WO2006038461A1 - ガス処理装置 - Google Patents

ガス処理装置 Download PDF

Info

Publication number
WO2006038461A1
WO2006038461A1 PCT/JP2005/017344 JP2005017344W WO2006038461A1 WO 2006038461 A1 WO2006038461 A1 WO 2006038461A1 JP 2005017344 W JP2005017344 W JP 2005017344W WO 2006038461 A1 WO2006038461 A1 WO 2006038461A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrode
cylindrical body
filter
charging
Prior art date
Application number
PCT/JP2005/017344
Other languages
English (en)
French (fr)
Inventor
Akira Mizuno
Junichi Kasai
Yoshinobu Tamaura
Masashi Gabe
Kenta Naito
Satoru Senbayashi
Original Assignee
Isuzu Motors Limited
Nissin Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Limited, Nissin Electric Co., Ltd. filed Critical Isuzu Motors Limited
Priority to EP05785908A priority Critical patent/EP1813351A1/en
Priority to US11/662,876 priority patent/US20070261556A1/en
Publication of WO2006038461A1 publication Critical patent/WO2006038461A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present invention relates to a gas processing apparatus that purifies exhaust gas such as factory gas, power plant gas, and automobile gas, and gas from various manufacturing factories and medical sites using corona discharge.
  • the first electrode having a conductive column force and the first electrode are surrounded.
  • an exhaust gas purification apparatus in which a corona discharge part having a conductive second electrode is formed in a cylindrical shape and a plurality of these cylindrical discharge parts are provided.
  • a cylindrical external electrode and a cylindrical axial center direction are used.
  • a plasma-type exhaust purification apparatus in which a plurality of units each composed of an extending internal electrode are arranged in parallel and these units are housed in a casing.
  • the corona electrode is arranged at the approximate center (axial center).
  • the charged particles are moved to the surface of the dust collecting electrode by electrostatic force by an electric field formed between the corona electrode and the dust collecting electrode, and captured by the surface of the dust collecting electrode.
  • the trapped particles can be separated from the dust collecting electrode force by shaking off the same as in an electric dust collector or the like.
  • the detached particles are collected or burned and removed by heating with a heater or the like provided adjacent to the dust collection electrode.
  • an exhaust gas cleaner that heats a dust collection electrode of an electrostatic dust collector and burns and removes the collected PM.
  • a dredging device has been proposed.
  • a catalyst in which the surface of the dust collection electrode of the electrostatic dust collection filter is coated with a catalyst mainly composed of an electrically conductive metal oxide.
  • a layer is provided to oxidize and burn granular solids collected on the dust collection electrode at a relatively low temperature.
  • the catalyst layer does not necessarily function effectively for the oxidative combustion of particulate solids, especially soot (soot) in diesel exhaust gas, which is effective for oxidative combustion of gaseous components. Therefore, there is a problem that a practically sufficient effect cannot be obtained particularly with the surface area of the electrostatic dust collecting electrode surface. Furthermore, these technologies have a problem that they cannot obtain a particulate removal performance that can sufficiently meet the exhaust gas regulations that are being strengthened year by year.
  • the gasified component is included in addition to the solidified component, and it is necessary to remove this gasified component.
  • PM Porate Matter
  • This PM contains soot, which is said to be particularly difficult to burn, and SOF (Soluble Organic Fraction), which is steam at high temperatures.
  • SOF Soluble Organic Fraction
  • This soot is the emission of engine with carbon as the main component.
  • SOF is a component that dissolves in organic solvents such as benzene and toluene, which are caused by the unburned residue of fuel and oil. This SOF can be burned on the surface of the acid catalyst.
  • a dust collecting means such as a bag filter is provided on the upstream side.
  • a purification apparatus provided with plasma generating means.
  • dust such as soot dust in the gas is collected by a bag filter or the like. It also decomposes and removes odorous and harmful components from the gas from which dust has been removed.
  • Gasified SOF in the exhaust gas becomes a sticky mist when cooled, condensed and liquefied.
  • This mist-like SOF can trap and enlarge the ultrafine particles by the bird-mochi principle.
  • it is effective to provide a dust collecting device such as a filter downstream of the electrocoagulation device.
  • a dust collecting device such as a filter downstream of the electrocoagulation device.
  • the cohesive enlargement is caused by a synergistic effect of the electrostatic action of the ultrafine particle force in the exhaust gas and the adhesive function of the liquid SOF.
  • the particle size of the discharged particles is also increased. Therefore, these particles can be easily captured even with a coarse filter.
  • gasified SOF can be oxidized with an oxidation catalyst.
  • an acid catalyst is installed in front of the exhaust pipe, where the gas temperature is usually high, and the gas temperature decreases. It is conceivable to install an electric dust collector behind the exhaust pipe. The higher the temperature, the higher the catalytic activity of the oxidation catalyst. Electrocoagulators have difficulty in forming a stable corona discharge when the gas temperature exceeds 500 ° C, and it is particularly difficult to supply sufficient power when the gas temperature exceeds 650 ° C. descend.
  • the present invention has been made in order to obtain the above-mentioned knowledge and solve the above-mentioned problem.
  • the purpose of the present invention is to use agglomeration function and dust collection function by corona discharge and a dust collection function of a filter.
  • a gas processing apparatus for achieving the above-described object includes a charged aggregation portion that aggregates by charging a collection target component in a gas by corona discharge, and a filter that collects the aggregated component.
  • a gas processing apparatus including a charging unit, the charging and aggregating unit disposed upstream, and the filter unit disposed downstream.
  • the collection target component is aggregated and coarsened and enlarged in the upstream charging aggregation section, and then collected in the downstream filter section.
  • the collection efficiency is improved and the eyes of the subsequent filter can be made relatively rough. Therefore, the pressure loss can be reduced by / J.
  • the inflowing target component is coarsened and enlarged by the charged aggregation section. Therefore, it can be collected efficiently even if the filter has a relatively coarse mesh. Therefore, the filter portion can be formed with a filter having a relatively coarse mesh and low pressure loss. As a result, it is possible to use a metal filter or the like that is relatively coarse but has excellent heat resistance.
  • the filter at the latter stage is used when the collected amount of PM including Soot and SOF exceeds a predetermined limit value. It is comprised so that it may raise and burn off.
  • the metal filter is excellent in heat resistance, so that PM can be removed without worrying about melting damage due to flammable combustion.
  • the oxidation catalyst passes through the charged aggregation unit and the filter unit while being gasified.
  • the evaporated components such as SOF can be removed by acidification with this acid catalyst. If this acid catalyst is arranged upstream of the charging and aggregating part or the filter part, components such as gasified SOF are oxidized by this oxidation catalyst. Therefore, SOF or the like cannot be used for agglomerating Soot. As a result, it becomes impossible to contribute to the improvement of the collection efficiency of the filter unit.
  • the filter unit when the filter unit is formed of a metal filter in the gas processing apparatus, the filter unit is melted even when the temperature of the filter unit is increased during combustion removal of collected matter such as PM. Hard to lose. Therefore, the filter can be easily regenerated by flammable combustion.
  • Conventional filters (DPFs) such as alumina cordierite have the disadvantages of being susceptible to melting at high temperatures and the weakness of impact. However, if a metal filter is used for the filter, these disadvantages are eliminated.
  • the gas to be processed is not lower than 100 ° C and not higher than 650 ° C.
  • the charging and aggregating portion is configured to cool the gas.
  • This gas cooling condenses the gaseous SOF.
  • This condensed SOF component exhibits an effect similar to that of a bird rice cake and can aggregate fine particles such as Soot efficiently. This is thought to be because liquid cross-linking occurs between the fine particles due to the condensed SO F component.
  • the gaseous SOF component is difficult to trap electrostatically due to charging.
  • the SOF that is partially misted by the cooling of the gas is attracted to the dust collection electrode by charging. From this point as well, the aggregation of fine particles is promoted.
  • SOF has various component forces, and it is difficult to specifically specify the condensation temperature, vapor pressure curve, and the like.
  • the experimental powers are divided as follows.
  • the exhaust gas temperature is 100 ° C or less, there is no significant difference in the agglomeration effect with and without cooling.
  • the exhaust gas temperature exceeds 100 ° C, agglomeration due to the presence or absence of cooling becomes significant.
  • the upper limit of the temperature related to the cooling effect of SOF has not been confirmed.
  • the upper limit of the temperature at which discharge formation of the charge aggregation part can be realized stably is about 650 ° C, and the actual exhaust gas temperature rarely exceeds 650 ° C. Based on these, the upper limit of the application temperature range confirmed experimentally is about 650 ° C.
  • the gas cooling mentioned here includes a cooling device that circulates a refrigerant in the charging and aggregating part, or positive cooling that blows air to promote heat dissipation.
  • this includes passive cooling by natural convection and natural heat dissipation due to heat radiation, such as when the charged agglomeration part is exposed to the outside air, which is not just this positive cooling. Therefore, the gas cooling mentioned here means that no active thermal insulation measures are taken.
  • the high voltage of the linear body in which the dust collection electrode of the charging and aggregating portion is formed of a cylindrical low voltage electrode, and the corona electrode is disposed inside the cylindrical body.
  • the cylindrical body serves as a passage wall of the gas passage and is configured as a gas cooling portion.
  • the cylindrical body is a gas cooling unit, the structure is simplified and the cooling area can be increased. Therefore, it is easy to increase the cooling effect.
  • the cylindrical body is used as the outer wall of the gas passage and this outer wall is used as the heat dissipation surface, the gas can be cooled by natural heat dissipation due to natural convection or heat radiation when the outside air temperature is low or when a cold wind is applied. become. Since the electrostatic agglomeration action occurs in the vicinity of the dust collection electrode, it is not necessary to cool the entire gas. Therefore If the vicinity of the dust collection electrode can be cooled, the electrostatic aggregation effect is promoted.
  • the cross-sectional shape of the cylindrical body here is usually formed in a circular shape.
  • the cross-sectional shape may be a polygonal shape including a triangle or a quadrangle, an elliptical shape, or the like.
  • the term “cylindrical body” as used herein refers to an object that has an inlet at one end and an outlet at the other end that is surrounded by a wall to form a cylinder! Uh.
  • a turbulent flow promoting means for forming a turbulent flow with respect to the gas flow in the vicinity of the inner surface of the cylindrical body is provided on or near the surface of the cylindrical body.
  • This turbulent flow promoting means can be constituted by an uneven structure (projection structure).
  • This uneven structure can be configured as follows. Insert one or more linear objects (round bars or square bars) into a cylindrical body in a spiral shape. Groove the inner surface of the tubular body. Ring-shaped projections are provided on the inner surface at intervals in the axial direction of the cylindrical body. A fin having a three-dimensional structure is provided. Blasting to create messy irregularities. These irregularities may be uniformly formed or distributed.
  • a plate material provided with unevenness by processing just by processing the cylindrical body or a planar body plate material that is already commercially available with unevenness is shaped so that it can be inserted into the cylindrical body. It may be inserted.
  • planar body sheet-like projections such as a wire mesh, punching metal, and expander metal are useful.
  • punched screens such as slit grilles, diamond screens, dimple screens (without holes), dimple screens (with holes), slit bay screens, bridge bay window screens, triangular bay window screens, semi-circular bay window screens, etc. can be used.
  • the turbulent flow promoting means By this turbulent flow promoting means, the turbulent flow of the gas near the surface of the flow channel, particularly the cylindrical body, can be promoted, and the stirring action in the cross-sectional direction of the flow channel can be increased. This shortens the time required for charging the components in the gas in the entire flow path space, facilitates contact of charged particles with the opposing surface of the dust collection electrode, and reduces the flow velocity in the mainstream direction near the opposing surface of the gas.
  • the residence time can be increased.
  • the charged particles can be effectively captured on the dust collecting electrode. Therefore, the aggregation effect is enhanced.
  • the turbulence promoting means can improve the charging effect in the gas in the charging and aggregating portion and promote the aggregating action. As a result, It is possible to improve the filter trapping action at.
  • a conductive disturbance in which a gas passage wall of the charging and aggregating portion is formed of a cylindrical body, and a dust collecting electrode serving as a low voltage electrode is disposed in the vicinity of the surface of the gas passage wall.
  • the corona electrode is formed of a linear high-voltage electrode disposed inside the cylindrical body, and is formed of a cylindrical body having a flow promoting means.
  • the cylindrical body can be made into an insulator.
  • the degree of freedom in design can be further increased.
  • the charging aggregation unit is formed by arranging a plurality of charging aggregation units each including the corona electrode and the cylindrical body in parallel. Thereby, a large amount of gas can be processed efficiently. Further, the surface area of the outer wall of the cylindrical body can be remarkably increased. Therefore, the gas cooling performance can be significantly improved.
  • the collection target component is agglomerated and enlarged in the upstream charging and aggregating part, and then collected in the downstream filter part.
  • the collection efficiency can be significantly improved.
  • the filter eyes can be kept relatively rough. Therefore, the pressure loss of the filter can be reduced.
  • the oxidation catalyst removes components such as SOF that have passed through the charged aggregation unit and the filter unit while being gasified by the oxidation catalyst. It can be removed by hesitation. Therefore, it is possible to further improve the removal efficiency with respect to the components in the gas such as PM.
  • the filter portion is formed of a metal filter, even when the collected matter such as PM is burned and removed, it is difficult to melt even at a high temperature. Therefore, it can be easily regenerated by flammable combustion.
  • the principle of corona discharge can be used to efficiently agglomerate and enlarge the suspended fine particles in the gas, and a coarse filter with a small pressure loss is used. be able to. Therefore, it is possible to improve the removal performance of ultra fine particles, improve fuel efficiency by keeping the exhaust pressure low, reduce the turbo load by stable exhaust pressure, and the like.
  • the gas treatment device of the present invention is a high-performance gas treatment device that can be used as an exhaust gas purification device that can be mounted on a vehicle and can be made compact with low pressure loss.
  • FIG. 1 is a diagram schematically showing a configuration of a gas processing apparatus according to the present invention.
  • FIG. 2 is a side cross-sectional view of a charge aggregation unit.
  • FIG. 3 is a cross-sectional view showing a charging and aggregating unit having a circular cross-sectional shape of a cylindrical body.
  • FIG. 4 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body is a flat body having a circular end and a plurality of corona electrodes.
  • FIG. 5 is a cross-sectional view schematically showing a state of natural cooling of the charge aggregation unit.
  • FIG. 6 is a cross-sectional view schematically showing a state in which the charging aggregation unit is forcibly cooled by a fan.
  • FIG. 7 is a diagram schematically showing a state in which a charged aggregation unit is forcibly cooled by a double tube structure.
  • FIG. 8 is a side sectional view of a charging and aggregating unit provided with a turbulent flow promoting means.
  • FIG. 9 is a sectional view showing a charging and aggregating unit having a circular cross section of a cylindrical body provided with turbulence promoting means.
  • FIG. 10 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body provided with turbulence promoting means is a flat body having a circular end and a plurality of corona electrodes.
  • FIG. 11 is a side sectional view of a charge aggregation unit in which a dust collecting electrode and a cylindrical body are formed separately.
  • FIG. 12 is a cross-sectional view showing a charging and aggregating unit in which the cross-sectional shape of a cylindrical body formed separately from a dust collecting electrode provided with turbulent flow promoting means is circular.
  • FIG. 13 is a cross-sectional view showing a charging and aggregating unit in which the cylindrical body formed separately from the dust collecting electrode provided with the turbulent flow promoting means is a flat body having a circular end and a plurality of corona electrodes. is there
  • FIG. 14 is a cross-sectional view showing a charging and aggregating unit in which the cross-sectional shape of a cylindrical body formed separately from a dust collecting electrode provided with turbulence promoting means is rectangular.
  • FIG. 15 is a cross-sectional view showing a charging and aggregating unit in which a cylindrical body formed separately from a dust collecting electrode serving also as a turbulent flow promoting means is rectangular in shape and has a plurality of corona electrodes.
  • the gas processing apparatus 1 is configured to include the charging aggregation unit 10 on the upstream side and the filter unit 20 on the downstream side. Furthermore, an acid catalyst 30 is provided downstream of the filter unit 20.
  • the charging and aggregating unit 10 aggregates the components to be collected in the gas by charging with corona discharge.
  • the filter unit 20 collects the components aggregated in the charging aggregation unit 10.
  • the charged aggregation section 10 that coarsens and aggregates and temporarily collects PM by corona discharge is disposed in the previous stage.
  • a filter unit 20 that collects enlarged PM that re-scatters from the charging and aggregating unit 10 is disposed in the middle stage.
  • an oxidation catalyst 30 for purifying the vaporized component such as SOF that has been gasified is disposed in the subsequent stage.
  • the charging aggregation unit 10 is configured by arranging a plurality of, for example, eight charging aggregation units 11 in parallel. As shown in FIGS. 2 and 3, the charging and aggregating unit 11 includes a dust collecting electrode 1 la formed of a low voltage electrode and a corona electrode 1 lb formed of a high voltage electrode.
  • the dust collection electrode 11a is made of a conductive material such as SUS304 and is formed in a cylindrical body such as a cylindrical body.
  • the dust collecting electrode 11a is connected to the gas inlet chamber 11c on the upstream side and to the gas outlet chamber l id on the downstream side.
  • the cylindrical body 11a as the dust collecting electrode also serves as a passage wall of the gas passage.
  • the cross-sectional shape of the cylindrical body 11a is not particularly limited. Considering the stability of corona discharge, etc., the cross-sectional shape is preferably circular, but may be square or the like. In particular, when a plurality of corona electrodes l ib are provided, the cross-sectional shape may be an ellipse, a triangle, a rectangle, or another polygon.
  • the corona electrode l ib may be an electrode having a high electric field concentration coefficient.
  • the corona electrode l ib is formed of a linear body (wire shape) such as a thin wire electrode, a square electrode, or an electrode with a protruding structure, or a linear body such as a rod.
  • the corona electrode l ib is formed of a SUS304 hollow wire or the like.
  • the corona electrode l ib is arranged inside the cylindrical body l ib, for example, in the center of the axial center of the cylindrical body. Further, as shown in FIG. 4, a plurality of corona electrodes 1 lb may be provided inside the cylindrical body ib.
  • the dust collection electrode 11a and the corona electrode l ib are electrically insulated from each other by an insulator or the like. Configured. The dust collection electrode 11a is electrically grounded (grounded) and kept at the ground potential. Further, the dust collecting electrode 11a is held at a different potential as required.
  • the corona electrode l ib is connected to a high voltage power source. A high voltage is generated by this high-voltage power supply. This high voltage is applied to the corona electrode l ib. In general, it is preferable to use a negative DC voltage as the high voltage. It may be any of direct current, alternating current, and pulse. Also, the polarity may be negative or positive.
  • the voltage value may be any voltage value that can generate corona discharge in the gas G passing between the cylindrical body 11a and the corona electrode ib.
  • the passage wall of the cylindrical body 1 la is used as a cooling wall (gas cooling unit), and the gas aggregation unit 10 is configured to cool the gas G. That is, the outer surface side of the cylindrical body 11a is configured to be naturally air-cooled or forcedly cooled.
  • the temperature of surrounding members is lowered so that the cooling effect by heat radiation can be promoted. Also, in order to increase the cooling effect by heat conduction, it is brought into contact with a low-temperature heat conductor.
  • a cooling fin that promotes heat radiation to the outside of the cylindrical body 1 la can be provided on the outer surface of the cylindrical body 1 la.
  • the cooling fins for example, smooth annular fins, slot fins, tent fins, strip fins, wire loop fins and the like that are generally used in heat exchange or the like can be used.
  • the forced cooling is configured as follows. As shown in FIG. 6, air is blown to the outer surface of the cylindrical body 11a by a fan 3 or the like to perform forced cooling by convective heat transfer. Alternatively, as shown in FIG. 7, the cylindrical body 1 la has a double tube structure through which a refrigerant W such as cooling water passes, and the cylindrical body 1 la is forcibly cooled with the refrigerant. This forced cooling is not limited to these cooling means, and general cooling means can be applied. [0056] When the gas treatment device 1 is mounted on a vehicle, strong wind is applied to a portion such as the cylindrical body 11 exposed to the outside air of the charging and aggregating unit 10 as the vehicle travels. Therefore, the gas G is cooled by natural heat dissipation by natural convection and heat radiation. Therefore, even if no special cooling means or active cooling means are provided, a cooling effect can be obtained unless an active heat retaining means is provided.
  • This gas cooling is particularly effective when the gas G to be processed is at a temperature of 100 ° C or higher and 650 ° C or lower. Since SOF also has various component forces, it is difficult to specify the condensation temperature, vapor pressure curve, etc. specifically. However, the following things are also divided in experimental power. At exhaust gas temperatures below 100 ° C, there is no significant difference in the agglomeration effect with and without cooling. When the exhaust gas temperature exceeds 100 ° C, agglomeration due to the presence or absence of cooling becomes significant. The upper limit of the temperature related to the cooling effect of S OF has not been confirmed. However, the upper limit of the temperature at which discharge formation of the charge aggregation part can be realized stably is about 650 ° C. Also, the actual exhaust gas temperature rarely exceeds 650 ° C. Therefore, the upper limit of the applicable temperature range confirmed experimentally is about 650 ° C.
  • the filter unit 20 is configured to have a filter for collecting and removing aggregates that are coarsened and re-scattered from the charge aggregation unit 10.
  • a diesel particulate filter (DPF) is used.
  • This DPF may be made of a ceramic such as cordierite, silicon, carbide, alumina fiber, silica fiber having excellent heat resistance.
  • the DPF may be made of a metal such as stainless steel. If the DPF is made of metal, it will be resistant to thermal shock and stress, which is difficult to melt when the collected PM is removed by combustion. Therefore, it is possible to regenerate DPF by flaming combustion.
  • the filter unit 20 collects the components to be collected in the upstream charged aggregation unit 10 and then collects them on the downstream side. Therefore, the filter unit 20 can be formed of a relatively coarse filter having a small pressure loss.
  • the filter unit 20 may have a structure including a heater for heating in order to burn and remove the collected matter when the collected amount increases and becomes clogged.
  • a catalyst such as platinum
  • the collected PM can be decomposed at a low temperature by catalytic action.
  • the oxidation catalyst 30 is formed by supporting an oxidation catalyst such as platinum on a support such as a ceramic honeycomb structure. The oxidation catalyst 30 purifies evaporative components such as SOF that pass through the filter unit 20 in a gas phase without being liquidated even by gas cooling.
  • the gas G is passed from the gas inlet chamber 11c into the cylindrical body (dust collection electrode) 11a of each charging aggregation unit 11.
  • a high voltage is applied between the corona electrode l ib and the dust collection electrode 11a to form a corona discharge inside the dust collection electrode 11a.
  • components to be collected such as PM in the gas G passing through the inside of the dust collecting electrode 11a are charged, and the charged particles are aggregated.
  • solid components such as soot (soot) in the gas are charged by using charging by corona discharge.
  • gas G is cooled.
  • a liquid component such as a mist-like SOF (soluble organic component) condensed by this cooling serves as a binder. Therefore, in this gas processing apparatus 1, the binder function of the liquid component condensed by cooling can be used. Therefore, fine PM particles can be aggregated more efficiently.
  • the aggregate moves to the dust collection electrode 11a by the clonal force by the electric field between the corona electrode l ib and the dust collection electrode 11a. This aggregate is temporarily collected on the surface of the dust collection electrode 11a. The aggregate loses electric charge when it touches the dust collecting electrode 11a, and further coarsens on the wall surface. As a result, the surface of the dust collecting electrode 11a is peeled off and re-scattered by the flow of gas G.
  • the re-scattered aggregates and the components to be collected that directly flow in are collected by the filter unit 20.
  • agglomerates that have re-scattered or agglomerated around SOF are coarsened and enlarged. Therefore, even if the filter has a relatively coarse mesh, it can be collected efficiently. Therefore, finer PM particles can be collected more efficiently than when mechanically trapping only with a normal physical filter.
  • an electric heater (not shown) provided in the filter is used.
  • the filter may be heated so that the temperature of the filter is raised above the combustion temperature of PM to burn and remove PM. Even if the temperature rise of this filter is local, and P When combustion of M is started, combustion heat is generated and combustion propagation occurs. Therefore, the entire filter can be regenerated by burning and removing PM from the entire filter.
  • the filter unit 20 is formed of a metal filter, it is difficult to melt even at high temperatures when the collected matter such as PM is burned and removed. Therefore, it can be easily regenerated by flammable combustion.
  • components such as SOF that have passed through the charging and aggregating unit 10 and the filter unit 20 while being gasified are oxidized and removed.
  • evaporation components such as SOF that have not been condensed can be removed.
  • the charging condensing unit 10 uses the adhesion function of liquid components such as SOF condensed by gas cooling in addition to the electric dust collection function of corona discharge. Can do. Therefore, the suspended fine particles in the gas G can be efficiently agglomerated and enlarged. As a result, a coarse filter with a small pressure loss can be used in the filter unit 20. Therefore, the pressure loss of the filter can be reduced. In addition, it can operate continuously for a long time until the filter is clogged. Furthermore, since components such as SOF that have been gasified by the oxidation catalyst 30 are removed by oxidation, the PM removal capability can be further enhanced.
  • the turbulence promoting means l ie is provided on or near the surface of the cylindrical body 11a.
  • This turbulent flow promoting means l ie can be constituted by an uneven structure (projection structure). With regard to this concavo-convex structure, a protrusion structure for improving heat transfer characteristics can be referred to.
  • the turbulent flow promoting means l ie may be provided by caloring the surface of the cylindrical body 11a.
  • a structure separate from the cylindrical body 11a may be arranged in contact with or buoyant on the surface of the cylindrical body 11a.
  • This concavo-convex structure can be formed as follows.
  • One or a plurality of linear bodies (round bars or square bars) are inserted into the cylindrical body 11a in a spiral shape and wound around the inner surface of the cylindrical body 11a.
  • the inner surface of the cylindrical body 11a is provided with a trapezoidal convex portion by a groove and regular irregularities such as a lattice groove and a spiral groove to form an internally grooved tube structure.
  • Ring-shaped convex portions are formed on the inner surface of the cylindrical body 1 la with an interval in the axial direction of the cylindrical body 1 la.
  • Has a three-dimensional structure Form with one fin. Blasting to form messy irregularities. These irregularities may be uniformly formed or distributed.
  • an uneven structure may be formed by inserting a cylindrical body 11a into a planar body that is already commercially available with unevenness.
  • sheet-like protrusions such as a wire mesh, punching metal, and expander metal are useful.
  • punched screens such as slit grills, diamond screens, dimple screens (without holes), dimple stars (with holes), slit bay screens, bridge bay window screens, triangular bay window screens, semi-circular bay window screens, etc. Can be used.
  • the relative roughness ( ⁇ ZD) when the representative length of the cross section of the cylindrical body 11a is D and the maximum surface roughness of the inner surface is ⁇ is preferably Is not less than 0.01 and not more than 0.1.
  • the relative roughness ( ⁇ ZD) is set to 0.01 or more in order to obtain a preferable turbulent flow promoting effect. The reason why the relative roughness is 0.1 or less is to obtain preferable spatial uniformity and stability of the discharge.
  • the turbulent flow promoting means lie promotes the turbulent flow of the gas near the surface of the cylindrical body 11a. Therefore, the stirring action in the channel cross-sectional direction can be increased. Therefore, in the entire channel space, the time required for charging the components in the gas is shortened, the contact of the charged particles to the opposing surface of the dust collecting electrode is facilitated, and the flow velocity in the mainstream direction near the opposing surface of the gas is reduced. The residence time can be increased. As a result, capturing of charged particles by electrostatic force can be further promoted. Therefore, this turbulence promoting means lie can improve the charging effect of the solid component in the gas G in the charging and aggregating portion 10. And the dust collection effect can be improved.
  • the gas passage wall of the charging aggregation unit 11 that is, the gas passage wall of the charging aggregation unit 10 is formed of a cylindrical body l lf.
  • the dust collecting electrode 1 la serving as a low voltage electrode is formed of a conductive cylindrical body disposed in the vicinity of the surface of the gas passage wall 1 If.
  • the corona electrode l ib is formed by a linear high-voltage electrode disposed inside the cylindrical body l lf. Both the cylindrical body llf and the dust collecting electrode 11a may be formed of a conductive material.
  • the cylindrical body l lf is formed of an insulating material and the dust collection electrode 11a is formed of a conductive material, the surface of the charge aggregation unit 11 is electrically insulated by the cylindrical body l lf. As a result, safety against leakage etc. increases.
  • a turbulent flow promoting means l ie is provided on or near the surface of the dust collecting electrode 11a, or the dust collecting electrode 11a is provided with turbulent flow promoting means as shown in FIG. l Form with ie.
  • the dust collection electrode 1la is formed separately from the cylindrical body 1 If. Therefore, the dust collection electrode 11a does not need the function of the gas passage wall. Therefore, the dust collection electrode 11a may have gas permeability and can increase the surface area. For this reason, the effect of coagulation enlargement can be further increased. Further, when the cylindrical body l lf is formed of an insulator, the surface of the charge aggregation unit 11 can be electrically insulated. Therefore, safety against leakage etc. can be increased.
  • the gas treatment device of the present invention having the above-described excellent effects is not limited to exhaust gases from internal combustion engines such as diesel engines mounted on automobiles, but also exhaust gases from various industrial machines and stationary internal combustion engines, factory gases, It can be used as a gas processing device for power plant gas, etc., and as a gas processing device for various manufacturing factories and medical sites.

Abstract

 ガス処理装置(1)を、ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部(10)と、該凝集させた成分を捕集するフィルタ部(20)とを備えると共に、前記帯電凝集部(10)を上流側に、前記フィルタ部(20)を下流側に配設して構成する。  これにより、コロナ放電による凝集機能及び集塵機能とフィルタの集塵機能を用いて、ガス中の超微小粒子を凝集肥大化でき、しかも、車両搭載可能な排気ガス浄化装置としても使用できるような、高性能、低圧力損失でコンパクト化可能なガス処理装置(1)となる。

Description

明 細 書
ガス処理装置
技術分野
[0001] 本発明は、工場ガス、発電所ガス、自動車ガス等の排ガスや、各種製造工場や医 療現場等のガスを、コロナ放電を利用して浄化するガス処理装置に関する。
背景技術
[0002] 工場ガス,発電所ガス、自動車ガス等の排ガス処理装置として、又、各種製造工場 や医療現場等のガス処理装置として、静電凝集装置ゃ静電集塵装置等が使用され ている。これらのガス処理装置では、コロナ電極と集塵電極の間に高電圧を印加して ガス中にコロナ放電を発生させて ヽる。このコロナ放電によりガス中の浮遊微粒子を 帯電し、この帯電した粒子を静電気力で集塵電極に引き寄せて捕捉する等している
[0003] このようなガス処理装置の一つの例として、例えば、日本の実用新案登録第 3019 526号公報に記載されているように、工場排煙中の白煙及び霧状の微量汚染物質 の除去を目的として、金属円管中に張った金属細線で形成される高圧放電線 (コロ ナ電極)に高電圧を印加し、工場排煙等の浮遊微粒子を円筒電極に静電吸着して 除去する円筒形電気集塵装置がある。
[0004] また、例えば、日本の特開平 5— 125928号公報や日本の特許第 2849880号公 報に記載されているように、導電性の柱力 なる第 1電極とこの第 1電極を包囲する 導電性の第 2電極を有するコロナ放電部を筒状で形成し、これらの筒状の放電部を 複数個設けた排気ガス浄ィ匕装置も提案されて!ヽる。
[0005] 更に、例えば、曰本の特開 2002— 30920号公報や曰本の特開 2002— 30921号 公報に記載されて 、るように、筒状の外部電極と筒状の軸心方向に延びる内部電極 とからなるユニットを複数個並列に配置すると共に、これらのユニットをケーシングに 納めたプラズマ式排気浄ィ匕装置も提案されて 、る。
[0006] これらの放電を利用した静電集塵装置では、処理対象ガスを筒状体に通している。
この筒状体で形成された集塵電極、又は、筒状体とは別に設けた筒状の集塵電極の 、略中央 (軸中心)にコロナ電極を配置する。コロナ電極と集塵電極との間に高電圧 を印加することによって、ガス中にコロナ放電を発生させる。このコロナ放電により、ガ ス中の浮遊微粒子を帯電させる。
[0007] この帯電した粒子を、コロナ電極と集塵電極との間に形成された電界によって静電 気力で集塵電極表面に移動させて、集塵電極表面で捕捉する。この捕捉された粒子 は、電気集塵装置等と同様な振るい落とし等により集塵電極力も離脱させられる。こ の離脱した粒子は、集められたり、集塵電極に隣接して設けられたヒータ等の加熱に より燃焼除去される。
[0008] し力しながら、これらの静電集塵装置を単独で用いた場合には、再飛散の問題があ る。静電集塵により、集塵電極の表面で捕捉された粒子間に結合が生じて、微粒子 が大きくなる。この捕捉粒子はガス流の影響により、集塵電極の表面から剥離して再 飛散を起こす。この再飛散粒子は、ガス処理装置内で帯電、捕捉、剥離を繰り返しな がら、その粒径を徐々に大きくしていく。そして、最終的には再飛散により静電集塵 装置から排出されてしまう。
[0009] そのため、例えば、日本の特開 2000— 213331号公報に記載されているように、 静電集塵装置の集塵電極を加熱して、捕集した PMを燃焼除去する排気ガス浄ィ匕装 置が提案されている。この装置では、内燃機関等の排気ガス中の粒状固形物を除去 するために、電気集塵フィルタの集塵電極の表面に、電気伝導性金属酸化物を主成 分とする触媒をコーティングした触媒層を設けて、集塵電極に捕集された粒状固形 物を比較的低温で酸化燃焼させる。
[0010] 集塵電極上にヒータを配置すると、放電空間内のガスならびに電極が加熱される。
そのため、放電の不安定性を引き起こす恐れがある。また、触媒層はガス状成分の 酸化燃焼には有効である力 粒状固形物、特にディーゼル排気ガス中の Soot (スー ト:煤)分の酸化燃焼には必ずしも有効に機能しない。従って、特に静電集塵の電極 面程度の表面積では実用上十分な効果を得られないという問題があった。さらに、こ れらの技術は年々強化されつつある排気ガス規制に十分対応できるような微粒子除 去性能を得ることができな 、と 、う問題があった。
[0011] また、自動車に搭載したディーゼルエンジン等の排気ガスを対象とする場合には、 固体化した成分だけでなぐガス化した成分も含まれており、このガス化した成分も除 去する必要がある。排気ガス中に含まれている PM (Particulate Matter:パティキユレ ート 'マター:粒子状物質)が処理対象成分となる。この PMには、特に燃焼が難しい と言われる Sootと、高温では蒸気となっている SOF (Soluble Organic Fraction:可溶 性有機成分)が含まれている。この Sootは、炭素を主成分とするエンジンの排出物 質である。 SOFは、燃料やオイルの燃え残りが原因で発生する、ベンゼン, トルエン 等の有機溶剤に溶ける成分である。この SOFは、酸ィ匕触媒表面で燃焼できる。
[0012] この固形成分とガス化した成分を除去する装置として、例えば、日本の特開平 11 128660号公報に記載されているように、上流側に、バグフィルタ等の集塵手段を、 下流側にプラズマ発生手段をそれぞれ設けた浄ィ匕装置が提案されている。この装置 では、ガス中の煤塵などの塵埃をバグフィルタ等で集塵する。また、塵埃が除去され たガス中の臭気成分及び有害成分を分解除去する。
[0013] しかし、この固形成分をバグフィルタで集塵する場合には、微小粒子の捕集率を上 げるために目の細力 、フィルタが必要になる。この目の細力 、フィルタは圧力損失が 大きくなるという問題がある。
[0014] 一方、本発明者らは、 SOFに関して実験等により次のような知見を得た。
[0015] 排気ガス中のガス化した SOFは、冷却して凝縮して液化させると粘着性を持つミス トとなる。このミスト状の SOFは、鳥もちの原理により超微小粒子を捕捉して凝集肥大 化することができる。そして、超微小粒子の捕集に際して、この SOFの凝集肥大化機 能を利用するためには、フィルタ等の集塵装置を電気凝集装置の下流側に設けるこ とが有効である。また、この集塵装置と組み合せた場合に、電気凝集装置において 排気ガスを冷却して SOFを液ィ匕すると、著しく捕集効率が向上する。
[0016] また、この下流側にフィルタを配置した構成では、排気ガス中の超微小粒子力 静 電作用と液ィ匕した SOFの粘着機能との相乗効果により凝集肥大化する。その結果、 電気凝集装置力も排出される粒子の粒径が大きくなる。そのため、目の粗いフィルタ でもこれらの粒子を容易に捕捉することができる。
[0017] 更に、ガス化状態の SOFは酸化触媒で酸化できる。この酸化触媒は、次の理由か ら、通常はガスの温度が高い排気管の前方に酸ィ匕触媒を設置し、ガスの温度が低下 する排気管後方に電気集塵装置を設置することが考えられる。酸化触媒は、温度が 高いほど触媒活性が高い。電気凝集装置は、ガス温度が 500°Cを超えると安定なコ ロナ放電の形成が難しくなり、 650°Cを超えると十分な電力投入が特に難しくなる等 、高温域では、電気集塵作用が低下する。
[0018] しかし、 酸化触媒を電気凝集装置よりも、上流側に配設した場合には、 SOFが酸 化触媒で酸化されてしまう。そのため、電気凝集装置における超微小粒子の捕捉効 果が無くなってしまう。その結果、捕集効率が上がらなくなる。
[0019] その上、酸化触媒に SOFと Soot等からなる凝集体が流入すると、触媒表面が酸化 燃焼し難 、Sootで覆われ、触媒表面での SOFの酸化燃焼効果が弱まってしまう。 従って、この凝集体を捕捉して燃焼除去する粗い目のメタルフィルタを酸ィ匕触媒の上 流側に設けることが必要となる。結局は、上流側から電気凝集装置、フィルタ、酸ィ匕 触媒の順に配置することがもっとも効果的に排気ガスを浄ィ匕できる。
発明の開示
[0020] 本発明は、上記の知見を得て上述の問題を解決するためになされたものであり、そ の目的は、コロナ放電による凝集機能及び集塵機能とフィルタの集塵機能を用いて、 ガス中の超微小粒子を凝集肥大化できて、しかも、車両搭載可能な排気ガス浄ィ匕装 置としても使用できるような、高性能、低圧力損失でコンパクトィ匕可能なガス処理装置 を提供することにある。
[0021] 以上のような目的を達成するためのガス処理装置は、ガス中の捕集対象成分をコロ ナ放電により帯電させて凝集する帯電凝集部と、該凝集させた成分を捕集するフィル タ部とを備えたガス処理装置であって、前記帯電凝集部を上流側に、前記フィルタ部 を下流側に配設して構成する。
[0022] この構成によれば、上流側の帯電凝集部で捕集対象成分を凝集して粗大化及び 肥大化させてから、下流側のフィルタ部で捕集する。そのため、捕集効率が向上する と共に、後段のフィルタの目を比較的粗いものとすることができる。従って、圧力損失 を/ J、さくすることができる。
[0023] つまり、上流側の帯電凝集部で、コロナ放電による帯電を利用して、ガス中の Soot
(スート:煤)等の固形成分を帯電させると共に、ガス中の SOF (可溶性有機成分)等 の液体成分をバインダーとして、効率良く電気的に捕集対象成分を凝集させることが できる。この凝集体は、一時的には帯電凝集部の集塵電極の表面に捕集されるが、 壁面上で粗大化し、ガスの流れにより集塵電極の表面から剥離し再飛散する。この 最飛散した凝集体を下流側のフィルタ部で捕集する。
[0024] この下流側のフィルタ部では、流入する捕集対象成分は帯電凝集部により粗大化 及び肥大化している。そのため、フィルタの目が比較的粗くても効率良く捕集すること ができる。従って、フィルタ部を、比較的目が粗く圧力損失の少ないフィルタで形成 することができる。その結果、比較的目の粗いが耐熱性に優れた金属フィルタ等も使 用できるようになる。
[0025] なお、ディーゼルエンジンの排気ガスを処理対象ガスとする場合には、この後段の フィルタでは、 Sootや SOF等を含む PMの捕集量が所定の限界値を超えた場合に 、フィルタ温度を上昇させて燃焼除去するように構成される。この場合、金属フィルタ を用いると、金属フィルタは耐熱性に優れているので、有炎燃焼で溶損を心配するこ となく PMを除去できるようになる。
[0026] そして、上記のガス処理装置にぉ 、て、前記フィルタ部の下流側に酸ィ匕触媒を設 けて構成すると、この酸化触媒により、ガス化したまま帯電凝集部とフィルタ部を通過 してきた SOF等の蒸発成分をこの酸ィ匕触媒で酸ィ匕して除去することができる。なお、 この酸ィ匕触媒を帯電凝集部やフィルタ部の上流側に配置した場合には、ガス化した SOF等の成分をこの酸化触媒で酸化してしまう。そのため、 SOF等を Sootを凝集さ せるために使用することができなくなる。その結果、フィルタ部の捕集効率の向上に 寄与させることができなくなる。
[0027] また、上記のガス処理装置にぉ 、て、前記フィルタ部を、金属製のフィルタで形成 すると、 PM等の捕集物を燃焼除去する際に、このフィルタ部を高温にしても溶損し 難い。そのため、有炎燃焼により簡単にフィルタを再生することができる。なお、従来 のアルミナゃコーディライト等のフィルタ(DPF)では、高温にすると溶損の恐れがあ るという欠点、また、衝撃に弱いという欠点があった。しかし、フィルタ部に金属製フィ ルタを採用するとこれらの欠点が無くなる。
[0028] 更に、上記のガス処理装置において、処理対象のガスが 100°C以上 650°C以下の 温度である場合に、前記帯電凝集部でガスを冷却するように構成する。このガスの冷 却により、ガス状の SOF分が凝縮する。この凝縮した SOF分は、鳥もちのような効果 を発揮して Soot等の微小粒子を効率よく凝集できるようになる。これは、凝縮した SO F分により微小粒子の間に液架橋が生じるためと考えられる。また、ガス状の SOF分 は帯電作用で電気集塵的に捕捉し難い。しかし、ガスの冷却によって部分的にミスト 化した SOF分は帯電作用によって集塵電極に引き寄せられる。この点からも、微小 粒子の凝集が促進する。
[0029] SOFは多様な成分力 なり、その凝縮温度、蒸気圧曲線などを具体的に特定する ことは難しい。しかし、実験力も次のようなことが分力つている。排気ガス温度が 100 °C以下では冷却の有無による凝集作用に顕著な差はない。排気ガス温度が 100°C を超えると冷却の有無による凝集作用が顕著になる。 SOFの冷却効果にかかわる温 度の上限は確認できていない。しかし、帯電凝集部の放電形成が安定に実現できる 温度上限が 650°C程度であり、実際の排気ガス温度が 650°Cを超えることが少ない。 これらに基づくと、実験的に確認できた適用温度範囲の上限は、 650°C程度である。
[0030] ここでいうガスの冷却とは、帯電凝集部に冷媒を循環させるような冷却装置を設け たり、風を吹き付けて放熱を促進する積極的な冷却を含む。しかし、この積極的な冷 却だけではなぐ帯電凝集部を外気に露出した場合等のような、自然対流や熱放射 による自然放熱による消極的な冷却を含む。従って、ここでいうガスの冷却とは積極 的な保温対策を行わな 、ことを意味する。
[0031] また、上記のガス処理装置において、前記帯電凝集部の集塵電極を筒状体の低 電圧電極で形成し、コロナ電極を前記筒状体の内部に配置した線状体の高電圧電 極で形成すると共に、前記筒状体をガス通路の通路壁を兼ねる共にガスの冷却部と して構成する。
[0032] この構成によれば、筒状体をガスの冷却部とするので、構造が単純化すると共に、 冷却面積を大きく取れる。そのため、冷却効果を上げ易い。特に、筒状体をガスの通 路の外壁とし、この外壁を放熱面とすると、外気温度が低い場合や冷たい風が当たる 場合等では、自然対流や熱放射による自然放熱によりガスを冷却できるようになる。 静電凝集作用は集塵極近傍でおきるため、ガス全体を冷却する必要がない。従って 、集塵極近傍が冷却できれば静電凝集効果が促進される。
[0033] なお、ここでいう筒状体とは、その断面形状は、通常は円形に形成される。しかし、 断面形状は、三角形や四角形等を含む多角形形状や楕円形状等であってもよい。 つまり、ここでいう筒状体とは、一端部に入口、他端部に出口を有しその間を壁面で 囲われて筒となって!/、る形状のものを!、う。
[0034] また、上記のガス処理装置において、前記帯電凝集部の集塵電極を筒状体の低 電圧電極で形成し、コロナ電極を前記筒状体の内部に配置した線状体の高電圧電 極で形成すると共に、前記筒状体の内側表面近傍のガスの流れに対して乱流を促 進する乱流促進手段を、前記筒状体の表面又は表面近傍に設けて構成する。
[0035] この乱流促進手段は、凹凸構造 (突起構造)で構成できる。この凹凸構造は、次の ようにして構成できる。単数又は複数の線状体 (丸棒や角棒)を筒状体にスパイラル 状にして挿入する。筒状体の内側表面を溝切りする。リング状の凸部を筒状体の軸 方向に間隔をおいて内面に設ける。三次元構造を持つフィンを設ける。ブラスト処理 して乱雑な凹凸を設ける。これらの凹凸は一様に形成されていてもよぐ分散配置さ れていてもよい。
[0036] 更に、筒状体を加工するだけでなぐ加工により凹凸を設けた板材や、既に凹凸を 有して市販されている面状体ゃ板材を、筒状体に挿入可能に整形して、挿入しても よい。この面状体としては、金網、パンチングメタル、エキスパンダメタル等のシート状 突起物が有用である。また、スリットグリル、ダイヤスクリーン、ディンプルスクリーン (孔 無し)、ディンプルスクリーン (孔有り)、スリット出窓スクリーン、ブリッジ出窓スクリーン 、三角出窓スクリーン、半円出窓スクリーン等々の打ち抜きスクリーンを使用できる。
[0037] この乱流促進手段により、流路、特に、筒状体の表面近傍のガスの乱流化を促進し て、流路断面方向の攪拌作用を大きくすることができる。そのため、流路空間全体に おいてガス中の成分の帯電に要する時間の短縮化、帯電粒子の集塵電極の対向面 への接触の容易化、ガスの対向面近傍における主流方向流速の低速化に伴う滞留 時間の増加を図ることができる。また、帯電粒子を集塵電極上に効果的に捕捉できる ようになる。従って、凝集効果が高まる。つまり、乱流促進手段により、帯電凝集部に おけるガス中の帯電効果の向上ならびに凝集作用の促進が図れる。その結果、後段 でのフィルタ捕集作用を向上させることができる。
[0038] 上記のガス処理装置において、前記帯電凝集部のガス通路壁を筒状体で形成し、 低電圧電極となる集塵電極を前記ガス通路壁の表面近傍に配置された導電性の乱 流促進手段を有する筒状体で形成すると共に、コロナ電極を前記筒状体の内部に 配置した線状体の高電圧電極で形成して構成する。これにより、筒状体を絶縁体に することもできるようになる。その結果、より設計の自由度を増すことができる。
[0039] 上記のガス処理装置にお 、て、前記帯電凝集部を、前記コロナ電極と前記筒状体 とを有して構成される帯電凝集ユニットを、複数並列に配置して形成する。これにより 、多量のガスを効率良く処理することができる。また、筒状体の外壁の表面積を著しく 大きくすることができる。従って、ガスの冷却性能を著しく向上することができる。
[0040] 以上に説明したように、本発明のガス処理装置によれば、上流側の帯電凝集部で 捕集対象成分を凝集肥大化させてから、下流側のフィルタ部で捕集するので、捕集 効率を著しく向上させることができる。しかも、フィルタの目を比較的粗いままとするこ とができる。従って、フィルタの圧力損失を小さくすることができる。
[0041] そして、フィルタ部の下流側に酸ィ匕触媒を設ける構成では、酸化触媒により、ガス 化したまま帯電凝集部とフィルタ部を通過してきた SOF等の成分を、この酸化触媒で 酸ィ匕して除去することができる。従って、 PM等のガス中成分に対する除去効率をより 向上することができる。
[0042] また、フィルタ部を、金属製のフィルタで形成する構成では、 PM等の捕集物を燃焼 除去する際に、高温にしても溶損し難い。そのため、有炎燃焼により簡単に再生する ことができる。
[0043] 従って、本発明のガス処理装置では、コロナ放電の原理を用いて、ガス中の浮遊微 粒子を効率よく凝集肥大化できて、し力も、圧力損失の小さい目の粗いフィルタを用 いることができる。そのため、超微小粒子の除去性能の向上、排気圧力を低く維持す ることによる燃費の向上、安定した排気圧力によるターボ負荷の軽減等を図ることが できる。その結果、本発明のガス処理装置は、車両に搭載可能な排気ガス浄化装置 としても使用できるような、高性能、低圧力損失でコンパクト化可能なガス処理装置と なる。 図面の簡単な説明
[0044] [図 1]本発明に係るガス処理装置の構成を模式的に示す図である。
[図 2]帯電凝集ユニットの側断面図である。
[図 3]筒状体の断面形状が円形の帯電凝集ユニットを示す断面図である。
[図 4]筒状体の断面形状が端部が円形の偏平体で、コロナ電極が複数ある帯電凝集 ユニットを示す断面図である。
[図 5]帯電凝集ユニットの自然冷却の様子を模式的に示す断面図である。
[図 6]帯電凝集ユニットをファンで強制冷却する様子を模式的に示す断面図である。
[図 7]帯電凝集ユニットを二重管構造で強制冷却する様子を模式的に示す図である
[図 8]乱流促進手段を設けた帯電凝集ユニットの側断面図である。
[図 9]乱流促進手段を設けた筒状体の断面形状が円形の帯電凝集ユニットを示す断 面図である。
[図 10]乱流促進手段を設けた筒状体の断面形状が端部が円形の偏平体で、コロナ 電極が複数ある帯電凝集ユニットを示す断面図である。
[図 11]集塵電極と筒状体を別体で形成した帯電凝集ユニットの側断面図である。
[図 12]乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が円 形の帯電凝集ユニットを示す断面図である。
[図 13]乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が端 部が円形の偏平体で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である
[図 14]乱流促進手段を設けた集塵電極とは別体に形成した筒状体の断面形状が矩 形の帯電凝集ユニットを示す断面図である。
[図 15]乱流促進手段を兼ねる集塵電極とは別体に形成した筒状体の断面形状が長 方形で、コロナ電極が複数ある帯電凝集ユニットを示す断面図である。 発明を実施するための最良の形態
[0045] 以下、本発明に係る実施の形態のガス処理装置につ!、て、ディーゼルエンジンの 排気ガスを処理対象ガスとしたガス処理装置を例にして、図面を参照しながら説明す る。
[0046] 図 1に示すように、このガス処理装置 1は、帯電凝集部 10を上流側に、フィルタ部 2 0を下流側に備えて構成される。また、更に、フィルタ部 20の下流側に酸ィ匕触媒 30を 設けて構成される。この帯電凝集部 10は、ガス中の捕集対象成分をコロナ放電によ り帯電させて凝集する。フィルタ部 20は帯電凝集部 10で凝集させた成分を捕集する
[0047] つまり、コロナ放電により PMを粗大化し凝集及び一時的に捕集する帯電凝集部 1 0を前段に配置する。この帯電凝集部 10から再飛散する肥大化した PMを捕集する フィルタ部 20を中段に配置する。更に、ガス化したままの SOF等の蒸発成分を浄ィ匕 する酸化触媒 30を後段に配置する。
[0048] この帯電凝集部 10は、複数、例えば、 8本の帯電凝集ユニット 11を並列に配置して 構成される。この帯電凝集ユニット 11は、図 2及び図 3に示すように、低電圧電極で 形成される集塵電極 1 laと高電圧電極で形成されるコロナ電極 1 lbとを有して構成さ れる。
[0049] この集塵電極 11aは、例えば、 SUS 304製等の導電性の材料で、円筒状体等の筒 状体に形成される。この集塵電極 11aは、上流側はガス入口室 11cに、下流側はガ ス出口室 l idに接続される。この集塵電極である筒状体 11aは、ガス通路の通路壁 を兼ねる。この筒状体 11aの断面形状は特に限定されない。コロナ放電の安定性等 を考えると断面形状が円形であることが好ましいが、正方形等であってもよい。特に、 コロナ電極 l ibを複数設ける場合には、断面形状は楕円形、三角形、長方形、その 他の多角形であってもよい。
[0050] コロナ電極 l ibは、電界集中係数の高い電極であればよい。コロナ電極 l ibは、細 線電極、角状電極、突起構造付き電極等の線状 (ワイヤ状)や棒状等の線状体等で 形成される。例えば、コロナ電極 l ibは、 SUS304製の中空ワイヤ等で形成される。 そして、コロナ電極 l ibは、筒状体 l ibの内部、例えば、筒状体の軸心部分等の中 央に配置される。また、図 4に示すように、筒状体 l ibの内部に、複数のコロナ電極 1 lbを設けてもよい。
[0051] この集塵電極 11aとコロナ電極 l ibは、互いに碍子等により電気的に絶縁状態にし て構成される。この集塵電極 11aは、電気的に接地 (アース)され、接地電位に保た れる。また、必要に応じて、集塵電極 11aは、別電位に保持される。一方、コロナ電極 l ibは、高圧電源に接続される。この高圧電源で高電圧を発生する。この高電圧は、 コロナ電極 l ibに印加される。この高電圧は、一般的には、負極性の直流電圧を用 いるのが好ましい。し力し、直流、交流、パルス状のいずれであってもよい。また、極 性も、負極性でも正極性でもあってもよい。また、電圧の値は、この筒状体 11aとコロ ナ電極 l ibとの間を通過するガス G中にコロナ放電を発生できる電圧値であればよ い。
[0052] そして、この筒状体 1 laの通路壁を冷却壁 (ガス冷却部)とし、帯電凝集部 10でガ ス Gを冷却できるように構成する。つまり、この筒状体 11aの外面側を自然空冷又は 強制冷却するように構成する。
[0053] この自然空冷にお!、ては、次のような構成が考えられる。筒状体 1 laの外面を保温 したりせずに、図 5に示すように、筒状体 11aの外面を大気開放状態にする。また、筒 状体 11aを筒状体 11aをガス処理装置 1のケースに入れる場合は、ケースを構成す る筒体(図示しない)で密閉せずに、この筒体に通気孔を設ける。これらの構成により 、外気との接触を容易にし、筒状体 11aの外面での自然対流伝熱による熱伝達効果 を大きくあする。
[0054] また、熱放射による冷却効果を促進できるように、周囲の部材の温度を低くする。ま た、熱伝導による冷却効果を上げるために、低温の熱伝導体と接触させる。更に、筒 状体 1 laの外部への放熱を促進する冷却用のフィンを筒状体 1 laの外面に設けるこ ともできる。この冷却用フィンとしては、例えば、熱交 等で一般的に用いられてい る平滑環状フィン、スロットフィン、テントフィン、短冊フィン、ワイヤーループフィン等を 使用できる。
[0055] また、強制冷却においては、次のように構成する。図 6に示すように、ファン 3等によ り筒状体 11aの外面に送風して、対流伝熱による強制冷却をする。あるいは、図 7に 示すように筒状体 1 laを冷却水等の冷媒 Wが通過する二重管構造とし、筒状体 1 la を冷媒で強制冷却する。この強制冷却では、これらの冷却手段に限られず、一般的 な冷却手段を適用できる。 [0056] そして、ガス処理装置 1を車両に搭載した場合には、車両の走行により、帯電凝集 部 10の外気に露出した筒状体 11等の部分に強い風が当たる。そのため、自然対流 や熱放射による自然放熱によってガス Gが冷却される。従って、特別な冷却手段ある いは能動的な冷却手段を設けなくても、積極的な保温手段を設けなければ、冷却効 果を得ることができる。
[0057] このガス冷却は、処理対象ガス Gが 100°C以上 650°C以下の温度である場合にお いて、特に有効である。 SOFは多様な成分力もなるため、その凝縮温度、蒸気圧曲 線などを具体的に特定することが難しい。しかし、次のようなことが実験力も分力つて いる。排気ガス温度が 100°C以下では冷却の有無による凝集作用に顕著な差異は ない。排気ガス温度が 100°Cを超えると冷却の有無による凝集作用が顕著になる。 S OFの冷却効果にかかわる温度の上限は確認できていない。しかし、帯電凝集部の 放電形成が安定に実現できる温度上限が 650°C程度である。また、実際の排気ガス 温度が 650°Cを超えることが少ない。そのため、実験的に確認できた適用温度範囲 の上限は 650°C程度である。
[0058] フィルタ部 20は、帯電凝集部 10から、粗大化して再飛散してくる凝集体を捕集して 除去するためのフィルタを有して構成される。そして、ディーゼルエンジンの排気ガス を対象とするこの実施の形態では、ディーゼルパティキュレートフィルタ(DPF)で構 成される。この DPFは、耐熱性に優れたコージエライト、シリコン、カーバイド、アルミ ナ繊維、シリカ繊維等のセラミック製であってもよい。また、この DPFは、ステンレス等 の金属製のもので形成してもよい。 DPFを金属製にすれば、捕集した PMを燃焼除 去する際、溶損し難ぐ熱衝撃や熱応力にも強い。そのため、有炎燃焼等による DP Fの再生も可能となる。
[0059] また、このフィルタ部 20は、上流側の帯電凝集部 10で捕集対象成分を凝集肥大化 させてから下流側で捕集する。そのため、フィルタ部 20を、圧力損失の小さい、比較 的目の粗いフィルタで形成することができる。そして、このフィルタ部 20は、捕集量が 増加し目詰まりしてきた時に、捕集物を燃焼除去するために、加熱用のヒータを備え る構造としてもよい。なお、白金等の触媒を担持すると、捕集した PMを触媒作用によ り低温で分解できるようになる。 [0060] 酸化触媒 30は、セラミックのハニカム構造等の担持体に、白金等の酸化触媒を担 持させて形成される。この酸化触媒 30は、ガス冷却によっても液ィ匕しないで気相状 態でフィルタ部 20を通過する SOF等の蒸発成分を、浄化する。
[0061] そして、このガス処理装置 1にお!/、ては、次のようにしてガス Gを浄化する。
[0062] 最上流側の帯電凝集部 10では、ガス入口室 11cから各々の帯電凝集ユニット 11 の筒状体 (集塵電極) 11aの内部にガス Gを通過させる。それと共に、コロナ電極 l ib と集塵電極 11aとの間に高電圧を印加して、集塵電極 11aの内部にコロナ放電を形 成する。このコロナ放電により、集塵電極 11aの内部を通過するガス G中の PM等の 捕集対象成分を、帯電させて、この帯電した粒子を凝集する。
[0063] この帯電凝集部 10では、コロナ放電による帯電を利用して、ガス中の Soot (スート: 煤)等の固形成分を帯電させる。それと共に、ガス Gが冷却される。この冷却により凝 縮したミスト状の SOF (可溶性有機成分)等の液体成分がバインダーの役割を果す。 そのため、このガス処理装置 1では、冷却により凝縮した液体成分のバインダー機能 を利用きる。従って、繊細な PMの粒子を、より効率良く凝集することができる。
[0064] この凝集体は、コロナ電極 l ibと集塵電極 11aの間の電場により、クローン力により 集塵電極 11aに移動する。この凝集体は、一時的に集塵電極 11aの表面に捕集され る。そして、この凝集体は、集塵電極 11aに触れて電荷を失い、また、壁面上で更に 粗大化する。その結果、ガス Gの流れにより集塵電極 11aの表面カゝら剥離し再飛散 する。
[0065] そして、この再飛散してくる凝集体や直接流入する捕集対象成分を、フィルタ部 20 で捕集する。しかし、再飛散したり、 SOFの回りに凝集したりした凝集体は、粗大化及 び肥大化している。そのため、フィルタの目が比較的粗くても効率良く捕集することが できる。従って、通常の物理的なフィルタだけで機械的にトラップする場合に比べ、よ り繊細な PMの粒子を効率良く捕集することができる。
[0066] また、 Sootや SOF等を含む PM等の捕集対象成分が蓄積されて目詰まりが進行し 、所定の限界値を超えた場合には、フィルタに設けた電気ヒータ(図示しない)により フィルタを加熱して、フィルタの温度を PMの燃焼温度以上に上昇させて PMを燃焼 除去するように構成してもよい。このフィルタの温度上昇は局部的であっても、ー且 P Mの燃焼が開始されると燃焼熱が発生し燃焼の伝播が起こる。そのため、フィルタ全 体の PMを燃焼除去して、フィルタ全体を再生できる。この場合に、フィルタ部 20を金 属製のフィルタで形成すると、 PM等の捕集物を燃焼除去する際に、高温にしても溶 損し難い。そのため、有炎燃焼により簡単に再生することができる。
[0067] また、最下流の酸ィ匕触媒 30においては、ガス化したまま帯電凝集部 10とフィルタ 部 20を通過してきた SOF等の成分を酸ィ匕して除去する。これにより、凝縮しな力つた SOF等の蒸発成分も除去できる。
[0068] 従って、上記の構成のガス処理装置 1によれば、帯電凝縮部 10で、コロナ放電の 電気集塵機能に加えて、ガス冷却により凝縮した SOF等の液体成分の接着機能を 利用することができる。従って、ガス G中の浮遊微粒子を効率よく凝集肥大化できる。 その結果、フィルタ部 20で、圧力損失の小さい目の粗いフィルタを用いることができ る。そのため、フィルタの圧力損失を小さくできる。また、フィルタが目詰まりするまで の間、力なりの長時間連続運転することができる。さらに、酸化触媒 30でガス化した ままの SOF等の成分を酸ィ匕して除去するので、 PMの除去能力をより高めることがで きる。
[0069] 次に、帯電凝集部 10の帯電凝集ユニット 11の他の実施の形態について説明する 。この他の実施の形態では、図 8〜図 10に示すように、帯電凝集部 10の筒状体 11a の内側表面近傍のガス Gの流れの乱流を促進するために、乱流促進手段 l ieを、筒 状体 11aの表面又は表面近傍に設ける。この乱流促進手段 l ieは、凹凸構造 (突起 構造)で構成できる。この凹凸構造に関しては、伝熱特性を向上するための突起構 造を参考にすることができる。また、この乱流促進手段 l ieは筒状体 11aの表面をカロ ェして設けてもよい。更に、筒状体 11aとは別体の構造物を筒状体 11aの表面に当 接又は浮力せて配置してもよ 、。
[0070] この凹凸構造は、次のようにして形成することができる。単数又は複数の線状体 (丸 棒や角棒)を筒状体 11aにスパイラル状にして挿入し、筒状体 11aの内側表面に巻き 付ける。筒状体 11aの内側表面に溝きりにより台形形状の凸部や、格子溝や螺旋溝 等の規則正しい凹凸を設けて、内面溝付き管構造にする。リング状の凸部を筒状体 1 laの内側表面に筒状体 1 laの軸方向に間隔をお 、て形成する。三次元構造を持 つフィンで形成する。ブラスト処理して乱雑な凹凸を形成する。これらの凹凸は一様 に形成されていてもよぐ分散配置されていてもよい。
[0071] 更に、筒状体 11aを加工するだけでなぐ加工により凹凸を設けた板材や、既に凹 凸を有して形成されている板材を、筒状体 11aに挿入可能に整形して、挿入して凹 凸構造を形成してもよい。また、既に凹凸を有して市販されているような面状体を筒 状体 11aを挿入して凹凸構造を形成してもよい。この面状体としては、金網やパンチ ングメタル、エキスパンダメタル等のシート状突起物が有用である。また、面状体とし て、スリットグリル、ダイヤスクリーン、ディンプルスクリーン(孔無し)、ディンプルスタリ ーン(孔有り)、スリット出窓スクリーン、ブリッジ出窓スクリーン、三角出窓スクリーン、 半円出窓スクリーン等々の打ち抜きスクリーンを使用できる。
[0072] なお、この凹凸構造の寸法に関しては、筒状体 11aの断面の代表長さを D、内側表 面の最大表面粗さを εとした時の相対粗さ( ε ZD)を、好ましくは、 0. 01以上、 0. 1 以下とする。この相対粗さ( ε ZD)を 0. 01以上とするのは、好ましい乱流促進効果 を得るためである。相対粗さを 0. 1以下とするのは、放電の好ましい空間的均一性と 安定性を得るためである。
[0073] この断面の代表長さ Dと、筒状体 11aの対向面の凹凸構造の無次元代表寸法とも いうべき相対粗さ( ε ZD)について説明すると、代表長さ Dは、伝熱工学等で使用さ れている長さと同じである。筒状体 11aで囲われた流路断面積を S,濡れ縁長さを Pと すると、 D = 4SZPである。筒状体 11aが円管の場合には、 Dは円管の直径に相当 する。
[0074] この実施の形態の帯電凝集ユニットにおいては、乱流促進手段 lieにより、筒状体 11 aの表面近傍でガスの流れの乱流を促進する。そのため、流路断面方向の攪拌作 用を大きくすることができる。従って、流路空間全体において、ガス中の成分の帯電 に要する時間の短縮化、帯電粒子の集塵電極の対向面への接触の容易化、ガスの 対向面近傍における主流方向流速の低速ィ匕に伴う滞留時間の増加を図ることができ る。その結果、静電力による帯電粒子の捕捉を一層促進することができる。従って、こ の乱流促進手段 lieにより、帯電凝集部 10におけるガス G中の固形成分の帯電効 果を向上できる。そして、集塵効果を向上することができる。 [0075] 次に、帯電凝集部 10の帯電凝集ユニット 11のもう一つの実施の形態について説明 する。この実施の形態では、図 11〜図 15に示すように、帯電凝集ユニット 11のガス 通路壁、即ち、帯電凝集部 10のガス通路壁を、筒状体 l lfで形成する。また、低電 圧電極となる集塵電極 1 laを、ガス通路壁 1 Ifの表面近傍に配置された導電性の筒 状体で形成する。また、コロナ電極 l ibを、筒状体 l lfの内部に配置した線状体の高 電圧電極で形成する。この筒状体 l lfと集塵電極 11aは、共に導電材料で形成して もよい。また、筒状体 l lfを絶縁材料で形成し、集塵電極 11aを導電材料で形成する と、帯電凝集ユニット 11の表面が筒状体 l lfにより電気的に絶縁される。そのため、 漏電等に対する安全性が増す。
[0076] また、図 11〜図 14に示すように集塵電極 11aの表面又は表面近傍に乱流促進手 段 l ieを設けたり、図 15に示すように集塵電極 11aを乱流促進手段 l ieで形成する 。これらの構成により、乱流促進手段 l ieによる効果を得ることができる。
[0077] この構成では、集塵電極 1 laを筒状体 1 Ifと別体にして形成して 、るので、集塵電 極 11aはガス通路壁の機能が不要となる。そのため、集塵電極 11aはガス通過性を 有してもよくなり、表面積を増加できる。そのため、より凝集肥大化の効果を大きくす ることができる。また、筒状体 l lfを絶縁体で形成すると、帯電凝集ユニット 11の表面 を電気的に絶縁できる。従って、漏電等に対する安全性を増すことができる。
産業上の利用可能性
[0078] 上述した優れた効果を有する本発明のガス処理装置は、自動車搭載のディーゼル エンジン等の内燃機関の排気ガスのみならず、各種産業用機械や定置式の内燃機 関の排ガスや工場ガス,発電所ガス等のガス処理装置として、又、各種製造工場や 医療現場等のガス処理装置として使用できる。

Claims

請求の範囲
[1] ガス中の捕集対象成分をコロナ放電により帯電させて凝集する帯電凝集部と、該凝 集させた成分を捕集するフィルタ部とを備えたガス処理装置であって、前記帯電凝集 部を上流側に、前記フィルタ部を下流側に配設したことを特徴とするガス処理装置。
[2] 前記フィルタ部の下流側に酸ィ匕触媒を設けたことを特徴とする請求項 1記載のガス 処理装置。
[3] 前記フィルタ部を、金属製のフィルタで形成したことを特徴とする請求項 1又は 2に 記載のガス処理装置。
[4] 処理対象のガスが 100°C以上 650°C以下の温度である場合に、前記帯電凝集部 でガスを冷却するように構成したことを特徴とする請求項 1〜3のいずれか 1項に記載 のガス処理装置。
[5] 前記帯電凝集部の集塵電極を筒状体の低電圧電極で形成し、コロナ電極を前記 筒状体の内部に配置した線状体の高電圧電極で形成すると共に、前記筒状体をガ ス通路の通路壁を兼ねる共にガスの冷却部として構成したことを特徴とする請求項 1 〜4の!、ずれか 1項に記載のガス処理装置。
[6] 前記帯電凝集部の集塵電極を筒状体の低電圧電極で形成し、コロナ電極を前記 筒状体の内部に配置した線状体の高電圧電極で形成すると共に、前記筒状体の内 側表面近傍のガスの流れに対して乱流を促進する乱流促進手段を、前記筒状体の 表面又は表面近傍に設けて構成したことを特徴とする請求項 1〜5のいずれか 1項に 記載のガス処理装置。
[7] 前記帯電凝集部のガス通路壁を筒状体で形成し、低電圧電極となる集塵電極を前 記ガス通路壁の表面近傍に配置された導電性の乱流促進手段を有する筒状体で形 成すると共に、コロナ電極を前記筒状体の内部に配置した線状体の高電圧電極で 形成して構成したことを特徴とする請求項 1〜4のいずれか 1項に記載のガス処理装 置。
[8] 前記帯電凝集部を、前記コロナ電極と前記筒状体とを有して構成される帯電凝集 ユニットを複数並列に配置して形成したことを特徴とする請求項 5〜7のいずれ力 1項 に記載のガス処理装置。
PCT/JP2005/017344 2004-10-01 2005-09-21 ガス処理装置 WO2006038461A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05785908A EP1813351A1 (en) 2004-10-01 2005-09-21 Gas treatment device
US11/662,876 US20070261556A1 (en) 2004-10-01 2005-09-21 Gas Treatment Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004289730A JP4529013B2 (ja) 2004-10-01 2004-10-01 ガス処理装置
JP2004-289730 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038461A1 true WO2006038461A1 (ja) 2006-04-13

Family

ID=36142540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017344 WO2006038461A1 (ja) 2004-10-01 2005-09-21 ガス処理装置

Country Status (4)

Country Link
US (1) US20070261556A1 (ja)
EP (1) EP1813351A1 (ja)
JP (1) JP4529013B2 (ja)
WO (1) WO2006038461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112316570A (zh) * 2020-10-15 2021-02-05 中国石油大学(华东) 一种紧凑型工业尾气细颗粒物高效脱除及冷却装置与方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244022B2 (ja) * 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
US7815714B2 (en) * 2007-12-20 2010-10-19 General Electric Company Systems and methods for removal of particulate matter in a filtration system
DE102008059113A1 (de) * 2008-11-26 2010-05-27 Eads Deutschland Gmbh Vorrichtung zur Sammlung von stark elektronenaffinen Partikeln
EP2489843A4 (en) 2009-10-14 2014-11-05 Usui Kokusai Sangyo Kk ELECTRICAL EXHAUST PROCESSING AND ELECTRICAL EXHAUST PROCESSING DEVICE
WO2012028187A1 (en) * 2010-09-02 2012-03-08 Jean-Michel Beaudouin Device and method for the treatment of a gaseous medium and use of the device for the treatment of a gaseous medium, liquid, solid, surface or any combination thereof
DE102010038153B3 (de) * 2010-10-13 2012-03-08 Ford Global Technologies, Llc. Partikelsensor, Abgassystem und Verfahren zum Schutz von Komponenten eines turbogeladenen Motors mit Abgasrückführung
JP5863087B2 (ja) 2010-11-16 2016-02-16 臼井国際産業株式会社 重油以下の低質燃料を使用する大排気量ディーゼルエンジン用排ガス処理装置
JP6041418B2 (ja) 2010-12-16 2016-12-07 臼井国際産業株式会社 重油以下の低質燃料を使用する大排気量船舶用ディーゼルエンジンの排気ガス浄化装置
NL2007200C2 (en) * 2011-07-29 2013-01-30 Univ Delft Tech Gas purification system.
EP2551017A3 (en) * 2011-07-29 2013-04-03 Technische Universiteit Delft Gas purification system
JP6062660B2 (ja) 2012-05-15 2017-01-18 臼井国際産業株式会社 重油より低質な燃料を使用する大排気量船舶用ディーゼルエンジン排ガス処理装置
JP5761461B2 (ja) * 2012-07-31 2015-08-12 富士電機株式会社 電気集塵装置
KR101515798B1 (ko) 2013-02-28 2015-05-04 편성자 유해가스 정화 장치
JP6172714B2 (ja) 2013-05-09 2017-08-02 臼井国際産業株式会社 重油を使用する船舶用ディーゼルエンジンの排ガス処理装置
JP6094555B2 (ja) * 2014-10-02 2017-03-15 トヨタ自動車株式会社 オイル除去装置
CN105413365B (zh) * 2015-11-04 2017-12-08 胡译文 一种大气污染治理装置及方法
JP6323632B2 (ja) 2016-02-15 2018-05-16 株式会社村田製作所 濾過フィルタデバイス
EP3938644A4 (en) * 2019-03-11 2023-04-05 University Of Southern California SYSTEMS AND PROCESSES FOR PLASMA-ASSISTED REMEDIATION
JP2021004555A (ja) * 2019-06-25 2021-01-14 トヨタ自動車株式会社 内燃機関の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855868A (ja) * 1971-11-16 1973-08-06
JPS5527058A (en) * 1978-08-17 1980-02-26 Hitachi Plant Eng & Constr Co Ltd Electric dust collector
JPS58133846A (ja) * 1982-02-03 1983-08-09 Electric Power Dev Co Ltd 排ガス処理方法
JP3019526U (ja) * 1995-06-16 1995-12-19 正憲 十文字 同軸円筒型白煙除去装置
JP2001096194A (ja) * 1999-09-28 2001-04-10 Ricoh Elemex Corp 集塵脱臭装置
JP2003049628A (ja) * 2001-08-08 2003-02-21 Yamakei:Kk 排気ガス物質の浄化装置
JP2004174409A (ja) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp 空気清浄装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1357886A (en) * 1920-11-02 Apparatus for precipitating suspended particles from gases
US3398685A (en) * 1961-09-11 1968-08-27 Litton Systems Inc Ion drag pumps
BE621783A (ja) * 1961-09-27
US3157479A (en) * 1962-03-26 1964-11-17 Arthur F Boles Electrostatic precipitating device
DE2134576C3 (de) * 1971-07-10 1975-10-30 Metallgesellschaft Ag, 6000 Frankfurt Röhre n-NaBelektroabscheider
US4010011A (en) * 1975-04-30 1977-03-01 The United States Of America As Represented By The Secretary Of The Army Electro-inertial air cleaner
US4098591A (en) * 1975-05-07 1978-07-04 Bronswerk Heat Transfer B.V. Apparatus and method for removing non-conductive particles from a gas stream
JPS57148017A (en) * 1981-03-09 1982-09-13 Toyota Central Res & Dev Lab Inc Device for disposing of exhaust smoke of internal combustion engine
JPS6448151U (ja) * 1987-09-18 1989-03-24
US5003774A (en) * 1987-10-09 1991-04-02 Kerr-Mcgee Chemical Corporation Apparatus for soot removal from exhaust gas
JPH02172545A (ja) * 1988-12-23 1990-07-04 Hiroaki Kanazawa 空気清浄機
US5066316A (en) * 1989-10-06 1991-11-19 Niles Parts Co., Ltd. Exhaust gas purifying apparatus
US5041145A (en) * 1990-05-15 1991-08-20 Niles Parts Co., Ltd. Bridged stream corona generator
US5084078A (en) * 1990-11-28 1992-01-28 Niles Parts Co., Ltd. Exhaust gas purifier unit
JPH0533631A (ja) * 1991-07-24 1993-02-09 Nippondenso Co Ltd 静電場による空気浄化装置
JPH0533681A (ja) * 1991-07-31 1993-02-09 Mitsubishi Motors Corp バルブ開閉動切換方法
JPH05154408A (ja) * 1991-12-10 1993-06-22 Katsumune Shiraishi 電気集塵装置
DE4200343C2 (de) * 1992-01-09 1993-11-11 Metallgesellschaft Ag Elektrostatischer Abscheider
US5254155A (en) * 1992-04-27 1993-10-19 Mensi Fred E Wet electrostatic ionizing element and cooperating honeycomb passage ways
US5707428A (en) * 1995-08-07 1998-01-13 Environmental Elements Corp. Laminar flow electrostatic precipitation system
WO1997005955A1 (fr) * 1995-08-08 1997-02-20 Galaxy Yugen Kaisha Dispositif de precipitation electrostatique
JP3046951B2 (ja) * 1998-04-27 2000-05-29 株式会社セイスイ 空気清浄化装置
US6193782B1 (en) * 1999-03-30 2001-02-27 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators and method
US6294003B1 (en) * 1999-03-30 2001-09-25 Croll Reynolds Clean Air Technologies, Inc. Modular condensing wet electrostatic precipitators
CN1177651C (zh) * 1999-11-11 2004-12-01 因迪格技术集团股份有限公司 凝聚粒子的方法和装置
US6527829B1 (en) * 2000-03-15 2003-03-04 Fortum Oyj Method and arrangement for purifying the intake air of a gas turbine
US6508861B1 (en) * 2001-10-26 2003-01-21 Croll Reynolds Clean Air Technologies, Inc. Integrated single-pass dual-field electrostatic precipitator and method
KR100656170B1 (ko) * 2002-12-23 2006-12-12 삼성전자주식회사 공기정화기
JP4553555B2 (ja) * 2003-03-11 2010-09-29 西松建設株式会社 排ガスの処理方法および排ガス処理装置
JP4244022B2 (ja) * 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
US20060021503A1 (en) * 2004-07-30 2006-02-02 Caterpillar, Inc. Electrostatic precipitator particulate trap with impingement filtering element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855868A (ja) * 1971-11-16 1973-08-06
JPS5527058A (en) * 1978-08-17 1980-02-26 Hitachi Plant Eng & Constr Co Ltd Electric dust collector
JPS58133846A (ja) * 1982-02-03 1983-08-09 Electric Power Dev Co Ltd 排ガス処理方法
JP3019526U (ja) * 1995-06-16 1995-12-19 正憲 十文字 同軸円筒型白煙除去装置
JP2001096194A (ja) * 1999-09-28 2001-04-10 Ricoh Elemex Corp 集塵脱臭装置
JP2003049628A (ja) * 2001-08-08 2003-02-21 Yamakei:Kk 排気ガス物質の浄化装置
JP2004174409A (ja) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp 空気清浄装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112316570A (zh) * 2020-10-15 2021-02-05 中国石油大学(华东) 一种紧凑型工业尾气细颗粒物高效脱除及冷却装置与方法

Also Published As

Publication number Publication date
JP2006102575A (ja) 2006-04-20
EP1813351A1 (en) 2007-08-01
JP4529013B2 (ja) 2010-08-25
US20070261556A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
WO2006038461A1 (ja) ガス処理装置
JP4244022B2 (ja) ガス処理装置
JP4931602B2 (ja) ディーゼルエンジンの排気ガス用電気式処理装置
CA2789412C (en) Advanced particulate matter control apparatus and methods
JP5894179B2 (ja) 煤粒子を含む排気ガスを処理するための装置
JP3894938B2 (ja) 排気ガス処理装置及び排気ガス処理方法
JP2007100635A (ja) 排気ガス浄化装置
JP2004211692A (ja) 開端式ディーゼル微粒子トラップ
JP4581130B2 (ja) 排気ガス処理方法及び排気ガス処理装置
JP4483714B2 (ja) 内燃機関の排気処理装置
JP2007021380A (ja) 粒子充填層集塵装置
JP2003201824A (ja) 排ガス中の微粒子凝集方法、微粒子除去方法およびその装置
JP4304238B2 (ja) 内燃機関の排気ガス浄化方法及びその装置
JP2006289150A (ja) 排気処理装置
JP4604803B2 (ja) 排気処理装置
JP5929704B2 (ja) 内燃機関の排ガス処理装置
JP2001041024A (ja) 電荷型のディーゼルパティキュレートフィルタ装置
JP2006029267A (ja) 排気浄化装置
JP4345568B2 (ja) 排気処理装置用凝集器
JP2004092589A (ja) 内燃機関の排ガス浄化装置
EP1126138A1 (en) Particulate filter system for diesel engine
JP2006105078A (ja) 排気浄化装置
JP2009074438A (ja) 排気浄化装置
JP2017064604A (ja) 電気集じんフィルタユニット
JP6193734B2 (ja) 粒子荷電排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005785908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005785908

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005785908

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11662876

Country of ref document: US