WO2006049066A1 - 圧力容器、圧縮機およびシリンダブロックの鋳造方法 - Google Patents

圧力容器、圧縮機およびシリンダブロックの鋳造方法 Download PDF

Info

Publication number
WO2006049066A1
WO2006049066A1 PCT/JP2005/019734 JP2005019734W WO2006049066A1 WO 2006049066 A1 WO2006049066 A1 WO 2006049066A1 JP 2005019734 W JP2005019734 W JP 2005019734W WO 2006049066 A1 WO2006049066 A1 WO 2006049066A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
based member
metal
light metal
compressor
Prior art date
Application number
PCT/JP2005/019734
Other languages
English (en)
French (fr)
Inventor
Motoharu Tanizawa
Kyoichi Kinoshita
Yuki Okamoto
Tsukasa Sugie
Manabu Sugiura
Takayuki Kato
Fuminobu Enokijima
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to US10/586,893 priority Critical patent/US7395750B2/en
Priority to EP05799325A priority patent/EP1808621A1/en
Priority to JP2006543225A priority patent/JP4662178B2/ja
Publication of WO2006049066A1 publication Critical patent/WO2006049066A1/ja
Priority to US12/140,343 priority patent/US20080257516A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/0009Cylinders, pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J12/00Pressure vessels in general

Definitions

  • the present invention relates to a pressure vessel that contains a pressurized substance such as a gas.
  • a pressurized substance such as a gas.
  • the pressure vessel is used, for example, as a housing of a compressor provided in an air conditioner or the like mounted on an automobile, and in recent years, weight reduction has been demanded. For this reason, light-weight metals such as low-density aluminum and magnesium are used in compressor housings that require pressure resistance.
  • the tensile strength is about 20 OMPa for an aluminum forged product
  • the strength under a high temperature environment is further reduced (aluminum In the case of the above-mentioned manufactured products, the temperature decreases by 30% or more at room temperature in a high temperature range of 200 ° C or higher). Therefore, in order to obtain a strength that satisfies the required pressure resistance, it is necessary to increase the thickness, but as the thickness increases, there is a problem that a nest is more likely to occur.
  • a pig iron liner or the like is pressed into the light metal block body.
  • Japanese Patent Application Laid-Open No. 5-9-074 3 5 3 discloses a cylinder opening that is a housing element having a cylinder bore.
  • an aluminum liner formed by stretching is wrapped in a cylinder bore, and a thermal spray layer is formed on the inner peripheral surface of the liner, while there is a problem of adhesion between the block body and pig iron liner. Therefore, a linerless cylinder block that eliminates pig iron liners has been developed, but the linerless structure has low sliding surface rigidity, so depending on the degree of heat and internal pressure, It may be deformed.
  • an object of the present invention is to provide a pressure vessel and a compressor having high pressure resistance. It is another object of the present invention to provide a cylinder block manufacturing method with excellent pressure resistance and high manufacturing quality.
  • a pressure vessel is a pressure vessel comprising: a substantially cylindrical peripheral wall portion having an internal space; and end wall portions that close both ends of the peripheral wall portion, and at least a part of which is a light metal that is a matrix And a plate-like iron-based member embedded in the light metal and having a large number of through holes penetrating the front and back surfaces of iron and having an opening ratio of 13 to 3%, and a metal composite material It consists of
  • the iron-based member is “plate-shaped”.
  • it In addition to the expanded metal and punched metal obtained by processing the plate-shaped body, it is composed of a plurality of wires as long as it has a certain degree of rigidity. It is a concept including a net-like body.
  • the pressure vessel of the present invention is at least partially composed of a metal composite material in which an iron-based member is embedded in a light metal, the pressure resistance is high due to the reinforcing effect of the iron-based member. Furthermore, since the metal composite material is made of light metal, it is a light pressure vessel with excellent light pressure resistance. In addition, iron-based members have a large number of through-holes that penetrate the front and back surfaces, so that adhesion to light metals, which are matrixes, can be secured.
  • the opening ratio of the iron-based member By setting the opening ratio of the iron-based member to 13 to 30%, a metal composite material having both good adhesion and pressure resistance is obtained. If the aperture ratio is too large, it will be difficult to ensure high pressure resistance. If the aperture ratio is too low, the adhesion between the matrix and the iron-based member will be reduced. By setting the aperture ratio to 13 to 30%, a metal composite material having a good balance between pressure resistance and adhesion can be obtained. More preferably, the aperture ratio is 18 to 28%.
  • the present inventors have found that a metal composite material having a high strength in which the above-mentioned iron-based member is embedded in a light metal is a part where pressure resistance is desired. Used for compressor housings, where the strength may decrease with aluminum materials We paid attention to exhibiting excellent effects. That is, the compressor of the present invention is a compressor having a compression mechanism and a housing having a working space for compressing a gas by the compression mechanism, wherein at least a part of the housing is a light metal serving as a matrix, and It is made of a metal composite material consisting of: a plate-like iron-based member embedded in a light metal, with a large number of through holes penetrating the front and back surfaces of iron and having an open area ratio of 13 to 30%. It is characterized by.
  • the “housing” only needs to have a working space for mainly compressing gas by a compression mechanism.
  • a compressor having a typical form having a piston that compresses gas by reciprocating motion having a predetermined phase. If so, it may be a front housing provided with a cylinder block provided with a plurality of cylinder bores for accommodating the pistons and a hollow cylindrical part for accommodating the driving means for driving the vistons. Also, other types of compressors may have a form corresponding to the front housing.
  • the compressor of the present invention since the housing is formed of the metal composite material having the above configuration, the compressor is lightweight and has excellent pressure resistance.
  • the iron-based member since the iron-based member has a large number of through holes penetrating the front and back surfaces, adhesion with a light metal that is a matrix can be secured.
  • the compressor may become hot during operation (approximately 180 ° C when using CO 2 ), but if it is a compressor using a metal composite, Excellent pressure resistance without decreasing strength even at high temperatures.
  • the housing has a mounting portion made of the light metal that protrudes outward and is integrally formed to fix the compressor to the mounted body, and the tensile strength of the mounting portion is 4600 MPa or more. Is preferred. By doing so, it is possible to improve the strength of light metal parts that do not use metal composites, and have excellent pressure resistance, and not only the parts made of metal composites but also the entire housing has high strength. It becomes.
  • the mirror method of the cylinder block of the present invention includes a hollow portion forming a molding cavity surface corresponding to the shape of the cylinder block in cooperation with at least the cylinder bore core, and the molten metal is poured into the hollow portion.
  • a pouring passage that communicates with the steel, and a forged mold with a large number of through holes penetrating the front and back surfaces of iron as the main component, and an opening ratio of 13 to 30% An iron-based member disposing step of coaxially disposing a substantially cylindrical iron-based member coaxially with the cylinder bore core, and a light metal filling step of filling the hollow portion with a melt of light metal from the pouring passage. The iron-based member is inserted with the light metal.
  • the iron-based member has at least one notch larger than an area of the through hole at the opening end of the iron-based member, and the opening end in the iron-based member disposing step It is desirable that the portion is in contact with the molding cavity surface and has a space on the front and back sides of the iron-based member, and the molten metal is filled in the entire hollow portion through the notch in the light metal filling step.
  • the opening ratio of the plate-shaped iron-based member is 13 to 30%, the opening end portion of the substantially cylindrical iron-based member is in contact with the molding cavity surface.
  • the molten metal may not easily pass through the through hole of the iron-based member. For this reason, molten metal of light metal may not be sufficiently poured into at least one space on the front and back sides of iron-based members.
  • the molten metal can reach the front and back sides of the iron-based member sufficiently through this notch, and the entire hollow portion can be satisfactorily filled with light metal. it can.
  • it can be sufficiently poured to the cylinder bore surface located on the inner peripheral surface side, so that a good sliding surface can be obtained.
  • FIG. 1A is a view showing an example of a peripheral wall portion of the pressure vessel of the present invention, and is a plan view when the peripheral wall portion is assumed to be a hollow cylindrical cylindrical member.
  • FIG. 1B is an axial sectional view of the cylindrical member of FIG. 1A.
  • FIG. 2A is a view showing an example of the peripheral wall portion of the pressure vessel of the present invention, and is a plan view when the peripheral wall portion is assumed to be a hollow cylindrical cylindrical member.
  • FIG. 2B is an axial sectional view of the cylindrical member in FIG. 2A.
  • FIG. 3 is a cross-sectional view of a swash plate compressor which is an example of the compressor of the present invention.
  • FIG. 4A is a cross-sectional view schematically showing an example of a method for forging a cylinder block according to the present invention.
  • FIG. 4B is a side view schematically showing the iron-based member of FIG. 4A.
  • FIG. 5 is a drawing-substituting photograph showing a part of the expanded metal constituting the metal composite used in the pressure vessel of the example.
  • FIG. 6 is a graph showing the results of measuring the Vickers hardness at each position in the thickness direction of the expanded metal constituting the metal composite used in the pressure vessel of the example.
  • FIG. 7 is a cross-sectional view (cross-sectional view in the thickness direction of the expanded metal) schematically showing a mold for producing a sample made of a metal composite material used in the pressure vessel of the example.
  • FIG. 8 is a graph showing the results of a tensile test of samples A to J and F ′ of the example.
  • FIG. 9 is a cross-sectional view schematically showing a housing member of the compressor of the example.
  • FIG. 10 is a graph showing a simulation analysis result of a pressure resistance test performed using the housing member of the compressor of the example.
  • the pressure vessel of the present invention comprises a substantially cylindrical peripheral wall portion having an internal space, and end wall portions that close both ends of the peripheral wall portion.
  • this pressure vessel is a general pressure vessel that contains various gases such as CNG (compressed natural gas), LNG (liquefied natural gas), LPG (liquefied petroleum gas), and various pressurized substances. It is the same as the structure which has.
  • the shape of the peripheral wall portion and the end wall portion is not particularly limited, but the peripheral wall portion preferably has a substantially cylindrical inner space. Further, the end wall portion is preferably formed integrally with the peripheral wall portion. Also, if necessary, the peripheral wall and end wall may be provided with openings that allow gas to flow in or out.
  • the pressure vessel of the present invention is at least partially made of a metal composite material.
  • the metal composite material is lightweight and has high strength because it consists of a light metal as a matrix and an iron-based member embedded in the light metal.
  • the light metal used as the matrix is at least lighter than the iron-based material that constitutes the iron-based member, and is not particularly limited to its type as long as the iron-based member does not melt or deteriorate when forming the metal composite. There is no.
  • a light metal having a melting point lower than that of an iron-based metal constituting an iron-based member can be easily manufactured by forging.
  • pure aluminum, aluminum metals such as aluminum alloys containing Mg, Cu, Zn, Si, Mn, etc., pure magnesium, Zn, Al, Zr, Mn, Th, rare earth elements
  • a magnesium-based metal such as a magnesium alloy containing elements.
  • the iron-based member has a large number of through holes penetrating the front and back surfaces. By having the generality, when the iron-based member is embedded in the light metal, it is possible to ensure adhesion between the two, and if the opening ratio of the iron-based member is 13 to 30% The pressure resistance of the pressure vessel can be improved and the weight can be reduced effectively. More preferably, the aperture ratio is 18 to 28%.
  • the area of one through hole is preferably 300 Aim 2 or more. If the area of one through hole is within the above range, the adhesion between the light metal and the iron-based member can be further ensured. A more preferable area of one through hole is 300 im 2 to 10 mm 2 .
  • the iron-based member is a metal containing iron as a main component and is not particularly limited as long as it is plate-shaped, but various rolled steel plates (JIS symbols, SPCC, SPHC, etc.) excellent in workability are preferably used.
  • the “plate-like” may be a plate-like body having a certain degree of rigidity (a higher elastic modulus than the light metal as a matrix). In other words, even a net-like body made of a plurality of wires, such as a wire net, only needs to have a degree of rigidity that does not cause bending.
  • an expanded metal obtained by inserting a number of slits in a plate-like body and stretching the slits in the extending direction of the plate-like body to form through holes, or mainly on the plate-like body.
  • a punching metal having many through holes in the thickness direction is preferable.
  • These members can be easily produced, are easily available, and have excellent caloric properties.
  • the thickness of the iron-based member is preferably 0.5 to 2 mm. When the thickness of the iron-based member is in the above range, the pressure resistance of the pressure vessel can be improved satisfactorily, and a sufficient improvement effect can be obtained even with a thickness of 2 mm or less.
  • the iron-based member preferably has a rough surface.
  • the surface of the iron-based member By making the surface of the iron-based member rough, the adhesion between the light metal and the iron-based member is improved. Gatsutsu Thus, it is sufficient that the roughening is performed at least on the interface of the iron-based member in contact with the light metal.
  • the rough surface can be formed by using a physical method such as shot blasting or shot blasting or a chemical method using chemicals.
  • Carburizing treatment is a treatment method in which only the surface portion is hardened by increasing the amount of carbon in the surface portion by infiltrating carbon from the surface of carbon steel.
  • Steel sheets that are processed into expanded metal that is square as an iron-based member are relatively soft and excellent in workability, so it is desirable to harden them by carburizing.
  • the plate thickness of the iron-based member is preferably 0.5 to 2 mm. Therefore, when carburizing treatment is performed on such an iron-based member, carbon sufficiently enters the entire iron-based member. And cured.
  • the carburizing process may be any of solid carburizing process, liquid carburizing process, gas carburizing process, and vacuum carburizing process.
  • the position of the iron-based member is not limited as long as it is embedded in a light metal, and at least a part of the compression vessel, particularly a part to which high pressure is applied, may be made of a metal composite material. . Among them, it is preferable that the iron-based member is embedded so as to be positioned at least at a part of the peripheral wall portion of the pressure vessel, that is, at least a part of the peripheral wall portion is made of a metal composite material.
  • the peripheral wall portion of the pressure vessel is a hollow cylindrical cylindrical member as shown by the plan views of FIGS. 1A and 2A and the axial sectional views of FIGS.
  • the peripheral wall is made of a metal composite over the entire cylindrical member and is made of a metal composite.
  • the peripheral wall is made of iron-based member 12 in part of the axial direction (Figs. 1A and B) Or a peripheral wall part using iron-based member 22 in part of the circumferential direction
  • FIGS. 1 and 2 part of the peripheral wall is made of metal composite material 10 and 20 (shaded part in the figure), and the other part is only light metal 1 1 and 2 1 (Fig. It may be formed by the white portion in the middle).
  • a pressure vessel using at least a portion of the metal composite material has improved strength and excellent pressure resistance.
  • 1 1 and 2 1 are light metals
  • 1 2 and 2 2 are ferrous members
  • 1 3 and 2 3 are through holes for ferrous members 1 2 and 2 2.
  • FIG. 1A and FIG. 2A are plan views seen from the direction of arrow la in FIG. 1B and arrow 2a in FIG. 2B.
  • a pressure vessel in which a substantially cylindrical iron-based member is embedded in the circumferential direction of the peripheral wall portion see, for example, FIG. 1
  • not only the portion in which the iron-based member is embedded but also the end of the peripheral wall portion is closed.
  • the pressure resistance of the end wall is also improved. This is because deformation of not only the peripheral wall portion but also the end wall portion is suppressed by the substantially cylindrical iron-based member embedded in the circumferential direction.
  • the pressure resistance of the entire pressure vessel can be improved only by applying a minimum reinforcement only to the peripheral wall portion with the metal composite material.
  • the iron-based member In the case where the iron-based member is disposed so as to be located on the inner peripheral surface side or the outer peripheral surface side of the pressure vessel, a part of the iron-based member may be exposed on the surface of the pressure vessel. Further, a plurality of iron-based members may be embedded in a light metal in a state where a plurality of iron-based members are laminated. As described above, a thin iron member of about 0.5 to 2 mm is easily nitrided if carburized. Therefore, it is more effective to use multiple thin iron-based members that are sufficiently carburized and nitrided than to use one thick iron-based member. Furthermore, a thin iron-based member is advantageous because it can be easily processed into a desired shape.
  • a plurality of cylindrical members having different inner diameters are prepared, inserted into a cylinder of iron members having a larger inner diameter, and stacked.
  • the flat iron-based members may be wound in a spiral shape and stacked together.
  • pressure vessels are subject to large loads mainly in the circumferential direction of the peripheral wall (in the direction of the arrow in Fig. 1A).
  • the pressure resistance of the pressure vessel is effectively improved by matching the high direction with the peripheral wall portion in the circumferential direction.
  • the metal composite material of the present invention is preferably manufactured by forging.
  • the iron-based iron already described in the forged mold having a hollow portion having a molding cavity surface corresponding to the shape of the pressure vessel, and a molten metal pouring passage that communicates with the hollow portion.
  • a so-called insert that inserts an iron-based member with non-ferrous metal through a non-ferrous metal filling step of filling a hollow portion with a molten non-ferrous metal from a pouring passage and a non-ferrous metal filling step of arranging a member.
  • Any method may be used.
  • the forging method may be a conventional method such as a gravity forging method, a low pressure forging method, a molten metal forging method, or a die casting method.
  • the housing is mainly a compression mechanism. It corresponds to a so-called pressure vessel with a built-in working space for compressing gas.
  • a typical compressor is one that compresses gas by reciprocating a piston.
  • the housing is provided with a cylinder block having a plurality of cylinder bores for storing the pistons for compressing the gas by reciprocating motion having a predetermined phase, and a hollow cylindrical portion for storing the driving means for driving the bistons.
  • Any front housing may be used.
  • a variable capacity single-head swash plate compressor will be described as an example.
  • Figure 3 shows the configuration of the swash plate compressor.
  • the drive shaft 3 ⁇ is housed in a swash plate chamber 3 4 formed by a cylinder block 3 2 and a front housing 3 3 and is rotatably supported by a radial bearing.
  • a plurality of cylinder bores 35 are disposed in the cylinder block 32 so as to surround the drive shaft 30.
  • a single-headed piston 36 is inserted so as to be able to reciprocate.
  • a rotor 37 is coupled to the drive shaft 30, and a swash plate 38 is fitted behind the rotor 37.
  • the swash plate 3 8 can tilt around the fulcrum, and the gas pressure acting on both ends of the piston 3 6 based on the pressure change in the swash plate chamber 3 4 is balanced.
  • the tilt displacement of the swash plate 38 is controlled.
  • the swash plate 3 8 has a smooth sliding contact surface 38 p on the outer peripheral side of both end surfaces, and the sliding contact surface 39 p of the shoe 3 9 abuts on the sliding contact surface 38 p. ing.
  • These shears 39 are engaged with the hemispherical seat 36 p of the piston 36.
  • the scroll type compressor has a spiral scroll as a compression mechanism and compresses the gas by changing the volume in the partitioned space
  • the housing that houses the scroll portion, and the vane as the compressor mechanism It is necessary to compress the gas by changing the volume in the partitioned space.
  • a housing corresponding to the above cylinder block or the front housing may be used, such as a housing that houses the vane portion.
  • the housing is made of the above-described metal composite material.
  • the compressor of the present invention has a housing made of the pressure vessel of the present invention already described. Therefore, it is desirable that the housing includes various housing members such as a cylinder block made of a metal composite material and a front housing. Since the metal composite material is composed of a light metal as a matrix and an iron-based member embedded in the light metal, the housing formed of the metal composite material is light and high in strength. In particular, even if the cylinder block has a linerless structure in which the liner is omitted, deformation caused by heat and internal pressure is reduced.
  • the housing preferably has a mounting portion made of light metal that protrudes outward and is integrally formed to fix the compressor to the mounted body (engine block or the like).
  • the mounting portion 300 has a through hole into which a bolt is inserted as shown in FIG.
  • the mounting part should have high strength to prevent deformation or breakage of the mounting part or the entire housing due to concentration of stress during mounting, and the tensile strength of the mounting part should be 4 6 OMPa or more.
  • the mechanical strength can be improved by heat treatment (for example, a general tempering treatment after quenching indicated by the tempering symbol T6). As a result, even a portion made only of light metal can have high strength.
  • the method for forging a cylinder block according to the present invention includes an iron-based member disposing step for disposing a substantially cylindrical iron-based member in a forging die, and a light metal filling step for filling a light metal melt into the forging die.
  • the iron-based member placement process consists of a hollow part that forms a molding cavity surface corresponding to the shape of the cylinder block in cooperation with at least the cylinder bore core, and a pouring passage that is used to introduce molten metal and communicate with the hollow part.
  • a substantially cylindrical iron-based member is arranged coaxially with the core for the cylinder bore in a forged mold having.
  • the melted light metal is filled into the hollow portion from the pouring passage.
  • a substantially cylindrical iron-based member is embedded at a predetermined distance from the cylinder bore surface of the cylinder block, an iron-based member provided with a notch at the opening end of the iron-based member is used. Good forging.
  • a method for forging a cylinder block according to the present invention will be described with reference to FIGS. 4A and 4B.
  • FIG. 4A is a cross-sectional view schematically showing an example of a method for forging a cylinder block according to the present invention.
  • FIG. 4B is a side view schematically showing the iron-based member used in FIG. 4A, and shows only the iron-based member from the direction of arrow b in FIG. 4A.
  • a cylindrical cylinder block having one cylinder bore is shown, but a cylinder block having a plurality of cylinder bores may be used.
  • the cylinder block mirror manufacturing method of the present invention mainly includes an iron-based member disposing step and a light metal filling step, and the iron-based member 4 2 is inserted with a light metal 41 to obtain a metal composite material 40. Get.
  • the iron-based member is disposed in the forging mold.
  • the forging mold used is a hollow portion (iron-based member 3 2. Which forms a molding cavity surface 8 4 corresponding to the shape of the cylinder block in cooperation with at least the cylinder bore core 8 3. And a space 8 6, 8 7), and a molten metal 4 1 ′ is poured, and a molten metal 4 1 ′ is connected to the hollow portion and the molten metal 4 1 ′.
  • it may be a forged mold 80 having a molding cavity (corresponding to the inner space) divided by a plurality of molds 8 1 to 8 3 as shown in FIG.
  • a forging mold usually used for forging may be used.
  • the iron-based member is a substantially cylindrical member having iron as a main component and having a large number of through holes penetrating the front and back surfaces and having an opening ratio of 13 to 30%.
  • the opening end of the iron-based member 42 is in contact with the molding cavity surface 84, which is the inner surface of the molding cavity, and the iron-based member 42 is a table of the iron-based member 42.
  • the outer space 86 and the inner space 87 are partitioned by the iron-based member 42, and both communicate with each other through the notch 45.
  • the notch 4 5 is not present in the iron-based member 4 2, the light metal molten metal 4 1 ′ poured from the pouring passage 8 3 will be placed on one side of the iron-based member 4 2 in the next light metal filling process.
  • Well positioned outer space 8 6 since the opening ratio of the iron-based member 4 2 is 13 to 30%, the molten metal 41 does not completely fill the inner space 8 7 through the through hole, or even if it is filled Cost.
  • the iron-based member has a notch, the molten metal of the light metal poured in the light metal filling process easily passes through the notch and well wraps around the space on the front and back sides of the iron-based member.
  • a cylinder block having a desired shape along the molding cavity surface can be obtained.
  • the hot water is also poured well into the cylinder bore surface which is located on the inner peripheral surface side of the cylinder block and serves as a sliding surface with the piston, it follows the outer peripheral surface of the cylinder bore core. A smooth sliding surface is formed.
  • the molten metal easily passes through the notch, the displacement of the location of the iron-based member caused by the resistance force received from the molten metal flow is suppressed.
  • the notch is not necessarily formed depending on the position of the iron-based member. For example, when only one end of the substantially cylindrical iron-based member is in contact with the molding cavity surface, In some cases, the cutout may not be formed.
  • the cylinder block fabrication method of the present invention is suitable for the case where a sliding surface such as a cylinder pore surface is provided on the inner surface, but it goes without saying that it can also be applied to the production of a pressure vessel and a compressor housing which have already been described. .
  • the size of the notch formed in the iron-based member is preferably 10 to 400 mm 2 in the area of one notch, although it depends on the size of the iron-based member. If it is 10 mm 2 or more, the molten metal easily flows in, and the molten metal is satisfactorily filled into the forged hollow portion. Further, if it exceeds 400 mm 2 , the strength of the metal composite material in the portion where the notch is formed is undesirably lowered. At this time, the area of the notch is preferably about 10% of the area of the iron-based member.
  • the area of iron-based members includes the area of through holes.
  • the iron-based member can be placed in a forging mold with both open ends held between the molding cavity surfaces.
  • the molding cavity surface has a holding portion for holding the open end of the iron-based member. Opening end of iron-based member on holding part of molding cavity surface If the portion is held, the displacement of the location of the iron-based member that occurs during pouring is suppressed.
  • the holding portion is a protrusion 8 31 that protrudes from the molding cavity surface as shown in Fig. 4A and prevents the movement of the iron-based member, or a holding groove that fits with the peripheral portion of the iron-based member. .
  • the melted light metal is filled into the hollow part from the pouring passage. The melt of light metal is easily filled into the entire hollow part through the notch.
  • the step of forming a rough surface on the iron-based member and the carburizing step may be performed before the iron-based member disposing step.
  • heat treatment may be performed as necessary, and a tempering process may be performed to adjust the mechanical properties of the light metal used as a matrix, and a cylinder block with higher pressure resistance can be obtained.
  • sliding characteristics are further improved by performing surface treatment such as plating and thermal spraying on the cylinder bore surface.
  • test pieces made of a metal composite material used for the pressure vessel were prepared. The procedure for preparing each sample is described below.
  • Expanded metal with a plate-shaped through-hole penetrating in the thickness direction (industrial cold-rolled steel plate (SPCC)), thickness: 900 ⁇ m, aperture ratio: 18%, surface of one hole Product: 300 ⁇ m ⁇ 2 , a photograph taken from the thickness direction is shown in FIG.
  • the expanded metal was subjected to carbonitriding, tempering, or shot blasting to obtain expanded metal Ml to ⁇ 5.
  • M l ⁇ ⁇ 5 Table 1 shows.
  • M4 we prepared M4 'with the same treatment except that the aperture ratio was 28%.
  • the expanded metal was heated to 650-900 ° C with a carburizing gas containing NH 3 , and C and N were simultaneously reacted with the steel material to form a diffusion layer, followed by oil quenching. Tempering was carried out by holding at 150 ° C or 550 for 1 hour. In shot blasting, fibrous pre-irradiation was performed on both sides of the expanded metal for 1 minute (2 minutes in total).
  • Table 1 the numbers in parentheses M1 to M5 indicate the tempering temperature, and the symbol indicates the presence or absence of shot plasto.
  • the obtained expanded metals Ml to M5 were subjected to surface roughness measurement, tensile test and Vickers hardness measurement.
  • a surface roughness meter Surfcom 1400A manufactured by Tokyo Seimitsu was used.
  • Table 1 shows the centerline average roughness, ten-point average roughness, and maximum height (average values of Ra, Rz, and Rmax, measured multiple times) obtained from the measurement results.
  • the expanded metals Ml to M5 were processed into the shape of a JIS flat plate test piece so that the tensile direction was the arrow direction in Fig. 5, and the measurement was performed according to the tensile test conditions (Condition I) described later.
  • Table 1 shows the stress when the expanded metals M1 to M5 break.
  • the Vickers hardness measurement was performed from one surface side to the other surface side at each position in the thickness direction of expanded metal Ml to M5 (lOO ⁇ um interval). At this time, the measurement load was 300 kgf.
  • Figure 6 shows the Vickers hardness (Hv) at each position (the distance in the thickness direction from one surface). In Fig. 6, ⁇ is Ml, decree is ⁇ 2, is ⁇ 3, ⁇ is 1 ⁇ 4, and X is ⁇ 5.
  • samples A to F, F, and G were prepared using expanded metals Ml to M4 and M4 ′.
  • a mold apparatus 9 (see FIG. 7) comprising: a lower mold 90 having a recessed portion 91 of a predetermined shape; an upper mold 92 configured to be fitted in sliding contact with the wall surface of the recessed portion 91; Using.
  • the mold temperature of the mold apparatus 9 is set to 200 to 350 ° C, and the bottom metal of the recess 91 of the lower mold 90 is expanded metal of any of M1 to M4 and M4.
  • molten aluminum alloy ADC 12 and molten metal temperature 650 to 800 ° C
  • the upper die 92 was inserted in the direction of the arrow and pressed (70 to 100 MPa) to forge.
  • forging was performed in the same manner as described above except that two sheets of expanded metal were stacked in the thickness direction and placed in the recess 91.
  • Table 2 shows the preparation conditions for each sample.
  • samples H to J made of an aluminum alloy (ADC 12) were prepared. Samples H to J were prepared by forging in the same manner as described above except that no expanded metal was used. Samples H to J have the same tensile test conditions as described later, but the compositions are all the same.
  • the prepared samples A to J and F ′ were processed into a predetermined shape to prepare a JIS flat plate test piece (thickness lmra). At this time, it was processed so that the tensile direction of the tensile test was the arrow direction in FIG. 5 with respect to the expanded metal.
  • the tensile test is 5t auto. According to the graph (manufactured by Shimadzu Corporation, AG- ⁇ ) at room temperature (Condition I), 180 after holding for 180 hours, 1 80. At C (Condition II), held at 200 ° C for 5 minutes, then 200. At C (condition ⁇ ) or 200. After holding for 15 minutes at C, it was performed at 200 ° C (Condition IV) at a tension rate of 0.5 mmZ.
  • Table 2 shows the test conditions for the tensile tests performed on each sample, and Table 2 and Fig. 8 show the stress when each sample broke.
  • Samples A to G which are metal composite materials, all had a breaking stress of 400 MPa or more, and had higher strength than samples H to J not using expanded metal. Therefore, the compressor using samples A to G for the housing has excellent pressure resistance. Samples A to G showed excellent strength even under harsh conditions such as tensile test condition II where the strength decreased with aluminum alloys alone (samples H to J).
  • Sample F (18%) and Sample F '(28%), which have different opening ratios of expanded metal, Sample F having a smaller opening ratio has higher strength. However, Sample F 'showed higher strength than Samples H through J, which did not use any expanded metal.
  • FIG. 9 is a cross-sectional view of the produced housing member.
  • the housing member 5 was manufactured by forging using a mold composed of a main mold and a core having a cavity adapted to the shape of the housing member 5.
  • a mold composed of a main mold and a core having a cavity adapted to the shape of the housing member 5.
  • two cylindrical expanded metals made by bending a flat expanded metal (corresponding to M4 in Table 1) and welding the end faces facing each other were placed on top of each other.
  • the two expanded metals 2 are two cylinders with different inner diameters, and one cylinder is inserted into the cylinder of the other cylinder and coaxial with the core. Arranged. After that, molten aluminum alloy was poured into the mold, and expanded metal 2 was poured with aluminum alloy 1.
  • the obtained housing member 5 includes a substantially cylindrical peripheral wall portion 51, and an end wall portion 56 that is formed integrally with the peripheral wall portion 51 and closes one end of the peripheral wall portion 51.
  • the inner diameter of the peripheral wall 51 is 89.5 mm
  • the maximum thickness of the peripheral wall 51 is 7 mm
  • the thickness of the end wall 56 is 19 mm
  • the inner surface of the peripheral wall 51 The distance to the circumference was lmm
  • the expanded metal height was 58mm.
  • a plurality of insertion holes 58 for inserting bolts were processed in the end wall portion 56.
  • T 6 was heat-treated on the housing member 5 after fabrication. This heat By processing, the aluminum alloy part was made highly rigid.
  • a housing member 5 ′ was produced in the same manner as the housing member 5 except that the expanded metal 2 was not used.
  • the housing member 5 was 8 35.4 g and the housing member 5 ′ was 7 18.7 g. There was a slight increase in weight.
  • Simulation analysis was performed on the obtained housing members 5 and 5 '. Simulation analysis shows that the inner surface of the housing member is 27.5 MPa and the axial force applied to the bolt seat surface is 17 kN at room temperature (the part indicated by R 1 in Fig. 9). ) And the maximum stress acting on the R-processed part (the part indicated by R2 in Fig. 9) consisting of the intersection of the peripheral wall part 51 and the end wall part 56.
  • the analysis results are shown in FIG.
  • Bolt bearing surface back surface R section is a high stress concentrated portion in the compressor housing. In the housing member 5 'that does not use a metal composite material, a stress of 4 9 3 MPa was applied to the back of the bolt bearing surface, and 3 8 5 MPa was applied to the R-machined part.
  • the maximum stress acting on the back of the bolt seat was 3 59 MPa and 2 10 MPa on the R-machined part, greatly reducing the applied stress. That is, the housing member 5 using the metal composite material for the peripheral wall portion 51 has high pressure resistance.
  • a pressure test was performed on the housing member 5.
  • the bolts were tightened at room temperature with a torque of 19 Nm, filled with oil in the housing, then pressurized and broken, and a static evaluation was performed. As a result, it was possible to use it without destroying it until the internal pressure reached 28 M Pa.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

本発明の圧力容器は、少なくとも一部が、マトリックスとなる軽金属41と、軽金属41中に埋設された、鉄を主成分とし表裏面を貫通する多数の通孔をもつ板状の鉄系部材42と、からなる金属複合材40からなる。この構成により、厚肉化を伴うことなく耐圧性を高めた新規の構成をもつ圧力容器および圧力容器からなるハウジングをもつ圧縮機を提供することができる。また、本発明の鋳造方法は、シリンダブロックの製造に適した鋳造方法であって、成形キャビティ面84をなす中空部(86,87)と、中空部に連通する注湯通路85と、をもつ鋳造型80に、開口端部に切り欠き45を有する略筒状の鉄系部材42を、開口端部が成形キャビティ面84に当接し、かつ、鉄系部材42の表裏面側に空間86、87をもって配設し、注湯通路85から軽金属の溶湯41’を切り欠き45を通じて中空部全体に充填して、鉄系部材42を軽金属41で鋳込むことを特徴とする。

Description

明細書 圧力容器、 圧縮機およびシリンダブロックの錶造方法 技術分野
本発明は、 気体などの加圧物質を収容する圧力容器に関するものである。 技術背景 ...
圧力容器は、 たとえば自動車に搭載される空気調和機などに設けられる圧縮機 のハウジング等として用いられており、 近年、 軽量化が求められている。 そのた め、 耐圧性が必要とされる圧縮機のハウジングには、 密度の小さいアルミニウム やマグネシウム等の軽金属が使われている。
ところが、 単なる軽金属の铸造品では、 圧縮機のハウジングに要求される強度 が得られ難く (アルミニウムの铸造品では引張強さが 2 0 O M P a程度) 、 高温 環境下での強度はさらに低下 (アルミニウムの鎳造品では 2 0 0 °C以上の高温域 で常温の 3 0 %以上低下) する。 したがって、 要求される耐圧性を満足する程度 の強度を得るためには、 厚肉化が必要となるが、 厚みが大きくなるほど鎵巣が発 生し易くなるという問題がある。 ■ " 厚肉化を伴うことなく圧縮機のハウジングの強度を向上させるために、 ハウジ ングの構成部材であるシリンダブ口ックにおいては、 軽金属製のブロック本体に 錶鉄ライナなどを圧入するなどして、 摺動部の剛性ゃ耐摩耗性などの摺動特性を 向上させている。 たとえば、 特開昭 5 9— 0 7 4 3 5 3号公報では、 シリンダボ ァを有するハウジング要素であるシリンダブ口ックにおいて、 展伸加工によって 形成されたアルミニウム製ライナをシリンダボアに錶包み、 ライナの内周面に溶 射層を形成している。 その一方、 ブロック本体と铸鉄ライナとの密着性の問題か ら、 铸鉄ライナを省略したライナレスのシリンダブロックが開発されている。 と ころが、 ライナレス構造では、 摺動面の剛性が低いため、 熱や内圧の程度によつ ては、 変形することがある。
また、 特開平 1 0— 3 1 8 0 3 8号公報では、 微細な金属線材からなる濾過材 を用い、 シリンダボアの内壁面に初晶珪素の凝集した珪素富化層を形成している。 発明の開示
そこで、 本発明者等は、 上記問題点に鑑み、 新規な構成により厚肉化を伴うこ となく耐圧性を高めた圧力容器および圧縮機に想到した。 すなわち、 本発明は、 高い耐圧性を有する圧力容器および圧縮機を提供することを目的とする。 また、 耐圧性に優れ、 铸造品質の高いシリンダプロックの铸造方法を提供することを目 的とする。
本発明の圧力容器は、 内部空間を有する略筒状の周壁部と、 該周壁部の両端を 閉鎖する端壁部と、 からなる圧力容器であって、 少なくとも一部が、 マトリック スとなる軽金属と、 該軽金属中に埋設された、 鉄を主成分とし表裏面を貫通する 多数の通孔をもち開口率が 1 3〜3◦%である板状の鉄系部材と、 からなる金属 複合材からなることを特徴'とする。
ここで、 鉄系部材が 「板状」 とは、 板状体を加工することによって得られるェ キスパンドメタルやパンチングメタルの他、 ある程度の剛性を有するものであれ ば、 複数本の線材からなる網状体も含む概念である。
本発明の圧力容器は、 少なくとも一部が、 軽金属中に鉄系部材が埋設されてな る金属複合材から構成されるため、 鉄系部材による補強効果により耐圧性が高い。 さらに、 金属複合材が軽金属からなるため、 軽量かつ耐圧性に優れた圧力容器で ある。 また、 鉄系部材は、 表裏面を貫通する多数の通孔をもっため、 マトリック スである軽金属との密着性を確保できる。
そして、 鉄系部材の開口率を 1 3〜 3 0 %とすることにより、 密着性と耐圧性 とがともに良好な金属複合材となる。 開口率が大きすぎると高い耐圧性を確保す ることが困難となり、 開口率が低すぎるとマトリックスと鉄系部材との密着性が 落ちる。 開口率を 1 3〜3 0 %とすることで耐圧性と密着性のバランスのよい金 属複合材が得られる。 さらに好ましくは、 開口率が 1 8〜2 8 %である。
また、 本発明者等は、 軽金属中に上記鉄系部材が埋設された高い強度をもつ金 属複合材を耐圧性が望まれる部位、 特に、 機種によっては非常に高温 ·高圧にな り通常のアルミニウム材では強度が低下する虞がある圧縮機のハウジングに用い ることにより、 優れた効果を発揮することに注目した。 すなわち、 本発明の圧縮 機は、 圧縮機構および該圧縮機構でガスを圧縮する作動空間を内蔵するハウジン グを有する圧縮機であって、 該ハウジングの少なくとも一部が、 マトリックスと なる軽金属と、 該軽金属中に埋設された、 鉄を主成分とし表裏面を貫通する多数 の通孔をもち開口率が 1 3〜3 0 %である板状の鉄系部材と、 からなる金属複合 材からなることを特徴とする。
「ハウジング」 は、 主として圧縮機構でガスを圧縮する作動空間を内蔵するも のであればよく、 たとえば、 所定の位相をもった往復動によりガスを圧縮するピ ストンを有する代表的な形態の圧縮機であれば、 ビス トンを収容する複数個のシ リンダボアを備えたシリンダブ口ックや、 ビストンを駆動する駆動手段を収納す る中空円筒部を備えたフロントハウジングであればよい。 また、 他の形式の圧縮 機であっても、 シリンダブ口ックゃフロントハウジングに相当する形態のもので あればよい。
本発明の圧縮機によれば、 ハウジングが、 上記構成をもつ金属複合材により形 成されているため、 軽量かつ耐圧性に優れた圧縮機となる。 また、 上記鉄系部材 は、 表裏面を貫通する多数の通孔をもっため、 マトリ ックスである軽金属との密 着性を確保できる。 さらに、 圧縮機に用いられる冷媒の種類によっては、 圧縮機 の作動時に高温 ( C O 2 の使用で約 1 8 0 °C) となることがあるが、 金属複合材 を用いた圧縮機であれば、 高温となっても強度が低下することなく、 優れた耐圧 性を示す。
前記ハウジングは、 外側に突出し一体的に形成された、 圧縮機を被取付体に固 定するための前記軽金属からなる取付部を有し、 該取付部の引張強さが 4 6 0 M P a以上であるのが好ましい。 そうすれば、 金属複合材を用いない軽金属からな る部分の強度を向上させることができ、 耐圧性に優れ、 かつ、 金属複合材からな る部分のみならずハウジング全体が高い強度をもつ圧縮機となる。
また、 本発明のシリンダブ口ックの鏡造方法は、 少なくともシリンダボア用中 子と共同してシリンダブロックの形状に対応する成形キヤビティ面をなす中空部 と、 溶湯が注湯されるとともに該中空部に連通する注湯通路と、 をもつ錶造型に 鉄を主成分とし表裏面を貫通する多数の通孔をもち開口率が 1 3〜3 0 %である 略筒状の鉄系部材を該シリンダボア用中子と同軸的に配設する鉄系部材配設工程 と、 前記注湯通路から軽金属の溶湯を前記中空部に充填する軽金属充填工程と、 を経て、 前記鉄系部材を前記軽金属で鍚込むことを特徴とする。
この際、 前記鉄系部材は、 該鉄系部材の開口端部に前記通孔の一^ ^の面積より 大きい少なくとも 1つの切り欠きを有し、 前記鉄系部材配設工程にて該開口端部 が前記成形キヤビティ面に当接するとともに該鉄系部材の表裏面側に空間をもつ て配設され、 前記軽金属充填工程において該切り欠きを通じて前記中空部全体に 溶湯が充填されるのが望ましい。
本発明のシリンダブロックの錶造方法では、 板状の鉄系部材の開口率が 1 3〜 3 0 %であるため、 略筒状の鉄系部材の開口端部が成形キヤビティ面に当接した 状態で铸造型に配設されると、 軽金属の溶湯を錶造型に注湯する際に、 溶湯が鉄 系部材の通孔を通過しにくいことがある。 そのため、 鉄系部材の表裏面側の少な くともいずれかに位置する空間に、 軽金属の溶湯が十分に注湯されないことがあ る。 そこで、 鉄系部材の開口端部に少なくとも 1つの切り欠きを設けると、 この 切り欠きを通じて鉄系部材の表裏面側に溶湯が十分に行き届き、 中空部全体に良 好に軽金属を充填することができる。 その結果、 シリンダプロックの外周面側か ら注湯しても、 内周面側に位置するシリンダボア面にまで十分に注湯されるため、 良好な摺動面が得られる。 図面の簡単な説明
以下の詳細な説明および添付の図面を参照することにより、 本発明をより深く 理解することができる。 以下に、 図面の簡単な説明をする。
図 1 Aは、 本発明の圧力容器の周壁部の一例を示す図であって、 周壁部を中空 円筒形の円筒部材と仮定した場合の平面図である。 また、 図 1 Bは、 図 1 Aの円 筒部材の軸方向断面図である。
図 2 Aは、 本発明の圧力容器の周壁部の一例を示す図であって、 周壁部を中空 円筒形の円筒部材と仮定した場合の平面図である。 また、 図 2 Bは、 図 2 Aの円 筒部材の軸方向断面図である。
図 3は、 本発明の圧縮機の一例である斜板式圧縮機の断面図である。 図 4 Aは、 本発明のシリンダブロックの铸造方法の一例を模式的に示す断面図 である。 また、 図 4 Bは、 図 4 Aの鉄系部材を模式的に示す側面図である。
図 5は、 実施例の圧力容器に用いられる金属複合材を構成するエキスパンドメ タルの一部を示す図面代用写真である。
図 6は、 実施例の圧力容器に用いられる金属複合材を構成するエキスパンドメ タルの厚さ方向の各位置でのビッカース硬さを測定した結果を示すグラフである。 図 7は、 実施例の圧力容器に用いられる金属複合材からなる試料を作製する金 型を模式的に示す断面図 (エキスパンドメタルの厚さ方向の断面図) である。 図 8は、 実施例の試料 A〜 Jおよび F ' の引張試験の結果を示すグラフである。 図 9は、 実施例の圧縮機のハウジング部材を模式的に示す断面図である。
図 1 0は、 実施例の圧縮機のハウジング部材を用いて行った耐圧試験のシミュ レーション解析結果を示すグラフである。 発明を実施のするための最良の形態
本発明をより詳細に説述するために、 以下に、 本発明の圧力容器、 圧縮機およ ぴシリンダブ口ックの鎵造方法を実施するための最良の形態を、 図 1〜図 4を用 いて説明する。
[圧力容器]
本発明の圧力容器は、 内部空間を有する略筒状の周壁部と、 該周壁部の両端を 閉鎖する端壁部と、 からなる。 この圧力容器は、 具体的には、 C N G (圧縮天然 ガス) 、 L N G (液化天然ガス) 、 L P G (液化石油ガス) などの各種ガスや各 種加圧物質を収容する、 一般的な圧力容器が有する構成と同様である。
周壁部や端壁部の形状に特に限定はないが、 周壁部は、 略円柱状の内部空間を 有するのが好ましい。 また、 端壁部は、 周壁部と一体的に形成されているのがよ い。 また、 周壁部や端壁部には、 必要に応じて、 ガス等を流入または吐出する開 口などを設けてもよレ、。
そして、 本発明の圧力容器は、 少なくとも一部が、 金属複合材からなる。 金属 複合材は、 マトリ ックスとなる軽金属と、 軽金属中に埋設された鉄系部材と、 か らなるため、 軽量で高強度である。 マトリックスとなる軽金属は、 少なくとも鉄系部材を構成する鉄系材料よりも 軽量で、 金属複合材を形成する際に鉄系部材が溶融したり劣化したりすることが なければ、 その種類に特に限定はない。 たとえば、 鉄系部材を構成する鉄系金属 よりも融点が低い軽金属であれば铸造により製造しやすい。 具体的には、 純アル ミニゥムゃ Mg、 Cu、 Z n、 S i、 Mn等を含むアルミニウム合金などのアル ミニゥム系金属や、 純マグネシウムや Zn、 A l、 Z r、 Mn、 Th、 希土類元 素等を含むマグネシゥム合金などのマグネシゥム系金属であるのが好ましレ、。 鉄系部材は、 表裏面を貫通する多数の通孔をもつ。 通¾を有することにより、 鉄系部材が軽金属中に埋設された際に、 両者の密着性を確保することができ、 さ らに、 鉄系部材の開口率が 1 3〜 30%であれば、 圧力容器の耐圧性を良好に向 上させ、 効果的に軽量化できる。 さらに好ましくは、 開口率が 1 8〜28%であ る。 この際、 1つの通孔の面積が 300 Aim2 以上であるのが好ましい。 1つの 通孔の面積が上記範囲であれば、 軽金属と鉄系部材との密着性をさらに良好に確 保することができる。 さらに好ましい 1つの通孔の面積は、 300 im2 〜10 mm2 である。
鉄系部材は、 鉄を主成分とする金属で、 板状であれば特に限定はないが、 加工 性に優れた各種圧延鋼板 (J I S記号で、 S PCC、 SPHC等) を用いるのが よい。 ここで、 「板状」 とは、 ある程度の剛性 (マトリックスとなる軽金属より 高い弾性率) をもつ板状体であればよい。 すなわち、 金網などのように複数本の 線材からなる網状体であっても、 撓みを生じなレ、程度の剛性を有するものであれ ばよい。 具体的には、 板状体に多数のスリットを入れて板状体の延びる方向に引 つ張ることによりスリットを拡張し通孔を形成することによって得られるエキス パンドメタルや、 板状体に主として厚さ方向に多数の通孔を穿ったパンチングメ タルなどが好ましい。 これらの部材は、 簡単に作製でき、 入手が容易であり、 カロ ェ性にも優れる。 この際、 鉄系部材の厚さが 0. 5〜 2mmであるのが好ましい。 鉄系部材の厚さが上記範囲であれば、 圧力容器の耐圧性を良好に向上させること ができ、 2 mm以下の厚さであっても十分な向上効果が得られる。
また、 鉄系部材は、 その表面が粗面となっているのが好ましい。 鉄系部材の表 面を粗面とすることにより、 軽金属と鉄系部材との密着性が向上する。 したがつ て、 粗面化は、 少なくとも軽金属と接触する鉄系部材の界面に施されていればよ い。 粗面の形成は、 ショットプラストゃショットビー-ング等のブラスト加工に よる物理的な方法や、 薬品による化学的な方法で粗面を形成すればよレ、。
また、 鉄系部材は、 浸炭処理が施されているのが望ましい。 浸炭処理は、 炭素 鋼の表面から炭素を浸入させることにより表面部の炭素量を増加させ、 表面部の みを硬化する処理法である。 鉄系部材として角いられるエキスパンドメタル等に 加工される鋼板は、 比較的軟らかく加工性に優れているため、 浸炭処理などを施 すことにより、 硬化させるのが望ましい。 そして、 上述したように、 鉄系部材の 板厚は、 好ましくは 0 . 5〜2 mmであるため、 このような鉄系部材に浸炭処理 を施すと、 鉄系部材全体に十分に炭素が浸入し硬化される。 浸炭処理は、 固体浸 炭処理、 液体浸炭処理、 ガス浸炭処理、 真空浸炭処理のうちどの浸炭法を用いて もよいが、 鉄系部材は、 · 浸炭窒化処理により厚さ方向の全ての部分において炭素 と窒素が浸入した鉄系硬化部材であるのが望ましい。 ' 鉄系部材は、 軽金属中に埋設されている状態であれば、 その位置に限定はなく、 圧縮容器のうちの少なくとも一部、 特に、 高い圧力が加わる部分が、 金属複合材 からなればよい。 なかでも、 圧力容器の少なくとも周壁部の一部に位置するよう に鉄系部材を埋設する、 すなわち、 少なくとも前記周壁部の一部が金属複合材か らなるのが好ましい。 ここで、 説明のために圧力容器の周壁部を、 図 1 Aおよび 図 2 Aの平面図、 図 1 Bおよぴ図 2 Bの軸方向断面図により示されるような中空 円筒形の円筒部材と仮定する。 周壁部は、 円筒部材の全体にわたって鉄系部材を 使用して全体を金属複合材により形成する他、 軸方向の一部に鉄系部材 1 2を使 用した周壁部 (図 1 A, B ) や、 周方向の一部に鉄系部材 2 2を使用した周壁部
(図 2 A, B ) とし、 周壁部の一部を金属複合材 1 0, 2 0 (図中の網掛けの部 分) で形成し、 他の部分を軽金属 1 1 , 2 1のみ (図中の白抜きの部分) で形成 してもよい。 そして、 少なくとも一部に上記金属複合材を用いた圧力容器は、 強 度が向上し耐圧性に優れる。 なお、 図 1およぴ図 2において、 1 1, 2 1は軽金 属、 1 2, 2 2は鉄系部材、 1 3 , 2 3は鉄系部材 1 2 , 2 2の通孔であり、 図
1 Aと図 2 Aは、 図 1 Bの矢印 l a、 図 2 Bの矢印 2 a方向から見た平面図であ る。 さらに、 周壁部の周方向に略円筒形状の鉄系部材が埋設された圧力容器 (たと えば図 1参照) では、 鉄系部材が埋設された部分だけではなく、 周壁部の端を閉 鎖する端壁部の耐圧性も向上する。 これは、 周方向に埋設された略円筒形状の鉄 系部材により、 周壁部のみならず端壁部の変形も抑制されるからである。 すなわ ち、 金属複合材により周壁部のみの最低限の補強を施すだけで、 圧力容器全体の 耐圧性を向上させることができる。
なお、 鉄系部材が圧力容器の内周面側または外周面側に位置するように配置す る場合は、 鉄系部材の一部が圧力容器の表面に露出した状態であっても構わない。 また、 鉄系部材は、 複数枚積層させた状態で軽金属中に埋設させてもよい。 前 述したように、 0 . 5〜 2 mm程度の薄い鉄系部材は浸炭ゃ窒化がされやすい。 したがって、 厚い鉄系部材を 1枚用いるよりも、 十分に浸炭ゃ窒化がされた薄い 鉄系部材を複数枚用いる方が、 効果的である。 さらに、 薄い鉄系部材の方が、 所 望の形状に加工し易いため、 有利である。 また、 図 1に示すような略円筒形状の 鉄系部材を用いる場合には、 内径の異なる複数の円筒部材を作製し、 内径の大き な鉄系部材の筒内に順に挿入して積層させる他、 平板状の鉄系部材を渦巻き状に 卷回して重なり合わせることで積層させてもよい。
さらに、 圧力容器では、 主に周壁部の周方向 (図 1 Aの矢印方向) に大きな荷 重がかかることが分かっているため、 鉄系部材の強度に異方性があっても、 最も 強度の高い方向を周壁部に周方向に合致させることにより、 圧力容器の耐圧性が 効果的に向上される。
本発明の金属複合材は、 铸造により製造されるのが望ましい。 具体的には、 圧 力容器の形状に対応する成形キヤビティ面を有する中空部と、 溶湯が注湯される とともに中空部に連通する注湯通路と、 をもつ铸造型に、 既に説明した鉄系部材 を配設する鉄系部材配設工程と、 注湯通路から非鉄金属の溶湯を中空部に充填す る非鉄金属充填工程と、 を経て、 鉄系部材を非鉄金属で铸込む、 いわゆるインサ ート成形方法であればよい。 铸造方法も、 重力铸造法、 低圧铸造法、 溶湯鍛造法、 ダイカスト法など、 従来の方法を用いればよい。
[圧縮機]
本発明の圧縮機において、 ハウジングとは、 主として圧縮機構おょぴ該圧縮機 構でガスを圧縮する作動空間を内蔵する、 いわゆる圧力容器に相当するものであ る。 圧縮機としては、 ピス トンを往復動させることによりガスを圧縮する形態の ものが代表的である。 このような圧縮機であれば、 斜板式ゃヮッブル式、 両頭型 ゃ片頭型、 可変容量型や固定容量型、 等のいずれの形態でもよい。 この場合、 ハ ウジングは、 所定の位相をもった往復動によりガスを圧縮するビストンを収容す る複数個のシリンダボアを備えたシリンダプロックや、 ビストンを駆動する駆動 手段を収納する中空円筒部を備えたフロントハウジングであればよい。 以下に、 可変容量型の片頭型斜板式圧縮機を例に具体的に説明する。
図 3に、 斜板式圧縮機の構成を示す。 図 3に示す斜板式圧縮機において、 駆動 軸 3◦は、 シリンダブ口ック 3 2とフロントハウジング 3 3により形成される斜 板室 3 4に収容されており、 ラジアル軸受により回転自在に支持されている。 そ して、 シリンダブ口ック 3 2内には、 駆動軸 3 0を囲む位置に複数個のシリンダ ボア 3 5が配設されている。 各シリンダポア 3 5には、 片頭型のピス トン 3 6が それぞれ往復動可能に嵌挿されている。 斜板室 3 4内においては、 駆動軸 3 0に はロータ 3 7が結合され、 そのロータ 3 7の後方に斜板 3 8が嵌合されている。 特に、 可変容量型の圧縮機では、 斜板 3 8は支点回りに傾動可能となっており、 斜板室 3 4の圧力変化に基づくピス トン 3 6の両端面に作用するガス圧の釣り合 いによって、 斜板 3 8の傾角変位を制御するようになっている。 また、 斜板 3 8 には、 両端面外周側に平滑な摺接面 3 8 pが形成され、 この摺接面 3 8 pにはシ ユー 3 9の摺動面 3 9 pが当接されている。 これらのシユー 3 9は、 ピス トン 3 6の半球面座 3 6 pと係合されている。 このシユーを介してビス トン 3 6が斜板 3 8と連係することにより、 斜板 3 8の回転運動がピストン 3 6の直線運動に変 換されて媒体の圧縮が行われる。 すなわち、 図 3に示す斜板式圧縮機において、 圧縮機構に含まれる駆動軸 3 0ゃ斜板 3 8はフロントハウジング 3 3に、 シリン ダボア 3 5に区画された作動空間はシリンダブロック 3 2に内蔵されている。 また、 上記以外の形式の圧縮機であってもよい。 たとえば、 圧縮機構として渦 巻き状のスクロールを有し区画された空間に容積変化を起こしてガスを圧縮する スクロール型圧縮機であればスクロール部を収納するハウジング、 また、 圧縮機 構としてべーンを有し区画された空間に容積変化を起こしてガスを圧縮するべ一 ン型圧縮機であればベーン部を収納するハゥジング、 など上記シリンダブ口ック やフロントハウジングに相当する形態のものであればよい。
そして、 本発明の圧縮機は、 ハウジングの少なくとも一部が前述の金属複合材 からなる。 換言すれば、 本発明の圧縮機は、 既に説明した本発明の圧力容器から なるハウジングを有する。 したがって、 ハウジングは、 金属複合材からなるシリ ンダブロックやフロントハウジング等の各種ハゥジング部材を含む構成であるの が望ましい。 金属複合材は、 マトリ ックスとなる軽金属と、 軽金属中に埋設され た鉄系部材と、 からなるため、 金属複合材で形成されたハウジングは軽量で高強 度である。 特に、 シリンダプロックは、 ライナを省略したライナレス構造であつ ても、 熱や内圧により生じる変形が低減される。
また、 ハウジングは、 外側に突出し一体的に形成された、 圧縮機を被取付体 (エンジンブロック等) に固定するための軽金属からなる取付部を有するのが好 ましい。 取付部の形状に特に限定はないが、 たとえば、 図 3に示すようなボルト が挿通される揷通穴を有する取付部 3 0 0である。 そして、 取付部は取付時の応 力集中に起因する取付部またはハゥジング全体の変形や破損を防止するために高 強度であるのがよく、 取付部の引張強さが 4 6 O M P a以上であるのが望ましレ、。 たとえば、 金属複合材を構成する軽金属がアルミニウム合金である場合、 熱処理 (たとえば調質記号で T 6と示される一般的な焼入れ後の焼戻し処理) により機 械的強度を向上させることができ、 その結果、 軽金属のみからなる部分であって も高強度とすることが可能である。
[シリンダブ口ックの錄造方法]
シリンダプロックや他の形式の圧力容器は、 鉄系部材を軽金属で所望の形状に 铸込むことにより铸造できる。 すなわち、 本発明のシリンダプロックの錶造方法 は、 铸造型に略円筒状の鉄系部材を配設する鉄系部材配設工程と、 軽金属の溶湯 を鎳造型に充填する軽金属充填工程と、 を有する。 鉄系部材配設工程は、 少なく ともシリンダボア用中子と共同してシリンダプロックの形状に対応する成形キヤ ビティ面をなす中空部と、 溶湯が注湯されるとともに中空部に連通する注湯通路 と、 をもつ鑤造型に、 略円筒状の鉄系部材をシリンダーボア用中子と同軸的に配 設する。 軽金属充填工程は、 注湯通路から軽金属の溶湯を中空部に充填する。 特に、 略筒状の鉄系部材がシリンダブ口ックのシリンダボア面から所定の距離 をもつて埋設される場合には、 鉄系部材の開口端部に切り欠きを設けた鉄系部材 を用いると良好に铸造できる。 以下に、 本発明のシリンダブロックの錶造方法を、 図 4 Aおよび図 4 Bを用いて説明する。
なお、 図 4 Aは、 本発明のシリンダブロックの鎵造方法の一例を模式的に示す 断面図である。 また、 図 4 Bは、 図 4 Aで用いられる鉄系部材を模式的に示す側 面図であって、 図 4 Aの矢印 b方向から鉄系部材のみを見た図である。 図 4では、 説明のため、 1つのシリンダボアを備えた円筒形状のシリンダプロックを示すが、 複数のシリンダボアを有するシリンダブ口ックであってもよい。
本発明のシリンダプロックの鏡造方法は、 主として鉄系部材配設工程と、 軽金 属充填工程と、 を経て、 鉄系部材 4 2を軽金属 4 1で铸込むことで、 金属複合材 4 0を得る。
鉄系部材配設工程では、 錶造型に鉄系部材を配設する。 用いられる鎳造型は、 図 4 Aに示されるような、 少なくともシリンダボア用中子 8 3と共同してシリン ダブロックの形状に対応する成形キヤビティ面 8 4をなす中空部 (鉄系部材 3 2 . が配設された部分と空間 8 6、 8 7とからなる) と、 溶湯 4 1 ' が注湯されると ともに中空部に連通する注湯通路 8 5と、 をもつ型であれば特に限定はない。 し たがって、 図 4 Aのような複数の型 8 1〜8 3で区画された成形キヤビティ (中 空部に相当) を有する鎳造型 8 0であってもよく、 注湯通路 8 5の位置や大きさ にも特に限定はなく、 通常、 鎵造に用いられる铸造型を使用すればよい。
鉄系部材は、 既に詳説したように、 鉄を主成分とし表裏面を貫通する多数の通 孔をもち、 その開口率が 1 3〜3 0 %である、 略筒状の部材である。 鉄系部材は、 たとえば図 4 Aに示すように、 鉄系部材 4 2の開口端部が、 成形キヤビティの内 面である成形キヤビティ面 8 4に当接し、 かつ、 鉄系部材 4 2の表裏面側に外側 空間 8 6および内側空間 8 7をもってシリンダボア用中子と同軸的に配設される とよい。 この場合、 外側空間 8 6と内側空間 8 7とが鉄系部材 4 2によって区画 され、 両者は切り欠き 4 5で連通する。 したがって、 鉄系部材 4 2に切り欠き 4 5がないと、 次の軽金属充填工程において、 注湯通路 8 3から注湯される軽金属 の溶湯 4 1 ' は、 鉄系部材 4 2の片面側に位置する外側空間 8 6には良好に充填 されるが、 鉄系部材 4 2は開口率が 1 3〜3 0 %であるため、 溶湯 4 1, が通孔 を通って内側空間 8 7に完全に充填されなかったり、 充填されても時間を要する。 つまり、 鉄系部材が切り欠きを有することにより、 軽金属充填工程において注湯 される軽金属の溶湯は、 容易に切り欠きを通過し、 鉄系部材の表裏面側の空間に 良好に回り込む。 その結果、 成形キヤビティ面に沿った所望の形状のシリンダブ ロックが得られる。 特に、 本铸造方法によれば、 シリンダブロックの内周面側に 位置し、 ビス トンとの摺動面となるシリンダボア面にも良好に注湯されるため、 シリンダボア用中子の外周面に沿った平滑な摺動面が形成される。 また、 溶湯は 切り欠きを通過しやすいので、 注湯される溶湯の流れから受ける抵抗力により生 じる鉄系部材の配設位置のズレが抑制される。
なお、 切り欠きは、 鉄系部材の位置によっては必ずしも形成する必要はなく、 たとえば、 略円筒状の鉄系部材の開口端部のうち、 一端部のみが成形キヤビティ 面と当接する際には、 切り欠きを形成しなくてもよい場合もある。
本発明のシリンダプロックの錶造方法は、 シリンダポア面のような摺動面を内 側面に有する場合に好適であるが、 既に説明した圧力容器や圧縮機のハウジング の作製にも適用できることは言うまでもない。
鉄系部材に形成される切り欠きの大きさは、 鉄系部材の大きさにもよるが、 1 つの切り欠きの面積が 1 0〜4 0 0 mm 2 であるのが好ましい。 1 0 mm 2 以上 であれば、 溶湯が流入しやすく、 溶湯が錄造型の中空部に良好に充填される。 ま た、 4 0 0 mm2 を超えると、 切り欠きが形成された部分の金属複合材の強度が 低下するため望ましくない。 この際、 切り欠きの面積は、 鉄系部材の面積の 1 0 %程度であるのが望ましい。 なお、 鉄系部材の面積には、 通孔の面積も含む。 また、 鉄系部材の周縁部であれば、 切り欠きが形成される位置に特に限定はな レ、。 切り欠きを鉄系部材の中央部付近に形成すると、 鉄系部材の強度が低下する ため、 得られる金属複合材の強度が効果的に向上しないため望ましくない。
鉄系部材配設工程において、 鉄系部材は、 その両方の開口端部が成型キヤビテ ィ面に挟持された状態で铸造型に配設できるため、 注湯の際に生じる鉄系部材の ズレが緩和されるが、 成形キヤビティ面は、 鉄系部材の開口端部を保持する保持 部を有するのが望ましい。 成形キヤビティ面が有する保持部に鉄系部材の開口端 部が保持されれば、 注湯の際に生じる鉄系部材の配設位置のズレが抑制される。 保持部としては、 図 4 Aに示すような成形キヤビティ面から突出して鉄系部材の 移動を妨げる突条 8 3 1や、 鉄系部材の周縁部と嵌合する保持溝であるのが望ま しい。 - 軽金属充填工程では、 注湯通路から軽金属の溶湯を中空部に充填する。 軽金属 の溶湯は、 切り欠きを通じて中空部全体に容易に充填される。
なお、 鉄系部材に粗面を形成する工程や、 浸炭工程を、 鉄系部材配設工程より 前に行ってもよい。 また、 軽金属充填工程の後、 必要に応じて熱処理を行い、 マ トリックスと る軽金属の力学的性質を調整する調質処理を行ってもよく、 さら に耐圧性の高いシリンダプロックを得ることもできる。 その他、 シリンダボア面 に対してメツキや溶射などの表面処理を行うことにより、 摺動特性がより向上す る。
以上、 本発明の圧力容器、 圧縮機およびシリンダブロックの鏡造方法の実施形 態を説明したが、 本発明の圧力容器、 圧縮機おょぴシリンダブロックの铸造方法 は、 上記実施形態に限定されるものではなく、 本発明の要旨を逸脱しない範囲に おいて、 当業者が行い得る変更、 改良等を施した種々の形態にて実施することが できる。 以下に、 本発明の圧力容器および圧縮機の実施例を、 図 5〜図 1 0を用いて説 明する。
本実施例の圧力容器の耐圧性を評価するために、 圧力容器に用いられる金属複 合材からなる平板試験片 (試料 A〜Gおよび F ' ) を作製した。 以下に、 各試料 の作製手順を説明する。
[金属複合材の作製]
板状で厚さ方向に貫通する複数の通孔を有するエキスパンドメタル (工業用冷 間圧延鋼板 (S P C C ) 、 厚さ : 9 0 0 μ πι、 開口率: 1 8 %、 1つの通孔の面 積: 3 0 0 μ πι2 、 厚さ方向より撮影した写真を図 5に示す。 ) を準備した。 ェ キスパンドメタルには、 浸炭窒化処理、 焼戻し、 または、 ショットブラストを施 すことによりエキスパンドメタル M l〜Μ 5を得た。 M l〜Μ 5に施した処理を 表 1に示す。 また、 M4において、 開口率を 28%とした他は同様の処理を施し た M4' を準備した。
浸炭窒化処理は、 NH3 を含む浸炭性ガスにより、 エキスパンドメタルを 65 0〜900°Cに加熱し、 C並びに Nを同時に鋼材に反応きせ拡散層を生ぜしめた 後、 油焼入れを行つた。 焼戻しは、 1 50 °Cまたは 550でで 1時間保持するこ とにより行った。 また、 ショットブラストは、 繊維状プリット照射をエキスパン ドメタルの両面にそれぞれ 1分間 (あわせて 2分間) 行った。 なお、 表 1におい て、 M1〜M 5の括弧内に記載されている数字は焼戻し温度、 記号はショットプ ラス トの有無を示す。
得られたエキスパンドメタル Ml〜M 5について、 表面粗さ測定、 引張試験お よぴビッカース硬さ測定を行った。 表面粗さ測定には、 表面粗さ計サーフコム 14 00A (東京精密製) を用いた。 測定結果より求めた中心線平均粗さ、 十点平均粗 さ、 最大高さ (それぞれ Ra、 R z、 Rma xとし、 複数回測定したものの平均 値) を表 1に示す。 引張試験は、 引張方向が図 5の矢印方向となるようにエキス パンドメタル Ml〜M5を J I S平板試験片の形状に加工し、 後述の引張試験条 件 (条件 I ) により測定を行った。 エキスパンドメタル Ml〜M 5が破断した際 の応力を表 1に示す。 また、 ビッカース硬さ測定は、 エキスパンドメタル Ml〜 M5の厚さ方向の各位置 (l O O ^um間隔) で、 一方の面側から他方の面側まで 測定を行った。 この際、 測定荷重は、 300 k g f とした。 各位置 (一方の面か らの厚さ方向の距離とする) でのビッカース硬さ (Hv) を図 6に示す。 なお、 図 6において、 ◊は Ml、 令は Μ2、 〇は Μ3、 會は1^4、 Xは Μ 5、 をそれぞ れ示す。
[表 1]
Figure imgf000017_0001
次に、 エキスパンドメタル Ml〜M4、 M4 ' を用いて試料 A〜F、 F, 、 G (金属複合材) を作製した。 試料の作製には、 所定形状の凹部 9 1を有する下型 90と、 凹部 9 1の壁面と摺接して嵌り込む形状の上型 92と、 からなる金型装 置 9 (図 7参照) を用いた。 試料を作製する際には、 金型装置 9の金型温度を 2 00〜350°Cとし、 下型 90の凹部 91の底面部に Ml〜M 4、 M4, のいず れかのエキスパンドメタル Mを載置し 100〜300°Cに予熱を行い、 その状態 で、 凹部 9 1にアルミニウム合金溶湯 (ADC 1 2、 溶湯温度 6 50〜800 °C) を注湯した。 その後、 上型 92を矢印方向に挿入し加圧 (70〜100MP a) して鎵造を行った。 なお、 エキスパンドメタルを 2枚使用する場合には、 厚 さ方向に 2枚重ねて凹部 91に載置する他は、 上記と同様な方法で鎳造を行った。 各試料の作成条件を表 2に示す。
また、 比較例として、 アルミニウム合金 (ADC 1 2) からなる試料 H〜 Jを 作製した。 試料 H〜Jは、 上記の铸造方法において、 エキスパンドメタルを用い ない他は同様に铸造により作製した。 なお、 試料 H〜Jは、 後述の引張試験条件 が異なるが、 組成等は全て同じ試料である。
[評価]
試料 A〜Jおよび F' の強度を評価するために、 引張試験を行った。
作製した試料 A〜 Jおよび F' を所定の形状に加工して、 J I S平板試験片 (厚さ lmra) を作製した。 この際、 引張試験の引張方向がエキスパンドメタル に対して図 5の矢印方向となるように加工した。 なお、 引張試験は、 5 tオート グラフ (島津製作所製、 AG- δΟΟΟΑ) により、 室温にて (条件 I) 、 180 で1 00時間保持後 1 80。Cにて (条件 II) 、 200 °Cで 5分間保持後 200。Cにて (条件 ΠΙ) 、 または、 200。Cで 1 5分間保持後 200°Cにて (条件 IV) 、 引 張速度 0. 5mmZ分で行った。 各試料に対して行った引張試験の試験条件を表 2に、 各試料が破断した際の応力を表 2および図 8に示す。
2]
Figure imgf000018_0001
*:エキスパンドメタルを 2枚重ねて使用
**: Iは室温にて、 Eは 180°Cで 100時間保持した後 180°Cにて、
IIは 200°Cで 5分間保持した後 200°Cにて、 IVは 200°Cで 15分間保持した後 200°Cにて、引張試験を行った
金属複合材である試料 A〜Gは、 いずれも破断応力が 400 MP a以上であり、 エキスパンドメタルを用いていない試料 H~ Jよりも高い強度を有した。 そのた め、 試料 A〜Gをハウジングに用いた圧縮機は、 優れた耐圧性を有する。 そして、 試料 A〜Gは、 アルミニウム合金のみ (試料 H〜J) では強度が低下する引張試 験条件 IIのような過酷な条件下でも、 優れた強度を示した。
また、 550°Cで焼戻しを行ったエキスパンドメタル M3、 M4を用いた試料 D〜Gは、 優れた強度 (破断応力 55 OMP a以上) を示した。 そのため、 試料 D〜Gを用いた圧縮容器は、 特に優れた耐圧性を有する。 中でも、 ショットブラ ストを施した M4を用いた試料 Fでは、 エキスパンドメタルの表面が好適に粗面 化され、 その硬さが Hv (0. 3) = 200〜400程度であるため、 特に優れ た強度 (破断応力 584. 8 IMP a) を示した。
なお、 1 50°Cで焼戻しを行ったエキスパンドメタル Ml、 M2は、 表面硬度 が非常に高く (Hv (0. 3) =800程度) 脆いため、 試料 A〜Cの強度が破 断応力 400〜50 OMP a程度にとどまつたと推測できる。
また、 エキスパンドメタルの開口率が異なる試料 F (1 8%) と試料 F' (2 8%) とでは、 開口率の小さい試料 Fの方が高い強度を有する。 しかしながら、 試料 F' は、 キスパンドメタルを用いていない試料 H〜 Jよりも高い強度を示 した。
[圧縮機のハゥジング部材の作製]
次に、 圧縮機のハウジングを構成するハウジング部材を作製し、 耐圧性を評価 した。 以下に、 ハウジング部材の作製方法を、 図 9を用いて説明する。 なお、 図 9は、 作製したハウジング部材の断面図である。
ハゥジング部材 5は、 ハゥジング部材 5の形状に適応するキヤビティをもつ主 型と中子とからなる金型を用いた鎵造により作製した。 キヤビティには、 平板状 のエキスパンドメタル (表 1の M4に相当) を曲げ加工し、 互いに対向する端面 を溶接して作製された円筒形状のェキスパンドメタルを 2枚重ねて配設した。 具 体的には、 2枚のエキスパンドメタル 2は、 内径が厚さ分異なる 2つの円筒であ つて、 一方の円筒が他方の円筒の筒内に挿入された状態で、 中子と同軸的に配設 した。 その後、 金型にアルミニウム合金の溶湯を注湯して、 エキスパンドメタル 2をアルミニウム合金 1で鎳込んだ。
得られたハウジング部材 5は、 略円筒形の周壁部 5 1と、 周壁部 5 1に一体的 に形成され周壁部 5 1の一端を閉塞する端壁部 56と、 からなり、 軸方向の高さ が 8 lmm、 周壁部 5 1の内径が 89. 5mm、 周壁部 5 1の最大厚さが 7 mm 端壁部 56の厚さが 1 9mm、 周壁部 51の内周面からエキスパンドメタルの内 周面までの距離 lmm、 エキスパンドメタルの高さ 58mmであった。 また、 端 壁部 56には、 ボルトを挿入するための複数の挿入孔 58を加工した。
さらに、 铸造後のハウジング部材 5に対して、 T 6の熱処理を行った。 この熱 処理により、 アルミニウム合金部分を高剛性とした。
また、 比較例として、 エキスパンドメタル 2を使用しない他は、 ハウジング部 材 5と同様にしてハウジング部材 5 ' を作製した。 なお、 ハウジング部材 5およ びハゥジング部材 5 ' の重量を測定したところ、 ハウジング部材 5は 8 3 5 . 4 gでハ.ゥジング部材 5 'は 7 1 8 . 7 gであり、 ノヽゥジング部材 5の重量増加は 僅かであった。
得られたハゥジング部材 5および 5 ' に対してシミュレーション解析を行つた。 シミュレーション解析は、 室温で、 ハウジング部材内の内圧を 2 7 . 5 M P a、 ボルト座面にかかる軸力を 1 7 k Nと仮定したときのボルト座面裏 (図 9の R 1 で示す部分) および周壁部 5 1と端壁部 5 6との交差部分からなる R加工部 (図 9の R 2で示す部分) に作用する最大応力を求めた。 解析結果を図 1 0に示す。 ボルト座面裏おょぴ R加ェ部は、 圧縮機のハウジングの中でも高い応力が集中 しゃすい部分である。 金属複合材を用いていないハウジング部材 5 ' では、 ボル ト座面裏では 4 9 3 M P a、 R加工部では 3 8 5 M P aの応力が作用したが、 ノヽ ウジング部材 5では、 周壁部 5 1に金属複合材を用いたことにより、 ボルト座面 裏では 3 5 9 M P a、 R加工部では 2 1 0 M P aとなり、 作用する最大応力が大 幅に低減された。 すなわち、 周壁部 5 1に金属複合材を用いたハウジング部材 5 は、 耐圧性が高い。
なお、 ハウジング部材 5に対して耐圧試験を行った。 耐圧試験は、 室温でボル トをトルク 1 9 Nmで締め付け後、 油をハウジング内に満たした後加圧して破壊 し、 静的な評価を行なった。 結果、 内圧が 2 8 M P aに達するまで、 破壌するこ となく使用することができた。

Claims

請求の範囲
1 .
内部空間を有する略筒状の周壁部と、 該周壁部の両端を閉鎖する端壁部と、 か らなる圧力容器であって、 少なくとも一部が、
マトリックスとなる軽金属と、
該軽金属中に埋設された、 鉄を主成分とし表裏面を貫通する多数の通孔をもち 開口率が 1 3〜3 0 %である板状の鉄系部材と、
からなる金属複合材からなることを特徴とする圧力容器。
2 .
少なくとも前記周壁部の一部は、 前記金属複合材からなる請求の範囲第 1項記 载の圧力容器。 '
3 .
前記軽金属は、 アルミニウム系金属またはマグネシゥム系金属である請求項 1 記載の圧力容器。
4 .
前記鉄系部材は、 開口率が 1 8〜2 8 %である請求の範囲第 1項記載の圧力容 器。
5 .
前記鉄系部材は、 エキスパンドメタルまたはパンチングメタルである請求の範 囲第 1項記載の圧力容器。
6 .
前記鉄系部材は、 複数本の線材からなる網状体である請求の範囲第 1項記載の 圧力容器。
7 .
前記鉄系部材は、 1つの通孔の面積が 3 0 0 μ m2 以上である請求の範囲第 1 項記載の圧力容器。
8 .
前記鉄系部材は、 その表面が粗面となっている請求の範囲第 1項記載の圧力容
9 .
前記鉄系部材は、 厚さが 0 . 5〜 2 mmである請求の範囲第 1項記載の圧力容 1 0 .
前記鉄系部材は、 浸炭窒化処理により厚さ方向の全ての部分において炭素と窒 素が浸入した鉄系硬化部材である.請求の範囲第 9項記載の圧力容器。
1 1 .
圧縮機構および該圧縮機構でガスを圧縮する作動空間を内蔵するハウジングを 有する圧縮機であって、 該ハウジングの少なくとも一部が、
マトリックスとなる軽金属と、
該軽金属中に埋設された、 鉄を主成分とし表裏面を貫通する多数の通孔をもち 開口率が 1 3〜 3 0 %である板状の鉄系部材と、
からなる金属複合材からなることを特徴とする圧縮機。
1 2 .
前記圧縮機構は、 所定の位相をもった往復動により前記ガスを圧縮するビスト ンを有し、
前記ハウジングは、 該ピス トンを収容する複数個のシリンダボアを備え、 前記 金属複合材からなるシリンダブロックを含む請求の範囲第 1 1項記載の圧縮機。 1 3 .
前記ハウジングは、 中空円筒部を備え、 前記金属複合材からなるフロントハウ ジングを含む請求の範囲第 1 1項記載の圧縮機。
1 4 .
前記ハウジングは、 外側に突出し一体的に形成された、 圧縮機を被取付体に固 定するための前記軽金属からなる取付部を有し、 該取付部の引っ張り強さが 4 6 O M P a以上である請求の範囲第 1 1項記載の圧縮機。
1 5 .
少なくともシリンダボア用中子と共同してシリンダブ口ックの形状に対応する 成形キヤビティ面をなす中空部と、 溶湯が注湯されるとともに該中空部に連通す る注湯通路と、 をもつ铸造型に、 鉄を主成分とし表裏面を貫通する多数の通孔を もち開口率が 1 3〜3 0 °/0である略筒状の鉄系部材を該シリンダボア用中子と同 軸的に配設する鉄系部材配設工程と、
前記注湯通路から軽金属の溶湯を前記中空部に充填する軽金属充填工程と、 を経て、 前記鉄系部材を前記軽金属で铸込むことを特徴とするシリンダブ口ッ クの錶造方法。
1 6 .
前記鉄系部材は、 該鉄系部材の開口端部に前記通孔の一つの面積より大きい少 なく とも 1つの切り欠きを有し、 前記鉄系部材配設工程にて該開口端部が前記成 形キヤビティ面に当接するとともに該鉄系部材の表裏面側に空間をもって配設さ れ、
前記軽金属充填工程において該切り欠きを通じて前記中空部全体に溶湯が充填 される請求の範囲第 1 5項記載のシリンダブ口ックの铸造方法。
1 7 .
前記成形キヤビティ面は、 前記鉄系部材の開口端部を保持する保持部を有する 請求の範囲第 1 5項記載のシリンダプロックの錄造方法。
PCT/JP2005/019734 2004-11-01 2005-10-19 圧力容器、圧縮機およびシリンダブロックの鋳造方法 WO2006049066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/586,893 US7395750B2 (en) 2004-11-01 2005-10-19 Pressure vessel, compressor and process for casting cylinder block
EP05799325A EP1808621A1 (en) 2004-11-01 2005-10-19 Pressure container, compressor and casting method of cylinder block
JP2006543225A JP4662178B2 (ja) 2004-11-01 2005-10-19 圧力容器、圧縮機およびシリンダブロックの鋳造方法
US12/140,343 US20080257516A1 (en) 2004-11-01 2008-06-17 Pressure vessel, compressor and process for casting cylinder block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004318074 2004-11-01
JP2004-318074 2004-11-01

Publications (1)

Publication Number Publication Date
WO2006049066A1 true WO2006049066A1 (ja) 2006-05-11

Family

ID=36319078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019734 WO2006049066A1 (ja) 2004-11-01 2005-10-19 圧力容器、圧縮機およびシリンダブロックの鋳造方法

Country Status (4)

Country Link
US (2) US7395750B2 (ja)
EP (1) EP1808621A1 (ja)
JP (1) JP4662178B2 (ja)
WO (1) WO2006049066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519741A (ja) * 2013-03-15 2016-07-07 ハダル, インコーポレイテッド 圧力容器を製造するためのシステムおよび方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4043502B1 (ja) * 2006-12-20 2008-02-06 三菱重工業株式会社 アルミダイカスト製品およびその製造方法
JP2011149393A (ja) * 2010-01-25 2011-08-04 Sanden Corp 流体機械
KR102536205B1 (ko) * 2022-01-28 2023-05-26 주식회사 에테르씨티 수소용 저장용기 및 그 제조방법
KR102536210B1 (ko) * 2022-01-28 2023-05-26 주식회사 에테르씨티 수소용 저장용기 및 그 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385723A (en) * 1977-01-06 1978-07-28 Nippon Keikinzoku Sougou Kenki Preparation of pressure resisting vessel in aluminium alloy
JPS53111518A (en) * 1977-01-26 1978-09-29 Steinmueller Gmbh L & C Pressure container
JPS5974353A (ja) 1982-10-20 1984-04-26 Mazda Motor Corp アルミニウム製鋳物部材
JPH01165744A (ja) * 1987-12-21 1989-06-29 Hitachi Ltd 真空容器用鋳鉄製品及びその製造方法
JPH0284244A (ja) * 1988-09-20 1990-03-26 Mitsubishi Motors Corp シリンダブロック用消失型構造
JPH0531566A (ja) * 1991-07-25 1993-02-09 Mazda Motor Corp アルミ合金製鋳物及びその製造方法
JPH10318038A (ja) 1997-05-15 1998-12-02 Toyota Autom Loom Works Ltd シリンダブロックの鋳造方法
JP2000514522A (ja) * 1996-07-10 2000-10-31 レイブ・エイリクソン・ニュフォテック・アクティーゼ・ルスカブ 高圧容器
JP2004218585A (ja) * 2003-01-16 2004-08-05 Toyota Industries Corp 圧縮機及び圧縮機のハウジングの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2289689A (en) * 1940-10-19 1942-07-14 American Brake Shoe & Foundry Method of casting braking elements
JPS4825924Y1 (ja) * 1969-10-16 1973-07-28
JPS5415089B2 (ja) * 1975-02-05 1979-06-12
JPS6222359U (ja) * 1985-04-05 1987-02-10
JPH0356850U (ja) * 1989-10-05 1991-05-31
SE470055B (sv) * 1991-03-05 1993-11-01 Volvo Ab Sätt och verktyg för pressgjutning
US5080056A (en) * 1991-05-17 1992-01-14 General Motors Corporation Thermally sprayed aluminum-bronze coatings on aluminum engine bores
JP3274069B2 (ja) * 1996-02-09 2002-04-15 リョービ株式会社 クローズドデッキタイプシリンダブロック鋳造装置と該装置に用いられる砂中子との組合せ
DE19639052C2 (de) * 1996-09-24 1998-07-09 Daimler Benz Ag Dünnwandiges, aus Leichtmetall bestehendes Druckgußteil als Strukturbauteil für Karosserien
JP3681354B2 (ja) * 1999-08-10 2005-08-10 日本発条株式会社 金属基複合材と、それを用いたピストン
JP3962276B2 (ja) * 2002-04-12 2007-08-22 アイシン高丘株式会社 ブレーキドラムの製造方法
EP1714020A1 (en) * 2004-02-09 2006-10-25 Benmaxx, LLC Fluid-cooled cylinder liner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385723A (en) * 1977-01-06 1978-07-28 Nippon Keikinzoku Sougou Kenki Preparation of pressure resisting vessel in aluminium alloy
JPS53111518A (en) * 1977-01-26 1978-09-29 Steinmueller Gmbh L & C Pressure container
JPS5974353A (ja) 1982-10-20 1984-04-26 Mazda Motor Corp アルミニウム製鋳物部材
JPH01165744A (ja) * 1987-12-21 1989-06-29 Hitachi Ltd 真空容器用鋳鉄製品及びその製造方法
JPH0284244A (ja) * 1988-09-20 1990-03-26 Mitsubishi Motors Corp シリンダブロック用消失型構造
JPH0531566A (ja) * 1991-07-25 1993-02-09 Mazda Motor Corp アルミ合金製鋳物及びその製造方法
JP2000514522A (ja) * 1996-07-10 2000-10-31 レイブ・エイリクソン・ニュフォテック・アクティーゼ・ルスカブ 高圧容器
JPH10318038A (ja) 1997-05-15 1998-12-02 Toyota Autom Loom Works Ltd シリンダブロックの鋳造方法
JP2004218585A (ja) * 2003-01-16 2004-08-05 Toyota Industries Corp 圧縮機及び圧縮機のハウジングの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519741A (ja) * 2013-03-15 2016-07-07 ハダル, インコーポレイテッド 圧力容器を製造するためのシステムおよび方法

Also Published As

Publication number Publication date
EP1808621A1 (en) 2007-07-18
US20080257516A1 (en) 2008-10-23
JPWO2006049066A1 (ja) 2008-05-29
US7395750B2 (en) 2008-07-08
US20070158000A1 (en) 2007-07-12
JP4662178B2 (ja) 2011-03-30

Similar Documents

Publication Publication Date Title
US7754143B2 (en) Cobalt-rich wear resistant alloy and method of making and use thereof
US5875702A (en) Swash plate of swash plate compressor and combination of swash plate with shoes
JP4789837B2 (ja) 鉄系焼結体及びその製造方法
EP0363225B1 (en) Valve spring retainer for valve operating mechanism for internal combustion engine
WO2006049066A1 (ja) 圧力容器、圧縮機およびシリンダブロックの鋳造方法
EP1443200A1 (fr) Procédé de fabrication d'un piston pour moteur à explosion, et piston ainsi obtenu
JPS61169154A (ja) 繊維強化金属複合材料
KR20080092235A (ko) 금속복합재료의 제조방법 및 금속복합재료로 이루어지는부재
US6402488B2 (en) Oil pump
EP2799165A1 (en) Method for molding aluminum alloy powder, and aluminum alloy member
JP2006507452A (ja) 粉末金属接続ロッド
JP4655884B2 (ja) 複合部材
JPH05231348A (ja) 摺動部品およびそれを用いたスクロール型圧縮機
WO2004052573A1 (ja) 複合部材およびその製造方法
US5630355A (en) Reciprocating type compressor with improved cylinder block
US4740428A (en) Fiber-reinforced metallic member
WO2006049065A1 (ja) 金属複合材および金属複合材の鋳造方法
EP1163438A1 (en) Method for manufacturing internal combustion engine pistons
JP3409301B2 (ja) 往復運動部材
JP2007255469A (ja) 圧力容器
JPH0417765Y2 (ja)
US20040224143A1 (en) Metal-ceramic composite material
US20050014016A1 (en) Mechanical fuse and production method for the same
JP2001335900A (ja) 繊維強化アルミニウム合金材料
JPH09111365A (ja) 摺動用材料、ピストン及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006543225

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005799325

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007158000

Country of ref document: US

Ref document number: 10586893

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10586893

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005799325

Country of ref document: EP