WO2006049014A1 - α,α-ジフルオロアミンの製造方法 - Google Patents

α,α-ジフルオロアミンの製造方法 Download PDF

Info

Publication number
WO2006049014A1
WO2006049014A1 PCT/JP2005/019283 JP2005019283W WO2006049014A1 WO 2006049014 A1 WO2006049014 A1 WO 2006049014A1 JP 2005019283 W JP2005019283 W JP 2005019283W WO 2006049014 A1 WO2006049014 A1 WO 2006049014A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lewis base
difluoroamine
general formula
producing
Prior art date
Application number
PCT/JP2005/019283
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Fukuhara
Shoji Hara
Toshio Hidaka
Original Assignee
National University Corporation, Hokkaido University
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Hokkaido University, Mitsubishi Gas Chemical Company, Inc. filed Critical National University Corporation, Hokkaido University
Priority to EP05795464A priority Critical patent/EP1813596A4/en
Priority to JP2006543054A priority patent/JP4941929B2/ja
Priority to CN2005800370597A priority patent/CN101061090B/zh
Priority to US11/718,526 priority patent/US7829741B2/en
Publication of WO2006049014A1 publication Critical patent/WO2006049014A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/74Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by halogenation, hydrohalogenation, dehalogenation, or dehydrohalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members

Definitions

  • the present invention can be industrially carried out in a simple and highly productive manner using a specific amount of hydrogen fluoride and a Lewis base in a halogen-fluorine exchange reaction using ⁇ , ⁇ -dihaloamine as a substrate.
  • the present invention relates to a method for producing X, a-difluoroamine, and ⁇ , ⁇ -difluoroamine produced according to the present invention is used as a nucleophilic fluorinating agent and the like that are particularly useful for introducing fluorine into a compound for pharmaceutical use.
  • fluorine gas F
  • HF hydrogen fluoride
  • SAST decylaminosulfur trifluoride
  • the halogen-fluorine exchange method is a simple method for introducing fluorine.
  • Alkali metal salts of fluorine are often used in the halogen-fluorine exchange reaction.
  • sodium fluoride and potassium fluoride unlike HF, are easy to handle with little risk of toxicity and corrosion. are often abbreviated to be used) (see, for example, Non-Patent Documents 2 and 4).
  • a molecular compound of HF and a Lewis base such as pyridine or triethylamine or an ammonium fluoride salt can be used for the halogen-fluorine exchange reaction (for example, Non-patent Documents 3 and 4). (See page 178).
  • fluorine gas, hydrogen fluoride, and sulfur tetrafluoride are problematic in that they involve toxicity, corrosiveness, and explosion hazards, and require special equipment and technology for handling. There is.
  • Patent Document 3 describes a nucleophilic fluorination that solves the conventional defect represented by the following general formula (1) proposed by the present inventors and has high thermal stability and easy industrial handling.
  • A ⁇ -difluoroamine, which is an agent.
  • R, R and R are a hydrogen atom or an alkyl group which may have a substituent
  • a-difluoroamine represented by the general formula (1) is, for example, an a, a-dihaloamine represented by the following general formula (2), which is a halide of an amide as the precursor. It can be produced by applying a known halogen-fluorine exchange method (Non-Patent Documents 2 and 4).
  • R, R and R are a hydrogen atom or an alkyl group which may have a substituent
  • halogen fluoride exchange using a, a-dihaloamine represented by the general formula (2) as a fluorine source using HF or an alkali metal salt of fluorine, such as NaF or KF produced by a spray drying method By carrying out the reaction, the desired ex, a-difluoroamine (1) can be obtained.
  • N, N jetyl-a-chloromethrylamidum chloride was converted into a acetonitrile solution under reflux conditions (82 ° C) using KF produced by a spray drying method with a large specific surface area and high activity. Even if C) is reacted for 24 hours, the yield is only 70% at most. If the operation time is long, there is a problem as an industrial manufacturing process because the productivity of the target fluoroamines is low and the cost is high.
  • HF-Lewis base a molecular compound of HF and Lewis base
  • HF-Luis base in the production of a, a-difluoroamine represented by the general formula (1).
  • triethylamine-3HF with a molar ratio of HF to triethylamine of 3: 1 (a non-corrosive glass container can be used;
  • the molar ratio of HF to Lewis base is not necessarily 1: 1, so that HF derived from the HF Lewis base remains in the system even after the halogen exchange reaction is completed. To do. For this reason, a serious problem arises that separation of the product becomes difficult by forming a molecular compound by the interaction of HF and the nitrogen atom of the substrate or product. In addition, there is a risk that residual HF may cause corrosion, and in order to obtain the target product, it is complicated to add a new separation / purification process.
  • Patent Document 1 Japanese Patent Publication No. 63-25570
  • Patent Document 2 JP 2000-1477
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-64034
  • Non-Patent Document 1 Journal of Synthetic Organic Chemistry, 37, 1979, p. 606
  • Non-patent document 2 Journal of Synthetic Organic Chemistry, 47, 1989, p. 258
  • Non-Patent Document 3 Journal of Organic Chemistry, 44, 1979, p.3872
  • Non-Patent Document 4 Chemistry of Organic Fluorine Compounds II, Monograph, American Chem. Soc, 1995, p.187
  • An object of the present invention is to eliminate the drawbacks of the background art described above, and to represent a, a-difluoroamine represented by the general formula (1), a, a represented by the general formula (2).
  • Halogen with dihaloamine as substrate In production by fluorine exchange reaction, since the substrate and Z or product molecules have nitrogen atoms, they react with unreacted HF or HF Lewis base, etc. The situation in which the product cannot be obtained or separation from the generated fluorine compound is avoided, and the exchange reaction that has taken a long time can be completed quickly.
  • the purpose is to provide a highly productive and industrially feasible manufacturing method that can be easily separated.
  • the present invention provides the following method for producing a, a-difluoroamine.
  • hydrogen fluoride and a Lewis base are both in the range of 90 to L 10% with respect to the number of moles of the halogen atom X in a, a-dihaloamine represented by the general formula (2).
  • Harogeni ⁇ iodine and a characterized in that the removal of salt with a Lewis base to the outside of the system, a manufacturing method of a-difluoromethyl O b amine produced in the exchange reaction.
  • R, R and R are a hydrogen atom or an alkyl group which may have a substituent
  • the hydrogen fluoride and Lewis base introduced into the reaction system are a molecular compound of hydrogen fluoride and a Lewis base, or a molecular compound of hydrogen fluoride and a Lewis base, and a Lewis base.
  • 3-methylphenyl group 4-methylphenyl group, 4-ethylphenyl group, 4-n-propylphenyl group, 4-isopropylphenyl group, 4n-butylphenol group, 4-tertbutylphenyl group Group, 4-isobutylphenol group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2,4 dimethylphenol group, 2,5 dimethylphenol group, 3,4 dimethylphenol group -L group, 3,5 dimethylphenol group, 2, 4, 5 trimethylphenol group, 2, 4, 6 trimethylphenol group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-n- Propyl biphenyl group or 4-n-butyl biphenyl group, R and
  • a, ⁇ dihaloamine represented by the general formula (2) is used as a substrate.
  • ⁇ , ⁇ -dihaloamine those in which X in the general formula (2) is chlorine, bromine or iodine are used. Of these, chlorine atoms are preferred in terms of reactivity and ease of handling.
  • ⁇ , ⁇ -dihaloamine includes an R force phenol group, a 2-methylene group in the general formula (2),
  • Tylphenyl group 3-methylphenol group, 4-methylphenyl group, 4-ethylphenyl group, 4 ⁇ -propylphenol group, 4 isopropylphenol group, 4 ⁇ -butylphenol group, 4 t— Butylphenol group, 4 Isobutylphenol group, 2-Methoxyphenol group, 3-Methoxyphenol group, 4-Methoxyphenol group, 2,4 Dimethylphenol group, 2,5-Dimethylphenol group, 3 , 4 Dimethylphenyl group, 3,5 Dimethylphenyl group, 2, 4, 5 Trimethylphenol group, 2, 4, 6 Trimethylphenol group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4 —N-propyl biphenyl group or 4-n-butyl biphenyl group, and R and R forces are alkyl groups or aryl groups having 16 or less carbon atoms.
  • the ⁇ , ⁇ -dihaloamine can be derived from an amide having a corresponding structure, that is, an amide having a structure substituted with an oxygen atom in the general formula (2). It can also be derived from amide-related compounds such as imides and ureas. Specific examples include ⁇ , ⁇ ⁇ ⁇ ⁇ dimethyl ⁇ , ⁇ dichlorobenzylamine obtained by chlorinating carbonyl moiety of amide group with ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylbenzamide and phosgene, salt oxalyl and the like.
  • amides include formylpiperidine, formylpiperazine, formylmorpholine, ⁇ , ⁇ dimethylformamide, ⁇ , ⁇ ⁇ jetylformamide, ⁇ , di ( ⁇ -propyl) formamide, ⁇ , ⁇ Diisopropylformamide, ⁇ , ⁇ Di ( ⁇ -butyl) formamide, ⁇ , ⁇ Dipentylformamide, ⁇ , ⁇ ⁇ ⁇ ⁇ Dimethylacetamide, ⁇ , ⁇ ⁇ Jetylacetamide, ⁇ , ⁇ ⁇ ⁇ ⁇ Dimethylpropionamide, ⁇ , ⁇ Dimethyl trifl Oloacetamide, N, N dimethylcyanoformamide, N, N dimethylcyclopropane carboxamide, N, N dimethyl-2-thioxamide, N, N dimethylbenzacetamide, N, N dimethylacetocetamide, N, N dimethyl-2 2-dichloroacetoacetamide, N, N dimethylphen
  • These amides are carboxylic acids of the corresponding structure, for example, benzoic acid, regioisomer of methylbenzoic acid, 4 ethylbenzoic acid, 4 n propylbenzoic acid, 4 isopropyl benzoic acid, 4 n butylbenzoic acid.
  • Specific examples include the conversion of 3-methylbenzoic acid and jetylamine to N, N jetyl-3-methylbenzamide.
  • the a and a dinouroamines represented by the general formula (2) can be obtained by introducing halogen into the aforementioned amides.
  • a halogenating agent can be used for introducing the halogen.
  • an amide bond can be formed by using a chlorinating agent such as phosgene, salt oxalyl, salt thiol, phosphorus trichloride, or phosphorus pentachloride.
  • the oxygen atom is replaced by a chlorine atom.
  • the halogenation of carboxylic acid amide proceeds easily. In the case of isobutyric acid amide, the reaction is completed in a short time by phosphating dichloromethane at 20 ° C in dichloromethane (see Organic Syn-thesis, CV 6, 282).
  • the Lewis base used in the present invention is not particularly limited, but preferred is triethylamine, n-butylamine, pyridine, quinoline, melamine, ⁇ -collidine, piperidine, piperazine, morpholine, and the like. It can be illustrated as. Of these, triethylamine is particularly preferred in terms of reactivity and ease of handling.
  • the reaction agent in the halogen-fluorine exchange reaction using a, a-dihaloamine represented by the general formula (2) as a substrate, the reaction agent is used with respect to the number of moles of the halogen atom X in the general formula (2). so The number of moles of a HF and a Lewis base, both 90: performing the reaction as a range of L 10 mole 0/0.
  • the ideal ratio of HF and Lewis base in the system to the halogen atom X in the substrate is ideally equimolar. In practice, there is no problem as long as it is in the range of 90 to 110 mol%.
  • HF and Lewis base may be individually introduced into the reaction system, they are extremely corrosive and difficult to handle.
  • HF the molecular properties of HF and Lewis base It is particularly preferred to use a compound (HF—Ruis base).
  • the number of moles of HF and Lewis base in the HF and Lewis base force is not necessarily 1: 1.
  • a molecular compound of mole ratio of triethylamine and HF, S l: n is expressed as Et N—nHF (n is an integer of 1 or more).
  • Et N—3HF which can be handled, is particularly preferred.
  • the number of moles of HF and Lewis base relative to the number of moles of halogen atoms X in the substrate is 90 to 110%.
  • a molecular compound containing 2 mol or more of HF with respect to the Lewis base such as Et N
  • N, N jetty a chlorometatolyl amidum chloride with 2 mol of chlorine atoms to be exchanged as a substrate, HF—Et N—3HF as a Lewis base.
  • the ratio of HF and triethylamine in the system is the same for all chlorine atoms to be exchanged.
  • halogen-fluorine exchange reaction in the present invention can be carried out without a solvent, it is preferred to carry out by dissolving or dispersing the substrate, HF, Lewis base and the like in a solvent.
  • Preferred reaction solvents are aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, aromatic halogenated hydrocarbons, nitriles, ethers inert to the substrate, HF and Lewis bases and products.
  • Particularly preferred is aliphatic-tolyl such as dichloromethane, etc.
  • These reaction solvents can be used alone or in combination of two or more, and the reaction solvent can be used in a mass ratio to the substrate. Usually, it is preferable to use a force of 1 to 30 times, particularly 2 to 10 times.
  • the halogen-fluorine exchange reaction can be carried out in a batch, semi-batch, or continuous manner, and in addition to a normal thermal reaction, the reaction can be performed under microwave irradiation.
  • the reaction temperature is preferably 100 ° C or less, particularly preferably in the temperature range of 0 ° C to 60 ° C. Usually, the reaction is carried out at around room temperature, but the reaction may be carried out at 0 ° C or lower.
  • the exchange reaction time is preferably 10 hours or less, and in particular, 10 minutes and 4 hours are preferred.
  • the crude product When water is present in the system, the crude product often becomes a slurry containing hydrolyzed amide. In that case, it is preferable to perform extraction using an aliphatic hydrocarbon, aromatic hydrocarbon, halogenated hydrocarbon, aromatic halogenated hydrocarbon, nitrile, ether, or the like which is inert to the product.
  • ⁇ , ⁇ ⁇ Jetyl- (3-methyl) benzamide is chlorinated
  • N-N Jetyl is obtained by conducting a chlorine-fluorine exchange reaction with Et N-3HF.
  • a-difluoro (3-methyl) benzylamine it is preferable to use an aliphatic hydrocarbon such as n-xane or n-heptane as the extraction solvent. If the extraction solvent is distilled off, the desired ⁇ , ⁇ -difluoroamine can be obtained. Furthermore, purification such as distillation may be performed to obtain a highly pure product.
  • a three-neck flask (200 mL) was used as a reaction vessel and kept at a nitrogen atmosphere and room temperature. After pouring 50 ml of dichloromethane, 9.56 g (0.50 mol) of N, N-deethylmethoramide and 6.8 g (0.536 mol) of chlorooxalyl were added with stirring. After 30 minutes, hold N for 90 minutes at reflux temperature (47 ° C) to chlorinate N, N jetylmethoramide, N, N- jetyla, a- dichroic mouth (3-methyl) Benzylamine was used. When the gas generation was completed, 5.7 g (0.0354 mol) of triethylamine-3HF was added dropwise while cooling the reaction vessel with ice.
  • a trilo-flask 500 mL was charged with 125 g of a tetrasalt-carbon solution containing 25 g (0.197 mol) of oxalyl chloride. While cooling with ice, 45 g (0.236 mol) of N, N jetylmethoramide was added dropwise over 20 minutes with stirring. After completion of dropping, the mixture was kept for 10 minutes. Next, N, N jetylmethoramide was chlorinated by maintaining the temperature at 50 ° C. for 1 hour. At that time, a white solid precipitated with the generation of gas.
  • the precipitate was separated by filtration, washed with tetrasalt carbon and n-hexane, and then dried to obtain 47.5 g of N, N jetyl-a-chlorometatrilamido chloride (yield 98%) .
  • Example 2 The operation was performed according to Example 2.
  • a reaction vessel a four-necked flask equipped with an electromagnetic stirrer and a reflux condenser was used.
  • Acetonitrile 50g, N, N Jetyl-a-Chlomouth (2-methoxy) phenolamidum chloride 5.0g (0.0181mol) and KF4.43g (0.0766mol) prepared by spray drying method Then, a chlorine / fluorine exchange reaction was performed at 600 rpm and 80 ° C. for 20 hours under slightly pressurized nitrogen. After returning to room temperature and stopping the reaction, the reaction solution was filtered and washed. Next, the solvent acetonitrile was distilled off to obtain 3.51 g of N, N jetyl-a, a-difluoro- (2-methoxy) benzylamine (yield 67%).
  • reaction solution was filtered off with inorganic salt, and the resulting inorganic salt was washed twice with 10 ml of 1,3 dimethyl-2-imidazolidinone.
  • the filtrate and the washing solution are combined and subjected to vacuum distillation to obtain 6.85 g of 2,2 difluoro-1,3 dimethylimidazolidine (isolation Yield 81%) was obtained.
  • N-, N-N Performed in the same manner as in Example 1 except that morpholine-4 carbaldehyde (formyl morpholine) 5.76 g (0.050 mol) was used instead of dimethyl methacrylate, 4- (difluoromethyl) morpholine 5 49 g (80% isolated yield) were obtained.
  • morpholine-4 carbaldehyde formyl morpholine 5.76 g (0.050 mol) was used instead of dimethyl methacrylate, 4- (difluoromethyl) morpholine 5 49 g (80% isolated yield) were obtained.
  • the conventional halogen fluoride exchange method using an inorganic salt such as KF often takes a long time to complete the reaction. According to the method, the reaction can be completed quickly in a short time.
  • HF is almost completely, ⁇ , ⁇ -difluoroamine, Lewis base and halogen base hydrogen. And converted to salt. Therefore, if the salt is removed by filtration or the like, the target product a, a-difluoroamine can be easily separated, and a simple and highly productive manufacturing process can be constructed.
  • the reaction using HF-Lewis base is advantageous in that it is easy to handle and does not require special equipment or technology because it is not corrosive, unlike HF.
  • the present invention is an excellent economical and industrially feasible method capable of producing ⁇ , ⁇ -difluoroamino compounds useful as nucleophilic fluorine-containing agents in a short time and in a high yield.
  • HF is introduced into a reaction system in the form of a molecular compound with a Lewis base, it is easy to handle and requires special equipment and technology because it is not corrosive. This is industrially advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、α,α-ジハロアミンを基質とするハロゲン-フッ素交換反応に於いて、特定量のフッ化水素およびルイス塩基を用いる事で、目的物が短時間かつ高収率で得られる、簡便で生産性に優れたα,α-ジフルオロアミンの工業的に実施可能な製造方法を提供する。                                                                         

Description

明 細 書
a , α—ジフルォロアミンの製造方法
技術分野
[0001] 本発明は、 α , α—ジハロアミンを基質とするハロゲン フッ素交換反応に於いて、 特定量のフッ化水素およびルイス塩基を用いる、簡便かつ生産性に優れた工業的に 実施可能な (X , a—ジフルォロアミンの製造方法に関する。本発明によって製造さ れる α , α—ジフルォロアミンは、特に医薬用途向け化合物のフッ素導入に有用な 求核的フッ素化剤等として用いられる。
背景技術
[0002] 従来から、基質にフッ素原子を導入する代表的なフッ素化方法として、フッ素ガス (F
2
)を用いる直接的フッ素化法が知られている (例えば特許文献 1参照)。また、基質が 酸素、硫黄、ハロゲン等の官能基を有する場合には、フッ化水素(以下、 HFと略記 する事がある)、四フッ化硫黄等の無機フッ素化合物や、その他のフッ素化剤、例え ば、ピリジン— 9HF (01ah試薬)、フルォロアルキルアミン型の Yarovenko試薬、改 良型石川試薬または三フッ化ジェチルァミノ硫黄 (DAST)等を用いて、該官能基を フッ素原子に置換する方法が知られている(例えば非特許文献 1、 3参照)。
[0003] 基質がハロゲンィ匕物である場合は、ハロゲン—フッ素交換法が簡便なフッ素導入手 段となる。該ハロゲン フッ素交換反応には、フッ素のアルカリ金属塩類がよく使用さ れる。 例えば、フッ化ナトリウムやフッ化カリウムは、 HFとは異なり、毒性や腐食の恐 れが殆ど無ぐ取り扱いが容易な為に、特に最近は、スプレードライ法で製造したフッ 化カリウム(以下、 KFと略記する事がある。)が、屡々用いられる(例えば非特許文献 2、 4参照)。
その他にも、 HFとピリジン若しくはトリェチルァミン等のルイス塩基との分子性ィ匕合物 またはフッ化アンモ-ゥム塩を該ハロゲン—フッ素交換反応に用いる事が出来る(例 えば非特許文献 3、 4 (178頁)参照)。
[0004] 前記のフッ素化方法に関し、フッ素ガス、フッ化水素、四フッ化硫黄は、毒性、腐食 性や爆発等の危険が伴い、取り扱いに特殊な装置や技術を必要とする等の問題点 がある。
この様な問題を避けて安全かつ簡便にフッ素を導入する為に、求核的または求電子 的フッ素化剤が種々開発されている (例えば特許文献 2、 3、非特許文献 1参照)。 特許文献 3は、本発明者等が先に提案した下記の一般式(1)で表される従来の欠点 を解決した、熱安定性が高ぐ工業的な取り扱いが容易な求核的フッ素化剤である a , α—ジフルォロアミンに関する。
[0005] [化 1]
Figure imgf000003_0001
[0006] (式中、 R、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 )
0 1 2
[0007] 一般式(1)で表される α , aージフルォロアミンは、例えば当該前駆体としてアミド のハロゲン化物である、下記の一般式(2)で表される a , aージハロアミンを用いて 公知のハロゲン フッ素交換法を適用して製造する事が出来る (非特許文献 2、 4)。
[0008] [化 2]
Figure imgf000003_0002
X Λ— X く (2)
[0009] (式中、 R、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 X は、塩素原子、臭素原子またはヨウ素原子である。 )
[0010] 即ち、一般式(2)で表される a , aージハロアミンを、 HFやフッ素のアルカリ金属塩 類、例えば、 NaFやスプレードライ法で製造した KF等をフッ素源に用いてハロゲン フッ素交換反応を実施すれば、目的とする ex , aージフルォロアミン(1)を得る事 が出来る。
[0011] 従来から、 HFや NaF、 KF等のフッ素のアルカリ金属塩類を用いてフッ素交換するフ ッ素化合物の製造方法は広く知られている。例えば、非特許文献 3等を参考に反応 条件を決定する事が出来るが、反応速度が不充分で、反応完結に長時間を要する 事がある。
具体的例を挙げれば、比表面積が大きく高活性なスプレードライ法で製造された KF を用いて N, N ジェチル一 a—クロロメタトルィルアミジゥムクロリドをァセトニトリル 溶媒中、還流条件下 (82°C)に、 24時間反応を行った場合でも収率は、高々、 70% にしか過ぎない。操作時間が長いと、目的とするフルォロアミン類の生産性が低ぐコ スト高となるので工業的な製造プロセスとしては問題がある。
この様に、 KFによるハロゲン フッ素交換反応で α , aージフルォロアミンを製造す る場合、スプレードライ法 KFが比較的高価な事と相まって、長時間の反応を要する 事が製造コスト増加の主要因であり、工業的な観点から一層の生産性向上と製造コ ストの低減が求められている。
[0012] 一方、 HFとルイス塩基との分子性ィ匕合物(以下、「HF—ルイス塩基」と記す事がある 。)を該ハロゲン一フッ素交換反応に用いると、これら課題の幾つ力を回避する事が 出来る。
しかし、従来、一般式(1)で表される a , a—ジフルォロアミンの製造の際、 HF—ル イス塩基を用いる事例は殆ど見られない。特に、 HFとトリエチルァミンのモル比が 3 : 1からなるトリェチルァミン— 3HF (腐食性が無ぐガラス容器が使用可能;以下、「Et
3
N— 3HF」と記す事がある。)は、他の HF—ルイス塩基、例えば、ピリジン— 9HF (01 ah試薬)よりも求核性が高ぐ速やかに反応が完結するので該ハロゲン フッ素交換 反応に好適である事を明示した文献類は見当たらない。
より具体的に言えば、従来技術では、 N, N ジェチル— a—クロロメタトルィルアミ ジゥムクロリドの塩素—フッ素交換反応の際に、 Et N— 3HFや、その他の HF—ルイ
3
ス塩基を用いて N, N ジェチルー a , a—ジフルオロー(3—メチル)ベンジルアミ ンを製造する事例は見当たらない。また同様に、類似の (X , aージフルォロアミン製 造の際に、 HF ルイス塩基を用 、た事例は見当たらな!/、。
[0013] ところが、例えば、 Et N— 3HFを用いて、一般式(1)で表される α , aージフルォロ
3
ァミン製造に適用すると思いの外、実施に困難が伴う。即ち、 Et N— 3HFの様な HF
3
—ルイス塩基をハロゲン—フッ素交換反応に用いた場合には、 HFとルイス塩基との モル比が必ずしも 1: 1ではない為、ハロゲン交換反応終了後も該 HF ルイス塩基 由来の HFが系に残存する。この為、 HFと基質または生成物の窒素原子との相互作 用によって分子性ィ匕合物を形成する等して生成物の分離が困難になると云う深刻な 問題が生じる。また、残存 HFが腐食を引き起こす恐れもある他、目的生成物を取得 するには新たな分離 ·精製工程を付加する等の煩雑さが伴う。
し力し、この様な問題点、例えば、 Et N— 3HFを用いる a , a—ジフルォロアミンの
3
工業的な製造に於いて遭遇する問題点並びにその解決手段について言及した特許 、文献類は見当たらない。
[0014] 特許文献 1:特公昭 63— 25570号公報
特許文献 2 :特開 2000— 1477号公報
特許文献 3:特開 2003 - 64034号公報
非特許文献 1 :有機合成化学協会誌、 37、 1979、 p. 606
非特許文献 2 :有機合成化学協会誌、 47、 1989、 p. 258
非特許文献 3 Journal of Organic Chemistry, 44, 1979, p.3872
非特許文献 4 : Chemistry of Organic Fluorine Compounds II, Monograph, American Chem. Soc, 1995, p.187
発明の開示
[0015] 本発明の目的は、上記した背景技術の欠点を払拭し、一般式(1)で表される a , a ージフルォロアミンの、一般式(2)で表される a , aージハロアミンを基質とするハロ ゲン フッ素交換反応による製造に於いて、基質および Zまたは生成物分子が窒素 原子を有する為に未反応の HFまたは HF ルイス塩基等と反応する等して目的生 成物が得られない或いは生成したフッ素化合物との分離が困難となる事態が避けら れ、これまで長時間を要した該交換反応を速やかに完結させる事が出来、目的とす るフッ素化合物を容易に分離'取得出来る、生産性の高い工業的に実施可能な製造 手段を提供する事にある。
[0016] 本発明者等は、前述の目的を達成すべく鋭意検討を重ねた結果、 α , α—ジフルォ ロアミン製造に於いて、特定量の HFおよびルイス塩基を用いて反応を行なう事により 、目的を達成し得る事を見出した。本発明は、力かる知見に基づくものである。
[0017] 即ち本発明は、以下の a , aージフルォロアミンの製造方法を提供するものである
〔1〕一般式(1)で表される α、 α—ジフルォロアミンを、一般式(2)で表される a;、 a —ジハロアミンを基質とするハロゲン—フッ素交換反応によって製造する方法であつ て、一般式(2)で表される a、 aージハロアミン中のハロゲン原子 Xのモル数に対し て、フッ化水素およびルイス塩基を、何れも 90〜: L 10%の範囲として該交換反応に 用い、かつ該交換反応で生成するハロゲンィ匕水素とルイス塩基との塩を系外に除去 する事を特徴とする aaージフルォロアミンの製造方法。
[0018] [化 3]
Figure imgf000006_0001
[0019] (式中、 R、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 )
0 1 2
[0020] [化 4]
Figure imgf000007_0001
(式中、 R 、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 X
0 1 2
は、塩素原子、臭素原子またはヨウ素原子である。 )
〔2〕反応系に導入するフッ化水素およびルイス塩基が、フッ化水素とルイス塩基との 分子性化合物、またはフッ化水素とルイス塩基との分子性ィ匕合物およびルイス塩基 である上記〔1〕 (D oc , aージフルォロアミンの製造方法。
〔3〕ルイス塩基がトリェチルァミン、 n-ブチルァミン、ピリジン、キノリン、メラミン、 y ーコリジン、ピぺリジン、ピぺラジンまたはモルホリンである上記〔1〕または〔2〕の α , aージフルォロアミンの製造方法。
〔4〕フッ化水素とルイス塩基との分子性ィ匕合物がトリェチルァミン 3HFである上記〔 2〕の α , aージフルォロアミンの製造方法。
〔5〕一般式(2)に於ける X力 塩素原子である上記〔1〕から〔4〕の何れかの a , a ジフルォロアミンの製造方法。
〔6〕一般式(1)および一般式(2)に於ける R力 フエ-ル基、 2 メチルフエ-ル基、
0
3—メチルフエ-ル基、 4 メチルフエ-ル基、 4 ェチルフエ-ル基、 4—n—プロピ ルフエ-ル基、 4 イソプロピルフエ-ル基、 4 n—ブチルフエ-ル基、 4—tーブチ ルフエ-ル基、 4 イソブチルフエ-ル基、 2—メトキシフエ-ル基、 3—メトキシフエ- ル基、 4ーメトキシフヱ-ル基、 2, 4 ジメチルフヱ-ル基、 2, 5 ジメチルフヱ-ル 基、 3, 4 ジメチルフヱ-ル基、 3, 5 ジメチルフヱ-ル基、 2, 4, 5 トリメチルフエ -ル基、 2, 4, 6 トリメチルフエ-ル基、 4ーメチルビフエ-ル基、 4ーェチルビフエ -ル基、 4—n—プロピルビフエ-ル基または 4—n—ブチルビフエ-ル基であり、 Rお
1 よび R力 炭素数 16以下のアルキル基またはァリール基である上記〔1〕から〔5〕の いずれかの α , αージフルォロアミンの製造方法。
発明を実施するための最良の形態
[0022] 以下に本発明を更に詳しく説明する。
本発明に於けるハロゲン—フッ素交換反応には、基質として、一般式 (2)で表される a , α ジハロアミンを用いる。
該 α , α—ジハロアミンとしては、一般式(2)に於ける Xが、塩素、臭素またはヨウ素 であるものを用いる。中でも、塩素原子が反応性や取り扱いの容易さ等の点で好まし い。
また、該 α , α—ジハロアミンとしては、一般式(2)に於ける R力 フエ-ル基、 2—メ
0
チルフエ-ル基、 3—メチルフエ-ル基、 4 メチルフエ-ル基、 4 ェチルフエ-ル 基、 4 η—プロピルフエ-ル基、 4 イソプロピルフエ-ル基、 4 η—ブチルフエ- ル基、 4 t—ブチルフエ-ル基、 4 イソブチルフエ-ル基、 2—メトキシフエ-ル基、 3—メトキシフエ-ル基、 4ーメトキシフエ-ル基、 2, 4 ジメチルフエ-ル基、 2, 5— ジメチルフヱ-ル基、 3, 4 ジメチルフヱ-ル基、 3, 5 ジメチルフヱ-ル基、 2, 4, 5 トリメチルフエ-ル基、 2, 4, 6 トリメチルフエ-ル基、 4ーメチルビフエ-ル基、 4 ーェチルビフエ-ル基、 4—n—プロピルビフエ-ル基、または 4—n—ブチルビフエ- ル基であり、 Rおよび R力 炭素数 16以下のアルキル基またはァリール基であるも
1 2
のが、好適なものとして例示する事が出来る。
[0023] 該 α , α—ジハロアミンは、対応する構造のアミド類、即ち、一般式(2)に於ける が 酸素原子で置換された構造のアミドから誘導する事が出来る。またイミド類、ウレァ類 等のアミド類縁ィ匕合物からも誘導可能である。具体例として、 Ν, Ν ジメチルベンズ アミドを、ホスゲン、塩ィ匕ォキサリル等を用いてアミド基のカルボニル部位を塩素化し て得られる Ν, Ν ジメチル α , α ジクロロベンジルァミンを挙げる事が出来る。
[0024] 該アミド類としては、具体的には、ホルミルピぺリジン、ホルミルピぺラジン、ホルミル モルホリン、 Ν, Ν ジメチルホルムアミド、 Ν, Ν ジェチルホルムアミド、 Ν, Ν ジ( η—プロピル)ホルムアミド、 Ν, Ν ジイソプロピルホルムアミド、 Ν, Ν ジ(η—ブチ ル)ホルムアミド、 Ν, Ν ジペンチルホルムアミド、 Ν, Ν ジメチルァセトアミド、 Ν, Ν ジェチルァセトアミド、 Ν, Ν ジメチルプロピオンアミド、 Ν, Ν ジメチルトリフル ォロアセトアミド、 N, N ジメチルシアノホルムアミド、 N, N ジメチルシクロプロパン カルボキシアミド、 N, N ジメチルー 2—チォォキサアミド、 N, N ジメチルベンゼ ンァセタミド、 N, N ジメチルァセトァセタミド、 N, N ジメチルー 2, 2—ジクロロア セトァセタミド、 N, N ジメチルフエノキシァセトアミド、 N, N ジェチルプロピオンァ ミド、 N, N ジェチルブチルアミド、 N, N ジメチルアミド、 N, N ジプロピルァセト アミド、 N, N ビス(2—ヒドロキシメチル)ドデカンアミド、 N, N ジメチルアミノエチ ルメタクリルアミド、 N, N ジェチル— 2— (1—ナフチルォキシ)プロパンアミド、 N, N —ジブチルァセタミド、 1—トリフエ-ルホスホラ-リデン 2—プロパノン、 N, N ジ ェチルデカリルアミド、 N—メチルホルムアミド、 N—メチルァセトアミド、 N, N ジメチ ルフエノキシァセトアミド、 N—メチル—N フエ-ルホルムアミド、 N, N ジメチル酪 酸アミド、 N, N ジメチルイソ酪酸アミド、 N, N ジェチルイソ酪酸アミド、 N, N ジ メチル吉草酸アミド、 N, N ジメチルベンズアミド、 N, N ジェチルメタトルアミド、 N , N ジェチル- 0-トリルアミド、 N, N ジェチル- p-トリルアミド、 N, N ジェチルー (2, 4 ジメチル)ベンズアミド、 N, N ジェチル—(2, 5 ジメチル)ベンズアミド、 N, N ジェチル—(2, 6 ジメチル)ベンズアミド、 N, N ジェチル—(3, 4 ジメ チル)ベンズアミド、 N, N ジェチルー (3, 5—ジメチル)ベンズアミド、 N, N ジェ チルー(2, 4, 5 トリメチル)ベンズアミド、 N, N ジェチルー(2, 4, 6 トリメチル) ベンズアミド、 N, N ジメチルアミノエチルメタクリルアミド、 N, N ジメチル桂皮酸 アミド、 N, N ジメチル—フラン— 2 カルボキシアミド、 N, N ジメチル-フラン— 3 —カルボキシアミド、 N, N ジェチル—(2—メトキシ)ベンズアミド、 N, N ジメチル -p-クロ口べンズアミド、 N, N ジメチル- p-ブロモベンズアミド、 N, N ジメチル- p- フルォロベンズアミド、 N, N ジェチルメシチルアミド、 N, N ジェチルナフチルァ ミド、 N, N ジェチルビフエ-ルアミド、 N, N ジェチルアンスリルアミド、 N, N ジ ェチルシクロへキシルアミド、 N, N ジメチルデカンアミド、 N, N ジメチルー 2—ピ リジンカルボキシアミド、ベンゾィルビペリジン、ベンゾィルモルホリン、ジメチルゥレア 、ジェチルゥレア、ジフエ-ルゥレア、ジ(メチルフエ-ル)ゥレア、ジ(ェチルフエ-ル) ゥレア、 1, 3 ジメチルイミダゾリジン 2 オン、 1ーメチルビペリジン 2 オン、 1 , 3 ジメチル―テトラヒドロピリミジン— 2 (1H)—オン等を挙げる事が出来る。 [0025] これらのアミド類は、対応する構造のカルボン酸、例えば、安息香酸、メチル安息香 酸の位置異性体、 4 ェチル安息香酸、 4 n プロピル安息香酸、 4 イソプロピル 安息香酸、 4 n ブチル安息香酸、 4 t ブチル安息香酸、 4 イソブチル安息 香酸、メトキシ安息香酸の位置異性体、 2, 4 ジメチル安息香酸、 2, 5 ジメチル安 息香酸、 3, 4ージメチル安息香酸、 3, 5 ジメチル安息香酸、 2, 4, 5 トリメチル安 息香酸、 2, 4, 6 トリメチル安息香酸、 4ーメチルビフエ-ルカルボン酸、 4 ェチル ビフエ-ルカルボン酸、 4— n プロピルビフエ-ルカルボン酸または 4— n ブチルビ フエ二ルカルボン酸等に各種のアミン類を反応させれば、容易に誘導する事が出来 るので、工業的に入手可能なカルボン酸を出発原料として選択する事が実用的な観 点から好ましい。
具体的には、 3—メチル安息香酸とジェチルァミンから N, N ジェチルー 3—メチル ベンズアミドへの変換事例を挙げる事が出来る。
[0026] 一般式(2)で表される a , a ジノヽロアミンは、前述のアミド類にハロゲンを導入して 得る事が出来る。ハロゲン導入には、ハロゲン化剤を用いる事が出来る。例えば、塩 素の導入には、良く知られている様に、ホスゲン、塩ィ匕ォキサリル、塩ィ匕チォ -ル、三 塩化リン、五塩化リン等の塩素化剤を用いる事により、アミド結合の酸素原子が塩素 原子によって置換される。通常、カルボン酸アミドのハロゲンィ匕は容易に進行する。ィ ソ酪酸アミドの場合、ジクロルメタン中、 20°Cでホスゲンを流して塩素化を行う事で反 応は短時間で完結する(Organic Syn-thesis, CV 6, 282参照)。
塩素の反応性が低い場合は、臭素やヨウ素を含む同様のハロゲン化剤の中から反 応性の高いものを選択して用いる事が出来る。その他アミド類も同様な条件に従って 、ハロゲン導入を行う事が出来る。
[0027] 本発明に於いて使用するルイス塩基としては、特に制約はないが、トリェチルァミン 、 n—ブチルァミン、ピリジン、キノリン、メラミン、 γ ーコリジン、ピぺリジン、ピぺラジン 、ホルホリン等を好適なものとして例示する事が出来る。これらの中では、トリェチルァ ミンが反応性や取り扱 、の容易さの点で、特に好ま 、。
[0028] 本発明では、一般式(2)で示される a , aージハロアミンを基質とするハロゲンーフッ 素交換反応に於ける、一般式(2)中のハロゲン原子 Xのモル数に対して、反応剤で ある HFおよびルイス塩基のモル数を、何れも 90〜: L 10モル0 /0の範囲として該反応を 行なう。
[0029] この反応系に於ける HFが化学量論的に過剰である場合、反応終了後、 HFが残存 するが、この残存 HFが障害となって、該ハロゲン フッ素交換反応の阻害や HFと窒 素原子間の強固な相互作用等によって生成物の分離が出来ない事態が生じる恐れ があるが、 HFおよびルイス塩基のモル数が上記の範囲であれば、フッ素は実質的に 全て消費されて目的生成物となる。また、目的物である a , aージフルォロアミンと共 に生成するハロゲンィ匕水素は、系外への除去が容易なルイス塩基との塩に変換され る。
基質中のハロゲン原子 Xに対する系内の HFとルイス塩基の割合は、何れも、等モル にする事が理想的である力 実際には 90から 110モル%の範囲であれば支障は無 い。
[0030] HFおよびルイス塩基は、個別に所定量を反応系に導入しても良いが、腐食性が激 しく取り扱 、の難し 、HFの替わりに、 HFとルイス塩基との分子性ィ匕合物(HF—ルイ ス塩基)を用いる事が特に好ま 、。
[0031] HFとルイス塩基力もなる分子性ィ匕合物、即ち、 HF—ルイス塩基に於ける、 HFとルイ ス塩基のモル数は必ずしも 1対 1ではない。例えば、トリェチルァミンと HFとのモル比 力 S l : nである分子性ィヒ合物を Et N— nHFと表すと (nは 1以上の整数)、具体的な化
3
合物として、 Et N— 1HF、 Et N— 2HF、 Et N— 3HF、 Et N— 4HF、 Et N— 5HF
3 3 3 3 3
、 Et N— 6HFが挙げられる。これらの中で、腐食の恐れが低ぐ蒸留可能で安全に
3
取り扱う事の出来る Et N— 3HFが、特に好ましい。
3
[0032] HF ルイス塩基として、ルイス酸と HFのモル比が 1: 1である分子性化合物を使用 する場合は、基質中のハロゲン原子 Xのモル数に対し 90〜110%となる量の Et N
3 1HFを反応系に導入すれば、基質中のハロゲン原子 Xのモル数に対する HFおよ びルイス塩基のモル数は、 、ずれも 90〜110%となる。
[0033] 一方、 HFがルイス塩基に対して 2モル以上含まれる分子性ィ匕合物、例えば、 Et N
3 2HFや Et N— 3HF等を使用する場合は、基質中のハロゲン原子 Xのモル数に対
3
する HFのモル数が 90〜110%となる量の HFを有する Et N— 3HFを反応系に導 入しても、基質中のハロゲン原子 Xのモル数に対するルイス塩基(トリエチルァミン)の モル数は、 90〜110%とはならないので、不足する分のルイス塩基(トリエチルァミン )を反応系に導入して、前述の条件を満たす様にする。
[0034] より具体的な説明の為に、基質として交換する塩素原子 2モルを持つ N, N ジェチ ルー a クロロメタトルィルアミジゥムクロリド、 HF—ルイス塩基として Et N— 3HFを
3
用いた場合について述べる。該基質 1モル (塩素原子 2モル)に対して、 2Z3モルの Et N— 3HFをカ卩えた後、直ちに、または次にトリェチルァミンを 4/3モル添加すると
3
、系内の HFおよびトリェチルァミンの割合は、交換すべき塩素原子に対して何れも 当モノレとなる。
[0035] 本発明に於けるハロゲン—フッ素交換反応は、無溶媒で行う事も出来るが、基質、 H Fおよびルイス塩基等を、溶媒に溶解若しくは分散させて行う事が好ま ヽ。
反応溶媒として好ましいのは、基質、 HFおよびルイス塩基や生成物に対して不活性 な脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、芳香族ハロゲン化炭 化水素、二トリル、エーテル類および基質である (X、 a ジノヽロアミンの製造原料とな る対応構造のカルボン酸アミド等であり、中でも、塩化メチル、ジクロロメタン、クロロホ ルム、四塩ィ匕炭素等のハロゲンィ匕炭化水素ゃァセトニトリル等の脂肪族-トリル類が 好ましぐ特に好ましいのはジクロロメタンである。これらの反応溶媒は、単独または 2 種以上を適宜組み合わせて使用する事が出来る。反応溶媒は、基質に対する質量 比で、通常は 1〜30倍を用いる力 特に 2から 10倍を用いる事が好ましい。
[0036] ハロゲン フッ素交換反応は、回分式、半回分式、或いは連続方式での実施が可能 であり、通常の熱反応の他にも、マイクロ波の照射下に反応を行う事が出来る。反応 温度は、 100°C以下で実施する事が好ましぐ特に 0°Cから 60°Cの温度範囲が好ま しい。通常は、室温付近で反応を行うが 0°C以下で反応を実施しても良い。
該交換反応の時間は 10時間以下とするのが好ましぐ特に 10分力も 4時間が好まし い。
[0037] ハロゲン フッ素交換反応が完結すると、基質と当モルのハロゲンィ匕水素とルイス塩 基との塩が生成するので、自然に析出した塩または溶媒を留去して析出した塩を濾 別する。この際、溶媒は、必ずしも完全に留去する必要は無ぐある程度濃縮したら、 へキサン、ヘプタン等のハロゲンィ匕水素 ルイス塩基塩に対する貧溶媒を加えて析 出させた後に濾別しても良い。濾別後の粗生成物を、蒸留若しくは抽剤を用いて精 製すれば、 目的とする高純度の α , α ジフルォロアミンを得る事が出来る。
[0038] 系に水が存在する場合、粗生成物は加水分解されたアミドを含むスラリーとなる事が 多い。その場合には、生成物に対して不活性な脂肪族炭化水素、芳香族炭化水素、 ハロゲンィ匕炭化水素、芳香族ハロゲン化炭化水素、二トリル、エーテル類等を用いて 抽出する事が好ましい。具体的には、 Ν, Ν ジェチル—(3—メチル)ベンズアミドを 塩素化し、 Et N— 3HFを用いて塩素—フッ素交換反応を実施して N, N ジェチル
3
- a , a—ジフルォロ一(3—メチル)ベンジルァミンを製造する場合では、抽出溶剤 として、 n キサン、 n ヘプタン等の脂肪族炭化水素を用いる事が好ましい。抽出 溶剤を留去すれば、 目的の α , α—ジフルォロアミンを得る事が出来る。さらに高純 度の製品を得る為に、蒸留等の精製を行っても良い。
[0039] 本発明の工業的イメージを例示すれば、出発原料であるカルボン酸アミドのハロゲ ン化、引き続き、ハロゲン化物を一旦単離若しくは単離する事無ぐハロゲン フッ素 交換反応を行い、該反応終了後、濾別して目的生成物を分離'精製する工程力 な るプロセスが挙げられる。
[0040] 以下、実施例および比較例によって本発明の方法をさらに詳しく説明する。猶、本 発明をこれらの例だけに限定するものではない。
[0041] 実施例 1
Ν, Ν ジェチルー a , aージフルオロー(3—メチル)ベンジルァミンの製造
反応容器として三ッロフラスコ(200mL)用いて、窒素雰囲気、室温に保った。ジク ロロメタン 50mlを注ぎ入れた後、 N, N ジェチルメタトルアミド 9. 56g (0. O50mol) と塩ィ匕ォキサリル 6. 8g (0. O536mol)を、撹拌しながら添加した。 30分後、還流温 度(47°C)下に、 90分保持して N, N ジェチルメタトルアミドを塩素化して、 N, N— ジェチルー a , a—ジクロ口一(3—メチル)ベンジルァミンとした。ガスの発生が終了 した所で、反応容器を氷冷しながら、トリェチルァミン— 3HFを、 5. 7g (0. 0354mol )滴下した。次に、トリェチルァミン 7. 3g (0. 0721mol)を、同様に滴下した。滴下終 了後、反応容器を 20°Cの水浴中に浸漬して、さらに塩素—フッ素交換反応を 30分 間行った。その際、ガスの発生と共に、白色固体が析出する様子が観察された。
[0042] 塩素 フッ素交換反応終了後、析出物を濾別し、溶媒のジクロロメタンを留去した。
溶媒留去後の残渣に、 n—へキサン 20mlを 3回加えて生成物を抽出した。抽出液を 濾過して不溶物と分別した後、 n—へキサンを留去した。さらに減圧下 (4mmHg)に 、 55°C〜57°Cの無色留分として N, N ジェチルー a , aージフルオロー(3—メチ ル)ベンジルァミン 8. 54gを得た。 N, N—ジェチルメタトルアミド基準の収率は 80% であった。
[0043] 比較例 1
N, N ジェチルー a , aージフルオロー(3—メチル)ベンジルァミンの製造
a) N, N ジェチル一 a—クロロメタトルィルアミジゥムクロリドの製造
窒素雰囲気下、三ッロフラスコ(500mL)に、塩化ォキサリル 25g (0. 197mol)を 含む四塩ィ匕炭素溶液 125gを入れた。氷冷しながら、 N, N ジェチルメタトルアミド 4 5g (0. 236mol)を、撹拌しながら 20分かけて滴下した。滴下終了後、 10分保持した 。次いで、温度 50°Cで 1時間保持して N, N ジェチルメタトルアミドを塩素化した。 その際、ガスの発生と共に白色固体が析出した。析出物を濾別し、四塩ィ匕炭素と n— へキサンで洗浄した後、乾燥させて、 N, N ジェチルー a—クロロメタトルィルアミジ ゥムクロリド 47. 5gを得た (収率 98%)。
[0044] b) N, N ジェチルー a , a—ジフルオロー(3—メチル)ベンジルァミンの製造
窒素雰囲気に保ったグローブボックス中、三ッロフラスコ(500mL)に、ァセトニトリ ル 250g、前記 a)に記載の N, N ジェチル一 a—クロロメタトルィルアミジゥムクロリ ド 25g (0. lmol)および KF23. 5g (0. 4mol ;森田化学製、スプレードライ法)を入 れ、ァセトニトリル還流温度(74°C)に於いて、 18時間塩素—フッ素交換反応を行つ た。その後、室温まで冷却して反応溶液を濾過した。エバポレーターを用いて、濾液 を減圧下に濃縮した後、実施例 1と同様に蒸留して、 N, N ジェチル— a , ひ—ジ フルォロ― 3 メチルベンジルァミン 13gを得た(収率 60%)。
[0045] 実施例 2
N, N ジェチルー a , aージフルオロー(3—メチル)ベンジルァミンの製造
三ッロフラスコ(500mL)にジクロロメタン 100mlおよび N, N ジェチルメタトルァ ミド 19. 2g (0. lOmol)を入れて窒素雰囲気下に保った。次に、室温でホスゲン 10. 4g (0. 105mol)を 30分かけて反応容器に導入した。さらに、ジクロロメタンの還流温 度(47°C)に於いて 90分間塩素化反応を行ない、 N, N—ジェチルー a , aージクロ 口一(3—メチル)ベンジルァミンとした。ガスの発生が終了した後に、氷冷しながら、 E t N— 3HF 11. 4g (0. 072mol)を滴下した。同様に、卜リエチルァミン 14. 6g (0. 1
3
45mol)を滴下した。次いで、反応容器を 20°Cの水浴中に浸漬して 30分間保持した 。その後、析出物を濾別して、溶媒のジクロロメタンを減圧下に留去した。溶媒留去 後の残渣に、 n—へキサン 20mlを 3回加えて、生成物を抽出した。抽出液を濾過し て不溶物と分別した後、 n—へキサンを留去した。さらに減圧下 (4mmHg)、 55°C〜 57°Cの無色留分として N, N—ジェチルー a , a—ジフルオロー(3—メチル)ベンジ ルァミン 17. lg (収率 81%)を得た。
[0046] 実施例 3
N. N—ジェチルー a . aージフルオロー(2—メトキシ)ベンジルァミンの製诰 a) N, N—ジェチル一 a—クロ口一(2—メトキシ)フエ-ルアミジゥムクロリドの製造 窒素雰囲気下、四ッロフラスコ(200mL)中に塩ィ匕ォキサリルの 45%四塩ィ匕炭素 溶液 (塩ィ匕ォキサリル: 24. 5g, 0. 193mol)を入れた。微加圧の窒素雰囲気に保つ て、室温下、 o—メトキシ— N, N—ジェチルベンズアミド 20. 05g (0. O965mol)を 滴下した(内温は 5°C上昇)。滴下終了後、 53°Cで 5時間保持したところ、反応液は 2 層に分離した。室温まで温度を下げて反応を停止し、溶媒を留去して粘稠な液体を 得た。グローブボックス中に放置すると、粘稠な液体から茶色の固体が析出した (収 量 26. 6g) 0この析出物を n—へキサンおよび四塩ィ匕炭素で洗浄し、乾燥させて、 N , N—ジェチルー a—クロ口一(2—メトキシ)フエ-ルアミジゥムクロリド 21. 4gを得た (収率 80%)。
[0047] b) N, N—ジェチル一 a , a—ジフルォロ一(2—メトキシ)ベンジルァミンの製造 窒素雰囲気に保ったグローブボックス中、三ッロフラスコ(200ml)に、前記 a)の N , N—ジェチル一 α—クロ口一(2メトキシ)フエ-ルアミジゥムクロリド 13. 8g (0. 050 mol)および Et N— 3HF 5. 7g (0. O359mol)を滴下した。次いで、トリェチルァミン
3
7. 3g (0. 0723mol)を、同様にして滴下した。滴下終了後、容器を 20°Cの水浴中 に浸漬して、 30分間保持した。反応終了後、析出した固体を濾別して溶媒のジクロロ メタンを留去した。溶媒留去後の残渣に、 n—へキサン 20mlを 3回加えて、生成物を 抽出した。抽出液を濾過して不溶物と分別後、 n—へキサンを留去し、 N, N—ジェ チル— α , a—ジフルオロー(2—メトキシ)ベンジルァミン 8. 4gを得た(収率 76%)
[0048] 比較例 2
実施例 2に準じて操作を行った。反応容器として、四つ口フラスコに電磁撹拌機と 還流冷却器を取り付けた装置を用いた。ァセトニトリル 50g、 N, N ジェチル— a - クロ口一(2—メトキシ)フエ-ルアミジゥムクロリド 5. 0g (0. 0181mol)およびスプレー ドライ法で製造した KF4. 43g (0. 076mol)を入れて、窒素微加圧下に、 600rpm、 80°Cで 20時間、塩素 フッ素交換反応を行った。室温に戻して反応を停止した後、 反応溶液を濾過、洗浄した。次いで溶媒ァセトニトリルを留去して、 N, N ジェチル - a , a—ジフルォロ—(2—メトキシ)ベンジルァミン 3. 51gを得た(収率 67%)。
[0049] 実施例 4
2. 2 ジフルオロー 1. 3 ジメチルイミダゾリジンの製诰
実施例 3記載の b)に於いて、基質として 2 クロロー 1, 3 ジメチルイミダゾリジ-ゥ ムクロリド 8. 45g (0. 05mol)を用いた以外は、同様にして行った結果、 目的とする 2 , 2 ジフルオロー 1, 3 ジメチルイミダゾリジン 6. 2g (単離収率 91%)が得られた。
[0050] 比較例 3
窒素雰囲気に保ったグローブボックス中、三ッロフラスコ(200mL)に、 1, 3 ジメ チノレー 2 イミダゾリジノン 15g (0. 13mol)、 2 クロ口一 1, 3 ジメチルイミダゾリジ -ゥムクロリド 8. 45g (0. 05mol)およびスプレードライ法で製造した KF11. 62g (0 . 2mol)を入れた。次いで、 85°Cで 24時間保持して、塩素—フッ素交換反応を行つ た。反応 'を HPLC (High Performance Liquid Chromatography: t¾速液体クロマトグ ラフ)で分析した結果、収率は 96%に止まり、長時間を要したにも関わらず反応は完 結していない事が判明した。反応液力も無機塩を濾別し、得られた無機塩を 10mlの 1, 3 ジメチルー 2—イミダゾリジノンで 2回洗浄した。濾液と洗浄液とを合わせて減 圧蒸留する事により、 2, 2 ジフルオロー 1, 3 ジメチルイミダゾリジン 6. 85g (単離 収率 81%)が得られた。
[0051] 実施例 5
N, N ジェチルメタトルアミドに替えて、ピぺリジン 1 カルバルデヒド(ホルミル ピぺリジン) 5. 66g (0. O50mol)を用いた以外は実施例 1と同様にして実施し、 1— ( ジフルォロメチル)ピぺリジン 5. 58g (単離収率 82%)を得た。
[0052] 次いで、当該生成物について、 NMR (Nuclear Magnetic Resonance:核磁気共鳴) 測定を行った。 iH NMRは、日本電子 ¾[ΜΝ— ΕΧ270 (270ΜΝζ)を用いて重ク ロロホルム溶媒で測定した。また、 13C— NMRと19 F— NMRとは、日本電子製 NMR LA500SS (500MHz)を用いて重クロ口ホルム溶媒中で測定した。これらの NM R測定結果を以下に示す。
'H-NMR: δ値(ppm)、 TMS基準、 CDC1中で測定
3
2. 81 (m, 4H, - CH - N- X 2)
2
1. 55 (m, 6H, - CH - CH - CH - N- , - CH - CH - CH -N- X 2)
2 2 2 2 2 2
5. 90 (s, 1H, -CF -H)
2
13C-NMR: δ値(ppm)、 TMS基準、—50°C、CDC1中で測定
3
24. 12 (s, - CH - CH - N- X 2)
2 2
24. 76 (s, - CH - CH - CH - N- )
2 2 2
44. 38 (s, - CH -N- X 2)
2
117. 66 (t, 246Hz, -CF )
2
19F— NMR: δ値(ppm)、 CF COOH基準、 50°C、 CDC1中で測定
3 3
- 101. 10 (d, 2F, J=69.13)
[0053] 実施例 6
N, N ジェチルメタトルアミドに替えて、モルホリンー4 カルバルデヒド(ホルミル モルホリン) 5. 76g (0. 050mol)を用いた以外は実施例 1と同様にして実施し、 4— ( ジフルォロメチル)モルホリン 5. 49g (単離収率 80%)を得た。
[0054] 次いで、実施例 5と同一の条件で生成物の NMR測定を行った。 NMR測定結果を 、以下に示す。
'H-NMR: δ値(ppm)、 TMS基準、 CDC1中で測定 2. 85 (t, 4H, J=4.86,— CH— N - X 2)
2
3. 71 (t, 4H, J=4.86, - O- CH - X 2)
2
5. 93 (s, 1H, -CF -H)
2
13C -NMR : δ値(ppm)、 TMS基準、 50°C、 CDC1中で測定
3
43. 46 (s, -CH -N- X 2)
2
66. 00 (s, -0-CH - X 2)
2
116. 78 (t, 244Hz, -CF )
2
19F— NMR : δ値(ppm)、 CF COOH基準、 50°C、 CDC1中で測定
3 3
- 102. 95 (d, 2F, J=57.56, =CF )
2
[0055] 以上の詳細な説明および実施例から分力る様に、 KF等の無機塩を用いる従来のハ ロゲン フッ素交換法では、反応完結に長時間を要する事態が屡々起こるが、本発 明によれば、短時間で速やかに反応を完結させる事が出来る。また、反応系に於け る基質ハロゲン原子に対する HFおよびルイス塩基のモル数を何れも前述の特定範 囲にすれば、 HFは殆ど完全に、 α、 α—ジフルォロアミン並びにルイス塩基とハロ ゲンィ匕水素との塩に変換される。従って、当該塩を濾別等によって除けば、目的性成 物である a、 aージフルォロアミンを容易に分離出来るので、簡便かつ生産性の高 い製造プロセスが構築出来る。特に、 HF—ルイス塩基を用いて反応を行う場合は、 HFとは異なり、腐蝕性が無い為、取り扱いが容易であり特殊な設備や技術を必要と しな 、等の点で有利となる。
産業上の利用の可能性
[0056] 本発明は、求核フッ素ィ匕剤等として有用な α , α—ジフルォロアミノ化合物類を短時 間かつ高収率で製造出来る、経済的で工業的に実施可能な優れた方法である。 特に、本発明に於いて、 HFをルイス塩基との分子性ィ匕合物の形で反応系に導入す る場合は、腐蝕性が無い為、取り扱いが容易であり特殊な設備や技術を必要としな いので、工業的に有利である。

Claims

請求の範囲
[1] 一般式(1)で表される α、 aージフルォロアミンを、一般式(2)で表される α、 α— ジハロアミンを基質とするハロゲン—フッ素交換反応によって製造する方法であって
、一般式(2)で表される a;、 α—ジハロアミン中のハロゲン原子 Xのモル数に対して、 フッ化水素およびルイス塩基を、何れも 90〜: L 10%の範囲として該交換反応に用い 、かつ該交換反応で生成するハロゲン化水素とルイス塩基との塩を系外に除去する 事を特徴とする a、 aージフルォロアミンの製造方法。
[化 5]
R0
Figure imgf000019_0001
ヽ 2
(式中、 R、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 )
0 1 2
[化 6]
Figure imgf000019_0002
(式中、 R、 Rおよび Rは、水素原子または置換基を有する事のあるアルキル基、了
0 1 2
リール基、アルキルアミノ基若しくはァリールアミノ基であり、それぞれが同一でも異な つていても良い。また、 R、 R、 Rの二つ以上が結合して環を形成していても良い。 X
0 1 2
は、塩素原子、臭素原子またはヨウ素原子である。 )
[2] 反応系に導入するフッ化水素およびルイス塩基が、フッ化水素とルイス塩基との分 子性化合物、またはフッ化水素とルイス塩基との分子性ィヒ合物およびルイス塩基で ある請求項 1に記載の α , aージフルォロアミンの製造方法。
[3] ルイス塩基がトリェチルァミン、 n-ブチルァミン、ピリジン、キノリン、メラミン、 γ コ リジン、ピぺリジン、ピぺラジンまたはモルホリンである請求項 1または 2に記載の α , aージフルォロアミンの製造方法。
[4] フッ化水素とルイス塩基との分子性ィ匕合物がトリェチルァミン 3HFである請求項
2に記載の ex , aージフルォロアミンの製造方法。
[5] 一般式(2)に於ける Xが、塩素原子である請求項 1から 4の何れかに記載の α , α— ジフルォロアミンの製造方法。
[6] 一般式(1)および一般式(2)に於ける R力 フエ-ル基、 2 メチルフエ-ル基、 3—
0
メチルフエ-ル基、 4 メチルフエ-ル基、 4 ェチルフエ-ル基、 4—η—プロピルフ ェ-ル基、 4 イソプロピルフエ-ル基、 4 η—ブチルフエ-ル基、 4—tーブチルフ ェ-ル基、 4 イソブチルフエ-ル基、 2—メトキシフエ-ル基、 3—メトキシフエ-ル基 、 4ーメトキシフヱ-ル基、 2, 4 ジメチルフヱ-ル基、 2, 5 ジメチルフヱ-ル基、 3 , 4ージメチルフヱ-ル基、 3, 5 ジメチルフヱ-ル基、 2, 4, 5 トリメチルフエ-ル 基、 2, 4, 6 トリメチルフヱ-ル基、 4ーメチルビフ -ル基、 4ーェチルビフ -ル 基、 4 n プロピルビフヱ-ル基または 4 n—ブチルビフエ-ル基であり、 Rおよび
1
R力 炭素数 16以下のアルキル基またはァリール基である請求項 1〜5のいずれか
2
に記載の , ージフルォロアミンの製造方法。
PCT/JP2005/019283 2004-11-05 2005-10-20 α,α-ジフルオロアミンの製造方法 WO2006049014A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05795464A EP1813596A4 (en) 2004-11-05 2005-10-20 PROCESS FOR PREPARING ALPHA, ALPHA-DIFLUORAMINE
JP2006543054A JP4941929B2 (ja) 2004-11-05 2005-10-20 α,α−ジフルオロアミンの製造方法
CN2005800370597A CN101061090B (zh) 2004-11-05 2005-10-20 α,α-二氟胺的制备方法
US11/718,526 US7829741B2 (en) 2004-11-05 2005-10-20 Process for producing α, α-difluoroamine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004322987 2004-11-05
JP2004-322987 2004-11-05

Publications (1)

Publication Number Publication Date
WO2006049014A1 true WO2006049014A1 (ja) 2006-05-11

Family

ID=36319028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019283 WO2006049014A1 (ja) 2004-11-05 2005-10-20 α,α-ジフルオロアミンの製造方法

Country Status (5)

Country Link
US (1) US7829741B2 (ja)
EP (1) EP1813596A4 (ja)
JP (1) JP4941929B2 (ja)
CN (1) CN101061090B (ja)
WO (1) WO2006049014A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007696A1 (fr) * 2006-07-13 2008-01-17 Mitsubishi Gas Chemical Company, Inc. Procédé de production de fluoroamine
US20160089752A1 (en) * 2014-09-30 2016-03-31 Sumitomo Metal Mining Co., Ltd. Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC DEVICE SEALED OR JOINED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC DEVICE
CN111635321A (zh) * 2020-07-10 2020-09-08 山东国邦药业有限公司 一种氟化剂及其合成方法
WO2024015425A1 (en) 2022-07-14 2024-01-18 Fmc Corporation Herbicidal benzoxazines

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295566A (zh) * 2011-07-14 2011-12-28 常熟三爱富中昊化工新材料有限公司 四氟乙基二甲基胺的制备方法
US9626620B2 (en) 2013-06-05 2017-04-18 Haemonetics Corporation Frangible RFID tag and method of producing same
EP3572346B1 (en) 2013-06-18 2022-08-03 Haemonetics Corporation Rfid tag and method of securing same to object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069480A (ja) * 1992-03-05 1994-01-18 Bayer Ag 1−フルオロシクロプロピルメチルケトンの製造方法
JPH07292490A (ja) * 1994-04-21 1995-11-07 Mitsubishi Chem Corp 脂肪族酸フルオライドの製造方法
JPH1149742A (ja) * 1997-08-01 1999-02-23 Daikin Ind Ltd 2−(トリフルオロメチルチオ)ビフェニルの製造方法、及びその合成中間体とその製造方法
JP2004231646A (ja) * 2003-01-07 2004-08-19 Bayer Chemicals Ag α、α−ジフルオロアミン、前記化合物の混合物、これらの製造方法およびフッ素化化合物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135869A (ja) * 1992-10-28 1994-05-17 Sagami Chem Res Center ペルフルオロアルキル基を持つ化合物の製造法
US6329529B1 (en) * 1997-08-06 2001-12-11 Mitsui Chemicals, Inc. Nitrogen-based halogenating agents and process for preparing halogen-containing compounds
JP3730422B2 (ja) 1997-11-26 2006-01-05 三井化学株式会社 新規ハロゲン化剤及びその製法と使用
FR2805809B1 (fr) * 2000-03-01 2003-08-08 Rhodia Chimie Sa Chloration d'une aniline en ortho dans un milieu fluorhydrique
JP4894110B2 (ja) 2001-08-28 2012-03-14 三菱瓦斯化学株式会社 フッ素化合物及び該フッ素化合物からなるフッ素化剤
EP2189466A3 (en) 2002-12-04 2010-09-08 Mitsubishi Gas Chemical Company, Inc. Method of fluorination by microwaves
DE10300113A1 (de) * 2003-01-07 2004-07-15 Bayer Ag α, α-Difluoramine und Difluormethylen-α, α-diazoverbindungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069480A (ja) * 1992-03-05 1994-01-18 Bayer Ag 1−フルオロシクロプロピルメチルケトンの製造方法
JPH07292490A (ja) * 1994-04-21 1995-11-07 Mitsubishi Chem Corp 脂肪族酸フルオライドの製造方法
JPH1149742A (ja) * 1997-08-01 1999-02-23 Daikin Ind Ltd 2−(トリフルオロメチルチオ)ビフェニルの製造方法、及びその合成中間体とその製造方法
JP2004231646A (ja) * 2003-01-07 2004-08-19 Bayer Chemicals Ag α、α−ジフルオロアミン、前記化合物の混合物、これらの製造方法およびフッ素化化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1813596A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007696A1 (fr) * 2006-07-13 2008-01-17 Mitsubishi Gas Chemical Company, Inc. Procédé de production de fluoroamine
US7638652B2 (en) 2006-07-13 2009-12-29 Mitsubishi Gas Chemical Company, Inc. Method for producing fluoroamine
CN101466662B (zh) * 2006-07-13 2012-06-06 三菱瓦斯化学株式会社 氟代胺的制备方法
US20160089752A1 (en) * 2014-09-30 2016-03-31 Sumitomo Metal Mining Co., Ltd. Au-Sn-Ag-BASED SOLDER ALLOY, ELECTRONIC DEVICE SEALED OR JOINED USING THE SAME, AND ELECTRONIC APPARATUS EQUIPPED WITH THE ELECTRONIC DEVICE
US9796054B2 (en) * 2014-09-30 2017-10-24 Sumitomo Metal Mining Co., Ltd. Au—Sn—Ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device
CN111635321A (zh) * 2020-07-10 2020-09-08 山东国邦药业有限公司 一种氟化剂及其合成方法
CN111635321B (zh) * 2020-07-10 2023-04-25 山东国邦药业有限公司 一种氟化剂及其合成方法
WO2024015425A1 (en) 2022-07-14 2024-01-18 Fmc Corporation Herbicidal benzoxazines

Also Published As

Publication number Publication date
EP1813596A4 (en) 2010-03-31
JPWO2006049014A1 (ja) 2008-05-29
JP4941929B2 (ja) 2012-05-30
CN101061090B (zh) 2011-06-15
EP1813596A1 (en) 2007-08-01
US7829741B2 (en) 2010-11-09
CN101061090A (zh) 2007-10-24
US20090177012A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2006049014A1 (ja) α,α-ジフルオロアミンの製造方法
US2713593A (en) Fluorocarbon acids and derivatives
US7297821B2 (en) Fluorine compound and fluorinating agent comprising the compound
JP5146149B2 (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP3533134B2 (ja) フッ素化剤及びその製法と使用
KR100360295B1 (ko) 할로겐화제및그제조방법
JP3619020B2 (ja) 新規フッ素化剤及びその製法と使用
JP5790851B2 (ja) フッ化メタンの製造方法
US20080027244A1 (en) Method for Manufacturing Aromatic Dicarboxylic Acid
JP3220508B2 (ja) 2,3,4,5−テトラフルオロ安息香酸の製造方法
JP4551533B2 (ja) 新規フッ素化剤及びフッ素含有化合物の製造方法
JPWO2007139182A1 (ja) パーフルオロアルキル基を有するフルオロアミン、その製造方法及びそれを用いるフッ素化方法、並びにパーフルオロアルキル基を有するアミドの回収方法
JP2000128868A (ja) テトラアルキルフルオロホルムアミジニウムトリフルオロアセテ―ト及びその製造方法
US9643907B2 (en) Fluoronation of alpha-haloalkyl ketones
JP6809485B2 (ja) 酸ハライド溶液の製造方法、及びモノエステル化合物の製造方法
JP6435207B2 (ja) (2,2,2−トリフルオロエチル)ケトンの製造方法
JPH11209312A (ja) ハロゲン化剤の製造方法
US20130317251A1 (en) Process for the manufacture of fluoromethoxymalonic acid derivatives
JPH02169542A (ja) 2,4―ジフルオロ―5―クロロ安息香酸の製造方法
JPH11302204A (ja) 含フッ素化合物の製造方法
JP2003321411A (ja) ジフルオロメチルエーテル類の製造方法
JP2000053600A (ja) テトラアルキル−o−アリール−イソウロニウム=ハイドロジェンフルオリド及びその製造方法
JPS5826866A (ja) フルオルメチルチオベンゾイルフルオライドの製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580037059.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005795464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005795464

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11718526

Country of ref document: US