WO2006067977A1 - 粒子計数器 - Google Patents

粒子計数器 Download PDF

Info

Publication number
WO2006067977A1
WO2006067977A1 PCT/JP2005/022637 JP2005022637W WO2006067977A1 WO 2006067977 A1 WO2006067977 A1 WO 2006067977A1 JP 2005022637 W JP2005022637 W JP 2005022637W WO 2006067977 A1 WO2006067977 A1 WO 2006067977A1
Authority
WO
WIPO (PCT)
Prior art keywords
false
count
particle counter
frequency
particle
Prior art date
Application number
PCT/JP2005/022637
Other languages
English (en)
French (fr)
Inventor
Yasutaka Nakajima
Tomonobu Matsuda
Original Assignee
Rion Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co., Ltd. filed Critical Rion Co., Ltd.
Priority to US11/793,883 priority Critical patent/US7755760B2/en
Priority to CN2005800485181A priority patent/CN101124471B/zh
Publication of WO2006067977A1 publication Critical patent/WO2006067977A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a particle counter that measures the number of suspended particles contained in a sample and determines the concentration of particles in the sample.
  • a particle counter there is a so-called pseudo-count that is displayed as a count value even though there is no particle having a measurable size in a sample.
  • Possible causes of false counts include noise generated by laser light sources, noise generated by photoelectric converters, noise resulting from random voltage fluctuations in each circuit, and cosmic rays entering from the outside.
  • the laser diode is driven by a laser drive circuit that outputs a drive current in which a high-frequency component is superimposed on a direct current, and the longitudinal mode of the laser diode is changed to a multimode.
  • a laser drive circuit that outputs a drive current in which a high-frequency component is superimposed on a direct current, and the longitudinal mode of the laser diode is changed to a multimode.
  • Patent Document 1 Japanese Patent Laid-Open No. 9178645
  • the present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to effectively perform false counting caused by various causes with a relatively simple configuration. It is an object of the present invention to provide a particle counter that can be reduced automatically.
  • the invention according to claim 1 is a particle counter that determines the concentration of particles in a sample by measuring the number of suspended particles contained in the sample. And the frequency of occurrence of the false count stored in the storage unit! It is equipped with a subtraction processing unit that subtracts the count value force after the start of measurement from the value based on the degree.
  • the particle detector in the particle counter that determines the particle concentration in the sample by measuring the number of suspended particles contained in the sample, the particle detector outputs when no particles are present.
  • a storage unit that stores a relational expression between the DC level and the frequency of occurrence of false counts, and the direct current level output by the particle detection unit at the start of measurement with reference to the relational expression stored in the storage unit.
  • a subtraction processing unit is provided for determining the occurrence frequency of the corresponding false count and subtracting the value based on the occurrence frequency of the false count from the count value force after the start of measurement.
  • the invention according to claim 3 is the particle counter according to claim 1 or 2, wherein the subtraction processing unit subtracts the reciprocal (lZm) of the obtained occurrence frequency (m) of the false count.
  • the number to be subtracted is carried over to the next time interval, so the count value is If the signal to increase is not generated, the subtraction process is not performed, so that the already displayed count value does not subtract.
  • FIG. 1 is a configuration diagram of a first embodiment of a particle counter according to the present invention.
  • FIG. 2 is a flowchart showing the operation of the first embodiment of the particle counter according to the present invention.
  • FIG. 3 is a configuration diagram of the second embodiment of the particle counter according to the present invention.
  • FIG. 6 is a flowchart showing the operation of the second embodiment of the particle counter according to the present invention.
  • FIG. 7 is a flowchart showing a procedure of subtraction processing in a time interval with a measurement time.
  • FIG. 1 is a configuration diagram of the first embodiment of the particle counter according to the present invention
  • FIG. 2 is a flow chart showing the same operation
  • FIG. 3 is a second embodiment of the particle counter according to the present invention.
  • Fig. 4 shows the output voltage waveform diagram of the photoelectric converter
  • Fig. 5 shows the relationship between the DC level of the photoelectric converter and the frequency of false counting
  • Fig. 6 shows the operation of the second embodiment.
  • FIG. 7 is a flowchart showing the procedure of the subtraction process in a time interval with a measurement time.
  • a particle detection unit 1 that detects light in a sample using light, and captures particles for each particle size category. It consists of a pulse height analysis unit 2, a calculation unit 3 that performs calculation processing considering false counts, and a display / output unit 4 that displays the processing result of the calculation unit 3 as it is or outputs it as an electrical signal.
  • the particle detection unit 1 includes a flow channel 6 through which a sample flows, a light source 7 that forms a particle detection region by irradiating the flow channel 6 with laser light La, and scattered light emitted by particles that pass through the particle detection region.
  • a condensing lens 8 that condenses Ls and a photoelectric conversion 9 that converts light collected by the condensing lens 8 into a voltage corresponding to the intensity of the light are provided.
  • the wave height analysis unit 2 receives the output signal of the particle detection unit 1 and outputs a signal of a predetermined level or more as particles having a particle size corresponding to the level according to the particle size classification.
  • the DC level is removed from the output signal of the photoelectric converter 9 input to the pulse height analyzer 2.
  • the DC level output by the photoelectric conversion 9 refers to a voltage corresponding to the amount of background light incident on the photoelectric converter 9 when there is no scattered light Ls due to particles.
  • the calculation unit 3 receives the output signal from the pulse height analysis unit 2, and stores a counter unit 10 that counts pulses corresponding to the particle size classification, and stores the occurrence frequency of false counts at the time of shipment or manufacture. Subtraction processing that performs calculation processing that does not increase the count value of the crest value corresponding to the minimum particle size by the occurrence frequency of false counts among the count numbers output by the memory unit 11 and the counter unit 10. Part 12 etc. are provided.
  • step SP1 the subtraction processing unit 12 obtains and stores in advance, and the occurrence frequency m0 of the false count at the time of shipment or manufacturing is calculated from the storage unit 11.
  • step SP2 a subtraction process is performed by dividing the measurement time into time segments of the reciprocal lZmO of the false count occurrence frequency mO. This means that “1” is subtracted every time lZmO from the count value of the minimum particle size output by the counter unit 10. However, in the first time interval (0 ⁇ : LZ2mO), the subtraction process is not performed and the count value of the counter unit 10 is output as it is to the display / output unit 4 as the measurement result.
  • the counter unit 10 when a signal for increasing the count value is input to the counter unit 10, the counter unit 10 counts the signal. However, in the subtraction processing unit 12, if it is a force value corresponding to the minimum particle size, the processing equivalent to that of subtraction is achieved by performing processing that does not increase the count value by the number to be subtracted. Bring.
  • the particle counter is used under conditions almost equal to the use conditions at the time of shipment or manufacture, it is based on the occurrence frequency mO of the false count obtained under the use conditions at the time of shipment or manufacture. By performing the subtraction process, a more accurate count value can be obtained.
  • the second embodiment of the particle counter according to the present invention includes a particle detector 1 for detecting particles in a sample using light, and particle size classification. It consists of a pulse height analysis unit 2 that is captured every time, a calculation unit 13 that performs calculation processing in consideration of false counts, and a display / output unit 4 that displays the processing results of the calculation unit 13 or outputs them as electrical signals.
  • the calculation unit 13 receives the output signal from the wave height analysis unit 2 and counts the pulse corresponding to the particle size classification, and the photoelectric conversion 9 when no particles exist at the time of shipment or manufacture.
  • a subtraction processing unit 22 that performs arithmetic processing so as not to increase the count value of the crest value corresponding to the minimum particle size by the occurrence frequency of false counts among the count numbers output by the counter unit 10 .
  • the DC level output from the photoelectric conversion 9 is also input to the subtraction processing unit 22. Note that components having the same reference numerals as those in the first embodiment shown in FIG.
  • the present invention can also be applied to the light shielding type particle counter.
  • the DC level N1 due to the background light always appears, and the laser beam La Noise and photoelectric converter 9 noise are superimposed.
  • the pulse P1 appears on the plus side, protruding from the DC level N1. If the peak value corresponding to the minimum peak particle size of noise superimposed on the DC level N1 corresponds to the peak value, for example, the pulse F1 is counted as a false count.
  • the DC level N2 due to the light irradiated by the light source always appears,
  • the direct current level N2 is superimposed with noise of light source light, noise of the photoelectric converter 9, and the like. If a particle larger than the minimum particle size appears, a pulse P2 appears on the minus side, protruding from the DC level N2. Then, the positive peak value of noise superimposed on DC level N2, for example, pulse F2, is not counted, but the negative peak value of noise superimposed on DC level N2 is the wave corresponding to the minimum particle size. In the case of a high value, for example, pulse F3 is counted as a false count.
  • the phenomenon that is the object of false counting appears as a relatively small peak that roughly corresponds to the minimum particle size. Therefore, the subtraction process targets the crest value corresponding to the minimum particle size for the particle counter. Therefore, even if a peak value corresponding to a particle size larger than the minimum particle size is detected, it is not counted as a false count and is not subject to subtraction processing.
  • the particle counter In order to determine the frequency of occurrence of false counts, the particle counter is operated for 24 hours, for example, in a state where the particle counter does not detect particles under the usage conditions at the time of shipment or manufacture, and in this state the minimum particle size is reduced. The count value of the corresponding peak value is obtained. Then, when the count value of the crest value corresponding to the minimum particle size is divided by the operation time, the occurrence frequency per time is obtained. Photoelectric converter at this time
  • the DC level DO of 9 and the occurrence frequency m0 of the false count are parameters.
  • the unit of occurrence frequency mO is [for Z pieces] for convenience of explanation.
  • the occurrence frequency m of the false count depends on the DC level D of the photoelectric converter 9.
  • the level of the scattered light Ls emitted by the particles in the DC level D and the particle detection region is proportional to the intensity of the laser light La.
  • the intensity of the laser beam La is halved, the direct current level D of the photoelectric conversion 9 and the level of the scattered light Ls emitted by the particles are also halved.
  • the level of noise etc. due to photoelectric change 9 does not change. Therefore, when the intensity of the laser beam La is lowered, that is, when the direct current level D of the photoelectric converter 9 is lowered, noise or the like due to the photoelectric converter 9 becomes relatively conspicuous. In other words, when the DC level D is low, the occurrence frequency m of false counts is high.
  • These parameters a, mO, and DO are stored in the storage unit 11.
  • These parameters a, mO, and DO are read out at the start of measurement and used for the subtraction processing by the subtraction processing unit 12.
  • step SP11 when measurement is started, in step SP11, a slope a representing the relationship between the occurrence frequency m of the false count previously obtained and stored by the subtraction processing unit 22 and the DC level D of the photoelectric converter 9a And the frequency of occurrence of false counting mO and the DC level DO of the photoelectric converter 9 at that time DO Is read from the storage unit 21.
  • step SP12 the DC level D1 of the photoelectric converter 9 at the start of measurement is measured.
  • step SP13 the parameters a, m0, DO read from the storage unit 21 are used to Calculate the false occurrence frequency ml corresponding to the DC level D1.
  • step SP14 a subtraction process is performed by dividing the measurement time into time zones of the reciprocal 1Z ml of the occurrence frequency ml of false counts. This means that “1” is subtracted every time lZml from the count value of the minimum particle diameter output by the counter unit 10. However, in the first time interval (0 to lZ2ml), the subtraction process is not performed and the count value of the counter unit 10 is output to the display / output unit 4 as the measurement result.
  • the counter unit 10 counts the signal.
  • the subtraction processing unit 22 is a force count value corresponding to the minimum particle size, the subtraction processing unit 22 does not increase the count value by the number to be subtracted, resulting in the same effect as subtraction. Bring.
  • the DC level D 0 of the photoelectric converter 9 and the false count occurrence frequency mO are obtained under the use conditions at the time of shipment or manufacture, and the false count occurrence frequency m and the direct current of the photoelectric converter 9 are further determined.
  • the DC level D of photoelectric change 9 is changed in several ways, the slope a is obtained, and the DC level D force of photoelectric change 9 even under different use conditions Frequency of occurrence of false counts By calculating m and performing a subtraction process, a more accurate count value is obtained.
  • step SP21 the carry-over number of the number to be subtracted from the previous time interval is added to obtain the number to be subtracted in the time interval.
  • step SP22 the subtraction process The logical units 12 and 22 determine whether or not a signal for increasing the count value is generated. If a signal to increase the count value is generated, the process proceeds to step SP23. If a signal to increase the count value is not generated, the process proceeds to step SP26.
  • step SP23 it is determined whether or not the number to be subtracted in the time interval has been subtracted. If the number to be subtracted is not subtracted in the time interval, the process proceeds to step SP24, and the signal for increasing the generated count value is not counted. On the other hand, if the number to be subtracted has already been subtracted in the time interval, a signal for increasing the number of counts generated normally in step SP25 is counted.
  • step SP26 it is determined whether or not the force that has ended the time interval, that is, whether or not the time 1Z ml has elapsed. If time lZml has elapsed, the process proceeds to step SP27, and if time lZml has not elapsed, the process returns to step SP22.
  • step SP27 it is determined whether or not the number to be subtracted in the time interval has been used up. If the number to be subtracted in the time interval is used up, the subtraction process in the time interval ends. On the other hand, if the number to be subtracted has not been used up in the time interval, the processing for carrying over the number to be subtracted to the next time interval is performed in step SP28, and then the subtraction processing in the time interval is completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 比較的簡易な構成で種々の原因によって生じる偽計数を効果的に低減することができる粒子計数器を提供する。 【解決手段】 試料中に含まれる浮遊粒子の個数を測定し、試料中の粒子濃度を求める粒子計数器において、粒子が存在しない時の光電変換器9が出力する直流レベルと偽計数の発生頻度との関係式を記憶する記憶部21と、この記憶部21で記憶されている前記関係式を参照して、測定開始時点の光電変換器9が出力する直流レベルに対応する偽計数の発生頻度を求め、この偽計数の発生頻度に基づく値を測定開始後の計数値から減算する減算処理部22を備えた。

Description

明 細 書
粒子計数器
技術分野
[0001] 本発明は、試料中に含まれる浮遊粒子の個数を測定し、試料中の粒子濃度を求め る粒子計数器に関する。
背景技術
[0002] 粒子計数器には、試料中に測定可能な大きさの粒子が存在しないにもかかわらず 、計数値として表示されてしまう、いわゆる偽計数が存在する。偽計数が生じる原因と しては、レーザ光源が発するノイズ、光電変換器が発するノイズ、各回路のランダムな 電圧変動に起因するノイズ、外部から侵入してくる宇宙線などが考えられる。
そこで、レーザ光源が発するノイズを低減するために、直流電流に高周波成分を重 畳した駆動電流を出力するレーザ駆動回路によりレーザダイオードを駆動し、レーザ ダイオードの縦モードをマルチモードにすることが知られている(例えば、特許文献 1 参照)。
[0003] 特許文献 1 :特開平 9 178645号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、特許文献 1に記載された粒子計数器にぉ ヽては、レーザダイオードに起因 する偽計数は低減することができるものの、その他の要素に起因する偽計数につい ては対処することができな 、と 、う問題があった。
[0005] 本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、そ の目的とするところは、比較的簡易な構成で種々の原因によって生じる偽計数を効 果的に低減することができる粒子計数器を提供しょうとするものである。
課題を解決するための手段
[0006] 上記課題を解決すべく請求項 1に係る発明は、試料中に含まれる浮遊粒子の個数 を測定し、試料中の粒子濃度を求める粒子計数器において、予め求めた偽計数の 発生頻度を記憶する記憶部と、この記憶部に記憶されて!、る前記偽計数の発生頻 度に基づく値を測定開始後の計数値力 減算する減算処理部を備えたものである。
[0007] 請求項 2に係る発明は、試料中に含まれる浮遊粒子の個数を測定し、試料中の粒 子濃度を求める粒子計数器において、粒子が存在しない時の粒子検出部が出力す る直流レベルと偽計数の発生頻度との関係式を記憶する記憶部と、この記憶部に記 憶されている前記関係式を参照して、測定開始時点の前記粒子検出部が出力する 直流レベルに対応する偽計数の発生頻度を求め、この偽計数の発生頻度に基づく 値を測定開始後の計数値力 減算する減算処理部を備えたものである。
[0008] 請求項 3に係る発明は、請求項 1又は 2記載の粒子計数器において、前記減算処 理部は、求めた前記偽計数の発生頻度 (m)の逆数(lZm)を減算処理する最小の 時間区間とし、この時間区間で測定時間を分割し、ある時間区間で計数値を増加さ せる信号が発生すれば、計数値から減算すべき数を減算し、計数値を増加させる信 号が発生しなければ、減算すべき数を次の時間区間に持ち越すようにした。
発明の効果
[0009] 以上説明したように請求項 1に係る発明によれば、偽計数の発生頻度を把握するこ とによって、偽計数の影響をある範囲に抑えることが可能になり、より正確な計数値を 得ることができる。
[0010] 請求項 2に係る発明によれば、使用条件の変化を考慮した偽計数の発生頻度を把 握することが可能になり、偽計数の影響をある範囲に抑えて、より正確な計数値を得 ることがでさる。
[0011] 請求項 3に係る発明によれば、ある時間区間で計数値を増力!]させる信号が発生し なければ、減算すべき数を次の時間区間に持ち越すようにしたので、計数値を増加 させる信号が発生しない場合には減算処理が行われないため、既に表示された計数 値が減算されるようなことが生じな 、。
図面の簡単な説明
[0012] [図 1]本発明に係る粒子計数器の第 1実施の形態の構成図
[図 2]本発明に係る粒子計数器の第 1実施の形態の動作を示すフローチャート [図 3]本発明に係る粒子計数器の第 2実施の形態の構成図
圆 4]光電変換器の出力電圧波形図で、(a)は光散乱方式の場合、(b)は光遮断方 式の場合
[図 5]光電変 の直流レベルと偽計数の発生頻度との関係を示す図
[図 6]本発明に係る粒子計数器の第 2実施の形態の動作を示すフローチャート
[図 7]測定時間のある時間区間における減算処理の手順を示すフローチャート 発明を実施するための最良の形態
[0013] 以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図 1は本発 明に係る粒子計数器の第 1実施の形態の構成図、図 2は同じく動作を示すフローチ ヤート、図 3は本発明に係る粒子計数器の第 2実施の形態の構成図、図 4は光電変 換器の出力電圧波形図、図 5は光電変換器の直流レベルと偽計数の発生頻度との 関係を示す図、図 6は第 2実施の形態の動作を示すフローチャート、図 7は測定時間 のある時間区間における減算処理の手順を示すフローチャートである。
[0014] 本発明に係る粒子計数器の第 1実施の形態は、図 1に示すように、光を用いて試料 中の粒子を検出する粒子検出部 1と、粒子を粒径区分毎に捉える波高分析部 2と、 偽計数を考慮して演算処理する演算部 3と、演算部 3の処理結果を表示又は電気信 号のまま出力する表示,出力部 4からなる。
[0015] 粒子検出部 1は、試料を流す流路 6と、流路 6にレーザ光 Laを照射して粒子検出領 域を形成する光源 7と、粒子検出領域を通過する粒子が発する散乱光 Lsを集光する 集光レンズ 8と、集光レンズ 8が集光した光を光の強さに応じた電圧に変換する光電 変 9などを備えている。
[0016] 波高分析部 2は、粒子検出部 1の出力信号を受けて、所定レベル以上の信号をそ のレベルに相当する粒径の粒子として粒径区分に従って出力する。波高分析部 2に 入力される光電変換器 9の出力信号から、直流レベルが取り除かれる。
ここで、光電変 9が出力する直流レベルとは、粒子による散乱光 Lsがない場合 において、光電変換器 9に入射する背景光の光量に相当する電圧をいう。
[0017] 演算部 3は、波高分析部 2の出力信号を受け、粒径区分に対応してパルスをカウン トするカウンタ部 10と、出荷時又は製造時における偽計数の発生頻度を記憶する記 憶部 11と、カウンタ部 10が出力したカウント数のうち、最小粒径に対応する波高値の カウント値を偽計数の発生頻度分だけ増加させないような演算処理を行う減算処理 部 12などを備えている。
[0018] 以上のように構成した本発明に係る粒子計数器の第 1実施の形態の動作について 、図 2に示すフローチャートにより説明する。
先ず、測定が開始されると、ステップ SP1において、減算処理部 12が予め求めて 格納してぉ 、た出荷時又は製造時における偽計数の発生頻度 m0を記憶部 11から
BJCみ出す。
[0019] 次いで、ステップ SP2において、測定時間を偽計数の発生頻度 mOの逆数 lZmO の時間区分で区切って減算処理を行う。これは、カウンタ部 10が出力する最小粒径 の計数値に対して時間 lZmO毎に「1」を減算処理することを意味する。但し、最初の 時間区間(0〜: LZ2mO)では、減算処理を行わず、カウンタ部 10の計数値をそのま ま測定結果として表示 ·出力部 4に出力する。
[0020] 測定開始時から時間 lZ2mOが経過した後は、時間 lZmO毎に「1」を減算処理す る。当該時間区間で減算処理を行わな力つた場合には、次の時間区間に減算すベ き数が持ち越されて累積される。
[0021] 例えば、計数値を増カロさせる信号がカウンタ部 10に入力されると、カウンタ部 10は その信号をカウントする。しかし、減算処理部 12では、それが最小粒径に対応する力 ゥント値であれば、減算すべき数の分だけ計数値を増加させない処理をすることによ り結果として減算と同等の効果をもたらす。
[0022] このように、出荷時又は製造時の使用条件とほぼ等しい条件で、粒子計数器を使 用すれば、出荷時又は製造時における使用条件で求めた偽計数の発生頻度 mOに 基づいて減算処理を行うことにより、より正確な計数値を得ることができる。
[0023] 次に、本発明に係る粒子計数器の第 2実施の形態は、図 3に示すように、光を用い て試料中の粒子を検出する粒子検出部 1と、粒子を粒径区分毎に捉える波高分析 部 2と、偽計数を考慮して演算処理する演算部 13と、演算部 13の処理結果を表示 又は電気信号のまま出力する表示 ·出力部 4からなる。
[0024] 演算部 13は、波高分析部 2の出力信号を受け、粒径区分に対応してパルスをカウ ントするカウンタ部 10と、出荷時又は製造時における粒子が存在しない時の光電変 9が出力する直流レベルと偽計数の発生頻度との関係式を記憶する記憶部 21 と、カウンタ部 10が出力したカウント数のうち、最小粒径に対応する波高値のカウント 値を偽計数の発生頻度分だけ増加させないような演算処理を行う減算処理部 22な どを備えている。
[0025] 更に、減算処理部 22には、カウンタ部 10の出力信号の他に、光電変翻 9が出力 する直流レベルも入力される。なお、図 1に示す第 1実施の形態と同符号の構成要素 については、機能が同様なので説明は省略する。
[0026] なお、本発明の実施の形態では、光散乱方式の粒子計数器への適用につ 、て述 ベるが、本発明は光遮蔽方式の粒子計数器にも適用できる。
光散乱方式の粒子計数器における光電変換器 9の出力電圧波形には、図 4 (a)に 示すように、背景光による直流レベル N1が常に現れており、この直流レベル N1には レーザ光 Laのノイズや光電変換器 9のノイズなどが重畳して 、る。そこに粒子が出現 すると直流レベル N1から突出してプラス側にパルス P1が現れる。そして、直流レべ ル N1に重畳しているノイズの波高値力 最小粒径に対応する波高値に相当する場 合、例えばパルス F1は偽計数としてカウントされる。
[0027] また、光遮蔽方式の粒子計数器における光電変^^の出力電圧波形には、図 4 (b )に示すように、光源によって照射される光による直流レベル N2が常に現れており、 この直流レベル N2には光源光のノイズや光電変換器 9のノイズなどが重畳している。 そこに最小粒径よりも大きい粒子が出現すると直流レベル N2から突出してマイナス 側にパルス P2が現れる。そして、直流レベル N2に重畳しているノイズのプラス側の 波高値、例えばパルス F2はカウントされないが、直流レベル N2に重畳しているノィ ズのマイナス側の波高値が最小粒径に対応する波高値に相当する場合、例えばパ ルス F3は偽計数としてカウントされる。
[0028] ここで、偽計数の対象となる現象は、概ね最小粒径に対応する程度の比較的小さ なピークとして現れる。そのため、減算処理は粒子計数器にとって最小粒径に対応 する波高値を対象とする。従って、最小粒径よりも大きい粒径に対応する波高値が検 出されても、偽計数とはせず減算処理の対象にしない。
[0029] 偽計数の発生頻度を求めるには、出荷時又は製造時の使用条件において粒子計 数器が粒子を検出しない状態で、例えば 24時間動作させ、この状態で最小粒径に 対応する波高値の計数値を求める。そして、最小粒径に対応する波高値の計数値を 動作時間で除算すると、当該時間当たりの発生頻度が求まる。この時の光電変換器
9の直流レベル DOと偽計数の発生頻度 m0がパラメータとなる。発生頻度 mOの単位 は、説明の便宜上、 [個 Z分]とする。
[0030] 偽計数の発生頻度 mは、光電変換器 9の直流レベル Dに依存する。この直流レべ ル D及び粒子検出領域において粒子が発する散乱光 Lsのレベルはレーザ光 Laの 強度に比例する。ここで、仮にレーザ光 Laの強度が半分になると、光電変 9の直 流レベル Dや粒子が発する散乱光 Lsのレベルも半分になる。しかし、光電変 9 に起因するノイズ等のレベルは変わらない。従って、レーザ光 Laの強度が低くなる、 即ち光電変換器 9の直流レベル Dが低くなると、相対的に光電変換器 9に起因するノ ィズ等が目立つことになる。換言すれば、直流レベル Dが低いと偽計数の発生頻度 mが高くなる。
[0031] 偽計数の発生頻度 mと光電変 9の直流レベル Dとの関係を求めるには、光電 変^ ^9の直流レベル Dを変化させ、例えば数通りの直流レベルにおける偽計数の 発生頻度を前述のようにして求める。これらの関係は直線 (一次式)と仮定することが できるので、縦軸を偽計数の発生頻度 m、横軸を光電変換器 9の直流レベル Dとす ると、 2つの異なる直流レベルでの偽計数の発生頻度を求め、これら 2点を通る傾き a の直線 (m=aD+b)が求まる。直流レベル DOと発生頻度 mOを用いて定数 bを求め ると、 b = mO— aDOとなる。
[0032] 従って、偽計数の発生頻度 mと光電変換器 9の直流レベル Dとの関係式は、図 5に 示すように、 m=aD+mO— aDOとなる。これらのパラメータ a, mO, DOは、記憶部 11 に格納される。そして、これらのパラメータ a, mO, DOは、測定開始時に読み出され、 減算処理部 12による減算処理に用 、られる。
[0033] 以上のように構成した本発明に係る粒子計数器の第 2実施の形態の動作にっ 、て 、図 6に示すフローチャートにより説明する。
先ず、測定が開始されると、ステップ SP11において、減算処理部 22が予め求めて 格納しておいた偽計数の発生頻度 mと光電変換器 9の直流レベル Dとの関係を表わ す傾き aと、偽計数の発生頻度 mOと、その時における光電変換器 9の直流レベル DO を記憶部 21から読み出す。
[0034] 次いで、ステップ SP12において、測定開始時点の光電変換器 9の直流レベル D 1を測定し、ステップ SP13において、記憶部 21から読み出したパラメータ a, m0, DO を用いて光電変換器 9の直流レベル D1に対応する偽計数の発生頻度 mlを算出す る。
[0035] 次いで、ステップ SP14において、測定時間を偽計数の発生頻度 mlの逆数 1Z mlの時間区分で区切って減算処理を行う。これは、カウンタ部 10が出力する最小粒 径の計数値に対して時間 lZml毎に「1」を減算処理することを意味する。但し、最 初の時間区間(0〜lZ2ml)では、減算処理を行わず、カウンタ部 10の計数値をそ のまま測定結果として表示 ·出力部 4に出力する。
[0036] 測定開始時から時間 lZ2mlが経過した後は、時間 lZml毎に「1」を減算処理す る。当該時間区間で減算処理を行わな力つた場合には、次の時間区間に減算すベ き数が持ち越されて累積される。
[0037] 例えば、計数値を増カロさせる信号がカウンタ部 10に入力されると、カウンタ部 10は その信号をカウントする。しかし、減算処理部 22では、それが最小粒径に対応する力 ゥント値であれば、減算すべき数の分だけ計数値を増加させない処理をすることによ り結果として減算と同等の効果をもたらす。
[0038] このように、出荷時又は製造時における使用条件で、光電変換器 9の直流レベル D 0と偽計数の発生頻度 mOを求め、更に偽計数の発生頻度 mと光電変換器 9の直流レ ベル Dとの関係を一次式と捉え、光電変 9の直流レベル Dを数通りに変化させ、 その傾き aを求め、異なる使用条件でも光電変 9の直流レベル D力 偽計数の発 生頻度 mを算出し、減算処理を行うことでより正確な計数値を得るようにしている。
[0039] 次に、測定時間のある時間区間における減算処理の手順を、図 7に示すフローチ ヤートにより説明する。このフローチャートは、前の時間区間から減算すべき数が持ち 越された場合についての減算処理手順を示す。この減算処理手順は、本発明の第 1 実施の形態と第 2実施の形態に共通するものである。
[0040] 先ず、ステップ SP21において、前の時間区間からの減算すべき数の持ち越し数を 加算して当該時間区間で減算すべき数を求める。ステップ SP22において、減算処 理部 12, 22は、計数値を増加させる信号が発生したか否かを判断する。計数値を増 加させる信号が発生していれば、ステップ SP23へ進み、計数値を増加させる信号が 発生していなければ、ステップ SP26へ進む。
[0041] 次いで、ステップ SP23において、当該時間区間で減算すべき数を減算したか否か を判断する。当該時間区間で減算すべき数を減算していなければ、ステップ SP24 へ進んで、発生した計数値を増加させる信号をカウントしない。一方、すでに当該時 間区間で減算すべき数を減算していれば、ステップ SP25において通常通り発生し た計数値を増カロさせる信号をカウントする。
[0042] 次いで、ステップ SP26において、当該時間区間が終了した力否力 即ち時間 1Z mlが経過した否かを判断する。時間 lZmlが経過していれば、ステップ SP27へ進 み、時間 lZmlが経過していなければ、ステップ SP22へ戻る。
[0043] ステップ SP27では、当該時間区間で減算すべき数を使い切ったカゝ否かを判断す る。当該時間区間で減算すべき数を使い切っていれば、当該時間区間における減 算処理は終了する。一方、当該時間区間で減算すべき数を使い切っていなければ、 ステップ SP28において減算すべき数を次の時間区間に持ち越すための処理を行つ た後に、当該時間区間における減算処理は終了する。
産業上の利用可能性
[0044] 本発明によれば、使用条件の変化を考慮した偽計数の発生頻度を把握することが 可能になり、偽計数の影響をある範囲に抑えて、より正確な計数値を得る粒子計数 器を構成することができる。
また、ユーザが測定結果の計数値から、仕様書などに予め明記してある偽計数を 減算する必要がなくなり、粒子計数器の使い勝手が向上する。

Claims

請求の範囲
[1] 試料中に含まれる浮遊粒子の個数を測定し、試料中の粒子濃度を求める粒子計数 器において、予め求めた偽計数の発生頻度を記憶する記憶部と、この記憶部に記憶 されている前記偽計数の発生頻度に基づく値を測定開始後の計数値力 減算する 減算処理部を備えたことを特徴とする粒子計数器。
[2] 試料中に含まれる浮遊粒子の個数を測定し、試料中の粒子濃度を求める粒子計数 器において、粒子が存在しない時の粒子検出部が出力する直流レベルと偽計数の 発生頻度との関係式を記憶する記憶部と、この記憶部に記憶されて 、る前記関係式 を参照して、測定開始時点の前記粒子検出部が出力する直流レベルに対応する偽 計数の発生頻度を求め、この偽計数の発生頻度に基づく値を測定開始後の計数値 から減算する減算処理部を備えたことを特徴とする粒子計数器。
[3] 請求項 1又は 2記載の粒子計数器において、前記減算処理部は、求めた前記偽計 数の発生頻度 (m)の逆数(lZm)を減算処理する最小の時間区間とし、この時間区 間で測定時間を分割し、ある時間区間で計数値を増加させる信号が発生すれば、計 数値から減算すべき数を減算し、計数値を増加させる信号が発生しなければ、減算 すべき数を次の時間区間に持ち越すことを特徴とする粒子計数器。
PCT/JP2005/022637 2004-12-21 2005-12-09 粒子計数器 WO2006067977A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/793,883 US7755760B2 (en) 2004-12-21 2005-12-09 Particle counter for measuring floating particles which can effectively reduce false counts
CN2005800485181A CN101124471B (zh) 2004-12-21 2005-12-09 粒子计数器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004368658A JP3995684B2 (ja) 2004-12-21 2004-12-21 粒子計数器
JP2004-368658 2004-12-21

Publications (1)

Publication Number Publication Date
WO2006067977A1 true WO2006067977A1 (ja) 2006-06-29

Family

ID=36601579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022637 WO2006067977A1 (ja) 2004-12-21 2005-12-09 粒子計数器

Country Status (4)

Country Link
US (1) US7755760B2 (ja)
JP (1) JP3995684B2 (ja)
CN (1) CN101124471B (ja)
WO (1) WO2006067977A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489962B2 (ja) 2010-11-30 2014-05-14 リオン株式会社 粒子計数方法
JP5765022B2 (ja) * 2011-03-31 2015-08-19 ソニー株式会社 微小粒子分析装置及び微小粒子分析方法
JP6515317B2 (ja) * 2014-08-06 2019-05-22 パナソニックIpマネジメント株式会社 微粒子検知装置
CN107615043B (zh) 2015-04-02 2020-08-18 粒子监测系统有限公司 粒子计数仪器中的激光器噪声检测和缓解
WO2016181183A1 (zh) * 2015-05-10 2016-11-17 潘镜 一种快速统计颗粒计数器粒子个数的识别方法和装置
WO2017173285A1 (en) 2016-04-01 2017-10-05 Tsi Incorporated Reducing false counts in condensation particle counters
EP3546924B1 (en) * 2016-11-22 2022-03-30 RION Co., Ltd. Microbial particle counting system and microbial particle counting method
JP6954800B2 (ja) * 2016-11-22 2021-10-27 リオン株式会社 生物粒子計数システムおよび生物粒子計数方法
JP7071849B2 (ja) * 2018-03-09 2022-05-19 リオン株式会社 パーティクルカウンタ
CN114486688A (zh) * 2022-01-28 2022-05-13 苏州苏信环境科技有限公司 一种粒子计数器计量方法、装置、设备及存储介质
CN114544441A (zh) * 2022-02-28 2022-05-27 苏州苏信环境科技有限公司 一种粒子计数器的自检方法、系统、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240143A (ja) * 1985-04-17 1986-10-25 Hitachi Ltd 微小粒子計数装置
JPH09159599A (ja) * 1995-12-05 1997-06-20 Agency Of Ind Science & Technol 流体清浄度評価方法及び流体清浄度評価装置
JPH11271455A (ja) * 1998-03-25 1999-10-08 Aloka Co Ltd 放射線測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987391A (en) * 1974-12-02 1976-10-19 Coulter Electronics, Inc. Method and apparatus for correcting total particle volume error due to particle coincidence
JPH09178645A (ja) 1995-12-26 1997-07-11 Rion Co Ltd 光散乱式粒子計数装置
DE69819227T2 (de) * 1997-03-10 2004-04-22 Fuji Electric Co., Ltd., Kawasaki Vorrichtung und Verfahren zur Trübungsmessung
JP2002527768A (ja) * 1998-10-21 2002-08-27 ハイダック フルイドテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粒子カウンタのための評価方法および該方法を実施するための装置
CN2570775Y (zh) * 2002-08-08 2003-09-03 上海市激光技术研究所 液体粒子计数器
US6784990B1 (en) * 2003-04-04 2004-08-31 Pacific Scientific Instruments Company Particle detection system implemented with a mirrored optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240143A (ja) * 1985-04-17 1986-10-25 Hitachi Ltd 微小粒子計数装置
JPH09159599A (ja) * 1995-12-05 1997-06-20 Agency Of Ind Science & Technol 流体清浄度評価方法及び流体清浄度評価装置
JPH11271455A (ja) * 1998-03-25 1999-10-08 Aloka Co Ltd 放射線測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICHIJO K.: "Particle Counter ni Okeru Saisho Ryushi Nodo ni Tsuite", 21ST ANNUAL TECHNICAL MEETING ON AIR CLEANING AND CONTAMINATION CONTROL PROGRAM YOKOSHU, 15 April 2003 (2003-04-15), pages 209 - 211 *

Also Published As

Publication number Publication date
US20080164860A1 (en) 2008-07-10
CN101124471B (zh) 2011-12-14
US7755760B2 (en) 2010-07-13
CN101124471A (zh) 2008-02-13
JP2006177687A (ja) 2006-07-06
JP3995684B2 (ja) 2007-10-24

Similar Documents

Publication Publication Date Title
WO2006067977A1 (ja) 粒子計数器
JP5776744B2 (ja) パルス処理装置および放射線分析装置
JP5663148B2 (ja) 計数装置、物理量センサ、計数方法および物理量計測方法
JP2010505132A (ja) 流動式サイトメトリのパルスの区別と応用
JPH0424535A (ja) 流体中の粒子計測方法及びその装置
KR100503020B1 (ko) 탁도의측정방법및장치
KR20130117653A (ko) 생물학적 물질의 검출 방법 및 장치
KR102099230B1 (ko) 형광분석에 의한 체외 검출 및/또는 정량화를 위한 시스템
CN108139374A (zh) 用于利用灰尘传感器指示器的系统,方法和装置
Pechousek et al. Virtual instrumentation technique used in the nuclear digital signal processing system design: energy and time measurement tests
CN105259086A (zh) 粉尘浓度的检测方法及检测系统
US20200408931A1 (en) Pulse counting coincidence correction based on count rate and measured live time
JP6045100B2 (ja) 血流量測定装置
JP2010151811A (ja) パーティクル計数装置
JP7022977B2 (ja) シンチレータの発光減衰時定数の測定方法、その測定装置およびシンチレータの賦活材濃度の測定方法
JP2007187682A (ja) 放射線測定装置
CN109556738B (zh) 模拟测量方法、测量数据拟合方法及化学发光测定仪
JP2014001951A (ja) 放射線測定装置
KR101443710B1 (ko) 파일업 신호 제거를 이용한 엑스선 형광분석장치 및 이를 이용한 분석방법
JP2017143955A (ja) 歯垢検知装置
CN111811561B (zh) 一种光纤传感器解调装置本底噪声的测量方法
US20080004815A1 (en) Particle counter
JP7492452B2 (ja) 液中粒子計測器、液中粒子計測方法、信号処理プログラム
JPH0226054Y2 (ja)
JPH05223941A (ja) 放射線測定器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11793883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580048518.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05814750

Country of ref document: EP

Kind code of ref document: A1