WO2006067887A1 - Pm燃焼触媒およびフィルター - Google Patents

Pm燃焼触媒およびフィルター Download PDF

Info

Publication number
WO2006067887A1
WO2006067887A1 PCT/JP2005/013987 JP2005013987W WO2006067887A1 WO 2006067887 A1 WO2006067887 A1 WO 2006067887A1 JP 2005013987 W JP2005013987 W JP 2005013987W WO 2006067887 A1 WO2006067887 A1 WO 2006067887A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
particulate matter
diesel engine
catalyst
engine exhaust
Prior art date
Application number
PCT/JP2005/013987
Other languages
English (en)
French (fr)
Inventor
Hisashi Suda
Takuya Yano
Original Assignee
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Priority to KR1020057023875A priority Critical patent/KR101192185B1/ko
Priority to JP2006548691A priority patent/JP5391408B2/ja
Priority to EP05767370A priority patent/EP1829609A4/en
Priority to US10/560,899 priority patent/US20070105715A1/en
Publication of WO2006067887A1 publication Critical patent/WO2006067887A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a catalyst for burning particulate matter (PM) contained in diesel engine exhaust gas, and a particulate filter for purifying diesel exhaust gas using the same.
  • PM particulate matter
  • Nitrogen oxides (NO x ) and particulate matter (PM) are particularly problematic with regard to exhaust gas from diesel engines.
  • the particulate matter is fine particles mainly composed of carbon.
  • a method for removing the particulate matter a method of trapping the particulate matter by installing a particulate filter (DPF) in the exhaust gas flow path is becoming common. The trapped particulate matter is burned intermittently or continuously, and the particulate filter is regenerated.
  • DPF particulate filter
  • This filter regeneration process involves burning particulate matter using an electric heater, burner, etc., or loading a catalyst on a particulate filter, and lowering the combustion start temperature of the particulate matter by its catalytic action, There is a method of burning continuously with The former requires the addition of energy from the outside, and the system becomes complicated, so the latter catalytic method is desirable.
  • Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 disclose one in which Pt is supported as a catalyst metal.
  • the cost increase due to the use of precious metals is an important issue to be solved.
  • Patent Document 3 describes the use of perovskite complex oxides for DPF, and it is shown that the use of this reduces the oxidation start temperature of carbon black.
  • Non-Patent Document 3 proposes a catalyst using a melt transfer type catalyst such as V 2 O 5 , MoO 3 , PbO, C s 2 Mo 0 4 , AgV 0 3 or their eutectic. These Is melted at the exhaust gas temperature, moves on the surface of the honeycomb substrate, contacts the particulate matter, and oxidizes and burns it. Therefore, it can be said that the lower the melting point and the higher the mobility, the greater the action of burning particulate matter at a low temperature, and the better the catalyst.
  • the low melting point materials as described above have a problem of low durability due to their high volatility. For this reason, it has not yet reached practical use.
  • Non-Patent Document 4 proposes the use of a velovite complex oxide containing K (potassium).
  • K potassium
  • K that cannot be completely contained in the structure exists in the form of an oxide or hydroxide, so that it is included in the moisture in the exhaust gas. Almost melts and volatilizes, leaving problems with durability.
  • Patent Document 1 Japanese Patent Laid-Open No. 1 1 253757
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-222014
  • Patent Document 3 Japanese Patent Publication No. 06-29542
  • Non-Patent Document 1 Aerosol Research (2003), 1 8-3, P 1 85-: 1 94
  • Non-Patent Document 2 Preprint of the Society of Automotive Engineers of Japan (2002), 22-02 02, P 5-8
  • Non-Patent Document 3 Metal V o 1. 74 (2004), No. 5, P 449-453
  • Non-Patent Document 4 Journal of the Ceramic Society of Japan (2003), 1 1 1 1 129 9, P 852- 856 Problems to be solved by the invention
  • the present invention is a highly active and durable catalyst capable of burning particulate matter (PM) of diesel engine exhaust gas at a low temperature, and is inexpensive because it does not contain precious metals.
  • the object of the present invention is to provide a catalyst having excellent durability because the constituent materials do not volatilize at temperature, and a particulate filter (DPF) for purifying diesel engine exhaust gas using the catalyst.
  • the above objective is to at least partly or entirely cover the NO adsorption range in the range of 2 ° 0 to 450 ° C. This is achieved by a particulate combustion catalyst for diesel engine exhaust gas using a perovskite complex oxide having a region.
  • This bottom buxite complex oxide has the structural formula
  • R is constituted by one or more selected from the group consisting of alkali metal elements and alkaline earth metal elements excluding rare earth elements, the Na, the group T is a transition metal element, Mg, A 1 and S i Those composed of one or more selected from can be employed.
  • R is composed of one or more selected from the group consisting of La, Sr, Ba, Ca and Li, and T is Mn, Fe, Co, Cu, Zn, Ga, Zr
  • a material composed of at least one selected from the group consisting of Mo, Mg, Al and Si is suitable.
  • Y is treated as a rare earth element.
  • This catalyst starts combustion of particulate matter mainly composed of strong bon in diesel engine exhaust gas at a temperature of 450 ° C or lower in an NO-containing exhaust gas atmosphere.
  • the present invention also provides a particulate filter for purifying diesel engine exhaust gas carrying these catalysts.
  • Diesel engine exhaust gas particulate matter (PM) combustion catalyst using perovskite complex oxide specified in the present invention is particulate matter accumulated in diesel engine exhaust gas purification particulate filter (DPF).
  • DPF diesel engine exhaust gas purification particulate filter
  • a highly active catalytic action is produced even if no precious metal is contained, the material cost of the particulate filter is reduced.
  • the catalyst of the present invention does not contain substances that volatilize in the exhaust gas temperature range, it is excellent in durability. Therefore, the present invention provides improved durability and a significant reduction in total cost in the DPF system.
  • Figure 1 shows the X-ray diffraction pattern of the velovite complex oxide used in Example 1.
  • Figure 2 shows the N in the outlet gas during the heating process when the simulated diesel exhaust gas was passed through the granular sample composed of the perovskite complex oxide catalyst of Example 1. o it is a graph showing a change in concentration and co 2 concentration.
  • Figure 3 shows the C 0 in the outlet gas during the heating process when simulated diesel effluent was passed through the honeycomb filter sample carrying the catalyst obtained in Examples 1 and 2 and Comparative Example 1.
  • 2 is a graph showing changes in concentration.
  • Fig. 4 shows the concentration of co 2 in the outlet gas during the heating process when the simulated diesel engine exhaust gas was passed through the honeycomb filter sample carrying the catalyst obtained in Examples 2 and 3 and Comparative Example 1. It is the graph which showed change of.
  • NO nitrogen oxide
  • the filter was regenerated by oxidizing (that is, burning) particulate matter mainly composed of carbon with N 0 2 .
  • this type of velovite complex oxide has a reaction of oxidizing carbon fine particles to C 0 2 (ie, burning) at about 300 to 45 ° C. It has become clear that it has the property of simultaneously re-releasing.
  • Carbon-based particulate matter (PM) contained in the exhaust gas of a diesel engine usually has a combustion temperature of 500 ° C or higher. Therefore, the bellowskite complex oxide used in the present invention is PM. It has a catalytic action for burning at low temperature.
  • the Bae Robusukai preparative type composite oxide can be represented by the general formula RT 0 3.
  • R is composed of one or more of rare earth elements (Y is also treated as a rare earth element), alkali metal elements other than Na, or alkaline earth metal elements. However, it is desirable to include at least one alkali metal element or alkaline earth metal element. In such a case, the above catalytic action is particularly remarkable.
  • T is composed of one or more of Mg, A 1 or Si added to the transition metal element.
  • Rare earth composing R The element is not particularly limited, but may be Y, La, Ce, Nd, Sm, Pr, etc., preferably La.
  • the transition metal element constituting T is not particularly limited, but Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Mo, Ru, Rh, Pd, Ag, In, Sn, Pt, Au, etc., preferably Ti, Mn, Fe, Co, Ni, Cu, Zn, Ga, Zr, Mo it can.
  • elements other than the rare earth elements constituting R include alkali metal elements or alkaline earth metal elements excluding Na contained in the form of replacing some of the rare earth elements.
  • Li, K, Ca, Sr, Ba and the like can be mentioned, and Li, Sr, Ba are preferred.
  • R contains at least one of Li, Ca, Sr, and Ba rather than comprising only rare earth elements.
  • Patent Document 3 proposes the use of a Na-based precipitating agent to obtain a composite oxide precipitate.
  • the catalytic action for burning PM at a low temperature is proposed.
  • the amount of Na in the perovskite complex oxide should be as small as possible, specifically, the presence of Na should be 0.7% by mass or less, more preferably not contained.
  • Na-based components are generally difficult to remove when mixed from the raw material system. It has been found that when Na-based components are present as impurities, the combustion start temperature tends to increase as shown in the examples described later.
  • the perovskite complex oxide having the above composition has a NO adsorption region in the temperature range of 200 to 450 ° C, and at 300 to 450 ° C, the carbon fine particles are oxidized to C 0 2 (ie combustion) It is possible to achieve a property that causes both the reaction and the re-release of NO at the same time. If the powder of this complex ovskite type complex oxide is supported on a substrate such as cordierite or SiC that constitutes the honeycomb body instead of the conventional Pt catalyst, etc., particulate matter of diesel engine exhaust gas A particulate filter (DPF) for purifying diesel exhaust gas that can burn (PM) at low temperatures and has high durability is obtained.
  • a particulate filter DPF
  • the perovskite complex oxide used in the present invention can be produced by, for example, a usual coprecipitation method, an organic complex method, an alkoxide method, a production method using an amorphous precursor, or the like. Hereinafter, each production method will be described.
  • the coprecipitation method for example, adjusting the feedstock salt aqueous solution containing appropriate stoichiometry to produce a pair Robusukai preparative composite oxide of RT 0 3 salts of the respective elements described above, the aqueous solution with a neutralizing agent After mixing and coprecipitation, the obtained coprecipitate is dried and then heat-treated.
  • the salt of each element is not particularly limited.
  • inorganic salts such as sulfate, nitrate, phosphate, and chloride, and organic acid salts such as acetate and oxalate can be used. Of these, acetate and nitrate can be preferably used.
  • the raw salt aqueous solution can be prepared by adding the salt of each of the above elements to water so as to achieve the desired stoichiometric ratio and stirring.
  • this raw salt solution and a neutralizing agent are mixed and coprecipitated.
  • a neutralizing agent for example, organic bases, such as inorganic bases, such as ammonia and caustic, and a triethylamine, a pyridine, can be used.
  • the neutralizing agent is mixed so that the pH of the slurry produced after adding the neutralizing agent is 6 to 14. By mixing in this way, it is possible to obtain a coprecipitate of hydroxides of each element having good crystallinity. If a base containing Na is used at this time, Na is mixed into the product, which is not preferable. The obtained coprecipitate is washed with water as necessary.
  • the coprecipitate is dried by vacuum drying, ventilation drying, or the like, and then, for example, 600 to 120 ° C., preferably 80 to 100.
  • the target belobskite complex oxide can be obtained.
  • the atmosphere during the heat treatment is not particularly limited as long as the perovskite-type complex oxide is generated.
  • in the air in nitrogen, in argon, or in hydrogen, combined with water vapor Atmosphere, preferably in air, nitrogen and a combination of them with water vapor can be used.
  • a salt that forms an organic complex such as citrate and malic acid and the salt of each element described above are added to water so as to achieve the desired stoichiometric ratio, and stirred. Can be prepared.
  • This raw material aqueous solution is dried to form an organic complex of each of the aforementioned elements, followed by pre-baking and heat treatment to obtain a perovskite complex oxide.
  • the same salt as in the coprecipitation method can be used.
  • the raw salt of each element is mixed in the desired stoichiometric ratio and dissolved in water. It can be prepared by mixing with an aqueous solution of the salt that forms. In addition, form an organic complex
  • the compounding ratio of the salt to be formed is preferably about 1.2 to 3 moles per mole of the obtained perovskite complex oxide.
  • this raw material solution is dried to obtain the above-mentioned organic complex. Drying is not particularly limited as long as the organic complex is not decomposed. For example, water is rapidly removed at room temperature to about 150 ° C., preferably at room temperature to 110 ° C. As a result, the aforementioned organic complex can be obtained.
  • the obtained organic complex is heat-treated after calcination.
  • heating may be performed at 2500 ° C. or higher in a vacuum or an inert gas atmosphere.
  • heat treatment is performed at 60 ° C. to 100 ° C. (preferably, 60 ° C. to 95 ° C.), thereby obtaining the target perovskite complex oxide.
  • the atmosphere during the heat treatment is not particularly limited as long as it is within a range in which the perovskite type complex oxide is generated.
  • in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with them preferably Can be used in air, nitrogen, and an atmosphere that combines water vapor with them.
  • an alkoxide raw material solution containing an alkoxide of each element in a desired stoichiometric ratio is prepared, and the raw material solution is reacted with water to be hydrolyzed to obtain a precipitate.
  • the desired perovskite complex oxide can be obtained by drying and heat-treating the precipitate.
  • the alkoxide of each element is not particularly limited as long as each element is uniformly mixed.
  • an alcoholate formed from alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, and butoxy can be used.
  • An alkoxide raw material solution can be obtained by dissolving these alkoxides in an organic solvent so as to achieve the desired stoichiometric ratio and stirring and mixing them.
  • the organic solvent is not particularly limited as long as the alkoxide of each element can be dissolved.
  • benzene, toluene, xylene, etc. can be used.
  • water is added to this raw material solution, and a precipitate is produced
  • the precipitate is dried by vacuum drying, ventilation drying, or the like, and then, for example, 5 0 0 to 1 0 0 0 ° (: preferably 5 0 0 to 8 5 0
  • the target perovskite complex oxide can be obtained by heat treatment at ° C.
  • the atmosphere during the heat treatment is particularly limited as long as the perovskite complex oxide is generated.
  • air, nitrogen, argon, hydrogen and an atmosphere in which water vapor is combined with them preferably air, nitrogen and an atmosphere in which water vapor is combined with them can be used.
  • Japanese Patent Application No. 2004-61882 (corresponding to US Patent Application Serial No. 10/803, 963 and European Patent Application No. 0400).
  • a perovskite complex oxide with RT0 3 structure was produced. It can be obtained by heat-treating a powdery amorphous precursor material containing each of the aforementioned elements at a suitable stoichiometric ratio at a low temperature.
  • Such amorphous precursors by adjusting the raw material salt aqueous solution containing appropriate stoichiometry to produce a pair Robusukai preparative composite oxide RT_ ⁇ 3 Structure salts of the respective elements described above, at the same carbonate It can be obtained by reacting with a precipitating agent such as carbonates containing alkaline or ammonium ions at a reaction temperature of 60 ° C or lower and pH of 6 or higher to produce a precipitated product, and drying the filtrate. .
  • a precipitating agent such as carbonates containing alkaline or ammonium ions
  • water-soluble mineral salts such as nitrates, sulfates, and chlorides of R
  • water-soluble mineral salts such as nitrates, sulfates, and chlorides of R
  • water-soluble mineral salts such as nitrates, sulfates, and chlorides of R
  • the molar ratio of R and T elements should be approximately 1: 1, but perovskite-type complex oxides may be formed even if they are not necessarily 1: 1. Therefore, even if the molar ratio of R element to T element is slightly deviated from 1: 1, it should be a value that can form a perovskite complex oxide.
  • the R element may be two or more components
  • the T element may be two or more components. In that case, each component should be dissolved so that the ratio of the total number of moles of elements composing R to the total number of moles of elements composing T is about 1: 1.
  • the upper limit of the ion concentration of R and T in the solution that generates the precipitate is determined by the solubility of the salt used, but it is desirable that the crystalline compound of R or T does not precipitate. It is desirable that the ion concentration be in the range of about 0.01 to 0.6 Omo 1 ZL.
  • a precipitating agent composed of carbonate or ammonium ion, and examples of such precipitating agents include ammonium carbonate and ammonium hydrogen carbonate. Etc., and a base such as ammonia water can be added if necessary.
  • an amorphous material suitable for the precursor material of the perovskite complex oxide used in the present invention can be obtained.
  • the pH of the solution should be controlled in the range of 6 to 11. In the region where pH is less than 6, it is inappropriate because the rare earth elements constituting R may not form precipitates. On the other hand, in the region where 11 exceeds 11, when the precipitant is used alone, the resulting precipitate may not sufficiently amorphize and form a crystalline precipitate such as hydroxide. .
  • the reaction temperature should be 60 ° C or lower.
  • R or T crystalline compound particles may be formed, which is not preferable because it prevents the precursor material from becoming amorphous. It was found that the combustion start temperature was higher when using a precipitant containing sodium. This is thought to be due to the fact that when sodium is mixed in the precursor, no matter how much washing is performed, several hundred ppm remains, which adversely affects characteristics such as the combustion start temperature.
  • the obtained amorphous precursor is washed with water as necessary.
  • the amorphous precursor is dried by vacuum drying, ventilation drying, or the like, and then, for example, 500 to 100 ° (: preferably 500 to
  • the target velovskite type complex oxide can be obtained by heat treatment at 800 ° C.
  • the atmosphere during the heat treatment is particularly within the range where the perovskite type complex oxide is generated.
  • an atmosphere in air, nitrogen, argon, hydrogen and a combination of water vapor preferably air, nitrogen and an atmosphere in which water vapor is combined with them can be used.
  • Lanthanum nitrate, strontium nitrate, and manganese nitrate were mixed so that the molar ratio of lanthanum element, strontium element, and manganese element was 0.8: 0.2: 1.0.
  • This mixture is added to the total molar concentration of lanthanum, strontium and manganese elements in the liquid.
  • the resulting precipitate was collected by filtration, washed with water, and dried at 110 ° C.
  • the obtained powder is called precursor powder.
  • Fig. 1 shows the X-ray diffraction pattern of the fired product. From a comparison between the X-ray diffraction pattern of Fig. 1 and the JCPDS card shear, it was confirmed that this calcined product is a substance having a perovskite complex oxide phase of (Lao. 8 Sr. 2 ) Mn0 3 .
  • Example 1 was repeated except that lanthanum nitrate, strontium nitrate, and iron nitrate were used as raw materials and mixed so that the molar ratio of lanthanum element, strontium element, and iron element was 0.8: 0.2: 1.0.
  • a part of the perovskite complex oxide obtained in Example 2 was sampled and heat-treated at 800 ° C. for 24 hours. The heat treatment was performed in an air atmosphere.
  • Si0 2 manufactured by Wako Pure Chemical Industries, Ltd. Wakogel C'100
  • Pt NH 3 4] (OH) 2 aqueous solution
  • the content of Pt in the Si0 2 is 1 mass 0 /. Met.
  • Example 2 was repeated except that sodium hydroxide was used as the precipitating agent.
  • the obtained perovskite-type composite oxide particle powder is the result of composition analysis by atomic absorption spectrometry.
  • the Na content was 0.77%.
  • the PM combustion temperature was evaluated as follows according to the method described in Environmental Conservation Research Results (1999), 1, P 37-1 to 37-13.
  • Example 1 and Comparative Example 1 Each powder obtained in Example 1 and Comparative Example 1 was compression molded at 500 kg / cm 2 by a die press and then pulverized to prepare a granular sample having a particle size of 0.25 to 0.50 mm.
  • commercially available carbon black as a simulated PM was added to 1% by mass, and these were mixed by shaking in a glass bottle.
  • this mixing method is used, the contact state between the carbon and the catalyst sample becomes a “loose contact state” J, which is close to the case where PM is collected on an actual filter.
  • the granular sample mixed with carbon black is packed in a flow-type fixed bed, and the simulated diesel engine exhaust gas shown in Table 1 is contacted at a constant flow rate, and the C0 2 concentration in the gas passing through the flow-type fixed bed and The NO concentration can be measured continuously.
  • Their to simulated After begins to conduct diesel exhaust gas, while raising the temperature from room temperature to 80 0 ° C at a heating rate LOT :, min, C0 2 concentration and NO concentration in the gas passing through the flow-type fixed bed was monitored.
  • Figure 2 illustrates a variation of the C0 2 concentration and NO concentration in the case of Example 1.
  • the NO concentration downstream decreases rapidly between 200 and 250 ° C, and shows a value of 200 ppm or less over about 250 to 350 ° C. This means that NO introduced into the air stream began to be adsorbed on the perovskite complex oxide between 200 and 250 ° C. Thereafter, as the can 350 ° C near or al C0 2 concentration increases rapidly, NO concentration increases again. From around 400 ° C, the NO concentration becomes almost equal to the inflow concentration of 500ppm.
  • Bae Robusukai preparative complex oxide catalyst of Example 1 even though it does not contain all Ku noble metal, rather burning temperature of PM is lower than the Pt-containing Si0 2 catalyst of Comparative Example 1 It showed high activity.
  • This perovskite complex oxide does not contain water-soluble components such as K (potassium), so it is expected to have high durability.
  • NO in the exhaust gas is oxidized by O 2 in the atmosphere by the catalytic action of the velovite complex oxide and adsorbed on the perovskite complex oxide in the form of N0 2 or nitrate ions.
  • Nitrogen oxides or active oxygens with strong oxidizing power are generated when they desorb again.
  • Example 1 Each powder obtained in Example 1, Example 2 and Comparative Example 1 was wash-coated on a 200 cpsi cordierite honeycomb structure used as a DPF.
  • the coating amount was 10 parts by mass of powder with respect to 100 parts by mass of the honeycomb structure.
  • commercially available carbon black was uniformly deposited as simulated PM.
  • the amount of carbon black adhered was 2 parts by mass of carbon black per 100 parts by mass of the fly cam structure.
  • honeycomb filter sample obtained by installing a flow-type fixed bed, simulated diesel engine exhaust gases shown in Table 3 in Re this is contacted at a constant flow rate, the gas passing through the flow-type fixed bed C0 2
  • concentration can be measured continuously.
  • FIG. 3 shows the C0 2 concentration change of Example 1, 2 and Comparative Example 1.
  • Example 1 and 2 is going from low temperature of C0 2 concentration increase of about 30 0 ° C due to the combustion of the carbon black (simulated PM). That is, as in the case of the granular sample, it can be seen that the perovskite complex oxide caused low temperature combustion of simulated PM as a catalyst.
  • Example 3 The perovskite complex oxide after heat treatment (after heat treatment at 800 ° C. for 24 hours) obtained in Example 3 was evaluated in the same manner as in FIG. 3, and the results are shown in FIG.
  • Fig. 4 shows the results of the Pt catalyst without heat treatment (comparative example 1) and the characteristic values of the non-heat-treated belovskite complex oxide (example 2). Was shown in comparison with that of Example 3.
  • Example 3 As apparent from the results of FIG. 4, those of Example 3 was subjected to heat treatment, as compared to that of the real ⁇ 2 unheated, conversion efficiency from little carbon in a low temperature region to the C0 2 is rather low However, there is no extreme decrease in activity.
  • the heat-treated Example 3 maintained superior activity to the conventional Pt catalyst of Comparative Example 1 in which the catalyst evaluation was performed without heat treatment. That is, the velovskite complex oxide according to the present invention can maintain catalytic activity even in a harsh environment, and can burn particulate matter even in a low temperature environment as compared with the conventional one. it can.
  • Example 2 When the combustion start temperatures of Example 2 and Comparative Example 2 were compared, it was 358 ° C for Example 2 and 380 ° C for Comparative Example 2, which contained sodium. It was confirmed that the combustion start temperature was slightly higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

ディーゼルエンジン排ガス中の粒子状物質(PM)をトラップするパーティキュレートフィルター(DPF)に適した触媒であって、200~450℃の範囲にNO吸着領域を有するペロブスカイト型複合酸化物を用いたディーゼルエンジン排ガスの粒子状物質燃焼触媒である。このものは,PMの低温燃焼をもたらし、貴金属を使用しないため安価で、且つ排ガス温度で構成物質が揮散しないため耐久性に優れる。前記ペロブスカイト型複合酸化物は、構造式RTO3において、Naを実質的に含有せず、RがLa,Sr,Ba,CaおよびLiからなる群から選ばれる1種以上で構成され、TがMn,Fe,Co,Cu,Zn,Ga,Zr,Mo,Mg,AlおよびSiからなる群から選ばれる1種以上で構成される。

Description

明細書
P M燃焼触媒おょぴフィルター 技術分野
本発明は、 ディーゼルエンジン排ガスに含まれる粒子状物質 (PM) を燃焼させ るための触媒、 およびそれを用いたディ一ゼルェンジン排ガス浄化用パーティキュ レートフィルターに関する。 従来技術
ディーゼルエンジンの排ガスに関しては、 特に窒素酸化物 (NOx ) と粒子状物 質 (PM) が問題となっている。 このうち粒子状物質はカーボンを主体とする微粒 子であり、 その除去方法として排気ガス流路にパーティキュレートフィルター (D PF) を設置して粒子状物質をトラップする方法が一般化されつつある。 トラップ された粒子状物質は間欠的または連続的に燃焼され、 当該パーティキュレートフィ ルターは再生される。
このフィルター再生処理には、 電気ヒーターやバーナー等を用いて粒子状物質を 燃焼させる方法や、 パーティキュレートフィルターに触媒を担持し、 その触媒作用 により粒子状物質の燃焼開始温度を低下させ、 排ガス温度にて連続的に燃焼させる 方法などがある。 前者は外部からエネルギーを加える必要があり、 またシステムが 複雑化することから、 後者の触媒方式が望ましいとされている。
この触媒方式として、 特許文献 1および 2や、 非特許文献 1および 2には触媒金 属として P tを担持したものが開示されている。 しかし、 貴金属を使用することに よるコストアップは解決すべき重要課題となっている。
特許文献 3にはぺロブスカイ ト型複合酸化物を DPFに使用することが記載され、こ れを使用することによって、 カーボンブラックの酸化開始温度が低減されることが 示されている。
非特許文献 3には V 2 O5 、 MoO3 、 P bO、 C s 2 Mo 04 、 AgV〇3 や それらの共晶物などの溶融移動型の触媒を使用したものが提案されている。 これら は排ガス温度で溶融し、 ハニカム基体表面を移動して粒子状物質と接触し、 これを 酸化 ·燃焼するものである。 よって、 低融点で移動性が高いものほど低温で粒子状 物質を燃焼させる作用が大きく、 当該触媒として優れていると言える。 し力 し、 上 記のような低融点の物質は揮発性が大きいために耐久性が低いという問題を有して いる。 このため、 未だ実用化には至っていない。
非特許文献 4には K (カリウム) を含んだベロブスカイ ト型複合酸化物の使用が 提案されている。 しかし、 Kはぺロブスカイ ト型複合酸化物の構造中に完全に含有 させることが難しく、 構造中に入りきれなかった Kは酸化物または水酸化物の形態 で存在するため、 排ガス中の水分に容易に溶け出して揮散し、 やはり耐久性に問題 が残る。
特許文献 1 :特開平 1 1一 253757号公報
特許文献 2 :特開 2003— 222014号公報
特許文献 3 :特公平 06— 29542号公報
非特許文献 1 :エア口ゾル研究 (2003) 、 1 8卷 3号、 P 1 85〜: 1 94 非特許文献 2 : 自動車技術会学術講演会前刷集 (2002) 、 22卷 02号、 P 5〜8
非特許文献 3 :金属 V o 1. 74 (2004) 、 No. 5、 P 449〜453 非特許文献 4 : 日本セラミックス協会学術論文誌 (2003) 、 1 1 1卷 1 29 9号、 P 852〜856 発明が解決しょうとする課題
本発明は、 ディーゼルエンジン排ガスの粒子状物質 (PM) を低温で燃焼させる ことのできる高活性かつ高耐久性を有する触媒であって、 貴金属を含まないために 安価であることに加えて、 排ガス温度で構成物質が揮散しないために耐久性に優れ た触媒、 およびそれを用いたディーゼルエンジン排ガス浄化用パーティキュレート フィルタ一 (DPF) を提供することを目的とする。 課題を解決するための手段
上記目的は、 少なくとも 2◦ 0〜450°Cの範囲の一部または全部に NO吸着領 域を有するぺロブスカイ ト型複合酸化物を用いたディーゼルエンジン排ガスの粒子 状物質燃焼触媒によって達成される。 このべ口ブスカイ ト型複合酸化物は、 構造式
RT03 において、 Rが希土類元素、 Naを除くアルカリ金属元素およびアルカリ土 類金属元素からなる群から選ばれる 1種以上で構成され、 Tが遷移金属元素、 Mg、 A 1および S iからなる群から選ばれる 1種以上で構成されるものが採用できる。 特に、 Rが L a、 S r、 B a、 C aおよび L iからなる群から選ばれる 1種以上で 構成され、 Tが Mn、 F e、 C o、 Cu、 Z n、 Ga、 Z r、 Mo、 Mg、 A lお よび S iからなる群から選ばれる 1種以上で構成されるものが好適な対象となる。 なお、 Yは希土類元素として扱う。
この触媒は、 NO含有排ガス雰囲気において、 ディーゼルエンジン排ガス中の力 一ボンを主体とする粒子状物質を 450°C以下の温度で燃焼開始させるものである。 また本発明では、 これらの触媒を担持したディーゼルエンジン排ガス浄化用パーテ ィキュレートフィルターが提供される。
本発明で規定するぺロブスカイ ト型複合酸化物を用いたディーゼルエンジン排ガ スの粒子状物質 (PM) 燃焼触媒は、 ディーゼルエンジン排ガス浄化用パーティキ ュレートフィルター (DPF) 中に蓄積した粒子状物質を低温で燃焼させることが できるため、 大気中への粒子状物質の排出量が低減されるとともに、 フィルタ一中 を通す排ガス温度を従来より低下させることが可能になり、 各種排ガス系部材に対 する負荷が軽減される。 また、 貴金属を含有させなくても活性の高い触媒作用が発 揮されるため、 パーティキュレートフィルターの材料コス トが低減される。 更に、 本発明の触媒は排ガス温度域で揮散する物質を含まないので、 耐久性にも優れる。 したがって本発明は、 DP Fシステムにおける耐久性向上およびトータルコストの 大幅削減をもたらすものである。 図面の簡単な説明
図 1は, 実施例 1で使用したベロブスカイ ト型複合酸化物の X線回折パターン を示す図である。
図 2は, 実施例 1のべロブスカイ ト型複合酸化物触媒で構成される粒状試料に 模擬ディ一ゼルェンジン排ガスを通した場合の、 昇温過程における出側ガス中の N o濃度および c o 2 濃度の変化を示したグラフである。
図 3は, 実施例 1、 2および比較例 1で得た触媒を担持させたハニカム状フィル タ一試料に模擬ディ一ゼルェンジン排ガスを通した場合の、 昇温過程における出側 ガス中の C 02 濃度の変化を示したグラフである。
図 4は、実施例 2,3および比較例 1で得た触媒を担持させたハニカム状フィルタ一試 料に模擬ディーゼルエンジン排ガスを通した場合の、 昇温過程における出側ガス中 の c o 2 濃度の変化を示したグラフである。
発明の好ましい態様
従来、 触媒方式のパーティキュレートフィルターでは、 ディーゼルエンジンの排 ガス中に含まれる N O (—酸化窒素) を P t等の触媒金属表面で酸化させて N 02
(二酸化窒素) に変え、 その N 02 によってカーボンを主体とする粒子状物質を酸 化 (すなわち燃焼) させることにより当該フィルタ一を再生していた。
これに対し本発明では、 P t等の触媒金属の代わりに、 4 5 0 °C以下 (例えば 2 0 0〜4 5 0 °C) の温度範囲に N O吸着領域を有するぺロブスカイ ト型複合酸化物 を用いる。発明者らの研究によれば、このタイプのベロブスカイ ト型複合酸化物は、 概ね 3 0 0〜4 5 0 °Cにおいて、 カーボン微粒子を C 0 2 に酸化させる (すなわち 燃焼させる) 反応と N〇の再放出とを、 同時に起こす性質を有することが明らかに なった。 ディーゼルエンジンの排ガス中に含まれるカーボン主体の粒子状物質 (P M) は、 通常、 燃焼温度は 5 0 0 °C以上であることから、 本発明で使用するべロブ スカイ ト型複合酸化物は P Mを低温で燃焼させるための触媒作用を有するものであ る。
このぺロブスカイ ト型複合酸化物は、 一般式 R T 03 で表すことができる。 ここ で、 Rは希土類元素 (Yも希土類元素として扱う) 、 Naを除くアルカリ金属元素ま たはアルカリ土類金属元素のうちの 1種以上で構成される。 ただし、 少なくともァ ルカリ金属元素またはアル力リ土類金属元素の 1種以上を含むことが望ましい。 こ のようなものにおいて前記の触媒作用が特に顕著に発揮される。 Tは遷移金属元素 に M g、 A 1または S iを加えたうちの 1種以上で構成される。 Rを構成する希土 類元素としては特に限定されないが、 Y、 L a、 C e、 Nd、 Sm、 P r等で、 好 ましくは L aであることができる。 Tを構成する遷移金属元素としては特に限定さ れないが、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Z n、 G a、 Z r、 Mo、 Ru、 Rh、 P d、 Ag、 I n、 S n、 P t、 Au等で、 好ましくは T i、 Mn、 F e、 C o、 N i、 Cu、 Z n、 Ga、 Z r、 Moあることができる。 Rを 構成する希土類元素以外の元素として、 希土類元素の一部を置換する形で含有され る Naを除くアルカリ金属元素あるいはアル力リ土類金属元素が挙げられる。 例えば、 L i、 K、 C a、 S r、 B a等が挙げられるが、 好ましくは L i、 S r、 B aであ る。 顕著な触媒作用を発揮させる上で、 Rは希土類元素だけで構成するよりも、 少 なくとも L i、 C a、 S r、 B aの 1種以上を含有することが好ましい。
特許文献 3では複合酸化物の沈澱を得るために Na系の沈澱化剤の使用が提示さ れているが、 本発明者らの研究によれば、 PMを低温で燃焼させるための触媒作用 を発揮させるには、 ぺロブスカイ ト型複合酸化物中の Na量はできるだけ少ないこと、 具体的には Naの存在が 0.7質量%以下、より好ましくは含まないことが必要であるこ とがわかった。 Na系の成分は、 原料系から混入すると除去することは一般に困難で ある。 Na系の成分が不純物として介在する場合には、 後記の実施例に示すように燃 焼開始温度が高くなる傾向がみられることがわかつた。
以上のような組成のぺロブスカイ ト型複合酸化物において、 200〜450°Cの 温度範囲に NO吸着領域を有し、 300〜450°Cにおいて、 カーボン微粒子を C 〇2 に酸化させる (すなわち燃焼させる) 反応と NOの再放出とを同時に起こす性 質を有するものが実現できる。 このべ口ブスカイ ト型複合酸化物の粉末を、 従来の P t触媒等に替えて、 ハニカム体を構成するコーデイエライ トゃ S i Cなどの基体 に担持させると、 ディーゼルエンジン排ガスの粒子状物質 (PM) を低温で燃焼さ せることのできる髙活性かつ高耐久性を有するディ一ゼルェンジン排ガス浄化用パ 一ティキュレートフィルター (DPF) が得られる。
本発明で使用するぺロブスカイ ト型複合酸化物は、 例えば、 通常の共沈法、 有機 錯体法、 アルコキシド法、 非晶質前駆体を用いた製法などによって製造することが できる。 以下、 各製法について説明する。
〔共沈法〕 共沈法では、 例えば、 前述の各元素の塩を R T 0 3 のぺロブスカイ ト型複合酸化 物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、 この水溶液と 中和剤を混合して共沈させた後、 得られた共沈物を乾燥後、 熱処理する。 各元素の 塩としては特に限定されないが、 例えば硫酸塩、 硝酸塩、 リン酸塩、 塩化物などの 無機塩、 酢酸塩、 シユウ酸塩などの有機酸塩などが使用できる。 中でも酢酸塩、 硝 酸塩が好適に使用できる。 原料塩水溶液は、 上記の各元素の塩を目的の化学量論比 となるように水に加えて、 攪拌することにより調製することができる。
そして、 この原料塩水溶液と中和剤を混合し、 共沈させる。 中和剤としては特に 限定されないが、例えばアンモニア、苛性力リなどの無機塩基、 トリェチルァミン、 ピリジンなどの有機塩基が使用できる。 また中和剤は、 その中和剤を加えた後に生 成されるスラリーの p Hが 6〜1 4となるように混合する。 このように混合するこ とにより、 結晶性のよい各元素の水酸化物の共沈物を得ることができる。 この際に Naを含む塩基を使用すると、 生成物に Naが混入してしまうため好ましくない。 得られた共沈物は必要に応じて水洗され、 例えば、 真空乾燥や通風乾燥などによ り乾燥させた後、 例えば 6 0 0〜1 2 0 0 °C、 好ましくは 8 0 0〜 1 0 0 0 °Cで熱 処理することにより、 目的とするベロブスカイ ト型複合酸化物を得ることができる。 この際、 熱処理時の雰囲気はぺロブスカイ ト型複合酸化物を生成する範囲であれば 特に制限されず、 例えば空気中、 窒素中、 アルゴン中、 水素中おょぴそれらに水蒸 気を組合わせた雰囲気、 好ましくは空気中、 窒素中およびそれらに水蒸気を組合わ せた雰囲気が使用できる。
〔有機錯体法〕
有機錯体法では、 例えばクェン酸、 リンゴ酸などの有機錯体を形成する塩と、 前 述の各元素の塩とを目的の化学量論比となるように水に加えて、 攪拌することによ り調製することができる。
この原料水溶液を乾固させ、 前述の各元素の有機錯体を形成させた後、 仮焼成 · 熱処理することによりぺロブスカイ ト型複合酸化物を得ることができる。
各元素の塩としては、 共沈法の場合と同様の塩が使用でき、 また原料塩水溶液は 各元素の原料塩を目的の化学量論比に混合して水に溶解した後、 有機錯体を形成す る塩の水溶液と混合することにより、 調製することができる。 なお、 有機錯体を形 成する塩の配合比率は得られるぺロブスカイ ト型複合酸化物 1モルに対して 1 . 2 〜 3モル程度であることが好ましい。
その後、 この原料溶液を乾固させて、 前述の有機錯体を得る。 乾固は有機錯体が 分解しない温度であれば特に限定されず、 例えば室温〜 1 5 0 °C程度、 好ましくは 室温〜 1 1 0 °Cで、 速やかに水分を除去する。 これにより前述の有機錯体が得られ る。
得られた有機錯体は仮焼成後に熱処理される。 仮焼成は、 例えば真空または不活 性ガス雰囲気下において 2 5 0 °C以上で加熱すればよい。 その後、 例えば 6 0 0〜 1 0 0 0 ° (:、 好ましくは 6 0 0〜 9 5 0 °Cで熱処理することにより、 目的とするぺ 口ブスカイ ト型複合酸化物を得ることができる。 この際、 熱処理時の雰囲気はぺロ ブスカイ ト型複合酸化物を生成する範囲であれば特に制限されず、 例えば空気中、 窒素中、 アルゴン中、 水素中およびそれらに水蒸気を組合わせた雰囲気、 好ましく は空気中、 窒素中およびそれらに水蒸気を組合わせた雰囲気が使用できる。
〔アルコキシド法〕
アルコキシド法では、 例えば各元素のアルコキシドを目的の化学量論比で含むァ ルコキシド原料溶液を調整し、 この原料溶液に水を反応させて加水分解することに より、 沈殿物を得る。 この沈殿物を乾燥、 熱処理することにより目的のぺロブス力 ィ ト型複合酸化物を得ることができる。
各元素のアルコキシドとしては各元素が均一に混合される限り特に制限されない が、 例えばメ トキシ、 エトキシ、 プロボキシ、 イソプロボキシ、 ブトキシなどのァ ルコキシから形成されるアルコラ一トが使用できる。 これらのアルコキシドを目的 の化学量論比になるように有機溶媒に溶解し、 攪拌混合することによりアルコキシ ド原料溶液が得られる。 有機溶媒としては、 各元素のアルコキシドを溶解できれば 特に制限されないが、 例えばベンゼン、 トルエン、 キシレンなどが使用できる。 そして、 この原料溶液に水を加えて加水分解により沈殿物を生成させる。 得られ た沈殿物は必要に応じて水洗され、 例えば、 真空乾燥や通風乾燥などにより乾燥さ せた後、 例えば 5 0 0〜 1 0 0 0 ° (:、 好ましくは 5 0 0〜 8 5 0 °Cで熱処理するこ とにより、 目的とするぺロブスカイ ト型複合酸化物を得ることができる。 この際、 熱処理時の雰囲気はぺロブスカイ ト型複合酸化物を生成する範囲であれば特に制限 されず、 例えば空気中, 窒素中, アルゴン中, 水素中およびそれらに水蒸気を組合 わせた雰囲気、 好ましくは空気中、 窒素中およびそれらに水蒸気を組合わせた雰囲 気が使用できる。
〔非晶質前駆体を用いた製法〕
非晶質前駆体を用いた製法では、 本発明者らによる特願 2004— 61882号 (これに対応する米国特許出願 Serial No.10/803, 963 および欧州特許出願第 0400
7386.8) および特願 2004— 61901号(これに対応する米国特許出願 Serial No.10/809, 709 および欧州特許出願第 04007387.6) に開示した通り、 RT03 構造 のぺロブスカイ ト型複合酸化物を生成するにふさわしい化学量論比で前述の各元素 を含む粉状の非晶質からなる前駆体物質を、 低温で熱処理することによって得るこ とができる。
このような非晶質の前駆体は、 前述の各元素の塩を RT〇3 構造のぺロブスカイ ト型複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、 それと炭酸アル力リまたはアンモニゥムイオンを含む炭酸塩などの沈殿剤とを、 反 応温度 60°C以下、 pH 6以上で反応させて沈殿生成物を作り、 その濾過物を乾燥 させて得ることができる。
より具体的には、 まず、 Rの硝酸塩、 硫酸塩、 塩化物等の水溶性鉱酸塩と、 丁の 硝酸塩、 硫酸塩、 塩化物等の水溶性鉱酸塩を、 R元素と T元素のモル比がほぼ 1 : 1となるように溶解させた水溶液を用意する。 R元素と T元素のモル比は、 理想的 にはほぼ 1 : 1とするのがよいが、 必ずしも 1 : 1でなくてもぺロブスカイ ト型複 合酸化物を形成できることもある。 したがって、 R元素と T元素のモル比は 1 : 1 から多少ずれても、 ぺロブスカイ ト型複合酸化物が形成できるような値であればよ い。 なお、 R元素は 2成分以上であってもよく、 T元素も 2成分以上であってもよ い。 その場合には、 Rを構成する元素の総モル数と Tを構成する元素の総モル数の 比がほぼ 1 : 1となるように各成分を溶解させるとよレ、。
沈殿を生成させる液中の Rおよび Tのイオン濃度は、 用いる塩類の溶解度によつ て上限が決まるが、 Rまたは Tの結晶性化合物が析出しない状態が望ましく、 通常 は、 Rと Tの合計イオン濃度が 0. 01〜0. 6 Omo 1 ZL程度の範囲であるの が望ましい。 この液から非晶質の沈殿を得るには、 炭酸アル力リまたはアンモニゥムイオンを 含む炭酸塩からなる沈殿剤を用いるのがよく、 このような沈殿剤としては、 炭酸ァ ンモニゥム、 炭酸水素アンモニゥム等を使用することができ、 必要に応じてアンモ ニァ水等の塩基を加えることも可能である。 また、 アンモニア水等を用いて沈殿を 形成した後、 炭酸ガスを吹き込むことによつても本発明に使用するぺロブスカイ ト 型複合酸化物の前駆体物質に適した非晶質を得ることができる。 非晶質の沈殿を得 る際、 液の p Hを 6〜1 1の範囲に制御するのがよい。 p Hが 6未満の領域では、 Rを構成する希土類元素類が沈殿を形成しない場合があるので不適切である。他方、 11が1 1を超える領域では、 沈殿剤単独の場合には生成する沈殿の非晶質化が十 分に進行せずに、 水酸化物などの結晶性の沈殿を形成する場合がある。 また、 反応 温度は 6 0 °C以下にするのがよい。 6 0 °Cを超える温度で反応を開始した場合、 R あるいは Tの結晶性の化合物粒子が生成する場合があり、 前駆体物質の非晶質化を 妨げるので好ましくない。 沈殿剤にナトリウムを含むものを使用すると、 燃焼開始 温度が高くなることがわかった。 これは、 前駆体にナトリウムが混入すると、 いく ら洗浄を十分に行っても、 数百 ppm程度は残存してしまうことに起因して燃焼開始 温度等の特性に悪影響を及ぼすものと考えられる。
得られた非晶質前駆体は必要に応じて水洗され、 例えば、 真空乾燥や通風乾燥な どにより乾燥させた後、 例えば 5 0 0〜1 0 0 0 ° (:、 好ましくは 5 0 0〜8 0 0 °C で熱処理することにより、 目的とするベロブスカイ 卜型複合酸化物を得ることがで きる。 この際、 熱処理時の雰囲気はぺロブスカイ ト型複合酸化物を生成する範囲で あれば特に制限されず、 例えば空気中、 窒素中、 アルゴン中、 水素中およびそれち に水蒸気を組合わせた雰囲気、 好ましくは空気中、 窒素中およびそれらに水蒸気を 組合わせた雰囲気が使用できる。 実施例
〔実施例 1〕
硝酸ランタン、 硝酸ストロンチウム、 硝酸マンガンを、 ランタン元素とストロン チウム元素とマンガン元素のモル比が 0.8 : 0.2 : 1.0となるように混合した。 この混 合物を、 ランタン元素とス トロンチウム元素とマンガン元素の液中モル濃度の合計 が 0.2 mol/Lとなるように水に添加して原料溶液を得た。 この溶液を撹拌しながら溶 液の温度を 25°Cに調整し、 温度が 25°Cに到達した段階で、 沈殿剤として炭酸アンモ 二ゥムとアンモニア水の混合溶液を添加しながら pH=9に調整した。 その後、 反応温 度を 25°Cに保ちながら撹拌を 6時間継続することにより、沈殿の生成を十分進行させ た。 得られた沈殿を濾過して回収した後、 水洗し、 110°Cで乾燥した。 得られた粉末 を前駆体粉と言う。
次に、 この前駆体粉を大気雰囲気下で 600°Cで熱処理して焼成した。得られた焼成 体の X線回折パターンを図 1に示す。 図 1の X線回折図と JCPDSカードチヤー卜との 比較から、 この焼成体は (Lao.8Sr。2)Mn03 のぺロブスカイ ト型複合酸化物相を有する 物質であることが確認された。
〔実施例 2〕
硝酸ランタン、 硝酸ス トロンチウム、 硝酸鉄を原料として用い、 ランタン元素と ストロンチウム元素と鉄元素のモル比が 0.8 : 0.2 : 1.0となるように混合した以外は、 実施例 1を繰り返した。
X線回折による結晶解析の結果、 得られた焼成体は (La。8Sr。2)Fe03 のぺロブス力 ィ ト型複合酸化物単相であることが確認された。 また原子吸光分析法による組成分 析結果によれば、 Naは lppm未満 (測定限界未満)の値を示した。
〔実施例 3〕
実施例 2で得られたぺロブスカイ ト型複合酸化物の一部をサンプリングし、それを 800°Cで 24時間の熱処理を行った。 熱処理は大気雰囲気下で行なった。
〔比較例 1〕
市販の Si02(和光純薬製 Wakogel C'100)に、 [Pt(NH3) 4] (OH) 2 水溶液を用いて Pt を含浸させた後、 120°Cで 12時間通風乾燥を行った。 得られた含浸物を 4%H2(残部 N2)中、 400°Cで 4時間還元処理後、 更に空気中 500°Cで 2時間酸化処理を行レ、、 Pt含 有 Si02を得た。 このとき Si02中における Ptの含有量は 1質量0 /。であった。
〔比較例 2〕
沈殿剤として水酸化ナトリゥムを使用した以外は実施例 2を繰り返した。得られた ぺロブスカイ ト型複合酸化物粒子粉末は、 原子吸光分析法による組成分析の結果、 Naの含有量が 0.77%であった。 〔粒状試料による PM燃焼温度の評価〕
環境保全研究成果集 (1999)、 1、 P 37— 1〜37— 13に記載の方法に従い、 以下のよ うにして PM燃焼温度の評価を行った。
実施例 1、 比較例 1で得られた各粉体を、 それぞれ金型プレスにより 500kg/cm2 で 圧縮成形後、粉砕して、粒径 0.25〜0.50mmの粒状試料を作製した。この粒状試料に、 模擬 PMとして市販のカーボンブラックを 1質量%となるように添加し、 ガラス瓶中 で振ることによりこれらを混合した。 この混合方法を用いるとカーボンと触媒試料 との接触状態が、 実際のフィルター上に PMが捕集された場合に近い 「緩やかな接触 状態(loose Contact) J となる。
カーボンブラックを混合した上記粒状試料を流通式固定床に充填した状態にし、 これに表 1に示す模擬ディーゼルエンジン排ガスを一定流量で接触させ、流通式固定 床を通ったガス中の C02 濃度および NO濃度を連続的に測定できるようにした。 そ して、 模擬ディーゼル車排ガスを流し始めたのち、 昇温速度 lOt:,分で室温から 80 0°Cまで昇温しながら、 流通式固定床を通ったガス中の C02 濃度および N O濃度を モニターした。
C02 濃度および NO濃度の測定は NICOLET製 Nexas470型 FT-IRを用いて行つ た。
図 2に、 実施例 1の場合の C02 濃度および NO濃度の変化を例示する。 図 2から判る ように、 下流での NO濃度は 200〜250°Cの間で急激に低下し、 約 250〜350°Cにかけ て 200ppm以下の値を示す。 これは、 気流中に導入された NOが 200〜250°Cの間でぺ ロブスカイ ト型複合酸化物に吸着され始めたことを意味する。 その後、 350°C付近か ら C02 濃度が急激に増加するのに伴い、 NO濃度は再び増大する。 そして、 400°C付 近から NO濃度は流入濃度 500ppmにほぼ等しい量を示すようになる。 350°C付近か らの NO濃度の上昇は、 ぺロブスカイ ト型複合酸化物存在下でのカーボンブラック (模擬 PM)の燃焼に伴う C02濃度の上昇と同じタイミングであることから、 ぺロブス カイ ト型複合酸化物に吸着された NOがカーボンブラックの燃焼に作用しているこ とは明らかである。 すなわち、 ぺロブスカイ ト型複合酸化物に吸着された N Oが離 脱する際に、何らかの強い酸化活性を有する物質 (例えば活性酸素)を放出し、 カーボ ンブラックの燃焼 (酸化)を引き起こしていると考えられる。ここで用いたカーボンブ ラックの燃焼開始温度は 560°C前後であることから、ぺロブスカイ ト型複合酸化物は 触媒として模擬 PMの低温燃焼を引き起こしたことがわかる。
流通式固定床を通ったガスの測定で求まる C02 の発生量が、 C02 の総発生量に対 して 10%となる温度を、 燃焼開始温度 Ί\。として求めた。 結果を表 2に示す。
Figure imgf000014_0001
Figure imgf000014_0002
表 2から判るように、 実施例 1のぺロブスカイ ト型複合酸化物触媒は、 貴金属を全 く含まないにもかかわらず、 比較例 1の Pt含有 Si02 触媒よりも PMの燃焼温度が低 く、 高い活性を示した。 またこのぺロブスカイト型複合酸化物には K (カリウム)のよ うな水溶性成分も含まれないため、 高い耐久性も期待される。
このように 200〜450°Cの温度範囲において NOを吸着するぺロブスカイ ト型複合 酸化物を触媒として使用することにより、 PMを低温で燃焼させることができ、 これ により PMの排出量を低減することができる。 この PMの低温燃焼がどのようなメカ 二ズムで生じているのか、 現時点では明確ではないが、 以下のようなことが推察さ れる。
[1] 排ガス中の NOが、ベロブスカイ ト型複合酸化物のもつ触媒作用によって雰囲 気中の O2で酸化され、 N02または硝酸イオンの形でぺロブスカイ ト型複合酸化物に 吸着する。
[2] これらが再び脱離する際に酸化力の強い窒素酸化物または活性酸素が生じる。
[3] 生じた窒素酸化物または活性酸素により PMが低温で燃焼し、 NOと C02 が生 じる。 レ、二カム状フィルター試料による PM燃焼温度の評価〕
実施例 1、 実施例 2、 比較例 1で得られた各粉体を、 それぞれ DPFとして使用されて いる 200cpsiコージェライ ト製ハ二カム構造体にゥォッシュコーティングした。 コー ティング量はハニカム構造体 100質量部に対し粉体 10質量部となるようにした。その 後、模擬 PMとして市販のカーボンブラックを均一に付着させた。 カーボンブラック の付着量はハエカム構造体 100質量部に対しカーボンブラック 2質量部とした。
このようにして得られたハニカム状フィルター試料を流通式固定床に設置し、 こ れに表 3に示す模擬ディーゼルエンジン排ガスを一定流量で接触させ、流通式固定床 を通ったガス中の C02 濃度を連続的に測定できるようにした。 表 3中の 「SV」 は次 式で表される空間速度である。 SV=ガス総流量(リットル 分)/触媒体積 (cc)。 そし て、模擬ディーゼル車排ガスを流し始めたのち、昇温速度 KTCZ分で室温から 750°C まで昇温しながら、 流通式固定床を通ったガス中の C02 濃度をモニターした。
C02 濃度測定は島津製作所製 FID-メタナイザーを用いた。
図 3に、 実施例 1、 2および比較例 1の C02 濃度変化を示す。 図 3から判るように、 実施例 1および 2はカーボンブラック(模擬 PM)の燃焼に伴う C02 濃度上昇が約 30 0°Cという低温から起こっている。 すなわち、 前記粒状試料の場合と同様に、 ぺロブ スカイ ト型複合酸化物が触媒として模擬 PMの低温燃焼を引き起こしたことがわか る。
燃焼開始温度 1。を表 4に示す。
表 3
Figure imgf000015_0001
表 4
組成 燃焼開始温度 (T10)
実施例 1 (La0 8Sr0. 2) MnOg 397°C
実施例 2 (La0 aSr0 2) Fe03 402°C
比較例 1 Pt/Si02 478°C 表 4から判るように、本発明のぺロブスカイ ト型複合酸化物触媒 (実施例 1、 2 )は、 貴金属を全く含まないにもかかわらず、ハニカム状の DPFにおいても PMの燃焼温度 を顕著に低下させる作用を呈することが確認され、 実用的価値が高いことがわかつ た。 すなわち、 本発明の触媒'は実用面において従来の貴金属触媒より一層の高性能 および高信頼性を発揮することが期待される。
〔高温に加熱された後の触媒効果の評価〕
実施例 3で得られた熱処理後 (800°C24時間の熱処理後) のぺロブスカイ ト型複合 酸化物について、 前記図 3の場合と同様の評価を行い、 その結果を図 4に示した。 図 4には、 比較のために、 熱処理をしていない Pt触媒での結果 (比較例 1のもの) 、 および熱処理を行っていないべロブスカイ ト複合酸化物 (実施例 2のもの) の特性値 を実施例 3のものと対比して示した。
図 4の結果から明らかなように、 熱処理を行なった実施例 3のものは、 非加熱の実 施例 2のものに比較して、 低温領域においてややカーボンから C02への変換効率が低 くなつているものの、 極端な活性の低下は生じていない。 さらに、 熱処理を行なつ た実施例 3のものは、熱処理を行わずに触媒評価を行った比較例 1の従来の Pt触媒よ りも、 優れた活性を維持している。 すなわち、 本発明に従うベロブスカイ ト型複合 酸化物は過酷な環境下にあっても触媒活性を維持でき、 従来のものに比較して低温 環境下であっても、 粒子状物質の燃焼を行うことができる。
なお、 実施例 2と比較例 2のものについて、 燃焼開始温度を比較したところ、 実施 例 2のものでは 358°C、 比較例 2のものでは 380°Cであり、 ナトリウムを含むものにつ いては、 燃焼開始温度が若干高くなっていることが確認された。

Claims

請求の範囲
1. 200〜450°Cの範囲に NO吸着領域を有するぺロブスカイ ト型複合酸化物を用いた ディ一ゼルェンジン排ガスの粒子状物質燃焼触媒。
2. 前記べロプスカイ ト型複合酸化物は、 構造式 RT03 において、 Rが希土類元素、 Naを除くアルカリ金属元素およびアル力リ土類金属元素からなる群から選ばれる 1 種以上であり、 Tが遷移金属元素、 Mg、 A1および Siからなる群から選ばれる 1種以上 で、 請求の範囲 1に記載のディーゼルエンジン排ガスの粒子状物質燃焼触媒。
3. 前記べロブスカイ ト型複合酸化物は、 構造式 RT03 において、 Rが La,Sr,Ba,Ca および Liからなる群から選ばれる 1種以上であり、 Tが Mn,Fe,Co,Cu,Zn,Ga,Zr,Mo, Mg,Alおよび Siからなる群から選ばれる 1種以上である請求の範囲 1に記載のディ一 ゼルェンジン排ガスの粒子状物質燃焼触媒。
4. NO含有排ガス雰囲気において、ディーゼルエンジン排ガスの粒子状物質を 450°C 以下の温度で燃焼開始させる請求の範囲 1ないし 3のいずれかに記載のディ一ゼルェ ンジン排ガスの粒子状物質燃焼触媒。
5.請求の範囲 1ないし 4のいずれかに記載のディーゼルエンジン排ガスの粒子状物質 燃焼触媒を担持したディーゼルエンジン排ガス浄化用パーティキュレートフィルタ
PCT/JP2005/013987 2004-12-24 2005-07-25 Pm燃焼触媒およびフィルター WO2006067887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020057023875A KR101192185B1 (ko) 2004-12-24 2005-07-25 Pm 연소 촉매 및 필터
JP2006548691A JP5391408B2 (ja) 2004-12-24 2005-07-25 Pm燃焼触媒の製造方法およびpmの燃焼方法
EP05767370A EP1829609A4 (en) 2004-12-24 2005-07-25 CATALYST OF COMBUSTION OF PARTICULATE MATTER AND FILTER
US10/560,899 US20070105715A1 (en) 2004-12-24 2005-07-25 Particulate matter oxidation catalyst and filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004372622 2004-12-24
JP2004-372622 2004-12-24
JP2005180162 2005-06-21
JP2005-180162 2005-06-21

Publications (1)

Publication Number Publication Date
WO2006067887A1 true WO2006067887A1 (ja) 2006-06-29

Family

ID=36601498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013987 WO2006067887A1 (ja) 2004-12-24 2005-07-25 Pm燃焼触媒およびフィルター

Country Status (5)

Country Link
US (1) US20070105715A1 (ja)
EP (1) EP1829609A4 (ja)
JP (1) JP5391408B2 (ja)
KR (1) KR101192185B1 (ja)
WO (1) WO2006067887A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326375A (ja) * 2005-05-23 2006-12-07 Utsunomiya Univ 排ガス浄化用触媒、排ガス浄化装置及び排ガス浄化方法
JP2009112906A (ja) * 2007-11-02 2009-05-28 Dowa Electronics Materials Co Ltd 排気ガス浄化用複合酸化物およびディーゼル機関の排気ガス浄化用フィルター
JP2010207754A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd 酸化触媒及びパティキュレートフィルタ
JP2011230026A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排ガス処理触媒
JP2012125721A (ja) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd 酸化触媒
JP2015532320A (ja) * 2012-09-28 2015-11-09 アディティア ビルラ サイエンス アンド テクノロジー カンパニー リミテッド 組成物の脱硫のための方法及び組成物
JP2019103967A (ja) * 2017-12-11 2019-06-27 エヌ・イーケムキャット株式会社 排ガス浄化用触媒、及びその製造方法、並びに一体構造型排ガス浄化用触媒

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964167B2 (en) * 2008-10-03 2011-06-21 GM Global Technology Operations LLC Method and architecture for oxidizing nitric oxide in exhaust gas from hydrocarbon fuel source with a fuel lean combustion mixture
US8268274B2 (en) * 2008-10-03 2012-09-18 GM Global Technology Operations LLC Catalyst combinations and methods and systems for oxidizing nitric oxide in a gas stream
US8513155B2 (en) * 2009-03-16 2013-08-20 GM Global Technology Operations LLC Perovskite-type compounds for use in lean NOx traps
US9732687B2 (en) * 2010-12-22 2017-08-15 GM Global Technology Operations LLC Perovskite oxide compounds for use in exhaust aftertreatment systems
US8943811B2 (en) 2010-12-22 2015-02-03 GM Global Technology Operations LLC Perovskite-based catalysts, catalyst combinations and methods of making and using the same
US8545779B2 (en) * 2011-01-13 2013-10-01 GM Global Technology Operations LLC Sulfur-tolerant perovskite NOx oxidation catalysts
KR101917589B1 (ko) 2011-10-24 2018-11-13 아디트야 비를라 누보 리미티드 카본 블랙의 제조를 위한 개선된 방법
US20130252808A1 (en) * 2012-03-23 2013-09-26 Yoshihiro Yamazaki Catalysts for thermochemical fuel production and method of producing fuel using thermochemical fuel production
ES2733444T3 (es) 2012-03-30 2019-11-29 Aditya Birla Science And Tech Company Private Limited Un procedimiento para obtener polvo de negro de carbón con contenido reducido de azufre
KR20170040188A (ko) 2014-07-29 2017-04-12 트라이바허 인두스트리 아게 귀금속-프리 촉매 조성물
KR101703624B1 (ko) 2015-09-30 2017-02-07 현대자동차 주식회사 배기가스 후처리 시스템
CN105727939A (zh) * 2016-04-08 2016-07-06 济南大学 一种钾锰复合氧化物及其制备方法和在柴油车尾气净化中的应用
CN110280265A (zh) * 2019-07-18 2019-09-27 付华 一种用于低温下催化dpf被动再生的多元金属氧化物催化剂及其制备方法
CN114870848B (zh) * 2022-03-24 2023-08-11 桂林理工大学 一种可降低柴油发动机碳烟氧化温度的管状钙钛矿型复合氧化物催化剂
CN116037057A (zh) * 2023-03-07 2023-05-02 农业农村部环境保护科研监测所 一种La基钙钛矿吸附材料的制备方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307452A (ja) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
JPH0217911A (ja) * 1988-07-06 1990-01-22 Toyota Motor Corp 内燃機関の可燃性排出物の除去装置
JPH05184929A (ja) * 1992-01-08 1993-07-27 Riken Corp 排ガス浄化材及び排ガス浄化方法
JPH09267040A (ja) * 1996-04-01 1997-10-14 Nippon Soken Inc 排気ガス浄化触媒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629542B2 (ja) * 1987-11-30 1994-04-20 トヨタ自動車株式会社 ディーゼルパティキュレート捕集用フィルター
JP2838336B2 (ja) * 1991-09-12 1998-12-16 工業技術院長 窒素酸化物接触還元用触媒
JPH06171950A (ja) * 1992-12-02 1994-06-21 Shin Etsu Chem Co Ltd ランタンマンガナイト粉末の製造方法
US7014825B2 (en) * 1996-04-10 2006-03-21 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JP2001269578A (ja) * 2000-01-19 2001-10-02 Toyota Motor Corp 排気ガス浄化用触媒
EP1378288A3 (en) * 2002-04-18 2004-01-14 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307452A (ja) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd 排気ガス浄化触媒体
JPH0217911A (ja) * 1988-07-06 1990-01-22 Toyota Motor Corp 内燃機関の可燃性排出物の除去装置
JPH05184929A (ja) * 1992-01-08 1993-07-27 Riken Corp 排ガス浄化材及び排ガス浄化方法
JPH09267040A (ja) * 1996-04-01 1997-10-14 Nippon Soken Inc 排気ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1829609A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326375A (ja) * 2005-05-23 2006-12-07 Utsunomiya Univ 排ガス浄化用触媒、排ガス浄化装置及び排ガス浄化方法
JP2009112906A (ja) * 2007-11-02 2009-05-28 Dowa Electronics Materials Co Ltd 排気ガス浄化用複合酸化物およびディーゼル機関の排気ガス浄化用フィルター
JP2010207754A (ja) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd 酸化触媒及びパティキュレートフィルタ
JP2011230026A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排ガス処理触媒
JP2012125721A (ja) * 2010-12-16 2012-07-05 Nissan Motor Co Ltd 酸化触媒
JP2015532320A (ja) * 2012-09-28 2015-11-09 アディティア ビルラ サイエンス アンド テクノロジー カンパニー リミテッド 組成物の脱硫のための方法及び組成物
JP2019103967A (ja) * 2017-12-11 2019-06-27 エヌ・イーケムキャット株式会社 排ガス浄化用触媒、及びその製造方法、並びに一体構造型排ガス浄化用触媒

Also Published As

Publication number Publication date
JP5391408B2 (ja) 2014-01-15
JPWO2006067887A1 (ja) 2008-06-12
EP1829609A1 (en) 2007-09-05
KR20070096119A (ko) 2007-10-02
KR101192185B1 (ko) 2012-10-17
EP1829609A4 (en) 2011-04-20
US20070105715A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5391408B2 (ja) Pm燃焼触媒の製造方法およびpmの燃焼方法
JP5190196B2 (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒、並びにディーゼル排ガス浄化用フィルター
US9006131B2 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
EP2077253B1 (en) Composite oxide for use as exhaust gas clean-up catalyst, and filter
US8304364B2 (en) Complex oxide for exhaust gas purification catalyst, production method thereof, coating material for exhaust gas purification catalyst, and diesel exhaust gas purification filter
CN110605114A (zh) 莫来石型氧化物负载型催化剂用于低温选择性催化还原脱硝的用途
CN109689205B (zh) 钒酸盐作为氧化催化剂的用途
JP4768475B2 (ja) Pm燃焼触媒用複合酸化物およびフィルター
JP2012217931A (ja) 排ガス浄化用触媒
JP5427443B2 (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
JP4204487B2 (ja) 排ガス浄化触媒及びその製造方法、並びに車用排ガス浄化触媒装置
JP5967015B2 (ja) 排ガス浄化用触媒
JP5160282B2 (ja) 排気ガス浄化材および排気ガス浄化用フィルター
JPH0824648A (ja) 排気ガス浄化用触媒及びその製造方法
KR100701331B1 (ko) 배기가스의 미세 입자상 물질 제거용 산화촉매 및 이를이용한 제거 방법
JP4696427B2 (ja) アルミネート型複合酸化物を含有する触媒
US7811960B2 (en) Catalyst for exhaust gas purification and exhaust gas purification apparatus
JP5154890B2 (ja) 排気ガス浄化用複合酸化物およびディーゼル機関の排気ガス浄化用フィルター
JP5822682B2 (ja) 排ガス浄化用触媒
JP2010194437A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006548691

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005767370

Country of ref document: EP

Ref document number: 1020057023875

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007105715

Country of ref document: US

Ref document number: 10560899

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20058004209

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10560899

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005767370

Country of ref document: EP