WO2006049259A1 - パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体 - Google Patents

パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体 Download PDF

Info

Publication number
WO2006049259A1
WO2006049259A1 PCT/JP2005/020317 JP2005020317W WO2006049259A1 WO 2006049259 A1 WO2006049259 A1 WO 2006049259A1 JP 2005020317 W JP2005020317 W JP 2005020317W WO 2006049259 A1 WO2006049259 A1 WO 2006049259A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
dot
magnetic field
patterned
recording medium
Prior art date
Application number
PCT/JP2005/020317
Other languages
English (en)
French (fr)
Inventor
Naoki Honda
Kazuhiro Ouchi
Original Assignee
Japan Science And Technology Agency
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Akita Prefecture filed Critical Japan Science And Technology Agency
Priority to JP2006542451A priority Critical patent/JPWO2006049259A1/ja
Publication of WO2006049259A1 publication Critical patent/WO2006049259A1/ja
Priority to US11/689,851 priority patent/US7339764B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a method of designing a patterned magnetic recording medium having a patterned magnetic film, and a patterned magnetic recording medium.
  • Such patterned magnetic recording media are applied to magnetic recording devices mounted in various recording devices such as computers and video recorders.
  • Perpendicular magnetic recording is attracting attention as a technique for increasing the recording density of magnetic recording devices!
  • a magnetic thin film with a fine particle structure with magnetic anisotropy in the vertical direction is used as a recording medium, and information is recorded as a minute magnetization pattern by a magnetic head.
  • the perpendicular magnetic recording system maintains a more stable recording state against thermomagnetic relaxation as compared with the in-plane magnetic recording system because adjacent magnetic fluxes are coupled in antiparallel with the magnetic flux transition. This makes it possible to achieve higher density.
  • the magnetic energy can be dramatically increased by making the area of the magnetic dot the size of the bit, and the thermomagnetic stability can be secured without increasing the magnetic anisotropy.
  • thermomagnetic stability easiness of recording
  • easiness of preparation easiness of preparation
  • shift allowance of the head in the track width direction during recording easiness of preparation
  • optimum structure of patterned magnetic recording media In a patterned magnetic recording medium, the track width is smaller and tracking accuracy is required. Nevertheless, even in patterned magnetic recording medium with the aim of areal recording density LTbitZin 2, magnetic dots Simply only Ru is considered to be recorded satisfy a thermomagnetic stability, or meet the desired density The dimensions of are considered, but only.
  • a magnetic dot pattern for achieving a desired recording density has thermomagnetic stability, ease of recording, and easiness of preparation. It is necessary to design the magnetic properties, dimensions, and film thickness of the magnetic film so as to widen the shift allowance in the track width direction.
  • the object of the present invention is to provide a magnetic dot pattern for achieving a desired recording density, which has thermomagnetic stability, easiness of recording, and easiness of preparation, and also allows shift of the head in track width direction during recording.
  • the objective is to provide a design method that can easily determine the magnetic properties of the magnetic film so as to widen the capacity.
  • Another object of the present invention is to provide a patterned magnetic recording medium having the above-mentioned characteristics.
  • a method of designing a patterned magnetic recording medium having a magnetic anisotropy in the perpendicular direction and including a magnetic film patterned in a dot shape
  • the present invention is a patterned magnetic recording medium in which magnetic dots having magnetic anisotropy in the vertical direction are patterned to form a recording track, and the magnetic dots are formed of a film.
  • the thickness t is 15 nm or less
  • the dot size a in the track width direction is 1Z2 or less of the dot pattern period in the track width direction, larger than saturation magnetization M force 650 emuZcm 3 and smaller than saturation magnetic field H ss force S l8 kOe
  • the magnetization reversal start magnetic field H (Oe) has the following formula
  • the magnetic dots preferably have an anisotropic shape in which the dot size b in the track longitudinal direction is larger than the dot size a in the track width direction.
  • FIG. 1 is a diagram showing a perpendicular direction M-H loop of a perpendicular magnetic anisotropic film.
  • FIG. 2 is a flowchart showing the method of the present invention.
  • FIG. 3 is a graph showing the saturation magnetization M dependency of the saturation magnetic field H s for patterned magnetic recording media including square dots of various sizes.
  • FIG. 4 is a cross-sectional view showing a patterned magnetic recording medium and a magnetic head in Example 4.
  • FIG. 5 is a plan view of a patterned magnetic recording medium having square dots.
  • FIG. 3 is a diagram for explaining a rotation start magnetic field H, a residual saturation magnetic field ⁇ and a residual coercivity ⁇ .
  • FIG. 7 A diagram showing the distribution of the head magnetic field used in the recording simulation in the x and y directions.
  • FIG. 8 is a diagram showing the change in the error rate of recording bits according to the shift amount in the track longitudinal direction of the reversal position of the recording magnetic field for the patterned magnetic recording media of the reference example, No. 1 and No. 2.
  • FIG. 9 is a graph showing the change in bit error rate of adjacent tracks according to the amount of shift in the track width direction of the reversal position of the recording magnetic field for the patterned magnetic recording media of the reference example, No. 1 and No. 2.
  • thermom B The dot size of m B required to make the thermomagnetic stability index E / k T greater than 70 at 300 K
  • FIG. 11 is a plan view of a patterned magnetic recording medium having anisotropically shaped magnetic dots.
  • FIG. 12 is a diagram showing the change in the error rate of recording bits according to the amount of shift in the track longitudinal direction of the reversal position of the recording magnetic field for the reference example and the patterned magnetic recording media of Nos. 4 to 8.
  • FIG. 13 is a diagram showing the change in bit error rate of adjacent tracks due to the amount of shift in the track width direction of the reversal position of the recording magnetic field for the reference magnetic recording media of Reference Example and Nos. 4 to 8;
  • FIG. 14 is a diagram showing the dot size dependency of shift allowance in the track longitudinal direction and the track width direction for the patterned magnetic recording media of the reference example and Nos. 1 to 8;
  • FIG. 15 is a view for explaining the angular dependence of an applied magnetic field in the track longitudinal direction and the track width direction for a patterned magnetic recording medium having anisotropically shaped magnetic dots.
  • the dot pattern period P, P in the X direction and the y direction which determines the surface recording density
  • the thermomagnetic stability index ⁇ which determines the thermomagnetic stability.
  • a magnetization reversal start magnetic field H (more exactly, a residual magnetization reversal start magnetic field H) satisfying the thermomagnetic characteristics is determined, and an anisotropic magnetic field H satisfying this is determined.
  • the saturation magnetic field H is determined by rn ks, and M, H, H (or H) are determined so that H is equal to or less than the maximum recording magnetic field H.
  • Fig. 1 the perpendicular M–H loop of the perpendicular magnetic anisotropy film is shown in smsen rn.
  • This figure 1 shows the magnetic The reversal start magnetic field H n , the coercivity and the saturation magnetic field H s are displayed. Below, we will explain how to obtain these magnetic properties simply.
  • is the perpendicular demagnetizing factor of the magnetic dot
  • is the coercivity of the patterned magnetic field ⁇ d c c
  • the M-H loop or the residual k is set by simulation with the anisotropic magnetic field H set.
  • H and H may be determined from the M ⁇ H loop obtained by another n rn k simulation.
  • FIG. 2 shows the method of the present invention as a flowchart. The method of designing the patterned magnetic recording medium is described more specifically with reference to FIG.
  • thermomagnetic stability index K E / k T [E is the magnetic energy of the magnetic dot] to nm B m
  • the initial value of the saturation magnetization M is set. This initial value can be set arbitrarily. For example s
  • the initial value of M is 400 to 600 emu.
  • is the perpendicular demagnetizing factor of the magnetic dot
  • is the coercivity of the patterned magnetic field ⁇ d c c
  • the perpendicular demagnetizing factor N can be easily estimated by approximating a square pole as a spheroid d
  • the distribution width ⁇ of the coercive force H can be estimated to be about 20% of the magnetization reversal start magnetic field H.
  • the anisotropic magnetic field ⁇ is set to simulate
  • the M-H loop is determined, and the magnetization reversal start magnetic field H is determined, so that H becomes a set value H
  • H and H may be determined by a method of adjusting n n k.
  • step S2 increase the value of saturation magnetization M moderately, and repeat each subsequent step
  • the saturation magnetic field H is less than the maximum recording magnetic field H, and the desired condition is
  • the magnetic properties M, H and H to be satisfied are determined and the process ends. This makes it possible to design the magnetic properties. That is, the magnetic characteristics of a patterned recording medium of target recording density having both thermomagnetic stability and ease of recording and processing (saturation magnetization M, magnetization reversal start magnetic field H, resistance
  • the present design method it is easy to find the magnetic characteristics and dimensions of the patterned recording medium of the target recording density which has both thermomagnetic stability and easiness of recording and recording. it can.
  • the film thickness t is 15 nm or less, and the inter-dot spacing in the track width direction is larger than 1Z2 of the minimum S spacing S dot pattern period, and is larger than the saturation magnetization M of 1 / 250e muZcm 3 It is preferred to design patterned magnetic recording media under light and heat conditions.
  • the lower limit of the film thickness t is defined by a thickness that effectively functions as a magnetic film, and is preferably 2 nm or more.
  • Minimum dot-to-dot spacing S ratio to dot pattern period The upper limit of the ratio is defined by the range in which the desired recording density can be obtained, assuming that the minimum dot size for practical magnetic characteristics is 5 nm x 5 nm.
  • the upper limit of saturation magnetization M is particularly limited s
  • the thermal magnetic stability index K E / k T 60 (E is the magnetic energy of the magnetic dot), film, in order to secure the thermomagnetic stability of pattern period P and P 25 nm, 3 years or more. Thickness nm B m
  • the initial value of saturation magnetization M was set to 600 emu Z cm 3 .
  • N is the demagnetizing factor in the vertical direction of the magnetic dot
  • is the coercivity H of the patterned magnet d c c
  • N 2.8.
  • the distribution width ⁇ of the coercive force H is set to 20% of H.
  • dc dcsc
  • H was estimated to be 19.7 kOe and H to be 24.4 kOe.
  • the magnetic characteristic is M with a pattern period of 25 nm, a dot size of 7 nm ⁇ 7 nm, and a film thickness of ll nm.
  • Examples of magnetic materials that satisfy the above conditions include Co—Pt alloys such as Co—Pt—Cr alloys and Fe—Pt ordered alloys.
  • Co-Pt-based alloys such as Co-Pt-Cr-based alloys achieve saturation magnetization M in the range of about 300 to 1,400 emu Z cm 3 , high coercivity H or residual coercivity H by adjusting the composition.
  • ZM ZM
  • the saturation magnetization M is lOOO emu Z cm 3 or more, and the magnetic anisotropy constant K is
  • the magnetic field H is 5 ⁇ 10 7 erg / cm 3 or more, and the anisotropic magnetic field H can show 100 kOe or more, and has sufficient magnetic properties to realize the above design.
  • the loop was obtained by simulation. At this time, the soft magnetic backing layer used to enhance the recording magnetic field was incorporated as a mirror image layer. In addition, the calculation is performed by the energy balance method, and the time dependence is not considered. Therefore, the M–H loop obtained can be regarded as the magnetic behavior in a short time corresponding to the recording process.
  • thermomagnetic stability index K Enm
  • the / k T was 60, the film thickness t was 1 lnm, and the minimum inter-dot spacing S was 18 nm.
  • the initial value of the saturation magnetic flux M was set to 600 emu Z cm 3 .
  • the pattern period is 25 nm
  • the film thickness t is l l-15 nm
  • the inter-dot spacing S is 15-16 nm.
  • the nm temperature was set to 343 K (70 ° C.) as conditions more severe than Example 1.
  • the difference of the saturation magnetic field H due to the saturation magnetization M was determined sequentially.
  • Figure 3 shows the M dependence of H when the film thickness t and inter-dot spacing S are set in the following three cases.
  • the film thickness t is 15 nm or less
  • the saturation magnetic field H can be designed to be less than 18 kOe according to the method of the present invention in a range larger than 1Z2 of the spacing interval S-square pattern period.
  • the fact that the film thickness t can be made 15 nm or less can facilitate the etching power in the pattern formation.
  • the ability to make the spacing between dots larger than 1Z2 of the pattern period can alleviate the limitation due to the resolution of microfabrication.
  • It includes magnetic dots having an anisotropic shape in which the dot size a in the track width direction is 1Z2 or less of the dot pattern period in the track width direction and the dot size b in the track longitudinal direction is larger than the dot size a in the track width direction.
  • the patterned magnetic recording medium will be described.
  • the patterned magnetic recording medium of the present embodiment by defining the dot size in the track width direction of the magnetic dots to be 1Z2 or less of the dot pattern cycle in the track width direction, (1) to the adjacent track at the time of recording The effect of reducing the influence of Furthermore, the patterned magnetic recording medium of the present embodiment is defined as having an anisotropic shape in which the dot size in the track longitudinal direction is larger than the dot size in the track width direction for the magnetic dots, (2) Volume than square dots Necessary to maintain the thermomagnetic stability by increasing the When it is suppressed, (3) the generated magnetic field of the magnetic head can be increased by suppressing the film thickness while maintaining the same volume as a square dot, and the effect of facilitating the head design, (4) The residual coercivity differs between the track longitudinal direction and the track width direction, which has the effect of increasing the shift allowance in the track width direction.
  • FIG. 4 shows a schematic cross-sectional view of a patterned magnetic recording medium according to the present example.
  • the soft magnetic backing layer 2 is formed on the substrate 1, and the magnetic dots 3 which are perpendicular recording layers are regularly formed on the soft magnetic backing layer 2 at a pitch P.
  • the magnetic dots are two-dimensionally regularly arranged to form a recording track.
  • FIG. 4 does not show the substrate, the soft magnetic backing layer, and the magnetic dot force for the purpose of explanation, other layers may be provided.
  • an underlayer may be provided between the substrate and the soft magnetic backing layer, or an intermediate layer may be provided between the soft magnetic backing layer and the magnetic dot.
  • a nonmagnetic material may be embedded between the magnetic dots.
  • a protective layer and a lubricating layer are formed on the magnetic dots.
  • the design of the patterned magnetic recording medium of the present example will be described based on a method based on micro magnetic simulation.
  • the area recording density is first determined in the X and Y directions (the track longitudinal direction is the X direction and the track width direction is the y direction Dot pattern period P, P, saturation magnetization M, and heat to determine thermomagnetic stability
  • the dot pattern periods P and P become 25 nm.
  • thermomagnetic stability index K that determines the thermomagnetic stability is set.
  • K is the following formula (A) where H is the residual magnetization reversal start magnetic field in the vertical direction and V is the volume of the magnetic dot.
  • the volume V of the magnetic dot is the dimension of the magnetic dot in the X direction (track longitudinal direction) b, the dimension in the y direction (track width direction) a, and the film thickness t
  • V abt (in the case of an ellipsoidal shape, etc., the volume is used as it is).
  • the film thickness t is set.
  • FIG. 4 shows a magnetic head 11 disposed on a patterned magnetic recording medium.
  • the distance between the tip of the head pole and the surface of the soft magnetic backing layer should be about half or less of the width of the pole. For this reason, the magnetic pole width is set to 25 nm, and the thickness of the recording layer is set to 12 nm or less.
  • the medium shown in FIG. 5 has a surface recording density lTbitZin 2 , ie, a pattern period in the X and y directions P and P of 25 nm, in the form of a square lattice, dimensions in the X direction b and dimensions a in the y direction 7.5 nm, A square magnetic dot with a thickness of 10 nm is formed.
  • the unit of scale shown in FIG. 5 is / zm.
  • the dimension b in the X direction and the dimension a in the y direction were set to 7.5 nm because magnetic dots of such dimensions were predicted to be able to suppress the influence on adjacent tracks during recording.
  • this patterned magnetic recording medium is called a reference example.
  • the axis orientation dispersion ⁇ ⁇ 2 degrees.
  • the perpendicular remanent magnetization curve and the recording magnetic flux by a single-pole magnetic head were obtained by simulation.
  • the soft magnetic backing layer was incorporated as a mirror image layer.
  • the calculation is performed by the energy balance method, and time dependency is not considered. Therefore, the obtained magnetic flux curve can be regarded as the magnetic flux behavior in a short time corresponding to the recording process.
  • the recording magnetization also represents the state immediately after recording, but the ratio K of the magnetic energy ⁇ of the magnetic dot to the thermal disturbance energy k T is 70 or more m B n
  • thermomagnetic relaxation Therefore, the time-dependent change due to thermomagnetic relaxation can be ignored.
  • Figure 6 shows the vertical residual magnetic flux curve obtained in this simulation.
  • H indicates the residual magnetization reversal start magnetic field
  • H indicates the residual coercivity
  • H indicates the residual saturation magnetic field.
  • the recording characteristics when using a single-pole type recording head having a pole size of 25 nm ⁇ 25 nm were investigated.
  • An example of the head magnetic field is shown in FIG.
  • the magnetic field is reversed every displacement of 12.5 nm along the center of the central track, and bit notches of a fixed period are recorded.
  • bit notches of a fixed period are recorded.
  • 25 magnetization patterns can be recorded without error with a bit length of 12.5 nm.
  • Table 1 summarizes the dimensions of the four types of magnetic dots, including the reference example, and their respective magnetic properties.
  • the product HV of the volume V of these dots and the residual magnetic flux reversal field H obtained from the residual magnetic flux curve obtained by simulation is all 6190 nm 3 kOe or more, and the thermomagnetic rn rn at room temperature
  • the stability index K is selected to be 70 or more.
  • the bit error rate when the reversal position of the head magnetic field is shifted in the track longitudinal direction is examined for the reference example and the patterned magnetic recording media of No .:! To 3, as shown in FIG. It was In Fig. 8, the dimension in the X direction (b) is shown as D, and the dimension in the y direction (a) is shown as D (in other figures, it may be displayed as in Fig. 8).
  • the dot size up to half the dot period (No. 1) has the same range of zero bit errors as the reference example of 15 15m. However, when the dot size is larger than 1Z2 of the dot cycle, the range without errors in No. 2 becomes narrower, and in No. 3, the bit error rate becomes zero.
  • the bit error rate in the adjacent track due to magnetic reversal of the adjacent track was examined.
  • the magnetic field of the adjacent track is also affected by the deviation of the recording magnetic field of 2.5 nm or more in the track width direction, and the allowance for positional deviation is only about ⁇ 2.5 nm.
  • Including reference examples very small compared to the longitudinal direction of the track.
  • No. 3 was excluded in Fig. 9 because bit errors in the target track were zero.
  • the dimension a of the dot in the track width direction exceeds 1Z2 of the dot period, the influence on the adjacent track also increases.
  • the dot size a in the track width direction should be 1/2 or less of the dot pattern period P in the track width direction.
  • the tolerance for misalignment in the track longitudinal direction is larger than the tolerance for misalignment in the track width direction, the dimension in the track longitudinal direction can be made larger than the dimension in the track width direction.
  • Saturation magnetization M force ⁇ OO emu Z cm 3 or more is sufficient to set it to about 1 Z2 or less of 5 nm
  • the dimension a in the track width direction is represented by the dot pattern period P in the track width direction.
  • No. 4 is the one in which the dimension in the X direction is changed to 12.5 nm without changing the dimension in the y direction and the thickness of the film in the reference example.
  • No. 4 has a volume of about 1. 67 times (5Z3) that of the reference example, and the magnetization reversal necessary for thermomagnetic stability accordingly
  • the starting magnetic field H can be reduced from 12 kOe to 7.2 kOe.
  • the area is approximately bZa times as large as in the case where the dot dimensions in the X and y directions are equal.
  • Volume increase, and the magnetization reversal start magnetic field H is decreased by an amount corresponding to the volume increment.
  • Thermomagnetic stability does not change.
  • the reference example is compared with Nos. 5 to 8.
  • the dimension in the X direction is 15 nm, that is, twice that of the reference example, and the film thickness is half that of the reference example, without changing the dimension of the dot in the reference example in the y direction.
  • the film thickness of No. 5 is half that of the reference example, the volume of the reference example can be maintained and the increase of the magnetization reversal start magnetic field H can be suppressed.
  • No. 6 to 8 also keep the volume almost constant.
  • T is as uniform as possible.
  • the dot dimensions in the x and y directions are equal and a
  • the film thickness can be reduced while maintaining the volume almost the same as the original, and the magnetic field generated by the magnetic head can be increased.
  • a patterned magnetic recording medium having anisotropically shaped dots No. 4 to 8 shown in Table 2 recording was performed using a single magnetic pole head having the same magnetic pole size as described above.
  • Fig. 12 shows the change in bit error rate when the magnetic field reversal position is shifted in the track longitudinal direction.
  • No. 4 has the same film thickness as the reference example, and the volume is increased with the longitudinal dimension of 12.5 nm, but as in the reference example, a shift allowance of 15 nm in the track longitudinal direction is secured. There is. That is, the residual magnetic field reversal start magnetic field H necessary for thermomagnetic stability is as small as 7.2 kOe without changing the shift allowance.
  • the required recording magnetic field strength can be reduced.
  • the dimension in the longitudinal direction of the track is twice that of the reference example, and the film thickness is set to 5 nm by half because the volume is the same, but the shift allowance of 15 nm in the longitudinal direction of the track is secured as in the reference example. There is.
  • the distance between the tip of the recording head and the soft magnetic backing layer of the medium is reduced by the reduction of the film thickness, so a high recording magnetic field is easily generated, and the design of the head becomes easy.
  • the film thickness is the same as in No. 5 and b is increased, and H is decreased according to the increase in volume. As shown in Figure 12
  • the decrease in shift allowance is as small as 2.5 nm.
  • FIG. 14 summarizes the dot size dependency of the shift allowance in the track longitudinal direction and the track width direction for the magnetic dots shown in Table 1 and Table 2.
  • the solid line shows square dots and the broken line shows anisotropically shaped dots.
  • the shift allowance in the longitudinal direction of the track drops sharply as the dot size is increased.
  • anisotropically shaped dots even if the dot size is increased, the shift allowance in the track longitudinal direction can be substantially maintained.
  • the shift allowance in the track width direction is almost constant regardless of the dot size.
  • the shift allowance in the track width direction can be made 1 to 2 times that of the reference example according to the size of the dot size.
  • No. 8 has the same shift allowance in the track width direction as the reference example, but as shown in Table 2, the film thickness can be halved and the magnetic reversal start magnetic field Hm can be 70% or less. It is advantageous in point.
  • thermomagnetic stability and track longitudinal shift tolerance can be maintained, and shift tolerance in the track width direction can be increased by 1 to 2 while magnetization reversal It can be seen that the starting magnetic field Hm can be reduced to make the medium easy to record, or the film thickness can be reduced to make it easy to generate the magnetic field of the recording head.
  • indicates the inclination of the applied magnetic field in the track width direction and the track longitudinal direction, respectively.
  • the applied magnetic field angle dependence of the residual coercivity H is in the track width direction and the track longitudinal direction.
  • H increases in the track width direction, causing magnetic inversion of the adjacent track.
  • the shift allowance in the track width direction will increase.
  • This effect increases as the shape anisotropy of the magnetic dot increases, so the dimensional ratio of the dot shape increases and the saturation magnetization M of the material of the magnetic dot increases. That is, as the dimension b in the X direction of the dot is made larger than the dimension a in the y direction of the dot, it is possible to further increase the fluctuation allowance in the track width direction in which recording on adjacent tracks by the recording head does not occur. It becomes.
  • the anisotropic shape of the magnetic dot is not limited to a rectangle, and even if it is an ellipse or a semicircle, the shape in the track width direction and the longitudinal direction What is necessary is that it causes a difference.
  • the effect due to the shape anisotropy can be easily estimated by considering the dot shape as a spheroid. , Tokyo, 1982, p. 15).
  • the pattern period is made smaller in the longitudinal direction of the track to achieve high density.
  • the size a of the dot in the y direction is a ⁇ P / 2 (P is the dot pattern period in the y direction) on the magnetic dots of the notched recording medium
  • the magnetic dot pattern that achieves the desired recording density has the desired thermomagnetic stability, ease of recording, and recording. It is possible to provide a patterned magnetic recording medium having a wide shift allowance in the track width direction at the same time.
  • shape anisotropy an effect of 10% or more can be expected if the ratio bZa of the dot size b in the track longitudinal direction to the dot size a in the track width direction is 1.15 or more.
  • bZa is limited to 3 or less even when it is reduced to ax PyZ3

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性膜を含むパターンド磁気記録媒体を設計する方法であって,ドットパターン周期Px,Py,膜厚t,熱磁気安定性指数Kn,最小ドット間スペーシングSo,最大記録磁界Hmを設定し,飽和磁化Msの初期値を設定し,磁化反転開始磁界Hnを求め,抗磁力Hcおよび飽和磁界Hsを見積もり,飽和磁界Hsが最大記録磁界Hm未満となるように前記ステップを繰り返し,所望の条件を満足する磁気特性Ms,Hn,Hcを決定する。

Description

明 細 書
パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体 技術分野
[0001] 本発明は,パターン化された磁性膜を有するパターンド磁気記録媒体を設計する 方法,およびパターンド磁気記録媒体に関する。このようなパターンド磁気記録媒体 は,コンピュータ,ビデオレコーダ等の各種記録機器に搭載される磁気記録装置に 適用される。
背景技術
[0002] 磁気記録装置の記録密度を高める技術として,垂直磁気記録方式が注目されて!/ヽ る。この方式では垂直方向に磁気異方性を持つ微粒子構造の磁性薄膜が記録媒体 として用いられ,情報が磁気ヘッドにより微小な磁化パターンとして記録される。垂直 磁気記録方式は,磁ィ匕転移を境に隣接する磁ィ匕が反平行に結合するため,面内磁 気記録方式と比較すると,熱磁気緩和に対してより安定な記録状態を維持することが 可能となり,より高密度化が可能となる。
[0003] しかし,垂直磁気記録方式といえども面内磁気記録方式と同様に,記録ビット長が 小さくなるのに対応して,記録媒体の微粒子の寸法もその lZioほどに小さくする必 要があり,これに伴い磁性粒子が保持する磁気エネルギーの低下により熱磁気緩和 の影響が現れてくる。磁性粒子の磁気エネルギーを大きくするには磁性体の磁気異 方性を大きくすることが有効であるが,記録の際の磁化反転に必要な磁界強度も大 きくなつてしまい,現実の磁気ヘッドでの記録が出来なくなってしまうという問題があつ た。
[0004] この磁気記録媒体の熱磁気緩和現象による限界をブレークスルーする方法として, 磁性ドットの面積をビットの大きさとするパターンド磁気記録媒体が提案されている(C haries T. Rettner, Margaret E. Best, and Bruce D. Terns, 'Patt erning of Granular Magnetic Media with a Focused Ion Beam to Produce Single― Domain Islands at > 140 Gbit/ in2, "IEEE Transa ctions on Magnetics, vol. 37, no. 4, pp. 1649- 1651, July 2001 ;および 青山勉,佐藤勇武,石尾俊二, 「パターンド磁気記録媒体の作製方法と磁気的特性
」,応用物理,第 72卷,第 3号, 2003年参照)。パターンド磁気記録媒体は,磁性ド ットの面積をビットの大きさとすることで磁気エネルギーを飛躍的に大きくでき,磁気 異方性を大きくすることなしに熱磁気安定性を確保できるようになる。しかし,従来, パターンド磁気記録媒体に関して,熱磁気安定性,記録容易性,作製の容易さ,お よび記録時のヘッドのトラック幅方向のシフト許容量を総合的に考慮した設計手法は 知られておらず,またパターンド磁気記録媒体の最適な構造も知られていない。バタ ーンド磁気記録媒体では,よりトラック幅が小さくなりトラッキング精度が要求される。 にもかかわらず,面記録密度 lTbitZin2を目指したパターンド磁気記録媒体でも, 単に熱磁気安定性と記録条件を満たすことが検討されて ヽるだけであるか,または 目的の密度を満たす磁性ドットの寸法が検討されて 、るだけにすぎな 、。
発明の開示
[0005] 上述したように,パターンド磁気記録媒体では,所望の記録密度を実現する磁性ド ットパターンが熱磁気安定性,記録の容易性,および作製の容易さを兼ね備え, つ記録時のヘッドのトラック幅方向のシフト許容量を広くするように,磁性膜の磁気特 性,寸法,膜厚を設計する必要がある。
[0006] 本発明の目的は,所望の記録密度を実現する磁性ドットパターンが熱磁気安定性 ,記録の容易性,および作製の容易さを兼ね備え,かつ記録時のヘッドのトラック幅 方向のシフト許容量を広くするように,磁性膜の磁気特性を簡易に決定することがで きる設計方法を提供することにある。本発明の他の目的は,上述した特性を兼ね備え たパターンド磁気記録媒体を提供することにある。
[0007] 本発明によれば,垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性 膜を含むパターンド磁気記録媒体を設計する方法であって,
X方向および y方向のドットパターン周期 P , P ,膜厚 t,熱磁気安定性指数 K ,最 小ドット間スペーシング S ,最大記録磁界 Hを設定し,
ο m
飽和磁化 Mの初期値を設定し,
ドットの X方向寸法 aと磁ィ匕反転開始磁界 Hを,次式 a = P— S , H = 2K * k T / (a2 * M * y * t) [ここに, k :ボルツマン定数, T:絶対温度, y :x方向のドット寸 s B 法に対する y方向のドット寸法の比である]に従って求め, (a, y a, t)なる形状の磁 性体ドットの垂直方向 M— Hループの傾き αを,次式 α =4 π Ζ (Ν + Δ Η /Μ ) [ d c s ここに, Nは磁性ドットの垂直方向の反磁界係数, Δ Ηは抗磁力 Hのパターンド磁 d c c 気記録媒体内での分布幅である]に従って求め,抗磁力 H =H + (4 π M Z α )と 飽和磁界 Η =Η + (8 π Μ / α )を見積もり,
s n s
求めた飽和磁界 Hが最大記録磁界 H未満であるか否かを判断し,飽和磁界 Hが s m s 最大記録磁界 H 以上である場合には,飽和磁化 Mの値を増力!]させて前記ステップ m s
を繰り返し,所望の条件を満足する磁気特性 M , H , Hを決定する方法が提供され る。
[0008] また,本発明によれば,垂直方向に磁気異方性を持つ磁性ドットがパターンィ匕され て記録トラックを形成して 、るパターンド磁気記録媒体であって,前記磁性ドットは, 膜厚 tが 15nm以下であり,トラック幅方向のドット寸法 aがトラック幅方向のドットパタ ーン周期の 1Z2以下であり,飽和磁化 M力 650emuZcm3より大きく,飽和磁界 H s s 力 S l8kOeより小さく,かつ磁化反転開始磁界 H (Oe)が下記式
H ≥140 * k * 300ZM V=4. 2 X 104k /M V
n B s B s
[kはボルツマン定数 (erg/deg) , Vは磁性ドットの体積 (cm3)である]
B
の関係を満たすパターンド磁気記録媒体が提供される。
[0009] 本発明のパターンド磁気記録媒体において,前記磁性ドットは,トラック長手方向の ドット寸法 bがトラック幅方向のドット寸法 aより大きい,という異方形状を有していること が好ましい。
図面の簡単な説明
[0010] [図 1]垂直磁気異方性膜の垂直方向 M— Hループを示す図。
[図 2]本発明方法を示すフローチャート図。
[図 3]種々の寸法の正方ドットを含むパターンド磁気記録媒体について,飽和磁界 H s の飽和磁化 M依存性を示す図。
[図 4]実施例 4におけるパターンド磁気記録媒体および磁気ヘッドを示す断面図。
[図 5]正方ドットを有するパターンド磁気記録媒体の平面図。
[図 6]参照例のシミュレーションにより得られた垂直方向残留磁ィ匕曲線と残留磁ィ匕反 転開始磁界 H ,残留飽和磁界 Η ,および残留抗磁力 Η を説明する図。
rn rs rc
[図 7]記録シミュレーションに用いたヘッド磁界の x, y方向の分布を示す図。
[図 8]参照例, No. 1および No. 2のパターンド磁気記録媒体について,記録磁界の 反転位置のトラック長手方向シフト量による記録ビットの誤り率の変化を示す図。
[図 9]参照例, No. 1および No. 2のパターンド磁気記録媒体について,記録磁界の 反転位置のトラック幅方向シフト量による隣接トラックのビット誤り率の変化を示す図。
[図 10]磁性ドット膜厚を lOnm,残留磁化反転開始磁界 H を l lkOeと仮定した場合 rn
に, 300Kで熱磁気安定性指数 E /k Tを 70より大きくするのに必要なドット寸法の m B
飽和磁化依存性を示す図。
[図 11]異方形状の磁性ドットを有するパターンド磁気記録媒体の平面図。
[図 12]参照例および No. 4〜8のパターンド磁気記録媒体について,記録磁界の反 転位置のトラック長手方向シフト量による記録ビットの誤り率の変化を示す図。
[図 13]参照例および No. 4〜8のパターンド磁気記録媒体について,記録磁界の反 転位置のトラック幅方向シフト量による隣接トラックのビット誤り率の変化を示す図。
[図 14]参照例および No. 1〜8のパターンド磁気記録媒体について,トラック長手方 向およびトラック幅方向におけるシフト許容量のドット寸法依存性を示す図。
[図 15]異方形状の磁性ドットを有するパターンド磁気記録媒体について,トラック長手 方向およびトラック幅方向における印加磁界の角度依存性を説明する図。
発明を実施するための最良の形態
[0011] 以下,本発明をより詳細に説明する。
本発明に係るパターンド磁気記録媒体の設計方法においては,初めに面記録密 度を決める X方向および y方向のドットパターン周期 P , P ,熱磁気安定性を決定す る熱磁気安定性指数 κ ,ならびにドットパターンの作り易さを決定する膜厚 tおよび 最小ドット間スペーシング Sを設定する。その後,飽和磁化 Mの初期値を設定する。
[0012] 次いで,熱磁気特性を満たす磁化反転開始磁界 H (より正確には残留磁化反転 開始磁界 H )を求め,これを満足する異方性磁界 Hを求める。さらに飽和磁界 Hを rn k s 求め, Hが最大記録磁界 H 以下となるように M , H , H (または H )を求める。ここ s m s e n rn で,垂直磁気異方性膜の垂直方向の M— Hループを図 1に示す。この図 1には磁ィ匕 反転開始磁界 Hn,抗磁力 および飽和磁界 Hsを表示している。以下,これらの磁 気特性の簡易な求め方を説明する。
[0013] まず,ドットの X方向寸法 aと磁ィ匕反転開始磁界 Hを次式
a=P S ,および
H ≥2K *k TZ(a2*M * γ *t),または
n n B s
H ≥2K *k T/ (M V)
rn n B s
[ここに, k :ボルツマン定数, T:絶対温度, y :x方向のドット寸法に対する y方向の
B
ドット寸法の比, V:磁性ドットの体積である]に従って求める。
[0014] 次に, (a, γ a, t)なる形状の磁性体ドットの垂直方向 M— Hループの傾き αを次 式
α =4π (dMZdH;)〜 4 π Ζ (Ν + ΔΗ /Μ )
d c s
[ここに, Νは磁性ドットの垂直方向の反磁界係数, ΔΗは抗磁力 Ηのパターンド磁 d c c
気記録媒体内での分布幅である]に従って求める。
[0015] さらに,抗磁力 H =Η +(4πΜ/α)と飽和磁界 Η =Η +(8πΜ/α)を見積 c n s s n s
もる。
[0016] なお,異方性磁界 Hを設定してシミュレーションにより M— Hループ,または残留 k
磁化曲線を求め,磁化反転開始磁界 H ,または残留磁化反転開始磁界 H を求め n rn
,この Ηまたは Η が上記の式によって求められた値となるように Ηを調整し,再度の n rn k シミュレーションにより得られた M— Hループより Hと Hを求めてもよい。
[0017] 次いで,求めた飽和磁界 Hが最大記録磁界 H未満である力否かを判断する。飽 s m
和磁界 Hが最大記録磁界 H未満である場合には,所望の条件を満足する磁気特 s m
性 M , H , Hを決定して終了する。一方,飽和磁界 Hが最大記録磁界 H以上であ s u e s m る場合には,飽和磁化 Mの値を増加させて前記ステップを繰り返し,飽和磁界 Hが 最大記録磁界 H未満となるようにして,所望の条件を満足する磁気特性 M , H , H m s n を決定して終了する。
[0018] 図 2に本発明方法をフローチャートとして示す。図 2を参照して,パターンド磁気記 録媒体の設計方法をより具体的に説明する。
[0019] (S1)面記録密度 lTbitZin2を正方格子ドットパターンで実現しょうとすると,パタ ーン周期は P =P =25nmとなる。 3年間以上の熱磁気安定性を十分確保しょうとす ると,熱磁気安定性指数 K =E /k T[E は磁性ドットの磁気エネルギーである]を n m B m
60から 80の値とすればよいことが知られている(Naoki HONDA and Kazuhiro OUCHI, rime Dependence of Magnetic Properties m Perpenaicul ar Recording Media, "IEICE Trans. Electron. , vol. E80— C, no. 9, p p. 1180-1186, Sep. 1997.参照)。磁性膜の加工プロセスを考慮すると,膜厚 tとして 10nm程度,最小ドット間スペーシング Sとして 10nm程度がおよその制限値 と考えられる。
[0020] (S2)飽和磁化 Mの初期値を設定する。この初期値は任意に設定できる。たとえば s
磁性膜として Co— Pt—Cr系合金を用いる場合, Mの初期値として 400〜600emu
Zcm3の値を設定する。
[0021] (S3)磁性ドットの X方向寸法 aと磁ィ匕反転開始磁界 Hを次式(1) , (2)に従って求 める。
[0022] a=P S (1)
H =2K *k TZ(a2*M * γ *t) (2)
η η Β s
[ここに, k :ボルツマン定数, T:絶対温度, y :x方向のドット寸法に対する y方向の
B
ドット寸法の比であり,正方ドットの場合は γ =1である]。なお, Τについては,室温 力 実際に使用が想定される上限温度の 70°Cの間の値を絶対温度で用いる。
[0023] (S4)磁性ドットの垂直方向 M— Hループの傾き atを次式
α =4π (dMZdH;)〜 4 π Ζ (Ν + ΔΗ /Μ )
d c s
[ここに, Νは磁性ドットの垂直方向の反磁界係数, ΔΗは抗磁力 Ηのパターンド磁 d c c
気記録媒体内での分布幅である]に従って求める。
[0024] 垂直方向反磁界係数 Nは四角柱を近似的に回転楕円体として簡易に見積もること d
ができる。即ち,
£ = /( &2)1/2とした時, ε >1, ε =1, ε <1に応じて,
ε >1の場合: Ν =4π ε 2-l)]{[ ε /( ε 2-ΐ)1/2]1η( ε + ( ε 2-ΐ)1/2 d
)-1}
ε =1の場合: Ν =4π/3 εく 1の場合: Νά = 4 π— 4 π { [ ε Ζ (1— ε 2) 3/2¼η— ト ε 2) 1/2— - ε 2) ] } d
として求めることができる (例えば,近角總信, 「強磁性体の物理 (上)」,裳華房,東 京,昭和 53年, p. 15参照)。
[0025] また,抗磁力 Hの分布幅 Δ Ηは,磁化反転開始磁界 Hの 20%程度と見積もるこ とがでさる。
[0026] そして, H =H + (4 π M Z α )と H =H + (8 π M Z α )として,抗磁力 Ηと飽 和磁界 Ηを見積もる。
[0027] 上述したように,このステップでは,異方'性磁界 Ηを設定してシミュレーションにより
k
M— Hループを求め,磁化反転開始磁界 Hを求め,この Hが設定値となるように H
n n k を調整する方法により Hと Hを求めてもよい。
[0028] (S5)求まった飽和磁界 Hが最大記録磁界 H 未満かどうか判断する。飽和磁界 H
s m s が最大記録磁界 H未満である場合には,所望の条件を満足する磁気特性 M , H ,
m s n
Hを決定して終了する。一方,飽和磁界 Hが最大記録磁界 H 以上である場合には c s m
,ステップ S2へ戻り,飽和磁化 Mの値を適度に増加させ,その後の各ステップを繰り
s
返すことにより,飽和磁界 Hが最大記録磁界 H 未満となるようにして,所望の条件を
s m
満足する磁気特性 M , H , Hを決定して終了する。これにより磁気特性を設計する ことができる。即ち,熱磁気安定性および記録と加工の容易さを兼ね備えた目標記 録密度のパターンド記録媒体の磁気特性 (飽和磁化 M ,磁化反転開始磁界 H ,抗
s n 磁力 H )が決定される。
[0029] 以上のように本設計法によれば,熱磁気安定性および記録と力卩ェの容易さを兼ね 備えた目標記録密度のパターンド記録媒体の磁気特性と寸法を容易に見出すことが できる。
[0030] なお,本発明においては,膜厚 tが 15nm以下であり,トラック幅方向での最小ドット 間スペーシング S力 Sドットパターン周期の 1Z2より大きく,かつ飽和磁化 M力 ½50e muZcm3より大き ヽと ヽぅ条件でパターンド磁気記録媒体を設計することが好ま ヽ 。ここで,膜厚 tの下限値は磁性膜として有効に機能する厚さで規定され, 2nm以上 であることが好ましい。最小ドット間スペーシング Sのドットパターン周期に対する比 率の上限値は,実際的な磁気特性となる最小ドットサイズが 5nmX5nmとして,所望 の記録密度が得られる範囲によって規定される。飽和磁化 Mの上限値は特に限定 s
されず,使用できる磁性材料の最大飽和磁ィ匕によって制限される。
[0031] 実施例
以下,本発明を実施例に基づいて説明する。
[0032] [実施例 1]
正方ドットを含む,面記録密度 lTbitZin2のパターンド磁気記録媒体を設計した例 について説明する。
[0033] まず,パターン周期 Pおよび Pを 25nm, 3年間以上の熱磁気安定性を確保するた め熱磁気安定性指数 K =E /k Tを 60(E は磁性ドットの磁気エネルギー),膜厚 n m B m
tを llnm,最小ドット間スペーシング Sを 18nm,最大記録磁界 H を 20kOeと設定 ο m
した。また,飽和磁化 Mの初期値を 600emuZcm3と設定した。
s
[0034] 次に,磁性ドットの寸法 aと磁化反転開始磁界 Hを,それぞれ次式 (3), (4)
a=P -S =7(nm) (3)
H =2K *k TZ(a2*M * γ *t) (4)
n n B s
[ここに, k :ボルツマン定数, T:絶対温度, y :x方向のドット寸法に対する y方向の
B
ドット寸法の比であり,正方ドットなので γ =1である]に従って求めた。 Τが 293Κ(2 0°C)のとき, K ≥60に必要な Hは 15kOeとなった。
[0035] 次に, (X方向寸法 7nm, y方向寸法 7nm,膜厚 llnm)なる形状の磁性ドットの垂 直方向 M— Hノレープの傾き αを,次式
α =4π/(Ν + ΔΗ /Μ )
d c s
[ここに, Nは磁性ドットの垂直方向の反磁界係数, ΔΗは抗磁力 Hのパターンド磁 d c c
気記録媒体内での分布幅である]に従って求めた。このとき,垂直方向反磁界係数 N は,四角柱ドットを近似的に回転楕円体として見積もった。即ち, ε =t/(7a2)1/2 d
としたとき, ε >1であるので次式
Ν =4π ε 2 - 1)]{[ ε /( ε 2 - 1)1/2]1η( ε + ( ε 2—1)1/2)—1}
d
に従って, Nは 2. 8となった。また,抗磁力 Hの分布幅 ΔΗを Hの 20%とした。こ れらの値を用いたとき, α =4π/(Ν + ΔΗ /M )=l. 6となった。さらに, Η =Η d c s c + (4πΜ/α), Η =Η +(8πΜ/α)として抗磁力 Hと飽和磁界 Hを見積も つた。この結果, Hは 19.7kOe, Hは 24.4kOeと見積もられた。
[0036] ここで求まった飽和磁界 Hは, 目標とした最大記録磁界 H =20kOeより大きいの で,飽和磁化 Mを大きくする必要があることが分力 た。
[0037] そこで,図 2の S2に戻り, Mを 700emuZcm3に再設定して,再び H , a, H , H を求めると,それぞれ 12.9kOe, 1.9, 17.4kOe, 21.9kOeとなった。このように, まだ H <H の条件は満たせないので,飽和磁ィ匕 Mをより大きくする必要があること が分かった。
[0038] そこで,図 2の S2に戻り, Mを 850emuZcm3に再設定して,再び H , a, H , H を求めると, H , a, H , H力それぞれ 10.6kOe, 2.4, 15. IkOe, 19.6kOeと なった。この場合, H <Hの条件を満たすので,磁気特性 M , H , Hを決定するこ とがでさる。
[0039] 即ち,パターン周期 25nm,ドット寸法 7nmX 7nm,膜厚 llnmで,磁気特性を M
= 850emu/cm3, H =10.6kOe, H =15.4kOeとしてパターンド磁気記録媒 体を設計できた。これが熱磁気安定性,および記録と加工の容易さを兼ね備えた目 標記録密度のパターンド磁気記録媒体の仕様となる。
[0040] なお,以上のような条件を満たす磁性材料としては, Co— Pt系合金たとえば Co- Pt— Cr系合金や, Fe— Pt規則合金が挙げられる。
[0041] Co— Pt系合金たとえば Co— Pt— Cr系合金は,組成を調整することにより,飽和 磁化 Mを約 300〜1400emuZcm3の範囲,高い抗磁力 Hまたは残留抗磁力 H を実現するのに必要な磁気異方性定数 Kを約 5X105〜1.4X107erg/cm3の範 囲で調整することができ,飽和磁化 Mが lOOOemuZcm3でも異方性磁界 H ( = 2K
ZM )が 25kOe以上を示すことが知られており,上記の設計を実現するのに十分な 磁気特性を有する。
[0042] Fe— Pt規則合金は,飽和磁化 Mが lOOOemuZcm3以上,磁気異方性定数 Kが
5X107erg/cm3以上であり,異方性磁界 Hは lOOkOe以上を示し得ることが知ら れており,上記の設計を実現するのに十分な磁気特性を有する。
[0043] 次に,上記で設計したパターンド磁気記録媒体の磁気特性仕様をマイクロマグネテ イツクシミュレーシヨンで調べた。シミュレーションソフトとして Euxine Technologies 社(Dayton, Ohio, USA)の「 Advanced Recording Model, ver. 6」を使用し た。膜面垂直方向に磁気異方性を持つ膜厚 1 lnmの 7nm正方ドットをドット間スぺー シング 18nmで 64 X 64の格子状に配置し,飽和磁化 Mを 850emuZcm3,垂直異 方性磁界 Hの分散を 10%,異方性軸の配向分散を 1. 5度として垂直方向の M— H k
ループをシミュレーションで得た。このとき,記録磁界を高めるために用いられる軟磁 性裏打層はミラーイメージ層として取り込んだ。また,計算はエネルギー平衡法で行 い,時間依存性は考慮していない。したがって,得られた M— Hループは記録過程 に相当する短時間での磁ィ匕挙動と見做すことができる。
[0044] 垂直異方性磁界 Hを 19kOeとしたシミュレーションにより,抗磁力 H = 14. 7kOe k c
,ループ傾き α = 2. 1,磁化反転開始磁界 Η = 9. 6kOe,飽和磁界 H = 19. 8kO n s
eが得られ,ほぼ上記で求めた値に近 、磁気特性を得ることができた。
[0045] [実施例 2]
正方ドットを含む,面記録密度 lTbitZin2のパターンド磁気記録媒体を,最大記録 磁界 H をより実際的な 18kOeとして設計した例について説明する。
[0046] 実施例 1と同じく,パターン周期 Pおよび Pを 25nm,熱磁気安定性指数 K =E n m
/k Tを 60,膜厚 tを 1 lnm,最小ドット間スペーシング Sを 18nmとした。本実施例
B o
でも飽和磁ィ匕 Mの初期値を 600emuZcm3に設定した。
s
[0047] この条件で,式(3) , (4)により, Tが 293K(20°C)のとき, K≥60に必要な磁化反 転磁界 Hは 15kOeとなった。
[0048] 次に, (7nm, 7nm, 1 lnm)なる形状を有する磁性ドットの垂直方向 M— Hループ の傾き α =4π Ζ(Ν + Δ Η ΖΜ )を求め,さらに Ηおよび Ηを見積もったところ, d c s c s
H = 19. 7kOe, H = 24. 4kOeとなった。この飽和磁界 Hは仮定した最大記録磁 界 H = 18kOeより遥かに大きいので,飽和磁化 Mを大幅に増す必要があることが m s
ゎカゝる。
[0049] そこで, Mを 1050emuZcm3に増加させて,再び H , H , Hを求めると, H =8.
6kOe, H = 13. 2kOe, H = 17. 9kOeとなった。良卩ち,ノターン周期 25nm,ドット c s
寸法 7nm X 7nm,膜厚 l lnmで,磁気特性を M = 1050emu/cm3, H =8. 6kO e, H = 13. 2kOeとしてパターンド磁気記録媒体を設計できた。
[0050] [実施例 3]
種々の寸法の正方ドットを含む,面記録密度 lTbitZin2のパターンド磁気記録媒 体を設計し,飽和磁界 Hの飽和磁化 M依存性を調べた例について説明する。
[0051] パターン周期を 25nm,膜厚 tを l l— 15nm,ドット間スペーシング Sを 15— 16nm とした。一方,実施例 1より厳しい条件として熱磁気安定性指数 K =E Zk Tを 70, n m Β 温度を 343K (70°C)とした。そして,飽和磁化 Mによる飽和磁界 Hの違いを逐次的 に求めた。図 3に,膜厚 tおよびドット間スペーシング Sを以下の 3つの場合に設定し たときの, Hの M依存性を示す。
s s
[0052] (a) t= l lnm, S = 15nm,
(b) t= 12nm, S = 16nm,および
(c) t= 15nm, S = 18nm。
[0053] 飽和磁化 Mを 650emuZcm3より大きくすることで,膜厚 tが 15nm以下で,かつド s
ット間スペーシング Sカ^ットパターン周期の 1Z2よりも大きな範囲で,本発明方法 に従って飽和磁界 Hを 18kOe未満に設計できる領域があることがわかる。
s
[0054] 即ち,膜厚 tが 15nm以下とできることは,パターン形成でのエッチング力卩ェを容易 にすることができる。また,ドット間スペーシングをパターン周期の 1Z2よりも大きくで きることは,微細加工の分解能による制限を緩和できることになる。
[0055] [実施例 4]
トラック幅方向のドット寸法 aがトラック幅方向のドットパターン周期の 1Z2以下であ り,トラック長手方向のドット寸法 bがトラック幅方向のドット寸法 aより大きい,という異 方形状を有する磁性ドットを含むパターンド磁気記録媒体について説明する。
[0056] 本実施例のパターンド磁気記録媒体は,磁性ドットについてトラック幅方向のドット 寸法をトラック幅方向のドットパターン周期の 1Z2以下と規定することにより, (1)記 録時の隣接トラックへの影響を抑えられるという効果を有する。さらに,本実施例のパ ターンド磁気記録媒体は,磁性ドットについてトラック長手方向のドット寸法がトラック 幅方向のドット寸法より大きい異方形状を有すると規定することにより, (2)正方ドット よりも体積を増加させることで熱磁気安定性を維持しながらも必要な磁ィ匕反転磁界を 抑えられると ヽぅ効果, (3)正方ドットと等 ヽ体積を維持しつつ膜厚を抑えることで 磁気ヘッドの発生磁界を高めることができ,ヘッドの設計が容易になるという効果, (4 )トラック長手方向とトラック幅方向とで残留抗磁力に差が生じ,トラック幅方向のシフ ト許容量を増加できる効果を有する。
[0057] 図 4に本実施例に係るパターンド磁気記録媒体の概略断面図を示す。図 4におい て,基板 1上には軟磁性裏打層 2が形成されており,軟磁性裏打層 2上にピッチ Pで 規則的に垂直記録層である磁性ドット 3が形成されて ヽる。磁性ドットは 2次元的に規 則的に配列され,記録トラックを形成している。図 4は説明を目的としているため基板 ,軟磁性裏打層,および磁性ドットし力示していないが,他の層を設けてもよい。例え ば,基板と軟磁性裏打層との間に下地層を設けてもよいし,軟磁性裏打層と磁性ドッ トとの間に中間層を設けてもよい。磁性ドット間には,非磁性体を埋め込んでもよい。 磁性ドット上には,通常,保護層および潤滑層が形成される。
[0058] 以下,本実施例のパターンド磁気記録媒体の設計をマイクロマグネテイツクシミュレ ーシヨンに基づ 、て行った手法にっ 、て説明する。
[0059] 図 2を参照してすでに説明したように,パターンド磁気記録媒体の設計においては ,初めに面記録密度を決める X, y方向(トラック長手方向を X方向,トラック幅方向を y 方向とする)のドットパターン周期 P , P ,飽和磁化 M ,熱磁気安定性を決定する熱
X y s
磁気安定性指数 K ,および磁気ヘッドの発生磁界を制限する膜厚 tを設定する。
[0060] まず,所望の面記録密度が lTbitZin2の正方格子ドットでは,ドットパターン周期 P および Pは 25nmとなる。
X y
[0061] 次に,熱磁気安定性を決定する熱磁気安定性指数 Kを設定する。 Kは垂直方向 の残留磁化反転開始磁界を H ,磁性ドットの体積を Vとすると,下記式 (A)
rn
(1/2) M H V/k T>K (A)
s rn B n
(ここで, k:ボルツマン定数, T:絶対温度である)で表される。式 (Α)の左辺の分子
Β
は磁性ドットの磁気エネルギー Ε (Ε = (1/2) Μ Η V)であり,式 (Α)の左辺は Ε m m s rn
/k Tとも表される。式 (Α)の左辺の分母は熱擾乱エネルギーである。この熱磁気 m B
安定性指数 Kを 60以上とすることにより,設定室温での 3年間以上の熱磁気安定性 が確保される,即ち熱擾乱によるビットエラー率が 10_5以下となる(既述の IEICE T rans. Electron. , vol. E80— C, no. 9, pp. 1180—1186, Sep. 1997.参照
。ただし,ここではより正確な指標となる残留磁ィ匕での磁ィ匕反転開始磁界 H を用い
rn る。 ) 0シミュレーションにおいては,実装置で要求される,より高温の 70°Cでの熱磁 気安定性を得るために T= 300Kに対しての Kを 70以上と設定する。これにより, 70 °Cでも Κ > 60が確保される。式 (A)から,磁性ドットの体積 Vを増加させることで,熱 磁気安定性指数 Kを維持しつつ必要な磁化反転開始磁界 H を抑えることができる
n rn
ことがわ力ゝる。
[0062] 式 (A)にお 、て磁性ドットの体積 Vは,磁性ドットの X方向(トラック長手方向)の寸 法を b, y方向(トラック幅方向)の寸法を a,膜厚を tとしたとき, V = abtとなる(楕円体 形状などの場合は体積をそのまま用いる)。ここで膜厚 tを設定する。図 4にはパター ンド磁気記録媒体上に配置される磁気ヘッド 11を示して ヽる。磁気ヘッドの発生磁 界を大きくするためには,ヘッド磁極先端面と軟磁性裏打層表面との距離を磁極幅 の半分程度以下とする必要がある。このため,磁極幅を 25nmとして,記録層の膜厚 を 12nm以下に設定する。
[0063] 最初に,図 5に示すように,正方磁性ドットを形成したパターンド磁気記録媒体につ いて記録特性をマイクロマグネティックシミュレーションで調べた。図 5の媒体は,面記 録密度 lTbitZin2,即ち X, y方向のパターン周期 Pおよび Pを 25nmとして,正方 格子状に, X方向の寸法 b, y方向の寸法 aが共に 7. 5nm,膜厚が 10nmである正方 磁性ドットを形成したものである。図 5で示されるスケールの単位は/ z mである。 X方 向の寸法 bおよび y方向の寸法 aを 7. 5nmとしたのは,このような寸法の磁性ドットで あれば記録時の隣接トラックへの影響を抑えられると予測したためである。以下,この パターンド磁気記録媒体を参照例と呼ぶ。
[0064] この参照例の媒体を,上記と同様に, Euxine Technologies社(Dayton, Ohio , USA)の「Advanced Recording Model, ver. 6」を使用してシミュレーションし た。各磁性ドットを一辺 2. 5nmの立方体要素に分割してモデルィ匕した。各立方体要 素間には交換スティフネス定数 A〜l X 10_6ergZcmで交換結合が働くとした。これ により,ドット内で磁ィ匕の向きが異なる非一斉磁ィ匕回転モードも含んだ現実に近いシ ミュレーシヨンとなっている。立方体要素のパラメータ一は,飽和磁化 M = 1000emg /cm3,垂直異方性磁界 H = 15kOe,その分散 (標準偏差) σ Η = 15%,異方性 k k
軸の配向分散 σ Θ = 2度とした。これらの条件の下で垂直方向残留磁化曲線および 単磁極磁気ヘッドによる記録磁ィ匕をシミュレーションで得た。このとき,軟磁性裏打層 はミラーイメージ層として取り込んだ。また,計算はエネルギー平衡法で行い,時間依 存性は考慮していない。したがって,得られた磁ィ匕曲線は記録過程に相当する短時 間での磁ィ匕挙動と見做すことができる。また記録磁化も記録直後の状態を表すが, 磁性ドットの磁気エネルギー Ε と熱擾乱エネルギー k Tの比 Kを 70以上としている m B n
ので熱磁気緩和による経時変化は無視できる。
[0065] 図 6に,このシミュレーションで得られた垂直方向残留磁ィ匕曲線を示す。図 6におい て, H は残留磁化反転開始磁界, H は残留抗磁力, H は残留飽和磁界をそれぞ rn rc rs
れ示す。図 6から,参照例の媒体の残留磁化反転磁界 H は 12kOeであることがわ
m
かる。
[0066] 参照例の媒体について磁極寸法が 25nmX 25nmの単磁極型記録ヘッドを用いた ときの記録特性を調べた。ヘッド磁界の一例を図 7に示す。このヘッド磁界により,中 央トラックの中心に沿って移動量 12. 5nm毎に磁界を反転させて一定周期のビット ノターンを記録する。ドット間の中央で磁界を反転させることで,中央トラック上の磁 性ドットの磁ィ匕を一つ置きに反転させることができる。即ち,ビット長 12. 5nmで 25個 の磁化パターンを誤りなく記録できる。
[0067] 次に,寸法 bおよび aをそれぞれ 12. 5nm, 15nm, 17. 5nmと変化させた正方磁 性ドット (No. 1, No. 2および No. 3)を有する媒体を 3種類想定した。これら 3種の 正方磁性ドットについて,膜厚 tをそれぞれ 5nm, 2. 5nm, 2. 5nmとし,垂直異方 性磁界 Hをそれぞれ 15kOe, 22kOe, 19kOeとした。それ以外のパラメータ一につ k
いては参照例と同様とし,シミュレーションを行って記録特性を調べた。表 1に,参照 例を含む 4種類の磁性ドットの寸法およびそれぞれの磁気特性をまとめて示す。これ らのドットの体積 Vとシミュレーションによって得た残留磁ィ匕曲線より求めた残留磁ィ匕 反転磁界 H との積 H Vは全て 6190nm3kOe以上となっており,室温での熱磁気 rn rn
安定性指数 Kが 70以上となるように選定している。
[表 1] 寸法 [nm] 體 V nrn Hk ドットパターン
x方向 (b) y方向(a) 膜厚 (t) V [nm3] Hm [kOe] Hk [kOe] 参照例 7.5 7.5 10 563 12 15
No. 1 12.5 12.5 5 781 8.4 15
No. 2 15 15 2.5 563 11.4 22
No. 3 17.5 2.5 2.5 766 8.4 19
[0068] 次に,ヘッド磁界の反転位置をトラック長手方向にずらせた時のビット誤り率を,参 照例及び No.:!〜 3のパターンド磁気記録媒体について調べたところ図 8のようにな つた。図 8において, X方向の寸法 (b)を D, y方向の寸法(a)を Dと表示している(他 の図においても図 8と同様に表示してレ、る場合がある)。図 8から明らかなように,ドッ ト寸法がドット周期の 1/2まで (No. 1)はビット誤りがゼロの範囲は参照例と同じ 15η mであった。しかし,ドット寸法がドット周期の 1Z2より大きくなると, No. 2では誤りの ない範囲は狭くなり, No. 3ではビット誤り率がゼロとなる場合がな力つた。
[0069] 同様に,記録磁界をトラック幅方向にずらした場合の隣接トラックの磁ィ匕反転による 隣接トラックでのビット誤り率を調べた。図 9に示すように,トラック幅方向では 2. 5nm 以上の記録磁界のずれに対しても隣接トラックの磁ィ匕が影響を受けており,位置ずれ に対する許容量は ± 2. 5nmほどしかなく,参照例も含めトラック長手方向に比べて 非常に小さい。なお,図 8に示したように No. 3は目的トラックでのビット誤りがゼロと なる場合がな力 たので,図 9では除外している。また,やはりドットのトラック幅方向 の寸法 aがドット周期の 1Z2を超えると隣接トラックへの影響も大きくなることがわかる
[0070] このように,トラック幅方向の位置ずれ許容量は小さいので,トラック幅方向のドット 寸法 aはトラック幅方向のドットパターン周期 Pの 1/2以下とすべきであることがわか る。それに対し,トラック長手方向の位置ずれに対する許容量はトラック幅方向の位 置ずれに対する許容量よりも大きいため,トラック長手方向の寸法をトラック幅方向の 寸法よりち大きくすることができる。
[0071] さらに, H = l lkOeとして E Zk T> 70 (T= 300K)を満たす正方ドット寸法 aの 飽和磁化 M依存性を図 10に示す。図 10から, y方向のドット寸法 aをパターン周期 2 s
5nmの 1Z2程度以下とするには,飽和磁化 M力 ^OOemuZcm3以上であればよい
s
ことがわかる。ただし,ドット寸法が参照例と等しい 7. 5mmでは 650emu/cm3以上 の飽和磁ィ匕が必要である。
[0072] 次に,上記の正方磁性ドットでの結果を考慮して,トラック幅方向の寸法 aをトラック 幅方向のドットパターン周期 Pの
y 1Z2以下(ここでは参照例と等しい 7. 5nm)とし,ト ラック長手方向の寸法 bをトラック幅方向の寸法 aより長い 12. 5〜22. 5nmとした異 方形状の磁性ドットを有するパターンド磁気記録媒体 (No. 4〜8)を想定し,その記 録特性をマイクロマグネティックシミュレーションで調べた。シミュレーションの対象とな る 7. 5nm X I 5nmの異方形状の磁性ドットを有する No. 5のパターンド磁気記録媒 体の概略図を図 11に示す。図 11で示されるスケールの単位は μ πιである。シミュレ ーシヨン条件はドット形状を除き,上記と同様とした。表 2に,参照例を含む 6種類の パターンド磁気記録媒体のドット寸法および磁気特性を示す。
[表 2]
Figure imgf000018_0001
[0073] 以下,上記のシミュレーションに基づいて,参照例を基準として, No. 4〜8のドット 寸法および体積 Vと,磁化反転開始磁界 H との関係を評価する。
m
[0074] 参照例と No. 4を比較する。 No. 4は,参照例のドットの y方向の寸法および膜厚の 寸法を変えることなく, X方向の寸法を 12. 5nmに変えたものである。 No. 4は参照 例の約 1. 67倍 (5Z3)の体積を有し,それに伴い熱磁気安定性に必要な磁化反転 開始磁界 H を 12kOeから 7. 2kOeに減少させることができる。このように,トラック長 rn
手方向の寸法 bをトラック幅方向の寸法 aよりも大きな値に設定することにより, X, y方 向のドット寸法が等しく aである場合に比べ,面積が概略 bZa倍となるのでその分ドッ トの体積が増し,体積の増分に相当する量だけ磁化反転開始磁界 H を小さくしても
m
熱磁気安定性は変わらな ヽ。
[0075] 参照例と No. 5〜8を比較する。 No. 5は,参照例のドットの y方向の寸法を変える ことなく, X方向の寸法を 15nm,つまり参照例の 2倍にし,膜厚を参照例の半分にし たものである。 No. 5は膜厚が参照例の半分であるものの,参照例の体積を維持し, 磁化反転開始磁界 H の増加を抑えることができる。 No. 6〜8も体積をほぼ一定とし
rn
て H をできるだけそろえたものである。このように, X, y方向のドット寸法が等しく aで m
ある場合に比べ,面積が概略 b/a倍となるので,体積を元とほぼ同じに保ったまま膜 厚を薄くすることができ,磁気ヘッドの発生磁界を高めることができる。
[0076] 表 2に示す No. 4〜8の異方形状ドットを有するパターンド磁気記録媒体について ,上述したのと同じ磁極寸法を持つ単磁極ヘッドによる記録を行った。中央トラックの 中心に沿ってビット長 12. 5nmの信号を記録するにあたり,磁界反転位置をトラック 長手方向にずらした時のビット誤り率の変化を図 12に示す。 No. 4はドットの膜厚が 参照例と同じで,長手方向の寸法を 12. 5nmとして体積を増しているが,参照例と同 じく 15nmのトラック長手方向のシフト許容量が確保されている。即ち,シフト許容量 が変わらずに,熱磁気安定性に必要な残留磁ィ匕反転開始磁界 H を 7. 2kOeと小さ
rn
くでき,必要な記録磁界強度を低減できる。 No. 5はトラック長手方向の寸法を参照 例の 2倍とし,体積を同じとするため膜厚を半分の 5nmとしているが,参照例と同じく 15nmのトラック長手方向のシフト許容量が確保されている。この場合,膜厚の減少 分だけ記録ヘッドの先端部分と媒体の軟磁性裏打層までの距離が縮まるため,高い 記録磁界を発生しやすく,ヘッドの設計が容易となる。 No. 6〜8は膜厚を No. 5と同 じにして bを大きくし,体積増加に応じて H を小さくしたものである。図 12に示すよう
rn
に,シフト許容量の減少は 2. 5nmとわずかである。
[0077] また,トラック幅方向への記録磁界のシフトによる隣接トラックへの影響を調べたとこ ろ,図 13に示すように,いずれの異方形状ドットの場合も参照例と同等以上のシフト 許容量が得られることがゎカゝつた。
[0078] 図 14に,表 1および表 2に示した磁性ドットについて,トラック長手方向およびトラッ ク幅方向におけるシフト許容量のドット寸法依存性をまとめて示す。図 14において, 実線は正方ドット,破線は異方形状ドットを示している。正方ドットの場合,ドット寸法 を大きくすると,トラック長手方向のシフト許容量が急激に低下する。これに対して,異 方形状ドットの場合,ドット寸法を大きくしても,実質的にトラック長手方向のシフト許 容量を維持できる。正方ドットの場合,ドット寸法にかかわらず,トラック幅方向のシフ ト許容量はほぼ一定である。これに対して,異方形状ドットの場合,ドット寸法の大きさ に応じてトラック幅方向のシフト許容量を参照例の 1〜2倍にすることができる。ここで , No. 8はトラック幅方向のシフト許容量が参照例と同じであるが,表 2に示すように 膜厚を半分にでき,かつ磁ィ匕反転開始磁界 Hmも 70%以下にできる点で有利であ る。要するに,磁性ドットを異方形状とすることで,熱磁気安定性とトラック長手方向シ フト許容量を維持でき,かつ,トラック幅方向のシフト許容量を 1〜2倍にでき,一方で 磁化反転開始磁界 Hmを小さくして記録し易い媒体とするか,または膜厚を薄くして 記録ヘッドの磁界を発生しやすくすることができることが分かる。
[0079] 以上のようにトラック長手方向に伸びたドット形状とした場合にシフト許容量が増加 する原因について説明する。図 15に印加磁界角度 0 , φ (deg)と残留磁ィ匕抗磁力 H (kOe)の関係を示す(ドット寸法: 7. 5nm X 15nmX 5nm) 0印加磁界角度 θ , rc
Φは図 11に示すように,それぞれトラック幅方向およびトラック長手方向への印加磁 界の傾きを示す。図 15から明らかなように,異方性形状のパターンド記録媒体にお いて,残留抗磁力 H の印加磁界角度依存性はトラック幅方向とトラック長手方向で
rc
異なる。つまり,ドットが異方形状であれば,トラック長手方向では H が低下し記録し
rc
やすくなる一方,トラック幅方向では逆に H が増カロして隣接トラックの磁ィ匕反転が起
rc
きに《なり,トラック幅方向のシフト許容量が増すことになる。この効果は磁性ドットの 形状異方性が増すほど大きくなるので,ドット形状の寸法比が増すほど,また磁性ド ットの材料の飽和磁化 Mが大きくなるほど大きくなる。つまり,ドットの X方向の寸法 b をドットの y方向の寸法 aよりも大きくするに伴い,記録ヘッドによる隣接トラックへの記 録が生じないトラック幅方向の変動許容量をより増加させることが可能となる。なお, 本実施例では長方形の磁性ドットを例に示したが,磁性ドットの異方形状は長方形に 限られるものではなく,楕円形や半円形などであっても,トラック幅方向と長手方向で 形状に差が生じるものであればよい。形状異方性による効果はドット形状を回転楕円 体と見做して簡易に凡その値を見積もることができる (既述の近角總信, 「強磁性体 の物理 (上)」,裳華房,東京,昭和 53年, p. 15参照)。また,トラック長手方向のず れ許容量が相対的に大きいので,トラック長手方向にパターン周期を小さくして高密 度ィ匕することちでさる。
以上説明したように本実施例によれば,ノターンド記録媒体の磁性ドットにっ 、て, ドットの y方向(トラック幅方向)の寸法 aを a≤P /2 (Pは y方向のドットパターン周期
y y
)とし,ドットの X方向(トラック長手方向)の寸法 bを aよりも大きくすることにより,所望の 記録密度を実現する磁性ドットパターンが所望の熱磁気安定性と記録の容易性およ び記録時のトラック幅方向のシフト許容量の広さを兼ね備えたパターンド磁気記録媒 体を提供することができる。形状異方性については,トラック幅方向のドット寸法 aに 対するトラック長手方向のドット寸法 bの比 bZaが 1. 15以上であれば 10%以上の効 果を期待できる。一方, aく PyZ3と小さくした場合でも, bZaは 3以下に制限される

Claims

請求の範囲
[1] 垂直方向に磁気異方性を持ち,ドット状にパターン化された磁性膜を含むパターン ド磁気記録媒体を設計する方法であって,
X方向および y方向のドットパターン周期 P , P ,膜厚 t,熱磁気安定性指数 K ,最 小ドット間スペーシング S ,最大記録磁界 H を設定し,
ο m
飽和磁化 Mの初期値を設定し,
ドットの X方向寸法 aと磁ィ匕反転開始磁界 Hを,次式
a = P S ,
H =2K *k TZ(a2*M * y *t)
n n B s
[k :ボルツマン定数, T:絶対温度, y :x方向のドット寸法に対する y方向のドット寸
B
法の比である]
に従って求め,
(a, ya, t)なる形状の磁性体ドットの垂直方向 M— Hループの傾き aを,次式 α =4π/(Ν + ΔΗ /Μ )
d c s
[Nは磁性ドットの垂直方向の反磁界係数, ΔΗは抗磁力 Hのパターンド磁気記録 d c c
媒体内での分布幅である]
に従って求め,抗磁力 H =Η +(4πΜ /α)と飽和磁界 Η =Η +(8πΜ /α) c n s s n s を見積もり,
求めた飽和磁界 Hが最大記録磁界 H未満であるか否かを判断し,飽和磁界 Hが s m s 最大記録磁界 H 以上である場合には,飽和磁化 Mの値を増力!]させて前記ステップ m s
を繰り返し,所望の条件を満足する磁気特性 M , H , Hを決定することを特徴とす るパターンド磁気記録媒体の設計方法。
[2] 垂直方向に磁気異方性を持つ磁性ドットがパターン化されて記録トラックを形成し ているパターンド磁気記録媒体であって,前記磁性ドットは,膜厚 tが 15nm以下であ り,トラック幅方向のドット寸法 aがドットパターン周期の 1Z2以下であり,飽和磁化 M s が 650emuZcm3より大きく,飽和磁界 H力 l8kOeより小さく,かつ磁化反転開始磁 s
界 H (Oe)が下記式
H ≥4. 2X104k /M V [kはボルツマン定数 (erg/deg) , Vは磁性ドットの体積 (cm3)である]
B
の関係を満たすことを特徴とするパターンド磁気記録媒体。
[3] 前記磁性ドットは,トラック長手方向のドット寸法 bがトラック幅方向のドット寸法 aより 大きい,という異方形状を有することを特徴とする請求項 2に記載のパターンド磁気 記録媒体。
[4] 前記磁性ドットは,トラック幅方向の寸法 aに対するトラック長手方向の寸法 bの比 b Zaが 1. 15≤ b/a≤ 3を満たすことを特徴とする請求項 3に記載のパターンド磁気 記録媒体。
[5] 前記磁性ドットは, Co— Pt系合金または Fe— Pt規則合金で形成されていることを 特徴とする請求項 2に記載のパターンド磁気記録媒体。
PCT/JP2005/020317 2004-11-04 2005-11-04 パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体 WO2006049259A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006542451A JPWO2006049259A1 (ja) 2004-11-04 2005-11-04 パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体
US11/689,851 US7339764B2 (en) 2004-11-04 2007-03-22 Method of designing patterned magnetic recording medium and patterned magnetic recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004320864 2004-11-04
JP2004-320864 2004-11-04
JP2005-169610 2005-06-09
JP2005169610 2005-06-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/689,851 Continuation US7339764B2 (en) 2004-11-04 2007-03-22 Method of designing patterned magnetic recording medium and patterned magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2006049259A1 true WO2006049259A1 (ja) 2006-05-11

Family

ID=36319259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020317 WO2006049259A1 (ja) 2004-11-04 2005-11-04 パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体

Country Status (3)

Country Link
US (1) US7339764B2 (ja)
JP (2) JPWO2006049259A1 (ja)
WO (1) WO2006049259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211759A (ja) * 2008-03-04 2009-09-17 Fujitsu Ltd 磁気記録媒体、および磁気記録媒体の製造方法
JP2009277319A (ja) * 2008-05-16 2009-11-26 Hoya Corp 垂直磁気記録媒体及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564933B2 (ja) * 2006-03-15 2010-10-20 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 垂直磁気記録媒体とその磁気特性評価法、及び磁気記録再生装置
US8154813B2 (en) * 2008-09-02 2012-04-10 Seagate Technology, Llc Embedded servo on track for bit-patterned device
KR100978491B1 (ko) * 2008-12-11 2010-08-30 한국과학기술원 L10 규칙화 구조의 FePt 나노 도트 어레이의 제조방법
US7960044B2 (en) * 2009-03-27 2011-06-14 Hitachi Global Storage Technologies Netherlands B.V. Patterned-media perpendicular magnetic recording disk with servo regions having magnetized servo pillars and oppositely-magnetized servo trenches
JP4929384B2 (ja) * 2010-07-23 2012-05-09 株式会社東芝 磁気記録媒体
US8742518B2 (en) 2011-03-31 2014-06-03 Seagate Technology Llc Magnetic tunnel junction with free layer having exchange coupled magnetic elements
US8481181B2 (en) * 2011-03-31 2013-07-09 Seagate Technology Llc Exchange coupled magnetic elements
JP6260742B2 (ja) 2015-07-02 2018-01-17 富士電機株式会社 磁気記録媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004110926A (ja) * 2002-09-18 2004-04-08 National Institute Of Advanced Industrial & Technology 磁気記録用材料、並びに磁気記録媒体およびその製造方法
JP2004152367A (ja) * 2002-10-29 2004-05-27 Univ Waseda 磁気記録媒体、その製造方法及び磁気記憶装置
JP2004220608A (ja) * 2003-01-16 2004-08-05 Internatl Business Mach Corp <Ibm> スレッド型に基づくコンピュータ・リソースの動的割り付け

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634443A (ja) * 1986-06-23 1988-01-09 Mitsubishi Electric Corp 光磁気記録媒体
JPH0628093B2 (ja) * 1989-06-20 1994-04-13 科学技術庁金属材料技術研究所長 磁気記録媒体
JPH0869641A (ja) * 1994-08-29 1996-03-12 Sanyo Electric Co Ltd 光磁気記録媒体とその製造方法
JPH09297918A (ja) * 1996-04-30 1997-11-18 Nec Corp 磁気記録媒体
JP2001023139A (ja) * 1999-07-05 2001-01-26 Tdk Corp 磁気記録媒体
JP2002251720A (ja) * 2001-02-26 2002-09-06 Univ Osaka 方位配向硬磁性粒子分散膜の製造方法
SG122746A1 (en) * 2001-10-01 2006-06-29 Inst Data Storage Method of magnetically patterning a thin film by mask-controlled local phase transition
WO2003036626A1 (en) * 2001-10-22 2003-05-01 Klemmer Timothy J Magnetic films having magnetic and non-magnetic regions and method of producing such films by ion irradiation
JP4037139B2 (ja) * 2002-03-26 2008-01-23 学校法人早稲田大学 磁気記録媒体、磁気記録媒体の製造方法および磁気記録再生装置
JP2004063050A (ja) * 2002-07-31 2004-02-26 Hoya Corp 磁気ディスク用磁気記録媒体およびその製造方法
JP4219136B2 (ja) * 2002-09-05 2009-02-04 Hoya株式会社 磁気ディスク及びその製造方法
US7166997B2 (en) * 2002-10-07 2007-01-23 Seagate Technology Llc Complex transverse AC magneto-optic susceptometer for determination of volume and anisotropy field distribution in recording media
JP4207769B2 (ja) * 2002-12-20 2009-01-14 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体およびその製造方法
JP2004220680A (ja) 2003-01-14 2004-08-05 Showa Denko Kk 磁気記録媒体、その製造方法および磁気記録再生装置
WO2004070712A1 (ja) * 2003-02-06 2004-08-19 Fujitsu Limited 磁気記録媒体及びその製造方法、磁気記録媒体に用いられる磁気媒体基板、並びに磁気記憶装置
JP4102221B2 (ja) * 2003-03-07 2008-06-18 富士通株式会社 磁気記録媒体の製造方法
JP3884394B2 (ja) * 2003-03-28 2007-02-21 株式会社東芝 記録媒体、記録再生装置、記録媒体の製造装置、及び記録媒体の製造方法
US20050157597A1 (en) * 2003-05-29 2005-07-21 Seagate Technology Llc Optimized media grain packing fraction for bit patterned magnetic recording media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004110926A (ja) * 2002-09-18 2004-04-08 National Institute Of Advanced Industrial & Technology 磁気記録用材料、並びに磁気記録媒体およびその製造方法
JP2004152367A (ja) * 2002-10-29 2004-05-27 Univ Waseda 磁気記録媒体、その製造方法及び磁気記憶装置
JP2004220608A (ja) * 2003-01-16 2004-08-05 Internatl Business Mach Corp <Ibm> スレッド型に基づくコンピュータ・リソースの動的割り付け

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211759A (ja) * 2008-03-04 2009-09-17 Fujitsu Ltd 磁気記録媒体、および磁気記録媒体の製造方法
JP2009277319A (ja) * 2008-05-16 2009-11-26 Hoya Corp 垂直磁気記録媒体及びその製造方法

Also Published As

Publication number Publication date
JP2010003408A (ja) 2010-01-07
JP4978680B2 (ja) 2012-07-18
US7339764B2 (en) 2008-03-04
US20070159721A1 (en) 2007-07-12
JPWO2006049259A1 (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006049259A1 (ja) パターンド磁気記録媒体の設計方法およびパターンド磁気記録媒体
US8481181B2 (en) Exchange coupled magnetic elements
JP4317717B2 (ja) 垂直記録用薄膜磁気ヘッドを用いた磁気ディスク装置
JP3010156B2 (ja) 規則合金薄膜からなる情報記録媒体の製造方法
JP3653007B2 (ja) 垂直磁気記録媒体とその製造方法および磁気記憶装置
JP2006286105A (ja) 磁気記録媒体および磁気記憶装置
JP2003298146A (ja) 磁気抵抗効果素子及び磁気メモリ
JP2006190461A (ja) 磁気的リセット可能な単一磁区軟磁気裏打ち層を使用する垂直磁気記録媒体
JP2004348952A (ja) 垂直記録ディスク用軟磁性膜
CN101919000B (zh) 磁性记录介质
US8036070B2 (en) Magnetic recording device, especially for a hard disk and its manufacturing process
JP2008146809A (ja) 磁気記録媒体及びその製造方法
JP4044039B2 (ja) 横方向磁化ドットアレイを備える情報記憶媒体と前記媒体の製造方法
JP2009238287A (ja) 磁気記録媒体の製造方法及び磁気記録媒体及び磁気記録再生装置
JP2009238273A (ja) 磁気記録媒体の製造方法及び磁気記録媒体及び磁気記録再生装置
JP2000149201A (ja) 磁気記憶再生装置
KR101535861B1 (ko) 자기 저장장치, 하드드라이브 및 그 제조방법
Honda et al. Simulation study of bit patterned media with weakly inclined anisotropy
Honda et al. Write margin improvement in bit patterned media with inclined anisotropy at high areal densities
JP5738791B2 (ja) 三次元磁気記録媒体
JP2008152905A (ja) パターン化された磁気記録媒体及びその製造方法
Mochizuki et al. Write-field gradient effect on transition width in perpendicular recording media
JP4694536B2 (ja) 磁気記録媒体、磁気記録媒体の製造方法及び磁気情報記録方法
JP4286792B2 (ja) 磁気ヘッド
Futamoto Development of Thin Film Technology for High-Density Magnetic Recording Media

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542451

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11689851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11689851

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05805547

Country of ref document: EP

Kind code of ref document: A1