WO2006040840A1 - 歯形部品の製造方法 - Google Patents

歯形部品の製造方法 Download PDF

Info

Publication number
WO2006040840A1
WO2006040840A1 PCT/JP2004/015672 JP2004015672W WO2006040840A1 WO 2006040840 A1 WO2006040840 A1 WO 2006040840A1 JP 2004015672 W JP2004015672 W JP 2004015672W WO 2006040840 A1 WO2006040840 A1 WO 2006040840A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
tooth profile
initial
cold forging
mold
Prior art date
Application number
PCT/JP2004/015672
Other languages
English (en)
French (fr)
Inventor
Keiji Tanabe
Original Assignee
Kondo Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kondo Seiko Co., Ltd. filed Critical Kondo Seiko Co., Ltd.
Priority to US10/592,486 priority Critical patent/US7677073B2/en
Priority to EP04792814A priority patent/EP1764169A4/en
Priority to PCT/JP2004/015672 priority patent/WO2006040840A1/ja
Priority to KR1020067019687A priority patent/KR101105488B1/ko
Publication of WO2006040840A1 publication Critical patent/WO2006040840A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/30Making machine elements wheels; discs with gear-teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49467Gear shaping
    • Y10T29/49474Die-press shaping

Definitions

  • the present invention relates to a manufacturing method of tooth profile parts such as gears, sprocket teeth, and spline teeth, and more particularly to a manufacturing method by cold forging.
  • Patent Document 1 A method of manufacturing a gear by cold forging using a metal material is known as shown in Patent Document 1.
  • FIG. 1 (A) and 1 (B) show a method of manufacturing a spur gear by conventional cold forging described in Patent Document 1.
  • FIG. The cylindrical metal material 10 has a dimension close to the desired outer diameter of the gear. Insert the lower end of the cylindrical metal material 10 into the hole 1 1 A of the mold 1 1, push it in from the direction of arrow X, and press the metal material 10 with a punch (not shown).
  • a male tooth profile is formed on the outer periphery of 10.
  • the male tooth profile formed on the outer periphery of the material 10 corresponds to the tooth profile 12 of the mold 11.
  • the relationship between the root and tip of the tooth profile is reversed for material 10 and mold 1 1.
  • the tooth profile 1 2 of this type 1 1 has a regular full tooth bamboo H. Therefore, the tooth profile formed on the outer periphery of the material 10 also has a regular full tooth bamboo H as well as this.
  • reference numeral 13 denotes a pitch circle.
  • Reference numeral 14 indicates the tip circle of the tooth profile 1 2 of the mold 11 and reference numeral 15 indicates the root circle.
  • the inclination angle B is less than 30 °. The smaller the inclination angle B, the fewer the incomplete tooth profile.
  • material 10 may be cold forged in a single process, but after preforming hot or warm in advance, it is annealed, surface lubricated, etc., and then finished by cold forging. Sometimes
  • the quality of the final product gear is considered to be caused by factors related to the forging die between 50% and 80%. It is done.
  • molding is performed inside a female mold, which is called in-die molding.
  • the metal materials used in this manufacturing method are solid round bars, ring-shaped materials, pre-processed products by hot or warm forging, and the like.
  • the finished dimensions are obtained by cold forging the gears in one process. Therefore, the load (pressure) applied to the inclined end face 16 of the tooth forming shape starting portion of the tooth profile 12 is 2 200 kgfmm 2 to 2800 kgfmm 2 . This load (pressure) is 70 to 90% of the fracture strength of the mold even if it is the highest level material for the mold.
  • Patent Document 2 it is swept into a primary gear having a gear shape in which both the tooth tip and the tooth thickness are set smaller than the tooth profile of the gear shape of the spur gear from which the material is to be obtained.
  • a spur gear forging method in which each step is formed by cold forging is also known.
  • FIG. 2 (A) to (E) in FIG. 2 show the method described in Patent Document 2, FIG. 2 (A) is the first processing step, and FIG. 2 (B) is the gold for performing the second processing step. Represents a type.
  • 2 0 0 is a die
  • 2 0 1 is a tooth profile portion of the die 2 0 0, and a through hole corresponding to the punch 2 0 2 and the punch 2 0 2 fitted to the die 2 0 0 Within 2 0 3 Knockout pins 2 0 4 are provided.
  • Reference numeral 2 0 5 is a material
  • 2 0 6 is a primary machining gear machined by a die 2 0 0.
  • 2 1 0 is a die
  • 2 1 1 is a tooth profile portion of the die 2 1
  • 2 1 2 is a through hole that communicates with the tooth profile portion 2 1 1 and passes through the die 2 1 0,
  • 2 1 3 Is a punch that fits into the die 2 1 0,
  • 2 1 4 is a knockout bin inserted into the through hole 2 1 2 of the die 2 1 0.
  • 2 15 is a secondary machining gear machined by a die 2 200, and a raised portion 2 16 of material is formed toward the through hole 2 1 2.
  • the primary machined gear 20 06 swallowed from the raw material 20 5 is not sufficiently filled in the die of the material, and the underfill 2 0 7 occurs.
  • the primary working gear 2 0 6 is put into the die shown in Fig. 2 (B), the material is filled in the tooth profile 2 1 1 by compression molding with the punch 2 1 3 and the secondary working gear 2 1 5 is formed.
  • the secondary work gear 2 1 5 formed in the compression molding with the punch 2 1 3 allows the material to flow freely at the place where the material is not constrained to the part other than the tooth profile during the forming process to form the raised part 2 1 6 As a result, the material fills the tooth profile 2 1 1 and eliminates the lack of flesh at the tip of the tooth.
  • Fig. 2 (C) to (E) compare the tooth profile shapes of the primary gear 2 0 6 molded in the first machining step and the primary gear 2 1 5 molded in the second machining step.
  • the tooth profile contour 20 6 A formed in the first machining step is set so that the tooth tip and the tooth thickness are smaller than the tooth profile contour 2 15 5 A formed in the second machining process. It has been.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 9-3 0 0 0 4 1
  • Patent Document 2 Japanese Patent No. 2 9 1 3 5 2 2
  • Patent Document 2 The method described in Patent Document 2 has the following problems.
  • the shape factor increases, the overhang forming pressure (molding load) increases, and the mold distortion increases. Therefore, the accuracy of the processed product is lowered. Molds are also easily damaged when the processing speed is increased.
  • the method of enlarging (thickening) a tooth profile that has been compacted by primary machining by secondary machining as shown in Fig. 2 (E) is not desirable in terms of accuracy.
  • the difference in the rate of fattening (the degree of forming) between the center and end face of the tooth width increases.
  • the tooth profile is uneven and the cylindricity is poor.
  • Patent Document 2 is not suitable for mass-producing high-precision gears.
  • the distortion of the workpiece increases and the processing distortion during the subsequent heat treatment increases. The greater the load, the easier the mold breaks.
  • an object of the present invention is to provide a method of manufacturing a tooth profile part such as a gear by cold forging, which can prolong the life of a working die and produce a good tooth profile.
  • Examples of the solving means of the present invention include a method for manufacturing a tooth profile component by cold forging as follows, and a tooth profile component manufactured by the method.
  • the initial tooth profile tooth thickness is determined by cold forging between the initial process of forming the initial tooth profile and the completion process of forming the completed tooth profile by sizing. Maintaining the tooth thickness almost the same or reducing the tooth thickness within a range of 10% or less than the initial tooth profile, and at the same time interposing an intermediate process that protrudes the tooth tip from the initial tooth profile.
  • the tooth thickness is kept the same or decreased, but at the same time, the tooth tip is protruded in a rounded shape by multiple cold forgings to form the tooth tip of the complete tooth profile.
  • Said manufacturing method characterized by approaching.
  • a suitable example of the tooth profile part is a gear
  • a method of manufacturing a gear by cold forging includes the following series of steps.
  • An initial process for forming an initial processed product having an initial tooth profile by cold forging a metal material for example, a solid cylindrical material.
  • tooth thickness is almost 'identical, or rather (in the range of less than 10%), reduced during intermediate machining.
  • forging can be performed with a lower load.
  • not only the processing pressure can be reduced, but also the processing speed can be increased.
  • tooth profile parts such as gear teeth can be manufactured with high accuracy by cold forging.
  • the tooth profile of the processed product will easily match the tooth profile of the mold in the final process. Even in the case of helical gears, even if the torsion angle of the teeth is large, there is little difference in product accuracy.
  • the die Compared with the conventional gear manufacturing method using only drawing, the die has no friction under high surface pressure, so the die life can be extended.
  • the number of life is 3 to 10 times that of the conventional drawing method.
  • Gears with a narrow tooth width, h: L-on sprockets, etc. can be manufactured by cold forging. In this case, strength and production speed can be improved compared to other forging methods.
  • the outer region in the circumferential direction of the metal material is made thicker in the axial direction than the inner region, the fiber flow along the tooth profile is obtained, and a high strength can be obtained compared to cutting gears.
  • the sagging and secondary breaks that occur with conventional precision shearing do not occur.
  • the tip of the tooth has an arc or other chevron round shape ( (The curved surface with the top located in the middle) while approaching the shape of the end of the complete tooth profile in the mold, the fiber flow becomes good and no cracks occur.
  • forging can be performed immediately after that by using even lower loads.
  • the outer diameter of the tooth profile after the intermediate process is slightly larger than the completed tooth profile. As a result, an accurate tooth profile is obtained by subsequent sizing (finish drawing).
  • the tooth thickness dimension of the processed product after the initial process is set so that the tooth thickness increases within the same range as the completed tooth profile or within 10% or less, and the roundness of the root of the initial tooth profile is that of the completed tooth profile. Set larger. In this case, if the processing rate between the initial process and the intermediate process is appropriately allocated, the sizing of the intermediate process and the finished process will be achieved even if the molding pressure (molding load) is reduced by 10 to 5 Oo / o. A desired complete tooth profile can be obtained by finishing.
  • the fully closed state ie, non-closed forging.
  • a space remains between the tip of the tip of the tooth profile of the die and the tip of the tooth profile of the processed product.
  • the part that becomes the tip of the tooth profile of the initial machining type is set to a tooth thickness that is almost the same as or smaller than that of the completed tooth profile, and the roundness of the entire tooth tip of the processed product is an arc or other angled surface. Make the shape (with the top located in the middle) and set it large. By increasing the roundness, the strength against cracking of the working die is improved.
  • the parts homer can form the complete tooth profile in 3 to 7 stages. In this case, the best mass production form in terms of cost can be taken.
  • the torsion angle can be formed accurately and accurately, so that it can be used as a reference surface for accuracy in subsequent processes.
  • the forming machine is preferably a forging press (particularly a parts former).
  • each cold forging can be processed with a lower load.
  • the dimensions should be allocated in consideration of the intermediate additional tertiary processing setting.
  • the initial process of tooth forming is a process in which the cylindrical material is placed in the mold and both ends of the material are pressed with a punch to project the side of the material outward. Furthermore, extrusion molding is performed as an intermediate process, and the molding pressure at that time is lowered. This will have a significant effect on accuracy and type life.
  • the sizing mold is provided with a guide at the base of the hole of the mold, and the tooth trace is applied to the entire length of the blank with the constant blank and the tooth surface of the mold.
  • the processing reference surface is the tooth surface or the tooth outer diameter. Furthermore, chamfer cutting of the end face corner may be performed.
  • a metal material for example, a cylinder having a cylindrical outer peripheral surface is inserted into a die having a predetermined female tooth shape, and the metal material is stretched by punching in the die, and the intermediate tooth shape is cold forged. Formed with.
  • the diameter of the cylindrical material may be smaller than the diameter of the tip circle of the mold or smaller than the trough diameter of the gear.
  • a cylindrical material may be pressed along its axial direction and pressed toward the mold in the circumferential direction.
  • a support member may be provided at one end in the axial direction of the columnar material, a pressing member may be provided at the other end, and the columnar material may be pressed toward the support member using the pressing member. Further, the support member and the pressing member may have a tooth profile corresponding to the tooth profile of the mold. You may provide a press member in the both ends of the axial direction of a cylindrical raw material.
  • the cylindrical material has a hole penetrating in the axial direction, and a pin for maintaining the shape of the hole can be arranged in the hole.
  • the internal stress may be removed by softening annealing.
  • the initial tooth profile may be formed by drawing.
  • the initial tooth profile that has been drawn may be extruded in the mold.
  • the present invention is an improvement of a gear manufacturing method by cold forging. Especially this invention has a remarkable effect about manufacture of a helical gear. Helical teeth have been recognized to be extremely difficult to manufacture by cold forging, but according to the present invention, helical gears or similar gears can be manufactured efficiently and with high precision.
  • gears can be produced by the method of the present invention.
  • Two-stage gears with large and small gears, flanged gears, chamfered chamfered gears, gears with ratchet teeth, gears with serrations, etc. can be formed by cold forging. Furthermore, cold forging of straight tooth bevel gears and similar gears is also possible.
  • the product accuracy of the gear can be JIS standard class 2 to class 5.
  • a single metal material can be integrally processed only by cold forging even if it is a gear with a flange, a two-stage gear, or a gear with a spline.
  • the present invention includes a method of performing preforming by cold forging after preforming hot or warm, and a method of adding cutting or the like before or during forging as necessary.
  • the present invention is not limited to a method of manufacturing a final gear product from the beginning to the end only by cold forging.
  • the materials used in the present invention are mainly metals, such as round bars, ring-shaped materials, preforms formed by hot or warm forging, and others.
  • a preferable metal material from the viewpoint of cost is a coil material. In principle, all materials that are normally used as gear materials can be used.
  • “overhanging” a metal material includes expanding the metal material. Inflating a metal material is also simply called “stretching”. "Extrusion” is a molding that concentrates and raises the tip of the tooth.
  • the present invention can be applied to various gears in addition to spur gears and helical gears (also called spiral gears and torsion gears).
  • the present invention can be applied to a thin tooth width and a thick tooth.
  • a metal material overhanging process, a drawing process, and an extrusion process can be used in combination. If the tooth width of the gear is relatively large and it is difficult to obtain cylindricity only by overhanging and extrusion, it is possible to obtain a good effect by performing a drawing process with an appropriate distribution of the processing rate. In the case of a material with poor spreadability, it is also effective to use a drawing process together.
  • the processing rate is set in consideration of dimensions and materials.
  • the material may not have holes, but may have holes before the tooth profile is formed. If there is a hole, a core pin should be placed in the center. In this case, the material length is longer for the material with holes than for the material without holes.
  • the tooth profile can be formed by pressing both end faces while plastically adding holes.
  • Extrusion molding may be performed three times on a case-by-case basis. Then, the workpiece is removed from the mold while rotating along the twist angle.
  • the overhang molding and the extrusion molding are preferably compression molding using a punch pin to press the end face of a material or a processed product.
  • Fig. 1 (A) is a cross-sectional view taken along line 11 in Fig. 1 (B) and shows a method of manufacturing a spur gear by conventional cold forging.
  • Fig. 1 (B) shows the starting part of the mold as seen from the direction of arrow A in Fig. 1 (A).
  • FIG. 2 (A) is a cross-sectional view of a mold used in the first processing step in another conventional method.
  • (B) is sectional drawing of the metal mold
  • (E) is a comparison diagram of tooth profiles formed and processed in the first processing step and the second processing step described above.
  • FIG. 3 shows one embodiment of the present invention.
  • FIG. 4 shows another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • FIG. 6 shows yet another embodiment of the present invention.
  • FIG. 7 shows a tooth profile 51 obtained in yet another embodiment of the present invention.
  • FIG. 8 shows the tooth profile 52 obtained in the next step of FIG.
  • FIG. 9 shows the tooth profile 53 obtained in the next step of FIG.
  • FIG. 10 shows FIGS. 7 to 9 together.
  • FIG. 11 shows a tooth profile 61 obtained in a further embodiment of the present invention.
  • Fig. 12 shows the tooth profile 62 obtained in the next step of Fig. 11.
  • Fig. 13 shows the tooth profile 63 obtained in the next step of Fig. 12.
  • Fig. 14 shows Fig. 11 to 14 together.
  • FIG. 15 shows yet another embodiment of the present invention.
  • FIG. 16 shows yet another embodiment of the present invention.
  • FIG. 17 shows yet another embodiment of the present invention.
  • FIG. 18 shows an example of a finished crank sprocket manufactured according to the present invention.
  • FIG. 19 is a schematic front view of FIG.
  • FIG. 20 shows yet another embodiment of the present invention.
  • FIG. 21 shows yet another embodiment of the present invention.
  • FIG. 22 shows still another embodiment of the present invention, and shows the state of starting the molding of the workpiece.
  • Fig. 23 shows the completed state of the workpiece of Fig. 22.
  • FIG. 24 shows yet another embodiment of the present invention.
  • FIG. 25 shows a tooth profile 1 2 1 obtained in a further embodiment of the present invention.
  • FIG. 26 shows the tooth profile 1 2 2 obtained in the next step of FIG.
  • FIG. 27 shows the tooth profile 1 2 3 obtained in the next step of FIG.
  • FIG. 28 shows FIG. 25 and FIG.
  • FIG. 29 shows yet another embodiment of the present invention.
  • FIG. 3 shows one preferred embodiment of the present invention.
  • the metal material 20 is processed to form a spur gear.
  • Fig. 3 shows the state before the tooth profile is formed for illustrative purposes.
  • the mold 21 has a hole 2 1 a penetrating in the axial center 26 direction.
  • a female tooth profile 27 is formed on the peripheral surface of the hole 21a. Tooth profile 27 is a regular spur tooth profile.
  • Reference numeral 23 indicates a pitch circle.
  • Reference numeral 24 indicates the tip circle of the tooth profile 27.
  • Reference numeral 25 indicates the root of the tooth profile 27.
  • the metal material 20 in FIG. 3 is different in that its diameter is smaller than the diameter of the tooth tip circle 24.
  • the diameter of the addendum circle 24 is set larger by 0.02 to 0.2 mm.
  • a pressure pin 28 is provided as a pressing member.
  • the pressure pin 28 presses the metal material 20 in the arrow X direction.
  • the pressure pin 28 has a tip portion 28 a that contacts the metal material 20.
  • the diameter of the tip portion 28 a is substantially the same as the diameter of the metal material 20.
  • support pins 29 are provided as support members.
  • the support pins 29 support the metal material 20.
  • the support pin 29 is prevented from moving by support means (not shown).
  • a male tooth profile 29a is formed around the support pin 29.
  • the male tooth profile 29a of the support pin 29 corresponds to the female tooth profile 27 of the mold 21.
  • the metal material 20 is inserted into the mold 21.
  • a support pin 29 is installed immediately below the metal material 20.
  • the metal material 20 inserted into the mold 21 is pressed with the pressure pin 28.
  • the pressed metal material 20 is compressed by the first pressurization, the space between the upper and lower end surfaces is reduced, and the side surfaces are protruded outward to rise in the mold 21.
  • a tooth profile smaller than the tooth profile 2 7 is formed in the middle of the regular tooth profile 2 7 of the mold 21.
  • the tooth profile is formed by the first press, and as an intermediate process, the forming pressure and the molding speed are changed, and the second or third press is used to form the normal tooth profile corresponding to the normal tooth profile 27. Is formed into a processed product.
  • the tooth thickness is kept the same, and at the same time, the tooth tip protrudes in stages while creating a circular arc shape by multiple cold forgings, and approaches the tooth tip of the complete tooth profile at any time.
  • an appropriate sizing amount is, for example, 0 ⁇ 0 1 to 0.2 mm.
  • Spur gears can be formed in the same way by changing the tooth profile of the mold during the initial process, intermediate process and completion process.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • the mold 3 1 has a hole 3 1 a penetrating in the direction of the axial center 36.
  • a female tooth profile 37 is formed on the peripheral surface of the hole 31a.
  • the tooth profile 37 is a regular spur tooth profile.
  • Reference numeral 3 4 represents a tip circle of the tooth profile 37.
  • Reference numeral 3 5 indicates the root circle of the tooth profile 37.
  • Reference numeral 30 represents the outer diameter of the metal material 30.
  • Reference numeral 3 1 b indicates a pitch circle of the mold 31.
  • the metal material 30 is a thin plate having a cylindrical outer periphery, and both sides of the outer peripheral tooth forming part are thickened over the same width. Although it is preferable to increase the thickness of both sides of the metal material 30 equally, only one of the sides may be increased.
  • a punch 38 having teeth is provided above the metal material 30.
  • the punch 38 presses the metal material 30 in the arrow X direction.
  • the punch 3 8 has a male tooth profile 3 8 a in the lower part.
  • the male tooth profile 3 8 a corresponds to the female tooth profile 3 7 of the mold 3 1.
  • support pins 39 are provided as support members.
  • the support pins 39 support the metal material 30.
  • the support pins 39 are prevented from moving by support means (not shown).
  • a male tooth profile 39a is formed around the support pin 39.
  • the male tooth profile 39a of the support pin 39 corresponds to the female tooth profile 37 of the mold 31.
  • a metal material 30 is inserted into the mold 3 1.
  • a support pin 39 is installed directly under the metal material 30.
  • the metal material 30 inserted into the die 31 is pressed with the punch 38.
  • the thickened portion of the metal material 30 is first pressed and protrudes outward, and the metal material 30 protrudes into the mold 3 1 by the second and subsequent presses, and the gear has the same accuracy as the mold 31.
  • the gear has the same accuracy as the mold 31. To be molded. In this way, a regular gear corresponding to the mold 31 can be obtained.
  • FIG. 6 shows still another embodiment of the present invention, and in particular, shows a situation where the metal material is divided into one overhanging process and two protruding processes.
  • the symbol 40 in the figure is The crank sprocket as a gear of the present invention is shown.
  • Reference numeral 40a indicates a pitch circle.
  • a metal material is inserted into a predetermined mold (not shown) and stretched by a punch.
  • the initial tooth profile 41 of the first step having a tooth tip (tooth bamboo) lower than the normal tooth profile is obtained.
  • the tooth tip of the tooth profile portion in the first step is denoted by reference numeral 4 1 a. This tooth tip 41a is a large arc.
  • the initial tooth profile 41 obtained in the first step is further cold-forged by a die having a tooth thickness that is several percent smaller than the die used in the first step, and extruded.
  • the tooth profile 42 of the second step is obtained.
  • the tooth tip of the tooth profile portion of the second step is indicated by reference numeral 4 2 a.
  • This tooth tip 4 2 a has a non-circular round curved surface shape.
  • the tooth profile 42 obtained in the second step is extrusion-molded with a tooth profile mold having a tooth thickness that is several percent smaller than the mold used in the second step.
  • the tooth profile 43 of the third step is obtained.
  • the tooth tip of the tooth profile in the third step is indicated by reference numeral 4 3 a. This tooth tip 4 3 a has a non-circular round curved surface shape.
  • the tooth profile is formed step by step while reducing the tooth thickness by changing the extent of overhang and protrusion, and the tooth profile having a rounded tooth tip is formed according to each mold. To do.
  • the obtained tooth profile 4 3 has a sizing allowance on the regular tooth profile, and the fiber flow is good, and no cracks occur.
  • This tooth profile 4 3 is subjected to finishing sizing.
  • FIG. 10 shows FIGS. 7 to 9 together.
  • Reference numeral 50 in the figure denotes a gear.
  • Reference numeral 5 4 denotes a pitch circle.
  • a metal material is inserted into a predetermined first mold (not shown) and stretched. Thereby, the initial tooth profile 51 of the initial process shown in FIG. 7 is obtained.
  • the round initial tooth profile 5 1 obtained in the initial process is inserted into a predetermined second mold (not shown) to perform extrusion molding. As a result, the tooth profile 52 having a rounded root shape shown in FIG. 8 is obtained.
  • the tooth thickness is kept the same, and at the same time, the tooth bottom protrudes in stages while changing the rounded shape by multiple cold forgings and approaches the tooth tip of the completed tooth shape.
  • the tooth profile 52 obtained in the intermediate process is finished by sizing (ie, drawing). As a result, a complete tooth profile 53 shown in FIG. 9 is obtained.
  • the obtained complete tooth profile 53 is a regular tooth profile, and the fiber flow is good and no cracks occur.
  • Figures 11 to 14 show yet another embodiment of the present invention.
  • This embodiment is an example in which the metal material overhang and protrusion are divided into two processes and further combined with a sizing (finishing drawing process) process.
  • Reference numeral 60 in the figure denotes a gear.
  • Reference numeral 6 4 indicates a pitch circle.
  • Figure 14 shows the figure "I 1 ⁇ "! 3 is shown together.
  • Reference numeral 65 indicates conceptually the fiber flow after the second step.
  • the obtained tooth profile 63 has a good fiber flow 65 and does not crack.
  • FIG. 15 shows yet another embodiment of the present invention.
  • This example shows data obtained by measuring the shape (A) and tooth stripe (B) of a helical gear formed by stretching and projecting a metal material with a three-dimensional measuring machine.
  • the numbers 1, 5, 1 0, 1 4 of the upper (A) and (B) refers to the order number of the teeth.
  • the numerical values on the lower side of (A) and (B) indicate the measured values measured with the reference value set to 0 and the JIS standard accuracy class.
  • the left side shows the shape of the left tooth surface, and the other side shows the shape of the right tooth surface.
  • Table 1 shows the number of teeth of the FIG. 1 5 helical gears used in the Examples, modules, pressure angle, helix angle, addendum modification coefficient, and the base circle diameter.
  • FIG. 16 shows yet another embodiment of the present invention.
  • This example shows data obtained by measuring a tooth shape (A) and a tooth stripe (B) of a helical gear formed by projecting and projecting a metal material and then drawing and measuring with a three-dimensional measuring machine.
  • the numbers 1, 5, 10 and 14 on the upper side of (A) and (B) mean the order numbers of the teeth.
  • the numbers on the lower side of (A) and (B) indicate the measured values measured with the reference value set to 0 and the accuracy rating of the JIS standard.
  • the left side shows the shape of the left tooth surface, and the right side shows the shape of the right tooth surface.
  • the number of teeth, module, pressure angle, screw angle, dislocation coefficient, and basic circle diameter of the helical gear used in the example of Fig. 16 are the same as in Table 1.
  • the tooth profile is J IS standard 0 to 1 grade, but there is a difference of 2 to 5 grades in the grade of the left and right tooth surfaces of the tooth stripe. Although there is a measurement error, the ability value can be judged as 2nd to 4th class.
  • FIG. 17 shows yet another embodiment of the present invention.
  • the metal material is projected and projected in combination with various cold forging processes.
  • Crank sprockets are manufactured as gears.
  • (A) shows a circular column material 70 obtained by cutting a solid cylindrical metal material from a coil material every predetermined length.
  • (B) shows a processed product obtained by processing the material 70 in the state of (A) described above by cold forging and forming a reduced diameter portion 71 and a recess 72 on the lower side.
  • (C) shows a state in which the processed product 70 in the state of (B) is processed by cold forging to form the upper recess 73 and the lower hole 74.
  • (D) shows a state in which the workpiece 70 in the state of (C) is processed by cold forging to form the enlarged diameter portion 76 and the lower deep hole 75.
  • (E) is an initial tooth profile having a tooth thickness larger than that of the normal tooth profile and a low tooth tip formed by projecting and molding the processed product 70 in the state of (D) described above in a mold not shown.
  • FIGS. 18 to 19 show a finished crank sprocket 79 having a regular tooth profile 87.
  • FIG. FIG. 19 is a schematic front view of FIG.
  • a crank sprocket 79 shown in FIGS. 18 and 19 is a crank sprocket formed from a processed product 70 of Ipl 17.
  • FIG. 20 shows an example of manufacturing the sprocket shown in FIGS.
  • FIG. 20 shows a state after the complete tooth profile 87 is formed.
  • the mold set 8 1 includes a mold 8 1 a and a mold 8 1 b.
  • a hole 8 1 c passes through the axis 8 6 of the mold 8 1 a.
  • a female tooth profile 87 is formed on the peripheral surface of the hole 81c.
  • This tooth profile 8 7 is a regular tooth profile. Sign
  • the mold 8 1 b is arranged below the mold 8 1 a.
  • a hole 8 1 d having a smaller diameter than the hole 8 1 c passes through the axis 8 6 of the mold 8 1 b.
  • the peripheral surface of this hole 8 1 d Corresponds to the lower outer peripheral surface of N's Procket 7 9.
  • the upper surface of the mold 8 1 b supports the tooth profile 8 7.
  • a punch 88 is provided as a pressing member.
  • the punch 8 8 presses the crank sprocket 7 9 in the arrow X direction.
  • a male tooth profile 8 8 a is formed on the outer peripheral surface of the punch 88.
  • the male tooth profile 8 8 a corresponds to the female tooth profile 8 7 of the mold 8 1 a.
  • the punch 8 8 has a tip portion 8 8 b below.
  • the tip portion 8 8 b has a shape corresponding to the shape of the upper surface of the crank sprocket 79.
  • a knockout sleeve 89 for supporting the lower end of the crank sprocket 79 is provided below the crank sprocket 79.
  • the knockout sleeve 8 9 is prevented from moving by support means (not shown). Inside the crank sprocket 7 9, a punch core 8 2 passes.
  • a metal material (not shown) before tooth forming is inserted into the mold 81.
  • a knockout sleeve 8 9 is installed directly under the metal material.
  • a punch core 8 2 is inserted inside the metal material.
  • the metal material inserted into the mold 8 1 is pressed with the punch 8 8.
  • the pressed metal material is stretched and has a tooth profile 87 corresponding to the tooth profile of the mold 81a.
  • crank sprocket 79 can be obtained by the die 8 1 set.
  • FIG. 21 shows yet another embodiment of the present invention.
  • a helical force tooth pinion is formed.
  • a cylindrical metal material provided with holes in advance is placed in a predetermined mold (not shown). With a pin (not shown) having a shape corresponding to the shape of the hole inserted in the hole, the metal material is pressed along the axial direction. The pressed metal material is stretched in the circumferential direction, and then shaped so as to have the same tooth profile as that of the corresponding mold by extrusion molding.
  • the helical tooth pinion 90 is extracted from the mold while rotating along the twist angle.
  • helical tooth pinion 90 is that the twist angle (twist direction) is 25 ° (left) and the tooth accuracy is J I S 4th or 5th class.
  • Figure 22 shows the starting state of the workpiece.
  • Figure 23 shows the completed state of the workpiece.
  • the main mold for forming the teeth is mold 1 0 1.
  • the mold 1 0 1 is shown in a fixed state in FIG. In practice, the mold 1 0 1 may move.
  • the mold 1 0 1 has a hole 1 0 1 a penetrating in the direction of the axial center 10 6.
  • Female teeth 10 7 are formed on the peripheral surface of the hole 10 1 a.
  • Tooth profile 10 7 is a regular tooth profile.
  • Reference numeral 1 0 3 represents a pitch circle.
  • Reference numeral 1 0 4 indicates the tooth tip circle of the tooth profile 1 0 7.
  • Reference numeral 1 0 5 indicates the root circle of the tooth profile 1 0 7.
  • an upper push pin 10 8 is provided as a pressing member. The upper push-out pin 10 8 presses the metal material 10 0 from above.
  • An upper sleeve 1 0 2 is provided around the upper push pin 1 0 8.
  • the upper sleeve 1002 supports the metal material 100 and the upper push pin 1008 from the side.
  • a lower extrusion pin 10 9 is provided as a pressing member.
  • the lower extrusion pins 1 0 9 press the metal material 1 0 0 from below.
  • a lower sleeve 10 4 is provided around the lower extrusion pin 10 9. The lower sleeve 10 4 is fixed and supports the metal material 1 0 0 and the lower extrusion pin 1 0 9 from the side.
  • the metal material 1 0 0 is put into the center of the mold 1 0 1. Thereafter, the upper push-out pin 10 8 and the upper sleeve 1 0 2 move downward to confine the metal material 1 0 0. The upper sleeve 1 0 2 and the lower sleeve 1 0 4 are stopped.
  • the arrow E in Figure 23 schematically shows the flow of the metal material.
  • FIG. 24 shows yet another embodiment of the present invention.
  • a tooth profile is formed by further drawing as a sizing for finishing.
  • the drawing die 1 1 1 has a hole 1 1 1 a penetrating in the direction of the axis 1 1 6.
  • Female teeth 1 1 4 are formed on the peripheral surface of the hole 1 1 1 a.
  • Reference numeral 1 1 7 indicates a pitch circle.
  • the drawing die 1 1 1 includes a guide portion 1 1 2 and a drawing portion 1 1 3.
  • the guide portion 1 1 2 is provided for copying the mouth of the drawing die 1 1 1.
  • the diameter of the pitch circle 1 1 7 of the guide portion 1 1 2 should be slightly larger than the diameter of the pitch circle of the previous processed product. For example, it is better to make it 0.05 to 0.2 mm larger.
  • the axial length of the guide portion 1 1 2 is preferably at least 5 times that of the tooth module.
  • the throttle part 1 1 3 is provided at the lower end of the guide part 1 1 2.
  • the tooth profile 1 1 4 of the throttle 1 1 3 is a regular tooth profile.
  • the initial process is a metal material overhanging process, followed by an extrusion process. This forms a precise tooth stripe. Furthermore, a metal material is inserted into the hole 1 1 1 a. Then, the metal surface of the metal material is drawn by 0.05 to 0.2 mm by the drawn portion 1 1 3 using the protruding tooth surface as a copying surface. As a result, the tooth profile error can be extremely reduced.
  • the processed product is taken out of the die for each of a plurality of cold forgings (at least during overhanging and protruding), and a lubricating coating or softening annealing is applied to reduce the load. It is preferable to allow forging.
  • closed forging is not performed.
  • the tooth tip of the workpiece reaches the tooth tip of the die. Stopping molding before starting is preferred to avoid an increase in molding load.
  • Figures 25-28 illustrate yet another embodiment of the present invention.
  • This embodiment is an example in which the metal material overhang and protrusion are divided into two processes and further combined with a sizing (finishing drawing process) process.
  • Reference numeral 1 2 0 in the figure indicates a gear.
  • Reference numeral 1 2 4 indicates a pitch circle.
  • a metal material is inserted into the inside of a predetermined mold tooth 120a and is stretched. As a result, it has a large arc-shaped tooth tip as shown in FIG. Get the initial tooth profile 1 2 1.
  • a three-month space denoted by reference numeral 1 2 0 b remains between the tooth tip of the initial tooth profile 1 2 1 and the tooth tooth 1 2 0a of the mold.
  • the initial tooth profile 1 2 1 obtained in the initial process is inserted into a mold 1 2 0 c different from the mold used in the initial process to perform extrusion molding.
  • the tooth profile 1 2 2 shown in Fig. 26 is obtained.
  • Reference numeral 1 2 O d indicates a sizing allowance.
  • the tooth profile 1 2 2 may not come into contact with the entire contour of the mold 120 c.
  • the tooth profile 1 2 2 obtained in the intermediate process is sized.
  • the complete tooth profile 1 2 3 shown in Fig. 27 is obtained.
  • FIG. 28 shows FIG. 25 and FIG. Reference numeral 1 2 5 conceptually shows the fiber flow after the second step.
  • the obtained tooth profile 1 2 3 has good fiber flow 1 2 5 and does not crack.
  • the diameter indicated by reference numeral 1 2 0 6 in the figure may have a wide tolerance as long as it is on the plus side.
  • FIG. 29 shows yet another embodiment of the present invention.
  • This embodiment is an example in which the metal material overhang and protrusion are divided into two processes and combined with a sizing (finish drawing) process.
  • Reference numeral 1 3 0 in the figure denotes a gear.
  • Reference numeral 1 3 4 represents a pitch circle.
  • a metal material is inserted into a predetermined mold (not shown) and formed.
  • an initial tooth profile 1 3 1 having a large arc-shaped tooth tip is obtained.
  • the initial tooth profile 1 3 1 obtained in the initial process is inserted into a mold (not shown) different from the mold used in the initial process to perform extrusion molding.
  • a tooth profile 1 3 2 having another large arc-shaped tooth tip is obtained.
  • the tooth profile 1 3 2 obtained in the intermediate process is sized.
  • the tooth profile 1 3 3 is obtained.
  • Reference numeral 1 3 0 d indicates a sizing allowance.
  • Reference numerals 1 3 1 a and 1 3 3 a indicate the tooth shape of the processed product. At that time, the spaces indicated by the symbols 1 3 5 a and 1 3 5 b remain inside the mold.
  • the top of the tooth tip of the tooth profile formed by the protrusion is not in contact with the tooth tip of the tooth profile of the mold. Since the tooth profile 1 3 3 a does not have a small corner R, the fracture (crack) resistance of the mold is improved.
  • the shape of the top of the tooth tip of the tooth profile formed by the protrusion is not limited to an arc, but may be a rounded shape or other free shape as long as the protrusion is advantageous.
  • this invention is not limited to the above-mentioned Example.
  • the present invention is not limited to the form of closed forging, but includes the form of non-closed forging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Gears, Cams (AREA)

Abstract

冷間鍛造によって歯形部品を製造する方法において、冷間鍛造で初期歯形を加工する初期工程と、完成歯形を冷間鍛造でサイジング加工する完成工程との中間に、冷間鍛造により、初期歯形の歯厚とほぼ同一に維持するか、初期歯形の歯厚よりも10%以下の範囲内で歯厚を減少させると同時に、初期歯形よりも歯先を突き出す中間工程を介在させる。初期歯形における歯底の西側の丸みが完成歯形における歯底の西側の丸みよりも大きい。

Description

明 細 書 歯形部品の製造方法 発明の技術分野
本発明は、 歯車、 スプロケット歯、 スプライン歯のような歯形部品の製造方 法、 とくに冷間鍛造による製造方法に関する。
従来技術
金属材料を使用して冷間鍛造によって歯車を製造する方法は、 特許文献 1に 示されているように、 公知である。
図 1 ( A ) ( B ) は、 特許文献 1に記載の従来の冷間鍛造による平歯車の製 造方法を示している。 円筒形状の金属材料 1 0は、 所望の歯車の外径に近い寸 法を有する。 その円筒形状の金属材料 1 0の下端を型 1 1の穴 1 1 Aに挿入し て、 矢印 Xの方向から押し込んで、 パンチ (図示せず) によってその金属材料 1 0を押圧して、 材料 1 0の外周に雄の歯形を形成する。 この材料 1 0の外周 に形成された雄の歯形は、 型 1 1の歯形 1 2に対応するものである。 歯形の歯 元と歯先の関係は、 材料 1 0と型 1 1では逆になる。 この型 1 1の歯形 1 2は、 正規の全歯タケ Hを有する。 それゆえ、 材料 1 0の外周に形成された歯形も、 これと同様に正規の全歯タケ Hを有することになる。
図 1 ( A ) ( B ) において、 符号 1 3はピッチ円を示している。 符号 1 4は 型 1 1の歯形 1 2の歯先円を示しており、 符号 1 5はその歯元円を示している。 従来の冷間鍛造による歯車の製造方法において、 型 1 1の歯形 1 2の歯形成 形開始部の端面 1 6は傾斜している力 型 1 1の軸心に直交する面に対する端 面 1 6の傾斜角度 Bは 3 0 ° 以下となっている。 この傾斜角度 Bが小さいほど、 不完全な歯形部が少なくなる。 また、 材料 1 0は一つの工程で冷間鍛造する場合もあるが、 あらかじめ熱間 又は温間で予備成形した後、 焼なまし、 表面潤滑処理などを行ってから、 冷間 鍛造で仕上げ形成をすることもある。
図 1に示されている従来の冷間鍛造による歯車の製造方法においては、 最終 製品の歯車の品質の良悪は、 鍛造用の型に関する要因が 5 0ないし 8 0 %を占 めると考えられる。
図 1に示す方法においては、 雌の型の内部で成形を行っており、 これをイン ダイ成形と呼んでいる。 この製造方法に用いる金属材料は、 中実の丸棒、 リン グ状の素材、 熱間又は温間鍛造による予備加工品等である。
図 1の従来法においては、 一つの工程で歯車を冷間鍛造して仕上り寸法を得 るものである。 そのため、 歯形 1 2の歯形成形開始部の傾斜端面 1 6にかかる 荷重 (圧力) は、 2 0 0 k g f m m 2ないし 2 8 0 k g f m m 2にもなる。 この荷重 (圧力) は、 型材として最高レベルめ材質であっても型の破壊強度の 7 0ないし 9 0 %になっている。
他方、 特許文献 2に示されているように、 素材を得るべき平歯車の歯車形状 の歯輪郭より歯先と歯厚の両方が小さく設定された歯車形状を有する一次加工 歯車にすえ込み成形する第 1の加工工程と、 上記一次加工歯車に歯形以外の部 分で材料を自由に流動させつつ二次加工歯車に圧縮成形する第 2の加工工程と、 上記二次加工歯車を最終製品にしごき成形する第 3の加工工程とからなリ、 こ れらの各工程を冷間鍛造加工で行う平歯車の鍛造加工方法も公知である。
図 2の (A ) から (E ) は特許文献 2に記載の方法を表わしており、 図 2 ( A ) は第 1の加工工程、 図 2 ( B ) は第 2の加工工程を実施する金型を表わ している。
図 2 ( A ) において、 2 0 0はダイ、 2 0 1はダイ 2 0 0の歯形部であり、 ダイ 2 0 0に嵌合するパンチ 2 0 2及びパンチ 2 0 2と対応して透孔 2 0 3内 に揷通したノックアウトピン 2 0 4が設けられている。 2 0 5は素材、 2 0 6 はダイ 2 0 0で加工された一次加工歯車である。
図 2 ( B ) において、 2 1 0はダイ、 2 1 1はダイ 2 1 0の歯形部、 2 1 2 は歯形部 2 1 1と連通しダイ 2 1 0を貫通する透孔、 2 1 3はダイ 2 1 0に嵌 合するパンチ、 2 1 4はダイ 2 1 0の透孔 2 1 2内に挿入したノックァゥトビ ンである。 なお、 2 1 5はダイ 2 0 0で加工された二次加工歯車で透孔 2 1 2 に向って、 材料の隆起部 2 1 6が形成されている。
図 2 ( A ) において、 素材 2 0 5からすえ込み成形された一次加工歯車 2 0 6は、 材料のダイへの充満は不十分であって、 欠肉 2 0 7が生じている。 次に、 図 2 ( B ) のダイへ一次加工歯車 2 0 6を投入し、 パンチ 2 1 3による圧縮成 形によって材料を歯形部 2 1 1に充満させ、 二次加工歯車 2 1 5を成形する。 パンチ 2 1 3による圧縮成形において成形された二次加工歯車 2 1 5は、 成 形加工中に歯形以外の部分に材料を拘束しない箇所で材料を自由に流動させて 隆起部 2 1 6を形成していることにより、 材料が歯形部 2 1 1に充満し歯先部 に生じる欠肉を解消している。
図 2 ( C ) 〜 (E ) は、 第 1の加工工程で成形加工される一次加工歯車 2 0 6と第 2の加工工程で成形加工される一次加工歯車 2 1 5との歯形形状を比較 した図であり、 第 1の加工工程で成形された歯形輪郭 2 0 6 Aは第 2の加工ェ 程で成形された歯形輪郭 2 1 5 Aよりも歯先も歯厚も小さくなるように設定さ れている。
特許文献 1 特開平 9— 3 0 0 0 4 1号公報
特許文献 2 特許第 2 9 1 3 5 2 2号公報
特許文献 1に記載の方法では、 冷間鍛造時の最高荷重は、 型の内面の歯形成 形開始部の傾斜端面 1 6に発生することが多い。 従来は、 この最高荷重を下げ る工夫が足りなかったために、 型 1 1の寿命が短かった。 それに起因して製品 精度が悪化する欠点もあった。
とくに、 ヘリカル歯車を冷間鍛造により製造する場合には、 型 1 1の歯形 1 2を一方側のみに倒そうとする荷重が加えられるため、 傾斜面 1 6付近の破損 の確率が高くなりがちであった。 それが、 結果的に、 型 1 1の寿命を短くして いた。
本発明者の知見によれば、 ヘリカル歯車の、 冷間鍛造による加工の場合には、 型の歯形の一方の面 (表側の面) に集中的に荷重がかかり、 その裏側の面には あまり荷重がかからない。 そのため、 歯形の表側と裏側で荷重の差が顕著であ リ、 それに基因する歯形欠損が多い。
特許文献 2に記載の方法は、 次のような問題がある。
図 2 ( E ) に示すように、 完成歯形の輪郭よりも歯先と歯厚の両方を含めて 歯形全体を小さい (やせた) 形状、 寸法に成形するため、 塑性加工率が大きく なる。
加工率が大きくなると、 加工品の塑性加工硬化が進み、 変形抵抗が大となり、 成形が困難になる。
さらに形状係数も大となり、 張り出し成形圧 (成形荷重) が大きくなリ、 型 の歪が大となる。 そのため加工品の精度が低くなる。 型も、 加工スピードを高 めると破損仕易い。
一次加工で小さく成形した歯形を図 2 ( E ) で示すように二次加工で大きく する (太らせる) 方法は精度上好ましくない。 たとえば、 歯幅が大きくなるに 従い、 歯幅の中央部と端面部の太る率 (成形度合い) の差が大きくなつてしま う。 歯形が不均一になり、 円筒度が悪くなる。
とくに高精度の歯車を多量生産する方法としては特許文献 2に記載の方法は 不向きである。 精度を上げようとして成形荷重を大きくして行くと、 被加工物の歪が大きく なり、 後の熱処理時の処理歪が大きくなる。 荷重が大きくなるほど、 型が割れ 易くなる。
発明のサマリー
そこで、 本発明は、 加工用の型の寿命を長くできるとともに、 良質な歯形を 製造することができる、 冷間鍛造によリ歯形部品たとえば歯車を製造する方法 を提供することを目的としている。
本発明の解決手段を例示すると、 次に示すような、 冷間鍛造による歯形部品 の製造方法と、 その方法により製造された歯形部品である。
( 1 ) 冷間鍛造によって歯形部品を製造する方法において、 初期歯形を形成 する初期工程と、 サイジング加工で完成歯形を形成する完成工程との間に、 冷 間鍛造により、 初期歯形の歯厚とほぼ同一に歯厚を維持するか、 初期歯形の歯 厚よりも 1 0 %以下の範囲内で歯厚を減少させると同時に、 初期歯形よりも歯 先を突き出す中間工程を介在させることを特徴とする、 冷間鍛造による歯形部 品の製造方法。
( 2 ) 初期歯形における歯底の両側の丸みが完成歯形における歯底の両側の 丸みよりも大きいことを特徴とする前述の製造方法。
( 3 ) 中間工程において、 歯厚が同一に維持されるが、 または減少すると同 時に、 歯先が複数回の冷間鍛造によって丸みのある形で段階的に突き出されて 完成歯形の歯先に近づいていくことを特徴とする前述の製造方法。
( 4 ) 完成工程で仕上げ用の型の口元部にガイド部を設け、 ガイド部の長さ を歯幅の半分以上にすることを特徴とする前述の製造方法。
( 5 ) 完成工程において厚みが 0 . 0 2〜0 . 1 mm減少するように歯形を サイジング加工して調整することを特徴とする前述の製造方法。 ( 6 ) 初期歯形からサイジング加工前までをパーツホーマーによって 3 ~ 5 段で形成し、 サイジング加工直前に軟化焼なまし処理又は潤滑被膜付け処理を することを特徴とする前述の製造方法。
( 7 ) 初期工程と中間工程との間で歯形の軟化焼なまし処理をすることを特 徴とする前述の製造方法。
( 8 ) 初期工程と中間工程との間で歯形の潤滑被膜付け処理をすることを特 徴とする前述の製造方法。
( 9 ) 初期工程と中間工程における多段の冷間鍛造の各々において、 加工品 の歯形の歯先が、 型の歯形の歯先に到達成する前に、 突き出しを止めることを 特徴とする請求項 1 ~ 8のいずれか 1項に記載の、 冷間鍛造による歯形部品の 製造方法。
( 1 0 ) 前述の製造方法により製造された歯形部品。
本発明の 1つの実施形態によれば、 歯形部品の好適例が歯車であり、 冷間鍛 造で歯車を製造する方法が、 次のような一連の工程を含む。
( 1 ) 金属材料の素材 (たとえば円柱の中実材) を冷間鍛造で初期歯形を有す る初期加工品を形成する初期工程。
( 2 ) 初期歯形の初期加工品を冷間鍛造して、 初期歯形の歯厚とほぼ同一に維 持するか、 1 0 %以下の範囲で歯厚を減少させると同時に、 歯先を突き出す中 間工程。
( 3 ) その中間工程のあと、 歯形をサイジング (仕上げ絞り) 加工して完成歯 形を形成する工程。
中間加工の際に、 歯厚を増加させない。 歯厚は、 中間加工のときには、 ほぼ '同一か、 むしろ (1 0 %以下の範囲で) 減少させる。 それにより、 より低い荷 重で鍛造を実行できる。 その結果、 加工圧力を低減できるだけでなく、 加エス ピードを高めることも可能となる。 さらに、 例えば歯車ゃスブラィン歯などの歯形部品を高精度に冷間鍛造によ リ製造することができる。
前述のような中間ェ ϋを介在させれば、 最終的な工程で加工品の歯形が型の 歯形と一致しやすい。 ヘリカル歯車の場合でも、 歯のネジレ角が大きくなつて も、 製品精度に差があまり生じない。
従来の絞り加工のみによる歯車の製造法と比較して、 型に高い面圧下の摩擦 がなくなるため、 型の命数を延長できる。 例えば、 従来の絞り成形法に比べて 命数は 3〜 1 0倍になる。
歯幅の薄い歯車、 チ: L一ンスプロケット等を冷間鍛造により製造できる。 こ の場合、 他の鍛造法と比べて強度と生産速度を向上できる。
金属材料の周方向の外側領域を、 内側領域と比較して軸方向に厚くすれば、 歯形に沿ったファイバーフローとなり、 切削歯切に比し、 高い強度を得ること ができる。 従来の精密剪断で生じていたダレや二次破断が生じない。
複数の異なる型を用いて、 各型に合わせて段階的に歯形を成形すれば、 ファ ィバーフローが良好となり、 亀裂を生じない。
同一の型を用いても、 中間工程の 「突き出し」 や 「張り出し」 の程度を変え ながら段階的に歯形を複数段で成形すれば、 歯先が円弧や他の山形の丸みのあ る形 (頂部が真中に位置する曲面) をつ〈りながら、 型内で完成歯形の歯先の 形に近づいていき、 ファイバーフローが良好となり、 亀裂を生じない。
複数の冷間鍛造毎に、 次のようにすると、 その直後は、 さらにより低い荷重 で鍛造を実行できる。
( 1 ) 潤滑被膜を施す。
( 2 ) 軟化焼なましを施す。
( 3 ) 歯形の調整を行う。 歯厚はほぼ同一。
( 4 ) 加工硬化率の高い材質の場合は第 3加工も考慮して寸法配分する。 ( 5 ) 歯形部以外の形状、 寸法も荷重が低くなるよう配分する。
( 6 ) ( 1 ) 〜 (5 ) を組合せる。
本発明の別の実施形態を説明する。
中間工程後の歯形の外径は完成歯形よリ少し大きく成形する。 これによリ、 その後の工程のサイジング (仕上げ絞り加工) で精確な歯形を得る。
初期工程後の加工品の歯厚寸法は完成歯形と同一か又は 1 0 %以下の範囲内 で歯厚を増加するように設定して、 初期歯形の歯底の丸みを完成歯形のものよ リ大きく設定する。 この場合、 初期工程と中間工程との加工率を適性に配分す ると、 成形加工圧 (成形荷重) は 1 0〜 5 O o/o低くしても、 中間加工と完成ェ 程のサイジング (仕上加工) により所望の完成歯形を得ることが出来る。
加工圧を大きくしないために、 完全閉塞状態に近づけないこと (つまリ非閉 塞鍛造とすること) が好ましい。 たとえば、 初期工程や中間工程において、 冷 間鍛造の後に、 型の歯形の歯先の先端と加工品の歯形の歯先の先端との間に空 間が残るようにする。
また、 初期加工型の歯形の歯先部になる部分は完成歯形とほぼ同じ歯厚か、 それより小さい歯厚に設定し、 かつ、 加工品の歯先全体の丸みは円弧その他の 山形の曲面形 (真中に頂部が位置する形) にし、 かつ大きく設定する。 丸みを 大きくすることにより、 加工型の割れに対する強度が向上する。
素材のコイル材から始めて、 パーツホーマーにより 3段〜 7段で完成歯形の 成形が可能になる。 この場合、 コスト面で最良の量産形態が取れる。 ヘリカル 歯形の場合も、 ネジレ角が正確に精度良く成形出来るため、 後工程の精度出し 基準面にすることが出来る。
歯先の突き出し高さは完成歯形の 6 0 %以上あれば相当な効果が認められる。 本発明は、 前述のように非閉塞鍛造とすることにより、 より低い成形荷重と することを可能とする。 成形機械は、 好ましくは鍛造プレス (とくにパーツフ ォーマー) とする。
次のようにすると、 各冷間鍛造において、 より低い荷重で加工することがで きる。
( 1 ) 硫化モリブデンコーティング又はボンディングの潤滑被膜を施す。
( 2 ) 鋼の場合 6 0 0 °C〜 6 5 0。Cで、 9 0分〜 2 4 0分間、 軟化焼なまし を行う。
( 3 ) 歯形の調整をする。 歯厚は初期加工と中間加工でほぼ同一とする。 歯 先の高さ (歯タケ) と、 歯元の丸みと、 歯先の丸みの取り方をうまく組合せる。
( 4 ) 加工硬化率の高い材質の場合は中間の追加的な三次加工の設定も考慮 して寸法配分する。
( 5 ) 歯形部分以外の形状、 寸法の設定、 配分を行う。
( 6 ) 初期加工用の型の口元部にガイド部分を設ける。 ガイド部の長さはほ ぼ加工品の歯幅とする。 中間加工の型と初期加工の型との寸法差のロスを解消 し、 歯先の高さの増加 (突き出し) を有効に得る。 これは多量生産において実 用的に有効な方法である。
さらに、 本発明の別の好適な実施形態を述べると、 次のとおりである。
( 1 ) 歯成形の初期工程は円柱の素材を型内に入れた状態で素材の両端をパ ンチで押圧して、 外向きに素材の側面を張り出す成形とする。 さらに、 中間ェ 程として突き出し成形をし、 そのときの成形圧力を低くする。 こうすれば、 精 度と、 型命数向上に効果が大きい。
( 2 ) 初期工程の直後に軟化焼なましと潤滑被膜付けを行う。 これの主な目 的は良好な表面粗さを得ることである。 (3) 中間工程の突き出し成形では、 歯外径、 歯面、 歯底の各面に 0. 02 〜0. 1 0のサイジング代 (仕上げ絞り代) をつけておく。 ケースバイケース で突き出し成形を 3回行うこともある。
(4) 完成工程でサイジング (仕上げ絞り加工) を行い、 歯形を仕上げる。 サイジング用の型は型の穴口元部にガイド部を設けて、 歯筋をブランクの全長 に恒リブランクと型の歯面を当てる。 このことによリサイジング圧力による歯 筋の狂いを防止できる。 このようにすると、 歯形仕上に要する加工圧が低いた め、 内部応力は小さくなり精度が高い。
(5) 歯形部品の端面と穴は切削する。 加工基準面は歯面又は歯外径とする。 さらに端面角部の面取り切削を行う場合もある。
( 6 ) 硬化熱処理指定のある歯車は焼入れを行う。
(7) 表面粗さ向上と微小なバリの除去をする。 たとえば、 バレル研磨や、 ショットビ一ニングを行う。 電解研磨や化学研磨を行ってもよい。
(8) 歯形部品の穴と端面を研削加工する。 指定なしの場合は研削加工はし ない。
(9) 歯形部品を洗浄する。
(1 0) 歯形部品を防鲭処理 (一般には防鲭油塗布) する。
これらの一連の工程 (1 ) 〜 (1 0) は代表的な例である。 (1 ) 〜 (4) が重要な工程である。
本発明の更に別の実施形態を説明する。 .
円筒形状の外周面を有する金属材料 (たとえば円柱) の素材が、 所定のメス 歯形を有する型の中に挿入され、 その型内で金属材料がパンチにより張り出し 成形されて中間の歯形が冷間鍛造で形成される。
円柱素材の直径を、 型の歯先円の直径より小さくしても良いし、 歯車の谷径 より小さくしても良い。 円柱素材をその軸心方向に沿って加圧して、 型に向けて周方向に押付けるよ うにしても良い。
円柱素材の軸心方向の一端に支持部材を設け、 他端に押圧部材を設け、 押圧 部材を用いて円柱素材を支持部材に向けて押圧しても良い。 更に支持部材と押 圧部材を、 型の歯形と対応する歯形を有するようにしても良い。 円柱素材の軸 心方向の両端に押圧部材を設けても良い。
円柱素材がその軸心方向に貫通した孔を有し、 孔の形状を保持するためのピ ンを孔内に配置するようにできる。
複数の異なる型を用いて、 各型に合わせて段階的に歯形を成形しても良いし、 同一の型を用いて、 歯先の突き出しの程度を変えて段階的に歯形を成形しても 良い。
円柱素材を初期成形させた後、 軟化焼なましにより内部応力を除去しても良 い。
絞り加工によって初期の歯形を成形しても良い。 絞り加工した初期の歯形を、 型内で歯先の突き出し成形をしても良い。
本発明の更に別の実施形態を説明する。
本発明は、 冷間鍛造による歯車の製造法を改良したものである。 とくに、 本 発明は、 ヘリカル歯車の製造について顕著な効果を奏する。 ヘリカル歯は、 冷 間鍛造による製造が極めて困難なものであると認識されてきたが、 本発明によ れぱ、 へリカル歯車またはそれに類する歯車を効率よくかつ高精度に製造でき る。
各種の歯車を、 本発明の方法によって製造することができる。 大小二つの歯 車を有する二段歯車や、 フランジ付きの歯車や、 喰い付き面取り歯車や、 ラチ エツト歯付きの歯車や、 セレーシヨン付きの歯車等を冷間鍛造で成形できる。 さらに、 直歯傘歯車やこれに類した歯車の冷間鍛造加工も可能である。 本発明の製造方法によれば、 歯車の製品精度は、 J I S規格 2級ないし 5級 にすることができる。
本発明の製造方法によれば、 フランジ付き歯車や、 二段歯車や、 スプライン 付きの歯車であっても、 1つの金属材料を冷間鍛造のみで一体加工することが できる。
本発明は、 熱間又は温間で予備成形した後に冷間鍛造で仕上げ成形する方法 や、 必要に応じて切削加工等を鍛造の前後や途中に付加する方法を含むもので ある。 つまり、 本発明は、 冷間鍛造のみで初めから終わりまで歯車の最終製品 を製造する方法に限定されるものではない。
本発明において使用する材料は、 主として金属であり、 丸棒、 リング状の素 材、 熱間又は温間鍛造による予備成形品その他である。 コスト面から好ましい 金属材料はコイル素材である。 材質は歯車の材料として通常使用されているも のは原則としてすベて使用できる。
加工素材の外周を予め增肉して加工すれば、 以下の点で有利である。
( 1 ) 歯形に沿ったファイバーフローになり、 強度的に有利である。
( 2 ) 歯面の面粗さは、 型と同一に近いため、 量産時に面粗さの悪化が少なし、。
( 3 ) 歯車の精度は、 型 (ダイ) の精度が転写される。
( 4 ) 後工程は、 ファインブランキングと同一にできる。
本発明において、 金属材料の 「張り出し」 とは、 金属材料を膨らませること を含む。 金属材料を膨らませることを、 単に 「はらし」 ともいう。 「突き出 し」 は、 歯先の部分を集中して隆起させる成形であり、 特殊な張り出し成形
(ただし歯厚が増加しない成形) といえる。
本発明は、 平歯車、 ヘリカル歯車 (スパイラル歯車やネジレ歯車とも呼ぷ) の他、 種々の歯車にも適用できる。
本発明は、 歯幅の薄いものにも、 厚いものにも適用できる。 本発明においては、 金属材料の張り出し加工と、 絞り加工と、 突き出し加工 を組み合わせて用いることができる。 歯車の歯幅が比較的大きくなリ、 張り出 し成形と突き出しのみでは円筒度が得にくい場合は適度な加工率の配分を行つ て絞り加工すると良い効果が得られる。 展延性の良くない材質の場合も絞り加 ェを併用すると効果的である。 加工率は寸法と材質を考慮して設定する。
素材は、 孔の無い場合もあるが、 歯形の成形前に孔が有る場合もある。 孔の 有る場合は、 中心部に芯金ピンを配置すると良い。 この場合、 材料長さは孔無 し材料よリ孔有り材料の方を長くする。 初期の張り出し加工の時、 孔を塑性加 ェしながら両端面を加圧して歯形を成形することもできる。
本発明を利用したヘリカル歯車の成形法の一例を以下に示す。
( 1 ) ヘリカル歯形の成形の初期工程は張り出し成形とする。 これによリネ ジレ角を正確に転写できるとともに、 中間の加工から成形圧力を低くできる。
( 2 ) 初期工程の直後に軟化焼なましと潤滑皮膜付けを行う。 この工程は、 主に表面粗さを得るため採用される。
( 3 ) 初期工程の型から加工品をねじれ角に沿って回転させながら抜き出す。
( 4 ) 加工品を中間工程用の型にねじれ角に沿って回転させながら挿入して、 中間工程の突き出し成形を行う。 ヘリカル歯の外径、 歯面、 歯底の各面に 0 .
0 2〜0 . 1 O mmのサイジング (仕上げ絞り加工) 代をつけておく。 ケース バイケースで突き出し成形を計 3回行うこともある。 その後、 加工品をねじれ 角に沿って回転させながら型から抜き出す。
( 5 ) 厚みを 0 . 0 2〜0 . 2 mm減少させるようにサイジングを行い、 へ リカル歯形を仕上げる。 サイジング用の型には、 その穴口元部にガイド部を設 ける。 歯スジをブランク (金属材料) の全長に亘リ当てる。 このことによリサ ィジング圧力による歯スジの狂いがでない。 歯形仕上げに要する加工圧が低い ため、 内部応力は小さく精度が高い。 (6) ヘリカル歯車の端面と穴の加工は切削による。 加工基準面は歯面又は 歯外径とする。
( 7 ) 硬化熱処理指定のある歯車は焼入れを行う。
(8) 表面粗さ向上と微小なバリの除去を目的として、 バレル研磨やショッ トビーニングを行う。 電解研磨や化学研磨を行っても良い。
(9) 歯車の孔と端面を研削加工する。 指定無しの場合は研削加工しない。
(1 0) 洗浄する。
(1 1 ) 防鲭処理する。
前述のいずれの実施形態においても、 張り出し成形と突き出し成形は、 パン チゃピンを使用して素材や加工品の端面を押圧する圧縮成形とするのが好まし い。
図面の簡単な説明
図 1 (A) は、 図 1 (B) の 1一 1線に沿った断面図で、 従来の冷間鍛造に よる平歯車の製造方法を示す。 図 1 (B) は、 図 1 (A) の矢印 Aの方から見 た、 型の歯形成形開始部分を示す。
図 2 (A) は、 従来の他の別の方法における第 1の加工工程で使用する金型 の断面図。 (B) は、 第 2の加工工程で使用する金型の断面図。 (C) 〜
(E) は、 前述の第 1の加工工程と第 2の加工工程で成形加工された歯形の比 較図。
図 3は、 本発明の実施例の 1つを示す。
図 4は、 本発明の別の実施例を示す。
図 5は、 図 4の A— A断面図である。
図 6は、 本発明の更に別の実施例を示す。
図 7は、 本発明の更に別の実施例で得られた歯形 51を示す。
図 8は、 図 7の次の工程で得られた歯形 52を示す。 図 9は、 図 8の次の工程で得られた歯形 5 3を示す。
図 1 0は、 図 7〜9を合わせて示す。
図 1 1は、 本発明の更に別の実施例で得られた歯形 6 1を示す。
図 1 2は、 図 1 1の次の工程で得られた歯形 6 2を示す。
図 1 3は、 図 1 2の次の工程で得られた歯形 6 3を示す。
図 1 4は、 図 1 1〜 1 4を合わせて示す。
図 1 5は、 本発明の更に別の実施例を示す。
図 1 6は、 本発明の更に別の実施例を示す。
図 1 7は、 本発明の更に別の実施例を示す。
図 1 8は、 本発明により製造された完成品のクランクスプロケットの一例を 示す。
図 1 9は、 図 1 8の概略正面図である。
図 2 0は、 本発明の更に別の実施例を示す。
図 2 1は、 本発明の更に別の実施例を示す。
図 2 2は、 本発明の更に別の実施例であり、 被加工物の成形開始状態を示す。 図 2 3は、 図 2 2の被加工物の成形完了状態を示す。
図 2 4は、 本発明の更に別の実施例を示す。
図 2 5は、 本発明の更に別の実施例で得られた歯形 1 2 1を示す。
図 2 6は、 図 2 5の次の工程で得られた歯形 1 2 2を示す。
図 2 7は、 図 2 6の次の工程で得られた歯形 1 2 3を示す。
図 2 8は、 図 2 5〜 2 7を合わせて示す。
図 2 9は、 本発明の更に別の実施例を示す。
実施例の説明
以下、 本発明のいろいろな実施例を、 図面を参照して説明する。
図 3の実施例 図 3は、 本発明の好適な実施例の 1つを示す。 この実施例においては、 金属 材料 2 0が加工されて平歯車が成形される。 図 3は、 説明のために、 歯形を成 形する前の状態を示している。
型 2 1は軸心 2 6方向に貫通した孔 2 1 aを有する。 この孔 2 1 aの周面に は、 雌の歯形 2 7が成形されている。 歯形 2 7は正規の平歯形である。 符号 2 3はピッチ円を示す。 符号 2 4は歯形 2 7の歯先円を示す。 符号 2 5は歯形 2 7の歯元円を示す。
図 1に示す従来例と比較したとき、 図 3の金属材料 2 0は、 その直径が歯先 円 2 4の直径よりも小さい点で相違する。 例えば、 金属材料 2 0の直径が 3 5 m m程度のとき、 歯先円 2 4の直径はそれより 0 . 0 2〜0 . 2 m m大きくす る。
金属材料 2 0の上方には、 押圧部材として加圧ピン 2 8が設けられている。 加圧ピン 2 8は、 矢印 X方向に金属材料 2 0を押圧するものである。 加圧ピン 2 8は、 金属材料 2 0に接する先端部 2 8 aを有する。 先端部 2 8 aの直径は、 金属材料 2 0の直径とほぼ同じである。
金属材料 2 0の下方には、 支持部材として支えピン 2 9が設けられている。 支えピン 2 9は、 金属材料 2 0を支持する。 支えピン 2 9は、 図示省略された 支持手段により動かないようになつている。 支えピン 2 9の周囲には、 雄の歯 形 2 9 aが成形されている。 支えピン 2 9の雄の歯形 2 9 aは、 型 2 1の雌の 歯形 2 7に対応している。
型 2 1その他を使用して、 冷間鍛造によってヘリカル歯車を製造する方法の 一例を説明する。
まず、 型 2 1内に金属材料 2 0を挿入する。 金属材料 2 0の直下には、 予め 支えピン 2 9を設置しておく。
型 2 1内に挿入した金属材料 2 0を、 加圧ピン 2 8で押圧する。 まず初期工程として、 押圧された金属材料 2 0は、 1回目の加圧で、 圧縮さ れ、 上下の端面間が縮小し、 かつ側面が外向きに張り出されて型 2 1内に隆起 し、 型 2 1の正規の歯形 2 7の途中のところに、 歯形 2 7よりも小さな歯形が 成形される。
そのように 1回目の押圧で歯形を成形し、 さらに、 中間の工程として、 成形 圧力と成形速度を変更して、 2回目又は 3回目の押圧で、 正規の歯形 2 7に対 応ずる正規の歯形を加工品に成形する。
この中間工程では、 歯厚が同一に維持されると同時に、 歯先が複数回の冷間 鍛造によって円弧の形をつくりながら段階的に突き出していつて完成歯形の歯 先に近づいていく。
また、 歯幅の厚い製品や高い精度の製品の場合は、 完成工程として、 歯形を 有するサイジングダィ内を通過させることにより、 歯形、 その他について高い 精度を得る。 この場合、 サイジング量は、 例えば 0 · 0 1〜0 . 2 mmが適当 である。
初期工程と中間工程と完成工程の際に、 型の歯形を換えることにより、 同様 な方法で平歯車を成形することもできる。
図 4〜 5の実施例
図 4〜5は、 本発明の別の実施例を示す。 この実施例においては、 金属材料 3 0の外周に比較的低い荷重で平歯車が成形される。 図 4は、 説明のために、 歯形を成形する前の状態を示している。 図 5は、 図 4の A— A断面図である。 型 3 1は軸心 3 6方向に貫通した孔 3 1 aを有する。 この孔 3 1 aの周面に は、 雌の歯形 3 7が成形されている。 歯形 3 7は正規の平歯形である。 符号 3 4は歯形 3 7の歯先円を示す。 符号 3 5は歯形 3 7の歯元円を示す。 符号 3 0 aは金属材料 3 0の外径を示す。 符号 3 1 bは型 3 1のピッチ円を示す。 金属材料 3 0は、 外周が円筒形になった薄板であり、 外周の歯成形部分の両 側が同じ幅にわたって増肉してある。 金属材料 3 0の両側を同等に増肉するの が好ましいが、 両側のうち一方だけを增肉しても良い。
金属材料 3 0の上方には、 歯を持つパンチ 3 8が設けられている。 パンチ 3 8は、 矢印 X方向に金属材料 3 0を押圧するものである。 パンチ 3 8は、 下部 に雄の歯形 3 8 aを有する。 雄の歯形 3 8 aは、 型 3 1の雌の歯形 3 7に対応 している。
金属材料 3 0の下方には、 支持部材として支えピン 3 9が設けられている。 支えピン 3 9は、 金属材料 3 0を支持する。 支えピン 3 9は、 図示省略された 支持手段により動かないようになつている。 支えピン 3 9の周囲には、 雄の歯 形 3 9 aが成形されている。 支えピン 3 9の雄の歯形 3 9 aは、 型 3 1の雌の 歯形 3 7に対応している。
型 3 1その他を使用して冷間鍛造によって平歯車を製造する方法の一例を説 明する。
まず、 型 3 1内に金属材料 3 0を挿入する。 金属材料 3 0の直下には、 予め 支えピン 3 9を設置しておく。
1回目の鍛造で、 型 3 1内に挿入した金属材料 3 0を、 パンチ 3 8で押圧す る。 それにより、 まず、 金属材料 3 0の增肉部が押圧されて外向きに張り出さ れ、 2回以降の押圧で金属材料 3 0は型 3 1内に突き出し、 型 3 1と同じ精度 の歯車に成形される。 こうして型 3 1に対応した正規の歯車を得ることができ る。
最後に、 完成工程として、 加工品の歯形をサイジング加工して仕上げる。 図 6の実施例
図 6は、 本発明の更に別の実施例を示しており、 とくに、 金属材料の 1回の 張り出しと 2回の突き出しの工程に分けて行う状況を示す。 図中の符号 4 0は、 本発明の歯車としてのクランクスプロケットを示す。 符号 4 0 aはピッチ円を 示す。
以下、 各工程を説明する。
第 1工程において、 金属材料を所定の型 (図示省略) に挿入してパンチによ リ張り出し成形をする。 これにより、 正規の歯形よりも低い歯先 (歯タケ) を 有する第 1工程の初期歯形 4 1を得る。 第 1工程の歯形部分の歯先は符号 4 1 aで示されている。 この歯先 4 1 aは大きな円弧となっている。
第 2工程において、 第 1工程で得られた初期歯形 4 1が、 第 1工程で用いた 型よりも数パーセン卜小さい歯厚を有する歯形の型によって更に冷間鍛造され て突き出し成形させる。 これにより、 第 2工程の歯形 4 2を得る。 第 2工程の 歯形部分の歯先は符号 4 2 aで示されている。 この歯先 4 2 aは、 非円形の丸 みのある曲面形状になっている。
第 3工程において、 第 2工程で得られた歯形 4 2を、 第 2工程で用いた型よ リも数パーセント小さい歯厚を有する歯形の型によって突き出し成形をする。 これにより、 第 3工程の歯形 4 3を得る。 第 3工程の歯形の歯先は符号 4 3 a で示されている。 この歯先 4 3 aは、 非円形の丸みのある曲面形状になってい る。
こうして、 3種類の型を用いて、 張り出しや突き出しの程度を変えて歯厚を 減少させつつ段階的に歯形を成形し、 各型に合わせて段階的に丸みのある歯先 を有する歯形を成形する。
得られた歯形 4 3は、 正規の歯形にサイジング代を有しており、 ファイバ一 フローが良好となり、 亀裂を生じない。
この歯形 4 3は、 仕上げサイジング絞リ加工を行う。
H 7〜 1 0の実施例 図 7〜 1 0は、 本発明の更に別の実施例を示す。 図 1 0は、 図 7〜9を合わ せて示す。 図中の符号 5 0は歯車を示す。 符号 5 4はピッチ円を示す。
以下、 各工程を説明する。
初期工程において、 金属材料を所定の第 1の型 (図示省略) に挿入して張り 出し成形をする。 これにより、 図 7に示す初期工程の初期歯形 5 1を得る。 中間工程において、 初期工程で得られた丸みのある歯底形状の初期歯形 5 1 を、 所定の第 2の型 (図示省略) に挿入して突き出し成形をする。 これにより、 図 8に示す中間工程の丸みのある歯底形状の歯形 5 2を得る。
この中間工程では、 歯厚が同一に維持されると同時に、 歯底が複数回の冷間 鍛造によって丸みのある形を変化させながら段階的に突き出していって完成歯 形の歯先に近づいていく。
完成工程において、 中間工程で得られた歯形 5 2を、 サイジング (すなわち 絞り加工) によって歯形を仕上げ成形する。 これにより、 図 9に示す完成歯形 5 3を得る。
得られた完成歯形 5 3は、 正規の歯形であり、 ファイバーフローが良好とな リ、 亀裂を生じない。
図 1 1〜 1 4の実施例
図 1 1〜 1 4は、 本発明の更に別の実施例を示す。 この実施例は、 金属材料 の張り出しと突き出しを 2つの工程に分け、 更にサイジング (仕上げ絞り加 ェ) 工程と組み合わせて行う例である。 図中の符号 6 0は歯車を示す。 符号 6 4はピッチ円を示す。
以下、 各工程を説明する。
初期工程において、 金属材料を所定の型 (図示省略) に挿入して張り出し成 形をする。 これにより、 図 1 1に示す円弧状の歯先を有する初期歯形 6 1を得 る。 中間工程において、 初期工程で得られた初期歯形6 1を、 初期工程で用いた 型と別の型 (図示省略) に揷入して突き出し成形をする。 これにより、 図 1 2 に示す円弧状の齒先を有する歯形 6 2を得る。
完成工程において、 中間工程で得られた歯形6 2を、 サイジングする。 これ により、 図 1 3に示す歯形 6 3を得る。
図 1 4は、 図" I 1〜"! 3を合わせて示す。
符号 6 5は、 第 2工程後のファーバ一フローを概念的に示す。 得られた歯形 6 3は、 ファイバ一フロー 6 5が良好となり、亀裂を生じない。
図 1 5の実施例
図 1 5は、 本発明の更に別の実施例を示す。
この実施例は、 金属材料を張リ出しと突き出しで成形したへリカル歯車の齒 形 (A ) と歯スジ (B ) を、 三次元測定機により計測したデータを示す。 図 1 5中、 (A ) と (B ) の各上側の 1、 5、 1 0、 1 4の数字は、 歯の順 番号を意味する。 (A ) と (B ) の各下側の数値は、 基準値を 0として測定し た測定値と J I S規格の精度等級を示す。 左側は左歯面の形状を示し、 お側は 右歯面の形状を示す。
表 1は、 この図 1 5の実施例で用いたヘリカル歯車の歯数、 モジュール、 圧 力角、 ネジレ角、 転位係数、 及び基礎円径を示す。
表 1
Figure imgf000023_0001
替え用紙(規則 26) 張り出しと突き出し歯車を成形しても、 最高級の歯車を成形できることがわ かる。
図 1 6の実施例
図 1 6は、 本発明の更に別の実施例を示す。
この実施例は、 金属材料を張り出しと突き出しで成形し、 更に絞り加工して 成形したヘリカル歯車の歯形 (A ) と歯スジ (B ) を、 三次元測定機により計 測したデータを示す。
図 1 6中、 (A ) と (B ) の各上側の 1、 5、 1 0、 1 4の数字は、 歯の順 番号を意味する。 (A ) と (B ) の各下側の数値は、 基準値を 0として測定し た測定値と J I S規格の精度等級を示す。 左側は左歯面の形状を示し、 右側は 右歯面の形状を示す。
この図 1 6の実施例で用いたヘリカル歯車の歯数、 モジュール、 圧力角、 ネ ジレ角、 転位係数、 及び基礎円径は、 表 1と同じである。
歯形は J I S規格 0〜1級であるが、 歯スジの左歯面と右歯面の等級で 2〜 5級の差がある。 測定誤差はあるものの、 実力値は 2〜4級と判断できる。
図 1 7の実施例
図 1 7は、 本発明の更に別の実施例を示す。 この実施例は、 金属材料の張り 出しと突き出しを、 種々の冷間鍛造加工と組み合わせて行う例である。 歯車と してクランクスプロケッ卜が製造される。
以下、 一連の製造工程を説明する。
( A ) は、 中実円柱の金属材料をコイル素材から所定の長さ毎に切断した円 柱の素材 7 0を示している。
( B ) は、 前述の (A ) の状態にある素材 7 0を冷間鍛造により加工して、 下側に縮径部 7 1とくぼみ 7 2を成形した加工品を示している。 ( C ) は、 前述の (B ) の状態にある加工品 7 0を冷間鍛造により加工して、 上側のくぼみ 7 3と下側の穴 7 4を成形した状態を示している。
( D ) は、 前述の (C ) の状態にある加工品 7 0を冷間鍛造により加工して、 拡径部 7 6と下側の深い穴 7 5を成形した状態を示している。
( E ) は、 前述の (D ) の状態にある加工品 7 0を図示省略した型内で張り 出し成形して、 正規の歯形よりも歯厚が大きく、 かつ、 歯先の低い初期の歯形
7 7を成形した状態を示している。 なお、 下側には新たに穴 7 8が成形されて いる。
以上の諸工程の後、 穴を貫通させて図 1 8に示す完成品を得る。
図 1 8〜 1 9は、 正規の歯形 8 7を有する完成品のクランクスプロケット 7 9を示す。 図 1 9は、 図 1 8の概略正面図である。
図 1 8及び図 1 9に示すクランクスプロケット 7 9は、 Ipl 1 7の加工品 7 0 から成形されたクランクスプロケッ卜である。
初期歯形 7 7の歯厚とほぼ同一に維持するか、 初期歯形 7 7よりも数%小さ い範囲内で歯厚を減少させると同時に、 初期歯形 7 7よりも歯先を突き出す。 その結果、 完成歯形 8 7 (図 1 8〜2 0 ) を有する完成品が得られる。
図 2 0の実施例
図 2 0は、 図 1 8〜 1 9に示すスプロケットを製造する一例を示す。 図 2 0 は、 完成歯形 8 7を成形した後の状態を示している。
型セッ卜 8 1は、 型 8 1 aと型 8 1 bからなる。
型 8 1 aの軸心 8 6方向には、 孔 8 1 cが通っている。 この孔 8 1 cの周面 に雌の歯形 8 7が成形されている。 この歯形 8 7は、 正規の歯形である。 符号
8 7 aは歯形 8 7の歯先円を示す。 符号 8 7 bは歯形 8 7の歯元円を示す。 型 8 1 bは、 型 8 1 aの下側に配置されている。 型 8 1 bの軸心 8 6方向に は、 孔 8 1 cよりも小径の孔 8 1 dが通っている。 この孔 8 1 dの周面がクラ ンクスプロケット 7 9の下側外周面と対応している。 型 8 1 bの上面は歯形 8 7を支持する。
クランクスプロケット 7 9の上方には、 押圧部材としてパンチ 8 8が設けら れている。 パンチ 8 8は、 矢印 X方向にクランクスプロケット 7 9を押圧する ものである。
パンチ 8 8の外周面には、 雄の歯形 8 8 aが成形されている。 雄の歯形 8 8 aは、 型 8 1 aの雌の歯形 8 7と対応している。 パンチ 8 8は、 下方に先端部 8 8 bを有する。 先端部 8 8 bは、 クランクスプロケット 7 9の上面の形状と 対応する形状を有している。
クランクスプロケット 7 9の下方には、 クランクスプロケッ卜 7 9の下端を 支持するためのノックァゥトスリーブ 8 9が設けられている。 ノックァゥトス リーブ 8 9は、 図示省略された支持手段により動かないようになつている。 クランクスプロケット 7 9の内側には、 パンチ芯金 8 2が通っている。 図 2 0の型 2 1等を使用して冷間鍛造によってクランクスプロケットを成形 する方法を説明する。
まず、 型 8 1内に歯成形前の金属材料 (図示省略) を挿入する。 金属材料の 直下には、 予めノックアウトスリーブ 8 9を設置しておく。 金属材料の内部に は、 パンチ芯金 8 2を挿入しておく。
型 8 1内に挿入した金属材料を、 パンチ 8 8で押圧する。
押圧された金属材料は、 張り出し成形されて、 型 8 1 aの歯形に対応した歯 形 8 7を有する。
こうして型 8 1セッ卜によってクランクスプロケット 7 9を得ることができ る。
H 2 1の実施例 図 2 1は、 本発明の更に別の実施例を示す。 この実施例においては、 ヘリ力 ル歯形ピニォンが成形される。
ヘリカル歯形ピニオン 9 0を成形する方法の一例を説明する。
予め孔を設けた円筒形の金属材料を所定の型に設置する (図示省略) 。 孔の 中に、 その孔の形に対応する形状のピン (図示省略) を挿入した状態で、 金属 材料をその軸心方向に沿って押圧する。 押圧された金属材料は、 周方向に張り 出し成形され、 その後、 突き出し成形によって、 対応する型の歯形と同じ歯形 を有するように成形される。
突き出し成形後に、 ヘリカル歯形ピニオン 9 0をねじれ角に沿って回転させ ながら型から抜き出す。
ヘリカル歯形ピニオン 9 0の一例を示すと、 ねじれ角 (ねじれ方向) が 2 5 ° (左) で、 歯の精度が J I S 4級又は 5級のものである。
図 2 2と図 2 3の実施例
型と被加工物の相対的な移動距離を少なくすれば、 型の精度により近い加工 物が得られる。 その手法の一例を以下図 2 2 ~ 2 3を参照して説明する。 図 2 2は、 被加工物の成形開始状態を示す。 図 2 3は、 被加工物の成形完了 状態を示す。
歯を成形する主型は型 1 0 1である。 解り易くするため、 図 2 2では型 1 0 1は固定された状態で描かれている。 実際には型 1 0 1は動いても良い。 型 1 0 1は軸心 1 0 6方向に貫通した孔 1 0 1 aを有する。 この孔 1 0 1 a の周面には、 雌の歯形 1 0 7が成形されている。 歯形 1 0 7は正規の歯形であ る。 符号 1 0 3はピッチ円を示す。 符号 1 0 4は歯形 1 0 7の歯先円を示す。 符号 1 0 5は歯形 1 0 7の歯元円を示す。 金属材料 1 0 0の上方には、 押圧部材として上押出しピン 1 0 8が設けられ ている。 上押し出しピン 1 0 8は、 金属材料 1 0 0を上から押圧するものであ る。
上押し出しピン 1 0 8の周囲には、 上側スリーブ 1 0 2が設けられている。 上側スリーブ 1 0 2は、 金属材料 1 0 0と上押出しピン 1 0 8を側方から支持 する。
金属材料 1 0 0の下方には、 押圧部材として下押出しピン 1 0 9が設けられ ている。 下押出しピン 1 0 9は、 金属材料 1 0 0を下から押圧するものである。 下押出しピン 1 0 9の周囲には、 下側スリーブ 1 0 4が設けられている。 下 側スリーブ 1 0 4は、 固定されていて、 金属材料 1 0 0と下押出しピン 1 0 9 を側方から支持する。
図 2 2の型 1 0 1等を使用して冷間鍛造によって歯車を製造する方法の一例 を説明する。
金属材料 1 0 0を型 1 0 1の中央部に投入する。 その後、 上押出しピン 1 0 8と上側スリーブ 1 0 2が下方に移動して、 金属材料 1 0 0を閉じ込める。 上側スリーブ 1 0 2と下側スリーブ 1 0 4を停止させた状態にする。
上押出しピン 1 0 8に矢印 C方向の圧力を加える。 下押出しピン 1 0 4に矢 印 D方向の圧力を加える。 上側スリーブ 1 0 2は、 油圧又はパネ圧により型 1 0 1を挟んだ状態で止まっている。 こうして型 1 0 1の歯形 1 0 7に向けて金 属材料 1 0 0を張り出し、 成形する。 これにより歯形 1 0 7を金属材料 1 0 0 に成形する。 同じ型を使用して、 鍛造の条件 (成形の圧力や速度など) を成形 毎に変更したり、 種々の型を成形毎に使用する。
図 2 3の矢印 Eは、 金属材料の流れを模式的に示している。 成形品 1 1 0を型 1 0 1から取り出すには、 上押出しピン 1 0 8と上側スリ ーブ 1 0 2を上方に移動させた後、 下押出しピン 1 0 9を上方に動かして成形 品 1 1 0を型 1 0 1の外へ出す。
このように成形すれば、 成形される歯車と型との相対的移動距離は極めて少 ないため、 歯車を高精度に成形できる。
図 2 4の実施例
図 2 4は、 本発明の更に別の実施例を示す。 この実施例は、 中間工程の型内 で金属材料を突き出させた後、 仕上げ用のサイジングとして更に絞り加工によ つて歯形を成形する例である。
絞り加工型 1 1 1は、 軸心 1 1 6方向に貫通した孔 1 1 1 aを有する。 この 孔 1 1 1 aの周面に雌の歯形 1 1 4が成形されている。 符号 1 1 7はピッチ円 を示す。
絞り加工型 1 1 1は、 ガイド部 1 1 2と絞り部 1 1 3からなる。
ガイド部 1 1 2は、 絞り加工型 1 1 1の口元に倣 (ならい) のために設けら れる。 ガイド部 1 1 2のピッチ円 1 1 7の直径は、 突き出し加工された前工程 品のピッチ円の直径より僅かに大きくするのが良い。 例えば 0 . 0 5〜0 . 2 m m大きくするのが良い。 ガイド部 1 1 2の軸方向長さは歯モジュールの 5倍 以上が好ましい。
絞り部 1 1 3は、 ガイド部 1 1 2の下端に設けられている。 絞り部 1 1 3の 歯形 1 1 4は、 正規の歯形である。
完成歯形を成形する際、 初期工程は、 金属材料の張り出し工程とし、 そのあ と、 突き出し工程とする。 これにより精密な歯スジを成形する。 さらに、 金属 材料を孔 1 1 1 aに挿入する。 そして、 突き出し加工された歯面を倣 (なら い) 面として、 絞り部 1 1 3により金属材料を 0 . 0 5〜0 . 2 m m絞り加工 する。 これにより歯形の誤差を極めて小さくすることができる。 前述のいずれの実施例においても、 複数の冷間鍛造毎に (少なくとも張り出 し突き出しの間に) 加工品を型から取り出し、 潤滑被膜を施したり、 軟化焼な ましを施して、 低い荷重の鍛造を可能とするのが好ましい。
また、 前述のいずれの実施形態においても、 最終段を除いて、 密閉鍛造をし ないこと、 つまり、 多段 (複数の冷間鍛造) の各々で、 加工品の歯先が型の歯 先に到達する前に成形を停止することが、 成形荷重の増大を避けるためには好 ましい。
図 2 5〜 2 8の実施例
図 2 5〜2 8は、 本発明の更に別の実施例を示す。 この実施例は、 金属材料 の張り出しと突き出しを 2つの工程に分け、 更にサイジング (仕上げ絞り加 ェ) 工程と組み合わせて行う例である。 図中の符号 1 2 0は歯車を示す。 符号 1 2 4はピッチ円を示す。
以下、 各工程を説明する。
初期工程において、 金属材料を所定の型の歯形 1 2 0 aの内側に挿入して張 リ出し成形をする。 これにより、 図 2 5に示す大きな円弧形状の歯先を有する。 初期歯形 1 2 1を得る。 そのとき、 符号 1 2 0 bで示す三ヶ月形の空間が加工 品の初期歯形 1 2 1の歯先と型の歯形 1 2 0 aの歯先との間に残っている。 中間工程において、 初期工程で得られた初期歯形 1 2 1を、 初期工程で用い た型と別の型 1 2 0 cに挿入して突き出し成形をする。 これにより、 図 2 6に 示す歯形 1 2 2を得る。 符号 1 2 O dはサイジング代を示す。 なお、 加圧加減 によっては、 歯形 1 2 2は型1 2 0 cの輪郭全面に当接しない場合もある。 完成工程において、 中間工程で得られた歯形 1 2 2を、 サイジングする。 こ れにより、 図 2 7に示す完成歯形 1 2 3を得る。
図 2 8は、 図 2 5〜 2 7を合わせて示す。 符号 1 2 5は、 第 2工程後のファーバ一フローを概念的に示す。 得られた歯 形 1 2 3は、 ファイバーフロー 1 2 5が良好となり、 亀裂を生じない。 なお、 図中符号 1 2 0 6で示した径 は、 プラス側であれば幅広い公差があってもよ い。
図 2 9の実施例
図 2 9は、 本発明の更に別の実施例を示す。 この実施例は、 金属材料の張り 出しと突き出しを 2つの工程に分け、 更にサイジング (仕上げ絞り加工) 工程 と組み合わせて行う例である。 図中の符号 1 3 0は歯車を示す。 符号 1 3 4は ピッチ円を示す。
以下、 各工程を説明する。
初期工程において、 金属材料を所定の型 (図示省略) に挿入して張り出し成 形する。 これにより、 大きな円弧形の歯先を有する初期歯形 1 3 1を得る。 中間工程において、 初期工程で得られた初期歯形 1 3 1を、 初期工程で用い た型と別の型 (図示省略) に挿入して突き出し成形をする。 これにより、 別の 大きな円弧形の歯先を有する歯形 1 3 2を得る。
完成工程において、 中間工程で得られた歯形 1 3 2を、 サイジングする。 こ れにより、 歯形 1 3 3を得る。 符号 1 3 0 dはサイジング代を示す。
なお、 符号 1 3 1 a、 1 3 3 aは、 加工品の歯の形状を示す。 そのとき、 符 号 1 3 5 a、 1 3 5 bで示す空間が型の内側に残っている。 突き出しにより形 成された歯形の歯先の頂部は型の歯形の歯先に接触しないようになっている。 歯形 1 3 3 aには、 小さい角 Rがないので、 型の耐破壊 (耐割れ) 強度が向上 する。 突き出しにより形成された歯形の歯先の頂部の形状は、 円弧に限らず、 突き出しを有利にするものであれば丸みのある形状や、 他の自由な形状にする ことができる。 なお、 本発明は前述の実施例に限定されない。 たとえば、 本発明は、 閉塞鍛 造の形態に限定されず、 非閉塞鍛造の形態を含む。

Claims

請 求 の 範 囲
1 . 冷間鍛造によって歯形部品を製造する方法において、 初期歯形を形成す る初期工程と、 サイジング加工で完成歯形を形成する完成工程との間に、 冷間 鍛造により、 初期歯形の歯厚とほぼ同一に歯厚を維持するか、 初期歯形の歯厚 よりも 1 0 %以下の範囲内で歯厚を減少させると同時に、 初期歯形よりも歯先 を突き出す中間工程を介在させることを特徴とする、 冷間鍛造による歯形部品 の製造方法。
2 . 初期歯形における歯底の両側の丸みが完成歯形における歯底の両側の丸 みよりも大きいことを特徴とする請求項 1に記載の冷間鍛造による歯形部品の 製造方法。
3 . 中間工程において、 歯厚が同一に維持されるか、 または減少すると同時 に、 歯先が複数回の冷間鍛造によって丸みのある形で段階的に突き出されて完 成歯形の歯先の形に近づいていくことを特徴とする請求項 1〜 2のいずれか 1 項に記載の冷間鍛造による歯形部品の製造方法。
4 . 完成工程で加工仕上げ用の型の口元部にガイド部を設け、 ガイド部の長 さを歯幅の半分以上にすることを特徴とする請求項 1〜 3のいずれか 1項に記 載の冷間鍛造による歯形部品の製造方法。
5 . 完成工程において厚みが 0 . 0 2〜0 . 1 mm減少するように歯形をサ ィジング加工して調整することを特徴とする請求項 1〜 4のいずれか 1項に記 載の冷間鍛造による歯形部品の製造方法。
6 . 初期歯形からサイジング加工前までをパーツホーマ一によって 3〜 5段 で形成し、 サイジング加工直前に軟化焼なまし処理又は潤滑被膜付け処理をす ることを特徴とする請求項 1〜 5のいずれか 1項に記載の冷間鍛造による歯車 の製造方法。
7 . 初期工程と中間工程との間で歯形の軟化焼なまし処理をすることを特徴 とする請求項 1 ~ 6のいずれか 1項に記載の冷間鍛造による歯形部品の製造方 法。
8 . 初期工程と中間工程との間で歯形の潤滑被膜付け処理をすることを特徴 とする請求項 1〜 7のいずれか 1項に記載の冷間鍛造による歯形部品の製造方 法。
9 . 初期工程と中間工程における多段の冷間鍛造の各々において、 加工品の 歯形の歯先が、 型の歯形の歯先に到達する前に、 突き出しを止めることを特徴 とする請求項 1〜 8のいずれか 1項に記載の、 冷間鍛造による歯形部品の製造 方法。
1 0 . 請求項 1〜 9のいずれか 1項に記載の冷間鍛造による歯形部品の製 造方法によリ製造された歯形部品。
PCT/JP2004/015672 2004-10-15 2004-10-15 歯形部品の製造方法 WO2006040840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/592,486 US7677073B2 (en) 2004-10-15 2004-10-15 Method of manufacturing tooth profile part
EP04792814A EP1764169A4 (en) 2004-10-15 2004-10-15 METHOD FOR THE PRODUCTION OF DIAMONDED PARTS
PCT/JP2004/015672 WO2006040840A1 (ja) 2004-10-15 2004-10-15 歯形部品の製造方法
KR1020067019687A KR101105488B1 (ko) 2004-10-15 2004-10-15 기어의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/015672 WO2006040840A1 (ja) 2004-10-15 2004-10-15 歯形部品の製造方法

Publications (1)

Publication Number Publication Date
WO2006040840A1 true WO2006040840A1 (ja) 2006-04-20

Family

ID=36148142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015672 WO2006040840A1 (ja) 2004-10-15 2004-10-15 歯形部品の製造方法

Country Status (4)

Country Link
US (1) US7677073B2 (ja)
EP (1) EP1764169A4 (ja)
KR (1) KR101105488B1 (ja)
WO (1) WO2006040840A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013637A1 (de) * 2004-03-19 2005-10-13 Capsulution Nanoscience Ag Verfahren zur Herstellung von CS-Partikeln und Mikrokapseln unter Verwendung poröser Template sowie CS-Partikel und Mikrokapseln
JP4881152B2 (ja) * 2006-12-29 2012-02-22 大岡技研株式会社 歯車
JP4942214B2 (ja) * 2008-05-30 2012-05-30 武蔵精密工業株式会社 傘歯車の鍛造成形方法
US20100093481A1 (en) * 2008-10-10 2010-04-15 Randy's Ring & Pinion Locking differential having improved clutch teeth
US20120318629A1 (en) * 2008-10-10 2012-12-20 Ring & Pinion Service, Inc. Locking differential having improved clutch teeth
KR101281149B1 (ko) * 2011-10-18 2013-07-02 주식회사 디와이메탈웍스 파킹 기어의 제조 방법
CN102688975A (zh) * 2012-05-15 2012-09-26 翟吉明 一种无切削齿轮制造工艺
WO2014156640A1 (ja) * 2013-03-25 2014-10-02 Ntn株式会社 動力伝達軸およびスプライン加工方法
JP2018144099A (ja) * 2017-03-09 2018-09-20 武蔵精密工業株式会社 ドグクラッチ用ドグの鍛造方法及びドグクラッチ用ドグ
KR101956364B1 (ko) 2017-03-29 2019-03-08 신춘우 구강 세정기
JP6897553B2 (ja) * 2017-12-26 2021-06-30 トヨタ自動車株式会社 クラウニング成形方法及びクラウニング成形装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235033A (ja) * 1985-04-10 1986-10-20 Goto Tanko Kk 歯車の製造法
JPS63112038A (ja) * 1986-10-29 1988-05-17 Musashi Seimitsu Ind Co Ltd フランジ付き直歯歯車の鍛造方法
JPH0679392A (ja) * 1992-08-31 1994-03-22 Aichi Steel Works Ltd 歯車の鍛造方法
JPH06226392A (ja) * 1993-01-29 1994-08-16 Mitsuba Electric Mfg Co Ltd 歯車等の円盤状体の鍛造成形方法
JPH0985385A (ja) * 1995-09-26 1997-03-31 Musashi Seimitsu Ind Co Ltd かさ歯車の製造方法及びそのサイジング金型
JPH09220633A (ja) * 1996-02-15 1997-08-26 Honda Motor Co Ltd 冷間鍛造成形方法および傘歯車の冷間鍛造成形装置
JPH09276977A (ja) * 1996-04-12 1997-10-28 Mitsubishi Steel Mfg Co Ltd スプラインシャフトの製造方法
JP2002046030A (ja) * 2000-08-04 2002-02-12 Yutaka Seimitsu Kogyo Ltd 傘状歯車の製造方法,傘状歯車用素材および傘状歯車
JP2002126847A (ja) * 2000-10-23 2002-05-08 Cleartec:Kk 冷間鍛造装置
JP2002143978A (ja) * 2000-11-01 2002-05-21 Aichi Steel Works Ltd 歯形鍛造部材の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028662A (en) * 1956-04-17 1962-04-10 Hupp Corp Method for forming and coating parts
US3841126A (en) * 1972-03-22 1974-10-15 Kobe Steel Ltd Method of lubricating a work, especially a wire in a warm forging process
FR2261081B1 (ja) * 1974-02-18 1978-12-01 Peugeot & Renault
JPS56163048A (en) * 1980-05-21 1981-12-15 Wako:Kk Precision die forging method
JP2913522B2 (ja) * 1991-12-02 1999-06-28 アイダエンジニアリング株式会社 平歯車の鍛造加工方法
US5325698A (en) * 1992-09-30 1994-07-05 Ford Motor Company Stepped extrusion die assembly
JP3770960B2 (ja) 1996-05-15 2006-04-26 コンドーセイコー株式会社 冷間鍛造による歯車の製造方法及びそれに使用する型
SE512119C2 (sv) * 1998-06-29 2000-01-31 Eric Wirgarth Pressverktyg för sänksmide och förfarande vid sänksmide med detta verktyg
JP2001276955A (ja) * 2000-03-30 2001-10-09 Aida Eng Ltd 軸付き歯形部品及びその成形方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235033A (ja) * 1985-04-10 1986-10-20 Goto Tanko Kk 歯車の製造法
JPS63112038A (ja) * 1986-10-29 1988-05-17 Musashi Seimitsu Ind Co Ltd フランジ付き直歯歯車の鍛造方法
JPH0679392A (ja) * 1992-08-31 1994-03-22 Aichi Steel Works Ltd 歯車の鍛造方法
JPH06226392A (ja) * 1993-01-29 1994-08-16 Mitsuba Electric Mfg Co Ltd 歯車等の円盤状体の鍛造成形方法
JPH0985385A (ja) * 1995-09-26 1997-03-31 Musashi Seimitsu Ind Co Ltd かさ歯車の製造方法及びそのサイジング金型
JPH09220633A (ja) * 1996-02-15 1997-08-26 Honda Motor Co Ltd 冷間鍛造成形方法および傘歯車の冷間鍛造成形装置
JPH09276977A (ja) * 1996-04-12 1997-10-28 Mitsubishi Steel Mfg Co Ltd スプラインシャフトの製造方法
JP2002046030A (ja) * 2000-08-04 2002-02-12 Yutaka Seimitsu Kogyo Ltd 傘状歯車の製造方法,傘状歯車用素材および傘状歯車
JP2002126847A (ja) * 2000-10-23 2002-05-08 Cleartec:Kk 冷間鍛造装置
JP2002143978A (ja) * 2000-11-01 2002-05-21 Aichi Steel Works Ltd 歯形鍛造部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1764169A4 *

Also Published As

Publication number Publication date
EP1764169A4 (en) 2008-07-09
US7677073B2 (en) 2010-03-16
US20070204669A1 (en) 2007-09-06
EP1764169A1 (en) 2007-03-21
KR20070053652A (ko) 2007-05-25
KR101105488B1 (ko) 2012-01-13

Similar Documents

Publication Publication Date Title
US7337647B2 (en) Gear and method and device for manufacturing the gear
DE102010052691A1 (de) Kegel- und Hypoidrad und Herstellungsverfahren
WO2006040840A1 (ja) 歯形部品の製造方法
KR101367051B1 (ko) 냉간 압출을 이용한 헬리컬 기어의 제조 방법
JP2007177965A (ja) 歯車
DE112008000846B4 (de) Verfahren zur Herstellung einer Kompressor-Riemenscheibe
JP3906998B2 (ja) 歯形部品の製造方法
JP4653141B2 (ja) 歯形成形方法
JP4145924B2 (ja) 歯形の成形方法
JP5246588B2 (ja) 歯車の製造装置及び製造方法
JP4383151B2 (ja) ヘリカル歯車の製造方法
JP3770960B2 (ja) 冷間鍛造による歯車の製造方法及びそれに使用する型
KR101449270B1 (ko) 헬리컬 기어 후가공 공정을 포함하는 헬리컬 기어 제조방법
JP4900713B2 (ja) 冷間鍛造による平歯車の製造方法
JP5070516B2 (ja) 歯車成形用金型および同歯車成形用金型を備えた押出し成形装置
JP4445032B1 (ja) クラウニング付歯車の製造方法及び装置
JP7356027B2 (ja) 鍛造装置
JP2003220442A (ja) クラウニング付歯形の鍛造成形方法及び鍛造成形装置
JP6641694B2 (ja) 内歯ヘリカルギア製造用金型、内歯ヘリカルギアの製造方法、及び、内歯ヘリカルギア製造用ギアブランク
KR20230174710A (ko) 전조 다이스
JP2601397B2 (ja) はす歯歯車の連続生産方法およびその生産設備
JPH06304694A (ja) はす歯歯車の連続生産方法およびその生産設備
JPH05192735A (ja) 歯形サイジング用ダイ
KR20230138750A (ko) 헬리컬 기어 샤프트용 냉간단조 금형 및 헬리컬 기어 샤프트 제조방법
SU1759511A1 (ru) Инструмент дл накатки резьбы

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10592486

Country of ref document: US

Ref document number: 2007204669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067019687

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792814

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10592486

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP