WO2006046469A1 - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
WO2006046469A1
WO2006046469A1 PCT/JP2005/019331 JP2005019331W WO2006046469A1 WO 2006046469 A1 WO2006046469 A1 WO 2006046469A1 JP 2005019331 W JP2005019331 W JP 2005019331W WO 2006046469 A1 WO2006046469 A1 WO 2006046469A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
recording layer
gain
optical disc
light beam
Prior art date
Application number
PCT/JP2005/019331
Other languages
English (en)
French (fr)
Inventor
Katsuya Watanabe
Akira Yoshikawa
Shin-Ichi Yamada
Junichi Minamino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05795883A priority Critical patent/EP1806742B1/en
Priority to DE602005019447T priority patent/DE602005019447D1/de
Priority to US11/575,312 priority patent/US7864638B2/en
Publication of WO2006046469A1 publication Critical patent/WO2006046469A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0948Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for detection and avoidance or compensation of imperfections on the carrier, e.g. dust, scratches, dropouts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0941Methods and circuits for servo gain or phase compensation during operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical disc apparatus that performs at least one of recording of data on a rotating disc-shaped information carrier (hereinafter referred to as “optical disc”) and reproduction of data recorded on the optical disc.
  • optical disc rotating disc-shaped information carrier
  • Data recorded on an optical disc is reproduced by irradiating a rotating optical disc with a relatively weak light beam of a constant light quantity and detecting reflected light modulated by the optical disc.
  • a read-only optical disc information by pits is recorded in a spiral shape in advance at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording and reproducing data Z is formed on the surface of a substrate on which tracks having spiral lands or groups are formed by a method such as vapor deposition. It is deposited.
  • the optical disc is irradiated with a light beam whose amount of light is modulated according to the data to be recorded, thereby changing the characteristics of the recording material film locally.
  • the depth of the pits, the depth of the track, and the thickness of the recording material film are smaller than the thickness of the optical disk substrate.
  • the portion of the optical disc where data is recorded constitutes a two-dimensional surface and may be referred to as an “information recording surface”.
  • the information recording surface has a physical size also in the depth direction, instead of using the phrase “information recording surface”, the “information recording layer” Use words.
  • An optical disc has at least one such information recording layer. Note that one information recording layer force may actually include a plurality of layers such as a phase change material layer and a reflective layer.
  • the light beam When data is recorded on a recordable optical disc or when data recorded on such an optical disc is reproduced, the light beam must always be in a predetermined focused state on a target track in the information recording layer. There is.
  • focus control and “traffic “King control” is required.
  • “Focus control” refers to the position of the objective lens in the normal direction of the information recording surface (hereinafter referred to as the “depth direction of the substrate”) so that the focal position of the light beam is always located on the information recording layer. Is to control.
  • the tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the optical beam is located on a predetermined track. .
  • optical disks such as DVD (Digital Versatile Disc) -ROM, DVD-RAM, DVD-RW, DVD-R, DVD + RW, and DVD + R have been put to practical use as high-density and large-capacity optical disks. It was. CD (Compact Disc) is still popular.
  • CD Compact Disc
  • next-generation optical discs such as Blu-ray Disc (BD) with higher density and larger capacity than these optical discs are being promoted.
  • BD Blu-ray Disc
  • an optical disk having a plurality of stacked information recording layers has been developed.
  • optical discs described above are handled in a bare manner when stored in a cartridge. Scratches are formed on the surface of such an optical disc, and dust or fingerprints are likely to adhere. Since scratches, dust, and fingerprints on the surface of the optical disk become optical obstacles to the light beam that illuminates the optical disk, the servo for focus control and tracking control is lost, and the playback signal (RF signal) ) May become too small, and as a result, data recording and playback may not be performed stably.
  • RF signal playback signal
  • Patent Document 1 discloses a technique for detecting a scratch formed on an optical disk and reducing the gain of the focus servo and tracking servo during a period when the reflection of the light beam is affected by the scratch. is doing. The effect of scratches can be compensated for by reducing the servo gain.
  • Patent Document 1 The technique disclosed in Patent Document 1 employs a three-beam method, which utilizes side lobes generated by the diffraction phenomenon caused by the super-resolution formation of the main beam.
  • the side lobe moves on the optical disc ahead of the main beam.
  • the intensity of the reflected light increases due to the scratches.
  • the gain can be reduced just before the main beam following the side lobe passes over the flaw.
  • Patent Document 1 JP-A-8-23586 (paragraphs 2 to 18, FIG. 6, FIG. 2)
  • the recording density of BD is five times the recording density of DVD, and the track pitch and beam diameter of BD are reduced to about 1Z2 and about 1Z5, respectively. For this reason, it is difficult to obtain an RF signal for quality unless the gain in the focus servo and tracking servo is increased and the residual due to surface deflection or eccentricity of the optical disk is not reduced.
  • an optical disc having two or more information recording layers (hereinafter referred to as “multilayer disc”)
  • an optical disc (hereinafter referred to as “single”) in which each information recording layer has a reflectivity of one information recording layer. It is referred to as a “layer disc”.
  • the amplitude of the RF signal is reduced, and as a result, the SN (signal-to-noise ratio) decreases.
  • the signal quality is particularly There is a problem that it is easy to deteriorate. This is particularly noticeable when using a bare BD without using a case such as a disk cartridge.
  • the present invention has been made in view of the above problems, and has as its main purpose to provide an optical disc apparatus capable of obtaining a high-quality RF signal resistant to scratches and dirt on the disc surface. .
  • the optical disc apparatus of the present invention includes a plurality of pieces of information including a first information recording layer having a relatively small distance from the disc surface force and a second information recording layer having a relatively large distance from the disc surface.
  • An optical disk apparatus capable of reading data of an optical disk having a recording layer, wherein a light source that emits a light beam, a lens that focuses the light beam emitted from the light source, and a focal point of the light beam are Focus control means for positioning on an arbitrary information recording layer of the optical disc, tracking control means for positioning the focal point of the light beam on a predetermined track in the information recording layer, focus control means and tracking control Gay that can change the gain characteristics of at least one of the means
  • the gain setting means has a gain intersection frequency when reading data from the first information recording layer lower than a gain intersection frequency when reading data from the second information recording layer. Set to value.
  • the gain intersection frequency is changed from the value for the current information recording layer to the value for the target other information recording layer.
  • the distance between the disc surface and the second information recording layer is 100 / zm or less.
  • the gain setting means stores a parameter defining gain characteristics for the plurality of information recording layers.
  • learning for adjusting the parameter in accordance with each mounted optical disk is executed at startup.
  • Another optical disc device includes a plurality of first information recording layers having a relatively small disc surface force distance and second information recording layers having a relatively large distance from the disc surface.
  • An optical disk device comprising an information recording layer of the above-mentioned optical disk apparatus capable of reading data, a light source that emits a light beam, a lens that focuses the light beam emitted from the light source, and a focusing point of the light beam Is reflected on the information recording layer, a focus control means for positioning the optical beam on an arbitrary information recording layer of the optical disc, a tracking control means for positioning the focal point of the light beam on a predetermined track in the information recording layer, and the information recording layer.
  • Optical beam power means for generating a reproduction signal, filter means for cutting a specific frequency band included in the reproduction signal, and a frequency of 1 MHz of the filter means gain setting means for changing a high frequency gain at z or more, wherein the gain setting means determines the high frequency gain when reading data from the first information recording layer as the second information recording layer force. Set to a value higher than the high-frequency gain when reading data.
  • Still another optical disc device includes a first information recording layer having a relatively small distance from the disc surface and a second information recording layer having a relatively large distance from the disc surface. It is possible to read data from an optical disc card having a plurality of information recording layers including An optical disc apparatus, a light source that emits a light beam, a lens that focuses the light beam emitted from the light source, and a focus control that positions a focal point of the light beam on an arbitrary information recording layer of the optical disc Means, tracking control means for positioning a focusing point of the light beam on a predetermined track in the information recording layer, means for generating a reproduction signal from the light beam reflected by the information recording layer, and the reproduction signal And a PLL circuit for generating a reference timing signal, wherein the gain setting means determines the gain of the PLL circuit when generating the reference timing signal from the first information recording layer. The gain is set higher than the gain of the PLL circuit when the reference timing signal is generated from the information recording layer.
  • the high-frequency gain is moved after the focusing point is moved. From the value for the current information recording layer to the value for the target other information recording layer.
  • the distance between the disc surface and the second information recording layer is 100 / zm or less.
  • the gain setting means stores parameters that define gain characteristics for the plurality of information recording layers.
  • the gain setting means updates the initial value of the parameter to a new set value in accordance with each mounted optical disc.
  • the transient response of various signals is reduced by adjusting the gain intersection frequency of the control loop. Therefore, it is possible to avoid a situation where the control loop is lost or the amplitude of the RF signal is lost. For this reason, it is possible to provide a highly reliable optical disc apparatus compatible with a multilayer disc while ensuring reproduction signal quality.
  • FIG. 1] (a), (b), and (c) show the positional relationship between the cross-sectional configuration of the optical disk 102 on which the scratch 103 exists on the surface and the focal point of the optical beam.
  • FIG. 2] (a), (b), and (c) are the FE signal and disc surface obtained when focus control is performed in the states of Fig. 1 (a), (b), and (c), respectively. It schematically shows the relationship with the wound.
  • FIG. 3 is a diagram schematically showing how the amplitude of the FE signal given to the servo control system (corresponding to the magnitude of disturbance such as surface runout) decreases due to servo control.
  • FIG. 4 is a graph schematically showing gain characteristics of focus control in the optical disc apparatus.
  • FIG. 5 is a graph showing the relationship between defocus and disk tilt and reproduced signal quality for each of the information recording layer LO layer and L1 layer.
  • FIG. 6 is a diagram showing functional blocks of the optical disc device according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a configuration of an optical disc device according to an embodiment of the present invention.
  • FIG. 8 (a), (b), and (c) show the RF signal obtained when focus control is performed in the states of Fig. 1 (a), (b), and (c), respectively, and the disk surface. Schematically show the relationship with the wound!
  • FIG. 9 is a diagram showing a frequency characteristic of gain in HPF 182 included in the optical disc apparatus of Embodiment 2.
  • FIGS. FIGS. L (a) to (c) all show the positional relationship between the cross-sectional configuration of the optical disc 102 and the focal point of the light beam. Illustrated !, the optical disk (thickness: 1.2 mm) 102 has a substrate (thickness: 1. lmm) 180, an information recording layer LO, Ll, L2 supported by the substrate 180, and an information recording layer L2. And a protective film 188 for covering. A thin transparent layer is interposed between the information recording layers LO and L1 and between the information recording layers Ll and L2.
  • FIGS. 1 (a), (b), and (c) show the states in which the focal point of the light beam is located on the information recording layers LO, Ll, and L2, respectively.
  • the three information recording layers L0 to L2 are stacked at an interval of 25 ⁇ m within a thickness of 100 ⁇ m. That is, the information recording layers LO, Ll, and L2 are disposed at a depth of 100 m, 75 m, and 50 m from the surface (disc surface) of the protective film (thickness: about 50 m) 188, respectively.
  • the protective film 188 is made of a transparent material so as to transmit the light beam focused by the focusing lens 126, and each information recording layer L0 to L2 is optically accessed via the protective film 188. .
  • the information recording layer of the three information recording layers L0 to L2 should be accessed by adjusting the position of the focusing lens 126 in the optical axis direction (direction perpendicular to the disk surface).
  • the focal point of the light beam should be positioned on the target information recording layer.
  • the area of the light beam cross section formed by the disk surface crossing the light beam is relatively large, and the area ratio of the scratch 103 in the area is small.
  • the area of the light beam cross section formed by the disk surface crossing the light beam is relatively small, and the area ratio of the scratch 103 in the area is large.
  • the influence of the scratch 103 formed on the surface of the optical disc 102 differs depending on which information recording layer of the information recording layers LO, Ll, and L2 the focal point of the optical beam is located on.
  • Figs. 2 (a), (b), and (c) show the FE signal and scratches obtained when focus control is performed in the states of Figs. 1 (a), (b), and (c), respectively. The relationship between and is schematically shown. The focus control gain is set to the same size in all cases as before.
  • Figure 2 (a) shows that due to the effect of the scratch 103, the period during which an appropriate FE signal cannot be obtained is long.
  • FC operation indicates that focus control (focus control) is performed, and the FE signal vibrates with a small amplitude.
  • focus control focus control
  • the focal point of the light beam is located on the information recording layer L0.
  • force focusing control that causes surface deflection of the optical disk causes the focusing lens 126 in FIG. 1 (a) to follow the surface contact of the optical disk, so that the light is always on the information recording layer L0.
  • the focal point of the beam can be maintained.
  • the FE signal vibrates slightly as shown in FIG. 2 (a) even during FC operation.
  • the light beam begins to traverse the scratches on the disk surface, and as a result, a proper FE signal cannot be generated.
  • a proper FE signal cannot be generated.
  • an accurate FE signal is not generated, so that the focal point of the light beam may greatly deviate from the information recording surface L0.
  • an appropriate FE signal can be generated, so that the FC operation can be started again.
  • a FE signal having a magnitude corresponding to the positional deviation between the focusing point of the light beam and the information recording surface LO is generated, and the position of the focusing lens 126 is controlled so that this FE signal becomes zero.
  • a large amplitude change occurs in the FE signal, but the focus control enables the focal point of the light beam to be positioned on the information recording layer LO.
  • the amplitude of the FE signal is reduced to an amplitude equivalent to 0.3 m.
  • the deviation between the focal point of the light beam and the target information recording layer is kept within a range of 0.3 m or less.
  • the actual gain has frequency dependence, it is not as simple as above.
  • FIG. 4 is a graph schematically showing the gain characteristic of the focus control loop in the optical disc apparatus. Since the gain has frequency dependence, for example, even if the gain is 60 dB at a frequency of 50 Hz, the gain decreases as the frequency increases. In this specification, the frequency at which the gain is zero is referred to as “gain intersection frequency”.
  • the gain characteristic of the servo loop is set to the gain intersection frequency. It can be defined by the wave number.
  • Figure 4 shows an overview of the two types of gain characteristics. The gain characteristics indicated by the broken line have higher gains in the high frequency region than the gain characteristics indicated by the solid line. In servo control in an actual optical disc device, gain characteristics as shown in Fig. 4 are shown. Therefore, instead of describing the gain at each frequency strictly, only the gain intersection frequency is specified, and the outline of the gain characteristics is determined. it can.
  • the frequency at the gain intersection 1 when the gain characteristic is a solid line is 2 kHz
  • the frequency at the gain intersection 2 when the gain characteristic is a broken line is 3 kHz. Reducing the gain crossover frequency from 3kHz to 2kHz will lower the gain over a relatively wide frequency range.
  • the gain has frequency dependence as described above, for example, even when the gain at a frequency of 50 Hz is 60 dB, the gain at a frequency of 500 Hz is reduced to 20 dB.
  • the FE signal vibrates greatly due to disturbances such as surface deflection of the optical disk.
  • the amplitude of the FE signal at a frequency of 50 Hz is initially 300 m, the amplitude after servo control is 0.3. Decrease to about m.
  • the gain force is relatively small for components with higher frequencies included in the FE signal, the reduction rate of the disturbance amplitude is low.
  • the magnitude of the signal amplitude reduced by servo control is sometimes referred to as “control residue”.
  • FIG. 5 shows that the information recording layers LO layer and L1 layer having different depths are not focused.
  • 6 is a graph showing the relationship between defocus, disc tilt, and playback signal quality.
  • the playback signal quality is indicated by “MLSE”.
  • MLSE is an index that defines the distribution of the accuracy of compensation after waveform equivalence in the PRML (Partial 'Response • Maximum' Liquid) signal processing method, and can be used as a signal quality index in the same way as jitter.
  • MLSE's Fukuda field is Harumitsu Miyashita, et.aU.Signal Qualification Method for Partial-Response Maximum-Likelihood Read / Write ChannelJ , pp. 4850-4851), the entire contents of which are incorporated herein by reference, and disc tilt is the radial tilt (R-tilt) and tangential tilt (T-tilt) 2 Evaluate in two parts!
  • the tilt margin increases as the coma aberration decreases.
  • the aperture ratio of the lens is NA
  • the wavelength of the light beam is defined
  • the magnitude of the coma aberration is expressed by d X NA 3 / e. Therefore, in a Blu-ray disc drive using a lens with a large NA, the difference in tilt margin due to the difference in depth between the information recording layers L0 and L1 becomes more prominent.
  • the transient response of the focus control with respect to the scratch on the disk surface becomes more severe as the position of the information recording layer is closer to the disk surface.
  • the tilt margin increases as the position of the information recording layer is closer to the disc surface, as shown in FIG. This tendency is conspicuous when the information recording layer exists at a position close to the disc surface (the disc surface force is also less than 100 m deep) like BD.
  • the loop gain of servo control is changed for each information recording layer in order to moderate the transient response to the scratch on the disk surface.
  • the gain intersection frequency is set to a relatively low value so that the gain decreases as the position of the information recording layer approaches the disk surface. In this way, the gain for the information recording layer is shallow. If the setting is low, the follow-up residual with respect to the surface deflection of the optical disc increases, but the incidence of read errors does not increase because the tilt margin is relatively large in the shallow information recording layer. Therefore, it is preferable that the set value of the gain intersection frequency in each information recording layer is determined to be a value corresponding to the amount of enlargement of the tilt margin.
  • the optical disc apparatus 100 includes an optical head 110 that optically accesses a desired information recording layer in the optical disc 102.
  • the optical disk 102 has a plurality of information recording layers as shown in FIG. 1, for example.
  • the optical head 110 focuses the light beam on an arbitrary information recording layer of the optical disc 102, and converts the light reflected by the information recording layer into an electric signal.
  • the optical head 110 includes, for example, a light source such as a semiconductor laser and a lens (objective lens) that bundles an optical beam emitted from the light source.
  • the optical head 110 may include a plurality of light sources that emit light beams of different wavelengths and a plurality of object lenses that each focus a light beam of a specific wavelength. In that case, an appropriate light source and objective lens are selected according to the type of the optical disk mounted on the optical disk apparatus.
  • the aperture (NA) of the objective lens used for focusing the laser beam is about 0.6.
  • the aperture (NA) of the objective lens used for focusing the laser beam is 0.85.
  • the moving unit 112 includes an actuator for adjusting the position of the objective lens described above.
  • This actuator can move the objective lens in parallel to the information recording layer, in addition to moving the objective lens in the direction perpendicular to the information recording layer of the optical disc 102.
  • the focal point of the light beam can be moved by moving the objective lens, and data can be written to or read from any track on any information recording layer of the optical disk.
  • the focus detection unit 114 Based on the electrical signal output from the optical head 110, the focus detection unit 114 generates an FE signal indicating the positional deviation between the focal point of the optical beam and the target information recording layer.
  • the focus control unit 117 performs a filter operation on the FE signal received from the focus detection unit 114 and supplies a drive signal to the moving unit 112.
  • the moving unit 112 during the focus control controls the position of the objective lens in the optical head 110 in the optical axis direction based on the drive signal received from the focus detection unit 114, and the focal point of the light beam is on the information recording layer of the optical disc. To be located.
  • the focus control unit 117 turns off the focus control before “interlayer movement” is performed.
  • the controller 104 drives the moving unit 112 to greatly change the position of the objective lens along the optical axis direction and move the focal point of the light beam to another information recording layer. After the “interlayer movement” is finished, the focus control unit 117 turns on the focus control.
  • the tracking detection unit 115 generates a tracking error signal (TE signal) based on the electrical signal output from the optical head 110.
  • the tracking control unit 118 performs a filter operation on the TE signal and drives the moving unit 112.
  • the moving unit 112 performs tracking control so that the focal point of the light beam is positioned on the desired track of the optical disc 102 in accordance with the signal from the tracking control unit 118.
  • the RF adder 116 adds signals from the optical head 110 to generate an RF signal.
  • Noise filter (HPF) 119A removes low frequency components from the RF signal and ensures the required RF amplitude.
  • the equalizer unit 119B amplifies a signal component included in a predetermined frequency band in the output of the HPF 119A, and attenuates a signal component in an unnecessary band.
  • the reproduction unit 119C binarizes the output from the equalizer 119B, and then performs digital signal processing such as error correction and demodulation. To do things. In this way, data recorded on the optical disk 102 can be reproduced.
  • the controller 104 controls the moving unit 112 to move the focal point of the light beam between a plurality of information recording layers on the optical disc 102 (interlayer movement).
  • the characteristic point in this embodiment is that the focus is
  • the control unit 117 performs gain switching. That is, in the present embodiment, the loop gain for focus control is changed so that the gain intersection frequency becomes lower as the information recording layer on which the focusing point of the light beam is positioned is closer to the disk surface (light incident side surface).
  • the gain intersection frequency is lowered, in order to obtain the effect of the present embodiment, it is preferable to adjust the gain intersection frequency so that the gain at 500 Hz to 5 kHz is lowered by 3 dB or more, for example.
  • the illustrated optical disc apparatus includes a light source 122, a coupling lens 123, a focus actuator 124, an objective lens 126, a tracking actuator 128, and a polarization beam splitter 130 as components of an optical head.
  • the light source 122 is a semiconductor laser that emits a light beam.
  • a single light source 122 is shown in FIG. 7, but the actual light source may be composed of, for example, three semiconductor laser chips that emit laser light of different wavelengths.
  • the coupling lens 123 turns the light beam emitted from the light source 122 into parallel light.
  • the polarization beam splitter 130 reflects the parallel light from the force coupling lens 123 toward the side where the optical disk 102 is located. The light reflected by the polarization beam splitter 130 passes through the objective lens 126 and enters the optical disk 102.
  • the focus actuator 124 changes the position of the objective lens 126 in a direction substantially perpendicular to the information recording layer of the optical disc 102
  • the tracking actuator 128 changes the position of the objective lens 126. It is changed in a direction substantially parallel to the information recording layer of the optical disk 102.
  • the objective lens 126 focuses the light beam reflected by the polarization beam splitter 130 and positions the focal point on the information recording layer of the optical disk 102. At this time, a light beam spot is formed on the information recording layer.
  • the laser light reflected by the optical disk 102 passes through the objective lens 126 and the polarization beam splitter 130.
  • the condenser lens 132 focuses the reflected light from the optical disk 102 that has passed through the objective lens 126 and the polarization beam splitter 130 onto the photodetector 134.
  • the photodetector 134 receives the light that has passed through the light collecting lens 132 and converts the optical signal into an electric signal (current signal).
  • the photodetector 134 has, for example, a quadrant light receiving area. In the example shown in FIG. 7, four types of electric signal powers output from the optical detector 134 are input to the calorie calculators 144 and 146 via the preamplifiers 136, 138, 140, and 142.
  • FIG. 7 further includes comparators 152 and 154, a phase comparator 156, differential amplifiers 158 and 160, a digital 'signal' processor (DSP) 162, and gain switching circuits 164 and 166. And analog-digital (AD) conversion 168, 170.
  • comparators 152 and 154 a phase comparator 156, differential amplifiers 158 and 160, a digital 'signal' processor (DSP) 162, and gain switching circuits 164 and 166.
  • DSP digital 'signal' processor
  • AD analog-digital
  • the differential amplifier 158 receives the outputs from the adders 144 and 146 and outputs a focus error signal (FE signal).
  • the FE signal is a signal for controlling the light beam to be in a predetermined focused state on the information recording layer of the optical disc 102.
  • the detection method of the FE signal is not particularly limited, and the astigmatism method may be used, the knife edge method may be used, and the SSD (spot sized 'detection') method is used. What was there! / ⁇ The circuit configuration may be appropriately changed according to the detection method.
  • the comparators 152 and 154 binarize the signals from the calorie calculation circuits 144 and 146, respectively.
  • the phase comparator 156 performs phase comparison of the signals output from the comparators 152 and 154.
  • the differential amplifier 160 receives the output from the phase comparator 156 and outputs a tracking error signal (TE signal).
  • the TE signal is a signal for controlling the light beam to scan correctly on the track of the optical disk 102.
  • the TE signal detection method is not particularly limited, the phase difference method is not limited, the push-pull method may be used, or the 3-beam method may be used. ⁇ .
  • the circuit configuration may be changed appropriately according to the detection method.
  • the DSP 162 corresponding to the controller 104 in FIG. 6 outputs a control signal for tracking control to the drive circuit 150 in accordance with the TE signal or the like. Further, the DSP 162 outputs a control signal for focus control to the drive circuit 148 in accordance with the FE signal or the like.
  • the drive circuit 150 drives the tracking actuator 128 according to the control signal from DSP 162. Tratkin The guactuator 128 moves the focusing lens 126 in a direction substantially parallel to the information recording layer of the optical disc 102.
  • the drive circuit 148 drives the focus actuator 124 according to the control signal from the DSP 162.
  • the focus actuator 124 moves the focusing lens 126 in a direction substantially perpendicular to the information recording layer of the optical disc 102.
  • the gain switching circuit 164 adjusts the gain of focus control so that the FE signal has a predetermined amplitude.
  • the AD converter 168 converts the signal from the gain switching circuit 164 into a digital signal and outputs it to the DSP 162.
  • the gain switching circuit 166 adjusts the gain of tracking control so that the TE signal has a predetermined amplitude.
  • the AD converter 170 converts the signal from the gain switching circuit 166 into a digital signal and outputs it to the DSP 162.
  • the output of the photodetector 134 is also input to the RF adder circuit 181.
  • the RF adder circuit 181 adds the outputs of the adder circuits 144 and 146 while maintaining the frequency band.
  • the RF signal is a signal corresponding to a local change in the reflectance of the information recording surface of the optical disc 102, and is used for reproducing address information and user data.
  • the output of the RF adder circuit passes through a no-pass filter (HPF) 182 to compensate the amplitude of the recording carrier 102 for reflectivity reduction, surface scratches, dust and dirt, and to the equalizer (EQ) 183. Entered.
  • HPF no-pass filter
  • the EQ 183 is a high-order filter composed of, for example, an equiripple filter in order to extract an effective signal included in the RF signal.
  • the EQ 183 emphasizes the necessary frequency band and attenuates and removes unnecessary high frequencies.
  • the RF signal in the effective band extracted by the EQ 183 is digitized by the binary signal circuit 184 constituting the reproducing unit 119 C shown in FIG. 6, and output through the ECCZ demodulation circuit 185.
  • the disc motor 120 rotates the optical disc 102 at a predetermined rotational speed.
  • the photodetector 134, the preamplifiers 136, 138, 140, 142, the addition circuits 144, 146, the 3 generators 152, 154, and the potential comparator it 156
  • the dynamic amplifier 160, the gain switching circuit 166, the AD converter 170, the DSP 162, the driving circuit 150, and the tracking character 128 constitute the tracking control means in the claims.
  • the actuator 124 constitutes a focus control means in the claims.
  • the focal point of the optical beam is moved from the information recording layer LO to the information recording layer L1 by the action of the DSP 162 and the drive circuit 148.
  • the gain switching circuit 164 is controlled so that the gain intersection frequency after moving to the information recording layer L1 is equal to the value GF1.
  • the focus control and tracking control servo loops are closed.
  • the gain intersection frequency GF1 at this time is lower than the gain intersection frequency GFO of the information recording layer LO.
  • the focal point of the light beam is positioned closest to the information recording layer L1 by the action of the DSP 162 and the drive circuit 148. Moved to the information recording layer L2. Also in this case, in the present embodiment, the gain switching circuit 164 is controlled so that the gain intersection frequency after moving to the information recording layer L2 becomes equal to the value GF2. After the focal point of the light beam reaches the information recording layer L2, the servo loop for force control and tracking control is closed.
  • the value of the gain crossover frequency for the information recording layers LO, Ll, and L2 in this embodiment satisfies the relationship of GF0> GF1> GF2.
  • the parameter that defines the gain setting value or gain characteristic is stored in advance as a table value in the DSP162 memory (not shown).
  • various parameters that define the gain are switched before the interlayer movement. Since the gain switching in the focus servo and tracking servo does not become unstable even if performed before the interlayer movement, it is preferable to perform it before starting the actual interlayer movement. This is because even if the gain is switched before moving between the layers in the stable state in which the focus servo or tracking servo is operating, the servo does not come off due to the effect. Conversely, if the reflectance of the information recording layer and the modulation rate of the tracking signal vary from one information recording layer to another, it is difficult to obtain an appropriate gain characteristic after moving between layers, making it difficult to close the servo loop. Because.
  • the gain characteristic that is different for each information recording layer is preferably optimized according to the difference of individual optical discs. The following is a brief description of how to adjust the gain characteristics by learning at startup.
  • the information recording layer LO of the optical disk 102 mounted on the optical disk apparatus is focused on the information recording layer LO farthest from the objective lens 126.
  • the focus character 124 operates.
  • the gain switching circuit 164 is adjusted so that the gain intersection frequency of the focus control becomes equal to the value GFO, and the gain characteristic of the focus servo is corrected to the initial value force.
  • the focal point of the light beam is moved from the information recording layer LO to the information recording layer L 1 by the action of the DSP 162 and the drive circuit 148.
  • the tracking control servo loop is closed, and the gain switching circuit 164 is controlled so that the gain intersection frequency becomes equal to the value GF1.
  • the focal point of the light beam is moved from the information recording layer L1 to the information recording layer L2 located on the foremost side by the action of the DSP 162 and the drive circuit 148. At this time, it is preferable to use the adjustment value in the information recording layer L1 as the initial gain of the focus control.
  • the tracking control servo loop is closed and the gain switching circuit 164 is controlled so that its gain intersection frequency becomes equal to the value GF2.
  • This gain intersection frequency GF2 is lower than the gain intersection frequency GF1 of the information recording layer L1.
  • Parameters that define the adjusted gain are stored as table values in a memory (not shown) built in the DSP 162.
  • each information recording layer of the optical disc also varies depending on the optical disc, it is preferable to adjust a parameter that defines the gain due to the variation in reflectivity. As described above, such gain parameter adjustment is preferably performed when the optical disk apparatus is started. In this embodiment, the focus control gain is adjusted for each information recording layer!
  • the gain of 1S tracking control may be adjusted for each information recording layer.
  • the relationship between tracking control gain, TE signal response due to disc surface scratches, and tilt margin is the same as in focus control.
  • the optical disc apparatus of the present embodiment even if a scratch is present on the surface of a multi-layer disc having a plurality of stacked information recording layers, the stability of the control of the optical disc apparatus and high-quality recording / reproduction can be achieved.
  • a device that is compatible and highly reliable can be provided.
  • the basic configuration of the optical disc apparatus in the present embodiment is as shown in FIG.
  • the optical disk apparatus of the present embodiment is different from the optical disk apparatus of the first embodiment described above in that the frequency characteristic of EQ183 is changed according to the depth of the information recording layer provided in the optical disk 102.
  • Figs. 8 (a), (b), and (c) show the RF signal and disc obtained when focus control is performed in the states of Figs. 1 (a), (b), and (c), respectively. Show the relationship with the surface scratches!
  • the gain in HPF1 82 is set to be the same in all cases as before.
  • FIG. 1 (a) when the focal point of the light beam is located on the information recording layer LO, the time for the scratch 103 to cross the light beam becomes relatively long.
  • Figure 8 (a) shows that due to the effect of the scratch 103, a period during which an appropriate RF signal cannot be obtained is long. That is, defocusing occurs due to the scratch 103, and the period during which the RF signal is temporarily attenuated becomes longer.
  • the area ratio of the scratch 103 in the cross-sectional area of the light beam is small, the influence of the scratch 103 is relatively small. For this reason, the fluctuation (shake) of the RF signal is small before and after the light beam passes through the scratch 103.
  • the defocus margin is equal to 0.2 m, but the tilt margin of the radial tilt margin and the tangential tilt margin is larger in the information recording layer L1.
  • the high-frequency gain of HPF182 (gain in the RF band of frequency 1MHz or more) is changed in three stages of values GHO, GH1, and GH2 according to the information recording layer.
  • Figure 9 shows the frequency dependence of the gain.
  • F1 that defines the range of the RF band is about 4 MHz
  • F2 is about 16 MHz.
  • the high frequency gain is a value GHO for the information recording layer LO, a value GH1 for the information recording layer L1, and a value GH2 for the information recording layer L2.
  • the high frequency gain is set to a higher value as the position of the information recording layer becomes shallower.
  • the high-frequency gain value for each information recording layer is preferably set to a value corresponding to a large amount of tilt margin.
  • the setting value of the high frequency gain in the HPF 182 may be individually adjusted in the manufacturing process according to the resolution of the optical head and the variation of the aperture, and may be written in the EEPROM for each layer. Alternatively, when the optical disk device starts up, it moves to the area of BCA (Burst Cutting Area) for copyright protection and disk ID assignment that exists in the inner peripheral area of the optical disk. If the part A is regarded as a scratch, the RF amplitude and jitter may be adjusted to the best so that the HPF gain is strongest against the scratch.
  • the adjusted gain setting value is stored as a table value in the RAM (not shown) of DSP 162, for example.
  • the gain is switched not immediately before the interlayer movement but immediately after the interlayer movement.
  • the gain switching is preferably performed after the interlayer movement, but can be performed before the interlayer movement.
  • the gain of the servo control gain intersection point frequency is reduced.
  • sufficient signal quality can be obtained. For this reason, the stability against optical disk scratches and the quality of recording and reproduction can be achieved in any information recording layer, and a highly reliable apparatus can be provided.
  • the rate at which the amplitude of the RF signal due to scratches on the disk surface is attenuated increases as the position of the information recording layer is closer to the disk surface. This also affects the PLL (Phase Locked Loop).
  • the PLL is a known circuit that matches the frequency of an input signal or reference frequency with that of an output signal. A phase difference between the input signal and the output signal can be detected, and a voltage controlled oscillator (VCO) can be used to generate a signal that is accurately synchronized with the reference frequency.
  • VCO voltage controlled oscillator
  • the gain of the PLL is preferably set to a larger value as the information recording layer becomes shallower.
  • the gain is increased to improve the pull-in performance, so that the pull-in can be performed quickly after the wound has passed.
  • the optical disc apparatus of the present invention may have a configuration in which Embodiments 1 to 3 are arbitrarily combined. For example, let's change both the gain of focus control and the gain of PLL for each information recording layer.
  • one optical disc has three information recording layers L0 to L2, but the optical disc has two information recording layers or four or more information recording layers. It's okay. Further, it is not necessary to change the gain characteristics in all information recording layers. For example, the information recording layers L0 and L1 are set to the same gain characteristic (the same gain intersection frequency or high frequency gain), and only the gain characteristic of the information recording layer L2 located on the outermost surface side is changed. Good. Industrial applicability
  • the optical disc apparatus of the present invention can stably perform data recording / reproduction for a multilayer optical disc.
  • the information recording layer is optically accessed at a position close to the surface of the optical disk, the FE signal and the RF signal are likely to be adversely affected by scratches formed on the surface of the disk. Therefore, it is possible to reduce the influence and improve the signal quality.
  • the present invention exhibits a particularly advantageous effect when data recording / reproduction is performed on a bare BD.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

 本発明の光ディスク装置は、ディスク表面からの距離が相対的に小さい第1の情報記録層と前記ディスク表面からの距離が相対的に大きい第2の情報記録層とを含む複数の情報記録層を備える光ディスク102からデータを読み出すことができる。この光ディスク装置は、光ビームの集束点を光ディスク102の任意の情報記録層上に位置させるフォーカス制御部117と、光ビームの集束点を情報記録層における所定のトラック上に位置させるトラッキング制御部118と、フォーカス制御部117およびトラッキング制御部118の少なくとも一方のゲイン特性を変化させることができるゲイン切換部108とを備えている。ゲイン切換部108は、第1の情報記録層からデータを読み出すときのゲイン交点周波数を、第2の情報記録層からデータを読み出すときのゲイン交点周波数よりも低い値に設定する。                                                                       

Description

明 細 書
光ディスク装置
技術分野
[0001] 本発明は、回転する円盤状の情報担体 (以下、「光ディスク」と称する。 )に対するデ ータの記録、および光ディスクに記録されたデータの再生の少なくとも一方を行う光 ディスク装置に関する。
背景技術
[0002] 光ディスクに記録されているデータは、比較的弱い一定の光量の光ビームを回転 する光ディスクに照射し、光ディスクによって変調された反射光を検出することによつ て再生される。
[0003] 再生専用の光ディスクには、光ディスクの製造段階でピットによる情報が予めスパイ ラル状に記録されている。これに対して、書き換え可能な光ディスクでは、スパイラル 状のランドまたはグループを有するトラックが形成された基材表面に、光学的にデー タの記録 Z再生が可能な記録材料膜が蒸着等の方法によって堆積されて 、る。書き 換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光量 を変調した光ビームを光ディスクに照射し、それによつて記録材料膜の特性を局所的 に変化させることによってデータの書き込みを行う。
[0004] なお、ピットの深さ、トラックの深さ、および記録材料膜の厚さは、光ディスク基材の 厚さに比べて小さい。このため、光ディスクにおいてデータが記録されている部分は 、 2次元的な面を構成しており、「情報記録面」と称される場合がある。本明細書では 、このような情報記録面が深さ方向にも物理的な大きさを有していることを考慮し、「 情報記録面」の語句を用いる代わりに、「情報記録層」の語句を用いることとする。光 ディスクは、このような情報記録層を少なくとも 1つ有している。なお、 1つの情報記録 層力 現実には、相変化材料層や反射層などの複数の層を含んでいてもよい。
[0005] 記録可能な光ディスクにデータを記録するとき、または、このような光ディスクに記録 されているデータを再生するとき、光ビームが情報記録層における目標トラック上で 常に所定の集束状態となる必要がある。このためには、「フォーカス制御」および「トラ ッキング制御」が必要となる。「フォーカス制御」は、光ビームの焦点の位置が常に情 報記録層上に位置するように対物レンズの位置を情報記録面の法線方向(以下、「 基板の深さ方向」と称する。)に制御することである。一方、トラッキング制御とは、光ビ ームのスポットが所定のトラック上に位置するように対物レンズの位置を光ディスクの 半径方向(以下、「ディスク径方向」と称する。)に制御することである。
[0006] 従来、高密度 ·大容量の光ディスクとして、 DVD (Digital Versatile Disc) -ROM, DVD-RAM, DVD-RW, DVD-R, DVD+RW, DVD+R等の光ディスクが 実用化されてきた。また、 CD (Compact Disc)は今も普及している。現在は、これらの 光ディスクよりもさらに高密度化 ·大容量化されたブルーレイディスク (Blu-ray Disc; B D)などの次世代光ディスクの開発 ·実用化が進められつつある。また、 1枚の光ディ スクに記録され得るデータの容量を高めるため、積層された複数の情報記録層を備 える光ディスクも開発されている。
[0007] 上記の光ディスクの中には、カートリッジに収納された状態ではなぐベア (裸)で取 り扱われるものがある。このような光ディスクでの表面には傷が形成されたり、塵また は指紋が付着しやすい。光ディスクの表面上の傷、塵、および指紋は、光ディスクを 照射する光ビームに対して光学的な障害物となるため、フォーカス制御やトラツキン グ制御のためのサーボがはずれたり、再生信号 (RF信号)の振幅が小さくなりすぎる ことがあり、その結果、データの記録'再生を安定して実行できない場合がある。
[0008] 特許文献 1は、光ディスク上に形成された傷を検知し、光ビームの反射が傷による 影響を受けて 、る期間、フォーカスサーボおよびトラッキングサーボのゲイン (利得) を小さくする技術を開示している。サーボのゲインを低減することにより、傷の影響を 補償できる。
[0009] 特許文献 1に開示されて!、る技術では、 3ビーム法を採用しており、主ビームの超 解像形成物による回折現象によって生ずるサイドローブを利用して 、る。この技術で は、サイドローブが光ディスク上を主ビームに先行して移動する。このサイドローブが 光ディスクの傷の上を通り過ぎると、反射光の強度が傷によって増加する。この強度 変化を検知することにより、サイドローブに後続する主ビームが傷の上を通り過ぎる直 前に、ゲインを低減することが可能になる。 特許文献 1 :特開平 8— 23586号公報 (段落 2〜18、図 6、図 2)
発明の開示
発明が解決しょうとする課題
[0010] BDの記録密度は、 DVDの記録密度の 5倍であり、 BDのトラックピッチおよびビー ム径は、それぞれ、約 1Z2および約 1Z5に縮小している。このため、フォーカスサー ボおよびトラッキングサーボにおけるゲインを高め、光ディスクの面振れや偏心による 残差を低減しなければ、品質のょ ヽ RF信号を得ることが難 、。
[0011] また、 2層以上の情報記録層を備える光ディスク(以下、「多層ディスク」と称する。) では、各情報記録層の反射率が 1層の情報記録層を備える光ディスク(以下、「単層 ディスク」と称する。 )における情報記録層の反射率に比べて低い。このため、多層デ イスクでは、 RF信号の振幅が小さくなり、その結果、 SN (信号対ノイズ比)が低下して しまう。特に、 BDのようにディスク表面 (光入射側表面)に近い位置に情報記録層が 存在する多層光ディスクの場合、ディスク表面に傷やダストが存在すると、後に詳しく 説明するように、信号品質が特に劣化しやすいという問題がある。このことは、特にデ イスクカートリッジなどのケースを用いずに、ベア状態の BDを使用する場合に顕著で ある。
[0012] 本発明は、上記課題に鑑みてなされたものであり、ディスク表面上の傷や汚れに強 ぐ品質の良い RF信号を得ることのできる光ディスク装置を提供することを主たる目 的としている。
課題を解決するための手段
[0013] 本発明の光ディスク装置は、ディスク表面力もの距離が相対的に小さい第 1の情報 記録層と前記ディスク表面からの距離が相対的に大きい第 2の情報記録層とを含む 複数の情報記録層を備える光ディスク力 データを読み出すことのできる光ディスク 装置であって、光ビームを放射する光源と、前記光源カゝら放射された光ビームを集束 するレンズと、前記光ビームの集束点を前記光ディスクの任意の情報記録層上に位 置させるフォーカス制御手段と、前記光ビームの集束点を前記情報記録層における 所定のトラック上に位置させるトラッキング制御手段と、前記フォーカス制御手段およ びトラッキング制御手段の少なくとも一方のゲイン特性を変化させることができるゲイ ン設定手段とを備え、前記ゲイン設定手段は、前記第 1の情報記録層からデータを 読み出すときのゲイン交点周波数を、前記第 2の情報記録層からデータを読み出す ときのゲイン交点周波数よりも低い値に設定する。
[0014] 好ま 、実施形態にぉ 、て、前記光ビームの集束点を現在の情報記録層から目的 とする他の情報記録層に移動させる場合、前記集束点の移動が完了する前に、前記 ゲイン交点周波数を、前記現在の情報記録層に対する値から、前記目標とする他の 情報記録層に対する値に変化させる。
[0015] 好ま 、実施形態にぉ 、て、前記ディスク表面と前記第 2の情報記録層との間の距 離は 100 /z m以下である。
[0016] 好ま 、実施形態にお!、て、前記ゲイン設定手段は、前記複数の情報記録層に対 するゲイン特性を規定するパラメータを記憶する。
[0017] 好ましい実施形態において、搭載された個々の光ディスクに応じて前記パラメータ を調整する学習を起動時に実行する。
[0018] 本発明による他の光ディスク装置は、ディスク表面力 の距離が相対的に小さい第 1の情報記録層と前記ディスク表面からの距離が相対的に大きい第 2の情報記録層 とを含む複数の情報記録層を備える光ディスク力 データを読み出すことのできる光 ディスク装置であって、光ビームを放射する光源と、前記光源から放射された光ビー ムを集束するレンズと、前記光ビームの集束点を前記光ディスクの任意の情報記録 層上に位置させるフォーカス制御手段と、前記光ビームの集束点を前記情報記録層 における所定のトラック上に位置させるトラッキング制御手段と、前記情報記録層で反 射された光ビーム力 再生信号を生成する手段と、前記再生信号に含まれる特定周 波数帯域をカットするフィルタ手段と、前記フィルタ手段の周波数 1MHz以上におけ る高域ゲインを変化させるゲイン設定手段とを備え、前記ゲイン設定手段は、前記第 1の情報記録層からデータを読み出すときの高域ゲインを、前記第 2の情報記録層 力 データを読み出すときの高域ゲインよりも高い値に設定する。
[0019] 本発明による更に他の光ディスク装置は、ディスク表面からの距離が相対的に小さ い第 1の情報記録層と前記ディスク表面からの距離が相対的に大きい第 2の情報記 録層とを含む複数の情報記録層を備える光ディスクカゝらデータを読み出すことのでき る光ディスク装置であって、光ビームを放射する光源と、前記光源から放射された光 ビームを集束するレンズと、前記光ビームの集束点を前記光ディスクの任意の情報 記録層上に位置させるフォーカス制御手段と、前記光ビームの集束点を前記情報記 録層における所定のトラック上に位置させるトラッキング制御手段と、前記情報記録 層で反射された光ビームから再生信号を生成する手段と、前記再生信号に基づ 、て 基準タイミング信号を生成する PLL回路とを備え、前記ゲイン設定手段は、前記第 1 の情報記録層から前記基準タイミング信号を生成するときの前記 PLL回路のゲイン を、前記第 2の情報記録層から前記基準タイミング信号を生成するときの前記 PLL回 路のゲインよりも高 、値に設定する。
[0020] 好ま 、実施形態にぉ 、て、前記光ビームの集束点を現在の情報記録層から目的 とする他の情報記録層に移動させる場合、前記集束点の移動の後に、前記高域ゲイ ンを前記現在の情報記録層に対する値から、前記目標とする他の情報記録層に対 する値に変化させる。
[0021] 好ま 、実施形態にぉ 、て、前記ディスク表面と前記第 2の情報記録層との間の距 離は 100 /z m以下である。
[0022] 好ま 、実施形態にお!、て、前記ゲイン設定手段は、前記複数の情報記録層に対 するゲイン特性を規定するパラメータを記憶する。
[0023] 好ま 、実施形態にぉ ヽて、前記ゲイン設定手段は、搭載された個々の光ディスク に応じて、前記パラメータの初期値を新 、設定値に更新する。
発明の効果
[0024] 本発明によれば、複数の情報記録層を備える光ディスクの表面に傷やダストが存在 する場合でも、制御ループのゲイン交点周波数を調節することにより、各種信号の過 渡応答を低減するため、制御ループが外れたり、 RF信号に振幅の欠落が生じる事 態を避けることができる。このため、再生信号品質を確保しつつ、多層ディスクに対応 した信頼性の高い光ディスク装置を提供することができる。
図面の簡単な説明
[0025] [図 1] (a)、 (b)、 (c)は、傷 103が表面に存在する光ディスク 102の断面構成と光ビー ムの集束点との位置関係を示して 、る。 [図 2] (a)、(b)、(c)は、それぞれ、図 1 (a)、(b)、(c)の状態でフォーカス制御を行つ たときに得られる FE信号とディスク表面の傷との関係を模式的に示している。
[図 3]サーボ制御系に与えられる FE信号の振幅(面振れなどの外乱の大きさに相当) がサーボ制御によって減少する様子を模試的に示す図である。
[図 4]光ディスク装置におけるフォーカス制御のゲイン特性を模式的に示すグラフで ある。
[図 5]情報記録層 LO層、 L1層のそれぞれについて、フォーカスずれ (defocus)やディ スクチルトと再生信号品質との関係を示すグラフである。
[図 6]本発明の実施形態 1による光ディスク装置の機能ブロックを示す図である。
[図 7]本発明の実施形態による光ディスク装置の構成を示す図である
[図 8] (a)、(b)、(c)は、それぞれ、図 1 (a)、(b)、(c)の状態でフォーカス制御を行つ たときに得られる RF信号とディスク表面の傷との関係を模式的に示して!/ヽる。
[図 9]実施形態 2の光ディスク装置が備える HPF182におけるゲインの周波数特性を 示す図である。
符号の説明
100 光ディスク装置
102 光ディスク
104 コントローラ
110 光ヘッド
112 移動部
114 フォーカス検出部
115 トラッキング検出部
116 RF加算部
117 フォーカス制御部
118 トラッキング制御部
119 イコライザ部
120 再生部
発明を実施するための最良の形態 [0027] 本発明の実施形態を説明する前に、情報記録層の深さとディスク表面の傷との関 係を説明する。
[0028] まず、図 1 (a)〜(c)を参照する。図 l (a)〜(c)は、いずれも、光ディスク 102の断面 構成と光ビームの集束点との位置関係を示して 、る。図示されて!、る光ディスク (厚さ : 1. 2mm) 102は、基板 (厚さ: 1. lmm) 180と、基板 180に支持される情報記録層 LO、 Ll、 L2と、情報記録層 L2を覆う保護膜 188とを備えている。情報記録層 LO、 L 1の間、および情報記録層 Ll、 L2の間には、いずれも、薄い透明層が介在している 。図 1 (a)、 (b)、および (c)は、それぞれ、光ビームの焦点が情報記録層 LO、 Ll、 L 2上に位置する状態を示して 、る。
[0029] 3層の情報記録層 L0〜L2は、厚さ 100 μ mの範囲内において 25 μ mの間隔で積 層されている。すなわち、情報記録層 LO、 Ll、 L2は、それぞれ、保護膜 (厚さ:約 50 m) 188の表面(ディスク表面)から 100 m、 75 m、 50 mの深さに配置されて いる。保護膜 188は、集束レンズ 126で集束された光ビームを透過させるように透明 の材料から形成されており、各情報記録層 L0〜L2には、保護膜 188を介して光学 的にアクセスされる。 3層の情報記録層 L0〜L2のうちのいずれの情報記録層にァク セスするかは、集束レンズ 126の光軸方向(ディスク表面に垂直な方向)における位 置を調節し、アクセスすべき目標の情報記録層上に光ビームの集束点 (焦点)を位置 させればよい。
[0030] 図 1 (a)の状態では、ディスク表面が光ビームを横切ることよって形成される光束断 面の面積が相対的に大きぐその面積中に占める傷 103の面積割合は少ない。これ に対して、図 1 (c)に示す状態では、ディスク表面が光ビームを横切ることよって形成 される光束断面の面積は相対的に小さぐその面積中に占める傷 103の面積割合は 大きくなる。このように、情報記録層 LO、 Ll、 L2のうちのどの情報記録層上に光ビー ムの焦点が位置するかによって、光ディスク 102の表面に形成された傷 103の影響 が異なっている。
[0031] 図 2 (a)、 (b)、 (c)は、それぞれ、図 1 (a)、 (b)、 (c)の状態でフォーカス制御を行つ たときに得られる FE信号と傷との関係を模式的に示している。フォーカス制御のゲイ ンは、従来どおり、いずれの場合でも同一の大きさに設定されているものとする。 [0032] 光ビームの焦点が情報記録層 LO上に位置するとき、図 1 (a)に示す傷 103が光ビ ームを横切る時間が相対的に長くなる。図 2 (a)は、傷 103の影響により、適切な FE 信号を得ることができない期間が長いことを示している。図 2 (a)の上部に示される黒 いマークは、ディスク表面に傷による影響の大きさと、その影響が生じる期間を模式 的に示している。この期間、傷 103によってデフォーカス (光ビームの集束点が目標と する情報記録層から外れる現象)が発生し、一時的に FE信号が略ゼロにまで減衰す る。
[0033] 図 2における「FC動作」は、フォーカス制御(フォーカスコントロール)が行われて ヽ ることを示し、 FE信号は小さな振幅で振動している。例えば時刻 Aでは、フォーカス 制御が行われているため、光ビームの集束点は情報記録層 L0上に位置している。こ のとき、光ディスクが回転しているため、光ディスクの面振れが生じる力 フォーカス制 御により、図 1 (a)の集束レンズ 126が光ディスクの面触れに追従し、情報記録層 L0 上に常に光ビームの集束点を保持することができる。ただし、情報記録層 L0に対し て光ビームの集束点が僅かにずれるため、 FC動作中であっても、図 2 (a)に示すよう に FE信号は小さく振動することになる。
[0034] 時刻 Cで光ビームがディスク表面の傷を横切り始め、その結果、適正な FE信号を 生成できなくなる。光ビームがディスク表面の傷を横切りつつあるとき、正確な FE信 号が生成されないため、光ビームの集束点は、情報記録面 L0から大きくずれる可能 '性がある。
[0035] 光ビームがディスク表面の傷を横切り終わると、適正な FE信号を生成できるように なるため、再び、 FC動作を開始することができる。このとき、光ビームの集束点と、情 報記録面 LOとの位置ずれに応じた大きさの FE信号が生成され、この FE信号をゼロ にするように集束レンズ 126の位置が制御される。 FE信号に大きな振幅変化が発生 するが、フォーカス制御により、光ビームの集束点は情報記録層 LO上に位置すること ができるようになる。
[0036] 前述したように、情報記録層 LOにアクセスしているときは、光ビームの断面積に占 める傷 103の面積割合が小さいため、傷 103の影響が相対的に小さくなる。図 2 (a) の上部における黒いマークは、相対的に狭い幅を有しており、このことが傷の影響が 小さいことを表している。傷の影響が小さいため、図 2 (a)に示すように、光ビームが 傷 103を通過する前後で、 FE信号の変動(振れ)は小さくなる。
[0037] 一方、図 1 (b)の状態では、光ビームが傷を通過する時間が短縮し、傷 103によつ てデフォーカスが生じる期間も短くなる。図 1 (c)の状態では、光ビームが傷を通過す る時間は更に短縮する力 傷 103によってデフォーカスが生じる期間も更に短くなる 。このため、図 l (b)、(c)の状態では、図 2 (b)、(c)に示されるように光ビームが傷 10 3を通過する前後で、 FE信号の変動(振れ)は大きくなる。
[0038] このようにフォーカス制御のゲインを一定値に設定している場合は、記録'再生の対 象となる情報記録層の位置が浅くなるほど、図 2 (a)から (c)に示すように、傷 103の 通過前後での FE信号の乱れが大きくなる。特に、図 2 (c)に示す例では、光ビームが 傷 103を通過した直後に FE信号の変動が過度に大きくなり、その結果、フォーカス 制御がはずれてしまう可能性もある。
[0039] 次に、図 3および図 4を参照しながら、フォーカス制御ループのゲイン特性を説明す る。
[0040] 図 3は、フォーカス制御系に与えられる FE信号の振幅(面振れなどの外乱の大きさ に相当)がサーボ制御によって減少する様子を模試的に示す図である。サーボ制御 系に入力される FE信号の振幅を「X」とすると、フォーカス制御により、その振幅は「Y 」に減少する (Χ>Υ;)。このとき、サーボ制御のゲインは、 Xに対する Υの比率 (ΥΖΧ )で示すことができる。例えば YZX= lZlOOOのとき、ゲインは 60dBとなる。例えば 300 μ mの面振れがある場合、ゲイン 60dBでフォーカス制御が行われると、 FE信号 の振幅は 0. 3 m相当の振幅に低減される。すなわち、光ビームの集束点と目標の 情報記録層とのずれは 0. 3 m以下の範囲に保持される。ただし、実際のゲインは 周波数依存性を有して ヽるため、上記のように単純ではな 、。
[0041] 図 4は、光ディスク装置におけるフォーカス制御ループのゲイン特性を模式的に示 すグラフである。ゲインが周波数依存性を有するため、例えば、周波数 50Hzのとき のゲインが 60dBであっても、周波数が高くなるにつれてゲインは低下している。本明 細書では、ゲインがゼロになる周波数を「ゲイン交点周波数」と称する。
[0042] 光ディスク装置のフォーカス制御では、サーボループのゲイン特性をゲイン交点周 波数によって規定することが可能である。図 4では、 2種類のゲイン特性の概略が示さ れている。破線のゲイン特性は、実線のゲイン特性に比べて周波数の高い領域でゲ インが高くなつている。実際の光ディスク装置におけるサーボ制御では、図 4に示すよ うなゲイン特性が示されるため、各周波数におけるゲインを厳密に記述する代わりに 、ゲイン交点周波数のみを特定するだけで、ゲイン特性の概略を決定できる。
[0043] 図 4の例では、実線のゲイン特性を有する場合のゲイン交点 1の周波数を 2kHz、 破線のゲイン特性を有する場合のゲイン交点 2の周波数を 3kHzであるとする。ゲイ ン交点周波数を 3kHzから 2kHzに低減すると、比較的広い周波数範囲においてゲ インが低下することなる。
[0044] このようにゲインは周波数依存性を有するため、例えば周波数 50Hzにおけるゲイ ンが 60dBであっても、周波数が 500Hzにおけるゲインは 20dBに低下する。この場 合において、光ディスクの面振れなどの外乱に起因して FE信号が大きく振動すると き、例えば周波数 50Hzにおける FE信号の振幅が当初 300 mであったとすると、 サーボ制御後の振幅は 0. 3 m程度に減少する。ただし、 FE信号に含まれる更に 周波数が高い成分に対しては、相対的にゲイン力 、さくなるため、外乱振幅の低減 率は低くなる。サーボ制御によって低下した信号振幅の大きさを「制御残渣」と称する 場合がある。上述した 50Hzで振幅 300 mの外乱がある場合、周波数 50Hzにおけ る制御残渣は 0. 3 mであった。フォーカスサーボ制御のもとでも、制御残渣をゼロ にすることはできず、 FE信号はある大きさの振幅を持って振動しつづける。
[0045] 以上の説明から明らかなように、ゲイン交点周波数が低下すると、全体としてゲイン は低下する。図 2 (c)に示すように、ディスク表面の傷に起因して FE信号が大きく変 動すると、前述したように、フォーカス制御がはずれる問題が発生し得る。このような 問題を解決するためには、フォーカス制御の応答を抑制することが有効である。フォ 一カス制御における応答の抑制は、制御ループのゲインを小さくすることによって可 能である。ただし、このゲインを小さくすると、フォーカス制御の制御残差も大きくなる ため、光ビームの集束点と情報記録層との位置ずれが平均的に大きくなつてしまう。 このことは、再生信号の品質を劣化させるおそれがある。
[0046] 図 5は、深さの異なる情報記録層 LO層、 L1層のそれぞれについて、フォーカスず れ (defocus)やディスクチルトと再生信号品質との関係を示すグラフである。ここで、再 生信号品質は「MLSE」で示されている。 MLSEは、 PRML (パーシャル 'レスポンス •マキシマム 'ライクリフッド)信号処理方式における波形等価後の補償の確力 しさの 分布を規定する指標であり、ジッタと同様に信号品質指標として用いることができる。 MLSEの詳糸田は、 f列えば、 Harumitsu Miyashita, et.aUこよる「Signal Qualification M ethod for Partial-Response Maximum-Likelihood Read/Write ChannelJ (Japanese J ournal of Applied Physics Vol. 43, No. 7B, 2004, pp. 4850-4851)に開示されており、 この文献の全体を本願明細書に援用する。なお、ディスクチルトは、ラジアルチルト( R-tilt)、およびタンジュンシャルチルト(T—tilt)の 2つに分けて評価を行って!/、る
[0047] 図 5に示すように、情報記録層 L0と情報記録層 L1層に関する各パラメータのマー ジンを比較した場合、デフォーカスマージンは ±0. で同等である力 ラジアル チルトマージン、タンジェンシャルチルトマージンのチルトマージンは、情報記録層 L 1におけるマージンが広!、。
[0048] 一般にチルトマージンは、コマ収差が小さくなるほど、大きくなる。ここで、情報記録 層の深さを d、レンズの開口率を NA、光ビームの波長をえとした場合、コマ収差の大 きさは、 d X NA3 /えで示される。したがって、 NAの大きなレンズを用いる Blu— ray ディスクドライブでは、情報記録層 L0、 L1の深さの差によるチルトマージンの差がよ り顕著になる。
[0049] ディスク表面の傷に対するフォーカス制御の過渡応答は、図 2 (a)から(c)に示すよ うに、情報記録層の位置がディスク表面に近くなるほど激しくなる。これに対して、チ ルトマージンは、図 5に示すように、情報記録層の位置がディスク表面に近いほど、 大きくなる。この傾向は、 BDのように情報記録層がディスク表面に近い位置 (ディスク 表面力も深さ 100 m以下)に存在している場合に顕著である。
[0050] 本発明では、上記現象に着目し、ディスク表面の傷に対する過渡応答を緩やかに するため、サーボ制御のループゲインを情報記録層ごとに変化させる。具体的には、 情報記録層の位置がディスク表面に近 、ほど、ゲインが小さくなるようにゲイン交点 周波数を相対的に低 、値に設定する。このように浅 、情報記録層に対するゲインを 低く設定すると、光ディスクの面振れ等に対する追従残差が増加するが、浅い情報 記録層では相対的にチルトマージンが大きいため、リードエラーの発生率は増加しな い。したがって、各情報記録層でのゲイン交点周波数の設定値は、チルトマージンの 拡大量に相当する値に決定することが好ましい。
[0051] (実施形態 1)
次に、図 6および図 7を参照しながら、本発明による光ディスク装置による第 1の実 施形態を説明する。
[0052] まず、図 6を参照しながら本実施形態における光ディスク装置 100の機能ブロックを 説明し、その後、具体的に構成を説明することにする。
[0053] 光ディスク装置 100は、図 6に示すように、光ディスク 102における所望の情報記録 層に光学的にアクセスする光ヘッド 110を備えている。光ディスク 102は、例えば図 1 に示すように複数の情報記録層を有している。光ヘッド 110は、光ディスク 102の任 意の情報記録層に光ビームを集束し、情報記録層で反射された光を電気信号に変 換する。光ヘッド 110は、例えば半導体レーザ等の光源と、光源カゝら放射された光ビ 一ム^ ^束するレンズ (対物レンズ)を具備している。光ヘッド 110は、異なる波長の 光ビームを放射する複数の光源と、各々が特定波長の光ビームを集束する複数の対 物レンズを備えていても良い。その場合、光ディスク装置に搭載された光ディスクの 種類に応じて適切な光源および対物レンズが選択されることになる。
[0054] なお、 DVDの情報記録層力もデータを読み出し、あるいはデータを書き込むには 、赤色レーザ (波長: 660nm)を集束し、その焦点が情報記録層上に位置するように 制御する必要がある。この場合のレーザ光の集束に用いる対物レンズの開口度 (NA )は、約 0. 6である。一方、 BDの情報記録層からデータを読み出すには、青紫レー ザ (波長: 405nm)を集束し、その焦点が情報記録層上に位置するように制御する必 要がある。この場合のレーザ光の集束に用いる対物レンズの開口度 (NA)は、 0. 85 である。
[0055] 移動部 112は、上述した対物レンズの位置を調節するァクチユエータを備えている 。このァクチユエータは、光ディスク 102の情報記録層に対して垂直方向に対物レン ズを移動するだけではなぐ情報記録層に平行に対物レンズを移動させることもでき る。対物レンズの移動により光ビームの集束点を移動させ、光ディスクの任意の情報 記録層における任意のトラックにデータを書き込んだり、そのトラック力 データを読 み出したりすることができる。
[0056] フォーカス検出部 114は、光ヘッド 110から出力される電気信号に基づいて、光ビ 一ムの集束点と目標とする情報記録層との位置ずれを示す FE信号を生成する。フォ 一カス制御部 117は、フォーカス検出部 114から受け取った FE信号に対してフィル タ演算を行い、移動部 112に駆動信号を供給する。フォーカス制御時における移動 部 112は、フォーカス検出部 114から受け取った駆動信号に基づき、光ヘッド 110内 における対物レンズの光軸方向位置を制御し、光ビームの集束点が光ディスクの情 報記録層上に位置するようにする。
[0057] 光ヘッド 110による光学的なアクセスの対象が、或る情報記録層から他の情報記録 層に移るとき、光ビームの集束点を情報記録層間で垂直方向に移動させる必要があ る。このようにして光ビームの集束点を情報記録層間で移動させることを本明細書で は「層間移動」または「フォーカスジャンプ」と称する場合がある。
[0058] フォーカス制御部 117は、「層間移動」が行われる前にフォーカス制御をオフにする 。コントローラ 104は、移動部 112を駆動し、対物レンズの位置を光軸方向に沿って 大きく変化させ、光ビームの集束点を他の情報記録層に移動させる。「層間移動」が 終わった後、フォーカス制御部 117は、フォーカス制御をオンにする。
[0059] トラッキング検出部 115は、光ヘッド 110から出力される電気信号に基づいてトラッ キングエラー信号 (TE信号)を生成する。トラッキング制御部 118は、 TE信号に対す るフィルタ演算を行い、移動部 112を駆動する。移動部 112は、トラッキング制御部 1 18からの信号に応じて光ビームの集束点が光ディスク 102の所望トラック上に位置 するようにトラッキング制御を行う。
[0060] RF加算部 116は、光ヘッド 110からの信号を加算し、 RF信号を生成する。ノ、ィパ スフィルタ (HPF) 119Aは、 RF信号カゝら低周波成分を除去し、必要な RF振幅を確 保する。イコライザ部 119Bは、 HPF119Aの出力のうち所定の周波数帯域に含まれ る信号成分を増幅し、不用な帯域の信号成分を減衰させる。再生部 119Cは、ィコラ ィザ部 119Bからの出力を 2値ィ匕した後、エラー訂正や復調などのディジタル信号処 理を施す。こうして、光ディスク 102に記録されているデータを再生することができる。
[0061] コントローラ 104は、移動部 112を制御し、光ディスク 102における複数の情報記録 層の間で光ビームの集束点を移動させる (層間移動)が、本実施形態で特徴的な点 は、フォーカス制御部 117におけるゲインの切り換えを行うことにある。すなわち、本 実施形態では、光ビームの集束点を位置させる情報記録層がディスク表面 (光入射 側表面)に近いほど、ゲイン交点周波数が低くなるようにフォーカス制御のループゲ インを変化させる。ゲイン交点周波数を低下させるとき、本実施形態の効果を得るた めには、例えば 500Hz〜5kHzにおけるゲインを 3dB以上低下させるようにゲイン交 点周波数の大きさを調節することが好まし 、。
[0062] 次に、図 7を参照しながら、光ディスク装置 100のより具体的な構成を説明する。
[0063] 図示されている光ディスク装置は、光ヘッドの構成要素として、光源 122と、カツプリ ングレンズ 123と、フォーカスァクチユエータ 124と、対物レンズ 126と、トラッキングァ クチユエータ 128と、偏光ビームスプリッタ 130と、集光レンズ 132と、光検出器 134と 、プリアンプ 136、 138、 140、 142と、カロ算器 144、 146とを備えている。
[0064] 光源 122は、光ビームを放射する半導体レーザである。簡単のため、図 7には単一 の光源 122が示されているが、実際の光源は、異なる波長のレーザ光を放射する例 えば 3つの半導体レーザチップから構成されていてもよい。カップリングレンズ 123は 、光源 122から放射された光ビームを平行光にする。偏光ビームスプリッタ 130は、力 ップリングレンズ 123からの平行光を光ディスク 102が位置する側に反射する。偏光 ビームスプリッタ 130で反射された光は、対物レンズ 126を透過して光ディスク 102に 入射することになる。
[0065] フォーカスァクチユエータ 124は、対物レンズ 126の位置を光ディスク 102の情報記 録層に対して略垂直な方向に変化させ、トラッキングァクチユエータ 128は、対物レン ズ 126の位置を光ディスク 102の情報記録層と略平行な方向に変化させる。
[0066] 対物レンズ 126は、偏光ビームスプリッタ 130で反射された光ビームを集束し、光デ イスク 102の情報記録層上に焦点を位置させる。このとき情報記録層上には光ビーム スポットが形成される。光ディスク 102で反射されたレーザ光は、対物レンズ 126およ び偏光ビームスプリッタ 130を通過する。 [0067] 集光レンズ 132は、対物レンズ 126および偏光ビームスプリッタ 130を通過してきた 、光ディスク 102からの反射光を光検出器 134上に集束させる。光検出器 134は、集 光レンズ 132を通過した光を受け、その光信号を電気信号 (電流信号)に変換する。 光検出器 134は、例えば 4分割の受光領域を有している。図 7に示す例では、光検 出器 134から出力される 4種類の電気信号力 プリアンプ 136、 138、 140、 142を介 してカロ算器 144、 146に入力される。
[0068] 図 7の光ディスク装置は、更に、コンパレータ 152、 154と、位相比較器 156と、差動 増幅器 158, 160と、ディジタル 'シグナル 'プロセッサ(DSP) 162と、ゲイン切換回 路 164, 166と、アナログ ·ディジタル (AD)変翻 168, 170とを備えている。
[0069] 差動増幅器 158は、加算器 144、 146からの出力を受け取り、フォーカスエラー信 号 (FE信号)を出力する。 FE信号は、光ビームが光ディスク 102の情報記録層上で 所定の集束状態になるように制御するための信号である。 FE信号の検出法は特に 限定されず、非点収差法を用いたものでもよいし、ナイフエッジ法を用いたものであ つてもょ 、し、 SSD (スポット ·サイズド 'ディテクシヨン)法を用いたものであってもよ!/ヽ 。検出法に応じて回路構成を適宜変更してもよい。
[0070] コンパレータ 152, 154は、それぞれ、カロ算回路 144, 146からの信号を 2値化する 。位相比較器 156は、コンパレータ 152、 154から出力される信号の位相比較を行う
[0071] 差動増幅器 160は、位相比較器 156からの出力を受け取り、トラッキングエラー信 号 (TE信号)を出力する。 TE信号は、光ビームが光ディスク 102のトラック上を正しく 走査するように制御するための信号である。 TE信号の検出法は特に限定されず、位 相差法を用いたもの限定されず、プッシュプル法を用いたものであってもよいし、 3ビ 一ム法を用いたものであってもよ ヽ。検出法に応じて回路構成を適宜変更してもよ ヽ
[0072] 図 6のコントローラ 104に相当する DSP162は、 TE信号等に応じて駆動回路 150 にトラッキング制御用の制御信号を出力する。また、 DSP162は、 FE信号等に応じ て駆動回路 148にフォーカス制御用の制御信号を出力する。駆動回路 150は、 DS P162からの制御信号に応じてトラッキングァクチユエータ 128を駆動する。トラツキン グァクチユエータ 128は、集束レンズ 126を光ディスク 102の情報記録層と略平行な 方向に移動させる。駆動回路 148は、 DSP162からの制御信号に応じてフォーカス ァクチユエータ 124を駆動する。フォーカスァクチユエータ 124は、集束レンズ 126を 光ディスク 102の情報記録層と略垂直な方向に移動させる。
[0073] ゲイン切換回路 164は、 FE信号が所定の振幅をもつようにフォーカス制御のゲイン を調整する。 AD変翻168は、ゲイン切換回路 164からの信号をディジタル信号に 変換して DSP162に出力する。一方、ゲイン切換回路 166は、 TE信号が所定の振 幅を持つようにトラッキング制御のゲインを調整する。 AD変翻170は、ゲイン切換 回路 166からの信号をディジタル信号に変換して DSP162に出力する。
[0074] 光検出器 134の出力は、 RF加算回路 181にも入力される。 RF加算回路 181では 、周波数帯域を保持した状態で加算回路 144、 146の出力を加算する。 RF信号は、 光ディスク 102の情報記録面の反射率の局所的変化に対応した信号であり、アドレス 情報やユーザデータの再生に用いられる。 RF加算回路の出力は、記録坦体 102の 反射率低下や表面の傷やほこり、汚れに対して振幅を補償するためのノ、ィパスフィ ルタ(HPF) 182を通過し、イコライザ(EQ)183へ入力される。 EQ183は、 RF信号に 含まれる有効な信号を抽出するため、例えば等リプルフィルタなどで構成された高次 のフィルタである。 EQ183は、必要な周波数帯域を強調し、不要な高周波を減衰し て除去する。 EQ 183で抽出された有効な帯域の RF信号は、図 6に示す再生部 119 Cを構成する 2値ィ匕回路 184によってディジタルィ匕され、 ECCZ復調回路 185を経 て出力される。
[0075] ディスクモータ 120は、光ディスク 102を所定の回転数で回転させる。
[0076] 本実施形態における光検出器 134と、プリアンプ 136、 138、 140、 142と、加算回 路 144, 146と、 =3ンノ レータ 152, 154と、位ネ目 it較器 156と、差動増幅器 160と、 ゲイン切換回路 166と、 AD変^^ 170と、 DSP162と、駆動回路 150と、トラツキン グァクチユエータ 128とは、請求項におけるトラッキング制御手段を構成する。また、 光検出器 134と、プリアンプ 136〜142と、加算回路 144, 146と、差動増幅器 158と 、ゲイン切換回路 164と、 AD変^^ 168と、 DSP162と、駆動回路 148と、フォー力 スァクチユエータ 124とは、請求項におけるフォーカス制御手段を構成する。 [0077] 次に、本実施形態における光ディスク装置の基本的な動作を説明する。
[0078] まず、情報記録層 LOにアクセスしている状態から、情報記録層 L1への層間移動が 必要になったとする。この場合は、 DSP162および駆動回路 148の働きにより、光ビ 一ムの集束点を情報記録層 LOから情報記録層 L1に移動させる。本実施形態では、 情報記録層 L1に移動後のゲイン交点周波数を値 GF1に等しくなるようにゲイン切 換回路 164を制御する。そして光ビームの集束点が情報記録層 L1に達した後、フォ 一カス制御、トラッキング制御のサーボループを閉じる。このときのゲイン交点周波数 GF1は、情報記録層 LOのゲイン交点周波数 GFOより低い値である。
[0079] さらに情報記録層 L1から情報記録層 L2への層間移動が必要になった場合は、 D SP162および駆動回路 148の働きにより、光ビームの集束点を情報記録層 L1から 最も手前に位置する情報記録層 L2に移動させる。この場合も、本実施形態では、情 報記録層 L2に移動後のゲイン交点周波数を値 GF2に等しくなるようにゲイン切換回 路 164を制御する。そして光ビームの集束点が情報記録層 L2に達した後、フォー力 ス制御やトラッキング制御のサーボループを閉じる。
[0080] こうして、本実施形態における情報記録層 LO、 Ll、 L2に関するゲイン交点周波数 の値は、 GF0>GF1 >GF2の関係を満足することになる。ゲインの設定値あるいは ゲイン特性を規定するパラメータは、 DSP162〖こ内蔵されるメモリ(不図示)に前もつ てテーブル値として格納されて 、る。
[0081] なお、本実施形態では、ゲインを規定する各種パラメータの切り替えを、層間移動 の前に行っていている。フォーカスサーボやトラッキングサーボにおけるゲインの切り 替えは、層間移動の前に行っても不安定にならないため、実際の層間移動を開始す る前に行なうことが好ましい。なぜなら、フォーカスサーボやトラッキングサーボが動作 している安定状態で、層間移動前にゲインを切り替えても、その影響でサーボが外れ てしまうようなことはない。また逆に、情報記録層の反射率や、トラッキング信号の変 調率が情報記録層ごとにばらついた場合は、層間移動後に適切なゲイン特性を得ら れず、サーボループを閉じることが困難になるからである。従って、層間移動後に速 やかにゲイン切り替えの効果を得るには、層間移動を開始する直前にゲインの切り替 えを行うことが望ましい。 [0082] なお、情報記録層ごとに異なるゲイン特性は、個々の光ディスクの差異に応じて最 適化されることが好ましい。以下、起動時の学習によりゲイン特性を調整する方法を 簡単に説明する。
[0083] まず、光ディスク装置の電源が ON状態になると、光ディスク装置に搭載された光デ イスク 102の情報記録層のうち、対物レンズ 126から最も離れた情報記録層 LOに焦 点を結ぶようにフォーカスァクチユエータ 124が動作する。このとき、フォーカス制御 のゲイン交点周波数が値 GFOに等しくなるようにゲイン切換回路 164が調整され、フ オーカスサーボのゲイン特性が初期値力 修正される。
[0084] 次に、 DSP162および駆動回路 148の働きにより、光ビームの集束点を情報記録 層 LOから情報記録層 L1に移動させる。光ビームの集束点が情報記録層 L1に移動 した後、トラッキング制御のサーボループを閉じ、そのゲイン交点周波数を値 GF1に 等しくなるようにゲイン切換回路 164を制御する。情報記録層 L1でのゲイン調整が終 了すると、 DSP162および駆動回路 148の働きにより、光ビームの集束点を情報記 録層 L1から最も手前に位置する情報記録層 L2に移動する。このとき、フォーカス制 御の初期ゲインは情報記録層 L1での調整値を採用することが好ま 、。光ビームの 集束点が情報記録層 L2に移動した後、トラッキング制御のサーボループを閉じ、そ のゲイン交点周波数を値 GF2に等しくなるようにゲイン切換回路 164を制御する。こ のゲイン交点周波数 GF2は、情報記録層 L1のゲイン交点周波数 GF1より低い値で ある。調整後のゲインを規定するパラメータは、 DSP162に内蔵されるメモリ(不図示 )にテーブル値として格納される。
[0085] フォーカスァクチユエータ 124の感度特性ばらつきによっては、初期のゲイン変動 が大きい。このため、出荷前の工程調整において、光ディスクの面振れや偏心などの な 、安定した光ディスクを用い、その感度ばらつきを吸収するような調整値を獲得し、 光ディスク装置の不揮発性メモリに書き込んでおくことが好ま 、。
[0086] 光ディスクの情報記録層毎の反射率も光ディスクによって変動するため、反射率の 変動に起因してゲインを規定するバタメータを調整することが好ましい。このようなゲ インパラメータの調整は、上述したように、光ディスク装置の起動時に行うことが好まし い。 [0087] なお、本実施形態では、フォーカス制御のゲインを情報記録層ごとに調節して!/、る
1S トラッキング制御のゲインを情報記録層ごとに調節してもよい。トラッキング制御の ゲイン、ディスク表面傷に起因する TE信号の応答特性、およびチルトマージンの関 係も、フォーカス制御の場合と同様である。
[0088] 本実施形態の光ディスク装置によれば、積層された複数の情報記録層を有する多 層ディスクの表面に傷が存在したとしても、光ディスク装置の制御の安定性と高品質 の記録再生を両立し、信頼性の高 、装置を提供することができる。
[0089] (実施形態 2)
次に、本発明による光ディスク装置の第 2の実施形態を説明する。本実施形態にお ける光ディスク装置の基本的な構成は、図 7に示す通りである。本実施形態の光ディ スク装置が前述の実施形態 1における光ディスク装置と異なる点は、光ディスク 102 が備える情報記録層の深さに応じて EQ183の周波数特性を変化させる点にある。
[0090] 以下、本実施形態における HPF182のゲイン設定を説明する。
[0091] 図 8 (a)、 (b)、 (c)は、それぞれ、図 1 (a)、 (b)、 (c)の状態でフォーカス制御を行つ たときに得られる RF信号とディスク表面の傷との関係を模式的に示して!/、る。 HPF1 82におけるゲインは、従来どおり、いずれの場合でも同一に設定されているものとす る。
[0092] 図 1 (a)に示すように、光ビームの焦点が情報記録層 LO上に位置するとき、傷 103 が光ビームを横切る時間が相対的に長くなる。図 8 (a)は、傷 103の影響により、適切 な RF信号を得ることができない期間が長いことを示している。すなわち、傷 103によ つてデフォーカスが発生し、一時的に RF信号が減衰する期間が長くなる。ただし、前 述したように、光ビームの断面積に占める傷 103の面積割合が小さいため、傷 103の 影響が相対的に小さくなる。このため、光ビームが傷 103を通過する前後で、 RF信 号の変動 (振れ)は小さくなる。
[0093] 一方、図 1 (b)の状態では、光ビームが傷を通過する時間が短縮し、傷 103によつ てデフォーカスが生じる期間も短くなる。図 1 (c)の状態では、光ビームが傷を通過す る時間は更に短縮し、傷 103によってデフォーカスが生じる期間も更に短くなる。この ため、図 1 (b)、(c)の状態では、図 8 (b)、(c)に示されるように光ビームが傷 103を 通過する前後で、 RF信号の変動 (振れ)は大きくなる。
[0094] このように HPF182のゲイン交点周波数を一定値に設定している場合は、記録 '再 生の対象となる情報記録層の位置が浅くなるほど、傷の影響が集中するため、影響 度は大きぐ傷の通過時には RF信号の減衰も大きくなるため、振幅劣化がひどくなる 。 RF信号の振幅劣化がひどい場合、データスライスのフィードバックループもはずれ 、 2値化もできなくなる。
[0095] 本実施形態の光ディスク装置にお!、ても、情報記録層 LO、 L1に関する信号特性を 比較すると、図 5に示すよう結果が得られる。したがって、デフォーカスマージンは士 0. 2 mで同等であるが、ラジアルチルトマージン、タンジェンシャルチルトマージン のチルトマージンは情報記録層 L1のほうが大きくなる。
[0096] 本実施形態では、情報記録層に応じて、図 9に示すように HPF182の高域ゲイン( 周波数 1MHz以上の RF帯域でのゲイン)を値 GHO、 GH1、 GH2の三段階に変化 させる。図 9はゲインの周波数依存性を示しており、 BDの標準再生速度では、 RF帯 域の範囲を規定する F1は約 4MHz、 F2は約 16MHzである。
[0097] より詳細に説明すると、本実施形態では、高域ゲインを情報記録層 LOに対しては 値 GHO、情報記録層 L1に対しては値 GH1、情報記録層 L2に対しては値 GH2に設 定し、情報記録層の位置が浅くなるほど、高域ゲインを高い値に設定するようにして いる。これにより、ディスク表面の傷に起因する RF信号の減衰を各情報記録層で略 同じレベルにすることが可能になる。
[0098] HPF182の高域ゲインを高くすると、高域ノイズが増加し、信号品質が劣化する結 果、ジッタや MLSE等の指標が高くなる。しかし、図 5を参照しつつ説明したように、 情報記録層の位置が浅くなるほど、チルトマージンが拡大するため、リードエラーの 増大は発生しない。各情報記録層に関する高域ゲインの値は、チルトマージンの拡 大量に相当する値に設定するのが好ましい。
[0099] なお、 HPF182における高域ゲインの設定値は、光ヘッドの分解能や絞りのばらつ きに合わせて製造工程等で個別に調整し、 EEPROMに各層毎に書き込んでもよ ヽ 。あるいは、光ディスク装置の起動時に、光ディスクの内周領域に存在する著作権保 護や、ディスク ID付与のための BCA (Burst Cutting Area)の領域へ移動し、その BC Aの部分を傷に見立てて、 HPFのゲインが傷に対してもっとも強くなるように、 RF振 幅やジッタベストになるように調整してもよい。調整されたゲイン設定値は、例えば DS P162内蔵の RAM (不図示)にテーブル値として格納される。
[0100] EEPROM (不図示)や RAMに格納したゲイン設定値に基づき、層間移動を行うと き、 目標とする情報記録層に光ビームの集束点が移動した直後に、その情報記録層 のゲイン設定値に更新する。データの記録再生は、ゲイン設定値の更新が完了して から開始する。
[0101] 本実施形態では、ゲインの切り替えを層間移動の直前ではなく直後に行っている。
HPFすなわちイコライザのゲイン設定を移動前に切り換えてしまうと、そのタイミング で、トラックアドレスやセクタアドレスを読めなくなるため、フォーカスサーボなどが外れ ていると誤って判定してしまう可能性がある。そのような誤判定が生じると、フォーカス 引き込みのリトライなど力、行われ、予定していた層間移動を行えなくなる場合がある。 このため、ゲイン切り換えは、層間移動後に行うことが好ましいが、層間移動前に行な うことも可能ではある。
[0102] このように本実施形態によれば、多層ディスクの浅い位置に存在する情報記録層か らの RF信号がディスク表面の傷等によって大きく減衰したとしても、サーボ制御のゲ イン交点周波数の調節により、十分な信号品質を得ることができる。このため、光ディ スクの傷に対する安定性と記録再生の品質を、どの情報記録層においても両立し、 信頼性の高 、装置を提供することができる。
[0103] なお、情報記録層に応じて、 HPF182の高域ゲインのみならず、 2値化回路 184の データスライス系のフィードバックゲインや PLLループのゲインを変化させても良い。 この場合は、フォーカスサーボやトラッキングサーボのように応答帯域の低 ヽサーボ 系と逆に、情報記録層の位置が浅くなるほど、ディスク表面の傷によって RF振幅が 低下する。このため、これらのゲインについては、情報記録層が浅くなるほど、その価 を高く設定し、傷に対する応答特性を高めることが好ましい。また、これらのゲインを 高めることにより、傷に起因して例えば PLLのループが外れたとしても、ディスク表面 の傷を通過した後、速や力 PLLの引き込みを行うことができる。これらのゲインを高め ることにより、ジッタ等は劣化する力 その劣化はチルトマージンの拡大によって相殺 される。
[0104] (実施形態 3)
図 8を参照して説明したように、ディスク表面の傷に起因する RF信号の振幅が減衰 する割合は、情報記録層の位置がディスク表面に近いほど大きい。このことは、 PLL (Phase Locked Loop :フェーズロックトループ)にも影響を与える。 PLLは、入力 信号や基準周波数と、出力信号との周波数を一致させる公知の回路である。入力信 号と出力信号との位相差を検出し、電圧制御発信器 (VCO : Voltage Controlled Oscillator)により、基準周波数に正確に同期した信号を発生させることができる。
[0105] 光ディスク装置の PLLは、 RF信号に基づいて動作するため、ディスク表面に傷が あると、ディスク表面に近い情報記録層で PLLの動作を正常に行うことができない場 合がある。このため、 PLLのゲインも、情報記録層が浅くなるほど、大きな値に設定す ることが好ましい。相対的に浅い位置にある情報記録層にアクセスしているとき、ディ スク表面の傷によって RF信号の振幅が大きく減衰しても、 2値ィ匕できクロックが抽出 できて 、る限りは外れにくく、さらに PLLが外れてもゲインを高めて 、ることで引き込 み性能が上がるので、傷の通過後速やかに再引き込みが可能となる。
[0106] なお、 PLLのゲインを高くすると、一般にはノイズなどに応答しやすくなる。このため 、定常状態で発生するランダムノイズなどにより、データ抽出クロックのジッタが大きく なる。しかし、情報記録層の位置が浅くなるに従い、チルトマージンが拡大するため、 この場合でもリードエラーの発生が抑制される。
[0107] 本発明の光ディスク装置は、実施形態 1〜3を任意に組み合わせた構成を有してい ても良 、。例えばフォーカス制御のゲインおよび PLLのゲインの両方を情報記録層 ごとに変化させるようにしてもょ 、。
[0108] 上記の各実施形態では、 1つの光ディスクが 3つの情報記録層 L0〜L2を有してい るが、光ディスクが 2層の情報記録層または 4層以上の情報記録層を有して 、ても良 い。また、ゲイン特性を全ての情報記録層で変化させる必要は無い。例えば、情報記 録層 L0、 L1では、同一のゲイン特性(同一のゲイン交点周波数または高域ゲイン) に設定し、最表面側に位置する情報記録層 L2のゲイン特性のみを変化させるように してちよい。 産業上の利用可能性
[0109] 本発明の光ディスク装置は、多層光ディスクを対象にデータの記録再生を安定して 行うことができる。特に、光ディスクの表面に近い位置に情報記録層に光学的にァク セスする場合、ディスク表面に形成された傷などによって FE信号や RF信号の悪影 響が及びやすいが、本発明の光ディスク装置によれば、その影響を低減し、信号品 質を高めることが可能になる。
[0110] 本発明は、ベア状態の BDに対してデータの記録再生を行うときに特に有利な効果 を発揮する。

Claims

請求の範囲
[1] ディスク表面からの距離が相対的に小さい第 1の情報記録層と前記ディスク表面か らの距離が相対的に大きい第 2の情報記録層とを含む複数の情報記録層を備える 光ディスク力 データを読み出すことのできる光ディスク装置であって、
光ビームを放射する光源と、
前記光源力 放射された光ビームを集束するレンズと、
前記光ビームの集束点を前記光ディスクの任意の情報記録層上に位置させるフォ 一カス制御手段と、
前記光ビームの集束点を前記情報記録層における所定のトラック上に位置させるト ラッキング制御手段と、
前記フォーカス制御手段およびトラッキング制御手段の少なくとも一方のゲイン特 性を変化させることができるゲイン設定手段と、
を備え、
前記ゲイン設定手段は、前記第 1の情報記録層からデータを読み出すときのゲイン 交点周波数を、前記第 2の情報記録層からデータを読み出すときのゲイン交点周波 数よりも低い値に設定する、光ディスク装置。
[2] 前記光ビームの集束点を現在の情報記録層から目的とする他の情報記録層に移 動させる場合、前記集束点の移動が完了する前に、前記ゲイン交点周波数を、前記 現在の情報記録層に対する値から、前記目標とする他の情報記録層に対する値に 変化させる、請求項 1に記載の光ディスク装置。
[3] 前記ディスク表面と前記第 2の情報記録層との間の距離は 100 μ m以下である、請 求項 1に記載の光ディスク装置。
[4] 前記ゲイン設定手段は、前記複数の情報記録層に対する各ゲイン特性を規定する パラメータを記憶する、請求項 1に記載の光ディスク装置。
[5] 前記ゲイン設定手段は、搭載された個々の光ディスクに応じて前記パラメータを調 整する学習を起動時に実行する、請求項 4に記載の光ディスク装置。
[6] ディスク表面からの距離が相対的に小さい第 1の情報記録層と前記ディスク表面か らの距離が相対的に大きい第 2の情報記録層とを含む複数の情報記録層を備える 光ディスク力 データを読み出すことのできる光ディスク装置であって、 光ビームを放射する光源と、
前記光源力 放射された光ビームを集束するレンズと、
前記光ビームの集束点を前記光ディスクの任意の情報記録層上に位置させるフォ 一カス制御手段と、
前記光ビームの集束点を前記情報記録層における所定のトラック上に位置させるト ラッキング制御手段と、
前記情報記録層で反射された光ビームから再生信号を生成する手段と、 前記再生信号に含まれる特定周波数帯域をカットするフィルタ手段と、 前記フィルタ手段の周波数 1MHz以上の RF帯域における高域ゲインを変化させる ゲイン設定手段と、
を備え、
前記ゲイン設定手段は、前記第 1の情報記録層からデータを読み出すときの高域 ゲインを、前記第 2の情報記録層からデータを読み出すときの高域ゲインよりも高い 値に設定する、光ディスク装置。
[7] 前記光ビームの集束点を現在の情報記録層から目的とする他の情報記録層に移 動させる場合、前記集束点の移動の後に、前記高域ゲインを前記現在の情報記録 層に対する値から、前記目標とする他の情報記録層に対する値に変化させる、請求 項 6に記載の光ディスク装置。
[8] 前記ディスク表面と前記第 2の情報記録層との間の距離は 100 μ m以下である、請 求項 6に記載の光ディスク装置。
[9] 前記ゲイン設定手段は、前記複数の情報記録層に対するゲイン特性を規定するパ ラメータを記憶する、請求項 6に記載の光ディスク装置。
[10] 前記ゲイン設定手段は、搭載された個々の光ディスクに応じて、前記パラメータの 初期値を新しい設定値に更新する、請求項 9に記載の光ディスク装置。
PCT/JP2005/019331 2004-10-25 2005-10-20 光ディスク装置 WO2006046469A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05795883A EP1806742B1 (en) 2004-10-25 2005-10-20 Optical disc device
DE602005019447T DE602005019447D1 (de) 2004-10-25 2005-10-20 Optische datenträgereinrichtung
US11/575,312 US7864638B2 (en) 2004-10-25 2005-10-20 Optical disk apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-309381 2004-10-25
JP2004309381 2004-10-25

Publications (1)

Publication Number Publication Date
WO2006046469A1 true WO2006046469A1 (ja) 2006-05-04

Family

ID=36227709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019331 WO2006046469A1 (ja) 2004-10-25 2005-10-20 光ディスク装置

Country Status (7)

Country Link
US (1) US7864638B2 (ja)
EP (1) EP1806742B1 (ja)
JP (1) JP4542496B2 (ja)
CN (1) CN100452191C (ja)
DE (1) DE602005019447D1 (ja)
RU (1) RU2348083C1 (ja)
WO (1) WO2006046469A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420348B2 (en) * 2005-02-22 2008-09-02 Matsushita Electric Industrial Co., Ltd. Drive apparatus
US8320230B2 (en) * 2007-05-17 2012-11-27 Mediatek Inc. Processing circuits and methods for optical data
JP2009123278A (ja) * 2007-11-14 2009-06-04 Tdk Corp 光記録媒体
JP2009170019A (ja) * 2008-01-15 2009-07-30 Taiyo Yuden Co Ltd 光ディスクの表面評価方法及び光ディスク記録再生装置
US8385178B2 (en) * 2010-12-23 2013-02-26 General Electric Company Multi-stage focus actuator and optical head
US10552173B2 (en) * 2017-03-31 2020-02-04 Intel Corporation Methods and apparatus to configure parameters of a high-speed input-output interface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320068A (ja) * 1996-06-03 1997-12-12 Alpine Electron Inc デジタルディスクプレーヤのサーボゲイン制御方法
JPH10269590A (ja) * 1997-03-26 1998-10-09 Seiko Epson Corp 光メモリ再生装置
JPH1139657A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 光ディスク及びその再生装置
JPH11161977A (ja) * 1997-11-28 1999-06-18 Pioneer Electron Corp 情報読取ビームの移送制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734562B2 (ja) * 1988-10-13 1998-03-30 松下電器産業株式会社 トラッキングサーボの方法
JPH08235586A (ja) 1995-02-22 1996-09-13 Sanyo Electric Co Ltd 光学式信号再生装置
US6240054B1 (en) * 1996-05-15 2001-05-29 Pioneer Electronic Corporation Multiple layer disk reproducing apparatus, and apparatus for reproducing information record medium
US5859824A (en) * 1996-06-03 1999-01-12 Alpine Electronics, Inc. Digital disk player
JP3557846B2 (ja) * 1997-04-22 2004-08-25 ソニー株式会社 フォーカスサーボ装置及びフォーカスサーボ制御方法
US6208597B1 (en) * 1997-11-28 2001-03-27 Pioneer Electronic Corporation Transfer control system of information read beam
JP3991483B2 (ja) * 1999-01-08 2007-10-17 ソニー株式会社 ディスクドライブ装置
JP2000260030A (ja) * 1999-03-04 2000-09-22 Seiko Epson Corp 光ディスク装置
WO2000079525A1 (fr) 1999-06-22 2000-12-28 Matsushita Electric Industrial Co., Ltd. Disque optique, dispositif de disque optique, et procede de reproduction pour disque optique
JP2001273647A (ja) * 2000-03-29 2001-10-05 Sanyo Electric Co Ltd 光ディスク装置
US7016269B2 (en) * 2000-12-21 2006-03-21 Pioneer Corporation Optical pickup apparatus and focusing control method
US6952382B2 (en) * 2001-04-11 2005-10-04 Matsushita Electric Industrial Co., Ltd. Recording/reproduction apparatus, recording/reproduction method and information recording medium
JP2003085837A (ja) * 2001-09-13 2003-03-20 Tdk Corp 光記録媒体の製造方法及び光記録媒体
JP4109919B2 (ja) * 2002-07-19 2008-07-02 キヤノン株式会社 光学的情報再生装置
JP2004220736A (ja) 2003-01-17 2004-08-05 Matsushita Electric Ind Co Ltd 光ディスク再生装置
JP4265963B2 (ja) * 2003-05-15 2009-05-20 パイオニア株式会社 ピックアップの記録読取点位置の制御装置
TWI346952B (en) * 2003-07-07 2011-08-11 Panasonic Corp Objective lens, optical pick-up device, and optical disk device
JP4171378B2 (ja) * 2003-09-04 2008-10-22 株式会社日立製作所 記録用光ディスクの球面収差補正方法,光ディスク記録再生方法及び光ディスク装置
US7564769B2 (en) * 2004-01-30 2009-07-21 Victor Company Of Japan, Ltd. Phase-change recording medium having the relation between pulse patterns and reflectivity of un-recorded section
US7525883B2 (en) * 2004-07-05 2009-04-28 Panasonic Corporation Optical disk apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320068A (ja) * 1996-06-03 1997-12-12 Alpine Electron Inc デジタルディスクプレーヤのサーボゲイン制御方法
JPH10269590A (ja) * 1997-03-26 1998-10-09 Seiko Epson Corp 光メモリ再生装置
JPH1139657A (ja) * 1997-07-22 1999-02-12 Toshiba Corp 光ディスク及びその再生装置
JPH11161977A (ja) * 1997-11-28 1999-06-18 Pioneer Electron Corp 情報読取ビームの移送制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1806742A4 *

Also Published As

Publication number Publication date
CN100452191C (zh) 2009-01-14
CN1918637A (zh) 2007-02-21
JP2006155859A (ja) 2006-06-15
EP1806742A4 (en) 2008-12-24
RU2348083C1 (ru) 2009-02-27
US7864638B2 (en) 2011-01-04
DE602005019447D1 (de) 2010-04-01
US20070253305A1 (en) 2007-11-01
EP1806742A1 (en) 2007-07-11
JP4542496B2 (ja) 2010-09-15
RU2007119399A (ru) 2008-11-27
EP1806742B1 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
US7031233B2 (en) Optical recording/reproduction device and focal point control method
US7778136B2 (en) Optical recording medium driving apparatus and focusing method
JP4542496B2 (ja) 光ディスク装置
JP2009539201A (ja) フォーカスクロストークキャンセリングの最適化
US7773484B2 (en) Optical disc device and control circuit for optical disc device
JPWO2006051688A1 (ja) 光情報記録再生装置
JP5623948B2 (ja) 推奨記録条件の決定方法及び記録調整方法
JP2011192378A (ja) 光ディスク装置および光ディスクの再生方法
JP2007080423A (ja) 光ピックアップ及びその調整方法
JP2004241100A (ja) 光ディスク装置、ビームスポットの移動方法、および、光ディスク装置において実行可能なコンピュータプログラム
US8159910B2 (en) Apparatus and method for controlling tracking error balance in optical disc apparatus
JP4068105B2 (ja) 光ディスク装置
JP2009140580A (ja) 光ディスク装置の再生パワー設定方法および光ディスク装置
JP5139680B2 (ja) 光ディスク装置およびその駆動方法
JP4289234B2 (ja) 光ディスク装置
JP4164533B2 (ja) 光ディスク装置
JP2006294158A (ja) 情報記録/再生方法及び光ディスク装置
US20040081042A1 (en) Optical disc drive
JP2011108318A (ja) 光記録媒体、光記録媒体再生装置、及び光記録媒体記録装置
JP2011248978A (ja) 光ディスク装置及び光ディスク判別方法。
JP2009170088A (ja) 情報記録/再生方法及び光ディスク装置
KR20050016276A (ko) 광 기록 재생 장치 및 초점 제어 방법
JP2012252767A (ja) 光ディスク装置
JP2004164828A (ja) 光ディスク装置
WO2008120859A1 (en) Writable optical information recording medium, apparatus for reproducing the same, and method of determining the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 200580004416.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11575312

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1709/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007119399

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005795883

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11575312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP