WO2006059491A1 - 伝送線路 - Google Patents

伝送線路 Download PDF

Info

Publication number
WO2006059491A1
WO2006059491A1 PCT/JP2005/021145 JP2005021145W WO2006059491A1 WO 2006059491 A1 WO2006059491 A1 WO 2006059491A1 JP 2005021145 W JP2005021145 W JP 2005021145W WO 2006059491 A1 WO2006059491 A1 WO 2006059491A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
transmission line
layer
dielectric layer
conductor
Prior art date
Application number
PCT/JP2005/021145
Other languages
English (en)
French (fr)
Inventor
Tatsuya Fukunaga
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004347413A external-priority patent/JP2006157706A/ja
Priority claimed from JP2004347380A external-priority patent/JP2006157703A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2006059491A1 publication Critical patent/WO2006059491A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • H01P3/165Non-radiating dielectric waveguides

Definitions

  • the present invention relates to a transmission line used for propagation of, for example, microwaves and millimeter waves.
  • a non-radiative dielectric waveguide (hereinafter referred to as an NRD guide) is known as a transmission line for transmitting a microwave band signal or a millimeter wave band signal.
  • the NRD guide is composed of an upper metal plate 101 and a lower metal plate 102 which are arranged to face each other, and a dielectric line 103 sandwiched between the metal plates 101 and 102.
  • an electromagnetic wave signal is propagated in the dielectric line 103.
  • this NRD guide compared to conventional dielectric lines (such as microstrip lines), it is possible to suppress unnecessary radiation at the bends and discontinuous parts of the line, so that a very high-performance dielectric line can be realized. .
  • the transmission modes of the NRD guide are roughly classified into an LSM mode and an LSE mode.
  • FIGS 23A and 23B show the distribution of the electric field E (LSM) in LSM mode
  • LSM The distribution of the magnetic field H (LSM) is schematically shown.
  • LSM mode the propagation of electromagnetic waves
  • the magnetic field vector H exists only in a plane parallel to the carrying direction (z direction in the figure) and perpendicular to the upper and lower metal plates 101 and 102.
  • Fig. 24A and Fig. 24B show the LSE mode.
  • the electric field vector E exists only in a plane parallel to the propagation direction and perpendicular to the upper and lower metal plates 101 and 102.
  • Patent Document 1 describes a method of providing a conductor pin in a dielectric line and a method of providing a conductor foil having a skewer pattern in the dielectric line in order to block the LSE mode in the NRD guide. (Fig. 1, Fig. 14, etc. of Patent Document 1).
  • Patent Document 1 JP-A-9-219608
  • Patent Document 1 complicates processing and has a problem in terms of manufacturability.
  • the conventional NRD guide itself has a problem that it is difficult to manufacture because it requires a separate structure for supporting the upper and lower metal plates 101 and 102 in order to maintain the structural strength.
  • the metal plates 101 and 102 and the dielectric line 103 must be in close contact with each other without any gap, which makes it difficult to obtain processing accuracy. If the adhesion is insufficient, the propagation characteristics may change and the desired characteristics may not be obtained.
  • the present invention has been made in view of the serious problems, and its purpose is to manufacture at a lower cost and with higher accuracy than the conventional NRD guide and to transmit at least as much as the conventional NRD guide.
  • An object of the present invention is to provide a transmission line capable of realizing the characteristics.
  • the transmission line according to the first aspect of the present invention includes a first dielectric layer and a second dielectric layer having a predetermined dielectric constant, and a dielectric constant greater than a dielectric constant of the first and second dielectric layers.
  • a third dielectric layer stacked so as to be sandwiched between the first and second dielectric layers, and through the first, second and third dielectric layers, and in a row
  • a plurality of first through holes disposed in the first through hole and a plurality of second through holes disposed in parallel to the first through holes through the first, second and third dielectric layers. It has a through hole.
  • the first and second through-holes are, for example, LSM among electromagnetic waves that are propagated in the LSM mode and the LSE mode with the inner wall surface covered with a conductor. It functions as a pseudo conductor wall only for mode electromagnetic waves.
  • the first and second through-hole force functions as a pseudo conductor wall for the electromagnetic wave to be propagated.
  • the third dielectric layer having a relatively high dielectric constant.
  • the transmission line according to the first aspect of the present invention also includes the first and second dielectric layers, A conductor layer laminated on the entire surface opposite to the laminated surface of the third dielectric layer may be further provided.
  • the transmission line according to the first aspect of the present invention is also laminated in a partial region of the surface of the first and second dielectric layers opposite to the laminated surface of the third dielectric layer.
  • An additional conductor layer may be provided.
  • the conductor layer can be formed outside the region sandwiched between the first and second through-hole rows on the surfaces of the first and second dielectric layers.
  • the conductor layer may be formed in a region sandwiched by the first and second through-hole rows on the surfaces of the first and second dielectric layers.
  • the transmission line according to the first aspect of the present invention further includes a part in a region sandwiched by the row of first and second through holes in at least one of the first and second dielectric layers. An air layer is formed partly!
  • the difference in dielectric constant between the first and second dielectric layers and the third dielectric layer can be increased, and transmission characteristics are further improved.
  • a transmission line has a first dielectric layer having a predetermined dielectric constant, a dielectric constant larger than the dielectric constant of the first dielectric layer, A second dielectric layer laminated on one surface side of the dielectric layer, and a conductor laminated on the surface of the second dielectric layer opposite to the laminated surface of the first dielectric layer.
  • a plurality of first through-holes penetrating the first and second dielectric layers and having one end connected to the ground layer and arranged in rows, and the first and second dielectric layers.
  • a plurality of second through holes penetrating the body layer and having one end connected to the ground layer and arranged in parallel to the first through hole.
  • the first and second through-holes include, for example, an LSM of electromagnetic waves that are propagated in the LSM mode and the LSE mode with the inner wall surface covered with a conductor. It functions as a pseudo conductor wall only for mode electromagnetic waves.
  • the first and second through-hole force functions as a pseudo conductor wall for the electromagnetic wave to be propagated. In the region sandwiched between the first and second through hole arrays, most of the electromagnetic waves to be propagated propagate in the second dielectric layer having a relatively high dielectric constant. This realizes transmission characteristics equivalent to or better than those of the conventional NRD guide.
  • the transmission line according to the second aspect of the present invention further includes a conductor layer laminated on the entire surface of the first dielectric layer opposite to the laminated surface of the second dielectric layer. May be
  • the transmission line according to the second aspect of the present invention also includes a conductor laminated in a partial region of the surface of the first dielectric layer opposite to the laminated surface of the second dielectric layer.
  • a layer may be further provided.
  • the conductor layer can be formed, for example, outside the region sandwiched between the first and second through-hole rows on the surface of the first dielectric layer.
  • the conductor layer may be formed in a region sandwiched by the first and second rows of through holes on the surface of the first dielectric layer.
  • an air layer is partially formed in a region sandwiched by the first and second through-hole rows in the first dielectric layer. It may be.
  • the difference in dielectric constant between the first dielectric layer and the second dielectric layer can be increased, thereby improving the transmission characteristics.
  • the third dielectric layer having a relatively high dielectric constant is laminated so as to be sandwiched between the first and second dielectric layers, And the first and second Since the through-holes are arranged in a row so as to penetrate the first, second and third dielectric layers, they can be manufactured at a lower cost and with higher accuracy compared to the conventional NRD guide, and NR D Transmission characteristics equivalent to the guide can be realized.
  • the second dielectric layer having a relatively high dielectric constant is laminated so as to be sandwiched between the first dielectric layer and the ground layer.
  • the first and second through-holes are arranged in a row so as to penetrate the first and second dielectric layers and one end is connected to the ground layer, the conventional NRD Compared to guides, it is cheaper and can be manufactured with higher accuracy, and transmission characteristics equivalent to those of NRD guides can be achieved.
  • the ground layer is laminated on the surface of the second dielectric layer opposite to the laminated surface of the first dielectric layer, the overall structure of the image line is achieved. You can plan.
  • a conductor layer is provided on the whole or a part of the surface of the first dielectric layer opposite to the laminated surface of the second dielectric layer. If it is provided, unnecessary leakage or propagation of electromagnetic waves to the outside can be surely prevented.
  • FIG. 1 is a perspective view showing an overall configuration of a transmission line according to a first embodiment of the present invention.
  • FIG. 2 A cross-sectional structure of the transmission line according to the first embodiment of the present invention is shown in FIG.
  • FIG. 3 shows a magnetic field component in the LSM mode in the transmission line according to the first embodiment of the present invention.
  • FIG. 4A is a diagram for explaining the action of the through hole in the transmission line according to the first embodiment of the present invention, together with the distribution of the magnetic field in the LSM mode.
  • FIG. 4B Action of a through hole in a transmission line according to the first embodiment of the present invention Is a diagram illustrating the LSE mode magnetic field distribution.
  • FIG. 5 is a diagram illustrating the energy density distribution of electromagnetic waves in an NRD guide.
  • FIG. 6 is a perspective view showing an overall configuration of a transmission line according to a second embodiment of the present invention.
  • FIG. 7 is a diagram showing a cross-sectional structure of a transmission line according to the second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a first configuration example of a transmission line according to the third embodiment of the present invention.
  • FIG. 9 is a diagram showing a second configuration example of the transmission line according to the third embodiment of the present invention.
  • FIG. 10 is a diagram showing a first configuration example of a transmission line according to the fourth embodiment of the present invention.
  • FIG. 10B A diagram showing a second configuration example of the transmission line according to the fourth embodiment of the present invention.
  • FIG. 11 is a perspective view showing an overall configuration of a transmission line according to a fifth embodiment of the present invention.
  • the cross-sectional structure of the transmission line according to the fifth embodiment of the present invention is
  • 01 is a diagram showing an electric field distribution and a magnetic field distribution.
  • FIG. 13 LSM mode magnetic field in the transmission line according to the fifth embodiment of the present invention
  • FIG. 14A is a diagram illustrating the action of a through hole in a transmission line according to a fifth embodiment of the present invention, together with the distribution of a magnetic field in LSM mode.
  • FIG. 14B is a diagram for explaining the action of the through hole in the transmission line according to the fifth embodiment of the present invention, together with the magnetic field distribution in the LSE mode.
  • FIG. 15 is a diagram illustrating the energy density distribution of electromagnetic waves in an NRD guide.
  • FIG. 16 is a view showing a cross-sectional structure of a transmission line of a comparative example with respect to the transmission line according to the fifth embodiment of the present invention, together with the electric field distribution and magnetic field distribution of the LSM mode.
  • FIG. 17 is a perspective view showing an overall configuration of a transmission line according to a sixth embodiment of the present invention.
  • FIG. 18 shows a cross-sectional structure of a transmission line according to a sixth embodiment of the present invention.
  • ⁇ 19 A diagram showing a first configuration example of the transmission line according to the seventh embodiment of the present invention.
  • ⁇ 20 Second configuration example of the transmission line according to the seventh embodiment of the present invention. It is the figure which showed FIG. 21A is a diagram showing a first configuration example of a transmission line according to the eighth embodiment of the present invention.
  • FIG. 21B is a diagram showing a second configuration example of the transmission line according to the eighth embodiment of the present invention.
  • FIG. 22 is a diagram showing a configuration example when a transmission line is bent.
  • Figure 23A The structure of a conventional NRD guide is shown together with the electric field distribution in LSM mode.
  • FIG. 1 A first figure.
  • FIG. 23B The structure of a conventional NRD guide is shown along with the magnetic field distribution in LSM mode.
  • FIG. 1 A first figure.
  • Figure 24A The structure of a conventional NRD guide is shown along with the electric field distribution in LSE mode.
  • FIG. 1 A first figure.
  • FIG. 24B Diagram showing the structure of a conventional NRD guide with magnetic field distribution in LSE mode.
  • FIG. 1 and FIG. 2 show a configuration example of the transmission line 1 according to the first embodiment of the present invention.
  • the transmission line 1 includes first and second dielectric layers 11 and 12, and a third dielectric layer 13 laminated so as to be sandwiched between the first and second dielectric layers 11 and 12.
  • a plurality of first through holes 21 and a plurality of second through holes 22 that pass through the first to third dielectric layers 11 to 13 are provided.
  • the first to third dielectric layers 11 to 13 are stacked in a direction perpendicular to the propagation direction S of the electromagnetic wave.
  • the third dielectric layer 13 that is the intermediate layer has a dielectric constant ⁇ 1 that is relatively higher than the dielectric constant ⁇ 2 of the first and second dielectric layers 11 and 12 that are the upper and lower layers. .
  • the first and second dielectric layers 11 and 12 and the third dielectric layer 13 should have the largest possible dielectric difference between the first and second dielectric layers. In 11 and 12, it is desirable because unnecessary electric field waves are attenuated and electric field waves are easily propagated in the third dielectric layer 13.
  • the dielectric constant of the third dielectric layer 13 is lower than the dielectric constant ⁇ 1.
  • the dielectric constants of the first and second dielectric layers 11 and 12 may be different from each other.
  • the dielectric constant of the layer to be coupled may be set higher among the first and second dielectric layers 11 and 12.
  • the thicknesses of the first and second dielectric layers 11 and 12 may be different from each other! /, But the same thickness may result in a symmetrical structure in the vertical direction, resulting in a balanced stress. It is preferable because it can be taken and the structural strength is increased.
  • a plurality of first through holes 21 are arranged in a row in the propagation direction S of the electromagnetic wave.
  • first and second through holes 21 and 22 are arranged in a row, and are arranged in parallel in the first through holes 21.
  • the inner wall surfaces of the first and second through holes 21 and 22 are covered with a conductor such as metal.
  • the inside may be filled with a conductor such as metal.
  • the cross-sectional shape of the first and second through holes 21 and 22 is not limited to a circle, and may be other shapes such as a polygon or an ellipse.
  • the first and second through-holes 21 and 22 have an interval of a predetermined value or less (for example, an interval D between adjacent through holes and a diameter d of each through hole so that the electromagnetic wave to be transmitted does not leak out. It is provided at the same interval) and functions as a pseudo conductor wall for the electromagnetic wave to be propagated. In particular, as described later, it functions well as a pseudo conductor wall for electromagnetic waves in the LSM mode.
  • this transmission line 1 has a vertical direction of the dielectric line 103 when rotated 90 ° about the z direction of FIG. 12 (A).
  • the first and second dielectric layers 11 and 12 are laminated, and the metal plates 101 and 102 are formed by the through holes 21 and 22, respectively. Therefore, this transmission line 1 also functions as a line that propagates the LS M mode, like the NRD guide. That is, in this transmission line 1, the first and the first
  • Figs. 2 and 3 show the distribution of the electric field E (LSM) in the LSM mode in the transmission line 1.
  • LSM cloth and magnetic field H
  • the magnetic field H (LSM) in 01 mode is the plane perpendicular to the first and second through-holes 21 and 22.
  • FIGS. 4A and 4B show the LSM mode magnetic field in the vicinity of the first through hole 21.
  • the first through-hole 21 is not affected by the first through-hole 21, that is, the electromagnetic wave in the LSM mode in which the magnetic field H (LSM) is perpendicular.
  • One hole 21 functions as a pseudo metal wall.
  • the first through hole 21 does not function as a metal wall, but functions as electromagnetic waves leak out.
  • the second through hole 22 that is, in this transmission line 1, in the region sandwiched between the first and second through holes 21 and 22, the electromagnetic wave mainly in the LSM mode of the LSM mode and the LSE mode.
  • a radio wave absorber may be provided around the side surface of the transmission line 1.
  • Equation (1) The energy density V of the electromagnetic wave existing in space is expressed by equation (1) using the dielectric constant ⁇ and the electric field vector ⁇ . Also, since the magnitude of the electric field
  • FIG. 5 schematically shows an energy density distribution 110 of electromagnetic waves in a conventional NRD guide.
  • Natural energy has the property of diffusing in the direction of lower energy. That is, the electromagnetic wave is diffused in a space having a low energy density V and a large dielectric constant ⁇ . Therefore, for example, if the left and right direction of the dielectric line 103 is an air layer as in a conventional NRD guide, the electromagnetic wave is not in the air with a low dielectric constant ⁇ . Try to pass the part.
  • the energy distribution 110 of the electromagnetic wave is at the portion of the dielectric line 103 as shown in FIG. The distribution is such that it decays exponentially in the horizontal direction.
  • the third dielectric layer 13 has a relatively high dielectric constant ⁇ 1, so that most of the input electromagnetic waves are the third dielectric material.
  • the electromagnetic wave attenuates exponentially in the upper and lower first and second dielectric layers 11 and 12 through the layer 13.
  • the degree of attenuation depends on the dielectric constant difference between the first and second dielectric layers 11 and 12 and the third dielectric layer 13. Therefore, if the dielectric constant difference is larger, unnecessary electric field waves are attenuated in the first and second dielectric layers 11 and 12, and the electric field waves are propagated in the third dielectric layer 13. This is desirable because it is easier.
  • the first and second dielectric layers 11 and 12 are preferably air layers because the difference in dielectric constant with the third dielectric layer 13 can be increased, which is preferable in terms of transmission characteristics.
  • this transmission line 1 has a through-hole structure and a laminated structure of dielectric layers, and as a line propagating the LSM mode, has a transmission equivalent to or better than that of a conventional NRD guide.
  • the metal layer is 1 mm, so there is less conductor loss and excellent transmission characteristics!
  • the third dielectric layer 13 having a relatively high dielectric constant is sandwiched between the first and second dielectric layers 11 and 12. Since the first and second through holes 21 and 22 are arranged in a row so as to penetrate the first to third dielectric layers 11 to 13, the NRD of the conventional structure is stacked. Compared to guides, it can be manufactured at a lower cost and with higher accuracy, and transmission characteristics equivalent to those of NRD guides can be realized.
  • FIG. 6 and FIG. 7 show one configuration example of the transmission line 2 according to the second embodiment of the present invention.
  • This transmission line 2 is the entire surface of the first and second dielectric layers 11 and 12 opposite to the laminated surface of the third dielectric layer 13 with respect to the configuration of the transmission line 1 shown in FIG.
  • the first and second conductive layers 31 and 32 made of metal are laminated.
  • First and second The conductor layers 31 and 32 can be formed, for example, by attaching a plate-like metal to the surfaces of the first and second dielectric layers 11 and 12. Further, a metal layer may be formed by a printing method.
  • the transmission line 1 shown in FIG. 1 most of the input electromagnetic waves pass through the third dielectric layer 13, and the first and second dielectric layers 11 and 11 in the upper and lower layers. At 12, the electromagnetic wave decays exponentially. However, an electromagnetic wave component that leaks outside without being sufficiently attenuated may occur.
  • the first and second conductor layers 31 and 32 function as electromagnetic wave shielding plates, and the propagation of such unnecessary electromagnetic wave components that leak to the outside is prevented. .
  • the first and second conductor layers 31 and 32 are provided on the entire surfaces of the first and second dielectric layers 11 and 12. As a result, leakage or propagation of unnecessary electromagnetic waves to the outside can be reliably prevented.
  • FIG. 8 shows the configuration of the transmission line 3 according to the first configuration example of the present embodiment.
  • This transmission line 3 is different from the configuration of the transmission line 1 shown in FIG. 1 on the surface of the first and second dielectric layers 11 and 12 opposite to the laminated surface of the third dielectric layer 13.
  • the first conductor layers 31A and 31B and the second conductor layers 32A and 32B which also have a metal force in part, are laminated. More specifically, on the surface of the first and second dielectric layers 11 and 12, the first conductor layer is formed in a region outside the region sandwiched by the rows of the first and second through holes 21 and 22. 31A, 31B and second conductor layers 32A, 32B are formed.
  • the first conductor layers 31A and 31B and the second conductor layers 32A and 32B can be formed, for example, by applying a metal by a printing method.
  • the first and second through holes 21 and 22 are arranged. It is also conceivable that the electromagnetic waves leaking to the outside in the sandwiched area may enter the first to third dielectric layers 11 to 13 outside the area and propagate as unnecessary electromagnetic wave components.
  • the first conductor layers 31A and 31B and the second conductor layers 32A and 32B function as electromagnetic wave shielding plates and penetrate into such first to third dielectric layers 11 to 13 Propagation of unnecessary electromagnetic wave components 41 and 42 is prevented.
  • FIG. 9 shows a configuration of the transmission line 4 according to the second configuration example of the present embodiment.
  • the transmission line 4 has first and second through holes on the surfaces of the first and second dielectric layers 11 and 12.
  • the first conductor layer 31C and the second conductor layer 32C are laminated in the inner region sandwiched between the rows 21 and 22.
  • the first and second conductor layers 31C and 32C can be formed, for example, by applying a metal by a printing method.
  • the first and second conductor layers 31C, 32C function as electromagnetic wave shielding plates, and the first and second through layers are similar to the transmission line 2 shown in FIGS. 6 and 7. Propagation of unwanted electromagnetic wave components that leak outside from the region sandwiched between the rows of holes 2 1 and 22 is prevented.
  • the conductor layers are provided on part of the surfaces of the first and second dielectric layers 11, 12, the outside It is possible to reliably prevent the leakage or propagation of unnecessary electromagnetic waves.
  • FIG. 1 OA shows a first configuration example of a transmission line according to the fourth embodiment of the present invention.
  • the first and second dielectric layers 11 and 12 have through-hole-like first and second holes in the region sandwiched between the rows of first and second through-holes 21 and 22.
  • a plurality of second air holes 23 and 24 may be formed at a predetermined interval. 1st and Unlike the first and second through holes 21 and 22, which function as pseudo conductor walls, the second air holes 23 and 24 are not metallized inside. Since the first and second air holes 23 and 24 are provided, the inner portions of the first and second dielectric layers 11 and 12 partially become air layers. As a result, the overall dielectric constant of the first and second dielectric layers 11 and 12 decreases. As a result, the dielectric constant difference from the third dielectric layer 13 can be increased, and the transmission characteristics can be further improved.
  • FIG. 10B shows a second configuration example of the transmission line according to the present embodiment.
  • the first and second air holes 23, 24 do not reach the surface of the third dielectric layer 13, and are halfway through the first and second dielectric layers 11, 12. It may be formed only up to. Further, air holes may be formed only in one of the first and second dielectric layers 11 and 12. Further, the shape of the air hole is not limited to a circle and may be any shape. Furthermore, the air layer formed in the first and second dielectric layers 11 and 12 is not limited to a through-hole shape, and for example, the central portion of the surface of the layer may be partially scraped off.
  • an air layer may be formed similarly for the transmission lines according to the second and third embodiments.
  • the transmission line 1 according to the first embodiment is thinned.
  • 11 and 12 show a configuration example of the transmission line 501 according to the present embodiment.
  • the transmission line 501 includes a first dielectric layer 511, a second dielectric layer 512 laminated on one surface side of the first dielectric layer 511, and a second dielectric layer 512. And a ground layer 513 made of a conductor laminated on the surface opposite to the laminated surface of one dielectric layer 511.
  • the transmission line 501 also includes a plurality of first through holes 521 and a plurality of second through holes that penetrate the first and second dielectric layers 511 and 512 and are connected at one end to the ground layer 513. Hall 522.
  • the ground layer 513 can be formed, for example, by attaching a plate-like metal to the surface of the second dielectric layer 512. Further, a metal layer may be formed by a printing method. In the figure, the force of laminating the ground layer 513 over the entire surface on one side of the second dielectric layer 512 At least the connection portion with the first and second through holes 521 and 522 The ground layer 513 is laminated in the region sandwiched between the minute and the first and second through holes 521 and 522!
  • the first and second dielectric layers 511 and 512 and the ground layer 513 are stacked in a direction perpendicular to the propagation direction S of the electromagnetic wave.
  • the second dielectric layer 512 that is the intermediate layer has a dielectric constant ⁇ 1 that is relatively higher than the dielectric constant ⁇ 2 of the first dielectric layer 511 that is the upper layer.
  • the first dielectric layer 511 and the second dielectric layer 512 have as large a V as possible and a dielectric constant difference, which is not necessary for the first dielectric layer 511. This is desirable because the electric field wave is attenuated and the electric field wave is easily propagated in the second dielectric layer 512.
  • a plurality of first through holes 521 are arranged in a row in the propagation direction S of the electromagnetic wave.
  • first and second through holes 521 and 522 are arranged in a row, and are arranged in parallel to the first through holes 521.
  • the inner wall surfaces of the first and second through holes 521 and 522 are covered with a conductor such as metal. Alternatively, the inside may be filled with a conductor such as metal.
  • the cross-sectional shape of the first and second through holes 521 and 522 is not limited to a circle but may be other shapes such as a polygon or an ellipse.
  • the first and second through-holes 521 and 522 have an interval equal to or less than a predetermined value (for example, the interval D between adjacent through-holes and the diameter d of each through-hole are the same so that the electromagnetic wave to be propagated does not leak out.
  • a predetermined value for example, the interval D between adjacent through-holes and the diameter d of each through-hole are the same so that the electromagnetic wave to be propagated does not leak out.
  • a pseudo conductor wall for the electromagnetic wave to be propagated
  • This transmission line 501 functions as a line propagating in the LSM mode, similar to the NRD guide.
  • FIGS. 12 and 13 show the LSM mode electric field E (LSM in the transmission line 501.
  • Magnetic field H (LSM) in M mode is orthogonal to first and second through-holes 521 and 522 It is distributed in a ring shape in the plane.
  • FIGS. 14A and 14B show the LSM mode in the vicinity of the first through-hole 521.
  • an electromagnetic wave in which the magnetic field H is orthogonal to the first through hole 521 that is, an electromagnetic wave in the LSM mode in which the magnetic field H (LSM) is orthogonal.
  • the first through hole 521 functions as a pseudo metal wall.
  • the electromagnetic wave whose magnetic field H is parallel to the first through hole 521 that is, the magnetic field H (LSE) is parallel to L
  • the first through-hole 521 does not function as a metal wall.
  • the LSM mode and the LSE mode are mainly L
  • a radio wave absorber may be provided around the side surface of the transmission line 501.
  • the energy density V of the electromagnetic wave existing in the space is expressed by equation (1) using the dielectric constant ⁇ and the electric field vector ⁇ .
  • equation (2) holds. That is, as shown in equation (3), the energy density V of the electromagnetic wave is inversely proportional to the dielectric constant ⁇ . This means that the energy density V decreases in a space with a large dielectric constant ⁇ .
  • FIG. 15 schematically shows an energy density distribution 110 of electromagnetic waves in a conventional NRD guide.
  • Natural energy has the property of diffusing in the direction of lower energy.
  • the electromagnetic wave diffuses into a space with a low energy density V and a large dielectric constant ⁇ .
  • the electromagnetic wave is caused to pass through the portion of the dielectric line 103 having a higher dielectric constant ⁇ than in the air having a low dielectric constant ⁇ . Try to pass.
  • the energy distribution 110 of the electromagnetic wave is exponential in the horizontal direction of the target surface 200 shown in the figure, which is high at the portion of the dielectric line 103, as shown in FIG.
  • the distribution is such that
  • the third dielectric layer 13 has a relatively high dielectric constant ⁇ 1
  • most of the input electromagnetic waves are the third
  • the electromagnetic waves attenuate exponentially in the vertical direction of the target surface 300 in the upper and lower first and second dielectric layers 11 and 12.
  • the degree of attenuation depends on the dielectric constant difference between the first and second dielectric layers 11, 12 and the third dielectric layer 13. Therefore, if the dielectric constant difference is larger, unnecessary electric field waves are attenuated in the first and second dielectric layers 11 and 12, and electric field waves are generated in the third dielectric layer 13. This is desirable because it is easy to propagate.
  • a device with an upper and lower target structure has a mode in which the target surface 300 (Fig. 16) is open (open) and a mode in which the target surface 300 is short (short circuit). Can be broken down into two. In LSM mode, the target surface 300 is
  • the transmission line 501 in the present embodiment uses this principle, and its structure is just a third dielectric on the target plane 300 in FIG. 16 so that it can be divided by comparing FIG. 12 and FIG.
  • the layer 13 is cut, and the ground layer 513 is laminated on the target surface 300 of the third dielectric layer 13.
  • the second dielectric layer 512 has a relatively high dielectric constant ⁇ 1 based on the same principle as described above.
  • the electromagnetic wave attenuates exponentially in the first dielectric layer 511 that passes through the second dielectric layer 512 and is in the upper layer.
  • the degree of attenuation depends on the dielectric constant difference between the first dielectric layer 511 and the second dielectric layer 512. Accordingly, the first dielectric layer 511 has a larger dielectric constant difference. ⁇ This is desirable because it attenuates unnecessary electric field waves and facilitates propagation of electric field waves in the second dielectric layer 512.
  • the first dielectric layer 511 is preferably an air layer because the difference in dielectric constant with the second dielectric layer 12 can be increased, which is preferable in terms of transmission characteristics. In this case, however, it is necessary to construct the first and second through holes 521, 522 with conductor pins, etc., and it is difficult to maintain structural strength. Absent.
  • the electromagnetic wave is distributed in a mirror image (image) with the target surface 300 as a boundary. Therefore, in the transmission line 501 in the present embodiment, By arranging the ground layer 513 at that portion, an image line structure is obtained, and the electromagnetic wave distribution is virtually the same as the transmission line 1 of the comparative example. As a result, the same transmission characteristics as those of the transmission line 1 of the comparative example are realized with a half-thickness structure.
  • this transmission line 501 has a through-hole structure and a laminated structure of dielectric layers, and as a line propagating in the LSM mode, has a transmission capacity equal to or higher than that of a conventional NRD guide.
  • Transmission characteristics are realized.
  • the second dielectric layer 512 having a relatively high dielectric constant is sandwiched between the first dielectric layer 511 and the ground layer 513.
  • the first and second through holes 521 and 522 pass through the first and second dielectric layers 511 and 512, and are arranged in a row so that one end is connected to the ground layer 513. Therefore, it can be manufactured at a lower cost and with higher accuracy than the conventional NRD guide, and the same transmission characteristics as the NRD guide can be realized.
  • ground layer 513 is laminated on the surface of the second dielectric layer 512 opposite to the laminated surface of the first dielectric layer 511, the configuration of the image line is achieved. Thinning can be achieved. Further, since the ground layer 513 is provided, for example, when coupling with another transmission path, coupling is easily performed at that portion, which is advantageous in terms of coupling.
  • FIGS. 17 and 18 show a configuration example of the transmission line 502 according to the sixth embodiment of the present invention.
  • the transmission line 502 is a conductor made of metal on the entire surface of the first dielectric layer 511 opposite to the laminated surface of the second dielectric layer 512, compared to the configuration of the transmission line 501 shown in FIG.
  • a layer 531 is stacked.
  • the conductor layer 531 can be formed, for example, by attaching a plate-like metal to the surface of the first dielectric layer 511. Alternatively, a metal layer may be formed by a printing method.
  • the conductor layer 531 functions as an electromagnetic wave shielding plate, and propagation of unnecessary electromagnetic wave components that leak out to the outside is prevented.
  • the conductor layer 531 is provided on the entire surface of the first dielectric layer 511, leakage of unnecessary electromagnetic waves to the outside or Propagation can be reliably prevented.
  • FIG. 11 that are substantially the same as those in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • a part of the surface of the first dielectric layer 511 is applied.
  • a conductor layer is provided.
  • FIG. 19 shows a configuration of transmission line 503 according to the first configuration example of the present embodiment.
  • the transmission line 503 is different from the configuration of the transmission line 501 shown in FIG. 11 in that a metal is formed on a part of the surface of the first dielectric layer 511 opposite to the laminated surface of the second dielectric layer 512.
  • Conductive layers 531A and 531B that also have force are laminated. More specifically, on the surface of the first dielectric layer 511, conductor layers 531A and 531B are formed in a region outside the region sandwiched between the rows of the first and second through holes 521 and 522. .
  • Conductor layers 531A and 531B For example, it can be formed by applying a metal by a printing method.
  • the transmission line 501 shown in FIG. 11 electromagnetic waves leaking outside from the region sandwiched between the rows of the first and second through holes 521 and 522 are further out of the region. It is also conceivable that the second dielectric layers 511 and 512 penetrate and propagate as unnecessary electromagnetic wave components.
  • the conductor layers 531A and 531B function as electromagnetic wave shielding plates, and propagation of unnecessary electromagnetic wave components 541 and 542 entering such first and second dielectric layers 511 and 512 is prevented. Is prevented.
  • FIG. 20 shows a configuration of transmission line 504 according to the second configuration example of the present embodiment.
  • the transmission line 504 is arranged on the surface of the first dielectric layer 511 in a row of first and second through holes 521 and 522.
  • the conductor layer 531C is laminated on the inner region sandwiched between the layers.
  • the conductor layer 531C can be formed, for example, by applying a metal by a printing method.
  • the conductor layer 531C functions as a shielding plate for electromagnetic waves, and in the same way as the transmission line 502 shown in Figs. 17 and 18, the first and second through-holes 521 and 522 are arranged. Propagation of unnecessary electromagnetic wave components leaking outside from the region sandwiched between the two is prevented.
  • the conductor layer is provided on a part of the surface of the first dielectric layer 511, unnecessary electromagnetic wave leakage to the outside is possible. E! / Or transmission can be reliably prevented.
  • FIG. 21A shows a first configuration example of the transmission line according to the eighth embodiment of the present invention.
  • through-hole-like air holes 523 are formed in a region between the first and second through-holes 521 and 522 in the first dielectric layer 511. A plurality of them may be formed at intervals.
  • the air holes 523 are not metallized inside.
  • the inside of the first dielectric layer 511 partially becomes an air layer, and thus the dielectric constant decreases in that portion, and apparently the entire first dielectric layer 511 As a result, the dielectric constant decreases.
  • the difference in dielectric constant with the second dielectric layer 512 can be increased, and the transmission characteristics can be further improved.
  • FIG. 21B shows a second configuration example of the transmission line according to the present embodiment.
  • the air holes 523 may not reach the surface of the second dielectric layer 512 and may be formed only partway through the first dielectric layer 511.
  • the shape of the air hole is not limited to a circle, and may be any shape.
  • the air layer formed in the first dielectric layer 511 is not limited to a through-hole shape, and for example, the central portion of the surface of the layer may be partially scraped off.
  • an air layer may also be formed in the transmission lines according to the sixth and seventh embodiments.
  • the transmission line of the present invention is not limited to a straight line but may be a curved line.
  • the transmission line in FIG. 1 is curved, as shown in FIG. 22, if the first and second through holes 21, 22 are curved along the direction S in which the electromagnetic wave is desired to propagate, good. Since only the position where the through hole is formed is changed, a structurally curved transmission line can be easily manufactured.

Landscapes

  • Waveguides (AREA)

Abstract

【課題】 従来構造のNRDガイドに比べて安価で高精度に製造でき、かつ、NRDガイドと同等以上の伝送特性を実現することができるようにした伝送線路を提供する。 【解決手段】 伝送線路1は、第1および第2の誘電体層11,12と、第1および第2の誘電体層11,12に挟まれるように積層された第3の誘電体層13と、第1~第3の誘電体層11~13を貫通する複数の第1のスルーホール21および複数の第2のスルーホール22とを備える。中間層である第3の誘電体層13は、第1および第2の誘電体層11,12の誘電率ε2よりも、相対的に高い誘電率ε1を有している。第1および第2のスルーホール21,22の列によって挟まれた領域内において、LSM01モードの電磁波のほとんどが、相対的に誘電率の高い第3の誘電体層13内を伝搬する。

Description

明 細 書
伝送線路
技術分野
[0001] 本発明は、例えばマイクロ波やミリ波の伝搬に用いられる伝送線路に関する。
背景技術
[0002] マイクロ波帯やミリ波帯の信号を伝送する伝送線路として、非放射性誘電体線路 (N onradiative Dielectric Waveguide;以下、 NRDガイドという。)カ知られている。 NRD ガイドは、図 23Aに示したように、互いに対向配置された上側金属板 101および下側 金属板 102と、それらの金属板 101, 102に挟まれた誘電体線路 103とによって構成 される。この NRDガイドでは、電磁波信号が誘電体線路 103内に伝搬される。この N RDガイドによれば、従来の誘電体線路 (マイクロストリップライン等)に比べて、線路 の曲がり部分や不連続部分での不要放射を抑制できるので、極めて高性能な誘電 体線路を実現できる。
[0003] ここで、 NRDガイドの伝送モードには、大別して LSMモードと LSEモードとがある。
図 23A,図 23Bにはそれぞれ、 LSM モードにおける電界 E (LSM )の分布、およ
01 01
び磁界 H (LSM )の分布を模式的に示す。 LSM モードにおいては、電磁波の伝
01 01
搬方向(図の z方向)に平行、かつ上下の金属板 101, 102に垂直な面内にのみ磁 界ベクトル Hが存在する。一方、図 24A,図 24Bにはそれぞれ、 LSE モードにおけ
01
る電界 E (LSE )の分布、および磁界 H (LSE )の分布を模式的に示す。 LSE モ
01 01 01 ードにおいては、伝搬方向に対して平行、かつ上下の金属板 101, 102に垂直な面 内にのみ電界ベクトル Eが存在する。
[0004] 通常、 LSMモードと LSEモードのうち、 LSMモードの方が励振が容易でかつ低損 失であることから、実用的には LSMモードが動作モードとして選ばれる。この場合、 L SEモードは不要な伝送モードとなるため伝搬しな 、ようにする必要がある。特許文献 1には、 NRDガイドにおいて LSEモードを遮断するために、誘電体線路中に導体ピ ンを設ける方法や、誘電体線路中に串状パターンからなる導体ホイルを設ける方法 が記載されている(特許文献 1の図 1、図 14等)。 特許文献 1 :特開平 9— 219608号公報
発明の開示
[0005] し力しながら、特許文献 1に記載の方法では加工が複雑になり、製造性の点で問題 がある。また、従来の NRDガイド自体の構造も、構造的強度を保っためには上下の 金属板 101, 102を支持する構造が別途必要で、製造が難しいという問題がある。さ らに金属板 101, 102と誘電体線路 103とを隙間無く密着させなければならず、加工 精度を出すのが難しいという問題がある。密着が不十分であると、伝搬特性が変わり 所望の特性が得られなくなるおそれがある。
[0006] 本発明は力かる問題点に鑑みてなされたもので、その目的は、従来構造の NRDガ イドに比べて安価で高精度に製造でき、かつ、従来の NRDガイドと同等以上の伝送 特性を実現することができるようにした伝送線路を提供することにある。
[0007] 本発明の第 1の観点に係る伝送線路は、所定の誘電率を有する第 1および第 2の 誘電体層と、第 1および第 2の誘電体層の誘電率よりも大きい誘電率を有し、第 1およ び第 2の誘電体層に挟まれるように積層された第 3の誘電体層と、第 1、第 2および第 3の誘電体層を貫通すると共に、列状に配設された複数の第 1のスルーホールと、第 1、第 2および第 3の誘電体層を貫通し、かつ第 1のスルーホールに並列的に配設さ れた複数の第 2のスルーホールとを備えたものである。
[0008] 本発明の第 1の観点に係る伝送線路において、第 1および第 2のスルーホールは 例えば、内壁面が導電体で覆われ、 LSMモードと LSEモードで伝搬される電磁波の うち、 LSMモードの電磁波に対してのみ擬似的な導体壁として機能するものである。
[0009] 本発明の第 1の観点に係る伝送線路では、第 1および第 2のスルーホール力 伝搬 対象の電磁波に対し擬似的な導体壁として機能する。そして、第 1および第 2のスル 一ホールの列によって挟まれた領域内において、伝搬対象の電磁波のほとんどが、 相対的に誘電率の高い第 3の誘電体層内を伝搬する。これによつて、従来の NRDガ イドと同等以上の伝送特性を実現する。また、上下の金属板の間に誘電体線路を挟 み込む従来構造の NRDガイドに比べ、構造的強度および製造性の点で有利となる
[0010] 本発明の第 1の観点に係る伝送線路はまた、第 1および第 2の誘電体層における、 第 3の誘電体層の積層面とは反対側の表面全体に積層された導体層をさらに備えて いても良い。
[0011] 本発明の第 1の観点に係る伝送線路はまた、第 1および第 2の誘電体層における、 第 3の誘電体層の積層面とは反対側の表面の一部の領域に積層された導体層をさ らに備えていても良い。
この場合、導体層は例えば、第 1および第 2の誘電体層の表面において、第 1およ び第 2のスルーホールの列によって挟まれた領域の外側に形成することができる。ま た逆に、導体層が、第 1および第 2の誘電体層の表面において、第 1および第 2のス ルーホールの列によって挟まれた領域内に形成されて 、ても良 、。
[0012] 本発明の第 1の観点に係る伝送線路において、第 1および第 2の誘電体層の表面 全体または一部に導体層を設けた場合には、外部への不要な電磁波の漏えいもしく は伝搬が防止される。
[0013] 本発明の第 1の観点に係る伝送線路はさらに、第 1および第 2の誘電体層の少なく とも一方における第 1および第 2のスルーホールの列によって挟まれた領域内に、部 分的に空気層が形成されて!ヽても良い。
この場合、第 1および第 2の誘電体層と第 3の誘電体層との誘電率差を大きくでき、 伝送特性がより向上する。
[0014] 本発明の第 2の観点に係る伝送線路は、所定の誘電率を有する第 1の誘電体層と 、第 1の誘電体層の誘電率よりも大きい誘電率を有し、第 1の誘電体層の一方の面側 に積層された第 2の誘電体層と、第 2の誘電体層における、第 1の誘電体層の積層面 とは反対側の表面に積層された導体よりなるグランド層と、第 1および第 2の誘電体層 を貫通すると共に一端がグランド層に接続され、かつ列状に配設された複数の第 1の スルーホールと、第 1および第 2の誘電体層を貫通すると共に一端がグランド層に接 続され、かつ第 1のスルーホールに並列的に配設された複数の第 2のスルーホール とを備えたものである。
[0015] 本発明の第 2の観点に係る伝送線路において、第 1および第 2のスルーホールは 例えば、内壁面が導電体で覆われ、 LSMモードと LSEモードで伝搬される電磁波の うち、 LSMモードの電磁波に対してのみ擬似的な導体壁として機能するものである。 [0016] 本発明の第 2の観点に係る伝送線路では、第 1および第 2のスルーホール力 伝搬 対象の電磁波に対し擬似的な導体壁として機能する。そして、第 1および第 2のスル 一ホールの列によって挟まれた領域内において、伝搬対象の電磁波のほとんどが、 相対的に誘電率の高い第 2の誘電体層内を伝搬する。これによつて、従来の NRDガ イドと同等以上の伝送特性を実現する。また、上下の金属板の間に誘電体線路を挟 み込む従来構造の NRDガイドに比べ、構造的強度および製造性の点で有利となる 。さらに、第 2の誘電体層における第 1の誘電体層の積層面とは反対側の表面にダラ ンド層を積層することで、イメージ線路の構成となり、薄型化が図られる。
[0017] 本発明の第 2の観点に係る伝送線路はまた、第 1の誘電体層における、第 2の誘電 体層の積層面とは反対側の表面全体に積層された導体層をさらに備えていても良い
[0018] 本発明の第 2の観点に係る伝送線路はまた、第 1の誘電体層における、第 2の誘電 体層の積層面とは反対側の表面の一部の領域に積層された導体層をさらに備えて いても良い。
この場合、導体層は例えば、第 1の誘電体層の表面において、第 1および第 2のス ルーホールの列によって挟まれた領域の外側に形成することができる。また逆に、導 体層が、第 1の誘電体層の表面において、第 1および第 2のスルーホールの列によつ て挟まれた領域内に形成されて!ヽても良 、。
[0019] 本発明の第 2の観点に係る伝送線路において、第 1の誘電体層の表面全体または 一部に導体層を設けた場合には、外部への不要な電磁波の漏えいもしくは伝搬が防 止される。
[0020] 本発明の第 2の観点に係る伝送線路はさらに、第 1の誘電体層における第 1および 第 2のスルーホールの列によって挟まれた領域内に、部分的に空気層が形成されて いても良い。
この場合、第 1の誘電体層と第 2の誘電体層との誘電率差を大きくでき、伝送特性 力 り向上する。
[0021] 本発明の第 1の観点に係る伝送線路によれば、相対的に誘電率の高い第 3の誘電 体層を、第 1および第 2の誘電体層に挟まれるように積層し、かつ第 1および第 2のス ルーホールを第 1、第 2および第 3の誘電体層を貫通するように列状に配設するよう にしたので、従来構造の NRDガイドに比べて安価で高精度に製造でき、かつ、 NR Dガイドと同等の伝送特性を実現することができる。
[0022] 本発明の第 1の観点に係る伝送線路において、特に、第 1および第 2の誘電体層に おける、第 3の誘電体層の積層面とは反対側の表面の全体または一部に導体層を設 けるようにした場合には、外部への不要な電磁波の漏えいもしくは伝搬を確実に防止 することができる。
[0023] 本発明の第 2の観点に係る伝送線路によれば、相対的に誘電率の高い第 2の誘電 体層を、第 1の誘電体層とグランド層とに挟まれるように積層し、かつ第 1および第 2 のスルーホールを第 1、および第 2の誘電体層を貫通し、一端がグランド層に接続さ れるように列状に配設するようにしたので、従来構造の NRDガイドに比べて安価で 高精度に製造でき、かつ、 NRDガイドと同等の伝送特性を実現することができる。特 に、第 2の誘電体層における第 1の誘電体層の積層面とは反対側の表面にグランド 層を積層することで、全体としてイメージ線路の構成となるようにしたので、薄型化を 図ることができる。
[0024] 本発明の第 2の観点に係る伝送線路において、特に、第 1の誘電体層における、第 2の誘電体層の積層面とは反対側の表面の全体または一部に導体層を設けるよう〖こ した場合には、外部への不要な電磁波の漏えいもしくは伝搬を確実に防止すること ができる。
図面の簡単な説明
[0025] [図 1]本発明の第 1の実施の形態に係る伝送線路の全体構成を示す斜視図である。
[図 2]本発明の第 1の実施の形態に係る伝送線路の断面構造を、 LSM モードの電
01 界分布、および磁界分布と共に示した図である。
[図 3]本発明の第 1の実施の形態に係る伝送線路内における LSM モードの磁界分
01
布の状態を示した図である。
[図 4A]本発明の第 1の実施の形態に係る伝送線路内におけるスルーホールの作用 を、 LSM モードの磁界の分布と共に説明した図である。
01
[図 4B]本発明の第 1の実施の形態に係る伝送線路内におけるスルーホールの作用 を、 LSE モードの磁界の分布と共に説明した図である。
01
[図 5]NRDガイドにおける電磁波のエネルギー密度分布を説明した図である。
圆 6]本発明の第 2の実施の形態に係る伝送線路の全体構成を示す斜視図である。 圆 7]本発明の第 2の実施の形態に係る伝送線路の断面構造を示した図である。 圆 8]本発明の第 3の実施の形態に係る伝送線路の第 1の構成例を示した図である。 圆 9]本発明の第 3の実施の形態に係る伝送線路の第 2の構成例を示した図である。 圆 10A]本発明の第 4の実施の形態に係る伝送線路の第 1の構成例を示した図であ る。
圆 10B]本発明の第 4の実施の形態に係る伝送線路の第 2の構成例を示した図であ る。
[図 11]本発明の第 5の実施の形態に係る伝送線路の全体構成を示す斜視図である。 圆 12]本発明の第 5の実施の形態に係る伝送線路の断面構造を、 LSM モードの
01 電界分布、および磁界分布と共に示した図である。
[図 13]本発明の第 5の実施の形態に係る伝送線路内における LSM モードの磁界
01
分布の状態を示した図である。
[図 14A]本発明の第 5の実施の形態に係る伝送線路内におけるスルーホールの作用 を、 LSM モードの磁界の分布と共に説明した図である。
01
[図 14B]本発明の第 5の実施の形態に係る伝送線路内におけるスルーホールの作用 を、 LSE モードの磁界の分布と共に説明した図である。
01
[図 15]NRDガイドにおける電磁波のエネルギー密度分布を説明した図である。 圆 16]本発明の第 5の実施の形態に係る伝送線路に対する比較例の伝送線路の断 面構造を、 LSM モードの電界分布、および磁界分布と共に示した図である。
01
[図 17]本発明の第 6の実施の形態に係る伝送線路の全体構成を示す斜視図である。 圆 18]本発明の第 6の実施の形態に係る伝送線路の断面構造を示した図である。 圆 19]本発明の第 7の実施の形態に係る伝送線路の第 1の構成例を示した図である 圆 20]本発明の第 7の実施の形態に係る伝送線路の第 2の構成例を示した図である [図 21A]本発明の第 8の実施の形態に係る伝送線路の第 1の構成例を示した図であ る。
[図 21B]本発明の第 8の実施の形態に係る伝送線路の第 2の構成例を示した図であ る。
[図 22]伝送線路を曲げる場合の構成例を示した図である。
[図 23A]従来の NRDガイドの構造を、 LSM モードにおける電界分布と共に示した
01
図である。
[図 23B]従来の NRDガイドの構造を、 LSM モードにおける磁界分布と共に示した
01
図である。
[図 24A]従来の NRDガイドの構造を、 LSE モードにおける電界分布と共に示した
01
図である。
[図 24B]従来の NRDガイドの構造を、 LSE モードにおける磁界分布と共に示した図
01
である。
発明を実施するための最良の形態
[0026] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第 1の実施の形態]
[0027] 図 1および図 2は、本発明の第 1の実施の形態に係る伝送線路 1の一構成例を示し ている。この伝送線路 1は、第 1および第 2の誘電体層 11, 12と、第 1および第 2の誘 電体層 11, 12に挟まれるように積層された第 3の誘電体層 13と、第 1〜第 3の誘電 体層 11〜13を貫通する複数の第 1のスルーホール 21および複数の第 2のスルーホ ール 22とを備えている。
[0028] 第 1〜第 3の誘電体層 11〜13は、電磁波の伝搬方向 Sに対し垂直方向に積層さ れている。中間層である第 3の誘電体層 13は、上下層である第 1および第 2の誘電体 層 11, 12の誘電率 ε 2よりも、相対的に高い誘電率 ε 1を有している。後述するよう に、第 1および第 2の誘電体層 11, 12と第 3の誘電体層 13は、できるだけ大きい誘 電率差を有している方が、第 1および第 2の誘電体層 11, 12において不要な電場波 を減衰させ、また第 3の誘電体層 13内に電場波が伝搬され易くなるので望ましい。
[0029] なお、第 3の誘電体層 13の誘電率 ε 1よりも低い誘電率を有している限りにおいて 、第 1および第 2の誘電体層 11, 12の誘電率が互いに異なっていても良い。例えば 他の伝送路との結合を行う場合には、第 1および第 2の誘電体層 11, 12のうち、結合 を行う層の誘電率を高めに設定しても良い。また、第 1および第 2の誘電体層 11, 12 の厚みは互いに異なって!/、ても良!、が、同じ厚みである方が上下方向に対称的な構 造となり、応力のバランスが取れて構造的な強度が高くなるので好ましい。
[0030] 第 1のスルーホール 21は、電磁波の伝搬方向 Sに複数、列状に配設されている。
第 2のスルーホール 22も同様に複数、列状に配設され、第 1のスルーホール 21に並 列的に配設されている。第 1および第 2のスルーホール 21, 22の内壁面は金属など の導電体で覆われている。または、内部に金属などの導電体が充填されていても良 い。第 1および第 2のスルーホール 21, 22の断面形状は、円形に限らず、多角形ま たは楕円等、他の形状であっても良い。第 1および第 2のスルーホール 21, 22は、伝 搬対象の電磁波が漏れ出さないよう、所定値以下の間隔 (例えば隣り合う各スルーホ ール間の間隔 Dと各スルーホールの直径 dとが同じとなるような間隔)で設けられてお り、伝搬対象の電磁波に対し擬似的な導体壁として機能している。特に、後述するよ うに、 LSM モードの電磁波に対して良好に擬似的な導体壁として機能する。
01
[0031] 次に、この伝送線路 1の作用を説明する。
[0032] この伝送線路 1は、図 12 (A)の従来構造の NRDガイドと比較すると、図 12 (A)の z 方向を軸として 90° 回転させた状態において、誘電体線路 103の上下方向に第 1 および第 2の誘電体層 11, 12を積層し、金属板 101, 102をスルーホール 21, 22で 形成したような構造となっている。従って、この伝送線路 1も、 NRDガイドと同様に LS M モードを伝搬する線路として機能する。すなわち、この伝送線路 1では、第 1およ
01
び第 2のスルーホール 21, 22の列によって挟まれた領域内において、伝搬対象であ る LSM モードの電磁波のほとんどが、後述する理由により相対的に誘電率の高い
01
第 3の誘電体層 13内を伝搬する。
[0033] 図 2および図 3は、この伝送線路 1内における LSM モードの電界 E (LSM )の分
01 01 布、および磁界 H (LSM )の分布を模式的に示している。図示したように、 LSM
01 01 モードでの磁界 H (LSM )は、第 1および第 2のスルーホール 21, 22に直交する面
01
内に環状に分布している。 [0034] ここで、図 4A,図 4Bに、第 1のスルーホール 21の近辺における LSM モードの磁
01 界 H (LSM )の分布、および LSE モードの磁界 H (LSE )の分布を模式的に示
01 01 01
す。この伝送線路 1では、第 1のスルーホール 21に対して磁界 Hが直交する電磁波、 すなわち磁界 H (LSM )が直交する LSM モードの電磁波に対しては第 1のスル
01 01
一ホール 21が擬似的な金属壁として機能する。一方、第 1のスルーホール 21に対し て磁界 Hが平行となる電磁波、すなわち磁界 H (LSE )が平行となる LSE モードの
01 01 電磁波に対しては第 1のスルーホール 21が金属壁として機能せず、外部に電磁波 が漏れ出すように機能する。なお、第 2のスルーホール 22についても同様である。す なわち、この伝送線路 1では、第 1および第 2のスルーホール 21, 22によって挟まれ た領域内では、 LSM モードと LSE モードのうち、主として LSM モードの電磁波
01 01 01
のみが伝搬される。なお、外部に漏れ出す LSE モードの電磁波が問題となる場合
01
には、伝送線路 1の側面周囲に電波吸収体を設けるなどすれば良い。
[0035] 次に、第 1〜第 3の誘電体層 11〜13の積層方向での電磁波の分布を考察する。
空間に存在する電磁波のエネルギー密度 Vは誘電率 ε、電界ベクトル Εを用いて(1 )式で表される。また、電界の大きさ |Ε|は誘電率 εに反比例するので、 (2)式が成り 立つ。すなわち、(3)式のように、電磁波のエネルギー密度 Vは、誘電率 εに反比例 する。これは、誘電率 εの大きい空間は、エネルギー密度 Vが下がることを意味する
V= ε |Ε|2 ……(1)
|E|oc l/ £ …… (2)
V^ l/ ε …… (3)
[0036] ここで、図 5に、従来の NRDガイドにおける電磁波のエネルギー密度分布 110を模 式的に示す。自然界のエネルギーは、エネルギーの低い方向に拡散する性質がある 。すなわち電磁波は、エネルギー密度 Vの低い誘電率 εの大きい空間に拡散する。 従って、例えば従来の NRDガイドのように誘電体線路 103の左右方向が空気層であ れば、電磁波は誘電率 εの低い空気中に存在するよりは誘電率 εの高い誘電体線 路 103の部分を通ろうとする。これにより、 NRDガイド内で電磁波が伝搬されるとき、 その電磁波のエネルギー分布 110は図 5に示したように、誘電体線路 103の部分で 高ぐ左右方向に指数関数的に減衰するような分布となる。
[0037] 一方、本実施の形態における伝送線路 1では、第 3の誘電体層 13が相対的に高い 誘電率 ε 1を有しているので、入力された電磁波の多くは第 3の誘電体層 13を通り、 上下層の第 1および第 2の誘電体層 11, 12では電磁波が指数関数的に減衰する。 そして、その減衰の度合いは第 1および第 2の誘電体層 11, 12と第 3の誘電体層 13 との誘電率差に依存する。従って、大きい誘電率差を有している方が、第 1および第 2の誘電体層 11, 12において不要な電場波を減衰させ、また第 3の誘電体層 13内 に電場波が伝搬され易くなるので望ましいと言える。なお、理論的には第 1および第 2の誘電体層 11, 12を空気層とした方が、第 3の誘電体層 13との誘電率差を大きく でき、伝送特性上好ましい。し力しながらその場合、第 1および第 2のスルーホール 2 1, 22を導体ピンなどで構成する必要があり、また構造的な強度を保つことが難しくな るので構造および製造上、現実的ではない。
[0038] 以上のようにして、この伝送線路 1では、スルーホール構造と誘電体層の積層構造 とにより、 LSM モードを伝搬する線路として、従来の NRDガイドと同等以上の伝送
01
特性が実現される。また、外周全体が金属で囲まれている導波管に比べて、金属層 が少な 1ヽので、導体損失が少なく伝送特性に優れて!/ヽる。
[0039] 以上説明したように、本実施の形態によれば、相対的に誘電率の高い第 3の誘電 体層 13を、第 1および第 2の誘電体層 11, 12に挟まれるように積層し、かつ第 1およ び第 2のスルーホール 21, 22を第 1〜第 3の誘電体層 11〜13を貫通するように列状 に配設するようにしたので、従来構造の NRDガイドに比べて安価で高精度に製造で き、かつ、 NRDガイドと同等の伝送特性を実現することができる。
[第 2の実施の形態]
[0040] 次に、本発明の第 2の実施の形態を説明する。なお、図 1の構成と実質的に同一の 部分には同一の符号を付し、適宜説明を省略する。
[0041] 図 6および図 7は、本発明の第 2の実施の形態に係る伝送線路 2の一構成例を示し ている。この伝送線路 2は、図 1に示した伝送線路 1の構成に対し、第 1および第 2の 誘電体層 11, 12における、第 3の誘電体層 13の積層面とは反対側の表面全体に金 属からなる第 1および第 2の導体層 31, 32を積層したものである。第 1および第 2の 導体層 31, 32は、例えば板状の金属を第 1および第 2の誘電体層 11, 12の表面に 貼り付けることで形成することができる。また、印刷法により金属の層を形成するように しても良い。
[0042] 上述したように、図 1に示した伝送線路 1では、入力された電磁波の多くは第 3の誘 電体層 13を通り、上下層の第 1および第 2の誘電体層 11, 12では電磁波が指数関 数的に減衰する。しかしながら、十分減衰しきれずに外部に漏れ出す電磁波成分が 生ずる場合も考えられる。本実施の形態に係る伝送線路 2では、第 1および第 2の導 体層 31, 32が電磁波の遮蔽版として機能し、そのような外部に漏れ出す不要な電磁 波成分の伝搬が防止される。
[0043] 以上説明したように、この第 2の実施の形態によれば、第 1および第 2の誘電体層 1 1, 12の表面全体に第 1および第 2の導体層 31, 32を設けるようにしたので、外部へ の不要な電磁波の漏え 、もしくは伝搬を確実に防止することができる。
[第 3の実施の形態]
[0044] 次に、本発明の第 3の実施の形態を説明する。なお、図 1の構成と実質的に同一の 部分には同一の符号を付し、適宜説明を省略する。図 6および図 7の構成例では、 第 1および第 2の誘電体層 11, 12の表面全体に第 1および第 2の導体層 31, 32を 設けるようにした力 本実施の形態は、第 1および第 2の誘電体層 11, 12の表面の一 部に導体層を設けるようにしたものである。
[0045] 図 8は、本実施の形態の第 1の構成例に係る伝送線路 3の構成を示している。この 伝送線路 3は、図 1に示した伝送線路 1の構成に対し、第 1および第 2の誘電体層 11 , 12における、第 3の誘電体層 13の積層面とは反対側の表面の一部に金属力もなる 第 1の導体層 31A, 31Bおよび第 2の導体層 32A, 32Bを積層したものである。より 詳しくは、第 1および第 2の誘電体層 11, 12の表面において、第 1および第 2のスル 一ホール 21, 22の列によって挟まれた領域の外側の領域に、第 1の導体層 31A, 3 1Bおよび第 2の導体層 32A, 32Bが形成されている。第 1の導体層 31A, 31Bおよ び第 2の導体層 32A, 32Bは、例えば印刷法により金属を塗布することで形成するこ とがでさる。
[0046] 図 1に示した伝送線路 1では、第 1および第 2のスルーホール 21, 22の列によって 挟まれた領域内力も外部に漏れ出した電磁波が、さらにその領域外において第 1〜 第 3の誘電体層 11〜13に侵入し、不要な電磁波成分として伝搬されてしまう場合も 考えられる。この伝送線路 3では、第 1の導体層 31A, 31Bおよび第 2の導体層 32A , 32Bが電磁波の遮蔽版として機能し、そのような第 1〜第 3の誘電体層 11〜13に 侵入する不要な電磁波成分 41, 42の伝搬が防止される。
[0047] 図 9は、本実施の形態の第 2の構成例に係る伝送線路 4の構成を示している。この 伝送線路 4は、図 8に示した第 1の構成例に係る伝送線路 3とは逆に、第 1および第 2 の誘電体層 11, 12の表面において、第 1および第 2のスルーホール 21, 22の列に よって挟まれた内側の領域に、第 1の導体層 31Cおよび第 2の導体層 32Cを積層し たものである。第 1および第 2の導体層 31C, 32Cは、例えば印刷法により金属を塗 布することで形成することができる。
[0048] この伝送線路 4では、第 1および第 2の導体層 31C, 32Cが電磁波の遮蔽版として 機能し、図 6および図 7に示した伝送線路 2と同様、第 1および第 2のスルーホール 2 1 , 22の列によって挟まれた領域内から外部に漏れ出す不要な電磁波成分の伝搬 が防止される。
[0049] 以上説明したように、この第 3の実施の形態によれば、第 1および第 2の誘電体層 1 1, 12の表面の一部に導体層を設けるようにしたので、外部への不要な電磁波の漏 ぇ 、もしくは伝搬を確実に防止することができる。
[第 4の実施の形態]
[0050] 次に、本発明の第 4の実施の形態を説明する。なお、図 1の構成と実質的に同一の 部分には同一の符号を付し、適宜説明を省略する。上述したように図 1の伝送線路 では、第 1および第 2の誘電体層 11, 12と第 3の誘電体層 13との誘電率差が大きい 方が伝送特性上、好ましいが、この誘電率差を大きくするために、第 1および第 2の 誘電体層 11 , 12の内部に空気層を形成するようにしても良!、。
[0051] 図 1 OAは本発明の第 4の実施の形態に係る伝送線路の第 1の構成例を示して!/、る 。図 10Aに示したように、第 1および第 2の誘電体層 11, 12における、第 1および第 2 のスルーホール 21, 22の列によって挟まれた領域内に、スルーホール状の第 1およ び第 2の空気孔 23, 24を所定の間隔で複数、形成するようにしても良い。第 1および 第 2の空気孔 23, 24は、擬似的な導体壁として機能する第 1および第 2のスルーホ ール 21, 22とは異なり、内部には金属加工などはなされていない。第 1および第 2の 空気孔 23, 24が設けられていることにより、第 1および第 2の誘電体層 11, 12の内 部が部分的に空気層となるので、その部分では誘電率が下がり、見掛け上、第 1およ び第 2の誘電体層 11, 12の全体としての誘電率が下がる。これにより、第 3の誘電体 層 13との誘電率差をより大きくでき、伝送特性がより向上する。
[0052] 図 10Bは本実施の形態に係る伝送線路の第 2の構成例を示している。図 10Bに示 したように、第 1および第 2の空気孔 23, 24が第 3の誘電体層 13の表面にまで達して おらず、第 1および第 2の誘電体層 11, 12の途中までしか形成されていなくとも良い 。また、第 1および第 2の誘電体層 11, 12のいずれか一方にのみ空気孔を形成する ようにしても良い。また、空気孔の形状は円形に限らず、どのような形状であっても良 い。さらに、第 1および第 2の誘電体層 11, 12に形成する空気層はスルーホール状 のものに限らず、例えば層の表面の中央部分を部分的に削り取るなどしても良い。
[0053] なお、第 2および第 3の実施の形態に係る伝送線路についても同様に空気層を形 成するようにしても良い。
[第 5の実施の形態]
[0054] 次に、本発明の第 5の実施の形態を説明する。本実施の形態は、上記第 1の実施 の形態に係る伝送線路 1に対して薄型化を図ったものである。図 11および図 12は、 本実施の形態に係る伝送線路 501の一構成例を示している。この伝送線路 501は、 第 1の誘電体層 511と、第 1の誘電体層 511の一方の面側に積層された第 2の誘電 体層 512と、第 2の誘電体層 512における、第 1の誘電体層 511の積層面とは反対 側の表面に積層された導体よりなるグランド層 513とを備えている。この伝送線路 50 1はまた、第 1および第 2の誘電体層 511, 512を貫通すると共に一端がグランド層 5 13に接続された、複数の第 1のスルーホール 521および複数の第 2のスルーホール 522とを備えている。グランド層 513は、例えば板状の金属を第 2の誘電体層 512の 表面に貼り付けることで形成することができる。また、印刷法により金属の層を形成す るようにしても良い。なお、図では、グランド層 513を第 2の誘電体層 512の片面側全 体に積層している力 少なくとも第 1および第 2のスルーホール 521, 522との接続部 分と第 1および第 2のスルーホール 521, 522の列によって挟まれた領域内にグラン ド層 513が積層されて!、れば良!、。
[0055] 第 1および第 2の誘電体層 511, 512、ならびにグランド層 513は、電磁波の伝搬 方向 Sに対し垂直方向に積層されている。中間層である第 2の誘電体層 512は、上 層である第 1の誘電体層 511の誘電率 ε 2よりも、相対的に高い誘電率 ε 1を有して いる。後述するように、第 1の誘電体層 511と第 2の誘電体層 512は、できるだけ大き V、誘電率差を有して 、る方が、第 1の誘電体層 511にお 、て不要な電場波を減衰さ せ、また第 2の誘電体層 512内に電場波が伝搬され易くなるので望ましい。
[0056] 第 1のスルーホール 521は、電磁波の伝搬方向 Sに複数、列状に配設されている。
第 2のスルーホール 522も同様に複数、列状に配設され、第 1のスルーホール 521に 並列的に配設されている。第 1および第 2のスルーホール 521, 522の内壁面は金属 などの導電体で覆われている。または、内部に金属などの導電体が充填されていて も良い。第 1および第 2のスルーホール 521, 522の断面形状は、円形に限らず、多 角形または楕円等、他の形状であっても良い。第 1および第 2のスルーホール 521, 522は、伝搬対象の電磁波が漏れ出さないよう、所定値以下の間隔 (例えば隣り合う 各スルーホール間の間隔 Dと各スルーホールの直径 dとが同じとなるような間隔)で設 けられており、伝搬対象の電磁波に対し擬似的な導体壁として機能している。特に、 後述するように、 LSM モードの電磁波に対して良好に擬似的な導体壁として機能
01
する。
[0057] 次に、この伝送線路 501の作用を説明する。
[0058] この伝送線路 501は、 NRDガイドと同様に LSM モードを伝搬する線路として機
01
能する。すなわち、この伝送線路 501では、第 1および第 2のスルーホール 521, 52 2の列によって挟まれた領域内において、伝搬対象である LSM モードの電磁波の
01
ほとんど力 後述する理由により相対的に誘電率の高い第 2の誘電体層 512内を伝 搬する。
[0059] 図 12および図 13は、この伝送線路 501内における LSM モードの電界 E (LSM
01 01
)の分布、および磁界 H (LSM )の分布を模式的に示している。図示したように、 LS
01
M モードでの磁界 H (LSM )は、第 1および第 2のスルーホール 521, 522に直交 する面内に環状に分布している。
[0060] ここで、図 14A, 図 14Bに、第 1のスルーホール 521の近辺における LSM モード
01 の磁界 H (LSM )の分布、および LSE モードの磁界 H (LSE )の分布を模式的
01 01 01
に示す。この伝送線路 501では、第 1のスルーホール 521に対して磁界 Hが直交す る電磁波、すなわち磁界 H (LSM )が直交する LSM モードの電磁波に対しては
01 01
第 1のスルーホール 521が擬似的な金属壁として機能する。一方、第 1のスルーホー ル 521に対して磁界 Hが平行となる電磁波、すなわち磁界 H (LSE )が平行となる L
01
SE モードの電磁波に対しては第 1のスルーホール 521が金属壁として機能せず、
01
外部に電磁波が漏れ出すように機能する。なお、第 2のスルーホール 522についても 同様である。すなわち、この伝送線路 501では、第 1および第 2のスルーホール 521 , 522によって挟まれた領域内では、 LSM モードと LSE モードのうち、主として L
01 01
SM モードの電磁波のみが伝搬される。なお、外部に漏れ出す LSE モードの電
01 01 磁波が問題となる場合には、伝送線路 501の側面周囲に電波吸収体を設けるなど すれば良い。
[0061] 次に、第 1および第 2の誘電体層 511, 512の積層方向での電磁波の分布を考察 するが、その前にまず、比較例として上記第 1の実施の形態に係る伝送線路 1 (図 1) における電磁波の分布を考察する。
[0062] 上記第 1の実施の形態でも説明したように、空間に存在する電磁波のエネルギー 密度 Vは誘電率 ε、電界ベクトル Εを用いて(1)式で表される。また、電界の大きさ |Ε| は誘電率 εに反比例するので、(2)式が成り立つ。すなわち、(3)式のように、電磁 波のエネルギー密度 Vは、誘電率 εに反比例する。これは、誘電率 εの大きい空間 は、エネルギー密度 Vが下がることを意味する。
V= ε |Ε|2 ……(1)
|E|oc l/ £ …… (2)
V^ l/ ε …… (3)
[0063] ここで、図 15に、従来の NRDガイドにおける電磁波のエネルギー密度分布 110を 模式的に示す。自然界のエネルギーは、エネルギーの低い方向に拡散する性質が ある。すなわち電磁波は、エネルギー密度 Vの低い誘電率 εの大きい空間に拡散す る。従って、例えば従来の NRDガイドのように誘電体線路 103の左右方向が空気層 であれば、電磁波は誘電率 εの低い空気中に存在するよりは誘電率 εの高い誘電 体線路 103の部分を通ろうとする。これにより、 NRDガイド内で電磁波が伝搬される とき、その電磁波のエネルギー分布 110は図 15に示したように、誘電体線路 103の 部分で高ぐ図示した対象面 200の左右方向に指数関数的に減衰するような分布と なる。
[0064] 一方、比較例としての図 1の伝送線路 1では、第 3の誘電体層 13が相対的に高い 誘電率 ε 1を有しているので、入力された電磁波の多くは第 3の誘電体層 13を通り、 図 16の断面図に示したように、上下層の第 1および第 2の誘電体層 11, 12では対象 面 300の上下方向に電磁波が指数関数的に減衰する。そして、その減衰の度合い は第 1および第 2の誘電体層 11 , 12と第 3の誘電体層 13との誘電率差に依存する。 従って、大きい誘電率差を有している方が、第 1および第 2の誘電体層 11, 12にお いて不要な電場波を減衰させ、また第 3の誘電体層 13内に電場波が伝搬され易くな るので望ましいと言える。
[0065] ところで、比較例としての図 1の伝送線路 1のように上下対象構造のデバイスは、対 象面 300 (図 16)がオープン(開放)になるモードとショート(短絡)になるモードとの 2 つに分解することができる。 LSM モードの場合、図 16に示すように対象面 300に
01
電界 E (LSM )が垂直に交わるモードなので、対象面 300がショートになるモードと
01
なる。すなわち、対象面 300をショートにして例えばその下側半分の層を取り去っても 特性は変わらない。本実施の形態における伝送線路 501では、この原理を利用して おり、その構造は、図 12および図 16を比較して分力るように、ちょうど図 16の対象面 300で第 3の誘電体層 13を切断し、その第 3の誘電体層 13の対象面 300にグランド 層 513を積層した構造となって 、る。
[0066] 本実施の形態における伝送線路 501でも上記と同様の原理で、第 2の誘電体層 51 2が相対的に高い誘電率 ε 1を有しているので、入力された電磁波の多くは第 2の誘 電体層 512を通り、上層の第 1の誘電体層 511では電磁波が指数関数的に減衰す る。そして、その減衰の度合いは第 1の誘電体層 511と第 2の誘電体層 512との誘電 率差に依存する。従って、大きい誘電率差を有している方が、第 1の誘電体層 511に ぉ ヽて不要な電場波を減衰させ、また第 2の誘電体層 512内に電場波が伝搬され易 くなるので望ましいと言える。なお、理論的には第 1の誘電体層 511を空気層とした 方が、第 2の誘電体層 12との誘電率差を大きくでき、伝送特性上好ましい。しかしな 力 Sらその場合、第 1および第 2のスルーホール 521, 522を導体ピンなどで構成する 必要があり、また構造的な強度を保つことが難しくなるので構造および製造上、現実 的ではない。
[0067] ここで、比較例としての図 1の伝送線路 1では、対象面 300を境界として鏡像 (ィメ一 ジ)的に電磁波が分布しているので、本実施の形態における伝送線路 501では、そ の部分にグランド層 513を配置して 、ることでイメージ線路の構造となり、その電磁波 の分布は仮想的には比較例の伝送線路 1と同様となる。これにより、比較例の伝送線 路 1と同様の伝送特性を厚みが半分の構造で実現している。
[0068] 以上のようにして、この伝送線路 501では、スルーホール構造と誘電体層の積層構 造とにより、 LSM モードを伝搬する線路として、従来の NRDガイドと同等以上の伝
01
送特性が実現される。また、外周全体が金属で囲まれている導波管に比べて、金属 層が少ないので、導体損失が少なく伝送特性に優れている。
[0069] 以上説明したように、本実施の形態によれば、相対的に誘電率の高い第 2の誘電 体層 512を、第 1の誘電体層 511とグランド層 513とに挟まれるように積層し、かつ第 1および第 2のスルーホール 521, 522を第 1および第 2の誘電体層 511, 512を貫 通し、一端がグランド層 513に接続されるように列状に配設するようにしたので、従来 構造の NRDガイドに比べて安価で高精度に製造でき、かつ、 NRDガイドと同等の伝 送特性を実現することができる。
[0070] さらに、第 2の誘電体層 512における第 1の誘電体層 511の積層面とは反対側の表 面にグランド層 513を積層することで、イメージ線路の構成となるようにしたので、薄 型化を図ることができる。また、グランド層 513を設けていることにより、例えば他の伝 送路との結合を行う場合には、その部分において結合を行い易く結合の点でも有利 となる。
[第 6の実施の形態]
[0071] 次に、本発明の第 6の実施の形態を説明する。本実施の形態は、上記第 5の実施 の形態に対する変形例である。なお、図 11の構成と実質的に同一の部分には同一 の符号を付し、適宜説明を省略する。
[0072] 図 17および図 18は、本発明の第 6の実施の形態に係る伝送線路 502の一構成例 を示している。この伝送線路 502は、図 11に示した伝送線路 501の構成に対し、第 1 の誘電体層 511における、第 2の誘電体層 512の積層面とは反対側の表面全体に 金属からなる導体層 531を積層したものである。導体層 531は、例えば板状の金属 を第 1の誘電体層 511の表面に貼り付けることで形成することができる。また、印刷法 により金属の層を形成するようにしても良 、。
[0073] 上述したように、図 11に示した伝送線路 501では、入力された電磁波の多くは第 2 の誘電体層 512を通り、上層の第 1の誘電体層 511では電磁波が指数関数的に減 衰する。しかしながら、十分減衰しきれずに外部に漏れ出す電磁波成分が生ずる場 合も考えられる。本実施の形態に係る伝送線路 502では、導体層 531が電磁波の遮 蔽版として機能し、そのような外部に漏れ出す不要な電磁波成分の伝搬が防止され る。
[0074] 以上説明したように、この第 6の実施の形態によれば、第 1の誘電体層 511の表面 全体に導体層 531を設けるようにしたので、外部への不要な電磁波の漏えいもしくは 伝搬を確実に防止することができる。
[第 7の実施の形態]
[0075] 次に、本発明の第 7の実施の形態を説明する。なお、図 11の構成と実質的に同一 の部分には同一の符号を付し、適宜説明を省略する。図 17および図 18の構成例で は、第 1の誘電体層 511の表面全体に導体層 531を設けるようにした力 本実施の 形態は、第 1の誘電体層 511の表面の一部に導体層を設けるようにしたものである。
[0076] 図 19は、本実施の形態の第 1の構成例に係る伝送線路 503の構成を示している。
この伝送線路 503は、図 11に示した伝送線路 501の構成に対し、第 1の誘電体層 5 11における、第 2の誘電体層 512の積層面とは反対側の表面の一部に金属力もなる 導体層 531A, 531Bを積層したものである。より詳しくは、第 1の誘電体層 511の表 面において、第 1および第 2のスルーホール 521, 522の列によって挟まれた領域の 外側の領域に、導体層 531A, 531Bが形成されている。導体層 531A, 531Bは、 例えば印刷法により金属を塗布することで形成することができる。
[0077] 図 11に示した伝送線路 501では、第 1および第 2のスルーホール 521, 522の列に よって挟まれた領域内から外部に漏れ出した電磁波が、さらにその領域外において 第 1および第 2の誘電体層 511, 512に侵入し、不要な電磁波成分として伝搬されて しまう場合も考えられる。この伝送線路 503では、導体層 531 A, 531Bが電磁波の 遮蔽版として機能し、そのような第 1および第 2の誘電体層 511, 512に侵入する不 要な電磁波成分 541, 542の伝搬が防止される。
[0078] 図 20は、本実施の形態の第 2の構成例に係る伝送線路 504の構成を示している。
この伝送線路 504は、図 19に示した第 1の構成例に係る伝送線路 503とは逆に、第 1の誘電体層 511の表面において、第 1および第 2のスルーホール 521, 522の列に よって挟まれた内側の領域に、導体層 531Cを積層したものである。導体層 531Cは 、例えば印刷法により金属を塗布することで形成することができる。
[0079] この伝送線路 504では、導体層 531Cが電磁波の遮蔽版として機能し、図 17およ び図 18に示した伝送線路 502と同様、第 1および第 2のスルーホール 521, 522の 列によって挟まれた領域内から外部に漏れ出す不要な電磁波成分の伝搬が防止さ れる。
[0080] 以上説明したように、この第 7の実施の形態によれば、第 1の誘電体層 511の表面 の一部に導体層を設けるようにしたので、外部への不要な電磁波の漏え!/、もしくは伝 搬を確実に防止することができる。
[第 8の実施の形態]
[0081] 次に、本発明の第 8の実施の形態を説明する。なお、図 11の構成と実質的に同一 の部分には同一の符号を付し、適宜説明を省略する。上述したように図 11の伝送線 路では、第 1の誘電体層 511と第 2の誘電体層 512との誘電率差が大き 、方が伝送 特性上、好ましいが、この誘電率差を大きくするために、第 1の誘電体層 511の内部 に空気層を形成するようにしても良い。
[0082] 図 21Aは本発明の第 8の実施の形態に係る伝送線路の第 1の構成例を示している 。図 21Aに示したように、第 1の誘電体層 511における、第 1および第 2のスルーホー ル 521, 522の列によって挟まれた領域内に、スルーホール状の空気孔 523を所定 の間隔で複数、形成するようにしても良い。空気孔 523は、擬似的な導体壁として機 能する第 1および第 2のスルーホール 521, 522とは異なり、内部には金属加工など はなされていない。空気孔 523が設けられていることにより、第 1の誘電体層 511の 内部が部分的に空気層となるので、その部分では誘電率が下がり、見掛け上、第 1 の誘電体層 511の全体としての誘電率が下がる。これにより、第 2の誘電体層 512と の誘電率差をより大きくでき、伝送特性がより向上する。
[0083] 図 21Bは本実施の形態に係る伝送線路の第 2の構成例を示している。図 21Bに示 したように、空気孔 523が第 2の誘電体層 512の表面にまで達しておらず、第 1の誘 電体層 511の途中までしか形成されていなくとも良い。また、空気孔の形状は円形に 限らず、どのような形状であっても良い。さらに、第 1の誘電体層 511に形成する空気 層はスルーホール状のものに限らず、例えば層の表面の中央部分を部分的に削り取 るなどしても良い。
[0084] なお、第 6および第 7の実施の形態に係る伝送線路についても同様に空気層を形 成するようにしても良い。
[0085] なお、本発明は、以上で説明した各実施の形態に限定されず、さらに種々の変形 実施が可能である。例えば本発明の伝送線路は、直線状に限らず曲線状であっても 良い。例えば図 1の伝送線路を曲線状にする場合、図 22に示したように、電磁波を 伝搬させたい方向 Sに沿って、第 1および第 2のスルーホール 21, 22を曲線状に設 ければ良い。スルーホールを形成する位置を変更するだけなので、構造的に曲線状 の伝送線路を容易に製造できる。

Claims

請求の範囲
[1] 所定の誘電率を有する第 1および第 2の誘電体層と、
前記第 1および第 2の誘電体層の誘電率よりも大き!/、誘電率を有し、前記第 1およ び第 2の誘電体層に挟まれるように積層された第 3の誘電体層と、
前記第 1、第 2および第 3の誘電体層を貫通すると共に、列状に配設された複数の 第 1のスルーホールと、
前記第 1、第 2および第 3の誘電体層を貫通し、かつ前記第 1のスルーホールに並 列的に配設された複数の第 2のスルーホールと
を備えたことを特徴とする伝送線路。
[2] 前記第 1および第 2の誘電体層における、前記第 3の誘電体層の積層面とは反対 側の表面全体に積層された導体層をさらに備えた
ことを特徴とする請求項 1に記載の伝送線路。
[3] 前記第 1および第 2の誘電体層における、前記第 3の誘電体層の積層面とは反対 側の表面の一部の領域に積層された導体層をさらに備えた
ことを特徴とする請求項 1に記載の伝送線路。
[4] 前記導体層は、前記第 1および第 2の誘電体層の表面において、前記第 1および 第 2のスルーホールの列によって挟まれた領域の外側に形成されている
ことを特徴とする請求項 3に記載の伝送線路。
[5] 前記導体層は、前記第 1および第 2の誘電体層の表面において、前記第 1および 第 2のスルーホールの列によって挟まれた領域内に形成されている
ことを特徴とする請求項 3に記載の伝送線路。
[6] 前記第 1および第 2のスルーホールは内壁面が導電体で覆われ、 LSMモードと LS Eモードで伝搬される電磁波のうち、 LSMモードの電磁波に対してのみ擬似的な導 体壁として機能するものである
ことを特徴とする請求項 1に記載の伝送線路。
[7] 前記第 1および第 2の誘電体層の少なくとも一方における前記第 1および第 2のス ルーホールの列によって挟まれた領域内に、部分的に空気層が形成されている ことを特徴とする請求項 1に記載の伝送線路。
[8] 所定の誘電率を有する第 1の誘電体層と、
前記第 1の誘電体層の誘電率よりも大きい誘電率を有し、前記第 1の誘電体層の一 方の面側に積層された第 2の誘電体層と、
前記第 2の誘電体層における、前記第 1の誘電体層の積層面とは反対側の表面に 積層された導体よりなるグランド層と、
前記第 1および第 2の誘電体層を貫通すると共に一端が前記グランド層に接続され 、かつ列状に配設された複数の第 1のスルーホールと、
前記第 1および第 2の誘電体層を貫通すると共に一端が前記グランド層に接続され 、かつ前記第 1のスルーホールに並列的に配設された複数の第 2のスルーホールと を備えたことを特徴とする伝送線路。
[9] 前記第 1の誘電体層における、前記第 2の誘電体層の積層面とは反対側の表面全 体に積層された導体層をさらに備えた
ことを特徴とする請求項 8に記載の伝送線路。
[10] 前記第 1の誘電体層における、前記第 2の誘電体層の積層面とは反対側の表面の 一部の領域に積層された導体層をさらに備えた
ことを特徴とする請求項 8に記載の伝送線路。
[11] 前記導体層は、前記第 1の誘電体層の表面において、前記第 1および第 2のスル 一ホールの列によって挟まれた領域の外側に形成されて 、る
ことを特徴とする請求項 10に記載の伝送線路。
[12] 前記導体層は、前記第 1の誘電体層の表面において、前記第 1および第 2のスル 一ホールの列によって挟まれた領域内に形成されている
ことを特徴とする請求項 10に記載の伝送線路。
[13] 前記第 1および第 2のスルーホールは内壁面が導電体で覆われ、 LSMモードと LS Eモードで伝搬される電磁波のうち、 LSMモードの電磁波に対してのみ擬似的な導 体壁として機能するものである
ことを特徴とする請求項 8に記載の伝送線路。
[14] 前記第 1の誘電体層における前記第 1および第 2のスルーホールの列によって挟ま れた領域内に、部分的に空気層が形成されている ことを特徴とする請求項 8に記載の伝送線路。
PCT/JP2005/021145 2004-11-30 2005-11-17 伝送線路 WO2006059491A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-347380 2004-11-30
JP2004347413A JP2006157706A (ja) 2004-11-30 2004-11-30 伝送線路
JP2004-347413 2004-11-30
JP2004347380A JP2006157703A (ja) 2004-11-30 2004-11-30 伝送線路

Publications (1)

Publication Number Publication Date
WO2006059491A1 true WO2006059491A1 (ja) 2006-06-08

Family

ID=36564926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021145 WO2006059491A1 (ja) 2004-11-30 2005-11-17 伝送線路

Country Status (1)

Country Link
WO (1) WO2006059491A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235281B2 (ja) * 1981-04-03 1987-07-31 Shigeo Nishida
JPH0653711A (ja) * 1992-07-28 1994-02-25 Fukushima Nippon Denki Kk 導波管線路
JPH10303608A (ja) * 1997-04-22 1998-11-13 Kyocera Corp 誘電体導波管線路およびそれを具備する多層配線基板
JPH1146114A (ja) * 1997-07-25 1999-02-16 Kyocera Corp 積層型開口面アンテナ及びそれを具備する多層配線基板
JP3269685B2 (ja) * 1992-12-28 2002-03-25 株式会社日立国際電気 イメ−ジ型漏れ波nrdガイド
JP2003133661A (ja) * 2001-10-22 2003-05-09 Keisoku System:Kk 高速伝送用プリント基板
JP2003289207A (ja) * 2002-01-24 2003-10-10 Matsushita Electric Ind Co Ltd 非放射性誘電体線路、高周波回路素子、及びそれらを用いた応用素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235281B2 (ja) * 1981-04-03 1987-07-31 Shigeo Nishida
JPH0653711A (ja) * 1992-07-28 1994-02-25 Fukushima Nippon Denki Kk 導波管線路
JP3269685B2 (ja) * 1992-12-28 2002-03-25 株式会社日立国際電気 イメ−ジ型漏れ波nrdガイド
JPH10303608A (ja) * 1997-04-22 1998-11-13 Kyocera Corp 誘電体導波管線路およびそれを具備する多層配線基板
JPH1146114A (ja) * 1997-07-25 1999-02-16 Kyocera Corp 積層型開口面アンテナ及びそれを具備する多層配線基板
JP2003133661A (ja) * 2001-10-22 2003-05-09 Keisoku System:Kk 高速伝送用プリント基板
JP2003289207A (ja) * 2002-01-24 2003-10-10 Matsushita Electric Ind Co Ltd 非放射性誘電体線路、高周波回路素子、及びそれらを用いた応用素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CASSIVI Y ET AL: "Substrate integrated nonradiative dielectric waveguide.", IEEE MICROWAVE AND GUIDED WAVW LETTERS., vol. 14, no. 3, March 2004 (2004-03-01), pages 89 - 91, XP001192788 *
WU K.: "Integration and interconnect techniques of planar and non-planar structures for microwave and millimeter-wave circuits- current status and future trend.", MICROWAVE CONFERENCE., vol. 2, 3 December 2001 (2001-12-03) - 6 December 2001 (2001-12-06), pages 411 - 416, XP010578565 *

Similar Documents

Publication Publication Date Title
JP3891918B2 (ja) 高周波モジュール
US6388208B1 (en) Multi-connection via with electrically isolated segments
JP5088135B2 (ja) 垂直信号経路、それを有するプリント基板及びそのプリント基板と半導体素子とを有する半導体パッケージ
JP2004153367A (ja) 高周波モジュール、ならびにモード変換構造および方法
US5986527A (en) Planar dielectric line and integrated circuit using the same line
JP4584193B2 (ja) 導波管の接続構造
US9214715B2 (en) Hybrid coupler device having plural transmission line structures with unwound-rewound geometry
SE2050679A1 (en) Multi-layer waveguide with metasurface, arrangement, and method for production thereof
JP6570788B2 (ja) 誘電体導波管の接続構造
JP4015938B2 (ja) 共振器
JP5343134B2 (ja) モード偏波変換器
US20210091442A1 (en) Band-pass filter
US8576027B2 (en) Differential-common mode resonant filters
WO2006059491A1 (ja) 伝送線路
US5990764A (en) Dielectric waveguide with at least one dielectric resonator and a plurality of dielectric strips coupled with said at least one resonator
EP3667811B1 (en) Dielectric filter, array antenna device
JP4503476B2 (ja) 高周波線路−導波管変換器
JP2004221718A (ja) 導波管変換器
JPH11308025A (ja) 方向性結合器
JP2006157706A (ja) 伝送線路
WO2023042466A1 (ja) 導波路
CN113273028B (zh) 传输线路构造体
JP2006157703A (ja) 伝送線路
WO2023282042A1 (ja) 電子部品
WO2020230608A1 (ja) モード変換器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807052

Country of ref document: EP

Kind code of ref document: A1