
Abstract
巻付けにより密着配置された4本のステンレス製素線からなる芯線部と、前記芯線部の周囲に、前記ステンレス製素線と異なるピッチで前記芯線部に螺旋状に巻付けられることにより、1重かつ相互に密着して配置された8本の銅製素線からなる外周線部とを有し、さらに前記外周線部を構成する8本の銅製素線全体の断面形状が、パイプ状に形成されていることを特徴とし、現在の自動車用電線に比べて、軽量で細径かつ充分な引張り強度と良好な屈曲特性を有する自動車用電線を提供する。
Description
明 細 書
自動車用電線
技術分野
[0001] 本発明は自動車用電線に関し、特にステンレス製素線からなる芯線部と銅製素線 からなる外周線部を有する構造の自動車用電線に関する。
背景技術
[0002] 自動車の電装品の電気的接続等のために用いられる内部配線 (ワイヤハーネス) 用の電線は、細径であり、かつ電気抵抗が少なぐ耐食性や端子との接触性も良好 であるだけでなぐ機械的特性が優れていること、即ち充分な引張り強度と良好な屈 曲特性を有していることが要求される。そこで、単に耐食性と機械的性質が良好なス テンレスの細線と、導電性が良好な銅の細線とを多数束ねてなる多芯線とするだけ でなぐステンレスの細線を芯線としてその周囲に多数の銅の細線を配置したり、さら にはステンレスの細線と銅の細線の断面積の比率を所定の範囲内にしたりする等の 様々な発明がなされている(特許文献 1)。
特許文献 1 :特開平 9— 147631号
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、近年の技術の進歩と競争の激化の下で、自動車用電線に要求され る細径化、導電性、引張強度、屈曲特性等への水準あるいは要望は、益々厳しくな つてきている。特に、近年の電子化の進展の下、乗用車、トラック、単車等自動車用 電線の細径化への要求は非常に厳しくなつている。
[0004] このため、現在用いられている自動車用電線を、より軽量、細径のもので置き換える ことが必要とされている。し力 ながら、端子への接続作業時に加わる外力あるいは 作業性、使用時に加わる振動等を考慮すると、引張強さや屈曲特性は、細径化して も現在用いられている自動車用電線と同等あるいはそれ以上必要とされ、たとえ細径 化のために一部劣る面があるとしても大きな遜色があってはならないとされている。 また、公称断面積や公称径が同じであるならば、導電性は同等以上であり、引張り
強度や屈曲特性は一層優れ、し力もより軽量な電線が要求されている。
[0005] また、多芯線の場合、その外周面に凹凸が生じ、このため絶縁被覆は厚くなりがち である。さらに、端子との接続のため工具で絶縁被覆を剥すときに、多芯線の外周面 の凹凸で形成された凹み内に線状の絶縁被覆が残らないようにするためにはある程 度絶縁被覆を厚くする必要がある。特に、難燃剤を含む絶縁被覆の場合にそうであ る。
このため、導電部の外周面に凹凸等がなぐ絶縁被覆は薄ぐその分直径が細く軽 量であり、し力、も低コストの電線が望まれていた。
課題を解決するための手段
[0006] 本発明は、以上の要望を充たすためなされたものであり、ステンレス製の芯線を複 数の細線(以下、「ステンレス製素線」と記載する)からなるものとし、併せてその本数 と外周にある銅製の細線 (以下、「銅製素線」と記載する)の本数に工夫を凝らしたも のである。
また、ステンレス製素線と銅製素線の断面積にも工夫を凝らしたものである。さらに 、ステンレス製素線からなる芯線部の外周に銅製素線を 1重かつ相互に密着して配 置した状態で電線全体を外から中心方向に圧縮し、細径化したものである。またこれ に併せて、絶縁被覆を薄くしたものである。
以下、各請求項の発明について詳しく説明する。
[0007] 請求項 1に記載の発明は、 4本の密着配置されたステンレス製素線からなる芯線部 と、
前記芯線部の周囲に 1重かつ相互に密着して配置された 8本の銅製素線からなる 外周線部とを有していることを特徴とする自動車用電線である。
[0008] 本請求項の発明では、主に芯線部のステンレス製素線が引張り強度を受持ち、主 に外周線部の銅製素線が導電性 (電気伝導)を受持ち、前記の本数の組み合わせ により、同一の外径の電線において、引張強度と導電性とが高い値を有している。 また、各素線は、密着配置されているため、引張り力に対しては一体に受持ち、そ の一方屈曲による変形は各素線に生じるため、 \張強度と屈曲性とのバランスも保た れている。
また、導電性が良好な銅製素線のみが外周に配置されているため、端子との電気 的接触も良好になる。
また、銅とステンレスからなるため、耐食性に優れる。
また、芯線が 1本の線の場合には、端子への圧着時に硬い芯線が端子に直接接触 するいわゆる突き当りが生じる恐れがある力 本発明では 4本の線からなる芯線部とさ れており、し力、も外周の銅製素線は相互に密着して配置されているため、その恐れは 少なぐひいては端子との良好な電気的接触が確保される。
[0009] 請求項 2に記載の発明は、前記の自動車用電線であって、前記芯線部は、同じ断 面積の 4本のステンレス製素線が螺旋状に卷付けられてなり、前記外周線部は、同じ 断面積の 8本の銅製素線が前記ステンレス製素線の周囲に螺旋状に卷付けられて なることを特徴とする自動車用電線である。
[0010] 本請求項の発明では、同じ断面積の(直径)の 4本のステンレス製素線が螺旋状に 卷付けられてなるため、芯線部の断面は全体としてほぼ円形になり、その外周に銅 製素線が卷付け易く構成されている。
また、ステンレス製素線は卷付け (撚り付け)られているため、応力屈曲特性が向上 する。即ち、小さな力で大きく曲がるだけでなぐ屈曲疲労強度 (耐屈曲回数)も向上 する。
また、銅製素線は、芯線部に螺旋状に卷付けられているため、ばねやコイルと同じ 原理により伸びや屈曲特性が向上する。
また、銅製素線は、強度が大きなステンレス製素線からなる芯線部に卷付けられて レ、るので、激しレ、振動に繰返し曝されても破断しなレ、。
また、銅製素線の卷付けのピッチがステンレス製素線と同じであれば機械の調整等 の手間が多少とも少なくなり、異なれば芯線部のステンレス素線間の凹部(溝)に銅 製素線が落込むことがない。
なお、銅製素線の卷付けのピッチは、層心径 (芯線部の外周にある 8本の銅製素線 の中心を通る円の直径)の 20〜40倍の範囲内、好ましくは 20〜34倍程度が、曲げ の際に生じる応力の緩和、電気抵抗の増加の防止、製造等の面から適切である。 また、銅製素線の本数は、ステンレス製素線の本数の丁度 2倍であるため、卷付け
が楽であり、電線の断面の円形化にも寄与する。
また、銅製素線は芯線部の外周に卷付けられているため、銅製素線より導電性が 劣るステンレス製素線が端子に直接接触する危険性が少なくなる。
[0011] 請求項 3に記載の発明は、前記の自動車用電線であって、前記銅製素線は、前記 ステンレス製素線よりも断面積が大きいことを特徴とする自動車用電線である。
[0012] 本請求項の発明では、卷付ける銅製素線の方が卷付けられるステンレス製素線より も断面積が、そして断面が円形であれば直径が大きいため、芯線部のステンレス素 線間の凹部に銅製素線が入り込むことがない。
また、引張り強度と導電性のバランスが良好になる。
[0013] 請求項 4に記載の発明は、前記の自動車用電線であって、前記外周線部を構成す る 1重かつ相互に密着して配置された 8本の銅製素線全体の断面形状が、パイプ状 に形成されていることを特徴とする自動車用電線である。
[0014] 本請求項の発明では、銅製素線力 Sパイプ状に形成されているため、外径が細くなり
、狭い自動車内での配線性が向上する。なおこの際、銅製素線の断面積がステンレ ス製素線の断面積より大きいと、ステンレスに比べて柔ら力な銅製素線の圧縮が容易 になり、ステンレス製素線への不必要な加工硬化等が生じ難くなる。
また、外周線部が平滑になるため、絶縁被覆の厚さも均一になり、この面からも電線 の細径化と軽量化に寄与する。
また、同じぐ現場工事で絶縁被覆を剥した際に、外周の銅製素線間の凹部内に 細い糸状に絶縁被覆が残ることがなぐその防止のために絶縁被覆を厚くしておく必 要がない。このため、この面からも電線の細径化と軽量ィヒに寄与する。
なお、 8本の銅製素線が、全体でその断面形状がパイプ状に形成されてはいるが、 自動車用電線が屈曲したときには、各素線は個々に屈曲するため、銅製素線の最外 周に大きな曲げ応力が発生することはなレ、。
[0015] 請求項 5に記載の発明は、前記の自動車用電線であって、前記外周線部の 8本の 銅製素線全体の断面形状の形成が、外部から前記芯線部方向への圧縮によること を特徴とする自動車用電線である。
[0016] 本請求項の発明では、前記 8本の銅製素線全体の断面形状の形成が、 8本の銅製
素線全体を一度に外部から前記芯線部方向へ圧縮されることによりなされるため、予 め成形した銅製素線を卷付けるの等の成形と異なり、より緊密で整然とした断面の形 状になる。
また、銅製素線は圧縮により面積がある程度減少しつつ変形し、硬化するが、軟化 処理により伸びが大きくなる。その際に、銅製素線の伸びをステンレス製素線の伸び より大きくすることにより、過度の引張りによる破断では、ステンレス製素線が先に破 断するようになることに寄与する。この結果、ステンレス製素線のみ断線していない状 態で、万が一ユーザが銅製素線の破断に気付かず通電して、 自動車用電線が過熱 する危険は少くなる。
[0017] 請求項 6に記載の発明は、
卷付けにより密着配置された 4本のステンレス製素線からなる芯線部と、 前記芯線部の周囲に螺旋状に卷付けられることにより、 1重かつ相互に密着して配 置された 8本の銅製素線からなる外周線部とを有し、
さらに前記外周線部を構成する 8本の銅製素線全体の断面形状が、パイプ状に形 成されていることを特徴とする自動車用電線である。
[0018] 本請求項の発明は、前記請求項 1から請求項 4までの発明の内、最良の形態の発 明を、 1の発明として捉えた発明である。このため、前記請求項 4の発明と同じ、作用 が発揮され、効果が得られる。
[0019] 請求項 7記載の発明は、前記の自動車用電線であって、前記外周線部を構成する
8本の銅製素線全体の断面形状の形成が、外部から前記芯線部方向への圧縮によ ることを特徴とする自動車用電線である。
[0020] 本請求項の発明は、前記請求項 1から請求項 5までの発明の内、最良の形態の発 明を、 1の発明として捉えた発明である。このため、前記請求項 5の発明と同じ、作用 が発揮され、効果が得られる。
[0021] 請求項 8に記載の発明は、前記の自動車用電線であって、前記ステンレス製素線 の断面積の合計を Aとし、前記銅製素線の断面積の合計を Bとしたとき、 13%≤{A
/ (A + B) }≤ 35% であることを特徴とする自動車用電線である。
[0022] 本請求項の発明では、ステンレス製素線と銅製素線の断面積の比率が最適化され
ているため、導電性、引張強度、屈曲特性のバランスが優れた自動車用電線になる
[0023] 請求項 9に記載の発明は、前記の自動車用電線であって、前記銅製素線は、直径 が 0. 170mm± 10%相当の範囲内であり、
前記ステンレス製素線は、直径が 0. 130mm± 20%の範囲内であることを特徴と する自動車用電線である。
[0024] 本請求項の発明は、公称断面積が 0. 22mm2程度の自動車用電線として、導電性 、引張強度、屈曲特性等およびそれらのバランスが優れたものとなる。またこのため、 現在の公称断面積が 0. 5mm2程度の自動車用電線に代えて使用可能になる。 ここに、「直径が 0. 170mm相当の」とは、「直径が 0. 170mmの素線と同じ断面積 の」という意味である。
[0025] 請求項 10に記載の発明は、前記の自動車用電線であって、前記外周線部を構成 する銅製素線の合計断面積が、 0. 15mm2〜0. 22mm2の範囲内であることを特徴 とする自動車用電線である。
[0026] 本請求項の発明も、公称断面積が 0. 22mm2程度の自動車用電線として、導電性 、引張強度、屈曲特性等およびそれらのバランスが優れたものとなる。またこのため、 現在の公称断面積が 0. 5mm2程度の自動車用電線に代えて使用可能になる。
[0027] 請求項 11に記載の発明は、前記の自動車用電線であって、前記外周線部の外周 に、厚さ 0. 33mm以下の絶縁被覆を有していることを特徴とする自動車用電線であ る。
[0028] 本請求項の発明は、絶縁被覆内に難燃剤が添加されていても、現場工事で絶縁 被覆を剥した際に、絶縁被覆の一部が外周線部に糸状に取り残されることがなぐか つ薄いため、作業性が良好、軽量かつ細径の自動車用電線になる。
[0029] 請求項 12に記載の発明は、前記の自動車用電線であって、前記絶縁被覆の厚さ 力 0. 2mm± 10%の範囲内であることを特徴とする自動車用電線である。
[0030] 本請求項の発明は、絶縁被覆が一層薄いため、より一層軽量かつ細径の自動車 用電線になる。なおこの場合、外周線部を円形に圧縮しているため、薄い絶縁を施 すことができる。その圧縮の際に、ステンレス製素線は多少硬化され、伸びは多少減
少する。
また、軟化工程において銅製素線の破断伸びを芯線部よりも大きくすることにより、 銅製素線の層心径カ Sステンレス製素線の卷付けの径より大きいこともあり、現場作業 において、作業者が過誤により過度の引張り力をカ卩えても、ステンレス製素線が先に 破断する。この結果、ステンレス製素線は破断しておらず、銅製素線は破断している 状態で、ユーザがこれに気付かず通電がなされる危険性が減少する。
[0031] 請求項 13に記載の発明は、前記の自動車用電線であって、前記ステンレス製素線 は伸び 15%以上であり、引張強度 650MPa以上であることを特徴とする自動車用電 線である。
[0032] 本請求項の発明では、ステンレス製素線の (破断)伸びと引張り破断に対する強度 が大きいので、製造が容易となると共に、優れた自動車用電線になる。
なお、伸びは 17%以上 20%程度まで、引張強度は 1050MPa以上あることが好ま しぐ特に引張強度は l lOOMPa以上あることがより好ましい。
またこのため、本自動車用電線の製造に使用するステンレス製素線の材料ステンレ スは、伸び 30%以上、好ましくは 35〜40%程度、引張虽さ 700〜800MPa、好まし くは 950〜970MPa程度のものが適切である。
[0033] 請求項 14に記載の発明は、前記の自動車用電線であって、前記銅製素線は伸び
15%以上であり、引張強度 200MPa以上であることを特徴とする自動車用電線であ る。
[0034] 本請求項の発明では、銅製素線の (破断)伸びはステンレス製素線よりも大であり、 しかも大きな径で卷付けているため、現場工事で過誤により大きな引張力が作用して も、ステンレス製素線は破断していないが銅製素線は破断しているということがなくな る。このため、過誤の通電でステンレス製素線のみに電気が流れて発熱するといぅ危 険がなくなる。
また、銅製素線の破断伸びが大きいので、屈曲特性も向上する。
またこのため、伸びは 19%以上が、引張強度は 230MPa以上が好ましぐまた本 自動車用電線の製造に使用する銅製素線の材料としての銅は、引張強度は 400〜
450MPa程度の硬銅が好ましレ、。
[0035] 請求項 15に記載の発明は、伸び 15%以上であり、引張強度 650MPa以上かつ直 径が 0. 130mm± 20%の範囲内そして同じ断面積の 4本のステンレス製素線を螺 旋状に卷付けてなる芯線部と、
前記形成された芯線部の外周に、伸び 19%以上であり、引張強度 220MPa以上 かつ直径が 0. 170mm± 10%相当の範囲内そして同じ断面積の 8本の銅製素線を 1重かつ相互に密着して層心径の 20〜40倍のピッチで螺旋状に卷付け、さらに 8本 の銅製素線全体の断面形状はパイプ状である外周線部と、
前記外周線部の外周に厚さが 0. 2mm土 10%に形成された絶縁被覆とを有してい ることを特徴とする自動車用電線である。
[0036] 本請求項の発明は、請求項 1から請求項 14までの発明のうち、材料、寸法、構造 等の面から最も好ましい形態を 1の発明として捉えたものである。このため、これらの 発明の最も好ましい形態と同じ作用がなされ、効果が発揮される。
[0037] 請求項 16に記載の発明は、軟材かつ直径が 0. 130mm± 20%の範囲内のステン レス製素線を材料素材として選定するステンレス製素線選定ステップと、
前記選定されたそして同じ断面積の 4本のステンレス製素線を螺旋状に卷付けて 芯線部を形成する芯線部形成ステップと、
硬銅からなり、直径が 0. 170mm± 10%相当の範囲内である銅製素線を材料素 材として選定する銅製素線選定ステップと、
前記形成された芯線部の外周に、 1重かつ相互に密着して選定されたそして同じ 断面積の 8本の銅製素線を層心径の 20〜40倍のピッチで螺旋状に卷付けて外周 線部を形成する外周線部形成ステップと、
前記外周線部を外部から芯線部の方に押圧して、 8本の銅製素線全体の断面形 状をパイプ状にし、併せて前記銅製素線の材質を軟化する押圧ステップと、
前記 8本の銅製素線全体の断面形状がパイプ状とされた外周線部の外周に絶縁 被覆膜層を形成する絶縁被覆膜層形成ステップと、
前記絶縁被覆膜の形成された状態の電線を被覆押出して、絶縁被覆の厚さを 0. 2 mm± 10%とする被覆押出ステップとを有していることを特徴とする自動車用電線の 製造方法である。
[0038] 本請求項の発明は、請求項 1から請求項 14までの発明のうち好ましい形態を、製 造方法から捉えたものである。このため、これらの発明の好ましい形態と同じ作用が なされ、効果が発揮される。
また、以上の他必要に応じて加熱等他の処理がなされたりもする。
発明の効果
[0039] 本発明においては、引張り強度を受持つステンレス製の芯線を 4本の素線を卷付 けて形成しているため、充分な引張り強度を保持しつつ極めて良好な曲げ疲労特性 をも有する自動車用電線となる。
また、芯線が 1本の線の場合には、端子への圧着時に硬い芯線が端子に直接接触 するいわゆる突き当りが生じる恐れがある力 S、本発明では 4本の線からなる芯線部とさ れており、し力も外周の銅製素線は相互に密着して配置されているため、その恐れは 少なぐひいては端子との良好な電気的接触が確保される。
[0040] また、外周部には導電性が良好な銅製素線のみが配置されているため、端子との 接触性が優れた自動車用電線となる。
また、ステンレス製素線、銅製素線のいずれも螺旋状に卷付けられているため、曲 げにより発生する応力も小さくなり、このため小さな力で大きく屈曲するだけでなぐ屈 曲疲労強度も上昇する。
[0041] また、芯線部方向への圧縮により、銅製素線のみからなる外周線部の外表面はほ ぼ平滑となるため、その外周の絶縁被覆層の膜厚を薄くすることができ、細径化と軽 量化の両面から一層優れた自動車用電線となる。さらに、端子に接続するため絶縁 被覆を剥がす際に、外周線部の各銅製素線間に凹部がなぐこのため表面は平滑と なり、その結果通常の多芯線のごとく細線間の窪み内に絶縁被覆が残ることがなぐ 作業が楽になる。
[0042] さらに、具体的な効果の 1例を挙げれば、本発明の公称断面積が 0. 22mm2の電 線を、従来の公称断面積が 0· 5mm2の一般(80°C)および耐熱絶縁(100、 120°C 耐熱)を有するフレキシブル導体構成からなる電線 (AVSSf、 AVSSH、 AVSSX等 )に代えて自動車のセンサー、信号回路に使用すると、エンジンハーネス重量は 15 パーセント以上の軽量化が可能になる。
図面の簡単な説明
[0043] [図 1]本発明の第 1の実施の形態の自動車用電線の断面の概念図である。
[図 2]図 1に示す自動車用電線の圧縮前の断面の概念図である。
[図 3]図 1に示す電線の外周線部を、押圧にて圧縮する際に、各素線に作用する押 圧力を概念的に示す図である。
符号の説明
[0044] 10 自動車用電線
11 金属線 (押圧前)
20 芯線部
21 ステンレス製素線
30 外周線部
31 銅線素線
32 銅製細線
40 絶縁被覆
発明を実施するための最良の形態
[0045] 以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以 下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内にお いて、以下の実施の形態に対して種々の変更をカ卩えることが可能である。
[0046] (全体構成)
図 1に、本実施の形態の自動車用電線 10の完成状態の横断面を示す。図 1にお いて、 20は合計 4本のステンレス製素線 21からなる芯線部であり、 30は合計 8本の 銅製素線 31を圧縮により密着させてなる外周線部であり、 40は絶縁被覆である。 この自動車用電線 10は、芯線部 20の各ステンレス製素線 21の横断面はほぼ円形 のままであるが、外周線部 30の各銅製素線は押圧で一体化され、全体でほぼリング 状になっている。またこのため、その外周にある絶縁被覆 30は、同じ公称断面積の 多芯線に比べて薄くなつている。
以下、この自動車用電線の各部の構造や製造方法について、その特徴を中心に 順に説明する。
[0047] (芯線部)
芯線部 20は、直径 0. 140mmのステンレス製素線 21を、 4本螺旋状に卷付けたも のであり、螺旋のピッチは 7mm (7mmで 1回転する)程度である。ここに、ステンレス としてはコスト、引張り強度、伸びの面から高強度、耐熱、ばね用ステンレス鋼を使用 している。
このステンレス素線は、加工前において、破断強度は 940MPa以上あり、伸びは少 なくも 30%ある。
なお、ステンレス素泉としては、他に SUS304や SUS316を用レ、ることもできる。た だこの場合には、ステンレス製素線の引張強度は最悪で 650MPa以上と低下する可 能十生がある。
[0048] (外周線部)
外周線部 30は、芯線部 20の外周に、引っ張り強度が 400MPa以上の硬銅からな り、直径が 0. 190mmの銅製素線 31を 8本全て同じ方向に螺旋状に卷付け、さらに 外部から芯線部方向に銅製素線の断面積が直径 0. 183mmの素線相当の断面積 になるまで圧縮 (押圧)して一体化したものである。この結果、外周線部の横断面は、 ほぼリング状になり、断面積はおおよそ 10%程度減少する。
なお、銅製素線 31の卷付けの方向は芯線部 20と同じであるが、ピッチは 14mmで ある。ここに、ステンレス製素線 21よりもピッチが大きいのは、素線が太いことと、ピッ チを変えた方が芯線部 20の各ステンレス素線 21間の凹部への落込みがなぐ良好 な卷付けと押圧による一体化がなされることによる。
[0049] (銅製素線の圧縮)
8本の銅製素線 31は、硬銅である。このため、ダイスを使用して外部から芯線方向 へ圧縮する際、硬銅といえども銅であるため容易に形状的にパイプ状にされるが、軟 銅と異なり過度に線長さ方向に伸びることがなぐ作業が容易になる。
図 2に、図 1に示す自動車用電線 10を押圧で圧縮する前の状態を示す。この状態 では、 4本のステンレス製素線 21を撚り合わせてなる芯線部 20の外周に、 8本の銅 製細線 (圧縮前と区別するため細線と記す) 32が 1重に、そして単に相互に接触して 卷きつけられているだけの金属線 11である。そして、この金属線 11の芯線部 20と外
周線部 30とを一端から引張って強制的に細孔のダイスを通過させ、その際 8本の銅 製細線 32をそれらが形成する外縁線から矢印 Pで示すように中心方向に同時、均等 に押圧する。そして、この押圧により、 8本の銅製細線 32は全てが一様に変形、密着 され、銅製素線 31になると共にほぼリング状の外周線部 30を形成する。
[0050] (圧縮でステンレス製素線が受ける外力)
ところで、この押圧の際、中心にある 4本のステンレス製素線 21には、銅製の細線 3 2ほどには大きな押圧力は作用しない。これを、図 3を参照しつつ説明する。図 3は、 図 2に示す圧縮前の金属線 11の 1Z4について、銅製細線 32の外縁線から中心方 向へ押圧力 Pが作用したときに、各部に生じる力を概念的に示したものである。
図 3に示すように、各銅製細線 32は、押圧力 Pにより金属線 11の中心方向に動こう とする力 相互に両隣にある他の銅製細線 32が邪魔になる。この結果、両隣の銅製 細線 32から反発力 P'、 P"を受けることとなる。
このため、各銅製細線 32は、特に相互に接触する部分より外周側では、大きな押 圧力を受けて外周端の曲率半径が大きくなり(平坦ィ匕し)、また相互の接触部も平坦 化により曲率半径が大きくなる。そして、最終的には、全体の横断面がほぼリング状 の外周線部 30の 1/8の要素である銅製素線 (圧縮導体) 31になる。
[0051] さて、これらの反発力 P'、 P"は、各々反中心方向の分力を有している。このため、 各銅製細線 32が相互に接触する部分より中心側では、 Pが相当打消されることとなる 。この結果、中心にあるステンレス製素線 21が銅製細線 32から受ける押圧力 p、さら には他のステンレス製素線 21から受ける反力 p'は、 Pや P'、 P"に比較して充分小さく なる。また、軟材とはいえステンレスは硬銅に比較して充分硬い(ヤング率が大きい) 。これらのため、強制的にダイスの細孔を通過させた圧縮時に、銅製細線 32と異なり 、ステンレス製素線 21は線方向に多少伸びはするものの、断面の形状は大きくは変 化しない。このため、この際の加工により適度に硬化し、これにより引張り強度はある 程度向上する。また、この一方多少伸びたこともあり素線そのものの破断伸びはある 程度低下する。ただし、 4本のステンレス製素線は全体で卷付けられているため、芯 線部 20としてはその曲げ特性が損われることもない。
その一方で、外周側に位置する銅製素線 31との密着および他のステンレス製素線
21との密着は適度になされる、即ち引張力には一体的に抵抗し、曲げに対しては各 素線ごとに屈曲することとなる。
[0052] (絶縁被覆)
押圧のためほぼ平坦となった外周線部 30に、ォレフィン系ポリマー 100重量部に 難燃剤として水酸化マグネシウムを 160重量部添加した絶縁材を、厚さ 0. 2mmに被 覆して絶縁被覆 40を形成した。具体的な絶縁材としては、ポリエチレン、ポリプロピレ ン等が挙げられる。
なお、絶縁被覆の厚さを 0. 2mmとするために、外周線部に絶縁被覆層を形成した 後に、被覆押出を行った。
[0053] (曲げ疲労試験結果)
以上の構造の電線の屈曲破断試験を行った。試験方法は、 20°Cの恒温槽内にお いて、電線の下端に重さ 250gの分銅を吊るし、 R=6mmのマンドレル(円筒)で電線 を軽く挟み込み、マンドレルの外周部に沿って電線を左右に 90度ずつ屈曲させ、 1 往復を 1回として 90回/分の速度で試験を行った。この上で、 500回ごとに、ステン レス製素線または銅製素線のレ、ずれかが破断してレ、るか否かを検査した。
試験結果は、 1000回までは異常がなぐ 1500回で始めて銅製素線力 本破断し た。 2000回では、全ての銅製素線が破断していたが、充分な曲げ疲労強度を有し ていることが確認できた。
[0054] (引張試験結果)
自動車用のハーネス組立の強度(引張破断荷重)規定は、圧着部強度が最も厳し レ、。そして、公称断面積が 0. 5mm2の場合には、 70N以上とされる。ところで、端子 圧着では、一般的に強度は 70%に低下するため、最低 100Nの引張強度が必要と なる。
本実施の形態の自動車用電線は、引張り試験の結果、導体強度は 100N (破断強 度は 110N)であった。従がつて、充分要求を充たすことが判った。
[0055] (芯線部と外周線部の伸び試験結果)
以上の製造工程を経て製作されて自動車用電線を、大きな引張り力をカ卩えて破断 させた時の芯線部と外周線部の伸びを調べたが、外周線部の方が、芯線部よりも伸
びていた。
芯線部のステンレス製素線は伸びが 17%であるにも拘らず、外周線部の銅製素線 の伸びは 20%であること、卷付けのピッチは外周線部の方が大きいことによる。
[0056] (外径と重量)
外周にある銅製素線を押圧で一体化された外周線部としていること、これに併せて 絶縁被覆を薄くしていることのため、絶縁被覆の厚さが 0. 2mmの自動車用電線の 外径は、 1. Ommであり、重量は、 2. 9gZmであり、充分な強度を保持しながら細径 化を達成している。
同じぐ絶縁被覆の厚さが 0. 3mmのものでは、外径は 1. 2mmであり、重量は、 3. 5gz mである。
[0057] (比較例 1)
従来の公称断面積が 0. 5mm2の自動車用電線は、外径 0. 19mmの銅線を 19本 束ねたものである。
この電線は、引張破断加重は 120N以上あり、また屈曲試験では 1000回までは破 断せず、 1500回では 11本が破断した。このため、機械的強度の面からは、本発明 の実施例に遜色はない。し力しながら、電線の外径は 1. 6mmもあり、重量は 7. lg Z mmでめ。。
[0058] (比較例 2)
外径 0. 215mmの純銅製素線を、 1本の素線の外周に 6本を卷付け、圧縮にて一 体化し、さらに厚さ 0. 2mmの絶縁材を被覆した電線を試作した。
この、電線は、外径こそ 0. 95mmと細かった力 引張破断力卩重は 65Nと低かった。
[0059] (比較例 3)
外径 0. 203mmのステンレス製素線の外周に、同じく外径 0. 203mmの銅製素線 を 6本螺旋状に卷付けた自動車用電線を製作した。
引張強度が 76Nしかなかった。また、曲げ疲労強度も、本発明の実施の形態に比 較して低かった。ステンレス製素線の断面積が、銅製素線を含めた金属部の全断面 積に対して占める比率が 14%と低いのが原因と判断される。
[0060] (比較例 4)
外径 0. 280mmのステンレス製素線の外周に、同じく外径 0. 175mmの銅製素線 を 8本卷きつけた自動車用電線を製作した。
引張強度は、 110N程度はあり、要求を充たした。ステンレス製素線の断面積が、 銅製素線を含めた金属部の全断面積に対して占める比率が 24%程度あるからと思 われる。しかし、ステンレス製素線の直径が大きいため、曲げ疲労強度が低下した。 さらに、端子への接続試験では、ステンレス製素線が直接端子に接触する、いわゆ る底突きが発生した。
(その他の本発明の実施の形態)
前記と同じ直径のステンレス素線と銅製素線を使用して、絶縁被覆厚さが、 0. 3m mの自動車用電線を製造した。
また、直径が 0. 135mmのステンレス製素線と、直径が 0. 192mmの銅製素線を 使用して、絶縁被覆厚さが 0. 2mmの自動車用電線を製造した。なお、銅製素線は 、直径 0. 185mmの素線相当の断面積になるまで圧縮した。
また、直径が 0. 127mmのステンレス製素線を使用した自動車用電線も製造した。 直径が 0. 154mmのステンレス製素線と、直径が 0. 201mmの銅製素線を使用 して、絶縁被覆厚さが 0. 2mmの自動車用電線を製造した。
いずれの実施の形態でも、優れた破断強度と屈曲特性を示した。
Claims
[1] 4本の密着配置されたステンレス製素線からなる芯線部と、
前記芯線部の周囲に 1重かつ相互に密着して配置された 8本の銅製素線からなる 外周線部とを有してレ、ることを特徴とする自動車用電線。
[2] 前記芯線部は、同じ断面積の 4本のステンレス製素線が螺旋状に卷付けられてなり 前記外周線部は、同じ断面積の 8本の銅製素線が前記ステンレス製素線の周囲に 螺旋状に卷付けられてなることを特徴とする請求項 1に記載の自動車用電線。
[3] 前記銅製素線は、前記ステンレス製素線よりも断面積が大きいことを特徴とする請 求項 1または請求項 2に記載の自動車用電線。
[4] 前記外周線部を構成する 1重かつ相互に密着して配置された 8本の銅製素線全体 の断面形状が、パイプ状に形成されていることを特徴とする請求項 1ないし請求項 3 のいずれかに記載の自動車用電線。
[5] 前記外周線部の 8本の銅製素線全体の断面形状の形成が、外部から前記芯線部 方向への圧縮によることを特徴とする請求項 4に記載の自動車用電線。
[6] 卷付けにより密着配置された 4本のステンレス製素線からなる芯線部と、
前記芯線部の周囲に螺旋状に卷付けられることにより、 1重かつ相互に密着して配 置された 8本の銅製素線からなる外周線部とを有し、
さらに前記外周線部を構成する 8本の銅製素線全体の断面形状が、パイプ状に形 成されていることを特徴とする自動車用電線。
[7] 前記外周線部を構成する 8本の銅製素線全体の断面形状の形成が、外部から前 記芯線部方向への圧縮によることを特徴とする請求項 6に記載の自動車用電線。
[8] 前記ステンレス製素線の断面積の合計を Aとし、前記銅製素線の断面積の合計を
Bとしたとき、 13%≤{AZ (A+B) }≤35% であることを特徴とする請求項 1ない し請求項 7のいずれかに記載の自動車用電線。
[9] 前記銅製素線は、直径が 0. 170mm± 10%相当の範囲内であり、
前記ステンレス製素線は、直径が 0. 130mm± 20%の範囲内であることを特徴と する請求項 1なレ、し請求項 8のレ、ずれかに記載の自動車用電線。
[10] 前記外周線部を構成する銅製素線の合計断面積が、 0. 15mm2〜0. 22mm2の 範囲内であることを特徴とする請求項 1ないし請求項 9のいずれかに記載の自動車 用電線。
[11] 前記外周線部の外周に、厚さ 0. 33mm以下の絶縁被覆を有していることを特徴と する請求項 4ないし請求項 10のいずれかに記載の自動車用電線。
[12] 前記絶縁被覆の厚さが、 0. 2mm± 10%の範囲内であることを特徴とする請求項 1
1に記載の自動車用電線。
[13] 前記ステンレス製素線は伸び 15%以上であり、引張強度 650MPa以上であること を特徴とする請求項 5または請求項 7ないしは請求項 12のいずれかに記載の自動車 用電線。
[14] 前記銅製素線は伸び 15%以上であり、引張強度 200MPa以上であることを特徴と する請求項 5または請求項 7ないしは請求項 13のいずれかに記載の自動車用電線
[15] 伸び 15%以上であり、引張強度 650MPa以上かつ直径が 0. 130mm± 20%の 範囲内そして同じ断面積の 4本のステンレス製素線を螺旋状に卷付けてなる芯線部 と、
前記形成された芯線部の外周に、伸び 19%以上であり、引張強度 220MPa以上 かつ直径が 0. 170mm± 10%相当の範囲内そして同じ断面積の 8本の銅製素線を 1重かつ相互に密着して層心径の 20〜40倍のピッチで螺旋状に卷付け、さらに 8本 の銅製素線全体の断面形状はパイプ状である外周線部と、
前記外周線部の外周に厚さが 0. 2mm土 10%に形成された絶縁被覆とを有してい ることを特徴とする自動車用電線。
[16] 軟材かつ直径が 0. 130mm± 20%の範囲内のステンレス製素線を材料素材とし て選定するステンレス製素線選定ステップと、
前記選定されたそして同じ断面積の 4本のステンレス製素線を螺旋状に卷付けて 芯線部を形成する芯線部形成ステップと、
硬銅からなり、直径が 0. 170mm± 10%相当の範囲内である銅製素線を材料素 材として選定する銅製素線選定ステップと、
前記形成された芯線部の外周に、 1重かつ相互に密着して選定されたそして同じ 断面積の 8本の銅製素線を層心径の 20〜40倍のピッチで螺旋状に卷付けて外周 線部を形成する外周線部形成ステップと、
前記外周線部を外部から芯線部の方に押圧して、 8本の銅製素線全体の断面形 状をパイプ状にし、併せて前記銅製素線の材質を軟化する押圧ステップと、
前記 8本の銅製素線全体の断面形状がパイプ状とされた外周線部の外周に絶縁 被覆膜層を形成する絶縁被覆膜層形成ステップと、
前記絶縁被覆膜の形成された状態の電線を被覆押出して、絶縁被覆の厚さを 0. 2 mm± 10%とする被覆押出ステップとを有していることを特徴とする自動車用電線の 製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-376528 | 2004-12-27 | ||
JP2004376528A JP2006185683A (ja) | 2004-12-27 | 2004-12-27 | 自動車用電線 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006070690A1 true WO2006070690A1 (ja) | 2006-07-06 |
Family
ID=36614807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/023624 WO2006070690A1 (ja) | 2004-12-27 | 2005-12-22 | 自動車用電線 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2006185683A (ja) |
WO (1) | WO2006070690A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022083538A (ja) * | 2020-11-25 | 2022-06-06 | 矢崎総業株式会社 | 圧縮撚線導体、絶縁電線及びワイヤーハーネス |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008159403A (ja) * | 2006-12-25 | 2008-07-10 | Sumitomo Wiring Syst Ltd | 電線導体および絶縁電線 |
JP2008277195A (ja) * | 2007-05-02 | 2008-11-13 | Kurabe Ind Co Ltd | 電線導体及び絶縁電線 |
JP2009181850A (ja) * | 2008-01-31 | 2009-08-13 | Autonetworks Technologies Ltd | 絶縁電線 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225006A (ja) * | 1988-03-04 | 1989-09-07 | Yazaki Corp | ワイヤハーネス用圧縮導体 |
JPH0613014U (ja) * | 1992-07-17 | 1994-02-18 | 沖電線株式会社 | 同軸ケーブル及び同軸入り複合ケーブル |
JPH08222036A (ja) * | 1995-02-16 | 1996-08-30 | Sumitomo Electric Ind Ltd | 同軸カールコード用導体 |
JPH09147631A (ja) * | 1995-09-20 | 1997-06-06 | Denso Corp | 検出器用のリード線 |
JP2004281241A (ja) * | 2003-03-17 | 2004-10-07 | Sumitomo Denko Steel Wire Kk | ワイヤーハーネス用複合線及びその製造方法 |
JP2004288625A (ja) * | 2003-03-06 | 2004-10-14 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電線 |
-
2004
- 2004-12-27 JP JP2004376528A patent/JP2006185683A/ja active Pending
-
2005
- 2005-12-22 WO PCT/JP2005/023624 patent/WO2006070690A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01225006A (ja) * | 1988-03-04 | 1989-09-07 | Yazaki Corp | ワイヤハーネス用圧縮導体 |
JPH0613014U (ja) * | 1992-07-17 | 1994-02-18 | 沖電線株式会社 | 同軸ケーブル及び同軸入り複合ケーブル |
JPH08222036A (ja) * | 1995-02-16 | 1996-08-30 | Sumitomo Electric Ind Ltd | 同軸カールコード用導体 |
JPH09147631A (ja) * | 1995-09-20 | 1997-06-06 | Denso Corp | 検出器用のリード線 |
JP2004288625A (ja) * | 2003-03-06 | 2004-10-14 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電線 |
JP2004281241A (ja) * | 2003-03-17 | 2004-10-07 | Sumitomo Denko Steel Wire Kk | ワイヤーハーネス用複合線及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022083538A (ja) * | 2020-11-25 | 2022-06-06 | 矢崎総業株式会社 | 圧縮撚線導体、絶縁電線及びワイヤーハーネス |
JP7242148B2 (ja) | 2020-11-25 | 2023-03-20 | 矢崎総業株式会社 | 圧縮撚線導体、絶縁電線及びワイヤーハーネス |
Also Published As
Publication number | Publication date |
---|---|
JP2006185683A (ja) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015345A1 (ja) | 自動車用電線 | |
US20020162683A1 (en) | Electric distribution assembly | |
JP2008277195A (ja) | 電線導体及び絶縁電線 | |
WO2006008982A1 (ja) | 自動車用電線 | |
WO2006070690A1 (ja) | 自動車用電線 | |
JP5337518B2 (ja) | 極細電線の導体製造方法及び極細電線 | |
CN109791815B (zh) | 线束用线股和线束 | |
CN1290122C (zh) | 柔性电线 | |
WO2005052955A1 (ja) | 自動車用電線 | |
JP6089141B1 (ja) | 複合型電線 | |
JP4735127B2 (ja) | 自動車用電線 | |
JP2005259583A (ja) | 撚線導体、その製造方法及び電線 | |
JP2012182000A (ja) | 電線 | |
JP4043889B2 (ja) | 自動車用アルミケーブル | |
JP2006032084A (ja) | 自動車用電線 | |
JP2007059113A (ja) | 自動車用電線 | |
JP2006253093A (ja) | 自動車用電線 | |
JP4986522B2 (ja) | 自動車電線用素線及び自動車用電線 | |
JP4182850B2 (ja) | 自動車用電線 | |
JP7412126B2 (ja) | 耐屈曲絶縁電線 | |
WO2017047500A1 (ja) | 絶縁電線 | |
JP7412125B2 (ja) | 耐屈曲絶縁電線 | |
JP7412127B2 (ja) | 耐屈曲絶縁電線 | |
CN221841644U (zh) | 导线 | |
JP2012221680A (ja) | 自動車用電線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05819629 Country of ref document: EP Kind code of ref document: A1 |