WO2006068610A1 - Acier inoxydable martensitique durcissable par précipitation - Google Patents

Acier inoxydable martensitique durcissable par précipitation Download PDF

Info

Publication number
WO2006068610A1
WO2006068610A1 PCT/SE2005/001997 SE2005001997W WO2006068610A1 WO 2006068610 A1 WO2006068610 A1 WO 2006068610A1 SE 2005001997 W SE2005001997 W SE 2005001997W WO 2006068610 A1 WO2006068610 A1 WO 2006068610A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
content
stainless steel
martensitic stainless
steel alloy
Prior art date
Application number
PCT/SE2005/001997
Other languages
English (en)
Inventor
Håkan HOLMBERG
Original Assignee
Sandvik Intellectual Property Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property Ab filed Critical Sandvik Intellectual Property Ab
Priority to US11/793,442 priority Critical patent/US20080210344A1/en
Priority to JP2007548157A priority patent/JP2008525637A/ja
Priority to EP05819793A priority patent/EP1831417A1/fr
Publication of WO2006068610A1 publication Critical patent/WO2006068610A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present disclosure is concerned with the precipitation hardenable stainless chromium nickel steels, more especially those that are hardenable with a fairly simple alloy treatment. More particularly, the concern is with the precipitation hardenable stainless chromium nickel steels which are hardened at a low temperature and also have good machinability when subjected to drilling, turning, milling and other cutting operations.
  • Precipitation hardenable martensitic stainless steels are for example used in various high strength applications, such as springs, surgical needles, clips, fine tubes, parts for instruments and parts exposed to wear.
  • the material needs to posses certain properties.
  • the steel should be able to be produced by an easy manufacturing process, including alloying, casting, hot working as well as cold working, rendering a high strength material that is easy to fabricate by mechanical cutting methods into finished parts starting from wire, sheet, strip, bar or tube material.
  • the material should preferably be ductile and thus allowing severe forming such as bending, coiling, pressing, twisting etc. in the as received condition, hi addition to the mechanical properties above a very good corrosion resistance is often required, allowing the material to be used in different environments without having to consider additional corrosion protection such as painting or any other type of surface coating.
  • the steel should be able to be hardened to a high final hardness by a simple, low temperature, alloy treatment that causes minimal shape disturbance.
  • Austenitic stainless steels are, dependent on their composition, either soft and ductile in the annealed condition or hard and less ductile in the cold deformed condition. In the harder conditions austenitic steels are also very difficult to machine.
  • a further group is the precipitation hardenable stainless steels that can be formed in fairly soft condition and subsequently alloy treated to achieve a high hardness. Also this group of steels are more difficult to machine compared e.g. to the group of hardenable martensitic steels.
  • a precipitation hardenable stainless chromium nickel steel having the following composition in weight %:
  • the stainless steel according to the invention comprises titanium sulphides.
  • the stainless steel is hardened at a low temperature and has good machinability when subjected to drilling, turning, milling and other cutting operations.
  • Figure 1 SEM photograph of a reference alloy.
  • Figure 2a SEM photograph of Figure 1 marked with test point Spectrum 1.
  • Figure 3 a SEM photograph of Figure 1 marked with test point Spectrum 2.
  • Figure 4 a SEM photograph of Figure 1 marked with test point Spectrum 3.
  • Figure 4b EDX result of Spectrum 3 of Figure 4a.
  • Figure 5 SEM photograph of an alloy according to the invention.
  • Figure 6 a SEM photograph of Figure 5 marked with test point Spectrum 1.
  • Figure 7 a SEM photograph of Figure 5 marked with test point Spectrum 2.
  • Figure 7b EDX result of Spectrum 2 of Figure 7a.
  • Figure 8a SEM photograph of Figure 5 marked with test point Spectrum 3.
  • Carbon is a powerful element that affects the steel in many ways.
  • a high carbon content will affect the deformation hardening in a way that the strength upon cold deformation will be high and thus reducing the ductility of the steel.
  • a high carbon content is also disadvantageous from corrosion point of view as the risk of precipitation of chromium carbides increase with increasing carbon content.
  • the carbon content should therefore be kept low, max 0,07 %, preferably max 0,05 % and more preferable max 0,025 %.
  • Silicon is a ferrite-forming element and may also in higher contents reduce the hot working properties of the steel.
  • the content should therefore be max 1,5% more preferably max 1,0 %.
  • Manganese is an austenite-forming element that in a similar way as nickel makes the steel less prone to a martensitic transformation at cold deformation.
  • the minimum content of manganese of the steel according to the invention is 0,2 % by weight.
  • the manganese content has to be max 5%, preferably max 3% and most preferably 2,5%.
  • Manganese will together with sulfur form ductile non-metallic inclusions that for example are beneficial for the machining properties.
  • Sulfur is an element that will form sulfides in the steel. Sulfides are beneficial during machining as they will act as chip-breakers. The content of sulfur is therefore min 0,01% and more preferably min 0,015 %, even more preferably 0,05 % and most preferably min 0,1%. Sulfides may however act as weak areas in the steel from a corrosion resistance point of view. Further, high contents of sulfur may also be detrimental for the hot working properties. The content should therefore be max 0,4% and preferably max 0,3%.
  • the composition of the alloy according to the invention is so selected that the alloy comprises titanium sulphides. The titanium sulphides are principally present in the form of TiS or Ti 2 S .
  • Chromium is essential for the corrosion resistance and must in the steel according to the invention be added in a content of at least 10%, or more preferably at least 11,5 %. Chromium is however also a strong ferrite former that in higher contents will suppress the martensite formation upon deformation. The content of chromium therefore has to be restricted to max 15%, preferably max 14%.
  • Nickel is added to the steel according to invention to balance the ferrite forming elements in order to obtain an austenitic structure upon annealing.
  • Nickel is also an important element to moderate the hardening from cold deformation.
  • Nickel will also contribute to the precipitation hardening together with elements such as titanium and aluminum.
  • the minimum content of nickel is therefore 7% or more preferable at least 8%.
  • a too high content of nickel will restrict the possibility to form martensite upon deformation.
  • Nickel is also an expensive alloying element. The content of nickel is therefore maximized to 14 or preferably 13%.
  • Molybdenum is essential for the steel according to the invention, as it will contribute to the corrosion resistance of the steel. Molybdenum is also an active element during the precipitation hardening. The minimum content is therefore 1 % or preferably, minimum 2% and most preferably minimum 3%. A too high content of molybdenum will however promote the formation of ferrite to a content that may result in problems during hot working. Further, a high content of molybdenum will also suppress the martensite formation during cold deformation. The content of molybdenum is therefore maximized to 6% and more preferable maximum 5%. Furthermore, it is expected that Mo could be partly or totally replaced by tungsten according to the common practice known to a person skilled in the art while still achieving the desired properties of the alloy.
  • Copper is an austenite former that together with nickel stabilizes the austenitic structure that is desired. Copper is also an element that increases the ductility in moderate contents. The minimum content is therefore 1% and more preferably at least 1,5%. On the other hand copper in high contents reduces the hot workability why the copper content is maximized to 3%, preferably maximum 2,5%.
  • Titanium is an essential alloying element in the invention due to at least two reasons. Firstly, titanium is used as a strong element for precipitation hardening and must therefore be present to be able to harden the steel for the final strength. Secondly, titanium will together with sulfur form titanium sulfides (TiS or possibly Ti 2 S). In general, titanium is a stronger sulfide former than manganese. As TiS are electrochemically nobler that MnS it is possible to achieve improved machining properties without deterioration of the corrosion resistance that is the normal case for free machining steels that utilize MnS for the increased machinability. Therefore, the minimum content of titanium is 0,3% and more preferably 0,5 %. Too high titanium contents will promote ferrite formation in the steel and also increase the brittleness. The maximum content of titanium should therefore be restricted to 2,5 % preferably 2 % and most preferably not more than 1,5%.
  • Aluminum is added to the steel in order to improve the hardening effect upon heat treatment.
  • Aluminum is known to form intermetallic compounds together with nickel such as Ni3 Al and NiAl.
  • the minimum content should be 0,2 % and most preferably min 0,3 %.
  • Aluminum is however a ' strong ferrite former why the maximum content should be 1,5 % or more preferably max 1,0 %.
  • Nitrogen is a powerful element as it will increase the strain hardening. However, it will also stabilize the austenite towards martensite transformation at cold forming. Nitrogen also has a high affinity to nitride formers such as titanium, aluminum and chromium. The nitrogen content should be restricted to maximum 0,1 %, preferably 0,07 % and most preferably max 0,05 %.
  • the alloy is substantially free of manganese sulfides.
  • the alloy has the following approximate composition in percent by weight:
  • compositions given in Table 1 of the alloy according to the invention can be classified as having a Mn content of approx. 0,5 % or approx. 2,5 % and a S content of approx. 0,015 % or 0,1 %.
  • the drawn wires according to Table 2 were heat treated at 475 °C for 4 h and tensile tested in order to evaluate the increase in mechanical strength upon precipitation hardening (PH).
  • the tensile strength after heat treatment resulting in the precipitation hardening can be seen in Table 3.
  • Table 3 Tensile strength in MPa after wire drawing at various reduction and subsequent precipitation hardening.
  • the drilling test was made with the drilling parameters shown in Table 6.
  • the drills used were 02mm uncoated cemented carbide drills, HAM 380, with a tip angle of 130°. Drilling depth was two times the bar diameter.
  • the machinability was evaluated regarding chip formation, drill wear and drillability.
  • the chip shape at drilling was judged by use of "Svenska Mekanf ⁇ rbundets Spanskala” (Karlebo Haiidbok, 15 -t m h Edition, 2000, page 449-450) as a reference chart.
  • the optimal chip formation for best productivity is No 5-7.
  • the wear was measured as the wear at clearance face on the cutting edge (flank wear), corner wear by built up edge and possible edge damages.
  • the tests were in some cases performed for two samples of each alloy composition.
  • the damages/wear was then graded after a scale with respect of the different types of wear/damages wherein as low of a grade as possible is desirable. A low value indicates a longer tool life compared to a high value.
  • Table 8 The results are disclosed in Table 8.
  • the ranking of the average of the tool wear of the two tests per alloy is seen in Table 9. A lower ranking indicates a longer tool life than a higher ranking.
  • the reference alloy 830207 and the 830211 alloy according to the invention were analyzed by means of Scanning Electron Microscope (SEM) using Back Scattered Electrons (BSE). The surfaces of the materials were in un-etched condition. A photograph of the reference alloy taken in the SEM is shown in Figure 1. Three different test points; Spectrum 1 illustrated in Figure 2a, Spectrum 2 illustrated in Figure 3 a and Spectrum 3 illustrated in Figure 4a; were investigated by Energy Dispersive X-ray analysis (EDX). The results are shown in Figures 2b, 3b, and 4b, respectively. As can be clearly seen from the results, there are no titanium sulfides. This is considered to be a result of the low sulphur content of the alloy.
  • SEM Scanning Electron Microscope
  • BSE Back Scattered Electrons
  • FIG. 5 A photograph of the 830211 alloy of the invention taken in the SEM is shown in Figure 5. The difference can be clearly seen when comparing to Figure 1.
  • Four different test points; Spectrum 1, Spectrum 2, Spectrum 3 and Spectrum 4; are given in the Figures 6a, 7a, 8a, and 9a.
  • the composition of these test points were analyzed with EDX and the results are given in Figures 6b, 7b, 8b and 9b, respectively.

Abstract

La présente invention décrit un acier inoxydable de type nickel-chrome durcissable par précipitation, de composition suivante en pourcentage massique : C max 0,07, Si max 1,5, Mn 0,2-5, S 0,01-0,4, Cr 10-15, Ni 7-14, Mo 1-6, Cu 1-3, Ti 0,3-2,5, Al 0,2-1,5, N max 0,1, la quantité de Fe correspondante et les impuretés ordinaires.
PCT/SE2005/001997 2004-12-23 2005-12-22 Acier inoxydable martensitique durcissable par précipitation WO2006068610A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/793,442 US20080210344A1 (en) 2004-12-23 2005-12-22 Precipitation Hardenable Martensitic Stainless Steel
JP2007548157A JP2008525637A (ja) 2004-12-23 2005-12-22 析出硬化型マルテンサイトステンレス鋼
EP05819793A EP1831417A1 (fr) 2004-12-23 2005-12-22 Acier inoxydable martensitique durcissable par précipitation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0403176A SE528454C3 (sv) 2004-12-23 2004-12-23 Utskiljningshärdbart martensitiskt rostfritt stål innefattande titansulfid
SE0403176-1 2004-12-23

Publications (1)

Publication Number Publication Date
WO2006068610A1 true WO2006068610A1 (fr) 2006-06-29

Family

ID=34102124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2005/001997 WO2006068610A1 (fr) 2004-12-23 2005-12-22 Acier inoxydable martensitique durcissable par précipitation

Country Status (7)

Country Link
US (1) US20080210344A1 (fr)
EP (1) EP1831417A1 (fr)
JP (1) JP2008525637A (fr)
KR (1) KR20070086564A (fr)
CN (1) CN100540712C (fr)
SE (1) SE528454C3 (fr)
WO (1) WO2006068610A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126954A2 (fr) * 2008-04-11 2009-10-15 Questek Innovations Llc Acier inoxydable martensitique renforcé par des précipités de nitrure nucléés au cuivre
WO2011040876A1 (fr) * 2009-10-02 2011-04-07 Nanoxis Ab Dépistage de liants sur des protéines de membranes natives immobilisées
EP2377962A1 (fr) * 2010-04-16 2011-10-19 Hitachi, Ltd. Acier inoxydable martensitique durcissable par précipitation et pale de turbine à vapeur l'utilisant
WO2012000638A1 (fr) 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Acier chrome-nickel, fil métallique martensitique et procédé de fabrication associé
US9416436B2 (en) 2012-04-27 2016-08-16 Daido Steel Co., Ltd. Steel for steam turbine blade with excellent strength and toughness
WO2017217913A1 (fr) * 2016-06-16 2017-12-21 Uddeholms Ab Acier approprié pour outils de moulage de plastique
WO2020115531A1 (fr) * 2018-12-06 2020-06-11 Aperam Acier inoxydable, produits réalisés en cet acier et leurs procédés de fabrication

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887558B1 (fr) * 2005-06-28 2007-08-17 Aubert & Duval Soc Par Actions Composition d'acier inoxydable martensitique, procede de fabrication d'une piece mecanique a partir de cet acier et piece ainsi obtenue
US7931758B2 (en) * 2008-07-28 2011-04-26 Ati Properties, Inc. Thermal mechanical treatment of ferrous alloys, and related alloys and articles
CN102168228A (zh) * 2011-03-28 2011-08-31 徐英忱 一种医用沉淀硬化不锈钢材料及其制备方法
JP5764503B2 (ja) * 2012-01-19 2015-08-19 三菱日立パワーシステムズ株式会社 析出硬化型マルテンサイト系ステンレス鋼、それを用いた蒸気タービン長翼、タービンロータ及び蒸気タービン
CN105908099A (zh) * 2016-04-18 2016-08-31 和县隆盛精密机械有限公司 一种地坪打磨机械臂及制备方法
CN107326300A (zh) * 2017-06-20 2017-11-07 上海大学兴化特种不锈钢研究院 一种耐蚀抗菌医用外科器件马氏体不锈钢及其制备方法
CN107587080B (zh) * 2017-10-17 2019-06-18 中国华能集团公司 一种沉淀强化耐热钢及其制备工艺
US11692232B2 (en) 2018-09-05 2023-07-04 Gregory Vartanov High strength precipitation hardening stainless steel alloy and article made therefrom
KR102270898B1 (ko) * 2019-11-06 2021-06-30 주식회사 한중엔시에스 석출경화형 스테인리스강의 열처리 방법 및 이를 이용한 커플러 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512237A (en) * 1991-10-07 1996-04-30 Sandvik Ab Precipitation hardenable martensitic stainless steel
EP1106706A1 (fr) * 1999-11-05 2001-06-13 Nisshin Steel Co., Ltd. Acier austénitique inoxydable et métasable à haute résistance mecanique contenant de titane et procédé pour son fabrication
DE10251413B3 (de) * 2002-11-01 2004-03-25 Sandvik Ab Verwendung eines korrosionsbeständigen, martensitisch aushärtenden Stahls
US20040154706A1 (en) * 2003-02-07 2004-08-12 Buck Robert F. Fine-grained martensitic stainless steel and method thereof
US20050126662A1 (en) * 2003-12-10 2005-06-16 Wei-Di Cao High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658513A (en) * 1969-03-06 1972-04-25 Armco Steel Corp Precipitation-hardenable stainless steel
SE346813B (fr) * 1970-11-12 1972-07-17 Sandvikens Jernverks Ab
JPH0647708B2 (ja) * 1985-07-31 1994-06-22 大同特殊鋼株式会社 オ−ステナイト系快削ステンレス鋼
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
SE0300644L (sv) * 2003-03-07 2004-03-09 Sandvik Ab Användning av ett utskiljningshärdbart, martensitiskt rostfritt stål för tillverkning av implantat och osteosyntesprodukter
JP4030925B2 (ja) * 2003-06-06 2008-01-09 山陽特殊製鋼株式会社 快削析出硬化型ステンレス鋼
JP4152872B2 (ja) * 2003-12-12 2008-09-17 山陽特殊製鋼株式会社 被削性に優れた冷間加工用析出硬化型ステンレス鋼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512237A (en) * 1991-10-07 1996-04-30 Sandvik Ab Precipitation hardenable martensitic stainless steel
EP1106706A1 (fr) * 1999-11-05 2001-06-13 Nisshin Steel Co., Ltd. Acier austénitique inoxydable et métasable à haute résistance mecanique contenant de titane et procédé pour son fabrication
DE10251413B3 (de) * 2002-11-01 2004-03-25 Sandvik Ab Verwendung eines korrosionsbeständigen, martensitisch aushärtenden Stahls
US20040154706A1 (en) * 2003-02-07 2004-08-12 Buck Robert F. Fine-grained martensitic stainless steel and method thereof
US20050126662A1 (en) * 2003-12-10 2005-06-16 Wei-Di Cao High strength martensitic stainless steel alloys, methods of forming the same, and articles formed therefrom

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126954A2 (fr) * 2008-04-11 2009-10-15 Questek Innovations Llc Acier inoxydable martensitique renforcé par des précipités de nitrure nucléés au cuivre
WO2009126954A3 (fr) * 2008-04-11 2010-05-14 Questek Innovations Llc Acier inoxydable martensitique renforcé par des précipités de nitrure nucléés au cuivre
US8808471B2 (en) 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US9914987B2 (en) 2008-04-11 2018-03-13 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351921B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
WO2011040876A1 (fr) * 2009-10-02 2011-04-07 Nanoxis Ab Dépistage de liants sur des protéines de membranes natives immobilisées
EP2377962A1 (fr) * 2010-04-16 2011-10-19 Hitachi, Ltd. Acier inoxydable martensitique durcissable par précipitation et pale de turbine à vapeur l'utilisant
US8747733B2 (en) 2010-04-16 2014-06-10 Hitachi, Ltd. Precipitation hardenable martensitic stainless steel and steam turbine blade using the same
WO2012000638A1 (fr) 2010-06-28 2012-01-05 Stahlwerk Ergste Westig Gmbh Acier chrome-nickel, fil métallique martensitique et procédé de fabrication associé
US9416436B2 (en) 2012-04-27 2016-08-16 Daido Steel Co., Ltd. Steel for steam turbine blade with excellent strength and toughness
WO2017217913A1 (fr) * 2016-06-16 2017-12-21 Uddeholms Ab Acier approprié pour outils de moulage de plastique
WO2020115531A1 (fr) * 2018-12-06 2020-06-11 Aperam Acier inoxydable, produits réalisés en cet acier et leurs procédés de fabrication

Also Published As

Publication number Publication date
CN101087897A (zh) 2007-12-12
SE0403176D0 (sv) 2004-12-23
SE528454C3 (sv) 2007-01-09
SE0403176L (sv) 2006-06-24
KR20070086564A (ko) 2007-08-27
CN100540712C (zh) 2009-09-16
JP2008525637A (ja) 2008-07-17
EP1831417A1 (fr) 2007-09-12
SE528454C2 (sv) 2006-11-14
US20080210344A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US20080210344A1 (en) Precipitation Hardenable Martensitic Stainless Steel
JP4423254B2 (ja) コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
KR100957664B1 (ko) 오스테나이트·페라이트계 스테인레스 강판
CN108350537B (zh) 弹簧用钢线及弹簧
JP4798461B2 (ja) 超高強度オーステナイト系ステンレス鋼
EP3216889B1 (fr) Tôle d'acier à haute teneur en carbone laminée à froid et son procédé de fabrication
JP6880245B1 (ja) 高炭素冷延鋼板およびその製造方法並びに高炭素鋼製機械部品
TW591114B (en) A high strength heat treated steel wire for spring
JP2013147705A (ja) フェライト系ステンレス鋼線材、及び鋼線、並びに、それらの製造方法
KR20200129156A (ko) 스틸 와이어, 그 제조 방법, 및 스프링 또는 의료용 와이어 제품의 제조 방법
KR20200130422A (ko) 마르텐사이트계 스테인리스 강판 및 이의 제조 방법 및 스프링 부재
JP4790539B2 (ja) 高強度高弾性型ステンレス鋼及びステンレス鋼線
JP5073966B2 (ja) 時効硬化型フェライト系ステンレス鋼板およびそれを用いた時効処理鋼材
JP6540131B2 (ja) フェライト系耐熱鋼
JP2012017484A (ja) ボルト用鋼、ボルトおよびボルトの製造方法
US7297214B2 (en) Free cutting alloy
JP2000282169A (ja) 鍛造性と被削性に優れる鋼
JP5100144B2 (ja) バネ用鋼板およびそれを用いたバネ材並びにそれらの製造法
JP3297788B2 (ja) 穴拡げ性と二次加工性に優れた高炭素薄鋼板及びその製造方法
CN105369151A (zh) 无缝管制造用穿孔顶头
EP4112754A1 (fr) Acier inoxydable martensitique à durcissement par précipitation
JP2022535237A (ja) マルテンサイト系ステンレス合金
JP3283768B2 (ja) 高強度Cr−Mo鋼のTIG溶接金属及びTIG溶接方法
JP2018059207A (ja) せん断加工面の耐食性に優れた二相ステンレス鋼、二相ステンレス鋼板及び二相ステンレス線状鋼材
WO2022153790A1 (fr) Matériau en acier inoxydable à base de martensite et son procédé de production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005819793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007548157

Country of ref document: JP

Ref document number: 1020077014252

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580044676.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2457/KOLNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005819793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793442

Country of ref document: US