WO2016181183A1 - 一种快速统计颗粒计数器粒子个数的识别方法和装置 - Google Patents

一种快速统计颗粒计数器粒子个数的识别方法和装置 Download PDF

Info

Publication number
WO2016181183A1
WO2016181183A1 PCT/IB2015/053419 IB2015053419W WO2016181183A1 WO 2016181183 A1 WO2016181183 A1 WO 2016181183A1 IB 2015053419 W IB2015053419 W IB 2015053419W WO 2016181183 A1 WO2016181183 A1 WO 2016181183A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
segment
particle
pulse
particles
Prior art date
Application number
PCT/IB2015/053419
Other languages
English (en)
French (fr)
Inventor
潘镜
Original Assignee
潘镜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潘镜 filed Critical 潘镜
Priority to PCT/IB2015/053419 priority Critical patent/WO2016181183A1/zh
Publication of WO2016181183A1 publication Critical patent/WO2016181183A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the invention belongs to the field of signal recognition, and in particular relates to a method and a device for quickly counting the number of particle counter particles.
  • An object of the embodiments of the present invention is to provide a method and apparatus for quickly counting the number of particles of a particle counter, aiming at processing signals obtained in the device, and quickly identifying and counting the number of particles therein.
  • the embodiment of the present invention is implemented by the method for quickly counting the number of particle counter particles, and the method includes the following steps:
  • Step one dividing the pulse segment and the stationary segment of the input signal according to the threshold value of the starting point of the pulse segment;
  • Step two find the highest peak of each pulse segment, and calculate its corresponding highest peak height
  • Step 3 calculating the width at a fixed proportional height of each pulse segment according to the corresponding highest peak height
  • Step 4 if the width is greater than the proportional height threshold, it is identified as a non-particle signal segment, otherwise it is identified as a particle signal segment;
  • step 5 the number of particle signal segments is counted, and the number is the number of identified particles.
  • Another object of the present invention is to provide an apparatus for quickly counting the number of particle counter particles, wherein the apparatus includes:
  • a signal segment dividing unit configured to divide a pulse segment and a stationary segment of the input signal according to a starting point threshold of the pulse segment
  • the highest peak calculation unit is used to find the highest peak of each pulse segment and calculate its corresponding highest peak height
  • a pulse width calculation unit configured to calculate a width at a fixed proportional height of each pulse segment according to a corresponding highest peak height
  • a signal identifying unit configured to identify the distinguishing particle signal and the non-particle signal, if the width is greater than the proportional height threshold, identifying the non-particle signal segment; otherwise, identifying the particle signal segment;
  • the particle statistics unit is used to count the number of particle signal segments, and the number is the number of identified particles.
  • the invention achieves the purpose of quickly identifying and counting the number of particles by calculating the pulse width at the fixed height ratio of the pulse segment signal, and conveniently designing and manufacturing the particle counter device.
  • FIG. 1 is an example of two-stage signals provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of an implementation of a method for identifying a number of fast statistical particle counter particles according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of determining a proportional height threshold of a second derivative zero crossing of a histogram curve of a width of a signal pulse segment at a fixed proportional height in a training signal according to an embodiment of the present invention.
  • FIG. 5 is a histogram of the distribution of the effective signal and the background signal according to the embodiment of the present invention.
  • FIG. 6 is a difference distribution diagram of a histogram of a value distribution of an effective signal and a background signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the position of the maximum positive difference value of the difference distribution diagram of the value distribution distribution histogram of the effective signal and the background signal according to the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus for identifying a number of particles of a fast statistical particle counter according to an embodiment of the present invention.
  • the change in the size of the fine particles (volume) can be measured by changes in potential pulses, light scattering, and the like.
  • the signal collected at the data acquisition part in the embodiment of the present invention includes a sudden change of the pulse segment and a plateau with a lower signal value and a smaller change (as shown in FIG. 1), which is continuously lower than the start point threshold of the pulse segment.
  • the signal curve is a plateau, and the signal curve that is continuously higher than or equal to the start point of the pulse segment is a pulse segment.
  • the input signals tend to have different shapes, such as: a signal segment with multiple particles passing through the small hole tube at the same time; a signal segment with bubbles passing through the small hole tube; and an effective particle signal generation due to baseline drift A large drift signal.
  • these signal segments need to be accurately identified, but at this stage such recognition algorithms have higher time complexity.
  • design and manufacture Particle counter device In order to verify the stability and repeatability of the device, it is necessary to quickly identify the particle signal segments according to the signal curve, and then count the number of particles (one particle segment corresponds to one particle).
  • a method for quickly identifying the number of statistical particles is often required, and the recognition speed can be sacrificed to sacrifice certain recognition performance.
  • the invention achieves the purpose of quickly identifying and counting the number of particles by calculating the pulse width at a fixed height ratio of the pulse segment signal, which is convenient. Particle counter Equipment design and manufacture.
  • FIG. 2 shows a method for identifying the number of particles of a fast statistical particle counter provided by an embodiment of the present invention. For the convenience of description, only the parts related to the embodiment are shown, and the steps are as follows.
  • Input an input signal containing multiple pulse segments and stationary segments;
  • signals tend to be in various shapes, such as: a signal segment with multiple particles passing through a small orifice tube at the same time; a signal segment with bubbles passing through the small orifice tube; and a signal with a large drift of the effective particle signal due to baseline drift .
  • Step 102 dividing a pulse segment and a stationary segment of the input signal according to a threshold value of a pulse segment starting point;
  • the pulse segment signal includes an effective particle signal, a bubble signal, a baseline wander signal, and the like.
  • Step 103 searching for the highest peak of each pulse segment, and calculating its corresponding highest peak height H max After dividing the pulse segment, the peak height of the pulse segment is also different due to the different shapes of the pulse segments.
  • Step 104 Calculate the width at a fixed proportional height of each pulse segment according to the corresponding highest peak height; select a ratio R (for example, may be 1/2), and calculate each pulse segment at R ⁇ H max Pulse width W at height;
  • Step 105 if the pulse width W is greater than the proportional height threshold W Thres , is identified as a non-particle signal segment, otherwise it is identified as a particle signal segment; the particle signal tends to have a certain similarity, so the width at a fixed ratio height is often less than a certain threshold;
  • step 106 the number of particle signal segments is counted, and the number is the number of identified particles.
  • the method can only remove the bubble signal and the baseline drift signal, can not identify the particle signal that has been affected by the baseline drift, and cannot recognize the multi-particle signal as multiple particles.
  • the proportional height threshold in this method is determined as follows:
  • the input signal can be either a valid signal or a blank signal.
  • the impedance channel in the particle counter can be collected normally.
  • the sample can also collect a background signal containing only the diluent, such a background signal contains only noise (Figure 4). According to this situation, the starting point threshold of the pulse segment is determined as follows:
  • the blank signal is mainly composed of noise, its signal amplitude is small, mainly distributed in a region not far from the zero point, so its histogram distribution is generally higher than the distribution of the effective signal in the region not far from the zero point; In the region far from the zero point, the histogram distribution of the effective signal is higher than the histogram distribution of the blank signal; and in the region far from the zero point, since the histogram distribution of the effective signal and the blank signal is gradually attenuated to 0, Therefore, the difference in histogram distribution is also gradually attenuated to zero.
  • the difference in histogram distribution is often as shown in Fig. 5, which is negative in the region not far from the zero point; the region farther from the zero point gradually increases to the highest peak (which is the largest positive difference), The value gradually begins to decrease; in the region far from zero, it gradually decays to zero.
  • the position of the maximum positive difference of the difference of the histogram distribution (shown by the red circle in Fig. 7) is set as the pulse segment start threshold for the aforementioned signal recognition.
  • the calculation of the pulse segment start threshold and the proportional height threshold is completed before the identification process, and is separately identified during the identification process. It is a fixed value calculated in advance. In this way, the more accurate partitioning threshold is obtained, and the complexity of the encoding process is not increased, so that the data acquisition component with weak computing capability can also complete the signal encoding.
  • FIG. 8 shows the identification of an invalid saturation signal provided by an embodiment of the present invention.
  • the structural schematic of the device for the convenience of description, only the parts related to the present embodiment are shown.
  • a signal input unit 11 is configured to input an input signal including a plurality of pulse segments and a plateau. Then, the input signal is input to the signal segment dividing unit 12; the signal segment dividing unit 12 is configured to divide the pulse segment and the stationary segment according to the pulse segment starting threshold, and input the pulse segment signal to Peak value calculation unit 13; highest peak calculation unit 13, It is used to find the highest peak of each pulse segment, and calculate its corresponding highest peak height, and transfer to the pulse width calculation unit 14 for processing; the pulse width calculation unit 14 is configured to calculate each pulse according to the corresponding highest peak height.
  • the width at a fixed proportional height of the segment; the signal recognition unit 15 Then, according to the calculated width at a fixed proportional height of each pulse segment, it is used to identify the distinguishing particle signal and the non-particle signal, and if the width is greater than the proportional height threshold, it is identified as a non-particle signal segment, otherwise it is identified as a particle signal.
  • the segment statistic unit 16 is configured to count the number of particle signal segments according to the result of the particle signal identification, and the number thereof is the number of identified particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种快速统计颗粒计数器粒子个数的识别方法和装置,该方法包括以下步骤:输入包含多个脉冲段和平稳段的输入信号(S101);根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段(S102);寻找每个脉冲段的最高峰,并计算其对应的最高峰高度(S103);根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度(S104);如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则识别为粒子信号段(S105);对粒子信号段的数量进行统计,其数量为识别的粒子个数(S106)。该方法可以快速识别粒子个数,从而方便了设备的设计制造。

Description

一种快速统计颗粒计数器粒子个数的识别方法和装置 技术领域
本发明属于信号识别领域,尤其涉及一种快速统计颗粒计数器粒子个数的识别方法和装置。
背景技术
在颗粒计数器领域,当悬浮在稀释液中的颗粒随稀释液以一定速度通过小孔管时,可利用电位脉冲、光散射等变化,来对微小颗粒大小(体积)进行测量。因此在设计各种设备时,为了验证设备的稳定性、可重复性等性能,需要根据信号曲线,快速识别其中的粒子信号段,进而统计粒子个数(每一个粒子信号段对应一个粒子)。但是由于设备设计制造的进度要求,往往需要一种快速识别统计粒子个数的方法,而这种识别速度的提升可以牺牲一定的识别性能。
技术问题
本发明实施例的目的在于提供一种快速统计颗粒计数器粒子个数的识别方法和装置,旨在对设备中得到的信号进行处理,快速识别并统计其中的粒子个数。
技术解决方案
本发明实施例是这样实现的,一种快速统计颗粒计数器粒子个数的识别方法,其特征在于,所述方法包括以下步骤:
步骤一,根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段;
步骤二,寻找每个脉冲段的最高峰,并计算其对应的最高峰高度;
步骤三,根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;
步骤四,如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则则识别为粒子信号段;
步骤五,对粒子信号段的数量进行统计,其数量即为识别的粒子个数。
本发明实施例的另一目的在于提供一种快速统计颗粒计数器粒子个数的识别装置,其特征在于,所述装置包括:
信号段划分单元,用于根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段;
最高峰计算单元,用于寻找每个脉冲段的最高峰,并计算其对应的最高峰高度;
脉宽计算单元,用于根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;
信号识别单元,用于识别区分粒子信号和非粒子信号,如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则则识别为粒子信号段;
粒子统计单元,用于对粒子信号段的数量进行统计,其数量即为识别的粒子个数。
有益效果
本发明通过对计算脉冲段信号固定高度比例处的脉冲宽度,从而达到了快速识别、统计粒子数量的目的,方便了颗粒计数器设备的设计制造。
附图说明
图1是本发明实施例提供的两段信号示例。
图2是本发明实施例提供的快速统计颗粒计数器粒子个数的识别方法的实现流程图。
图3是本发明实施例提供的训练信号中信号脉冲段在固定比例高度处的宽度的直方图曲线的二阶导数过零点确定比例高度阈值的示意图。
图4是本发明实施例提供的两段本底信号示例。
图5是本发明实施例提供的有效信号和本底信号的取值分布直方图。
图6是本发明实施例提供的有效信号和本底信号的取值分布直方图的差值分布图。
图7是本发明实施例提供的有效信号和本底信号的取值分布直方图的差值分布图的最大正差值所在位置示意图。
图8是本发明实施例提供的快速统计颗粒计数器粒子个数的识别装置的结构原理图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在 颗粒计数器 领域, 当悬浮在稀释液中的颗粒随稀释液以一定速度通过小孔管时,可利用电位脉冲、光散射等变化,来对微小颗粒大小(体积)进行测量。 本发明实施例中的数据采集部分处采集的信号包含突然变化的脉冲段和信号值较低且变化较小的平稳段(如图1),连续低于 脉冲段起点阈值 的信号曲线为平稳段,连续高于或等于 脉冲段起点阈值 的信号曲线为脉冲段。 由于各种因素的影响,输入的信号往往形态各异,如:有多个粒子同时通过小孔管的信号段;有气泡通过小孔管的信号段;也有因基线漂移导致有效的粒子信号发生较大幅度的漂移的信号。为了准确的统计各种粒子的数量,需要对这些信号段进行准确的识别,但现阶段这样的识别算法时间复杂度较高。而在设计、制造 颗粒计数器设备 的过程中,为了验证设备的稳定性、可重复性等性能,需要根据信号曲线,快速识别其中的粒子信号段,进而统计粒子个数(每一个粒子信号段对应一个粒子)。但是由于设备设计制造的进度要求,往往需要一种快速识别统计粒子个数的方法,而这种识别速度的提升可以牺牲一定的识别性能。
本发明通过 对计算脉冲段信号固定高度比例处的脉冲宽度,从而达到了快速识别、统计粒子数量的目的,方便了 颗粒计数器 设备的设计制造。
图2示出了本发明实施例提供的 快速统计颗粒计数器粒子个数 的识别方法 的实现流程图,为了便于描述,仅示出了与本实施例相关的部分,其步骤详述如下,
输入包含多个脉冲段和平稳段 的输入 信号 ; 这样的信号往往形态各异,如:有多个粒子同时通过小孔管的信号段;有气泡通过小孔管的信号段;也有因基线漂移导致有效的粒子信号发生较大幅度的漂移的信号。
步骤 102 , 根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段; 通过这样的划分,脉冲段信号包括有效粒子信号、气泡信号和基线漂移信号等。
步骤 103 , 寻找每个脉冲段的最高峰,并计算其对应的最高峰高度H max ;划分脉冲段后,由于脉冲段的形态各异,脉冲段的最高峰高度也各不相同。
步骤104,根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;选择一个比例R(例如可以是1/2),则计算每个脉冲段在 R× H max 高度处的脉冲宽度W;
步骤105,如果脉冲宽度W大于比例高度阈值W Thres ,则识别为非粒子信号段,否则则识别为粒子信号段;粒子信号往往具有一定的相似性,因此其固定比例高度处的宽度往往小于一定的阈值;
步骤106,对粒子信号段的数量进行统计,其数量即为识别的粒子个数。很明显,这里为了追求识别方法的简单快速,该方法只能去除气泡信号和基线漂移信号,不能识别已经受到基线漂移影响的粒子信号,也不能将多粒子信号识别为多个粒子。
该方法中 中 比例高度阈值 按下列方法来确定:
首先 输 入包含多个 脉冲段和平稳段 的训练 信号 (如图1),计算 这些信号段在固定比例高度处的脉冲宽度 (如图3), 并计算这些脉冲宽度取值分布的 其直方图曲线 ,对其 直方图曲线 求 二阶导数过零点,则该二阶导数过零点对应的信号取值即为 比例高度阈值 。
输入的信号既可能是有效信号,也可能是空白信号。如 颗粒计数器 中的阻抗通道既可以采集 正常 样本,也可以采集仅仅包含稀释液的本底信号,这样的本底信号仅仅包含噪声(如图4)。根据这样情况, 其中 脉冲段起点阈值 按下列方法来确定:
首先对同样数据长度的有效信号(如图1)和空白信号 (如图 4 ) 计算其各自的直方图(如图5,图5中红色曲线为有效信号,蓝色曲线为空白信号)。
然后,计算这两个直方图分布的差值。由于空白信号主要由噪声组成,其信号幅值较小,主要分布在离零点不远的区域,因此其直方图分布在离零点不远的区域内一般高于有效信号在该区域内的分布;而在离零点较远的区域,有效信号的直方图分布要高于空白信号的直方图分布;而在离零点很远的区域,由于有效信号和空白信号的直方图分布都逐渐衰减为0,因此其直方图分布的差值也逐渐衰减为0。其直方图分布的差值往往如图5所示,在离零点不远的区域内,为负值;离零点较远的区域,逐渐增大至最高峰(为最大正差值)后,其值又逐渐开始减小;而在离零点很远的区域,逐渐衰减为0。
最后,将直方图分布的差值的最大正差值(如图7中红圈所示)所处的位置设置为脉冲段起点阈值,用于前述的信号识别。
此外,所述 脉冲段起点阈值和比例高度阈值 的计算在 识别 过程之前完成,在 识别 过程中 分别 为一事先计算好的固定数值。这样既得到较为准确的划分阈值,又没有增加编码过程的复杂度,使得运算能力较弱的数据采集部件也能完成信号编码。
图 8 示出了本发明实施例提供的 无效 饱和信号的识别 装置的结构原理图,为了便于描述,仅示出了与本实施例相关的部分。
参照图 8 ,信号输入单元11, 用于 输入包含多个脉冲段和平稳段 的输入 信号 , 然后将输入信号输入到 信号段划分 单元12; 信号段划分 单元12, 用于根据脉冲段起点阈值,划分脉冲段和平稳段,并 将 脉冲段 信号输入到 最高峰计算单元13;最高峰计算单元13 , 用于寻找每个脉冲段的最高峰,并计算其对应的最高峰高度,并转入脉宽计算单元14进行处理;脉宽计算单元14,用于根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;信号识别单元15 , 则根据计算后的每个脉冲段的固定比例高度处的宽度,用于识别区分粒子信号和非粒子信号,如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则则识别为粒子信号段;粒子统计单元16,则根据粒子信号识别的结果,用于对粒子信号段的数量进行统计,其数量即为识别的粒子个数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (1)

  1. 1、 一种 快速统计颗粒计数器粒子个数 的识别方法 ,其特征在于,所述方法包括以下步骤:
    步骤一 , 根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段;
    步骤二 , 寻找每个脉冲段的最高峰,并计算其对应的最高峰高度;
    步骤三 ,根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;
    步骤四 ,如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则则识别为粒子信号段;
    步骤五 ,对粒子信号段的数量进行统计,其数量即为识别的粒子个数。
    2 、 一种 快速统计颗粒计数器粒子个数 的识别装置 , 其特征在于,所述装置包括:
    信号段划分 单元, 用于 根据脉冲段起点阈值,划分输入信号的脉冲段和平稳段;
    最高峰计算单元,用于寻找每个脉冲段的最高峰,并计算其对应的最高峰高度;
    脉宽计算单元,用于根据对应的最高峰高度,计算每个脉冲段的固定比例高度处的宽度;
    信号识别单元 , 用于识别区分粒子信号和非粒子信号,如果该宽度大于比例高度阈值,则识别为非粒子信号段,否则则识别为粒子信号段;
    粒子统计单元,用于对粒子信号段的数量进行统计,其数量即为识别的粒子个数。
    3 、如权利要求1所述的 快速统计颗粒计数器粒子个数 的识别方法 ,其特征在于,所述 脉冲段起点阈值为有效信号分布的直方图曲线与本底信号分布的直方图曲线之差的最大正差值所在位置。
    4、 如权利要求1所述的 快速统计颗粒计数器粒子个数 的识别方法 ,其特征在于,所述 比例高度阈值由训练信号中信号脉冲段在固定比例高度处的宽度的 直方图曲线的二阶导数过零点确定。
    5、 如权利要求1所述的 快速统计颗粒计数器粒子个数 的识别方法 ,其特征在于,所述 脉冲段起点阈值和比例高度阈值 的计算在 识别 过程之前完成,在 识别 过程中 分别 为一事先计算好的固定数值。
PCT/IB2015/053419 2015-05-10 2015-05-10 一种快速统计颗粒计数器粒子个数的识别方法和装置 WO2016181183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/053419 WO2016181183A1 (zh) 2015-05-10 2015-05-10 一种快速统计颗粒计数器粒子个数的识别方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2015/053419 WO2016181183A1 (zh) 2015-05-10 2015-05-10 一种快速统计颗粒计数器粒子个数的识别方法和装置

Publications (1)

Publication Number Publication Date
WO2016181183A1 true WO2016181183A1 (zh) 2016-11-17

Family

ID=57249051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/053419 WO2016181183A1 (zh) 2015-05-10 2015-05-10 一种快速统计颗粒计数器粒子个数的识别方法和装置

Country Status (1)

Country Link
WO (1) WO2016181183A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118715A (zh) * 2018-02-06 2019-08-13 深圳市帝迈生物技术有限公司 一种血细胞脉冲信号分析装置以及方法
CN115372262A (zh) * 2022-09-13 2022-11-22 南京颐兰贝生物科技有限责任公司 一种五分类血液分析仪脉冲识别方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801903A (en) * 1970-10-27 1974-04-02 Coulter Electronics Particle study apparatus including an axial trajectory sensor
US3863160A (en) * 1973-05-07 1975-01-28 Edward Neal Doty Method and apparatus for finding the center amplitude of each pulse of a train of random amplitude asymmetric pulses
US4412175A (en) * 1981-04-30 1983-10-25 Coulter Electronics, Inc. Debris alarm
JPS6329267A (ja) * 1986-07-23 1988-02-06 Shimadzu Corp パルス存在検出回路
US5059395A (en) * 1988-03-30 1991-10-22 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus
US6183697B1 (en) * 1997-05-27 2001-02-06 Sysmex Corporation Particle measuring apparatus
CN101124471A (zh) * 2004-12-21 2008-02-13 理音株式会社 粒子计数器
CN101226133A (zh) * 2008-01-28 2008-07-23 宁波大学 一种血细胞脉冲信号的分类识别方法
CN101344475A (zh) * 2007-07-13 2009-01-14 深圳迈瑞生物医疗电子股份有限公司 信号基线处理装置及处理方法
CN103822867A (zh) * 2014-01-22 2014-05-28 宁波城市职业技术学院 一种基于DSP Builder的血细胞脉冲信号检测统计方法
CN104297133A (zh) * 2013-07-16 2015-01-21 成都深迈瑞医疗电子技术研究院有限公司 一种基于小孔阻抗原理的脉冲信号筛选方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801903A (en) * 1970-10-27 1974-04-02 Coulter Electronics Particle study apparatus including an axial trajectory sensor
US3863160A (en) * 1973-05-07 1975-01-28 Edward Neal Doty Method and apparatus for finding the center amplitude of each pulse of a train of random amplitude asymmetric pulses
US4412175A (en) * 1981-04-30 1983-10-25 Coulter Electronics, Inc. Debris alarm
JPS6329267A (ja) * 1986-07-23 1988-02-06 Shimadzu Corp パルス存在検出回路
US5059395A (en) * 1988-03-30 1991-10-22 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus
US6183697B1 (en) * 1997-05-27 2001-02-06 Sysmex Corporation Particle measuring apparatus
CN101124471A (zh) * 2004-12-21 2008-02-13 理音株式会社 粒子计数器
CN101344475A (zh) * 2007-07-13 2009-01-14 深圳迈瑞生物医疗电子股份有限公司 信号基线处理装置及处理方法
CN101226133A (zh) * 2008-01-28 2008-07-23 宁波大学 一种血细胞脉冲信号的分类识别方法
CN104297133A (zh) * 2013-07-16 2015-01-21 成都深迈瑞医疗电子技术研究院有限公司 一种基于小孔阻抗原理的脉冲信号筛选方法及装置
CN103822867A (zh) * 2014-01-22 2014-05-28 宁波城市职业技术学院 一种基于DSP Builder的血细胞脉冲信号检测统计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118715A (zh) * 2018-02-06 2019-08-13 深圳市帝迈生物技术有限公司 一种血细胞脉冲信号分析装置以及方法
CN110118715B (zh) * 2018-02-06 2024-05-14 深圳市帝迈生物技术有限公司 一种血细胞脉冲信号分析装置以及方法
CN115372262A (zh) * 2022-09-13 2022-11-22 南京颐兰贝生物科技有限责任公司 一种五分类血液分析仪脉冲识别方法及装置

Similar Documents

Publication Publication Date Title
US7716329B2 (en) Apparatus and method for detecting anomalous traffic
CN104766324B (zh) 基于超像素和异常检测的彩色血细胞图像白细胞分割方法
WO2017143932A1 (zh) 基于样本聚类的欺诈交易检测方法
CN102509088B (zh) 一种手部运动检测的方法、装置及人机交互系统
CN104239321B (zh) 一种面向搜索引擎的数据处理方法及装置
WO2016181183A1 (zh) 一种快速统计颗粒计数器粒子个数的识别方法和装置
CN105488023B (zh) 一种文本相似度评估方法及装置
CN108256570A (zh) 基于k邻域相似性的数据聚类方法、装置和存储介质
CN105203446B (zh) 基于概率分布细胞分类统计方法
CN109117937A (zh) 一种基于连通面积相减的白细胞图像处理方法及系统
CN108181613A (zh) 一种pri抖动信号序列差值非均匀量化分选方法
CN105786281A (zh) 一种电容屏抗电磁干扰的方法和装置
CN109429139A (zh) 扬声器分区的实时和非实时检测方法、装置及广播系统
CN108108488A (zh) 基于流式计算的数据统计分析方法及系统、计算机程序
WO2020138694A1 (ko) 가공기 툴의 건전성 지수 검출방법
US11227753B2 (en) System and method for accurately quantifying composition of a target sample
García-Barrios et al. Analytical model for the relation between signal bandwidth and spatial resolution in steered-response power phase transform (SRP-PHAT) maps
CN109587104A (zh) 一种异常流量检测方法、装置和设备
CN105243648B (zh) 一种消除压钞轴上磁性点噪声的方法及系统
CN110942019A (zh) 一种用于找出两条轨迹的最长伴随子路径的分析方法
CN106781500B (zh) 一种车载智能语音识别系统
WO2020133256A1 (zh) 分析有核红细胞的方法、血液细胞分析仪和存储介质
WO2018043936A1 (ko) 공정/장비 계측 데이터의 미세 변동 감지 방법 및 시스템
WO2021168620A1 (zh) 声源跟踪控制方法和控制装置、声源跟踪系统
Pitman et al. Level crossings of a Cauchy process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891737

Country of ref document: EP

Kind code of ref document: A1