WO2006049013A1 - 縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006049013A1
WO2006049013A1 PCT/JP2005/019233 JP2005019233W WO2006049013A1 WO 2006049013 A1 WO2006049013 A1 WO 2006049013A1 JP 2005019233 W JP2005019233 W JP 2005019233W WO 2006049013 A1 WO2006049013 A1 WO 2006049013A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
carbon atoms
organic
containing compound
Prior art date
Application number
PCT/JP2005/019233
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Ikeda
Mitsunori Ito
Takashi Arakane
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP05795391A priority Critical patent/EP1808433A4/en
Priority to US11/718,632 priority patent/US20090091240A1/en
Publication of WO2006049013A1 publication Critical patent/WO2006049013A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a novel condensed ring-containing compound and an organic electoluminescence (EL) device using the same, and in particular, an organic EL device having high luminous efficiency and heat resistance and an extremely long life, and the realization thereof.
  • the present invention relates to a condensed ring-containing compound.
  • a fluorescent molecule in a singlet excited state (sometimes referred to as an S1 state) undergoes a radiation transition to a ground state. It utilizes the fluorescence emission phenomenon (luminescence phenomenon), which is the energy conversion that occurs in the process.
  • a fluorescent molecule in a triplet excited state (sometimes referred to as a T1 state) in an organic light-emitting medium is also assumed, but the radiative transition to the ground state is a forbidden transition, so that a strong fluorescent molecule Will gradually transition from a triplet excited state to another state by a non-radiative transition. As a result, instead of producing fluorescence, thermal energy is released.
  • the singlet and triplet mean the multiplicity of energy determined by the number of combinations of the total spin angular momentum and the total orbital angular momentum of the fluorescent molecule.
  • the singlet excited state is defined as the energy state when one electron is transitioned to a higher energy level from the ground state where there is no unpaired electron without changing the spin state of the electron.
  • the triplet excited state is defined as the energy state when one electron is transitioned to a higher energy level with the electron spin state reversed.
  • the emission from the triplet excited state defined in this way can be observed at an extremely low temperature, for example, the liquid temperature of liquid nitrogen (minus 196 ° C), but it is practical. Under the temperature condition, it was just a small amount of luminescence.
  • the total efficiency of light emission in the conventional organic EL device is the recombination efficiency ( ⁇ ) of injected charge carriers (electrons and holes) and the probability that the generated excitons cause a radiative transition.
  • an organic EL element including an organic light emitting layer composed of 4, 4-N, N-dicarbazolylbiphenyl and an Ir complex as a phosphorescent dopant, a light emission phenomenon is achieved. Has been reported to produce.
  • Patent Documents 1 and 2 a specific compound having a pyrimidine ring or a quinazoline ring is highly efficient as an electron transporting material. It is disclosed that an organic electoluminescence device with improved efficiency and longer life can be obtained.
  • Patent Document 3 discloses a specific compound group in which a triazine ring and a carbazolyl group are linked as a host compound for blue.
  • Patent Document 4 exemplifies a compound having both a benzimidazolyl group and a carbazolyl group, which are nitrogen-containing condensed bicyclic groups in which a 5-membered ring and a 6-membered ring are condensed.
  • a compound having both a benzimidazolyl group and a carbazolyl group which are nitrogen-containing condensed bicyclic groups in which a 5-membered ring and a 6-membered ring are condensed.
  • device performance There is no illustration of device performance.
  • six There are no examples of compounds containing both a nitrogen-containing fused bicyclic group with two membered rings and a powerful rubazolyl group, and these compounds are used as host materials for phosphorescence, and examples are disclosed. It has not been.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-031004
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-045662
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-193952
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-319419
  • Non-Patent Document 1 Jpn. J. Appl. Phys., 38 (1999) L1502
  • the present invention has been made to solve the above-described problems, and provides an organic EL device having a high luminous efficiency and heat resistance and a long lifetime, and a condensed ring-containing compound that realizes the organic EL device. With the goal.
  • a condensed bicyclic group having a specific structure in particular, a condensed bicyclic group in which two six-membered rings are condensed, and a powerful rubazolyl group.
  • a condensed ring-containing compound having a Z or indolyl group can be used effectively as a host material for an organic EL device, and can effectively emit light using a triplet exciton state.
  • the present invention has been completed by finding that an organic EL device having a long lifetime and excellent in luminous efficiency and heat resistance can be obtained.
  • the present invention includes a condensed bicyclic group represented by the following general formulas (1) and Z or (2), and at least one rubazolyl group selected from the following general formulas (3) to (8):
  • a condensed ring-containing compound having Z or indolyl group is provided.
  • X to X each independently represent a nitrogen atom, an oxygen atom, a sulfur atom or a carbon atom.
  • z is an atomic group forming a cyclic structure.
  • R may have an aryl group having 6 to 50 nuclear carbon atoms which may have a substituent, a heterocyclic group having 5 to 50 nuclear atoms which may have a substituent, or a substituent. It may have an alkyl group having 1 to 50 carbon atoms, a substituent, an alkoxy group having 1 to 50 carbon atoms, or a substituent !, an aralkyl group having 7 to 50 nuclear carbon atoms, or a substituent. An aryloxy group having 5 to 50 nuclear carbon atoms, an arylothio group having 5 to 50 nuclear carbon atoms that may have a substituent, and an alkoxycarbo having 1 to 50 carbon atoms that may have a substituent. -Group, carboxyl group, halogen atom, cyano group, nitro group or hydroxyl group, and when there are plural Rs, they may be bonded to each other to form a cyclic structure.
  • n are each an integer of 0 to 10.
  • R is the same as defined above, and a and b are each an integer of 0 to 4.
  • V is a single bond, —CR R′—, —SiR R′—, —O—, —CO— or —NR
  • R and R Each independently represents a hydrogen atom, an aryl group having 6 to 50 nuclear carbon atoms which may have a substituent, or a substituent! A heterocycle group having 5 to 50 nucleus atoms or a substituent. It is an alkyl group having 1 to 50 carbon atoms. ).
  • E represents a cyclic structure indicated by a circle surrounding the symbol E, and may have a substituent, a carbon atom of 3 to 20 carbon atoms may be replaced by a nitrogen atom, a cycloalkane residue, a substituent Or an aryl group having 4 to 50 nuclear carbon atoms or a substituent, or a heterocyclic group having 4 to 50 nuclear atoms.
  • the present invention provides an organic EL device in which an organic thin film layer composed of one or more layers having at least a light emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers is
  • the present invention provides an organic EL device containing a condensed ring-containing compound alone or as a component of a mixture.
  • the organic EL device using the fused ring-containing compound of the present invention has a very long life while being excellent in luminous efficiency and heat resistance, and is practical.
  • the condensed ring-containing compound of the present invention includes a condensed bicyclic group represented by the following general formula (1) and Z or (2), and at least one of the following general formulas (3) to (8): It is a compound having strong rubazolyl groups and Z or indolyl groups.
  • X to X are independently a nitrogen atom, an oxygen atom,
  • a sulfur atom or a carbon atom preferably a nitrogen atom.
  • At least one of X, X and X is a nitrogen atom.
  • Z is an atomic group that forms a cyclic structure.
  • Annular structure As the atomic group forming, for example, an ethylene group, a propylene group, an n-butylene group, an n-pentylene group, an n- hexylene group or the like, and at least one of the carbon atoms of these alkylene groups is nitrogen.
  • cyclic structure examples include, for example, cycloalkanes having 4 to 12 carbon atoms such as cyclobutane, cyclopentane, cyclohexane, adamantane and norbornane, and carbon atoms such as cyclobutene, cyclopentene, cyclohexene, cycloheptene and cyclootaten.
  • cycloalkanes having 4 to 12 carbon atoms such as cyclobutane, cyclopentane, cyclohexane, adamantane and norbornane
  • carbon atoms such as cyclobutene, cyclopentene, cyclohexene, cycloheptene and cyclootaten.
  • 12Cycloalkene, Cyclohexagen, Cyclohexa C6-12Cycloalkadiene such as Benzene, Naphthalene, Phenanthrene, Anthracen
  • Aromatic ring pyrazole, imidazole, pyrazine, pyrimidine, indazole, purine, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, perimidine, phenanthoracin, pyrroloimidazole, pyrrolotri Azole, pyrazomouth imidazole, pyrazolotriazole, pyrazolopyrimidine, pyrazolotriazine, imidazoimidazole, imidazopyridazine, imidazopyridine, imidazopyrazine, triazolopyridine, benzimidazole, naphthimidazole, benzoxazole, naphthoxazole And heterocyclic rings having 5 to 50 nuclear atoms such as benzothiazol, naphthothiazole, benzotriazole, tetrazaindene, triazine, carbazole and the like
  • R is an aryl group having 6 to 50 nuclear carbon atoms which may have a substituent, or a heterocyclic ring having 5 to 50 nuclear atoms which may have a substituent.
  • Group may have a substituent V, an alkyl group having 1 to 50 carbon atoms, may have a substituent, an alkoxy group having 1 to 50 carbon atoms, or may have a substituent carbon atom number 7 to 50 aralkyl groups, optionally substituted nucleocarbons 5 to 50 aralkyloxy groups, may have substituents !, 5 to 50 aralkyl groups having substituents, and substituents May be an alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group or a hydroxyl group, and when there are a plurality of R, they are bonded to each other to form a cyclic structure. .
  • Examples of the cyclic structure include the same ones as described in Z above.
  • m is an integer of 0 to 0 and preferably 1 to 5 in the general formula (2) Oh!
  • N is an integer between 0 and 0 and is preferably between 1 and 5! /.
  • Examples of the aryl group of R include a phenol group, 1 naphthyl group, 2 naphthyl group, 1 anthryl group, 2 anthryl group, 9 anthryl group, 1-phenanthryl group, 2 phenanthryl group, 3— Phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-naphthalyl group, 2 naphthelyl group, 9 naphthelyl group, 1-pyrole group, 2-pyrole group, 4-pyrylene group , 2 bi-ruyl group, 3 bi-ruyl group, 4-bifuryl-ruyl group, ⁇ tur-fru ru 4 — yl group, p terf leulu 3 — yl group, p turf leulu group 2 — yl group , M-Terferreux 4—yl group, m—Terferreux 3—yl group, m—Terferreux 2—yl group,
  • heterocyclic group of R examples include 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, pyrazinyl group, 2 pyridyl group, 3 pyridinyl group, 4 pyridinyl group, 1 indolyl group, 2— Indolyl group, 3-Indolyl group, 4-Indolyl group, 5-Indolyl group, 6-Indolyl group, 7-Indolyl group, 1-Isoindolyl group, 2-Isoindolyl group, 3-Isoindolyl group, 4-Isoindolyl group, 5 —Isoindolyl group, 6-Isoindolyl group, 7-Isoindryl group, 2 Furyl group, 3 Furyl group, 2 Benzofural group, 3 Benzofural group, 4 Benzofuryl group, 5—Benzofuryl group 6-Benzofural group, 7-Benz
  • a force including a group in which 1 to 10 benzene rings are bonded such as biphenyl and terphel, and a condensed ring such as naphthyl, anthral, phenanthryl, pyrenyl and copolyol is particularly preferable. This is a combination of 2 to 5 benzene rings, and has many meta bonds that cause the molecule to twist.
  • alkyl group of R examples include methyl group, ethyl group, propyl group, isopropyl group, n butyl group, s butyl group, isobutyl group, t butyl group, n pentyl group, n-hexyl group, and n- Ptyl group, n-octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxyethyl group, 1,3 dihydroxyisopropyl group, 2,3 dihydro Xy butyl group, 1, 2, 3 trihydroxypropinole group, chloromethinole group, 1 chloroethinole group, 2 chloroethinole group, 2 cycloisobutyl group, 1,2 dichloroethyl group, 1,3 dichloroisopropyl group, 2,3 dichloro- t-Butyl group, 1, 2, 3 Trich
  • Examples of the aralkyl group of R include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-vinylisopropyl group, a 2-vinylisopropyl group, and a phenol-butylene group.
  • the alkoxy group of R is represented as OY, and examples of Y include those similar to the alkyl group.
  • the aryl group of R is represented as OY ′, and examples of Y ′ include the same as the aryl group.
  • the aryl group of R is represented as SY ′, and examples of Y ′ include the same as the aryl group.
  • the alkoxycarbonyl group of R is a group represented by COOY, and examples of ⁇ include those similar to the alkyl group.
  • substituents of the above groups include halogen atom, hydroxyl group, amino group, nitro group, cyano group, alkyl group, alkenyl group, cycloalkyl group, alkoxy group, aryl group, heterocyclic group, aralkyl group. , An aryloxy group, an alkoxycarbonyl group, a carboxyl group, and the like.
  • the condensed bicyclic group represented by the general formula (1) is preferably a condensed bicyclic group represented by the following general formula (13).
  • the ring group is preferably a condensed bicyclic group represented by the following general formula (14).
  • Examples of the condensed bicyclic group represented by the general formula (1) or (2) include 1H-pyrrolidine, 111 1-pyridine-111 2-pyridine, indolizine, 2H-isoindonorole, fulcurimide, 1H-indole, skatole, indoxyl, indoline-3one, isatin, 1H-indazole, indazoline, 7H-purine, xanthine, 2H-quinolidine, isoquinoline, isoquinolone, bababelin, quinoline, oxine, echinobucin, quinaldic acid, 2, 7 Residues such as naphthyridine, 2,6 naphthyridine, phthalazine, 1,8 naphthyridine, 1,7 naphthyridine, 1,6 naphthyridine, 1,5 naphthyridine, quinoxaline, quinazoline, cinnoline, buteridine, etc. , Nitrogen at the
  • Each of these groups may have a substituent which is the same as R described above.
  • R is the same as described above, and a and b are integers of 0 to 4, respectively.
  • V is a single bond, —CR R′—, —SiR R′—, —O
  • R and R ′ may each independently have a hydrogen atom or a substituent.
  • V aryl group having 6 to 50 carbon atoms, may have a substituent !, 5 to 50 nuclear atoms or may have a substituent, alkyl group having 1 to 50 carbon atoms It is. ).
  • E represents a cyclic structure indicated by a circle surrounding the symbol E, and even if it has a substituent, it has 3 to 20 nuclear carbon atoms and a carbon atom It may be replaced with a nitrogen atom ⁇ A cycloalkane residue or a substituent may be substituted ⁇ An aromatic hydrocarbon group having 4 to 50 carbon atoms or a substituent may be substituted 50 heterocyclic groups.
  • Examples of the cycloalkane residue of E include residues such as cyclopropane, cyclobutane, cyclopropane, cyclohexane, cycloheptane, pyrrolidine, piperidine, and piperazine.
  • aromatic hydrocarbon group for E examples include benzene, naphthalene, anthracene, naphthacene. , Pyrene, taricene, biphenyl, triphenyl, funole, bisfunole, and the like.
  • heterocyclic group of E examples include pyrazole, imidazole, pyrazine, pyrimidine, indazole, purine, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, perimidine, phenanthorin, pyrroloimidazole, pyrrolotriazole, and pyrazomouth imine.
  • Dazole pyrazolotriazole, pyrazolopyrimidine, pyrazolotriazine, imidazoimidazole, imidazopyridazine, imidazopyridine, imidazopyrazine, triazolopyridine, benzimidazole, naphthimidazole, benzoxazole, naphthoxazole, benzothiazole , Naphthothiazole, benzotriazole, tetrazaindene, triazine, force rubazole and the like.
  • Examples of the general formula (3) include structures represented by the following general formulas (15) to (18) (the same structure can be given to the general formula (4);).
  • Examples of the general formula (5) include structures represented by the following general formulas (19) to (22).
  • the condensed ring-containing compound of the present invention is preferably a condensed ring-containing compound represented by any of the following (9) to (12).
  • A is a condensed bicyclic group represented by the general formula (1) and Z or (2). Well, okay.
  • Cz is represented by any one of the general formulas (3) to (8). These are rubazolyl groups and / or indolyl groups, and when there are a plurality of Cz, they may be the same or different.
  • L is a single bond, an aromatic hydrocarbon group having 6 to 50 nuclear carbon atoms, a heterocyclic group having 2 to 50 nuclear carbon atoms, or an aryl substitution with 2 to 50 nuclear carbon atoms.
  • a heterocyclic group, a diaryl substituted heterocyclic group having 2 to 50 nuclear carbon atoms, or a triaryl substituted heterocyclic group having 2 to 50 nuclear carbon atoms, and each of these groups may have a substituent. Multiple cases may be the same or different.
  • nl is an integer of 1 to 10, and is preferably an integer of 1 to 5.
  • n2 is an integer of 1 to 10, and is an integer of 1 to 5.
  • n3 is an integer of 1 to 10, and in general formula (12), preferably an integer of 1 to 5, n4 is an integer of 1 to 10. Yes, preferably an integer between 1 and 5! / ⁇ .
  • Examples of the aromatic hydrocarbon group for L include residues such as benzene, naphthalene, anthracene, naphthacene, pyrene, taricene, biphenyl, triphenylene, fluorene, and bisphenolate len.
  • heterocyclic group of L examples include, for example, pyrazole, imidazole, pyrazine, pyrimidine, indazole, purine, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, perimidine, phenanthorin, pyrroloimidazole, pyrrolotriazole, and pyrazolo.
  • L aryl substituted heterocyclic group diaryl substituted heterocyclic group, and triaryl substituted heterocyclic group include those in which the heterocyclic group is substituted with the aromatic hydrocarbon group.
  • the condensed ring-containing compound of the present invention is particularly preferably a compound having the following structure.
  • fused ring-containing compound of the present invention is shown below, but are not limited to these exemplified compounds.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer having at least one light emitting layer or a multi-layer force is sandwiched between a cathode and an anode. At least one layer contains the fused ring-containing compound of the present invention alone or as a component of a mixture.
  • the light emitting layer contains the condensed ring-containing compound and a luminescent metal complex.
  • the fused ring-containing compound is preferably a host material
  • the luminescent metal complex is preferably a phosphorescent dopant.
  • the host material is the condensed ring-containing compound
  • the triplet exciton state of the condensed ring-containing compound can be obtained by combining with the phosphorescent dopant even at room temperature (20 ° C).
  • the condensed ring-containing compound of the present invention preferably has a glass transition temperature of 120 ° C or higher, more preferably in the range of 120 ° C to 190 ° C, and more preferably from 130 ° C to More preferably, it is in the range of 180 ° C. If the glass transition temperature is 120 ° C or higher, the organic EL that maintains the long life of crystallization when combined with a phosphorescent dopant and does not easily generate short-circuits when energized under high-temperature environmental conditions. The device usage environment is not limited. In addition, when the glass transition temperature is 190 ° C or lower, the thermal decomposition is difficult to occur when forming a film by vapor deposition.
  • glass transition temperature is the change point of specific heat obtained when heated using a scanning calorimeter (DSC, Differential Scanning Calorimetory) in a nitrogen circulation state, for example, at a temperature rising condition of 10 ° CZ.
  • DSC scanning calorimeter
  • the triplet energy of the condensed ring-containing compound in the light emitting layer is E1
  • the triplet energy value of the phosphorescent dopant is E2
  • E1> E2 It is preferable to satisfy the relationship. That is, in such a triplet energy relationship, by combining the condensed ring-containing compound and a phosphorescent dopant, the triplet exciton state of the condensed ring-containing compound can be reliably utilized even at room temperature. can do. That is, by securely transferring energy from the triplet state generated by the condensed ring-containing compound to the phosphorescent dopant, the luminescence phenomenon is reduced. Can be generated.
  • the light-emitting metal complex is preferably a phosphorescent dopant, and includes at least one metal selected from the group force consisting of Ir, Ru, Pd, Pt, Os, and Re.
  • a metal complex is preferred. The reason for this is that if the phosphorescent dopant is a metal complex of these, the triplet exciton force of the fused ring-containing compound of the present invention can be transferred effectively.
  • a metal complex having a structure represented by the following formula is preferable.
  • ⁇ , ⁇ ' At least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os, and Re. Even if it has two or more of the same or different metals in its molecule, Good.
  • Y, Y ' Ligand. The same or different ligand may be coordinated according to the valence of the metal.
  • the light-emitting metal complex used in the present invention is not particularly limited as long as it can be used in an organic EL device, and the ligand of the metal complex is a phenylpyridine skeleton, a phenylquinoline skeleton, a phenol. It is preferable to have at least one skeleton selected from the group force of isoquinoline skeleton, bibilidyl skeleton, phenanthorin skeleton and benzothiophene pyridine skeleton. The reason for this is that by having these skeletons in the molecule, energy of the triplet exciton force of the compound having a condensed ring in the molecule can be transferred effectively.
  • luminescent metal complexes examples include tris (2-phenolisoquinoline) iridium (Ir (piq)), tris (2-phenol-pyridine) iridium, bis (2-phenol-quinoline) iridium acetylacetonate ( Ir (pq) (acac)), bis (2-phenylisoquinoline) iridium acetyl cinnatonate (Ir (piq) (acac)), bis (2-benzothiophenpyridine) iridium acetyl acetylate ( Ir (btpy) (acac)), Tris (2-phenol-lysine) ruthenium, Tris (2-phenol-lysine) palladium, Bis (2-phenylpyridine) platinum, Tris (2-phenol-lysine) phos Mum, Tris (2-Ferrubiridine) rhenium, Otaethylplatinum porphyrin, Otaugh For example, gallium
  • the amount of the light-emitting metal complex in the light-emitting layer is 0.1 to 50 parts by weight with respect to 100 parts by weight of the condensed ring-containing compound (host material). Preferable 0.5 to 40 parts by weight is even more preferable 1 to 30 parts by weight. The reason for this is that if the amount of the light-emitting metal complex is 0.1 part by weight or more, the effect of addition appears, and the triplet exciton force of the condensed ring-containing compound effectively transfers energy. This is because if the blending amount is 50 parts by weight or less, it is easy to uniformly mix the luminescent metal complex and the emission luminance does not vary.
  • Anode Z insulating layer Z hole injecting layer Z hole transporting layer Z light emitting layer Z electron injecting layer Z force that can include structures such as Z cathode The present invention is not limited to these.
  • PVK photo-emitting material
  • a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the organic EL device of the present invention may be provided with a hole injection layer having a thickness of 5 nm to 5 ⁇ m.
  • a hole injection layer having a thickness of 5 nm to 5 ⁇ m.
  • the hole injection into the light emitting layer becomes good, high emission luminance can be obtained, or low voltage driving is possible.
  • the hole mobility force measured when a voltage in the range of 1 X 10 4 to 1 X lo Zcm is applied to the hole injection layer is 1 X 10 " 6 cm 2 ⁇ ⁇ sec or more.
  • a compound having an ion energy of 5.5 eV or less for example, as a material for such a hole injection layer, such as borfilin compound, aromatic tertiary amine compound, styrylamine compound, aromatic Dimethylidyne compounds and condensed aromatic ring compounds, and more specific examples include 4, 4 ′ bis [N— (1 naphthyl) -N-phenylamino] biphenyl (abbreviated as NPD). And organic compounds such as 4, 4 ', 4 "-tris [N- (3-methylphenol) -N-phenolamino] triphenylamine (abbreviated as MTDATA). Further, it is more preferable to laminate two or more hole injection layers as necessary. At this time, the anode Z hole injection layer 1 (hole injection material 1) Z hole injection layer 2 (hole injection material 2) It is preferred that the ion energy ( ⁇ ⁇ ) is ⁇ (hole injection material 1) ⁇ (hole injection material 2) ⁇
  • an inorganic compound such as ⁇ -type-Si or ⁇ -type-SiC as the constituent material of the hole injection layer.
  • the between the hole injection layer and the anode layer or the between the hole injection layer and the light emitting layer good also conductivity provided 1 X 10- 1Q sZcm more organic semiconductor layers Good.
  • the organic EL device of the present invention may be provided with an electron injection layer having a thickness of 5 nm to 5 ⁇ m.
  • an electron injecting layer By providing such an electron injecting layer, electron injection into the light emitting layer is good, high light emission luminance is obtained, or low voltage driving is possible.
  • the electron mobility force measured when a voltage in the range of 1 X 10 4 to 1 X lO ⁇ / cm is applied to this electron injection layer is 1 X 10 " 6 cm 2 ZV'sec or more. It is preferable to use a compound having an ion energy exceeding 5.5 eV, such as a metal complex of 8-hydroxyquinoline (A1 chelate: Alq), or a derivative thereof, oxadiazole. Derivatives and the like.
  • the organic EL device of the present invention has a thickness of 5 ⁇ between the light emitting layer and the cathode!
  • a hole blocking layer of ⁇ 5 ⁇ m may be provided.
  • hole blocking layer materials include 2,9-dimethyl-4,7-diphenyl- 1,10-phenanthroline and 2,9-jetyl 4,7-diphenyl- 1,10-phenant. Power to raise phosphorus etc. It is preferable to further contain an alkali metal such as Li or Cs.
  • the alkali metal when the alkali metal is contained, it is preferable that the content is 0.01 to 30% by weight when the total amount of the hole blocking layer is 100% by weight. 0.05 to 20% by weight More preferably, the content is 0.1 to 15% by weight. The reason for this is that if the alkali metal content is 0.01% by weight or more, the effect of addition is manifested. If the content is 30% by weight or less, the dispersibility of the alkali metal is uniform and the light emission luminance varies. This is because there is nothing.
  • a method for forming the hole injection layer, the electron injection layer, and the hole blocking layer for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • a reducing dopant is preferably added to the interface region between the cathode and the organic thin film layer.
  • the reducing dopant includes alkali metal, alkali metal complex, alkali metal compound, alkaline earth metal, alkaline earth metal complex, alkaline earth metal compound, rare earth metal, rare earth metal complex, rare earth metal compound, and halides thereof. And at least one selected from oxides and the like.
  • alkali metal examples include Li (work function: 2.93 eV), Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function). : 1. 95 eV) and the like, and those having a work function of 3. OeV or less are particularly preferable. Of these, Li, K, Rb, and Cs are preferred o
  • alkaline earth metal examples include Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), Ba (work function: 2.52 eV), and the like. Particularly preferred are those below OeV.
  • rare earth metal examples include Sc, Y, Ce, Tb, and Yb, and those having a work function of 3. OeV or less are particularly preferable.
  • preferred metals are capable of improving the light emission luminance and extending the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • alkali metal compounds include alkali oxides such as Li 0, Cs 0, and K 2 O, LiF, N
  • alkali halides such as aF, CsF, KF, etc.
  • alkalis such as LiF, Li 0, NaF
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba Sr ⁇ ⁇ (0 ⁇ ⁇ 1) mixed with these, Ba Ca O (0 ⁇ x ⁇ 1), BaO, SrO, CaO is preferred x l- ⁇ x 1- ⁇
  • rare earth metal compound examples include YbF, ScF, ScO, YO, CeO, GdF, and TbF.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex include alkali metal ions, alkaline earth metal ions, and rare earth metal ions as the metal ions, respectively. If it contains at least one of these, there will be no limitation in particular.
  • the ligands include quinolinol, benzoquinolinol, ataridinol, phenanthridinol, hydroxyphenylazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, hydroxy Phenylpyridine, hydroxyphenylbenzoimidazole, hydroxybenzotriazole, hydroxyfulborane, bipyridyl, phenanthrin, phthalocyanine, porphyrin, cyclopentagen, 13-diketones, azomethines, and their derivatives Is preferable, but is not limited thereto.
  • the reducing dopant it is preferable to form a layered or island-like shape in the interface region.
  • the reducing dopant when forming the reducing dopant in layers, after forming the light emitting material or electron injecting material, which is an organic layer at the interface, into layers, the reducing dopant is vapor-deposited by resistance heating vapor deposition alone, and the layer thickness is preferably 0. Form with l-15nm.
  • the reducing dopant When forming the reducing dopant in an island shape, after forming the light emitting material or electron injecting material, which is an organic layer at the interface, in an island shape, the reducing dopant is vapor-deposited alone by resistance heating vapor deposition. It is formed with a thickness of 0.05 to lnm.
  • the anode corresponds to the lower electrode or the counter electrode depending on the configuration of the organic EL display device, but the anode has a large work function (for example, 4. OeV or more). Preference is given to using metals, alloys, electrically conductive compounds or mixtures thereof. Specifically, indium stannate (ITO), indium zinc oxide (IZO), copper iodide (Cul), tin oxide (SnO), zinc oxide (ZnO), gold, platinum, no radium, etc.
  • ITO indium stannate
  • IZO indium zinc oxide
  • Cul copper iodide
  • SnO tin oxide
  • ZnO zinc oxide
  • anode having a uniform thickness can be formed using a method capable of forming a film in a dry state such as the D method.
  • the anode needs to be a transparent electrode.
  • conductive transparent materials such as ITO, IZO, Cul, SnO, ZnO
  • the transmittance of EL light emission is set to a value of 70% or more.
  • the film thickness of the anode is not particularly limited, but is preferably in the range of 10 to: L, OOOnm, more preferably in the range of 10 to 200 nm. The reason for this is that by setting the anode film thickness within this range, a uniform film thickness distribution and EL light transmittance of 70% or more can be obtained, while the anode sheet resistance is reduced to 1,000. This is because it can be a value of ⁇ / mouth or less, more preferably a value of 100 ⁇ / mouth or less.
  • an anode lower electrode
  • an organic light emitting medium organic light emitting medium
  • a cathode cathode
  • the lower electrode and the counter electrode are configured in an XY matrix so that any pixel on the light emitting surface emits light. It is also preferable to let them. That is, by configuring the anode and the like in this manner, various information can be easily displayed in the organic EL element.
  • the cathode also corresponds to the lower electrode or the counter electrode depending on the configuration of the organic EL device, but has a low work function (for example, less than 4. OeV) metal, alloy, It is preferred to use electrically conductive compounds or mixtures or inclusions thereof. Specifically, sodium, sodium-potassium alloy, cesium, magnesium, lithium, magnesium silver alloy, aluminum, aluminum oxide, aluminum-lithium alloy, indium, rare earth metal, these metals and organic thin film layer materials It is preferable to use a single electrode material such as a mixture of these and a mixture of these metals and an electron injection layer material, or a combination of two or more of these electrode materials.
  • a low work function for example, less than 4. OeV
  • electrically conductive compounds or mixtures or inclusions thereof Specifically, sodium, sodium-potassium alloy, cesium, magnesium, lithium, magnesium silver alloy, aluminum, aluminum oxide, aluminum-lithium alloy, indium, rare earth metal, these metals and organic thin film layer materials It is preferable to use a single electrode material
  • the thickness of the cathode is not particularly limited as in the case of the anode, but it is preferable to set the value within the range of 10 to L, OOOnm. A value within the range is more preferable. Further, in the case of taking out the EL emission with the cathode power, the cathode needs to be a transparent electrode. In that case, it is preferable to set the EL emission transmittance to a value of 70% or more. As with the anode, the cathode is preferably formed using a method capable of forming a film in a dry state, such as a vacuum deposition method or a sputtering method.
  • the support substrate in the organic EL device of the present invention has excellent mechanical strength and is permeable to moisture and oxygen. Specifically, glass plates, metal plates, ceramic plates, or plastic plates (polycarbonate resin, acrylic resin, butyl chloride resin, polyethylene terephthalate resin, polyimide resin) are preferred. Fat, polyester resin, epoxy resin, phenol resin, silicon resin, fluorine resin, etc.). In order to avoid moisture intrusion into the organic EL element, the support substrate made of these materials is further formed with an inorganic film, or coated with fluorine resin to perform moistureproof treatment or hydrophobic treatment. I want to be there.
  • the moisture content and gas permeability coefficient of the support substrate in order to prevent moisture from entering the organic thin film layer, it is preferable to reduce the moisture content and gas permeability coefficient of the support substrate.
  • the water content of 0.0001 wt% or less and the gas permeability coefficient 1 X 10- 13 '"117.111 2 ' 56 of the supporting substrate (: '(: 11113 ⁇ 4 like each be less.
  • a glass substrate with a transparent electrode of 25 mm X 75 mm X 0.7 mm thick was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and a copper phthalocyanine film (10 nm thick) is first covered so that the transparent electrode is covered on the surface on which the transparent electrode is formed (Hereinafter abbreviated as “CuPc film”).
  • This CuPc film functions as a hole injection layer.
  • NPD film 4,4′-bis [N— (1-naphthyl) -Nphenylamino] biphenyl film (hereinafter abbreviated as “NPD film”) having a film thickness of 30 nm was formed on the CuPc film.
  • This ex-NPD film functions as a hole transport layer.
  • the above compound (H-1) is used as a host material, and at the same time as a phosphorescent Ir metal complex dopant, red luminescent bis (2-phenylisoquinoline) iridium acetylacetate shown below. Nart (hereinafter abbreviated as “(Ir (piq) (acac))”) was added and evaporated to form a light-emitting layer with a thickness of 30 nm.
  • the concentration of Ir (piq) (acac) in the light emitting layer was 15% by weight. 10nm thickness on the light emitting layer
  • BAlq film The following (1, 1, 1 bisphenol) -4-olato) bis (2-methyl-8 quinolinolato) aluminum (hereinafter abbreviated as “BAlq film”) was deposited.
  • This BAlq film functions as a hole barrier layer.
  • Alq film an aluminum complex of 8 hydroxyquinoline having a thickness of 40 nm (hereinafter abbreviated as “Alq film”) was formed on this film.
  • Alq film functions as an electron injection layer.
  • LiF which is an alkali metal halide was deposited to a thickness of 0.2 nm, and then aluminum was deposited to a thickness of 150 nm.
  • This AlZLiF functions as a cathode. like this
  • Example 1 (2) an organic EL device was prepared in the same manner except that the compound (H-2) obtained instead of the compound (H-1) was used as the host material of the light-emitting layer. did.
  • Table 1 shows the results of conducting an energization test and evaluating the life of the obtained organic EL device in the same manner as in Example 1.
  • Example 1 (2) it was obtained instead of the compound (H-1) as the host material of the light emitting layer.
  • An organic EL device was produced in the same manner except that the obtained composite (H-3) was used.
  • Table 1 shows the results of conducting an energization test and evaluating the life of the obtained organic EL device in the same manner as in Example 1.
  • Example 1 (2) as the dopant of the light emitting layer, an orange color was used instead of Ir (piq) (acac).
  • An organic EL device was produced in the same manner except that the above Ir (pq) (acac) was used.
  • Table 1 shows the results of conducting an energization test and evaluating the life of the obtained organic EL device in the same manner as in Example 1.
  • Example 1 an organic EL device was produced in the same manner except that the following CBP was used instead of the compound (H-1) as the host material in the light emitting layer.
  • Table 1 shows the results of conducting an energization test and evaluating the life of the obtained organic EL device in the same manner as in Example 1. As shown in Table 1, the organic EL device of Comparative Example 2 had a short lifetime and was impractical.
  • the organic EL devices of Examples 1 to 4 are widely used as phosphorescent materials in Comparative Example 1 by forming a light emitting layer as a condensed ring-containing compound and a host material. Compared with the case where the light emitting layer is formed using the known compound CBP as a host material, a remarkable effect that the lifetime is 2-3 times is obtained.
  • the organic EL device using the fused ring-containing compound of the present invention is practical because it has high luminous efficiency and heat resistance and has a very long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 特定構造の縮合二環基とカルバゾリル基類及び/又はインドリル基類とを有する縮合環含有化合物を提供するとともに、陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記縮合環含有化合物を単独もしくは混合物の成分として含有することによって、発光効率及び耐熱性が高く、極めて寿命が長い有機エレクトロルミネッセンス素子を提供する。                                                                                           

Description

明 細 書
縮合環含有ィ匕合物及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、新規な縮合環含有化合物及びそれを用いた有機エレクト口ルミネッセン ス (EL)素子に関し、特に、発光効率及び耐熱性が高ぐ極めて寿命が長い有機 EL 素子及びそれを実現する縮合環含有化合物に関するものである。
背景技術
[0002] 従来、電極間に有機発光層を挟持した有機 EL素子が、以下に示す理由等から鋭 意研究開発されている。
(1)完全固体素子であるため、取り扱いや製造が容易である。
(2)自己発光が可能であるため、発光部材を必要としない。
(3)視認性に優れて 、るため、ディスプレイに好適である。
(4)フルカラー化が容易である。
このような有機 EL素子の発光機構としては、一般的には、有機発光媒体において 、一重項励起状態 (S1状態と称する場合がある。 )にある蛍光分子が、基底状態に放 射遷移する際に生じるエネルギー変換である蛍光発光現象 (ルミネッセンス現象)を 利用するものである。また、有機発光媒体において、三重項励起状態 (T1状態と称 する場合がある。 )にある蛍光分子も想定されるが、基底状態への放射遷移が、禁制 遷移となるため、力かる蛍光分子は非放射性遷移により、三重項励起状態から、徐 々に他の状態に遷移することになる。その結果、蛍光発光を生じる代わりに、熱エネ ルギ一が放出されることになる。
ここで、一重項及び三重項とは、蛍光分子の全スピン角運動量と全軌道角運動量 との組み合わせ数によって決まるエネルギーの多重性を意味する。すなわち、一重 項励起状態とは、不対電子がない基底状態から、電子のスピン状態を変えないまま、 1個の電子をより高いエネルギー準位へと遷移させた場合のエネルギー状態と定義 される。また、三重項励起状態とは、電子のスピン状態を逆向きにした状態で、 1個の 電子をより高いエネルギー準位へと遷移させた場合のエネルギー状態と定義される。 もちろん、このように定義される三重項励起状態からの発光を、極めて低い温度、例 えば、液体窒素の液ィ匕温度 (マイナス 196°C)とすれば観察することができるが、実用 的な温度条件ではなぐしかも、わずかな発光量に過ぎな力つた。
ところで、従来の有機 EL素子における発光の全効率は、注入された電荷キャリア( 電子及び正孔)の再結合効率( φ )、及び生成した励起子が放射遷移を起こす確
rec
率( Φ )に関係しており、したがって、有機 EL素子における発光の全効率( φ )は、 rad el 下記式で表されることになる。
φ = φ X O. 25
el rec rad
ここで、式中の φ における係数 0. 25は、一重項励起子の生成確率を 1Z4と考
raa
慮したものである。したがって、再結合及び励起子の放射減衰が、確率係数 1で起こ るとしても、有機 EL素子の発光効率の理論的上限は 25%となる。このように、従来の 有機 EL素子においては、三重項励起子を実質的に利用することができず、一重項 励起子のみが放射遷移を生じさせて 、たため、発光効率の上限値が低 、と 、う問題 があった。そこで、室温条件であっても、有機発光材料 (ホスト材料)の三重項励起子 (三重項励起状態)を利用して、生成した三重項励起子からりん光性ドーパントにェ ネルギーを移動させることにより、蛍光発光現象を生じさせることが試みられている( 例えば、非特許文献 1参照)。より具体的には、 4, 4-N, N—ジカルバゾリルビフエ ニルと、りん光性ドーパントとしての Ir錯体とから構成した有機発光層を含む有機 EL 素子を構成することにより、発光現象を生じることが報告されている。
このような状況下、最近では、三重項励起子を利用したりん光素子の研究が進んで いる。例えば、三重項励起子を利用したりん光素子の研究が進んでいる。例えば、特 許文献 1〜2によれば、ピリミジン環やキナゾリン環を有する特定の化合物は、電子輸 送材として高効率であり、これを電子輸送層又は発光層に用いると、発光輝度、発光 効率が向上し、長寿命化した有機エレクト口ルミネッセンス素子が得られることが開示 されている。また、特許文献 3には、トリァジン環とカルバゾリル基が連結した特定の 化合物群が青色用ホストイ匕合物として開示されている。さらには、特許文献 4には、 五員環と六員環の縮合した含窒素縮合二環基であるべンズイミダゾリル基とカルバゾ リル基を両方兼備えたィ匕合物が例示されているが素子性能の例示がない。また、六 員環が 2つ縮合した含窒素縮合二環基と力ルバゾリル基を両方兼備えたィ匕合物の例 示はなく、さらにはこれらの化合物をりん光用ホスト材料として用 、た例は開示されて いない。
[0004] 特許文献 1:特開 2003— 031004号公報
特許文献 2 :特開 2003— 045662号公報
特許文献 3 :特開 2002— 193952号公報
特許文献 4:特開 2002— 319419号公報
非特許文献 1 :Jpn. J. Appl. Phys. , 38 (1999) L1502
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、前記の課題を解決するためになされたもので、発光効率及び耐熱性が 高く、寿命が長!ヽ有機 EL素子及びそれを実現する縮合環含有化合物を提供するこ とを目的とする。
課題を解決するための手段
[0006] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定構造の縮 合二環基、特に六員環が 2つ縮合した縮合二環基と力ルバゾリル基類及び Z又はィ ンドリル基類とを有する縮合環含有ィ匕合物を、有機 EL素子のホスト材料として用いる ことにより、三重項励起子状態を利用して効果的に発光させることができ、実用的な 寿命を有し、しかも発光効率及び耐熱性に優れた有機 EL素子が得られることを見出 し、本発明を完成したものである。
すなわち、本発明は、下記一般式(1)及び Z又は(2)で表される縮合二環基と、下 記一般式(3)〜(8)力 選ばれる少なくとも一つの力ルバゾリル基類及び Z又はイン ドリル基類とを有する縮合環含有ィ匕合物を提供するものである。
[0007] [化 1]
Figure imgf000005_0001
( ( 2 )
[0008] [式中、 X〜Xは、それぞれ独立に、窒素原子、酸素原子、硫黄原子又は炭素原子
1 6
である。
zは、環状構造を形成する原子団である。
Rは、置換基を有していてもよい核炭素数 6〜50のァリール基、置換基を有してもよ い核原子数 5〜50の複素環基、置換基を有してもよい炭素数 1〜50のアルキル基、 置換基を有してもょ 、炭素数 1〜50のアルコキシ基、置換基を有してもよ!、核炭素 数 7〜50のァラルキル基、置換基を有してもょ 、核炭素数 5〜50のァリールォキシ 基、置換基を有してもよい核炭素数 5〜50のァリールチオ基、置換基を有してもよい 炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基又はヒドロキシル基であり、 Rが複数の場合、互いに結合して環状構造を形 成していてもよい。
m及び nは、それぞれ 0〜 10の整数である。 ]
[0009] [化 2]
Figure imgf000005_0002
[0010] [式中、 Rは、前記と同じであり、 a及び bは、それぞれ 0〜4の整数である。
Vは、単結合、— CR R '―、— SiR R '―、— O—、— CO—又は— NR (R及び R 'は、それぞれ独立に、水素原子、置換基を有してもよい核炭素数 6〜50のァリール 基、置換基を有してもよ!ヽ核原子数 5〜50複素環基又は置換基を有してもよ ヽ炭素 数 1〜50のアルキル基である。)である。
Eは、記号 Eを囲む円が示す環状構造を示しており、置換基を有してもよい核炭素 数 3〜20で炭素原子が窒素原子で置き換わってもよ 、シクロアルカン残基、置換基 を有してもょ 、核炭素数 4〜50のァリール基又は置換基を有してもょ 、核原子数 4〜 50の複素環基である。 ]
[0011] また、本発明は、陰極と陽極間に少なくとも発光層を有する一層又は複数層からな る有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも一 層が、前記縮合環含有化合物を単独もしくは混合物の成分として含有する有機 EL 素子を提供するものである。
発明の効果
[0012] 本発明の縮合環含有ィ匕合物を用いた有機 EL素子は、発光効率及び耐熱性に優 れていながら、極めて長い寿命を有し、実用的である。
発明を実施するための最良の形態
[0013] 本発明の縮合環含有化合物は、下記一般式(1)及び Z又は(2)で表される縮合二 環基と、下記一般式 (3)〜(8)力も選ばれる少なくとも一つの力ルバゾリル基類及び Z又はインドリル基類とを有する化合物である。
[化 3]
Figure imgf000006_0001
( 2 ) 一般式(1)及び (2)において、 X〜Xは、それぞれ独立に、窒素原子、酸素原子、
1 6
硫黄原子又は炭素原子であり、窒素原子であると好ましい。
また、 X、 X及び Xのうちのが少なくとも 1つが窒素原子であると好ましい。
1 2 3
一般式(1)及び (2)において、 Zは、環状構造を形成する原子団である。環状構造 を形成する原子団としては、例えば、エチレン基、プロピレン基、 n—ブチレン基、 n— ペンチレン基、 n—へキシレン基等のアルキレン基、及びこれらのアルキレン基の炭 素原子の少なくとも 1つが窒素原子又は酸素原子等に置き換わり複素環を形成する 基等が挙げられ、置換基を有していてもよぐさらに、置換基同士で結合して飽和又 は不飽和の環状構造を形成してもよい。環状構造の具体例としては、例えば、シクロ ブタン、シクロペンタン、シクロへキサン、ァダマンタン、ノルボルナン等の炭素数 4〜 12のシクロアルカン、シクロブテン、シクロペンテン、シクロへキセン、シクロヘプテン 、シクロオタテン等の炭素数 4〜 12のシクロアルケン、シクロへキサジェン、シクロへ ブタジエン、シクロォクタジェン等の炭素数 6〜 12のシクロアルカジエン、ベンゼン、 ナフタレン、フエナントレン、アントラセン、ピレン、タリセン、ァセナフチレン等の炭素 数 6〜50の芳香族環、ピラゾール、イミダゾール、ピラジン、ピリミジン、インダゾール、 プリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、ぺ リミジン、フエナント口リン、ピロロイミダゾール、ピロロトリアゾール、ピラゾ口イミダゾー ル、ピラゾロトリアゾール、ピラゾ口ピリミジン、ピラゾロトリアジン、イミダゾイミダゾール、 イミダゾピリダジン、イミダゾピリジン、イミダゾピラジン、トリァゾロピリジン、ベンゾイミダ ゾール、ナフトイミダゾール、ベンゾォキサゾール、ナフトォキサゾール、ベンゾチアゾ ール、ナフトチアゾール、ベンゾトリァゾール、テトラザインデン、トリアジン、カルバゾ ール等の核原子数 5〜50の複素環などが挙げられる。
一般式(1)及び(2)において、 Rは、置換基を有していてもよい核炭素数 6〜50の ァリール基、置換基を有してもよい核原子数 5〜50の複素環基、置換基を有してもよ V、炭素数 1〜50のアルキル基、置換基を有してもょ 、炭素数 1〜50のアルコキシ基 、置換基を有してもよい核炭素数 7〜50のァラルキル基、置換基を有してもよい核炭 素数 5〜50のァリールォキシ基、置換基を有してもよ!、核炭素数 5〜50のァリール チォ基、置換基を有してもよい炭素数 1〜50のアルコキシカルボニル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基であり、 Rが複数の場合、 互 ヽに結合して環状構造を形成して 、てもよ 、。
この環状構造としては、前記 Zで説明したものと同様のものが挙げられる。
一般式(1)において mは 0〜10の整数であり 1〜5であると好ましぐ一般式(2)に お!、て nは 0〜10の整数であり 1〜5であると好まし!/、。
[0016] 前記 Rのァリール基の例としては、フエ-ル基、 1 ナフチル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1—フエナントリル基、 2 フエナ ントリル基、 3—フエナントリル基、 4—フエナントリル基、 9—フエナントリル基、 1ーナ フタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレ-ル基、 2 ピレ- ル基、 4ーピレ-ル基、 2 ビフヱ-ルイル基、 3 ビフヱ-ルイル基、 4ービフヱ-ル ィル基、 ρ ターフェ-ルー 4—ィル基、 p ターフェ-ルー 3—ィル基、 p ターフェ 二ルー 2—ィル基、 m—ターフェ-ルー 4—ィル基、 m—ターフェ-ルー 3—ィル基、 m—ターフェ-ルー 2—ィル基、 o トリル基、 m—トリル基、 ρ トリル基、 p— t—ブチ ルフエ-ル基、 p— (2 フエ-ルプロピル)フエ-ル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチルー 1 アントリル基、 4,ーメチルビフエ-ルイ ル基、 4" t ブチル p ターフェ-ル 4 ィル基等が挙げられる。
[0017] 前記 Rの複素環基の例としては、 1 ピロリル基、 2 ピロリル基、 3 ピロリル基、ピ ラジニル基、 2 ピリジ-ル基、 3 ピリジニル基、 4 ピリジニル基、 1 インドリル基 、 2—インドリル基、 3—インドリル基、 4—インドリル基、 5—インドリル基、 6—インドリ ル基、 7—インドリル基、 1—イソインドリル基、 2—イソインドリル基、 3—イソインドリル 基、 4—イソインドリル基、 5—イソインドリル基、 6—イソインドリル基、 7—イソインドリ ル基、 2 フリル基、 3 フリル基、 2 べンゾフラ-ル基、 3 べンゾフラ-ル基、 4 ベンゾフラ-ル基、 5—べンゾフラ-ル基、 6—べンゾフラ-ル基、 7—べンゾフラ-ル 基、 1 イソべンゾフラ-ル基、 3 イソべンゾフラ-ル基、 4 イソべンゾフラ-ル基、 5—イソべンゾフラ-ル基、 6—イソべンゾフラ-ル基、 7—イソべンゾフラ-ル基、キノ リル基、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基 、 8 キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソ キノリル基、 6 イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリ -ル基、 5 キノキサリ-ル基、 6 キノキサリ-ル基、 1一力ルバゾリル基、 2 カル バゾリル基、 3—力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 1 フエ ナンスリジ-ル基、 2 フエナンスリジ-ル基、 3 フエナンスリジ-ル基、 4 フエナン スリジ-ル基、 6—フエナンスリジ-ル基、 7—フエナンスリジ-ル基、 8—フエナンスリ ジ-ル基、 9—フ ナンスリジ-ル基、 10—フ ナンスリジ-ル基、 1—アタリジ-ル基 、 2—アタリジ-ル基、 3—アタリジ-ル基、 4—アタリジ-ル基、 9—アタリジ-ル基、 1 , 7 フエナンスロリン— 2—ィル基、 1, 7 フエナンスロリン— 3—ィル基、 1, 7 フエ ナンスロリン— 4—ィル基、 1, 7 フエナンスロリン— 5—ィル基、 1, 7 フエナンスロ リン— 6—ィル基、 1, 7 フエナンスロリン— 8—ィル基、 1, 7 フエナンスロリン— 9 —ィル基、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 フエナンスロリン— 2—ィル 基、 1, 8 フエナンスロリンー3—ィル基、 1, 8 フエナンスロリンー4ーィル基、 1, 8 —フエナンスロリン一 5—ィル基、 1, 8 フエナンスロリン一 6—ィル基、 1, 8 フエナ ンスロリン一 7—ィル基、 1, 8 フエナンスロリン一 9—ィル基、 1, 8 フエナンスロリン — 10—ィル基、 1, 9 フエナンスロリン— 2—ィル基、 1, 9 フエナンスロリン— 3— ィル基、 1, 9 フエナンスロリン— 4—ィル基、 1, 9 フエナンスロリン— 5—ィル基、 1, 9 フエナンスロリン一 6—ィル基、 1, 9 フエナンスロリン一 7—ィル基、 1, 9 フ ェナンスロリン— 8—ィル基、 1, 9 フエナンスロリン— 10—ィル基、 1, 10 フエナン スロリン— 2—ィル基、 1, 10 フエナンスロリン— 3—ィル基、 1, 10 フエナンスロリ ン— 4—ィル基、 1, 10 フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン— 1 ーィル基、 2, 9 フエナンスロリンー3—ィル基、 2, 9 フエナンスロリンー4 ィル基 、 2, 9 フエナンスロリン— 5—ィル基、 2, 9 フエナンスロリン— 6—ィル基、 2, 9— フエナンスロリン一 7—ィル基、 2, 9 フエナンスロリン一 8—ィル基、 2, 9 フエナン スロリン— 10—ィル基、 2, 8 フエナンスロリン— 1—ィル基、 2, 8 フエナンスロリン —3—ィル基、 2, 8 フエナンスロリン— 4—ィル基、 2, 8 フエナンスロリン— 5—ィ ル基、 2, 8—フエナンスロリンー6—ィル基、 2, 8—フエナンスロリンー7—ィル基、 2, 8 フエナンスロリン— 9—ィル基、 2, 8 フエナンスロリン— 10—ィル基、 2, 7 フエ ナンスロリン— 1—ィル基、 2, 7 フエナンスロリン— 3—ィル基、 2, 7 フエナンスロ リン 4ーィル基、 2, 7 フエナンスロリン一 5—ィル基、 2, 7 フエナンスロリン一 6 ーィル基、 2, 7 フエナンスロリンー8—ィル基、 2, 7 フエナンスロリンー9 ィル基 、 2, 7 フエナンスロリン 10—ィル基、 1 フエナジ-ル基、 2 フエナジ-ル基、 1 フエノチアジ-ル基、 2 フエノチアジ-ル基、 3 フエノチアジ-ル基、 4ーフエノ チアジ-ル基、 10—フエノチアジ-ル基、 1 フエノキサジ-ル基、 2—フエノキサジ ニル基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ-ル基 、 2—ォキサゾリル基、 4ーォキサゾリル基、 5—ォキサゾリル基、 2 ォキサジァゾリル 基、 5 ォキサジァゾリル基、 3 フラザ-ル基、 2 チェ-ル基、 3 チェ-ル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィル基、 2 メチルピロ一 ルー 4ーィル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2—ィル基、 3 メチルピロ一ルー 4ーィル基、 3 メチルピロ一 ルー 5—ィル基、 2— t—ブチルピロ一ルー 4ーィル基、 3—(2 フエ-ルプロピル)ピ ロール 1ーィル基、 2—メチルー 1 インドリル基、 4ーメチルー 1 インドリル基、 2 ーメチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2 t ブチル 1 インドリ ル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3 インドリル基、 4 t ブチル 3—インドリル基等が挙げられる。
さらには、ビフエ-ル、ターフェ-ルなどベンゼン環が 1〜10個結合した基、ナフチ ル、アントラ-ル、フエナンスリル、ピレニル、コ口-ルなどの縮合環を持つものが挙げ られる力 特に好ましいのはベンゼン環が 2〜5個結合したものであり、分子にねじれ を生じさせるようなメタ結合を多く有するものである。
前記 Rのアルキル基の例としては、メチル基、ェチル基、プロピル基、イソプロピル 基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n— へキシル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェ チル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒドロキシェ チル基、 1, 3 ジヒドロキシイソプロピル基、 2, 3 ジヒドロキシー t ブチル基、 1, 2 , 3 トリヒドロキシプロピノレ基、クロロメチノレ基、 1 クロロェチノレ基、 2 クロロェチノレ 基、 2 クロ口イソブチル基、 1, 2 ジクロロェチル基、 1, 3 ジクロロイソプロピル基 、 2, 3 ジクロロー t—ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1, 2—ジブロモェ チル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3— トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2— ョードイソブチル基、 1, 2 ジョードエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー t—ブチル基、 1, 2, 3 トリョードプロピル基、アミノメチル基、 1ーァミノ ェチル基、 2—アミノエチル基、 2—ァミノイソブチル基、 1 , 2—ジアミノエチル基、 1 , 3 ジァミノイソプロピル基、 2, 3 ジァミノ一 t ブチル基、 1 , 2, 3 トリァミノプロピ ル基、シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチ ル基、 1 , 2 ジシァノエチル基、 1 , 3 ジシァノイソプロピル基、 2, 3 ジシァノー t —ブチル基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基、 1— -トロェチル基、 2 -トロェチル基、 2 -トロイソブチル基、 1 , 2 ジニトロェチル基、 1 , 3 ジニトロ イソプロピル基、 2, 3 ジニトロ— t—ブチル基、 1 , 2, 3 トリニトロプロピル基、シク 口プロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4ーメチルシク 口へキシル基、 1—ァダマンチル基、 2—ァダマンチル基、 1 ノルボル-ル基、 2—ノ ルボルニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシ ル基、 4ーメチルシクロへキシル基等が挙げられる。
[0019] 前記 Rのァラルキル基の例としては、ベンジル基、 1 フエ-ルェチル基、 2 フエ -ルェチル基、 1—フエ-ルイソプロピル基、 2—フエ-ルイソプロピル基、フエ-ルー tーブチノレ基、 a ナフチノレメチノレ基、 1 - a ナフチノレエチノレ基、 2 - a ナフチ ルェチル基、 1 ナフチルイソプロピル基、 2— a ナフチルイソプロピル基、 13 ナフチルメチル基、 1— β ナフチルェチル基、 2 - β ナフチルェチル基、 1 β ナフチルイソプロピル基、 2— β ナフチルイソプロピル基、 1 ピロリルメチル 基、 2—(1 ピロリル)ェチル基、 ρ—メチルベンジル基、 m—メチルベンジル基、 o— メチノレべンジノレ基、 p クロ口べンジノレ基、 m—クロ口べンジノレ基、 o クロ口べンジノレ 基、 p ブロモベンジル基、 m—ブロモベンジル基、 o ブロモベンジル基、 ρ ョード ベンジル基、 m—ョードベンジル基、 o ョードベンジル基、 p ヒドロキシベンジル基 、 m—ヒドロキシベンジル基、 o ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァ ミノべンジル基、 o ァミノべンジル基、 p -トロベンジル基、 m—-トロベンジル基、 o -トロべンジル基、 p シァノベンジル基、 m—シァノベンジル基、 o シァノベン ジル基、 1—ヒドロキシ一 2—フエ-ルイソプロピル基、 1—クロ口一 2—フエ-ルイソプ 口ピル基等が挙げられる。
[0020] 前記 Rのアルコキシ基は OYと表され、 Yの例としては、前記アルキル基と同様の ものが挙げられる。 前記 Rのァリールォキシ基は OY'と表され、 Y'の例としては、前記ァリール基と 同様のものが挙げられる。
前記 Rのァリールチオ基は SY'と表され、 Y'の例としては、前記ァリール基と同 様のものが挙げられる。
前記 Rのアルコキシカルボ-ル基は COOYで表される基であり、 Υの例としては 、前記アルキル基と同様のものが挙げられる。
さらに、前記各基の置換基としては、ハロゲン原子、ヒドロキシル基、アミノ基、ニトロ 基、シァノ基、アルキル基、ァルケ-ル基、シクロアルキル基、アルコキシ基、ァリール 基、複素環基、ァラルキル基、ァリールォキシ基、アルコシキカルボニル基、カルボキ シル基等が挙げられる。
[0021] 前記一般式(1)で表される縮合二環基は下記一般式(13)で表される縮合二環基 であると好ましぐ前記一般式 (2)で表される縮合二環基が下記一般式(14)で表さ れる縮合二環基であると好まし 、。
[0022] [化 4]
Figure imgf000012_0001
( 1 3 ) ( 1 4 )
(式中、 X〜Χ は前記 X〜Χと同じ、 R、 m及び nは前記と同じである。 )
7 15 1 6
また、前記一般式(1)又は(2)で表される縮合二環基の例としては、 1H—ピロリジ ン、 111 1ーピリンジンー111 2—ピリンジン、インドリジン、 2H—イソインドーノレ、フ クルイミド、 1H—インドール、スカトール、インドキシル、インドリンー3 オン、ィサチ ン、 1H—インダゾール、インダゾリン、 7H—プリン、キサチン、 2H—キノリジン、イソ キノリン、イソキノロン、ババベリン、キノリン、ォキシン、ェキノブシン、キナルジン酸、 2, 7 ナフチリジン、 2, 6 ナフチリジン、フタラジン、 1, 8 ナフチリジン、 1, 7 ナ フチリジン、 1, 6 ナフチリジン、 1, 5 ナフチリジン、キノキサリン、キナゾリン、シン ノリン、ブテリジン等の残基が挙げられ、これらの中でも、二つの環の縮合部に窒素 原子を有するインタゾール、キノリジン、キナゾリン残基 (キナゾリニル基又はキナゾリ 二レン基)が好ましい。
これら各基は置換基を有していてもよぐ置換基としては前記 Rと同様である。
[0024] [化 5]
Figure imgf000013_0001
[0025] 一般式(3)〜(8)において、 Rは、前記と同じであり、 a及び bは、それぞれ 0〜4の 整数である。
[0026] 一般式(3)〜(8)において、 Vは、単結合、—CR R '—、—SiR R '—、—O
0 0 0 0
CO—又は— NR (R及び R 'は、それぞれ独立に、水素原子、置換基を有してもよ
0 0 0
V、核炭素数 6〜50のァリール基、置換基を有してもよ!、核原子数 5〜50複素環基又 は置換基を有してもょ 、炭素数 1〜50のアルキル基である。 )である。
前記 R及び R 'のァリール基、複素環基、アルキル基の例としては、前記 Rで説明し
0 0
たものと同様のものが挙げられる。
[0027] 一般式(3)〜(8)において、 Eは、記号 Eを囲む円が示す環状構造を示しており、 置換基を有してもょ 、核炭素数 3〜20で炭素原子が窒素原子で置き換わってもよ ヽ シクロアルカン残基、置換基を有してもよ ヽ核炭素数 4〜50の芳香族炭化水素基又 は置換基を有してもょ ヽ核原子数 4〜50の複素環基である。
前記 Eのシクロアルカン残基の例としては、シクロプロパン、シクロブタン、シクロプロ パン、シクロへキサン、シクロヘプタン、ピロリジン、ピぺリジン、ピべラジン等の残基が 挙げられる。
前記 Eの芳香族炭化水素基としては、ベンゼン、ナフタレン、アントラセン、ナフタセ ン、ピレン、タリセン、ビフエ二ノレ、トリフエ二レン、フノレ才レン、ビスフノレ才レン等の残基 が挙げられる。
前記 Eの複素環基としては、ピラゾール、イミダゾール、ピラジン、ピリミジン、インダ ゾール、プリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリ ジン、ペリミジン、フエナント口リン、ピロロイミダゾール、ピロロトリアゾール、ピラゾ口イミ ダゾール、ピラゾロトリアゾール、ピラゾ口ピリミジン、ピラゾロトリアジン、イミダゾイミダ ゾール、イミダゾピリダジン、イミダゾピリジン、イミダゾピラジン、トリァゾロピリジン、ベ ンゾイミダゾール、ナフトイミダゾール、ベンゾォキサゾール、ナフトォキサゾール、ベ ンゾチアゾール、ナフトチアゾール、ベンゾトリァゾール、テトラザインデン、トリアジン 、力ルバゾール等の残基が挙げられる。
前記一般式(3)としては、例えば下記一般式(15)〜(18)で表される構造が挙げら れる(一般式 (4)についても同様の構造が挙げられる。;)。
[化 6]
Figure imgf000014_0001
( 1 5 ) ( 1 6 ) ( 1 7 ) ( 1 8 )
(a、 b、 Rは前記と同じ、及び R〜Rは Rと同じである。 )
1 8
さらに、一般式(15)〜(18)の具体例として以下のような構造が挙げられる。なお、 Meはメチル基を示す。
[化 7]
Figure imgf000015_0001
前記一般式 (5)としては、例えば下記一般式(19)〜(22)で表される構造が挙げら れる。
[化 8]
Figure imgf000015_0002
( 1 9 ) (20) (2 1 ) (22)
(a、 b、 R、及び R〜Rは、前記と同じである。 )
1 8
さらに、一般式(19)〜(22)の具体例として以下のような構造が挙げられる。
[化 9]
Figure imgf000015_0003
前記一般式 (6)の具体例としては、例えば以下のような構造が挙げられる(一般式 ( 7)についても同様の構造が挙げられる。)<
[化 10]
Figure imgf000016_0001
[0033] 前記一般式 (8)の具体例としては、例えば以下のような構造が挙げられる。
[化 11]
Figure imgf000016_0002
[0034] また、本発明の縮合環含有化合物としては、下記(9)〜(12)のいずれかで表され る縮合環含有ィ匕合物であると好まし 、。
(Cz-L) A (9)
nl
(Cz) L A (10)
n2
Cz-L- (A) (11)
n3
L- (A-Cz) (12)
n4
[0035] 一般式(9)〜(12)において、 Aは、前記一般式(1)及び Z又は(2)で表される縮 合二環基であり、 Aが複数の場合は同一でも異なって 、てもよ 、。
一般式(9)〜(12)において、 Czは、前記一般式(3)〜(8)のいずれかで表される 力ルバゾリル基類及び/又はインドリル基類であり、 Czが複数の場合は同一でも異 なっていてもよい。
一般式 (9)〜(12)において、 Lは、単結合、核炭素数 6〜50の芳香族炭化水素基 、核炭素数 2〜50の複素環基、核炭素数 2〜50のァリール置換複素環基、核炭素 数 2〜50のジァリール置換複素環基、又は核炭素数 2〜50のトリアリール置換複素 環基であり、これら各基は置換基を有していてもよぐ Lが複数の場合は同一でも異 なっていてもよい。
一般式(9)において nlは 1〜10の整数であり、 1〜5の整数であると好ましぐ一般 式(10)において n2は 1〜10の整数であり、 1〜5の整数であると好ましぐ一般式(1 1)において n3は 1〜10の整数であり、 1〜5の整数であると好ましぐ一般式(12)に お!、て n4は 1〜 10の整数であり、 1〜 5の整数であると好まし!/ヽ。
[0036] 前記 Lの芳香族炭化水素基としては、例えば、ベンゼン、ナフタレン、アントラセン、 ナフタセン、ピレン、タリセン、ビフエ-ル、トリフエ二レン、フルオレン、ビスフノレ才レン 等の残基が挙げられる。
前記 Lの複素環基としては、例えば、ピラゾール、イミダゾール、ピラジン、ピリミジン 、インダゾール、プリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン 、プテリジン、ペリミジン、フエナント口リン、ピロロイミダゾール、ピロロトリアゾール、ピ ラゾロイミダゾール、ピラゾロトリアゾール、ピラゾ口ピリミジン、ピラゾロトリアジン、イミダ ゾイミダゾール、イミダゾピリダジン、イミダゾピリジン、イミダゾピラジン、トリァゾロピリジ ン、ベンゾイミダゾール、ナフトイミダゾール、ベンゾォキサゾール、ナフトォキサゾー ル、ベンゾチアゾール、ナフトチアゾール、ベンゾトリァゾール、テトラザインデン、トリ ァジン、力ルバゾール等の残基が挙げられる。
前記 Lのァリール置換複素環基、ジァリール置換複素環基、トリアリール置換複素 環基としては、前記複素環基が、前記芳香族炭化水素基で置換されたもの等が挙げ られる。
[0037] 本発明の縮合環含有化合物としては、特に、以下のような構造を有するものが好ま しい。
Cz-L-Qu, Cz-L- (Qu) , Cz-L-Qu-L-Cz, Cz-L-Qu-L' -Qu, C z-L-Het-Qu, Cz-L-Het- (Qu) , Cz— L— Qu— Het
2
(Cz, Lは前記と同じ。 L'は前記 Lと同じで種類が異なるものである。 Quはキナゾリ- ル基又はキナゾリ-レン基、 Hetは複素環基)
本発明の縮合環含有ィ匕合物の具体例を以下に示すが、これらの例示化合物に限 定されるものではない。
[化 12]
Figure imgf000019_0001
Figure imgf000019_0002
[0039] [化 13]
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
[0040] [化 14]
Figure imgf000021_0001
[0041] [化 15]
Figure imgf000022_0001
[0042] [化 16]
Figure imgf000023_0001
Figure imgf000023_0002
次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を有する一層又は複数 層力 なる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも一層が、本発明の縮合環含有ィ匕合物を単独もしくは混合物の成分として含有 する。
本発明の有機 EL素子は、前記発光層が、前記縮合環含有化合物と発光性金属錯 体とを含有すると好ましい。
本発明においては、前記縮合環含有ィ匕合物がホスト材料であり、前記発光性金属 錯体がりん光性ドーパントであると好ましい。この理由は、ホスト材料が前記縮合環含 有化合物であれば、前記りん光性ドーパントと組み合わせることにより、室温条件(20 °C)であっても、前記縮合環含有化合物の三重項励起子状態を効果的に利用するこ とができる。すなわち、前記縮合環含有化合物で生成した三重項状態からりん光性ド 一パントに対してエネルギーを効果的に移動させることにより、高発光効率で蛍光発 光現象を生じさせることができる。
[0044] また、本発明の縮合環含有化合物は、ガラス転移温度が 120°C以上であることが 好ましぐ 120°C〜190°Cの範囲であることがより好ましぐ 130°C〜180°Cの範囲で あることがさらに好ましい。ガラス転移温度が 120°C以上であれば、りん光性ドーパン トと組み合わせた場合に、結晶化しにくぐ寿命が長く保たれ、高温環境条件で通電 した場合に、ショートが発生しにくぐ有機 EL素子の使用環境が制限されることがな い。また、ガラス転移温度が 190°C以下であると、蒸着により成膜する際に熱分解が 起こりにくぐ取り扱いが容易である。なお、ガラス転移温度 (Tg)は、走査型熱量計( DSC、 Differential Scanning Calorimetory)を用い、窒素循環状態で、例えば 、 10°CZ分の昇温条件で加熱した場合に得られる比熱の変化点として求めることが できる。
[0045] また、本発明の有機 EL素子において、発光層の前記縮合環含有化合物の三重項 エネルギーを E1とし、りん光性ドーパントの三重項エネルギーの値を E2としたときに 、 E1 >E2の関係を満足することが好ましい。すなわち、このような三重項エネルギー 関係において、前記縮合環含有化合物と、りん光性ドーパントとを組み合わせること により、室温条件であっても、前記縮合環含有化合物の三重項励起子状態を確実に 利用することができる。すなわち、前記縮合環含有化合物で生成した三重項状態か らりん光性ドーパントに対してエネルギーを確実に移動させることにより、発光現象を 生じさせることができる。
[0046] 前記発光性金属錯体は、前述したように、りん光性ドーパントであると好ましぐ Ir、 Ru、 Pd、 Pt、 Os、及び Reからなる群力 選択される少なくとも一つの金属を含む金 属錯体であることが好ましい。この理由は、前記りん光性ドーパントが、これらの金属 錯体であれば、本発明の縮合環含有ィ匕合物の三重項励起子力 効果的にエネルギ 一を移動させることができるためである。
本発明で用いる発光性金属錯体として、下記の式で表される構造を有する金属錯 体が好ましい。
MY , MY Y' , (ΜΜ')Υ , (ΜΜ')Υ Υ' , Υ (ΜΜ')Υ
Μ, Μ' :Ir、 Ru、 Pd、 Pt、 Os及び Reからなる群から選択される少なくとも一つの金属 であり、分子内に同種又は異種の金属を 2つ以上保有し複核になっていてもよい。 Y, Y':配位子。金属の価数に合わせて、同種又は異種の配位子が配位していても よい。
p, q:金属の価数を上限とした整数である。
[0047] 本発明で用いる発光性金属錯体としては、有機 EL素子に使用できるものであれば 特に限定されず、金属錯体の配位子が、フエ二ルビリジン骨格、フエ二ルキノリン骨格 、フエ-ルイソキノリン骨格、ビビリジル骨格、フエナント口リン骨格及びベンゾチォフエ ンピリジン骨格力 なる群力 選択される少なくとも一つの骨格を有することが好まし い。この理由は、これらの骨格を分子内に有することにより、縮合環を分子内に保有 する化合物の三重項励起子力 効果的にエネルギーを移動させることができるため である。
この発光性金属錯体の例としては、トリス(2—フエ-ルイソキノリン)イリジウム (Ir(piq) ),トリス(2—フエ-ルビリジン)イリジウム、ビス(2—フエ-ルキノリン)イリジウムァセチ ルァセトナート (Ir(pq) (acac))、ビス(2—フエ-ルイソキノリン)イリジウムァセチルァセ トナート (Ir(piq) (acac)),ビス(2—ベンゾチォフェンピリジン)イリジウムァセチルァセト ナート (Ir(btpy) (acac)),トリス(2—フエ-ルビリジン)ルテニウム、トリス(2—フエ-ルビ リジン)パラジウム、ビス(2—フエニルピリジン)白金、トリス(2—フエ-ルビリジン)ォス ミゥム、トリス(2—フエ-ルビリジン)レニウム、オタタエチル白金ポルフィリン、オタタフ ェ-ル白金ポルフィリン、オタタエチルパラジウムポルフィリン、オタタフヱ-ルバラジゥ ムポルフィリン等が挙げられ、 Ir(piq)、 Ir(pq) (acac)、 Ir(piq) (acac), Ir(btpy) (acac)力 S
3 2 2 2 好ましい。
[化 17]
Figure imgf000026_0001
Ir (pi q) 3 Ir (pq) 2 (acac) Ir (btpy) 2 (acac
[0049] 本発明にお ヽて、発光層中の前記発光性金属錯体の配合量は、前記縮合環含有 化合物(ホスト材料) 100重量部に対して、 0. 1〜50重量部であると好ましぐ 0. 5〜 40重量部であるとより好ましぐ 1〜30重量部であるとさらに好ましい。この理由は、 前記発光性金属錯体の配合量が 0. 1重量部以上であれば添加効果が発現し、前 記縮合環含有ィ匕合物の三重項励起子力 効果的にエネルギーを移動させることが できるためであり、配合量が 50重量部以下であれば、発光性金属錯体を均一に配 合することが容易であり、発光輝度がばらつくことがないためである。
[0050] 本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極 Z発光層 Z陰極
(2)陽極 Z正孔注入層 Z発光層 Z陰極
(3)陽極 Z発光層 Z電子注入層 Z陰極
(4)陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極 Z有機半導体層 Z発光層 Z陰極
(6)陽極 Z有機半導体層 Z電子障壁層 Z発光層 Z陰極
(7)陽極 Z有機半導体層 Z発光層 Z付着改善層 Z陰極
(8)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(10)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極 (11)陽極 Z有機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(12)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z絶縁層 Z陰極
(13)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極 などの構造を挙げることができる力 これらに限定されるものではない。
[0051] 本発明の有機 EL素子の発光層に含有させる縮合環含有化合物及び発光性金属 錯体は、前述したとおりである。
また、本発明の目的が損なわれない範囲で、所望により発光層に他の公知の発光 材料(PVK、 PPV、 CBP、 Alq、 BAlq、公知の錯体など)を含有させてもよい。
本発明において発光層を形成する方法としては、例えば、蒸着法、スピンコート法、 LB法等の公知の方法を適用することができる。
[0052] 本発明の有機 EL素子は、厚さ 5nm〜5 μ mの正孔注入層を設けてもよい。このよう な正孔注入層を設けることにより、発光層への正孔注入が良好となり、高い発光輝度 が得られ、又は低電圧駆動が可能となる。また、この正孔注入層には、 1 X 104〜1 X lo Zcmの範囲の電圧を印加した場合に測定される正孔移動度力 1 X 10"6cm2 Ζν·秒以上であって、イオンィ匕エネルギーが 5. 5eV以下である化合物を使用する ことが好ましい。このような正孔注入層の材料としては、例えば、ボルフイリンィ匕合物、 芳香族第三級ァミン化合物、スチリルァミン化合物、芳香族ジメチリディン系化合物、 縮合芳香族環化合物が挙げられ、さらに具体例には、 4, 4' ビス [N—(1 ナフチ ル)—N—フエ-ルァミノ]ビフエ-ル(NPDと略記する。)や、 4, 4', 4"—トリス [N— ( 3—メチルフエ-ル)— N フエ-ルァミノ]トリフエ-ルァミン(MTDATAと略記する。 )等の有機化合物が挙げられる。また、必要により正孔注入層を 2層以上積層するこ ともさらに好ましい。このとき、陽極 Z正孔注入層 1 (正孔注入材料 1)Z正孔注入層 2 (正孔注入材料 2)Ζ· · · ·Ζ発光層の順で積層するとき、正孔注入材料のイオンィ匕ェ ネノレギー(Ιρ)は Ιρ (正孔注入材料 1) < Ιρ (正孔注入材料 2) · · ·になって ヽることが 駆動電圧を低減させる上で好まし ヽ形態である
また、正孔注入層の構成材料として、 ρ型— Siや ρ型— SiC等の無機化合物を使用 することも好ましい。さらに、前記正孔注入層と陽極層との間、又は前記正孔注入層 と発光層との間に、導電率が 1 X 10— 1QsZcm以上の有機半導体層を設けることも好 ましい。このような有機半導体層を設けることにより、さらに発光層への正孔注入が良 好となる。
[0053] 本発明の有機 EL素子は、厚さ 5nm〜5 μ mの電子注入層を設けてもよい。このよう な電子注入層を設けることにより、発光層への電子注入が良好となり、高い発光輝度 が得られ、又は低電圧駆動が可能となる。また、この電子注入層には、 1 X 104〜1 X lO^/cmの範囲の電圧を印加した場合に測定される電子移動度力 1 X 10"6cm2 ZV'秒以上であって、イオンィ匕エネルギーが 5. 5eVを超える化合物を使用すること が好ましい。このような電子注入層の材料としては、例えば、 8—ヒドロキシキノリンの 金属錯体 (A1キレート: Alq)、又はその誘導体、ォキサジァゾール誘導体等が挙げら れる。
また、電子注入層にアルカリ金属を含有させることにより、著しい低電圧化とともに、 長寿命化を図ることができる。
[0054] 本発明の有機 EL素子は、発光層と陰極との間に、厚さ 5ηπ!〜 5 μ mの正孔障壁層 を設けてもよい。このような正孔障壁層を設けることにより、有機発光層への正孔の閉 じ込め性が向上し、高い発光輝度が得られ、又は低電圧駆動が可能となる。このよう な正孔障壁層の材料としては、 2, 9—ジメチルー 4, 7—ジフエ-ルー 1, 10—フエナ ントロリンや、 2, 9—ジェチルー 4, 7—ジフエ-ルー 1, 10—フエナント口リン等が挙 げられる力 アルカリ金属、例えば、 Liや Csをさらに含有することが好ましい。このよう に、正孔障壁層の材料にアルカリ金属を組み合わせることにより、有機 EL素子の駆 動に際し、著しい低電圧化とともに、長寿命化を図ることもできる。なお、アルカリ金属 を含有させる場合、その含有量を正孔障壁層の全体量を 100重量%としたときに、 0 . 01〜30重量%とすることが好ましぐ 0. 05〜20重量%とすることがより好ましぐ 0 . 1〜15重量%とすることがさらに好ましい。この理由は、アルカリ金属の含有量が 0 . 01重量%以上であれは添加効果が発現し、含有量が 30重量%以下であれば、ァ ルカリ金属の分散性が均一であり発光輝度がばらつくことがないためである。
本発明において、前記正孔注入層、電子注入層、正孔阻止層を形成する方法とし ては、例えば、蒸着法、スピンコート法、 LB法等の公知の方法を適用することができ る。 [0055] 本発明の有機 EL素子は、陰極と有機薄膜層との界面領域に、還元性ドーパントが 添加されてなると好ましい。
還元性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、 アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、 希土類金属錯体、希土類金属化合物、及びこれらのハロゲン化物、酸化物等から選 ばれた少なくとも一種類が挙げられる。
前記アルカリ金属としては、 Li (仕事関数: 2. 93eV)、Na (仕事関数: 2. 36eV)、 K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)、 Cs (仕事関数: 1. 95eV)等が 挙げられ、仕事関数が 3. OeV以下のものが特に好ましい。これらのうち好ましくは Li 、 K、 Rb、 Csである o
前記アルカリ土類金属としては、 Ca (仕事関数: 2. 9eV)、 Sr (仕事関数: 2. 0〜2 . 5eV)、 Ba (仕事関数: 2. 52eV)等が挙げられ、仕事関数が 3. OeV以下のものが 特に好ましい。
前記希土類金属としては、 Sc、 Y、 Ce、 Tb、 Yb等が挙げられ、仕事関数が 3. OeV 以下のものが特に好まし 、。
以上の金属のうち好ましい金属は、特に還元能力が高ぐ電子注入域への比較的 少量の添カ卩により、有機 EL素子における発光輝度の向上や長寿命化が可能である
[0056] 前記アルカリ金属化合物としては、 Li 0、 Cs 0、 K O等のアルカリ酸化物、 LiF、 N
2 2 2
aF、 CsF、 KF等のアルカリハロゲン化物等が挙げられ、 LiF、 Li 0、 NaFのアルカリ
2
酸化物又はアルカリフッ化物が好まし 、。
前記アルカリ土類金属化合物としては、 BaO、 SrO、 CaO及びこれらを混合した Ba Sr Ο (0< χ< 1)や、 Ba Ca O (0<x< 1)等が挙げられ、 BaO、 SrO、 CaOが好 x l-χ x 1-χ
ましい。
前記希土類金属化合物としては、 YbF、 ScF、 ScO、 Y O、 Ce O、 GdF、 TbF
3 3 3 2 3 2 3 3 等が挙げられ、 YbF、 ScF、 TbFが好ましい。
3 3 3 3
前記アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞ れ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオン の少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノ一 ル、ベンゾキノリノール、アタリジノール、フエナントリジノール、ヒドロキシフエ二ルォキ サゾール、ヒドロキシフエ二ルチアゾール、ヒドロキシジァリールォキサジァゾール、ヒ ドロキシジァリールチアジアゾール、ヒドロキシフエ二ルビリジン、ヒドロキシフエニルべ ンゾイミダゾール、ヒドロキシベンゾトリァゾール、ヒドロキシフルボラン、ビピリジル、フ ェナント口リン、フタロシア-ン、ポルフィリン、シクロペンタジェン、 13ージケトン類、ァ ゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない
[0057] 還元性ドーパントの添加形態としては、前記界面領域に層状又は島状に形成する と好ましい。形成方法としては、抵抗加熱蒸着法により還元性ドーパントを蒸着しなが ら、界面領域を形成する発光材料や電子注入材料である有機物を同時に蒸着させ、 有機物中に還元ドーパントを分散する方法が好ま 、。分散濃度としてはモル比で 有機物:還元性ドーパント = 100 : 1〜1: 100、好ましくは 5 : 1〜1: 5である。
還元性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子 注入材料を層状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸 着し、好ましくは層の厚み 0. l〜15nmで形成する。
還元性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子 注入材料を島状に形成した後に、還元ドーパントを単独で抵抗加熱蒸着法により蒸 着し、好ましくは島の厚み 0. 05〜lnmで形成する。
[0058] 本発明の有機 EL素子において、陽極は、有機 EL表示装置の構成に応じて下部 電極又は対向電極に該当するが、該陽極は、仕事関数の大きい(例えば、 4. OeV以 上)金属、合金、電気電導性化合物又はこれらの混合物を使用することが好ましい。 具体的に、インジウムスズ酸ィ匕物 (ITO)、インジウム亜鉛酸化物 (IZO)、ヨウ化銅 (C ul)、酸化スズ (SnO )、酸化亜鉛 (ZnO)、金、白金、ノ《ラジウム等の電極材料を単
2
独で使用するか、あるいはこれらの電極材料を 2種以上組み合わせて使用することが 好ましい。これらの電極材料を使用することにより、真空蒸着法、スパッタリング法、ィ オンプレーティング法、電子ビーム蒸着法、 CVD (Chemical Vapor Deposition )法、 MOCVD法(Metal Oxide Chemical Vapor Deposition)、プラズマ CV D法等の乾燥状態での成膜が可能な方法を用いて、均一な厚さを有する陽極を形 成することができる。なお、陽極カゝら EL発光を取り出す場合には、該陽極を透明電 極とする必要がある。その場合、 ITO、 IZO、 Cul、 SnO , ZnO等の導電性透明材料
2
を使用して、 EL発光の透過率を 70%以上の値とすることが好ましい。また、陽極の 膜厚も特に制限されるものではないが、 10〜: L, OOOnmの範囲内の値とするのが好 ましぐ 10〜200nmの範囲内の値とするのがより好ましい。この理由は、陽極の膜厚 をこのような範囲内の値とすることにより、均一な膜厚分布や、 70%以上の EL発光の 透過率が得られる一方、陽極のシート抵抗を 1, 000 Ω /口以下の値、より好ましくは 、 100 ΩΖ口以下の値とすることができるためである。なお、陽極(下部電極)と、有 機発光媒体と、陰極 (対向電極)とを順次に設け、当該下部電極及び対向電極を XY マトリックス状に構成することにより、発光面における任意の画素を発光させることも好 ましい。すなわち、陽極等をこのように構成することにより、有機 EL素子において、種 々の情報を容易に表示することができる。
[0059] 本発明の有機 EL素子において、陰極についても、有機 EL素子の構成に応じて下 部電極又は対向電極に該当するが、仕事関数の小さい (例えば、 4. OeV未満)金属 、合金、電気電導性化合物又はこれらの混合物あるいは含有物を使用することが好 ましい。具体的には、ナトリウム、ナトリウム一カリウム合金、セシウム、マグネシウム、リ チウム、マグネシウム 銀合金、アルミニウム、酸化アルミニウム、アルミニウムーリチ ゥム合金、インジウム、希土類金属、これらの金属と有機薄膜層の材料との混合物、 及びこれらの金属と電子注入層材料との混合物等カゝらなる電極材料を単独で使用 するか、あるいはこれらの電極材料を 2種以上組み合わせて使用することが好まし ヽ 。また、陰極の膜厚についても、陽極と同様に、特に制限されるものではないが、具 体的に 10〜: L, OOOnmの範囲内の値とするのが好ましぐ 10〜200nmの範囲内の 値とするのがより好ましい。さらに、陰極力も EL発光を取り出す場合には、該陰極を 透明電極とする必要があり、その場合、 EL発光の透過率を 70%以上の値とすること が好ましい。なお、陰極についても、陽極と同様に、真空蒸着法や、スパッタリング法 等の乾燥状態での成膜が可能な方法を用いて形成することが好まし 、。
[0060] 本発明の有機 EL素子における支持基板は、機械的強度に優れ、水分や酸素の透 過性が少ないものが好ましぐ具体的には、ガラス板、金属板、セラミックス板、あるい はプラスチック板 (ポリカーボネート榭脂、アクリル榭脂、塩化ビュル榭脂、ポリエチレ ンテレフタレート榭脂、ポリイミド榭脂、ポリエステル榭脂、エポキシ榭脂、フエノーノレ 榭脂、シリコン榭脂、フッ素榭脂等)等を挙げることができる。また、これらの材料から なる支持基板は、有機 EL素子内への水分の侵入を避けるために、さらに無機膜を 形成したり、フッ素榭脂を塗布して、防湿処理や疎水性処理を施してあることが好ま しい。また、特に有機薄膜層への水分の侵入を避けるために、支持基板における含 水率及びガス透過係数を小さくすることが好ましい。具体的に、支持基板の含水率を 0. 0001重量%以下及びガス透過係数を 1 X 10—13 '《117。1112 ' 56(:' (:1111¾以下と することがそれぞれ好ま 、。
実施例
[0061] 次に、実施例を用いて本発明をさらに詳しく説明する。
なお、各実施例において得られた有機 EL素子の性能は、以下のようにして評価した
(1)初期性能:所定の電圧を印可し、その時の電流値を測定すると同時に、輝度計 で発光輝度値と CIE1931色度座標にての色度座標を測定し評価した。
(2)寿命:初期輝度 lOOOcd/m2で定電流駆動し、輝度の半減期で評価した。
[0062] 実施例 1 (化合物 (H— 1 )の合成及び有機 EL素子の作製)
(1)化合物 (H— 1)の合成
化合物 (H— 1)を以下のようにして合成した。
[化 18]
Figure imgf000032_0001
( H - 1 )
[0063] 100ml三つ口フラスコに、 2—フエ-ルー 4—クロ口キナゾリン(アルドリッチ社製カタ ログ No.16,243- 4)1. 68g (7mmol)、 4, - (N—カルバゾリル)ビフエ-ルボロン酸 2. 80g (7. 7mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム(0) 0. 243g (0. 21 mmol, 3mol%Pd)を入れ容器内をアルゴン置換した。さらに 1 , 2 ジメトキシェタン 26ml、及び 2M炭酸ナトリウム水溶液 12. 5ml (3eq)を加え、 90°Cのオイルバスで 9 時間加熱還流した。反応終了後、生成した粉末を濾過して取り、化合物 (H— 1) 3. 2 7gを得た。得られた化合物(H— 1)について FD— MS (フィールドディソープシヨン マススペクトル)を測定した結果を以下に示す。
FD— MSxalcd for C H N =524, found m/z=524 (M+, 100)
38 25 3
また、得られた (H— 1)をさらに昇華精製 (340°C、 2 X 10— 3Pa)して有機 EL素子の 作製に用いた。
(2)有機 EL素子の作製
25mm X 75mm X 0. 7mm厚の ITO透明電極付きガラス基板をイソプロピルアル コール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 30分間行なった。洗 浄後の透明電極付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透 明電極が形成されている側の面上に前記透明電極を覆うようにして膜厚 10nmの銅 フタロシアニン膜 (以下「CuPc膜」と略記する。)を成膜した。この CuPc膜は、正孔注 入層として機能する。 CuPc膜上に膜厚 30nmの下記 4, 4 '—ビス [N— ( 1—ナフチ ル)—N フエニルァミノ]ビフエ-ル膜 (以下「ひ NPD膜」と略記する。)を成膜し た。この ex—NPD膜は正孔輸送層として機能する。さらに、 ひ NPD膜上に、上記 化合物 (H— 1)をホスト材料とし、同時にりん光発光性の Ir金属錯体ドーパントとして 、赤色発光の下記ビス(2—フエ-ルイソキノリン)イリジウムァセチルァセトナート(以 下「(Ir(piq) (acac))」と略記する。)を添加して蒸着し膜厚 30nmの発光層を成膜した
2
。発光層中における Ir(piq) (acac)の濃度は 15重量%とした。発光層上に膜厚 10nm
2
の下記(1 , 1,一ビスフエ-ル)ー4ーォラート)ビス(2—メチルー 8 キノリノラート)ァ ルミ-ゥム(以下、「BAlq膜」と略記する。)を成膜した。この BAlq膜は正孔障壁層と して機能する。さらに、この膜上に膜厚 40nmの 8 ヒドロキシキノリンのアルミニウム 錯体 (以下、「Alq膜」と略記する。)を成膜した。この Alq膜は電子注入層として機能 する。この後ハロゲン化アルカリ金属である LiFを 0. 2nmの厚さに蒸着し、次いでァ ルミ-ゥムを 150nmの厚さに蒸着した。この AlZLiFは陰極として機能する。このよう
Figure imgf000034_0001
[0066] 得られた素子について、通電試験を行なったところ、電圧 5. 5V、電流密度 1. lm A/cm2にて、発光輝度 101. Ocd/m2の赤色発光が得られ、色度座標は (0. 668 , 0. 327)、発光効率は 9. 2cdZAであった。また、この素子を初期輝度 lOOOcdZ m2にて定電流駆動させ、発光輝度 500cd/m2まで半減する時間は 25000時間で めつに。
[0067] 実施例 2 (化合物 (H— 2)の合成及び有機 EL素子の作製)
(1)化合物 (H— 2)の合成
化合物 (H - 2)を以下のようにして合成した。
[化 20]
Figure imgf000034_0002
(中間体 a ) (中間体 b ) ( H— 2 ) 中間体 bの合成は文献(J. Bergman, A. Brynolf, B. Elman and E. Vuorinen, Tetrah edron,42,3697-3706(1986))に記載の方法を応用して合成した。すなわち、 500ml三 つ口フラスコに、フエ-ルマグネシウムブロミドの 1Mテトラヒドロフラン溶液 100ml (10 Ommol)を入れ、乾燥エーテル 100mlをカ卩え、 45°Cのオイルバスで加熱還流させた 。その中に 2 シァノア-リン 5. 91g (50mmol)の乾燥エーテル 50ml溶液を 30分 かけて滴下した。さらに 1. 5時間還流した後、 0°Cまで氷水浴で冷却した。次いで、 4 ブロモ安息香酸クロリド 13. 2g (60mmol)の乾燥エーテル 100ml溶液を 10分か けて滴下し、 45°Cのオイルバスで 2時間加熱還流させた。反応終了後、 0°Cまで氷水 浴で冷却し、飽和塩ィ匕アンモ-ゥム水溶液を添加した。析出物をろ別し、少量のメタ ノールで洗浄したのち真空乾燥し、(中間体 b) 7. 59gを得た (収率 42%)
100ml三つ口フラスコに、(中間体 b) 2. 53g (7mmol)、4— (N—カルバゾリル)フ ェ-ルボロン酸 2. 07g (7. 7mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム(0 ) 0. 243g (0. 21mmol, 3mol%Pd)を入れ容器内をアルゴン置換した。さらに、 1, 2 ジメトキシェタン 26ml、及び 2M炭酸ナトリウム水溶液 12. 5ml(3eq)をカ卩え、 90 °Cのオイルバスで 9時間加熱還流した。反応終了後、生成した粉末を濾過して取り、 化合物 (H— 2) 3. 27gを得た。得られた化合物 (H - 2)につ 、て FD - MSを測定し た結果を以下に示す。
FD-MS:calcd for C H N =524, found m/z=524 (M+,100)
38 25 3
また、得られた (H— 2)をさらに昇華精製 (340°C、 2 X 10— 3Pa)して有機 EL素子の 作製に用いた。
(2)有機 EL素子の作製
実施例 1の(2)において、発光層のホスト材料として、化合物 (H— 1)の代わりに得 られたィ匕合物 (H— 2)を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、実施例 1と同様にして通電試験及び寿命を評価し た結果を表 1に示す。
実施例 3 (化合物 (H— 3)の合成及び有機 EL素子の作製)
(1)化合物 (H— 3)の合成
化合物 (H - 3)を以下のようにして合成した。
[化 21]
Figure imgf000036_0001
(中間体 c ) (中間体 ( H— 3 )
500ml三つ口フラスコに、マグネシウム 2. 4g (100mmol)、乾燥テトラヒドロフラン 1 OOmlを入れ、 4— (N—カルバゾリル)フエ-ルブロミド 35. 4g (110mmol)のテトラヒ ドロフラン溶液 100ml溶液を添加し、グリニャール試薬を調製した。 45°Cのオイルバ スで加熱した中に 2 シァノア-リン 5. 9 lg (50mmol)の乾燥テトラヒドロフラン 50ml 溶液を 30分かけて滴下した。さらに 1. 5時間加熱反応した後、 0°Cまで氷水浴で冷 却した。次いで、 4 ブロモ安息香酸クロリド 13. 2g (60mmol)の乾燥エーテル 100 ml溶液を 10分かけて滴下し、 45°Cのオイルバスで 2時間加熱した。反応終了後、 0 °Cまで氷水浴で冷却し、飽和塩ィ匕アンモ-ゥム水溶液を添加した。析出物をろ別し、 少量のメタノールで洗浄したのち真空乾燥し、(中間体 d) 12. 6gを得た (収率 48%)
100ml三つ口フラスコに、(中間体 d) 3. 69g (7mmol)、4—(N—力ルバゾリル)フ ェ-ルボロン酸 2. 07g (7. 7mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム(0 ) 0. 243g (0. 21mmol, 3mol%Pd)を入れ容器内をアルゴン置換した。さらに、 1, 2 ジメトキシェタン 26ml、及び 2M炭酸ナトリウム水溶液 12. 5ml(3eq)をカ卩え、 90 °Cのオイルバスで 9時間加熱還流した。反応終了後、生成した粉末を濾過して取り、 化合物 (H— 3) 4. 05gを得た。得られたィ匕合物 (H— 3)について FD— MSを測定し た結果を以下に示す。
FD— MSxalcd for C H N =689, found m/z=689 (M+,100)
50 32 4
また、得られた (H— 3)をさらに昇華精製 (390°C、 2 X 10— 3Pa)して有機 EL素子の 作製に用いた。
(2)有機 EL素子の作製
実施例 1の(2)において、発光層のホスト材料として、化合物 (H— 1)の代わりに得 られたィ匕合物 (H— 3)を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、実施例 1と同様にして通電試験及び寿命を評価し た結果を表 1に示す。
[0071] 実施例 4 (有機 EL素子の作製)
実施例 1の(2)において、発光層のドーパントとして Ir(piq) (acac)の代わりに橙色発
2
光の上記 Ir(pq) (acac)を用いた以外は同様にして有機 EL素子を作製した。
2
得られた有機 EL素子について、実施例 1と同様にして通電試験及び寿命を評価し た結果を表 1に示す。
[0072] 比較例 1 (有機 EL素子の作製)
実施例 1において、発光層中のホスト材料として化合物 (H— 1)の代わりに、下記 C BPを用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、実施例 1と同様にして通電試験及び寿命を評価し た結果を表 1に示す。表 1に示すように、比較例 2の有機 EL素子は、寿命が短く非実 用的であった。
[化 22]
Figure imgf000037_0001
C B P
[0073] [表 1]
表 1
Figure imgf000038_0001
[0074] 表 1に示すように、実施例 1〜4の有機 EL素子は、縮合環含有化合物とホスト材料 として発光層を形成したことにより、比較例 1でりん光材料として広く使用されている 公知の化合物 CBPをホスト材料として発光層を形成した場合に対し、寿命が 2〜3倍 という顕著な効果が得られる。
産業上の利用可能性
[0075] 以上詳細に説明したように、本発明の縮合環含有化合物を用いた有機 EL素子は 、発光効率及び耐熱性が高ぐ寿命が極めて長いため、実用的である。
このため、フルカラーディスプレイ、情報表示機器、車載表示機器、照明器具として 極めて実用的かつ有用である。

Claims

請求の範囲 下記一般式(1)及び Z又は(2)で表される縮合二環基と、下記一般式 (3)〜(8)か ら選ばれる少なくとも一つの力ルバゾリル基類及び Z又はインドリル基類とを有する 縮合環含有化合物。
[化 1]
Figure imgf000039_0001
[式中、 X〜Xは、それぞれ独立に、窒素原子、酸素原子、硫黄原子又は炭素原子
1 6
である。
zは、環状構造を形成する原子団である。
Rは、置換基を有していてもよい核炭素数 6〜50のァリール基、置換基を有してもよ い核原子数 5〜50の複素環基、置換基を有してもよい炭素数 1〜50のアルキル基、 置換基を有してもょ 、炭素数 1〜50のアルコキシ基、置換基を有してもよ!、核炭素 数 7〜50のァラルキル基、置換基を有してもょ 、核炭素数 5〜50のァリールォキシ 基、置換基を有してもよい核炭素数 5〜50のァリールチオ基、置換基を有してもよい 炭素数 1〜50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ基 、ニトロ基又はヒドロキシル基であり、 Rが複数の場合、互いに結合して環状構造を形 成していてもよい。
m及び nは、それぞれ 0〜 10の整数である。 ]
[化 2]
Figure imgf000040_0001
[式中、 Rは、前記と同じであり、 a及び bは、それぞれ 0〜4の整数である。
Vは、単結合、 CR R '―、— SiR R '―、— O—、— CO 又は— NR (R及び R
0 0 0 0 0 0 0
'は、それぞれ独立に、水素原子、置換基を有してもよい核炭素数 6〜50のァリール 基、置換基を有してもよ!ヽ核原子数 5〜50複素環基又は置換基を有してもよ ヽ炭素 数 1〜50のアルキル基である。)である。
Eは、記号 Eを囲む円が示す環状構造を示しており、置換基を有してもよい核炭素 数 3〜20で炭素原子が窒素原子で置き換わってもよ 、シクロアルカン残基、置換基 を有してもょ 、核炭素数 4〜50のァリール基又は置換基を有してもょ 、核原子数 4〜 50の複素環基である。 ]
下記一般式 (9)〜( 12)の 、ずれかで表される請求項 1に記載の縮合環含有化合 物。
(Cz-L) A (9)
nl
(Cz) -L-A (10)
n2
Cz-L- (A) (11)
n3
L- (A-Cz) (12)
n4
[式中、 Aは、前記一般式(1)及び Z又は(2)で表される縮合二環基であり、 Aが複 数の場合は同一でも異なって!/、てもよ 、。
Czは、前記一般式(3)〜(8)の 、ずれかで表される力ルバゾリル基類及び Z又は インドリル基類であり、 Czが複数の場合は同一でも異なって 、てもよ 、。
Lは、単結合、核炭素数 6〜50の芳香族炭化水素基、核炭素数 2〜50の複素環基 、核炭素数 2〜50のァリール置換複素環基、核炭素数 2〜50のジァリール置換複素 環基、又は核炭素数 2〜50のトリアリール置換複素環基であり、これら各基は置換基 を有して!/、てもよく、 Lが複数の場合は同一でも異なって 、てもよ 、。
nlは 1〜10の整数、 n2は 1〜10の整数、 n3は 1〜10の整数、 n4は 1〜 10の整数である。 ]
前記一般式( 1 )で表される縮合二環基が下記一般式(13)で表される縮合二環基 、前記一般式 (2)で表される縮合二環基が下記一般式(14)で表される縮合二環基 である請求項 1又は 2に記載の縮合環含有ィ匕合物。
[化 3]
Figure imgf000041_0001
( 1 3 ) ( 1 4 )
(式中、 X〜X は前記 X〜Xと同じ、 R、 m及び nは前記と同じである。 )
7 15 1 6
[4] 前記縮合二環基が、キナゾリニル基及び Z又はキナゾリ-レン基である請求項 1又 は 2に記載の縮合環含有化合物。
[5] 前記 X、 X及び Xのうちのが少なくとも 1つが窒素原子である請求項 1又は 2に記
1 2 3
載の縮合環含有化合物。
[6] 陰極と陽極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくと も一層が、請求項 1〜5のいずれかに記載の縮合環含有ィ匕合物を単独もしくは混合 物の成分として含有する有機エレクト口ルミネッセンス素子。
[7] 前記発光層が、前記縮合環含有化合物と発光性金属錯体とを含有する請求項 6に 記載の有機エレクト口ルミネッセンス素子。
[8] 前記縮合環含有化合物をホスト材料として含有する請求項 6又は 7に記載の有機 エレクトロノレミネッセンス素子。
[9] 前記陰極と前記有機薄膜層との界面領域に還元性ドーパントが添加されている請 求項 6〜8のいずれかに記載の有機エレクト口ルミネッセンス素子。
PCT/JP2005/019233 2004-11-04 2005-10-19 縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子 WO2006049013A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05795391A EP1808433A4 (en) 2004-11-04 2005-10-19 COMPOUND CONTAINING A FUSED CYCLE AND AN ELECTROLUMINESCENT ELEMENT USING THE SAME
US11/718,632 US20090091240A1 (en) 2004-11-04 2005-10-19 Compound containing fused ring and organic electroluminescent element employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-320439 2004-11-04
JP2004320439A JP2006131519A (ja) 2004-11-04 2004-11-04 縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2006049013A1 true WO2006049013A1 (ja) 2006-05-11

Family

ID=36319027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019233 WO2006049013A1 (ja) 2004-11-04 2005-10-19 縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20090091240A1 (ja)
EP (1) EP1808433A4 (ja)
JP (1) JP2006131519A (ja)
KR (1) KR20070073868A (ja)
CN (1) CN101052636A (ja)
TW (1) TW200624536A (ja)
WO (1) WO2006049013A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214244A (ja) * 2007-03-02 2008-09-18 Chisso Corp 発光材料およびこれを用いた有機電界発光素子
WO2011046182A1 (ja) * 2009-10-16 2011-04-21 出光興産株式会社 含フルオレン芳香族化合物、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US7973069B2 (en) 2004-07-14 2011-07-05 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US8013006B2 (en) 2004-07-14 2011-09-06 Ptc Therapeutics, Inc. Methods for treating hepatitis C
CN102971395A (zh) * 2010-05-03 2013-03-13 第一毛织株式会社 用于有机光电子装置的化合物、包含其的有机发光二极管和包含所述有机发光二极管的显示器
WO2013090771A1 (en) * 2011-12-14 2013-06-20 The Trustees Of Dartmouth College Triazolium and tetrazolium derivatives as organic light emitters
JP2013546171A (ja) * 2010-10-13 2013-12-26 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電子材料のための新規化合物、およびこれを使用する有機電界発光素子
JP2014198696A (ja) * 2013-03-29 2014-10-23 出光興産株式会社 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
US8889730B2 (en) 2012-04-10 2014-11-18 Pfizer Inc. Indole and indazole compounds that activate AMPK
JP2014531747A (ja) * 2011-09-01 2014-11-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機エレクトロルミネッセンス化合物およびこれを使用した有機エレクトロルミネッセンス素子
WO2015053570A1 (ko) * 2013-10-11 2015-04-16 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2015053572A1 (ko) * 2013-10-11 2015-04-16 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
US9394285B2 (en) 2013-03-15 2016-07-19 Pfizer Inc. Indole and indazole compounds that activate AMPK
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
KR20170129805A (ko) 2015-03-26 2017-11-27 도레이 카부시키가이샤 화합물, 및 이를 함유하는 전자 디바이스, 발광 소자, 광전 변환 소자 및 이미지 센서
JP2019050382A (ja) * 2010-09-17 2019-03-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
KR20190132632A (ko) 2017-03-28 2019-11-28 도레이 카부시키가이샤 화합물, 그것을 함유하는 전자 디바이스, 유기 박막 발광 소자, 표시 장치 및 조명 장치

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983805B1 (en) * 2006-02-07 2012-10-03 Sumitomo Chemical Company, Limited Organic electroluminescent element
JP5325707B2 (ja) 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
JP5329342B2 (ja) * 2008-09-01 2013-10-30 株式会社半導体エネルギー研究所 発光素子
CN102144313B (zh) * 2008-09-05 2014-07-30 株式会社半导体能源研究所 有机半导体材料和发光元件、发光装置、照明系统和使用这些的电子装置
JP2010153820A (ja) * 2008-11-21 2010-07-08 Fujifilm Corp 有機電界発光素子
KR101603070B1 (ko) * 2009-03-31 2016-03-14 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계발광 소자
JP5560592B2 (ja) * 2009-05-29 2014-07-30 三菱化学株式会社 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011011186A2 (en) * 2009-07-22 2011-01-27 The Board Of Trustees Of The University Of Illinois Hdac inhibitors and therapeutic methods using the same
KR20110013220A (ko) * 2009-07-31 2011-02-09 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011014039A1 (en) * 2009-07-31 2011-02-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101431644B1 (ko) * 2009-08-10 2014-08-21 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN102421772B (zh) 2010-04-20 2015-11-25 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
KR101213495B1 (ko) * 2010-06-03 2013-01-14 삼성디스플레이 주식회사 유기 발광 소자
KR101531904B1 (ko) * 2010-10-13 2015-06-29 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101427611B1 (ko) * 2011-03-08 2014-08-11 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
US9287512B2 (en) 2011-03-08 2016-03-15 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds, layers and organic electroluminescent device using the same
KR102008134B1 (ko) * 2011-05-30 2019-08-09 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120132962A (ko) * 2011-05-30 2012-12-10 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120136618A (ko) * 2011-06-09 2012-12-20 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101407588B1 (ko) 2011-12-27 2014-06-13 에스에프씨 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN102660257B (zh) * 2012-05-22 2013-11-27 南京邮电大学 吩噻嗪基喹唑啉类荧光离子探针及其应用
US9917281B2 (en) * 2012-09-07 2018-03-13 Nitto Denko Corporation Top-emitting white organic light-emitting diodes having improved efficiency and stability
JP6430709B2 (ja) * 2013-03-15 2018-11-28 ダウ グローバル テクノロジーズ エルエルシー 電子フィルムおよびデバイス用のキナゾリン誘導化合物
KR101577113B1 (ko) * 2013-09-30 2015-12-11 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101897039B1 (ko) 2014-05-22 2018-09-10 제일모직 주식회사 유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치
CN109037446B (zh) * 2017-11-23 2020-02-21 北京鼎材科技有限公司 化合物及其在有机电致发光领域的应用
CN110724128A (zh) * 2018-07-16 2020-01-24 哈尔滨工业大学 一种基于1,3-二氮杂萘(喹唑啉)的小分子发光材料及其制备方法与应用
CN111100146B (zh) 2019-12-30 2021-01-22 陕西莱特光电材料股份有限公司 一种有机化合物和应用以及使用其的有机电致发光器件

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120768A (en) * 1980-01-31 1981-09-22 Ciba Geigy Ag Color developing quinazoline compound
JPH03203982A (ja) * 1989-12-28 1991-09-05 Mitsubishi Kasei Corp 有機電界発光素子
JP2001192653A (ja) * 1999-10-27 2001-07-17 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
JP2001284051A (ja) * 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd 新規インドリジン化合物、新規インドリジン化合物の製造方法、インドリジン骨格を有する有機発光素子材料、ならびにそれらを用いた有機発光素子
JP2002319491A (ja) * 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2003268362A (ja) * 2002-03-15 2003-09-25 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
US20040151943A1 (en) * 2003-02-04 2004-08-05 Shuit-Tong Lee Electroluminescent devices
US20040157084A1 (en) * 2003-02-07 2004-08-12 Samsung Sdi Co., Ltd. Emitting compound for organic electroluminescent device and organic electroluminescent device using the same
JP2004256453A (ja) * 2003-02-26 2004-09-16 Dainippon Printing Co Ltd ピリミドピリミジン系化合物、組成物および有機エレクトロルミネッセンス素子
WO2004094389A1 (ja) * 2003-04-18 2004-11-04 Semiconductor Energy Laboratory Co. Ltd. キノキサリン誘導体,及びそれを用いた有機半導体素子、電界発光素子及び電子機器
JP2004363103A (ja) * 2003-06-03 2004-12-24 Canon Inc 電子燐光性(electrophosphorescent)のゲストーホスト有機発光デバイス系用の双極性の非対称のカルバゾール基ホスト材料
WO2005051046A1 (en) * 2003-11-21 2005-06-02 Canon Kabushiki Kaisha Light-emitting device, organic compound and display
WO2005054212A2 (en) * 2003-12-05 2005-06-16 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2005289914A (ja) * 2004-04-01 2005-10-20 Canon Inc 有機el素子用化合物、発光素子及び表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI70036C (fi) * 1980-01-31 1986-09-12 Ciba Geigy Ag Kromogena kinazolinfoereningar
US6461747B1 (en) * 1999-07-22 2002-10-08 Fuji Photo Co., Ltd. Heterocyclic compounds, materials for light emitting devices and light emitting devices using the same
JP4025137B2 (ja) * 2002-08-02 2007-12-19 出光興産株式会社 アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120768A (en) * 1980-01-31 1981-09-22 Ciba Geigy Ag Color developing quinazoline compound
JPH03203982A (ja) * 1989-12-28 1991-09-05 Mitsubishi Kasei Corp 有機電界発光素子
JP2001192653A (ja) * 1999-10-27 2001-07-17 Fuji Photo Film Co Ltd 新規縮合へテロ環化合物、発光素子材料およびそれを使用した発光素子
JP2001284051A (ja) * 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd 新規インドリジン化合物、新規インドリジン化合物の製造方法、インドリジン骨格を有する有機発光素子材料、ならびにそれらを用いた有機発光素子
JP2002319491A (ja) * 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2003268362A (ja) * 2002-03-15 2003-09-25 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
US20040151943A1 (en) * 2003-02-04 2004-08-05 Shuit-Tong Lee Electroluminescent devices
US20040157084A1 (en) * 2003-02-07 2004-08-12 Samsung Sdi Co., Ltd. Emitting compound for organic electroluminescent device and organic electroluminescent device using the same
JP2004256453A (ja) * 2003-02-26 2004-09-16 Dainippon Printing Co Ltd ピリミドピリミジン系化合物、組成物および有機エレクトロルミネッセンス素子
WO2004094389A1 (ja) * 2003-04-18 2004-11-04 Semiconductor Energy Laboratory Co. Ltd. キノキサリン誘導体,及びそれを用いた有機半導体素子、電界発光素子及び電子機器
JP2004363103A (ja) * 2003-06-03 2004-12-24 Canon Inc 電子燐光性(electrophosphorescent)のゲストーホスト有機発光デバイス系用の双極性の非対称のカルバゾール基ホスト材料
WO2005051046A1 (en) * 2003-11-21 2005-06-02 Canon Kabushiki Kaisha Light-emitting device, organic compound and display
WO2005054212A2 (en) * 2003-12-05 2005-06-16 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2005289914A (ja) * 2004-04-01 2005-10-20 Canon Inc 有機el素子用化合物、発光素子及び表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JENEKHE S.A. ET AL: "New Conjugated Polymers with Donor-Acceptor Architectures: Synthesis and Photophysics of Carbazole-Quinoline and Phenothiazine-Quinoline Copolymers and Oligomers Exhibiting Large Intramolecular Charge Transfer", MACROMOLECULES, vol. 34, no. 21, 2001, pages 7315 - 7324, XP002994014 *
MEEKER K. ET AL: "Multicolor emisson and tunable electroluminescence from blends of conjugated polymers", POLYMERIC MATERIALS SCIENCE AND ENGINEERING, vol. 83, 2000, pages 208 - 209, XP008057712 *
MI B. ET AL: "Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode: an Isoindole Derivative", CHEMISTRY OF MATERIALS, vol. 15, no. 16, 2003, pages 3148 - 3151, XP002994013 *
See also references of EP1808433A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7973069B2 (en) 2004-07-14 2011-07-05 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US8013006B2 (en) 2004-07-14 2011-09-06 Ptc Therapeutics, Inc. Methods for treating hepatitis C
JP2008214244A (ja) * 2007-03-02 2008-09-18 Chisso Corp 発光材料およびこれを用いた有機電界発光素子
WO2011046182A1 (ja) * 2009-10-16 2011-04-21 出光興産株式会社 含フルオレン芳香族化合物、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
EP2489664A4 (en) * 2009-10-16 2013-04-03 Idemitsu Kosan Co AROMATIC COMPOUND CONTAINING FLUORENE, MATERIAL FOR ORGANIC ELECTROLUMINESCENCE ELEMENT, AND ORGANIC ELECTROLUMINESCENT ELEMENT USING SUCH MATERIAL
US9266851B2 (en) 2009-10-16 2016-02-23 Idemitsu Kosan Co., Ltd. Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
CN102971395A (zh) * 2010-05-03 2013-03-13 第一毛织株式会社 用于有机光电子装置的化合物、包含其的有机发光二极管和包含所述有机发光二极管的显示器
US9543530B2 (en) 2010-05-03 2017-01-10 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
JP2019050382A (ja) * 2010-09-17 2019-03-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機電界発光化合物およびこれを使用する有機電界発光素子
JP2013546171A (ja) * 2010-10-13 2013-12-26 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電子材料のための新規化合物、およびこれを使用する有機電界発光素子
JP2014531747A (ja) * 2011-09-01 2014-11-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規有機エレクトロルミネッセンス化合物およびこれを使用した有機エレクトロルミネッセンス素子
US9324955B2 (en) 2011-12-14 2016-04-26 The Trustees Of Dartmouth College Triazolium and tetrazolium derivatives as organic light emitters
WO2013090771A1 (en) * 2011-12-14 2013-06-20 The Trustees Of Dartmouth College Triazolium and tetrazolium derivatives as organic light emitters
US8889730B2 (en) 2012-04-10 2014-11-18 Pfizer Inc. Indole and indazole compounds that activate AMPK
US9394285B2 (en) 2013-03-15 2016-07-19 Pfizer Inc. Indole and indazole compounds that activate AMPK
JP2014198696A (ja) * 2013-03-29 2014-10-23 出光興産株式会社 含窒素芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
WO2015053570A1 (ko) * 2013-10-11 2015-04-16 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2015053572A1 (ko) * 2013-10-11 2015-04-16 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
US10651397B2 (en) 2013-10-11 2020-05-12 Sfc Co., Ltd. Organic light emitting compound and organic light emitting device comprising the same
KR20170129805A (ko) 2015-03-26 2017-11-27 도레이 카부시키가이샤 화합물, 및 이를 함유하는 전자 디바이스, 발광 소자, 광전 변환 소자 및 이미지 센서
WO2017109722A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic compounds and organic electroluminescence devices containing them
KR20190132632A (ko) 2017-03-28 2019-11-28 도레이 카부시키가이샤 화합물, 그것을 함유하는 전자 디바이스, 유기 박막 발광 소자, 표시 장치 및 조명 장치

Also Published As

Publication number Publication date
CN101052636A (zh) 2007-10-10
EP1808433A4 (en) 2009-04-15
JP2006131519A (ja) 2006-05-25
TW200624536A (en) 2006-07-16
KR20070073868A (ko) 2007-07-10
US20090091240A1 (en) 2009-04-09
EP1808433A1 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
WO2006049013A1 (ja) 縮合環含有化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP6900558B2 (ja) アザ−ベンゾ縮合配位子を有するイリジウム錯体
JP5964328B2 (ja) 有機発光素子及び該有機発光素子に使用されるための材料
WO2005112519A1 (ja) 有機エレクトロルミネッセンス素子
CN103746080B (zh) 发射磷光的二极管中的苯并[9,10]菲基质
JP6148621B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
JP6088979B2 (ja) 芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
WO2005085387A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
CN105503960A (zh) 有机电致发光材料和装置
WO2013077352A1 (ja) 芳香族複素環誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
TW201920601A (zh) 發光元件、含有其的顯示器、照明裝置及感測器
CN106146532A (zh) 有机电致发光材料和装置
TW200921964A (en) Organic el device
TW201302973A (zh) 新穎有機電場發光化合物及使用該化合物之有機電場發光裝置
KR20140009263A (ko) 유기 발광 디바이스 및 이것에 사용되는 재료
CN108276451A (zh) 包含一个或两个具有结合到N-1上的扭转芳基的咪唑环的环金属化四齿Pt配合物
WO2006073112A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
TW200920178A (en) Organic electroluminescence device and organic electroluminescence material containing solution
CN108713051A (zh) 有机光电元件用化合物、有机光电元件以及显示元件
JP6376727B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP7180900B2 (ja) 有機エレクトロルミネセント材料およびその素子
WO2007058104A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2023016865A (ja) 有機発光材料
WO2007058080A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006028224A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005795391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580037385.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077010122

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1904/CHENP/2007

Country of ref document: IN

Ref document number: 11718632

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005795391

Country of ref document: EP