WO2006038432A1 - アンテナ装置およびそのアンテナ装置を用いた無線端末 - Google Patents

アンテナ装置およびそのアンテナ装置を用いた無線端末 Download PDF

Info

Publication number
WO2006038432A1
WO2006038432A1 PCT/JP2005/016735 JP2005016735W WO2006038432A1 WO 2006038432 A1 WO2006038432 A1 WO 2006038432A1 JP 2005016735 W JP2005016735 W JP 2005016735W WO 2006038432 A1 WO2006038432 A1 WO 2006038432A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna device
antenna
radiating element
directivity
Prior art date
Application number
PCT/JP2005/016735
Other languages
English (en)
French (fr)
Inventor
Junji Sato
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006539202A priority Critical patent/JP4372156B2/ja
Priority to US11/574,894 priority patent/US7602340B2/en
Priority to EP05782387A priority patent/EP1814195A4/en
Publication of WO2006038432A1 publication Critical patent/WO2006038432A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/22Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
    • H01Q19/24Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element the primary active element being centre-fed and substantially straight, e.g. H-antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to an antenna device and a wireless terminal incorporating the antenna device,
  • the present invention relates to a wireless terminal having a built-in antenna device having a function of electrically changing directional characteristics.
  • the user uses the wireless terminal to press it against the user's ear.
  • the terminal is used by placing it on the side of the user's head.
  • data communication as shown in the example of the positional relationship between the wireless terminal and the user at the time of data communication shown in FIG.
  • the wireless terminal is used at a position away from the front of the user's head.
  • the directivity of the antenna device built in the wireless terminal is It is required to change to a suitable one according to each positional relationship. Specifically, this is shown in the example of radiation directivity of the antenna during voice call and data communication in Fig. 12.
  • the maximum radiation direction of the antenna is the back of the wireless terminal, and the wireless terminal is placed in front of the user's head, as during data communication.
  • the maximum radiation direction of the antenna It is required to configure a unidirectional antenna whose directivity can be switched so that is the zenith direction of the wireless terminal.
  • the antenna device built in the wireless terminal is unidirectional, and the maximum radiation direction of the antenna in each usage pattern during voice call and data communication is directed from the zenith direction to the back direction of the wireless terminal. Therefore, it is desirable to have a switchable configuration.
  • the SAR Specific Absorption Rate
  • the antenna gain can be improved because the radiation is suppressed and unidirectionality is achieved.
  • an antenna configuration capable of switching the antenna directivity for example, an antenna configuration has been proposed in which the length of a parasitic element is controlled using a control element and the directivity of the Yagi antenna is switched back and forth. (For example, see Patent Document 1).
  • FIG. 46 is a schematic configuration diagram of a conventional directivity switching antenna described in Patent Document 1.
  • 101 is a parasitic element
  • 102 is a feeding element
  • 103 is an auxiliary element
  • 104 is a control element.
  • the parasitic element 101 is arranged at a certain interval before and after the feeding element 102.
  • the parasitic element 101 is configured such that an auxiliary element 103 that is electrically insulated and added to the tip of the parasitic element 101 can be connected by the control element 104.
  • the control element 104 is composed of a diode switch or the like, and is attached so that one of the parasitic elements 101 and the auxiliary elements 103 at both ends thereof are electrically connected.
  • a Yagi antenna capable of reversing the directivity by 180 degrees can be configured by simple control of switching the polarity of the voltage applied to the parasitic element 101.
  • FIG. 47 is a schematic configuration diagram of a conventional directivity switching antenna described in Patent Document 2.
  • l l li plate, 112 radiating element, 113-116 rid parasitic element, and 117-120 are dielectric substrates.
  • a radiating element 1 12 acting as a radiator is arranged on a ground plane 111 realized by the dielectric substrates 117 to 120, and parasitic elements 113 to 116 acting as a reflector or a director are arranged on the dielectric substrate 117.
  • the dielectric substrates 117 to 120 are configured to stand vertically to the ground plane 111.
  • a switch circuit for switching between the force that causes the parasitic elements 113 to 116 to act as reflectors and whether to act as a waveguide is mounted, and one of the switch circuits is short-circuited.
  • the antenna can have directivity. For example, by selecting the switch circuit so that the parasitic element 113 is a director and the other parasitic elements 114 to 116 are reflectors, the antenna directivity can be directed toward the parasitic element 113. Similarly, the directivity can be switched in four directions by 90 degrees by short-circuiting one switch circuit of any of the parasitic elements 114 to 116.
  • FIG. 48 is a schematic configuration diagram of a conventional directivity switching antenna device described in Patent Document 3.
  • the directivity switching antenna device includes an antenna element 301, a matching circuit 302 for matching the antenna element 301 and the receiving circuit 303, and a received electric field strength comparator for comparing the strengths of signals sent from the receiving circuit 303.
  • control circuit 305 for turning on and off the high-frequency switch 308, earth metal conductors 306, 307, two high-frequency elements connected in series to the antenna element 301 and connected in series to the antenna element 301
  • the configuration includes the switch 308.
  • the electromagnetic wave received by the antenna element 301 is sent to the receiving circuit 303 through the matching circuit 302.
  • the control circuit 305 controls the high-frequency switch 308 to be repeatedly turned on and off at arbitrary time intervals.
  • the high-frequency switch 308 is turned on, as shown in FIG. 49 (a)
  • a force having a radiation directivity almost perpendicular to the antenna element 301 is shown.
  • the directivity characteristic has a radiation directivity of about -30 degrees compared to when the high-frequency switch 308 is on.
  • the length of the ground metal conductors 306 and 307 connected in series to the antenna element 301 is electrically changed by the high-frequency switch 308.
  • the antenna directivity characteristics can be obtained.
  • FIG. 50 is a schematic configuration diagram of a conventional directivity switching antenna described in Patent Document 4.
  • the directivity switching antennas are located on the left and right sides of the antenna 311, the antenna element 312, and the antenna element 312.
  • FIG. 51 is a characteristic diagram showing changes in antenna characteristics when the antenna reflectors 313 and 314 are switched. Switching between the antenna reflectors 313 and 314 is performed by grounding one of them.
  • the diversity function is realized by switching the directivity of the electromagnetic waves radiated from the antenna element 312 by the antenna reflectors 313 and 314 grounded through the impedance.
  • the antenna reflectors 313 and 314 are switched and the antenna reflector 314 is selected as the ground side, the directivity of the antenna element 312 interferes with the antenna reflector 314 as shown in FIG. Has directivity.
  • the antenna reflector 313 is selected, the directivity of the antenna element 312 interferes with the antenna reflector 313 and has directivity from the left as shown in FIG. 51 (b).
  • the directivity can be reduced by a simple method of controlling the ground impedance circuit connected to the antenna reflectors 313 and 314 and grounding one of the antenna reflectors.
  • the antenna element 312 can be switched 180 degrees to the left or right.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-69723
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-345633
  • Patent Document 3 JP-A-5-48506
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-292017
  • an antenna reflector can be formed in the antenna casing, so that it can be built into a wireless terminal, and the antenna element can be a dipole. It can be applied to antenna elements with balanced power supply systems, but because the directivity can only be switched 180 degrees in the left-right direction, it realizes the antenna device directivity suitable for wireless terminal usage during voice calls and data communications. There was a problem that we could not do it.
  • the present invention has been made in view of the above circumstances, and an antenna device and its antenna capable of switching to directivity characteristics suitable for use forms of a plurality of wireless terminals such as during voice call and data communication.
  • An object of the present invention is to provide a wireless terminal using the apparatus.
  • the antenna device of the present invention includes a linear radiating element disposed on a first surface, a first parasitic element disposed on the first plane in parallel with the radiating element, A first grounding conductor disposed on the first surface, a first switch connecting each of both ends of the first parasitic element and the first grounding conductor, and facing the first surface A second grounding conductor disposed on the second surface, wherein a part of the first grounding conductor is opposite to the first parasitic element with the radiating element in between. And the second grounding conductor is disposed so as to face the radiating element, and an end of the second ground conductor is disposed between the radiating element and the second radiating element. In the area sandwiched between the 1 parasitic elements It is for you.
  • the antenna device of the present invention includes a linear radiating element disposed on a first surface, and a linear first parasitic element disposed on the first surface in parallel with the radiating element.
  • An antenna device comprising: a first switch that connects both ends of an element and the auxiliary element; and a second grounding conductor that is disposed on a second surface opposite to the first surface, The first ground conductor is arranged in parallel to the radiating element on the opposite side of the first parasitic element across the radiating element, and the second ground conductor faces the radiating element. The end of the second ground conductor is located in a region sandwiched between the radiating element and the first parasitic element. Those that direction.
  • the antenna device includes an antenna device in which the first ground conductor is a linear conductor longer than the radiating element.
  • the antenna device of the present invention includes a linear radiating element disposed on a first surface and a linear first parasitic element disposed on the first surface in parallel with the radiating element.
  • a linear second parasitic element disposed in parallel with the radiating element on the first surface opposite to the first parasitic element across the radiating element; and
  • a linear auxiliary element disposed on both sides on the extension line in the longitudinal direction of the second parasitic element, both ends of the first and second parasitic elements, and the first and second parasitic elements
  • the second ground conductor is disposed so as to face the radiating element, and one end of the second ground conductor is disposed on the antenna device. An element and a region sandwiched between the first parasitic element, and another end of the second grounding conductor faces a region sandwiched between the radiating element and the second parasitic element. Is.
  • the antenna device of the present invention has the radiating element, the first and second parasitic elements, the first grounding conductor, and the first and second switches arranged on one surface. Including a first substrate on the surface of which the second ground conductor is disposed.
  • the antenna device of the present invention includes an antenna device provided with a control means for controlling a short circuit Z opening of the switch.
  • the maximum radiation direction of the antenna can be switched to a desired direction according to the usage pattern.
  • the parasitic element operates as a ground conductor when the switch is short-circuited so that the radiating element is covered with the ground conductor.
  • the switch is open, the parasitic element is disconnected from the ground conductor force.
  • opening Z the antenna directivity can be switched to the desired direction.
  • the parasitic element is configured to be a waveguide for the radiating element when the switch is opened! / Including stuff.
  • the Yagi antenna configuration can be configured with the radiating element and the parasitic element in the open state of the switch.
  • the directivity can be switched about 90 degrees.
  • the parasitic element and the auxiliary element may be configured so as to be a reflector for the radiating element when the switch is short-circuited.
  • the parasitic element includes one in which reactance is variable.
  • the parasitic element includes an element configured by a switch connecting a plurality of conductor pieces.
  • the parasitic element includes one having a variable capacitance element.
  • the antenna device of the present invention includes an antenna device in which the substrate is made of a dielectric material.
  • the electrical length of the radiating element can be shortened by the wavelength shortening effect due to the dielectric constant of the dielectric substrate, so that the antenna can be downsized.
  • the antenna device of the present invention includes an antenna device in which the substrate is made of a foam material.
  • the directivity switching antenna can be manufactured at a very low cost by manufacturing the radiating element, the parasitic element, and the like so as to be capable of sheet metal and fixing them on the foam material.
  • the radiating element may include a folded structure folded in a horizontal direction with respect to the first substrate.
  • the input impedance of the radiating element can be increased. Therefore, even when the ground conductor is disposed in the vicinity of the radiating element and the input impedance is low, It is possible to make it easy to match.
  • the antenna device of the present invention includes the radiating element formed of a conductor pattern on the first substrate.
  • the radiating element can be manufactured integrally with the substrate, it can be manufactured at low cost, and the characteristics can be further stabilized.
  • the second ground conductor includes a conductor pattern formed on the first substrate.
  • the second ground conductor can be manufactured integrally with the substrate, the tip of the second ground conductor can be accurately arranged, and the characteristics can be stabilized. I can do it.
  • the radiating element and the second ground conductor are such that a distance between the radiating element and the second ground conductor is larger than a thickness of the first substrate. Includes deployed ones.
  • the radiating element is perpendicular to the substrate.
  • a dipole configuration having a folded structure, wherein the lower conductor is disposed on the first substrate, and the folded portions are disposed perpendicularly to the first substrate from both ends of the lower conductor. And an upper conductor arranged so as to connect between the end portions of the folded portion.
  • the radiating elements can be arranged so as to be folded in three dimensions, the degree of freedom in designing the antenna is increased, and the mounting area of the antenna can be reduced.
  • the antenna device of the present invention includes a second substrate above the first substrate, the lower conductor is provided narrowly between the first and second substrates, and the folded portion is The second conductor is disposed through the second substrate, and the upper conductor includes one disposed on the second substrate.
  • the radiating element having the folded structure can be formed by multilayering the substrate, it can be manufactured at low cost and the characteristics can be further stabilized.
  • the antenna device of the present invention includes a dielectric block on an upper portion of the first substrate, and the lower conductor, the folded portion, and the upper conductor are on the surface of the dielectric block and on the Z or inside. Including those placed in
  • the parasitic element, the switch, and a part of the first ground conductor are arranged on the surface and / or Z of the dielectric block.
  • the radiating element and the Z or parasitic element can be arranged in a three-dimensionally folded manner in a dielectric block made of a high dielectric constant material, the degree of freedom in designing the antenna is increased, and the antenna The mounting area can be made very small, and a dielectric antenna having a directivity switching function can be manufactured.
  • the radiating element includes a linear dipole.
  • the radiating element can be manufactured very easily, and the Yagi antenna configuration can be combined with the parasitic element, so that 90 degree switching of directivity can be realized. .
  • the radiating element is a meander line-shaped dipole. Including some.
  • the radiating element can be very downsized.
  • the first and second switches include a diode switch.
  • the first and second switches include an FET switch.
  • the first and second switches include those configured by MEMS switches.
  • the switch can be realized with a very simple configuration, and the switch can be miniaturized by using MEMS technology, so that the antenna itself can be downsized. Monkey.
  • the antenna device includes a linear radiating element disposed on a first surface, a ground conductor disposed on a second surface opposite to the first surface, and a parallel to the radiating element.
  • the antenna device includes: a first conductor disposed on the second plane so as to be electrically insulated from the ground conductor; and a first switch that connects the ground conductor and the conductor. Then, one of the ground conductor and the conductor is disposed to face the radiating element.
  • the antenna device of the present invention connects the first conductor and the second conductor disposed at positions symmetrical to the ground conductor, and the ground conductor and the second conductor.
  • An antenna device further comprising a second switch, wherein the grounding conductor is disposed to face the radiating element.
  • the antenna device of the present invention includes an antenna device including a first substrate on which the first plane and the second plane are arranged.
  • the antenna device of the present invention includes an antenna device in which the ground conductor is disposed to face the radiating element.
  • the conductor includes a conductor that serves as a director for the radiating element.
  • the antenna device of the present invention includes an antenna device in which the conductor is disposed to face the radiating element.
  • the conductor includes a conductor that is longer than the radiating element.
  • the maximum radiation direction of the antenna can be switched 90 degrees to a desired direction according to the usage pattern. It was impossible to do so, and it was suitable as an antenna configuration in a wireless terminal. According to these configurations, when the switch is short-circuited, the first metal conductor operates as a ground conductor, and when the switch is open, the first metal conductor is disconnected from the ground conductor force. Therefore, the antenna directivity is desired by opening the switch short-circuit Z. The direction can be switched.
  • the conductor includes a conductor whose reactance is variable.
  • the conductor includes one having a variable capacitance element.
  • the conductor includes a plurality of conductor pieces divided in the length direction of the conductor, and a third switch that connects the plurality of conductor pieces. Including those that are.
  • the conductor includes a plurality of conductor pieces divided in the width direction of the conductor and a third switch connecting the plurality of conductor pieces. Includes what is being done.
  • the antenna directivity when the switch is opened can be adjusted.
  • the antenna device of the present invention includes one in which the first substrate is made of a dielectric material.
  • the electrical length of the radiating element can be shortened by the wavelength shortening effect due to the dielectric constant of the dielectric substrate, so that the antenna can be downsized.
  • the antenna device of the present invention includes one in which the first substrate is made of a foam material.
  • the directivity switching antenna can be manufactured at a very low cost by manufacturing the radiating element, the first metal conductor, and the like so as to be capable of sheet metal and fixing them on the foamed material.
  • the antenna device of the present invention includes an antenna device in which the first switch includes a plurality of switches that connect the ground conductor and the first metal conductor at a plurality of locations.
  • the plurality of third switches are arranged symmetrically with respect to a plane perpendicular to the radiating element including a power supply point of the radiating element! including
  • the third switch is disposed asymmetrically with respect to a plane perpendicular to the radiating element including a feeding point of the radiating element! Including swear.
  • the third switch connects the ground conductor and the first metal conductor at a position facing the vicinity of the maximum voltage position on the radiating element. Including things.
  • the directivity can be switched by using the minimum necessary switches that do not require the entire connection between the ground conductor and the first metal conductor.
  • the directivity can be switched in three dimensions.
  • the antenna device includes an antenna device in which the radiating element is formed by a conductor pattern on the first substrate.
  • the radiating element can be manufactured integrally with the substrate, it can be manufactured at low cost, and the characteristics can be stabilized.
  • the antenna device includes an antenna device in which the ground conductor is formed by a conductor pattern on the first substrate.
  • the ground conductor can be manufactured integrally with the substrate, the tip of the ground conductor can be accurately arranged, and the characteristics can be stabilized.
  • the radiation element and the ground conductor are arranged such that a distance between the radiation element and the second ground conductor is larger than a thickness of the first substrate.
  • the antenna device of the present invention includes an antenna device in which the radiating element has a folded structure folded in a horizontal direction with respect to the first substrate.
  • the input impedance of the radiating element can be increased. Therefore, even when the ground conductor is disposed in the vicinity of the radiating element and the input impedance is low, It is possible to make it easy to match.
  • the radiating element has a dipole configuration having a folded structure in a direction perpendicular to the substrate, and a lower conductor disposed on the first substrate; A folded portion disposed in a direction perpendicular to the first substrate from each of both ends of the lower conductor, and an upper conductor disposed so as to connect between the ends of the folded portion.
  • the radiating elements can be arranged so as to be folded in three dimensions, the degree of freedom in designing the antenna is increased and the mounting area of the antenna can be reduced.
  • the antenna device of the present invention includes a second substrate above the first substrate, the lower conductor is narrowly provided between the first and second substrates, and the folded portion is The second conductor is disposed through the second substrate, and the upper conductor includes one disposed on the second substrate.
  • the radiating element having the folded structure can be formed by multilayering the substrate, it can be manufactured at low cost and the characteristics can be further stabilized.
  • the antenna device of the present invention includes a dielectric block on an upper portion of the first substrate, and the lower conductor, the folded portion, and the upper conductor are on the surface of the dielectric block and at Z or inside. Including those placed in
  • the radiating element and the Z or parasitic element can be arranged in a three-dimensionally folded manner in the dielectric block of the high dielectric constant material, the degree of freedom in designing the antenna is increased and the antenna The mounting area can be greatly reduced.
  • the antenna device of the present invention includes an antenna device in which the radiating element is configured by a linear dipole. [0107] According to this configuration, the radiating element can be manufactured very easily.
  • the antenna device of the present invention includes an antenna device in which the radiating element is formed of a meander-line dipole.
  • the radiating element can be very downsized.
  • the antenna device of the present invention includes an antenna device constituted by the first and second switch force diode switches.
  • the antenna device of the present invention includes an antenna device in which the first and second switches are configured with FET switches.
  • the antenna device of the present invention includes an antenna device in which the first and second switches are configured with MEMS switches.
  • the switch can be realized with a very simple configuration, and the switch can be miniaturized by using MEMS technology, so the antenna itself can be downsized. Monkey.
  • the wireless terminal of the present invention controls the antenna device of the present invention, a transmission / reception unit that transmits and receives radio waves by the antenna device, an antenna directivity switching unit that switches the directivity of the antenna device, and each unit.
  • a radio terminal comprising the control unit, wherein the control unit causes the antenna directivity switching unit to switch the directivity of the antenna device, causes the transmission / reception unit to receive radio waves, and detects the detected radio waves.
  • the antenna directivity switching unit and the transmission / reception unit are controlled to transmit / receive by the antenna device in the directivity state determined to have better reception sensitivity based on the strength.
  • control unit controls the antenna device to receive diversity reception in the reception state and to transmit the antenna device power in the directivity state used in the reception state in the transmission state. Including what to do.
  • the control unit causes the antenna device to receive diversity reception in a reception state, and the maximum radiation direction of the antenna device in the transmission state It includes control for transmitting the antenna device force in a directivity state opposite to the direction from the line terminal toward the wireless terminal user.
  • the antenna directivity can be switched to the back direction Z zenith direction by short-circuiting the switch Z, so that the voice communication and data communication can be performed. Even when the usage pattern of the wireless terminal is different as at times, it is possible to perform high-quality communication by changing the antenna directivity suitable for the usage pattern.
  • FIG. 1 is a schematic configuration diagram of a directivity switching antenna according to a first embodiment of the present invention.
  • FIG. 2 Principle of directivity switching operation of the directivity switching antenna according to the first embodiment of the present invention.
  • FIG. 4 (a) Cross-sectional configuration diagram when G ⁇ 0 in the directivity switching antenna according to the first embodiment of the present invention. (B) G in the directivity switching antenna according to the first embodiment of the present invention. Directivity during switch short-circuit when ⁇ 0
  • FIG. 9 Maximum radiation direction switching angle at switch switching when 0 ⁇ G ⁇ D in the directivity switching antenna according to the first embodiment of the present invention.
  • ⁇ 10 Diagram showing an example of the positional relationship between a wireless terminal and a user during a voice call
  • FIG. 11 A diagram showing an example of the positional relationship between a wireless terminal and a user during data communication.
  • ⁇ 12 A diagram showing an example of the radiation directivity of the antenna during voice communication and data communication.
  • ⁇ 16 A diagram showing the relationship between the switch switching operation and the antenna directivity according to the third embodiment of the present invention.
  • FIG. 18 is a diagram showing a configuration example of a radiating element having a folded structure on the XY plane according to a fourth embodiment of the present invention.
  • FIG. 19 is a diagram showing a configuration example of a radiating element having a folded structure on a YZ plane according to a fourth embodiment of the present invention.
  • ⁇ 20 Schematic configuration diagram of a directivity switching antenna using a radiating element having a folded structure according to a fourth embodiment of the present invention
  • ⁇ 21 Schematic configuration diagram of a directivity switching antenna using a multilayer dielectric substrate according to a fourth embodiment of the present invention
  • ⁇ 23 Schematic configuration diagram of a wireless terminal according to the fifth embodiment of the present invention
  • ⁇ 24 Schematic configuration diagram of a directivity switching antenna according to a sixth embodiment of the present invention
  • ⁇ 28 Diagram showing an example of the configuration of the directivity switching antenna according to the sixth embodiment of the present invention.
  • ⁇ 29] (a) Directivity at the time of switch switching in the directivity switching antenna according to the sixth embodiment of the present invention ( b) Diagram showing an example of directivity when the length of the first metal conductor is changed in the directivity switching antenna according to the sixth embodiment of the present invention.
  • ⁇ 30 A diagram showing an example of the positional relationship between a wireless terminal and a user during a voice call
  • FIG. 31 is a diagram showing an example of the positional relationship between a wireless terminal and a user during data communication
  • FIG. 32 is a diagram showing an example of radiation directivity of the antenna during data communication and voice call.
  • ⁇ 33 Diagram showing an example of the configuration of the directivity switching antenna according to the sixth embodiment of the present invention.
  • ⁇ 34 Schematic configuration diagram of the directivity switching antenna according to the seventh embodiment of the present invention.
  • FIG. 40 A diagram showing a configuration example of a radiating element having a folded structure on the XY plane in a directivity switching antenna according to a ninth embodiment of the present invention.
  • FIG. 42 is a schematic configuration diagram of a directivity switching antenna using a radiating element having a folded structure on the YZ plane in a directivity switching antenna according to a ninth embodiment of the present invention.
  • FIG. 43 is a schematic configuration diagram of a directivity switching antenna using a multilayer dielectric substrate according to a ninth embodiment of the present invention.
  • FIG. 44 is a schematic configuration diagram of a directivity switching antenna using a dielectric block according to a ninth embodiment of the invention.
  • FIG. 45 is a schematic configuration diagram of a radio terminal according to a tenth embodiment of the present invention.
  • FIG. 46 is a schematic configuration diagram of a conventional directivity switching antenna disclosed in Patent Document 1.
  • FIG. 48 is a schematic configuration diagram of a conventional directivity switching antenna disclosed in Patent Document 3.
  • FIG. 49 Directivity of conventional directivity switching antenna of Patent Document 3
  • FIG. 50 is a schematic configuration diagram of a conventional directivity switching antenna disclosed in Patent Document 4.
  • Ground conductor 206 First metal conductor
  • FIG. 1 is a schematic configuration diagram of a directivity switching antenna device according to a first embodiment of the present invention, in which FIG. 1 (a) is a perspective view and FIG. 1 (b) is an AA view of FIG. 1 (a).
  • FIG. 1 is a schematic configuration diagram of a directivity switching antenna device according to a first embodiment of the present invention, in which FIG. 1 (a) is a perspective view and FIG. 1 (b) is an AA view of FIG. 1 (a).
  • FIG. 1 is a schematic configuration diagram of a directivity switching antenna device according to a first embodiment of the present invention, in which FIG. 1 (a) is a perspective view and FIG. 1 (b) is an AA view of FIG. 1 (a).
  • FIG. 1 is a schematic configuration diagram of a directivity switching antenna device according to a first embodiment of the present invention, in which FIG. 1 (a) is a perspective view and FIG. 1 (b) is an AA view of FIG. 1 (a).
  • the directivity switching antenna device 1 includes a dielectric substrate 2 having a thickness t, a radiation element 3 having a length L made of a linear conductor disposed on the dielectric substrate 2, a feeding point 4, a dielectric substrate.
  • the first grounding conductor 5 disposed on the same plane as the radiating element 3 on 2 and the length substantially parallel to the radiating element 3 disposed on the same plane as the radiating element 3 on the dielectric substrate.
  • Ld ( ⁇ L) parasitic element 6, switch 7 disposed between first ground conductor 5 and parasitic element 6, and surface on dielectric substrate 2 opposite to radiating element 3
  • the second grounding conductor 8 is disposed at the front end, the leading end 9 of the second grounding conductor 8, and the control circuit 10 for controlling the short-circuiting and opening of the switch 7.
  • the radiating element 3, the first ground conductor 5, the parasitic element 6, and the second ground conductor 8 are all formed on the dielectric substrate 2 by a conductor pattern.
  • FIG. 2 shows the principle of the direction switching operation of the present invention. If there is no ground conductor around the radiating element 3 as shown in Fig. 2 (a) (1), the antenna directivity is not present in the XZ plane as shown in Fig. 2 (b) (1). It becomes directivity.
  • the first ground conductor 5 and the parasitic element 6 are arranged on the same plane as the radiating element 3, and the switch 7 is short-circuited by a control signal from the control circuit 10 to
  • the parasitic element 6 is set in a conductive state, that is, in a state where the periphery of the radiating element 3 is covered with a ground conductor as shown in (2) of Fig. 2 (a)
  • the antenna directivity is as shown in Fig. 2 (b
  • the directivity has the maximum radiation direction in the Z direction.
  • the state in which the switch 7 is opened by the control signal from the control circuit 10 that is, a part of the periphery of the radiating element 3 is disconnected from the ground conductor as shown in FIG.
  • the antenna directivity is unidirectional with the maximum radiation direction in the + X direction, as shown in (3) in Fig. 2 (b). That is, the antenna directivity can be switched by about 90 degrees by short-circuiting or opening the switch 7.
  • the switch 7 is short-circuited, and thus becomes bidirectional with the maximum radiation direction in the Z direction. If only the conductor pattern (2) is mounted on the dielectric substrate 2 of the wireless terminal, a radiated electromagnetic field is also generated in the human body direction in the Z direction (opposite to the back direction), leading to SAR degradation. . Therefore, as shown in Fig. 1, by providing a second ground conductor 8 on the surface opposite to the radiating element 3 on the dielectric substrate 2, the switch 7 is short-circuited, and the human body direction in the Z direction is The radiated electromagnetic field can be cut off, and the unidirectionality in the + Z direction can be realized.
  • the placement position force of the second ground conductor 8 will be described in detail with respect to the effect on the antenna directivity switching.
  • the gap G takes a negative value as shown in the cross-sectional configuration diagram when G ⁇ 0 in the directivity switching antenna apparatus according to the first embodiment of the present invention shown in Fig. 4 (a).
  • the electromagnetic wave is also radiated strongly in the Z direction when the switch 7 is short-circuited.
  • Fig. 4 (b) shows the directivity when the switch is short-circuited when G ⁇ 0 in the directivity switching antenna device according to the first embodiment of the present invention, and the gap G is -2mm, -lmm
  • FIG. 6 is a diagram showing directivity when a switch 7 is short-circuited at Omm. From Fig.
  • the desired directivity switching operation can be realized by switching the switch 7.
  • the distance D between the radiating element 3 and the parasitic element 6 is preferably about 0.25 ⁇ , but if the distance D is increased, the antenna size is increased. Therefore, the directivity can be switched without separating the distance D by about 0.25 ⁇ as in the present embodiment.
  • the parasitic element 6 is adjusted in length so that the switch 7 acts as a director when the switch 7 is open. For example, by setting the length of the parasitic element 6 to be variable, Adjust the reactance component of the director to change the directivity. It is also possible to make it variable.
  • the parasitic element 6 is divided into a plurality of conductor pieces, a switch 7 is arranged between them, and the length is changed by short-circuiting Z opening of the switch 7.
  • a variable capacitance element such as a varactor diode may be added to the parasitic element 6 to electrically adjust the length according to the control voltage.
  • Figures other than G in Figures 6 to 8 are the same as those used in Figure 5 (a). From Fig. 6 (b), Fig. 7 (b) and Fig. 8 (b), it can be confirmed that the directivity is switched by about 90 degrees by the switching operation of switch 7.
  • the horizontal axis shows the GZD ratio
  • the vertical axis shows the directivity switching angle that represents the switching angle of the maximum radiation direction when switching.
  • the GZD is between 0 and 1
  • the directivity switching angle is around 90 degrees. It can be switched.
  • GZD approaches 1
  • the antenna directivity is not switched even if switch 7 is switched. This indicates that the parasitic element 6 does not operate as a director as the second ground conductor 8 is arranged closer to the lower part of the parasitic element 6.
  • the directivity switching angle is a force that is close to 90 degrees.
  • the electromagnetic field is also radiated in the Z direction.
  • —DZ4 ⁇ G ⁇ It shows that directivity can be switched by setting within the range of D.
  • Fig. 10 shows an example of the positional relationship between the wireless terminal and the user during a voice call
  • Fig. 11 shows an example of the positional relationship between the wireless terminal and the user during data communication.
  • the positional relationship shown in FIG. 10 is assumed between the user 11 and the wireless terminal 12, and when performing data communication, between the user 11 and the wireless terminal 12 is assumed.
  • the positional relationship shown in Fig. 11 is assumed.
  • the antenna device provided in the wireless terminal 12 has a maximum radiation direction of the antenna directivity in the back direction of the wireless terminal 12 (display surface of the display unit 13).
  • the maximum radiation direction of the antenna directivity becomes the zenith direction of the wireless terminal 12 (horizontal with respect to the display surface of the display unit 13 and upward with respect to the display content) during data communication. Desirable to be switched,
  • the radio terminal 12 Since the radio terminal 12 has such a directivity switching function, the radiated electromagnetic field of the antenna force is not directed toward the user 11, which leads to an improvement in SAR and an increase in antenna gain. I can expect. Therefore, by arranging the directivity switching antenna device 1 in the wireless terminal 12 so that the zenith direction in FIG. 12 corresponds to the X direction and the back direction corresponds to the Z direction, the desired direction can be obtained during voice communication and data communication, respectively. It becomes possible to obtain directivity.
  • the first ground conductor 5 and the parasitic element 6 are arranged around the same plane as the radiating element 3 arranged on the dielectric substrate 2, and the first ground conductor 5 A switch 7 is disposed between the feed element 6, and a second ground conductor is provided below the radiating element 3 with the dielectric substrate 2 interposed therebetween.
  • the tip 9 of the second ground conductor 8 is disposed so as to be between the radiating element 3 and the parasitic element 6, and the switch 7 is switched by using the control circuit 10. Since the antenna directivity can be switched by about 90 degrees, an antenna device that can switch the directivity according to the usage state of the wireless terminal can be realized.
  • the antenna directivity is switched according to the usage form of the wireless terminal, and the performance as the wireless terminal is improved. This makes it possible to provide a highly reliable wireless communication system.
  • the radiating element 3 is described as being formed on the dielectric substrate 2 by a conductor pattern.
  • the radiating element 3 may be configured by a linear conductor such as a wire or sheet metal processing. good.
  • the radiating element 3 can be described as a linear dipole configuration.
  • the radiating element 3 may be configured in a meander line shape.
  • the radiating element 3, the first ground conductor 5, the parasitic element 6, and the second ground conductor 8 are formed on the dielectric substrate 2.
  • the dielectric substrate Is not necessarily used.
  • the radiating element 3, the parasitic element 6, the ground conductors 5, 8 and the like may be manufactured by sheet metal processing, and each constituent element may be fixed to the foam material using a foam material or the like.
  • the second ground conductor 8 is formed by a conductor pattern on the dielectric substrate 2 and on the surface opposite to the radiating element 3, but for example, on the dielectric substrate 2.
  • the second ground conductor may be disposed on the casing of the wireless terminal 12 that is separated from the dielectric substrate 2 by a certain distance.
  • the configuration of the switch 7 is not particularly mentioned, but a diode switch, a FET switch, a MEMS switch, or the like can be used.
  • FIG. 13 is a schematic configuration diagram of a directivity switching antenna device according to the second embodiment of the present invention, in which FIG. 13 (a) is a perspective view, and FIG. 13 (b) is an AA ′ line in FIG. 13 (a).
  • FIG. Figure 1 3 the auxiliary element 15 is included. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the auxiliary element 15 is arranged at both ends of the parasitic element 6 and the switch 7 is arranged between the parasitic element 6 and the auxiliary element 15.
  • the configuration is as follows.
  • the length of the auxiliary element 15 is set such that when the switch 7 is short-circuited, the total length of the parasitic element 6 and the auxiliary element 15 acts on the radiating element 3 as a reflector.
  • the auxiliary element 15 is provided at both ends of the parasitic element 6, the switch 7 is switched using the control circuit 10, and the parasitic element 6 is switched between the director and the reflector. Since the directivity of na can be switched by approximately 90 degrees, an antenna device that can switch the directivity depending on the usage pattern can be realized.
  • the wireless terminal by configuring the wireless terminal using the directivity switching antenna apparatus shown in the present embodiment, it is possible to improve the performance as a wireless terminal by switching the antenna directivity according to the usage pattern. It is possible to provide a highly reliable wireless communication system.
  • the force described as the radiation element 3 being formed on the dielectric substrate 2 by the conductor pattern is not limited to that. It may be configured.
  • the radiating element 3 can be described as a linear dipole configuration.
  • the radiating element 3 may be configured in a meander line shape.
  • the first ground conductor 5 has been described as being arranged in the X direction of the radiating element 3, but instead of the first ground conductor 5, as shown in FIG. The same effect can be obtained by using the reflector 16.
  • the radiation element 3, the first ground conductor 5, the parasitic element 6, the second ground conductor 8, and the auxiliary element 15 are formed on the dielectric substrate 2. Requires a dielectric substrate There is no need to use it.
  • the radiating element 3, the parasitic element 6, the grounding conductors 5 and 8, the auxiliary element 15 and the like may be manufactured by sheet metal processing, and each component may be fixed to the foam material using a foam material or the like.
  • the second ground conductor 8 is formed on the dielectric substrate 2 on the surface opposite to the radiating element 3 by a conductor pattern.
  • the second ground conductor may be disposed on the casing of the wireless terminal 12 that is separated from the dielectric substrate 2 by a certain distance.
  • the configuration of the switch 7 is not particularly mentioned, but a diode switch, a FET switch, a MEMS switch, or the like can be used.
  • FIG. 15 is a schematic configuration diagram of a directivity switching antenna device according to the third embodiment of the present invention, in which FIG. 15 (a) is a perspective view, and FIG. 15 (b) is an AA ′ line in FIG. 15 (a).
  • the directivity switching antenna device 1 includes an auxiliary element 15, a parasitic element 17, a switch 18, and a tip 19 on the parasitic element 17 side of the second ground conductor 8. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the operation of the directivity switching antenna apparatus 1 according to the third embodiment of the present invention will be described.
  • the basic operation is the same as described in the first embodiment, it is omitted, but the auxiliary element 15 is arranged at both ends of the parasitic element 6 and the switch 7 is arranged between the parasitic element 6 and the auxiliary element 15.
  • the configuration is as follows.
  • the length of auxiliary element 15 is set such that when switch 7 is short-circuited, the combined length of parasitic element 6 and auxiliary element 15 acts as a reflector for radiating element 3. To do.
  • a parasitic element 17 having the same length as the parasitic element 6 is provided, auxiliary elements 15 are arranged at both ends thereof, and the switch 18 is supplemented with the parasitic element 17 and auxiliary elements 17.
  • the configuration is arranged between the elements 15. Further, the distance between the radiating element 3 and the parasitic element 17 is made equal to the distance D between the radiating element 3 and the parasitic element 6, and the parasitic element 17 side tip 19 of the second ground conductor 8 and the radiating element 3
  • the gap G in the + X-axis direction is also made equal to the gap G in the + X-axis direction of the parasitic element 6 side tip 9 of the second ground conductor 8 and the radiating element 3. That is,
  • the YZ plane including the projecting element 3 is arranged so as to have a symmetrical structure.
  • Figure 16 shows the relationship between the short circuit ⁇ opening operation of switches 7 and 18 and the antenna directivity.
  • the auxiliary elements 15 are provided at both ends of the parasitic elements 6 and 17, and the parasitic elements 6 and 17 are reflected from the waveguide by the switching operation of the switches 7 and 18 using the control circuit 10. Since the antenna directivity can be switched by 90 degrees in ⁇ ⁇ and + ⁇ directions by controlling the device so that the antenna can be switched, the radiation direction can be changed to the user depending on how the wireless terminal is used. Even if the wireless terminal is arranged to be omnidirectional, it is possible to realize an antenna device that switches the directivity by selecting the ⁇ ⁇ direction opposite to the direction of the user. Have.
  • the wireless terminal using the directivity switching antenna device shown in the present embodiment, it is possible to improve the performance as a wireless terminal by switching the antenna directivity according to the usage pattern. It is possible to provide a highly reliable wireless communication system.
  • the force described as the radiation element 3 being formed on the dielectric substrate 2 by the conductor pattern is not limited to that.
  • the radiation element 3 is formed by a linear conductor such as a wire or by sheet metal processing. It may be configured.
  • the radiating element 3 can be described as a linear dipole configuration.
  • the radiating element 3 may be configured in a meander line shape.
  • the radiating element 3, the parasitic elements 6, 17, the second grounding conductor 8, and the auxiliary element 15 are formed on the dielectric substrate 2. It is not always necessary to use it.
  • the radiating element 3, the parasitic elements 6, 17, the ground conductor 8, the auxiliary element 19 and the like may be manufactured by sheet metal processing, and each component may be fixed to the foam material using a foam material.
  • the second ground conductor 8 is formed on the dielectric substrate 2 and on the surface opposite to the radiating element 3 with a conductor pattern. Then, the second ground conductor may be arranged on the casing of the wireless terminal 12 which is a certain distance from the dielectric substrate 2. With such a configuration, there is an advantage that the space between the radiating element 3 and the second ground conductor 8 can be widened, and the antennas can be easily matched.
  • the configuration of the switch 7 is not particularly mentioned, but a diode switch, a FET switch, a MEMS switch, or the like can be used.
  • FIG. 17 is a schematic configuration diagram of a directivity switching antenna device according to the fourth embodiment of the present invention.
  • FIG. 17 (a) is a perspective view
  • FIG. 17 (b) is an AA ′ diagram in FIG. 17 (a).
  • FIG. 17 the directivity switching antenna apparatus 1 includes a radiating element 20 having a folded structure. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the input impedance of the radiating element 3 becomes extremely small as compared with the state without the ground conductor 8.
  • the input impedance of the radiating element can be increased.
  • the input impedance of the double folded dipole in Fig. 18 (b) is four times the input impedance of the general dipole antenna shown in Fig. 18 (a), and the triple folded as shown in Fig. 18 (c).
  • the input impedance of a dipole is 8 times the input impedance of a general dipole antenna. Therefore, by using a radiating element 20 having a folded structure as shown in FIG. The impedance can be increased, making it easier to match with 50 ⁇ microstrip lines and coaxial lines.
  • the radiating element 20 has a folded structure, and the switch 7 is switched using the control circuit 10, thereby increasing the input impedance of the antenna while switching the antenna directivity by about 90 degrees. Matching can be facilitated, and an antenna device that switches directivity according to the usage form of the wireless terminal can be realized.
  • the wireless terminal using the directivity switching antenna device shown in the present embodiment, it is possible to improve the performance as a wireless terminal by switching the antenna directivity according to the usage pattern. It is possible to provide a highly reliable wireless communication system.
  • the radiating element 20 is formed on the dielectric substrate 2 by a conductor pattern.
  • the radiating element 3 is formed by a linear conductor such as a wire, or by sheet metal processing. Also good.
  • the radiating element 3 can be described as a linear dipole configuration.
  • the radiating element 3 may be configured as a meander line.
  • the radiating element 20, the first grounding conductor 5, the non-feeding element 6, and the second grounding conductor 8 are formed on the dielectric substrate 2, but the dielectric substrate Is not necessarily used.
  • the radiating element 20, the parasitic element 6, the ground conductors 5, 8 and the like may be manufactured by sheet metal processing, and each component may be fixed to the foam material using a foam material.
  • the second ground conductor 8 is formed on the dielectric substrate 2 on the surface opposite to the radiating element 20 by a conductor pattern.
  • the second ground conductor may be disposed on the casing of the wireless terminal 12 that is spaced a certain distance from the dielectric substrate 2.
  • the force that makes the radiating elements 3 and 20 have a two-dimensional structure on the XY plane is not limited to this.
  • the ends of the radiating elements 3 and 20 A configuration in which the part is folded may be used. With such a folded configuration, the antenna length can be shortened and the antenna can be miniaturized.
  • a method for manufacturing an antenna folded on the YZ plane as shown in Figs. 19 (a) and 19 (b) will be described. The simplest way to manufacture is by sheet metal processing as shown in Fig. 20.
  • the lower conductor 21, the folded portion 22, and the upper conductor 23 constituting the radiating element may all be manufactured integrally by sheet metal processing, or the lower conductor 21 may be formed on the dielectric substrate 2 by a conductor pattern. In addition, only the folded portion 22 and the upper conductor 23 may be manufactured by sheet metal processing.
  • a dielectric substrate 24 is newly provided on the dielectric substrate 2, and the lower conductor 21 is a conductor pattern in a planar shape sandwiched between the dielectric substrates 2 and 24.
  • the upper conductor 23 is formed on the dielectric substrate 24 with a conductor pattern on the surface opposite to the dielectric substrate 2, and the folded portion 22 is formed by a through hole or the like penetrating the dielectric substrate 24.
  • the lower conductor 21 and the upper conductor 23 may be electrically connected.
  • a directivity switching antenna device can be manufactured using a multilayer substrate. Further, as shown in FIG. 22, the lower conductor 21, the folded portion 22, and the upper conductor 23 may each be formed on a dielectric block 25 made of a high dielectric material such as ceramic. . With such a configuration, the antenna device can be very downsized. Furthermore, by forming the parasitic element 6 and the grounding conductor 5 on the dielectric block 25 in a pattern, a dielectric antenna having a directivity switching function can be manufactured.
  • FIG. 23 shows a schematic configuration diagram of a radio terminal according to the embodiment of the present invention.
  • the wireless terminal 12 includes a transmission / reception unit 26, a control unit 27, and an antenna directivity switching unit 28 set in a frequency band for performing data communication and voice call.
  • the operation of the wireless terminal according to the embodiment of the present invention will be described.
  • a multipath environment will occur due to obstacles such as walls.
  • multipath environment can be supported by diversity reception.
  • General diversity reception is configured by arranging multiple antennas spatially apart from each other.
  • antenna mounting is performed.
  • the antenna switch mounting area is also required because it uses an antenna switch for selecting multiple antennas to be connected by force.
  • the wireless terminal 12 includes a directivity switching antenna 1, a transmission / reception unit 26, a control unit 27, and an antenna directivity switching unit 28.
  • the control unit 27 monitors the received power in each case where the directivity of the directivity switching antenna 1 is switched, and sends the control signal 29 to the antenna directivity so that the antenna directivity with higher received power is obtained. Sent to switching unit 28.
  • the antenna directivity switching unit 28 determines which directivity is good based on the control signal 29 from the control unit 27, and the directivity is set so that the directivity has better reception sensitivity.
  • a control signal 30 is transmitted so as to switch the directivity of the switching antenna 1.
  • the directivity switching antenna 1 is switched by the control signal 30 so as to have a desired directivity.
  • the signal transmitted from the control unit 27 is modulated and frequency-converted by the transmission / reception unit 26 and transmitted from the directivity switching antenna 1.
  • the directivity selected at the time of reception is used as the directivity of the directivity switching antenna 1.
  • a radio terminal is configured using the directivity switching antenna 1, the transmission / reception unit 26, the control unit 27, and the antenna directivity switching unit 28, so that diversity reception can be performed with one antenna. Therefore, it has an effect that a small and high-performance wireless terminal can be realized.
  • the directivity switching antenna 1 is used at the same directivity as that at the time of reception in transmission, but diversity reception is performed using the directivity switching antenna 1 at the time of reception other than that.
  • the radiated electromagnetic field from the directivity switching antenna may be set so as not to face the direction of the user 11 who uses the radio terminal 12.
  • the directivity maximum radiation direction of the directivity switching antenna 1 is fixed to the back side of the wireless terminal 12 during transmission, and during data communication, The directivity maximum radiating direction of the directional switching antenna 1 may be fixed to the zenith direction of the wireless terminal 12.
  • the radio terminal 12 using the directivity switching antenna device 1 described in the first to fourth embodiments has been described.
  • Any configuration of the antenna device may be used as long as it can be switched.
  • FIG. 24 is a schematic configuration diagram of a directivity switching antenna device according to a sixth embodiment of the present invention, in which FIG. 24 (a) is a perspective view and FIG. 24 (b) is a cross-sectional view along AA ′.
  • a directivity switching antenna device includes a directivity switching antenna 201, a dielectric substrate 202 having a thickness t, a radiation element 203 having a length L made of a linear conductor disposed on the dielectric substrate 202, a feeding point. 20
  • Ground conductor 2 disposed on the dielectric substrate 202 and on the opposite side of the radiating element 203.
  • the metal conductor 206 controls the short circuit and the open circuit of the switch 207a disposed between the ground conductor 205 and the first metal conductor 206, the tip 208 of the ground conductor 205 on the first metal conductor 206 side, and the switch 207a.
  • the control circuit 209 is included.
  • the radiating element 203, the ground conductor 205, and the first metal conductor 206 are all formed on the dielectric substrate 202 by a conductor pattern.
  • the dielectric substrate 202 By forming it on the dielectric substrate 202, it is possible to reduce the size of the antenna due to the effect of shortening the wavelength due to the dielectric constant, and there is an advantage that the antenna characteristics that are inexpensive and easy to mass-produce are stabilized. It is done.
  • FIG. 25 shows the principle of the directivity switching operation of the present invention.
  • Fig. 25 (a) (1) when the ground conductor 205 exists below the radiating element 203, the antenna directivity is + Z as shown in Fig. 25 (b) (1). It becomes unidirectional with the maximum radiation direction in the direction.
  • the directivity of the antenna is Like, it becomes unidirectional with the maximum radiation direction in the + X direction.
  • the first metal conductor 206 is electrically insulated from the ground conductor 205 and arranged in the + X direction with respect to the radiating element 203.
  • the first metal conductor 206 operates as the ground conductor 205, and (1) in FIG. ) And directivity with the maximum radiation direction in the + Z direction. If the switch 207a is opened, the first metal conductor 206 operates as a director for the radiating element 203, and the directivity having the maximum radiation direction in the + X direction as shown in (3) of FIG. 25 (b). It becomes sex. Therefore, the antenna directivity can be switched about 90 degrees by switching the switch 207a.
  • the size of the ground conductor 205 and the first metal conductor 206 and the relative positional relationship between the radiating element 203 and the ground conductor 205 and the first metal conductor 206 are important. However, this point will be described in detail.
  • the length of the radiating element 203 is L
  • the length of the first metal conductor 206 in the Y direction is Lm
  • the width in the X direction is Wm
  • the distance between the radiating element 203 and the tip 208 of the ground conductor 205 on the first metal conductor 206 side in the X direction is D (+ X direction is positive)
  • the operation of the antenna device differs depending on whether the distance D in the X direction from the radiating element 203 to the tip 208 on the first metal conductor 206 side of the ground conductor 205 is positive or negative. explain.
  • FIG. 27 shows the directivity in the directivity switching antenna according to the sixth embodiment of the present invention.
  • the distance D 2 mm (0.06 ⁇ )
  • the length of the first metal conductor 206 Lm 19 mm (0.62 ⁇ )
  • the width Wm 2 mm (0.06 ⁇ )
  • Fig. 27 (b) shows that the switch 207a is open when the length Lm of the first metal conductor 206 is 13 mm (0.42 mm) and 21 mm (0.68 ⁇ ), respectively.
  • the maximum radiation direction of the antenna may not be in the + X direction when the switch 207a is opened. I can confirm.
  • the first metal conductor 206 acts as a reflector and suppresses radiation in the + X direction. This indicates that when the first metal conductor 206 is used as a director, it should be set to a range of about 0.42 ⁇ force 0.668 ⁇ .
  • the switch 207a is short-circuited.
  • the first metal conductor 206 needs to be configured to exist below the radiation element 203. That is, the distance sw between the ground conductor 205 and the first metal conductor 206 and the first gold conductor By making the sum of the width Wm of the metal conductor 206 larger than the interval D, the first metal conductor 206 can be disposed below the radiating element 203.
  • FIG. 29 shows the directivity of the directivity switching antenna according to the sixth embodiment of the present invention.
  • the distance D —2 mm (—0.06 ⁇ )
  • the length of the first metal conductor 206 Lm 19 mm (0.62 ⁇ )
  • the width Wm 4 mm (0.12 ⁇ )
  • Fig. 29 (b) shows the switch short-circuit condition when the length Lm of the first metal conductor 206 is 10 mm (0.32 ⁇ ) shorter than the length L of the radiating element 203 among the above parameters. It is a figure which shows the directivity of.
  • FIG. 30 shows an example of the positional relationship between the wireless terminal and the user during a voice call
  • FIG. 31 shows an example of the positional relationship between the wireless terminal and the user during data communication.
  • the positional relationship shown in FIG. 30 is assumed between the user 210 and the wireless terminal 11, and when performing data communication, between the user 210 and the wireless terminal 211.
  • the positional relationship shown in Fig. 31 is assumed.
  • the directivity of the antenna device provided in the wireless terminal 211 is as shown in FIG.
  • the maximum radiation direction of the antenna directivity is the back direction of the wireless terminal 211 (the direction opposite to the display surface of the display unit 212), and the maximum radiation direction of the antenna directivity is the zenith direction of the wireless terminal 211 during data communication ( It is desirable that the display unit 212 be switched to be horizontal with respect to the display surface of the display unit 212 and upward with respect to the display content.
  • the radio terminal 211 Since the radio terminal 211 has such a directivity switching function, the radiated electromagnetic field of the antenna force does not point in the direction of the user 210, leading to an improvement in SAR and an improvement in antenna gain. . Therefore, by arranging the directivity switching antenna 201 in the wireless terminal 212 so that the zenith direction in FIG. 32 corresponds to the X direction and the back direction corresponds to the Z direction, respectively, during voice call and data communication, respectively. Desired directivity can be obtained.
  • the radiating element 203 disposed on the dielectric substrate 202, the ground conductor 205 disposed on the surface of the dielectric substrate 202 opposite to the radiating element 203, and the dielectric substrate A first metal conductor disposed on the same plane as the ground conductor 205 on 02, parallel to the radiating element 203 and electrically insulated from the ground conductor 205, and the ground conductor 205 and the first metal Switch 207a arranged between conductors 206, and by switching the switch 207a using the control circuit 210, the antenna directivity can be switched by approximately 90 degrees. It has the effect that it becomes possible to realize an antenna that switches the directivity depending on the usage form of the wireless terminal.
  • the antenna directivity is switched according to the usage pattern of the radio terminal to improve the performance as the radio terminal. Therefore, it is possible to provide a highly reliable wireless communication system.
  • the radiating element 203 is formed on the dielectric substrate 202 by a conductor pattern.
  • the radiating element 203 may be configured by a linear conductor such as a wire or by sheet metal processing. good.
  • the radiating element 203 is described as having a linear dipole configuration.
  • the radiating element 203 may be configured in a meander line shape.
  • the radiating element 203, the ground conductor 205, and the first metal conductor 206 are formed on the dielectric substrate 202.
  • the dielectric substrate 202 must be used. There is no need.
  • the radiating element 203, the ground conductor 205, and the first metal conductor 206 may be manufactured by sheet metal processing, and the components to be written may be fixed to the foam material using a foam material or the like.
  • the length of the first metal conductor 206 is set so that the first metal conductor 206 functions as a director when the switch 207a is open.
  • the directivity can be varied by adjusting the reactance component of the director.
  • the first metal conductor 206 is divided into a plurality of conductor pieces in the length direction, and a switch 207a is arranged between each of the conductor pieces.
  • H Short circuit of 207a The length may be changed by opening Z, or a variable capacitance element such as a varactor diode is added to the first metal conductor 206, and the length is electrically adjusted according to the control voltage. You may do it.
  • the ground conductor 205 and the first metal conductor 206 are formed on the dielectric substrate 202 and on the surface opposite to the radiating element 203 by a conductor pattern.
  • the wireless substrate 211 may be disposed on the housing of the wireless terminal 211 that is a certain distance away from the dielectric substrate 202 on the dielectric substrate 202.
  • the antenna directivity when the switch 207a is switched between short-circuit and open-circuit is used.
  • the sex switching angle can be adjusted.
  • the first metal conductor 206 is divided into a plurality of conductor pieces 214 in the X-axis direction. The conductor pieces may be connected by the switch 207a.
  • FIG. 34 is a schematic configuration diagram of a directivity switching antenna according to a seventh embodiment of the present invention.
  • the directivity switching antenna includes a diode switch 215.
  • Other configurations are the same as those of the sixth embodiment, and thus description thereof is omitted.
  • the operation of the directivity switching antenna according to the seventh embodiment of the present invention will be described. Since the basic operation is the same as that described in the sixth embodiment, a description thereof will be omitted.
  • the ground conductor 205 and the first metal conductor 206 are connected at a plurality of locations by diode switches 215.
  • the configuration is as follows.
  • the first metal conductor 206 operates as the ground conductor 205 and the directivity becomes the + Z direction, and when the diode switch 215 is opened.
  • the first metal conductor 206 operates as a director with respect to the radiating element 203, and the directivity becomes the + X direction.
  • the antenna directivity can be switched by about 90 degrees.
  • the directivity is affected by the mounting position of the diode switch 215 at this time, this point will be described in detail.
  • the directivity in a state where each diode switch 215 is short-circuited when d is changed is a diagram.
  • ref is a state where the ground conductor 205 and the first metal conductor 206 are ideally electrically connected to each other.
  • the directivity is not oriented in the + Z direction, and it can be seen that the first metal conductor 206 does not operate as the ground conductor 205 even if the diode switch 215 is short-circuited.
  • the directivity is almost the same as ref, and the maximum radiation in the + Z direction It can be confirmed that unidirectionality with direction is obtained.
  • Both ends of the radiating element 203 are places with the highest potential, and the ground conductor 205 and the first metal conductor 206 are electrically connected in the vicinity of this position, so that the entire surface is ideally electrically connected. Since this is almost equivalent to the state, it is desirable that the mounting position of the diode switch 215 be located below the high potential portion of the radiating element 203. [0199] As described above, two diode switches 215 are arranged between the ground conductor 205 and the first metal conductor 206, and the mounting position of the diode switch 215 is set near the high potential of the radiating element 203. Since the antenna directivity can be switched by about 90 degrees by short-circuiting or opening the switch, it has the effect of enabling the antenna to switch directivity depending on the specification form of the wireless terminal.
  • the directivity of the antenna is switched according to the usage form of the wireless terminal, and the performance as the wireless terminal is improved. Therefore, it is possible to provide a highly reliable wireless communication system.
  • the radiating element 203 is described as being formed on the dielectric substrate 202 by a conductor pattern.
  • the radiating element is not limited to this by a linear conductor such as a wire or sheet metal caloe. 203 may be configured.
  • the radiating element 203 can be described as a linear dipole configuration.
  • the radiating element 203 may be configured in a meander line shape.
  • the radiating element 203, the ground conductor 205, and the first metal conductor 206 are formed on the dielectric substrate 202.
  • the dielectric substrate is not necessarily used.
  • the radiating element 203, the ground conductor 205, and the first metal conductor 206 may be manufactured by sheet metal processing, and each component may be fixed to the foam material using a foam material or the like.
  • the ground conductor 205 is formed on the surface of the dielectric substrate 202 opposite to the radiating element 203 by a conductor pattern.
  • the ground conductor 205 is not formed on the dielectric substrate 202.
  • the grounding conductor 205 may be disposed on the housing of the wireless terminal 211 that is separated from the dielectric substrate 202 by a certain distance.
  • the diode switch 215 is used as a switching element, but other switch circuits such as a FET switch and a switch using MEMS technology may be used.
  • the two diode switches 215 are arranged in the length direction of the radiating element 203.
  • dl and d2 may be arranged with different lengths.
  • FIG. 36 (a) The directivity in the XY plane can be adjusted by changing the distance between dl and d2 so that the force is also a force. Furthermore, the directivity in the XY plane can also be adjusted by short-circuiting one of the diode switches 215 and opening the other.
  • the electromagnetic field becomes asymmetric with respect to the length direction of the radiating element 203, and the maximum radiation direction of directivity is X-axis in the XY plane. It can be seen that there is a deviation from the direction. Using this, it becomes possible to adjust the directivity to three dimensions.
  • the directivity switching angle of the antenna when the diode switch 215 is switched between short-circuit and open-circuit can be adjusted.
  • the first metal conductor 206 may be divided into a plurality of conductor pieces 214 in the X-axis direction, and each conductor piece may be connected by the switch 207a.
  • FIG. 37 is a schematic configuration diagram of a directivity switching antenna according to the eighth embodiment.
  • FIG. 37 (a) is a perspective view
  • FIG. 37 (b) is a cross-sectional view taken along line AA ′ in FIG. 37 (a). is there.
  • the second metal conductor 127 is disposed on the same plane as the ground conductor 205 on the dielectric substrate 202, is parallel to the radiation element 203, and is symmetric with respect to the first metal conductor 206 and the Y axis.
  • the second metal conductor 127 having a length Lm and a width Wm arranged so as to be electrically insulated from the ground conductor 205, the tip portion 128 of the ground conductor 205 on the second metal conductor 127 side, and the ground conductor 205 And a switch 207b disposed between the second metal conductor 127.
  • Other configuration is the sixth embodiment Since it is the same as the state, it is omitted.
  • the second metal conductor 127 is arranged with respect to the ground conductor 205 so as to be symmetric with the first metal conductor in the Y axis. To do.
  • Fig. 38 shows the relationship between the short circuit Z opening operation of switches 207a and 207b and the antenna directivity.
  • switches 207a and 207b are short-circuited, the first metal conductor 206 and the second metal conductor 127 are both part of the ground conductor 205, so the antenna directivity is the + Z direction in FIG. .
  • switch 207b is short-circuited and switch 207a is opened, the first metal conductor 206 operates as a director, and the second metal conductor 127 operates as part of the ground conductor 205. + X direction at 37.
  • the second metal conductor 127 is provided so as to be symmetric with respect to the first metal conductor 206 and the Y-axis, and the first metal conductor 206 and the second metal conductor 206 are further formed using the control circuit 209.
  • the directivity of the antenna can be switched by 90 degrees in the ⁇ X direction and + Z direction by controlling the metal conductor 127 to be switched between the director and the ground conductor by switching the switches 207a and 207b. Therefore, depending on how the wireless terminal is used, for example, even if the wireless terminal is arranged so that the radiation direction is directed to the user during data communication, the ⁇ X direction opposite to the direction toward the user is selected. Thus, it has an effect that an antenna device that switches directivity can be realized.
  • the antenna directivity is switched according to the usage form of the wireless terminal, and the performance as the wireless terminal is improved. It is possible to provide a highly reliable wireless communication system.
  • the radiating element 203 is formed on the dielectric substrate 202 by a conductor pattern.
  • the radiating element 203 is not limited to this by linear conductors such as wires or sheet metal processing. It may be configured.
  • the radiating element 203 can be described as a linear dipole configuration.
  • the radiating element 203 may be configured as a meander line.
  • the radiating element 203, the ground conductor 205, the first metal conductor 206, and the second metal conductor 127 are formed on the dielectric substrate 202. It is not necessary to use it.
  • the radiating element 203, the ground conductor 205, the first metal conductor 206, and the second metal conductor 127 are manufactured by sheet metal processing, and each component is fixed to the foam material using a foam material or the like. Also good.
  • the ground conductor 205 is formed on the surface of the dielectric substrate 202 on the opposite side of the radiating element 203 by the conductor pattern.
  • the ground conductor 205 may be disposed on the housing of the wireless terminal 211 that is a certain distance from the substrate 202.
  • the diode switch 215 is used as a switching element.
  • other switch circuits such as a FET switch and a switch using MEMS technology may be used.
  • the lengths of the first metal conductor 206 and the second metal conductor 127 are set so that the switches 207a and 207b function as a director in the open state.
  • the reactance component of the waveguide can be adjusted to change the directivity.
  • the first metal conductor 206 and the second metal conductor 127 are divided into a plurality of conductor pieces in the length direction.
  • the switches 207a and 207b may be arranged between them, and the length may be varied by short-circuiting Z opening of the switches 207a and 207b.
  • the first metal conductor 206 and the second metal conductor 127 may be varactor diodes.
  • a variable capacitance element such as the above may be added to electrically adjust the length according to the control voltage.
  • switches 207a and 207b are short-circuited by utilizing the change in directivity when switches 207a and 207b are short-circuited by changing the width Wm of first metal conductor 206 and second metal conductor 127. , The antenna directivity switching angle when switching in open can be adjusted
  • FIG. 39 is a schematic configuration diagram of a directivity switching antenna according to the eighth embodiment.
  • FIG. 39 (a) is a perspective view
  • FIG. 39 (b) is a cross-sectional view taken along line AA ′ of FIG. 39 (a). is there.
  • the directional switching antenna includes a radiating element 216 having a folded structure.
  • Other configurations are the same as those in the sixth embodiment, and thus are omitted.
  • the input impedance force of the radiating element 203 becomes extremely small as compared with the state without the ground conductor 205.
  • the input impedance of the radiating element can be increased.
  • the input impedance of the double folded dipole in Fig. 40 (b) is four times the input impedance of the general dipole antenna shown in Fig. 40 (a), and the triple folded as shown in Fig. 40 (c).
  • the input impedance of a dipole is 8 times the input impedance of a general dipole antenna. Therefore, by using a radiating element 216 with a folded structure as shown in Fig. 39, the antenna input impedance at the feeding point 204 can be increased, and matching with a 50 ⁇ microstrip line or coaxial line is easy. Become.
  • the radiating element 216 has a folded structure, and the switch 207a is switched using the control circuit 209, thereby increasing the antenna input impedance while switching the antenna directivity by about 90 degrees. Therefore, it is possible to achieve matching, and it is possible to realize an antenna that switches directivity according to the usage form of the wireless terminal.
  • the antenna directivity is switched according to the usage pattern of the wireless terminal, and the performance as the wireless terminal is improved. It is possible to provide a highly reliable wireless communication system.
  • the radiating element 216 is formed on the dielectric substrate 202 by a conductor pattern.
  • the radiating element 203 is formed by a linear conductor such as a wire or sheet metal processing, as long as the radiating element 216 is formed. Also good.
  • the radiating element 216 may be described as a linear dipole configuration.
  • the radiating element 216 may be configured as a meander line.
  • the radiating element 216, the ground conductor 205, and the first metal conductor 206 are formed on the dielectric substrate 202.
  • the dielectric substrate is not necessarily used.
  • the radiating element 216, the ground conductor 205, and the first metal conductor 206 may be manufactured by sheet metal processing, and each component may be fixed to the foam material using a foam material or the like.
  • the ground conductor 205 is formed on the surface of the dielectric substrate 202 on the opposite side of the radiating element 216 by the conductor pattern.
  • the ground conductor 205 may be disposed on the housing of the wireless terminal 211 that is a certain distance from the substrate 202.
  • the radiating elements 203 and 216 have a two-dimensional structure on the XY plane.
  • the radiating elements 203 and 216 are not limited thereto, for example, as shown in Figs. 41 (a) and 41 (b). It is also possible to have a configuration in which the end of the fold is folded. With such a folded configuration, the antenna length can be shortened, and the antenna can be miniaturized.
  • the manufacturing method of the antenna folded on the YZ plane as shown in Fig. 41 (a) and (b). explain.
  • the simplest method is to manufacture by sheet metal processing as shown in Fig. 42.
  • all of the lower conductor 217, the folded portion 218, and the upper conductor 219 constituting the radiation element are integrated.
  • the lower conductor 217 may be formed by a conductor pattern on the dielectric substrate 202, and only the folded portion 218 and the upper conductor 219 may be manufactured by sheet metal processing.
  • a second dielectric substrate 220 is provided on the dielectric substrate 202, and the lower conductor 217 is formed in a planar shape sandwiched between the dielectric substrates 202 and 220.
  • the upper conductor 219 is formed by a conductor pattern on the second dielectric substrate 220 and on the surface opposite to the dielectric substrate 202, and the folded portion 218 is formed by the second dielectric substrate 220.
  • the lower conductor 217 and the upper conductor 219 may be electrically connected to each other by forming through holes or the like penetrating them.
  • a directivity switching antenna can be manufactured using a multilayer substrate.
  • the lower conductor 217, the folded portion 218, and the upper conductor 219 may be formed on the dielectric block 221 made of a high dielectric material such as ceramic, respectively.
  • the antenna can be very small.
  • FIG. 45 is a schematic configuration diagram of a radio terminal according to the embodiment of the present invention.
  • the radio terminal includes a transmission / reception unit 222, a control unit 223, and an antenna directivity switching unit 224 that are set to a frequency band for performing data communication and voice communication.
  • the power of the sixth embodiment may use the directivity switching antenna described in the ninth embodiment.
  • directional diversity can be achieved while maintaining the antenna mounting area equivalent to a single antenna. This point will be described in detail.
  • the wireless terminal 211 includes a directivity switching antenna 201, a transmission / reception unit 222, a control unit 223, and an antenna directivity switching unit 224.
  • the control unit 223 monitors the received power in each case where the directivity of the directivity switching antenna 201 is switched, and sends the control signal 225 to the antenna directivity switching unit so that the antenna directivity is larger than the received power. Send to 224.
  • the antenna directivity switching unit 224 determines which directivity is good, and the directivity is set so that the directivity has better reception sensitivity.
  • a control signal 226 is transmitted so as to switch the directivity of the switching antenna 201.
  • the directivity switching antenna 201 is switched by the control signal 226 so as to have a desired directivity.
  • the signal transmitted from the control unit 223 is modulated and frequency-converted by the transmission / reception unit 222 and transmitted from the directivity switching antenna 201.
  • the directivity selected at the time of reception is used as the directivity of the directivity switching antenna 201.
  • a radio terminal is configured using the directivity switching antenna 201, the transmission / reception unit 222, the control unit 223, and the antenna directivity switching unit 224, thereby enabling diversity reception with one antenna. Therefore, it has an effect that a small and high-performance wireless terminal can be realized.
  • the directivity switching antenna 201 is used in transmission with the same directivity as that in reception. However, diversity reception is performed using the directivity switching antenna 201 in other cases.
  • the radiated electromagnetic field power having the directivity switching antenna power may be set so as not to face the user 210 who uses the wireless terminal 211.
  • the directivity maximum radiation direction force of the directivity switching antenna 201 is fixed to the back direction of the wireless terminal 211 during transmission, and during data communication, the maximum directivity radiation direction of the directivity switching antenna 201 during transmission is The wireless terminal 211 may be fixed in the zenith direction.
  • the wireless terminal 211 using the directivity switching antenna 201 described in the sixth to ninth embodiments has been described. Switch about 90 degrees with respect to 211 in the zenith direction (horizontal with respect to the display surface of the display unit 212 and upward with respect to the display content) and back direction (the opposite direction with respect to the display surface of the display unit 212) Any configuration antenna can be used as long as it can
  • the antenna device of the present invention and the radio terminal using the antenna device have the effect that the antenna directivity can be switched to the back direction Z zenith direction by short-circuiting Z opening of the switch. It is useful as an antenna that can perform high-quality communications by applying it to wireless terminals that are expected to be used in various usage forms such as telephone calls and data communications. It is also useful for wireless terminals that require diversity reception and information terminals such as PCs.
  • the antenna directivity can be switched in three directions by the short circuit Z opening of the switch. It is useful as an antenna that can perform high-quality communication even when receiving digital wave broadcasting.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

 本発明は、音声通話時とデータ通信時のような複数の無線端末の使用形態に適した指向特性に切り替えることができる、薄型化が容易なアンテナ装置およびそのアンテナ装置を用いた無線端末を提供することを目的とする。  本発明のアンテナ装置1は、第1の面に配置された線状の放射素子3と、前記放射素子3と平行に、前記第1の面に配置された第1の無給電素子6と、第1の面に配置された第1の接地導体5と、前記第1の無給電素子6の両端それぞれと前記第1の接地導体とを接続する第1のスイッチ7と、前記第1の面に対向する第2の面に配置された第2の接地導体8と、を備えるアンテナ装置1であって、前記第1の接地導体5の一部は、前記放射素子3を挟んで前記第1の無給電素子6の反対側に、前記放射素子3と平行に配置され、前記第2の接地導体8は、前記放射素子3に対向するように配置され、前記第2の接地導体8の端部は、前記放射素子3と前記第1の無給電素子6によって挟まれる領域に対向しているものである。

Description

明 細 書
アンテナ装置およびそのアンテナ装置を用いた無線端末
技術分野
[0001] 本発明は、アンテナ装置及びそのアンテナ装置を内蔵した無線端末に関し、特に
、指向特性を電気的に可変とする機能を有するアンテナ装置を内蔵した無線端末に 関するものである。
背景技術
[0002] 近年、携帯電話等の無線端末にお!、て、音声通話機能以外にデータ通信機能の 需要が高まっており、音声通話機能とデータ通信機能の双方を備えた無線端末も普 及してきて!/、る。音声通話とデータ通信の双方の機能を備えた無線端末にぉ 、て、 音声通話する場合とデータ通信する場合とでは、無線端末とその無線端末を使用す るユーザとの位置関係が異なってくる。
例えば、音声通話の場合、図 10に示す音声通話時における無線端末とユーザとの 位置関係の一例に示すように、ユーザは無線端末をユーザの耳に押し当てるように して使用するため、無線端末をユーザの頭部側面に配置して使用するが、データ通 信の場合、図 11に示すデータ通信時における無線端末とユーザとの位置関係の一 例に示すように、ユーザは無線端末のディスプレイに表示された情報を確認するため 、無線端末をユーザの頭部正面から、距離をとつた位置に配置して使用することにな る。
[0003] このように、音声通話時とデータ通信時にお!、て、無線端末とその無線端末を使用 するユーザとの位置関係が異なると、無線端末に内蔵されたアンテナ装置の指向性 を、その位置関係それぞれに応じた、適したものに変更することが求められる。具体 的には、図 12の音声通話時、データ通信時それぞれにおけるアンテナの放射指向 性の一例に示す。
例えば、音声通話時のように無線端末を頭部側面に配置する場合には、アンテナ の最大放射方向を無線端末の背面方向とし、データ通信時のように無線端末をユー ザの頭部正面力 距離をとつた位置に配置する場合には、アンテナの最大放射方向 を無線端末の天頂方向とするように指向性を切替可能な単指向性アンテナを構成と することが求められる。つまり、無線端末に内蔵されるアンテナ装置は、単指向性で、 かつ、音声通話時とデータ通信時のそれぞれの使用形態におけるアンテナの最大 放射方向が、無線端末の天頂方向から背面方向に向力つて切り替え可能な構成を 有することが望まれる。
[0004] このようなアンテナ装置の構成により、放射電磁界がアンテナ装置から人体へ向け られることを抑制するため SAR (Specific Absorption Rate)を改善することがで き、また、不要な方向への電磁放射を抑制して単指向性ィ匕するため、アンテナ利得 の向上も図ることができる。
[0005] これまでアンテナの指向性を切替可能なアンテナ構成としては、例えば、制御素子 を用いて無給電素子の長さを制御し、八木アンテナの指向性を前後に切り替えるァ ンテナ構成が提案されて ヽる (例えば、特許文献 1参照)。
[0006] 図 46は、特許文献 1に記載された従来の指向性切替アンテナの概略構成図である 。図 46において、 101は無給電素子、 102は給電素子、 103は補助素子、 104は制 御素子である。
[0007] 以下、特許文献 1に記載された、従来の指向性切替アンテナの動作を説明する。
従来の指向性切替アンテナは、給電素子 102の前後に一定の間隔を置いて無給電 素子 101が配置される。無給電素子 101は、その先端に電気的に絶縁して付加され た補助素子 103を、制御素子 104によって接続できるように構成されている。ここで、 制御素子 104は、ダイオードスィッチ等で構成され、どちらか一方の無給電素子 101 とその両端にある補助素子 103とを導通するように取り付けられて 、る。
よって、無給電素子 101に、導線を介して正の電圧を印加したときは、一方の無給 電素子 101がその両端の補助素子 103と導通して反射器として動作し、他方の無給 電素子 101は補助素子 103が導通せず導波器として動作する。このため、特許文献 1のアンテナは、補助素子 103が導通していない、無給電素子 101の方向に指向性 を持つ。また、無給電素子 101に、導線を介して負の電圧を印カロしたときは、反射器 、導波器として動作する無給電素子 101の位置関係が逆転するため、指向性も逆転 すること〖こなる。 [0008] 以上のような構成とすることによって、無給電素子 101に印加する電圧の極性を切 り替えるという簡易な制御によって、指向性を 180度反転可能な八木アンテナを構成 することができる。
[0009] また、地板上にアンテナ素子を垂直に配置して、その周囲に無給電素子を配置し、 それらを導波器力反射器で切り替えることにより、指向性を切り替えるアンテナ構成 が提案されている。(例えば、特許文献 2参照)。
[0010] 図 47は、特許文献 2に記載された従来の指向性切替アンテナの概略構成図である 。図 47にお!/ヽて、 l l liま地板、 112ίま放射素子、 113〜116ίま無給電素子、 117〜 120は誘電体基板である。
[0011] 以下、特許文献 2に記載された従来の指向性切替アンテナの動作を説明する。誘 電体基板 117〜120で実現された地板 111上に、放射器として作用する放射素子 1 12を配置し、反射器または導波器として作用する無給電素子 113〜 116を、誘電体 基板 117〜120上に実装し、誘電体基板 117〜120を地板 111に垂直に立てるよう に構成されている。
ここで、地板 111上には、無給電素子 113〜116を反射器として作用させる力、導 波器として作用させるかを、切り替えるスィッチ回路が実装されており、スィッチ回路 の 1つを短絡させ、その他のスィッチ回路を開放させることによって、アンテナに指向 性を持たせることができる。例えば、無給電素子 113を導波器とし、その他の無給電 素子 114〜116を反射器とするようにスィッチ回路を選択することによって、アンテナ の指向性を無給電素子 113方向に向けることができ、同様にして、無給電素子 114 〜116のいずれ力 1つのスィッチ回路を短絡させることで、指向性を 90度ずつ 4方向 に切り替えることができる。
[0012] 以上のような構成とすることによって、スィッチ回路の短絡、開放の簡単な制御によ り、指向性を 90度ずつ切替可能なアンテナを構成することができる。さらに、無給電 素子 113〜 116を誘電体基板 117〜 120上に形成して 、るため、例えば誘電体基 板 117〜120の誘電率を高くすることによって、波長の短縮効果により、無給電素子 113〜 116の長さを短縮して、低姿勢化を図ることができる。
[0013] また、アンテナの指向性を切替可能なアンテナ装置の別の構成としては、例えば、 アース金属導体を 2つに分け、スィッチによりアース金属導体全体の電気的長さを変 えることで指向性を切り替えるアンテナ構成が提案されている(例えば、特許文献 3参 照)
[0014] 図 48は、特許文献 3に記載された従来の指向性切替アンテナ装置の概略構成図 である。図 48において、指向性切替アンテナ装置は、アンテナエレメント 301、アンテ ナエレメント 301と受信回路 303との整合を行うマッチング回路 302、受信回路 303 から送られた信号の強度を比較する受信電界強度比較器 304、高周波スィッチ 308 をオン、オフさせるための制御回路 305、アンテナエレメント 301に直列に接続され、 アンテナ装置のアース導体に相当する 2つの部分に分けられたアース金属導体 306 、 307、 2つの高周波スィッチ 308を含む構成である。
[0015] 以下、特許文献 3に記載された従来の指向性切替アンテナの動作を説明する。ァ ンテナエレメント 301で受信された電磁波は、マッチング回路 302を通って受信回路 303に送られる。また制御回路 305は、高周波スィッチ 308を任意の時間間隔でオン 、オフを繰り返すように制御している。高周波スィッチ 308がオンの時は、図 49 (a)に 示すように、アンテナエレメント 301に対して、ほぼ垂直の放射指向性を有する力 高 周波スィッチ 308がオフの時は、図 49 (b)に示すように、高周波スィッチ 308がオン の時に比べて、約— 30度方向の放射指向性を有するような指向特性となる。
[0016] 以上のような構成とすることによって、アンテナエレメント 301に対して、直列に接続 されたアース金属導体 306、 307の長さを、高周波スィッチ 308により電気的に変化 させることで、 2種類のアンテナ指向特性を得ることができる。
[0017] さらに、アンテナエレメントの後部左右にアンテナリフレクタを配置して、アンテナリフ レクタの接地インピーダンスを制御して、指向性を切り替えるアンテナ構成が提案さ れている。(例えば、特許文献 4参照)。
[0018] 図 50は、特許文献 4に記載された従来の指向性切替アンテナの概略構成図である 。図 50において、指向性切替アンテナは、アンテナ 311、アンテナエレメント 312、ァ ンテナエレメント 312の左右に位置し、略三角形の形状の導体板でなるアンテナリフ レクタ 313、 314、アンテナ 311をカバーするモールド 315を含む構成である。
[0019] 以下、特許文献 4に記載された従来の指向性切替アンテナの動作を説明する。ァ ンテナリフレクタ 313、 314は、アンテナエレメント 312の下部左右に位置し、無線部 等の基板上に配置されたインピーダンス可変用の接地インピーダンス回路と接続さ れている。図 51は、アンテナリフレクタ 313、 314を切り替えた場合におけるアンテナ の特性の変化を示す特性図である。アンテナリフレクタ 313、 314との切り替えは、そ の何れかを接地することにより行う。
更に、アンテナエレメント 312から放射された電磁波を、インピーダンスを介して接 地されたアンテナリフレクタ 313、 314により指向性を切り替え、ダイバーシチ機能を 実現する。アンテナリフレクタ 313、 314とを切り替え、接地側としてアンテナリフレクタ 314を選択した場合には、アンテナエレメント 312の指向性は、図 51 (a)に示すよう にアンテナリフレクタ 314と干渉して、右よりの指向性を持つ。逆にアンテナリフレクタ 313を選択した場合には、アンテナエレメント 312の指向性は、図 51 (b)に示すよう にアンテナリフレクタ 313と干渉して、左よりの指向性を持つ。
[0020] 以上のような構成とすることによって、アンテナリフレクタ 313、 314に接続された接 地インピーダンス回路を制御して、どちらか一方のアンテナリフレクタを接地するとい う簡単な方法により、指向性をアンテナエレメント 312に対して左右 180度方向に切り 替えることができる。
[0021] 特許文献 1 :特開平 6— 69723号公報
特許文献 2:特開 2001— 345633号公報
特許文献 3 :特開平 5— 48506号公報
特許文献 4:特開 2001— 292017号公報
発明の開示
発明が解決しょうとする課題
[0022] し力しながら、特許文献 1のような構成を用いることによって、例えば誘電体基板上 117〜 120での導体パターンによる形成が可能であるため、無線端末への内蔵化に は適している力 指向性が前後 180度方向にし力切り替えることができないため、音 声通話時やデータ通信時の無線端末の使用形態に適したアンテナ装置の指向性を 実現することができな 、と 、う課題があった。
[0023] また、特許文献 2のような構成を用いることによって、スィッチの切り替えにより、アン テナの指向性を 90度ずつ切り替えることが可能であるが、無線端末の天頂方向と背 面方向での切り替えを可能とするためには、無線端末内の誘電体基板 117〜 120と は垂直に地板 111を設ける必要があるため、無線端末の厚さ方向に対して薄型化が 困難であった。
[0024] また、特許文献 3のような構成を用いることによって、例えば、筐体や誘電体基板上 に導体パターンによってアース金属導体を形成することで、容易にアース金属導体 の電気的な長さを変更して指向性を変更することができるが、アース金属導体をアン テナエレメントに対して直列に接続する必要があるため、モノポール形状のアンテナ エレメントにしか対応できず、ダイポールアンテナ平衡給電系のアンテナエレメントに 対しては適用できな 、と 、う課題があった。
[0025] また、特許文献 4のような構成を用いることによって、アンテナ筐体内にアンテナリフ レクタを形成することで、無線端末への内蔵化が可能であり、また、アンテナエレメン トとしてダイポールのような平衡給電系のアンテナエレメントにも適応可能だが、指向 性が左右方向に 180度の切り替えしかできないため、音声通話時やデータ通信時の 無線端末の使用形態に適したアンテナ装置の指向性を実現することができないとい う課題があった。
[0026] 本発明は、上記事情に鑑みてなされたもので、音声通話時とデータ通信時のような 複数の無線端末の使用形態に適した指向特性に切り替えることができるアンテナ装 置およびそのアンテナ装置を用いた無線端末を提供することを目的とする。
課題を解決するための手段
[0027] 本発明のアンテナ装置は、第 1の面に配置された線状の放射素子と、前記放射素 子と平行に、前記第 1の平面に配置された第 1の無給電素子と、第 1の面に配置され た第 1の接地導体と、前記第 1の無給電素子の両端それぞれと前記第 1の接地導体 とを接続する第 1のスィッチと、前記第 1の面に対向する第 2の面に配置された第 2の 接地導体と、を備えるアンテナ装置であって、前記第 1の接地導体の一部は、前記放 射素子を挟んで前記第 1の無給電素子の反対側に、前記放射素子と平行に配置さ れ、前記第 2の接地導体は、前記放射素子に対向するように配置され、前記第 2の接 地導体の端部は、前記放射素子と前記第 1の無給電素子によって挟まれる領域に対 向しているものである。
[0028] 本発明のアンテナ装置は、第 1の面に配置された線状の放射素子と、前記放射素 子と平行に、前記第 1の面に配置された線状の第 1の無給電素子と、前記第 1の無給 電素子の長手方向延長線上の両側に配置された線状の補助素子と、前記第 1の面 に配置された第 1の接地導体と、前記第 1の無給電素子の両端と前記補助素子とを それぞれ接続する第 1のスィッチと、前記第 1の面に対向する第 2の面に配置された 第 2の接地導体と、を備えるアンテナ装置であって、前記第 1の接地導体は、前記放 射素子を挟んで前記第 1の無給電素子の反対側に、前記放射素子と平行に配置さ れ、前記第 2の接地導体は、前記放射素子に対向するように配置され、前記第 2の接 地導体の端部は、前記放射素子と前記第 1の無給電素子によって挟まれる領域に対 向しているものである。
[0029] また、本発明のアンテナ装置は、前記第 1の接地導体が、前記放射素子よりも長い 線状導体であるものを含む。
[0030] 本発明のアンテナ装置は、第 1の面に配置された線状の放射素子と、前記放射素 子と平行に、前記第 1の面に配置された線状の第 1の無給電素子と、前記放射素子 を挟んで前記第 1の無給電素子の反対側の前記第 1の面に、前記放射素子と平行 に配置された線状の第 2の無給電素子と、前記第 1、第 2の無給電素子の長手方向 延長線上の両側に配置された線状の補助素子と、前記第 1、第 2の無給電素子の両 端と、前記第 1、第 2の無給電素子それぞれの両端に配置された前記補助素子とを、 それぞれ接続する第 1、第 2のスィッチと、前記第 1の面に対向する第 2の面に配置さ れた第 2の接地導体と、を備えるアンテナ装置であって、前記第 2の接地導体は、前 記放射素子に対向するように配置され、前記第 2の接地導体の一端部は、前記放射 素子と前記第 1の無給電素子によって挟まれる領域に対向し、前記第 2の接地導体 の別の端部は、前記放射素子と前記第 2の無給電素子によって挟まれる領域に対向 しているものである。
[0031] また、本発明のアンテナ装置は、一面に前記放射素子、前記第 1、第 2の無給電素 子、前記第 1の接地導体および前記第 1、第 2のスィッチが配置され、他面に前記第 2の接地導体が配置される第 1の基板を備えるものを含む。 [0032] また、本発明のアンテナ装置は、前記スィッチの短絡 Z開放を制御する制御手段 を備えるものを含む。
[0033] 従来のアンテナ装置では、音声通話とデータ通信のように無線端末の使用形態が 異なる場合に、その使用形態に応じて、所望の方向にアンテナの最大放射方向を切 り替えることができず、無線端末におけるアンテナ構成として適当でな力つた。これら の構成によれば、スィッチ短絡時には無給電素子が接地導体として動作することで 放射素子の周囲を接地導体で覆った構成とし、スィッチ開放時には無給電素子が接 地導体力 切り離されるため、スィッチの短絡 Z開放によってアンテナの指向性を所 望の方向に切り替えることができる。
[0034] また、本発明のアンテナ装置は、前記無給電素子は、前記スィッチを開放する場合 に、前記放射素子に対する導波器になるよう構成して!/ヽるものを含む。
[0035] この構成によれば、無給電素子を導波器として作用させることができるため、スイツ チ開放状態において放射素子と無給電素子で八木アンテナ構成とすることができ、 スィッチ短絡状態に対して指向性を約 90度切り替えることができる。
[0036] また、本発明のアンテナ装置は、前記無給電素子と前記補助素子は、前記スィッチ を短絡した場合、前記放射素子に対する反射器になるよう構成しているものを含む。
[0037] この構成によれば、スィッチの短絡 Z開放によって無給電素子を導波器と反射器 で切り替えることができるため、スィッチ短絡状態において、無給電素子を接地導体 と接続することなく指向性を約 90度切り替えることができる。
[0038] また、本発明のアンテナ装置は、前記無給電素子は、リアクタンスが可変であるもの を含む。
[0039] また、本発明のアンテナ装置は、前記無給電素子は、複数の導体片を接続するス イッチで構成されるものを含む。
[0040] また、本発明のアンテナ装置は、前記無給電素子は、可変容量素子を有するもの を含む。
[0041] これらの構成によれば、無給電素子の電気長を可変することができるため、スィッチ 開放時におけるアンテナ指向性を可変することができると共に、アンテナの入力イン ピーダンス特性も調整することが可能となる。 [0042] また、本発明のアンテナ装置は、前記基板が誘電体材料で構成されて!ヽるものを 含む。
[0043] この構成によれば、誘電体基板の誘電率による波長短縮効果で、放射素子の電気 長を短くすることができるため、アンテナの小型化が図れる。
[0044] また、本発明のアンテナ装置は、前記基板が発泡材で構成されて!、るものを含む。
[0045] この構成によれば、放射素子、無給電素子等を板金可能により製作し、発泡材上 に固定することで非常に安価に指向性切替アンテナを製作することができる。
[0046] また、本発明のアンテナ装置は、前記放射素子は、前記第 1の基板に対して水平 方向に折り返された折り返し構造であるものを含む。
[0047] この構成によれば、放射素子の入力インピーダンスを高くすることができるため、放 射素子の極近傍に接地導体が配置されて入力インピーダンスが低くなつた状態にお いても、給電部との整合をとり易くすることができる。
[0048] また、本発明のアンテナ装置は、前記放射素子は、前記第 1の基板上の導体バタ ーンにより形成されているものを含む。
[0049] この構成によれば、放射素子を基板と一体的に製作することができるため、安価に 製作することができ、さらに特性の安定化も図ることができる。
[0050] また、本発明のアンテナ装置は、前記第 2の接地導体は、前記第 1の基板上の導 体パターンにより形成されて ヽるものを含む。
[0051] この構成によれば、第 2の接地導体を基板と一体的に製作することができるため、 第 2の接地導体の先端部を正確に配置することができ、特性を安定化させることがで きる。
[0052] また、本発明のアンテナ装置は、前記放射素子と前記第 2の接地導体は、前記放 射素子と前記第 2の接地導体の間隔が前記第 1の基板の厚さよりも大きくなるよう配 置されたものを含む。
[0053] この構成によれば、放射素子と第 2の接地導体の距離を確保できるため、放射素子 の入力インピーダンスの低下を防ぐことができ、給電部との整合をとり易くすることが できる。
[0054] また、本発明のアンテナ装置は、前記放射素子は、前記基板に対して垂直方向に 折り返し構造を有するダイポール構成であって、前記第 1の基板上に配置された下 部導体と、前記下部導体の両端部それぞれから第 1の基板に対して垂直方向に配 置された折り返し部と、前記折り返し部の端部間を接続するよう配置された上部導体 と、を含んで構成されるものを含む。
[0055] この構成によれば、放射素子を 3次元に折りたたむようにして配置できるため、アン テナの設計の自由度が増すと共に、アンテナの実装面積を小型化することができる。
[0056] また、本発明のアンテナ装置は、前記第 1の基板の上部に第 2の基板を備え、前記 下部導体は、前記第 1、第 2の基板間に狭設され、前記折り返し部は、前記第 2の基 板を貫通して配置され、前記上部導体は、前記第 2の基板上に配置されたものを含 む。
[0057] この構成によれば、基板を多層化することで、折り返し構造を有する放射素子を形 成することができるため、安価に製作でき、さらに特性を安定させることができる。
[0058] また、本発明のアンテナ装置は、前記第 1の基板の上部に誘電体ブロックを備え、 前記下部導体、前記折り返し部および前記上部導体は、誘電体ブロックの表面上及 び Zまたは内部に配置されたものを含む。
[0059] また、本発明のアンテナ装置は、前記無給電素子、スィッチおよび第 1の接地導体 の一部は、前記誘電体ブロックの表面上及び Zまたは内部に配置されたものを含む
[0060] この構成によれば、高誘電率材料の誘電体ブロック中に放射素子及び Zまたは無 給電素子を 3次元に折りたたむようにして配置できるため、アンテナの設計の自由度 が増すと共に、アンテナの実装面積を非常に小型化することができ、さらに指向性切 替機能を有する誘電体アンテナを製作することができる。
[0061] また、本発明のアンテナ装置は、前記放射素子は、直線状ダイポールであるものを 含む。
[0062] この構成によれば、放射素子を非常に簡易に製作することができ、また、無給電素 子とあわせて八木アンテナ構成とすることができるため、指向性の 90度切替を実現 できる。
[0063] また、本発明のアンテナ装置は、前記放射素子は、メアンダライン状ダイポールで あるものを含む。
[0064] この構成によれば、放射素子を非常に小型化することができる。
[0065] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチは、ダイオードスィッチで 構成されるものを含む。
[0066] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチは、 FETスィッチで構成 されるものを含む。
[0067] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチは、 MEMSスィッチで構 成されるものを含む。
[0068] これらの構成によれば、スィッチを非常に簡易な構成で実現できると共に、 MEMS 技術を用いることにより、スィッチを非常に小型化できるため、アンテナ自体の小型化 ち柳』ることがでさる。
[0069] 本発明のアンテナ装置は、第 1の面に配置された線状の放射素子と、前記第 1の面 に対向する第 2の面に配置された接地導体と、前記放射素子と平行に、前記第 2の 平面上に前記接地導体と電気的に絶縁して配置された第 1の導体と、前記接地導体 と前記導体とを接続する第 1のスィッチと、を備えるアンテナ装置であって、前記接地 導体と前記導体の一方が、前記放射素子に対向して配置されるものである。
[0070] また、本発明のアンテナ装置は、前記第 1の導体と前記接地導体に対して対称な 位置に配置された第 2の導体と、前記接地導体と前記第 2の導体とを接続する第 2の スィッチと、を、更に、備えるアンテナ装置であって、前記接地導体が、前記放射素 子に対向して配置されるものを含む。
[0071] また、本発明のアンテナ装置は、前記第 1の平面と前記第 2の平面とが配置される 第 1の基板を備えるものを含む。
[0072] また、本発明のアンテナ装置は、前記接地導体が、前記放射素子に対向して配置 されるものを含む。
[0073] また、本発明のアンテナ装置は、前記導体が、前記放射素子に対する導波器にな るものを含む。
[0074] また、本発明のアンテナ装置は、前記導体が、前記放射素子に対向して配置され るものを含む。 [0075] また、本発明のアンテナ装置は、前記導体が、前記放射素子よりも長いものを含む
[0076] 従来のアンテナ装置では、音声通話とデータ通信のように無線端末の使用形態が 異なる場合に、その使用形態に応じて、所望の方向にアンテナの最大放射方向を 9 0度切り替えることができず、無線端末におけるアンテナ構成として適当でな力つた。 これらの構成によれば、スィッチ短絡時には第一の金属導体が接地導体として動作 し、スィッチ開放時には第一の金属導体が接地導体力 切り離されるため、スィッチ の短絡 Z開放によってアンテナの指向性を所望の方向に切り替えることができる。
[0077] また、本発明のアンテナ装置は、前記導体が、リアクタンスが可変であるものを含む
[0078] また、本発明のアンテナ装置は、前記導体が、可変容量素子を有するものを含む。
[0079] また、本発明のアンテナ装置は、前記導体が、前記導体の長さ方向に分割された 複数の導体片と、前記複数の導体片を接続する第 3のスィッチと、を含んで構成され るものを含む。
[0080] これらの構成によれば、第一の金属導体の電気長を可変することができるため、ス イッチ開放時におけるアンテナ指向性を調整することができると共に、アンテナの入 力インピーダンス特性も調整することが可能となる。
[0081] また、本発明のアンテナ装置は、前記導体が、前記導体の幅方向に分割された複 数の導体片と、前記複数の導体片を接続する第 3のスィッチと、を含んで構成される ものを含む。
[0082] この構成によれば、第一の金属導体の幅方向の電気的長さを可変することができる ため、スィッチ開放時におけるアンテナ指向性を調整することができる。
[0083] また、本発明のアンテナ装置は、前記第 1の基板が、誘電体材料で構成されている ものを含む。
[0084] この構成によれば、誘電体基板の誘電率による波長短縮効果で、放射素子の電気 長を短くすることができるため、アンテナの小型化が図れる。
[0085] また、本発明のアンテナ装置は、前記第 1の基板が、発泡材で構成されているもの を含む。 [0086] この構成によれば、放射素子、第一の金属導体等を板金可能により製作し、発泡 材上に固定することで非常に安価に指向性切替アンテナを製作することができる。
[0087] また、本発明のアンテナ装置は、前記第 1のスィッチが、前記接地導体と前記第一 の金属導体とを複数箇所で接続する複数のスィッチで構成されるものを含む。
[0088] また、本発明のアンテナ装置は、前記複数の第 3のスィッチが、前記放射素子の給 電点を含む前記放射素子に垂直な平面に対して、対称に配置されて!、るものを含む
[0089] また、本発明のアンテナ装置は、前記第 3のスィッチが、前記放射素子の給電点を 含む前記放射素子に垂直な平面に対して、非対称に配置されて!ヽるものを含む。
[0090] また、本発明のアンテナ装置は、前記第 3のスィッチが、前記放射素子上の電圧最 大位置付近に対向する位置にある、前記接地導体と前記第一の金属導体とを接続 するものを含む。
[0091] これらの構成によれば、接地導体と第一の金属導体の間を全面に渡って接続する 必要がなぐ必要最小限のスィッチを用いて指向性を切り替えることが可能となり、さ らに、放射素子の長さ方向に対して非対称な位置をスィッチで短絡することで、 3次 元での指向性切替が可能となる。
[0092] また、本発明のアンテナ装置は、前記放射素子が、前記第 1の基板上の導体バタ ーンにより形成されているものを含む。
[0093] この構成によれば、放射素子を基板と一体的に製作することができるため、安価に 製作することができ、さらに特性の安定化も図ることができる。
[0094] また、本発明のアンテナ装置は、前記接地導体が、前記第 1の基板上の導体バタ ーンにより形成されているものを含む。
[0095] この構成によれば、接地導体を基板と一体的に製作することができるため、接地導 体の先端部を正確に配置することができ、特性を安定化させることができる。
[0096] また、本発明のアンテナ装置は、前記放射素子と前記接地導体が、前記放射素子 と前記第 2の接地導体の間隔が前記第 1の基板の厚さよりも大きくなるよう配置された ものを含む。
[0097] この構成によれば、放射素子と接地導体の距離を確保できるため、放射素子の入 力インピーダンスの低下を防ぐことができ、給電部との整合をとり易くすることができる
[0098] また、本発明のアンテナ装置は、前記放射素子が、前記第 1の基板に対して水平 方向に折り返された折り返し構造であるものを含む。
[0099] この構成によれば、放射素子の入力インピーダンスを高くすることができるため、放 射素子の極近傍に接地導体が配置されて入力インピーダンスが低くなつた状態にお いても、給電部との整合をとり易くすることができる。
[0100] また、本発明のアンテナ装置は、前記放射素子が、前記基板に対して垂直方向に 折り返し構造を有するダイポール構成であって、前記第 1の基板上に配置された下 部導体と、前記下部導体の両端部それぞれから第 1の基板に対して垂直方向に配 置された折り返し部と、前記折り返し部の端部間を接続するよう配置された上部導体 と、を含んで構成されるものを含む。
[0101] この構成によれば、放射素子を 3次元に折りたたむようにして配置できるため、アン テナの設計の自由度が増すと共に、アンテナの実装面積を小型化することができる。
[0102] また、本発明のアンテナ装置は、前記第 1の基板の上部に第 2の基板を備え、前記 下部導体は、前記第 1、第 2の基板間に狭設され、前記折り返し部は、前記第 2の基 板を貫通して配置され、前記上部導体は、前記第 2の基板上に配置されたものを含 む。
[0103] この構成によれば、基板を多層化することで、折り返し構造を有する放射素子を形 成することができるため、安価に製作でき、さらに特性を安定させることができる。
[0104] また、本発明のアンテナ装置は、前記第 1の基板の上部に誘電体ブロックを備え、 前記下部導体、前記折り返し部および前記上部導体が、誘電体ブロックの表面上及 び Zまたは内部に配置されたものを含む。
[0105] この構成によれば、高誘電率材料の誘電体ブロック中に放射素子及び Zまたは無 給電素子を 3次元に折りたたむようにして配置できるため、アンテナの設計の自由度 が増すと共に、アンテナの実装面積を非常に小型化することができる。
[0106] また、本発明のアンテナ装置は、前記放射素子が、直線状ダイポールで構成される ものを含む。 [0107] この構成によれば、放射素子を非常に簡易に製作することができる。
[0108] また、本発明のアンテナ装置は、前記放射素子が、メアンダライン状ダイポールで 構成されるものを含む。
[0109] この構成によれば、放射素子を非常に小型化することができる。
[0110] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチ力 ダイオードスィッチで構 成されるものを含む。
[0111] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチが、 FETスィッチで構成 されるものを含む。
[0112] また、本発明のアンテナ装置は、前記第 1、第 2のスィッチが、 MEMSスィッチで構 成されるものを含む。
[0113] これらの構成によれば、スィッチを非常に簡易な構成で実現できると共に、 MEMS 技術を用いることにより、スィッチを非常に小型化できるため、アンテナ自体の小型化 ち柳』ることがでさる。
[0114] 本発明の無線端末は、本発明のアンテナ装置と、前記アンテナ装置により電波を 送受信する送受信部と、前記アンテナ装置の指向性を切り替えるアンテナ指向性切 替部と、各部の制御を行う制御部と、を備える無線端末であって、前記制御部は、前 記アンテナ指向性切替部に前記アンテナ装置の指向性を切り替えさせて、前記送受 信部に電波を受信させ、検出した電波の強度に基づいて、より良い受信感度と判定 した指向性状態の前記アンテナ装置により、送受信させるよう前記アンテナ指向性切 替部と前記送受信部とを制御するものである。
[0115] また、本発明の無線端末は、前記制御部は、受信状態では前記アンテナ装置にダ ィバーシチ受信させ、送信状態では受信状態に使用した指向性状態で前記アンテ ナ装置力 送信させるよう制御するものを含む。
[0116] この構成によれば、マルチパス環境下においても、 1つのアンテナの指向性を切り 替えることでダイバーシチ受信することができるため、高品質な通信を行うことができ る。
[0117] また、本発明の無線端末は、前記制御部は、受信状態では前記アンテナ装置にダ ィバーシチ受信させ、送信状態では前記アンテナ装置の最大放射方向が、当該無 線端末から当該無線端末使用者に向力う方向と反対方向となる指向性状態で、前記 アンテナ装置力 送信させるよう制御するものを含む。
[0118] この構成によれば、マルチパス環境下においても、 1つのアンテナの指向性を切り 替えることでダイバーシチ受信することができ、高品質な通信を行うことができると同 時に、送信時には無線端末を使用するユーザの方向にアンテナ指向性を向けない ため、 SARを改善することができる。
発明の効果
[0119] 本発明のアンテナ装置およびそのアンテナ装置を用いた無線端末によれば、スイツ チの短絡 Z開放によってアンテナの指向性を背面方向 Z天頂方向に切り替えること ができ、音声通話時とデータ通信時のように無線端末の使用形態が異なる場合でも 、その使用形態に適したアンテナの指向性に変化させて、高品質な通信を行うことが できる。
図面の簡単な説明
[0120] [図 1]本発明の第 1実施形態に係る指向性切替アンテナの概略構成図
[図 2]本発明の第 1実施形態に係る指向性切替アンテナの指向性切替動作の原理 [図 3] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける G = Dのときの 断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = Dのときのスィッチ切替時の指向性
[図 4] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G≤0のときの 断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G≤0 のときのスィッチ短絡時の指向性
[図 5] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = DZ4のと きの断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = DZ4のときのスィッチ切替時の指向性
[図 6] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = DZ2のと きの断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = DZ2のときのスィッチ切替時の指向性
[図 7] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = 3Z4 X D のときの断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナにおけ る、 G = 3Z4 X Dのときのスィッチ切替時の指向性
圆 8] (a)本発明の第 1実施形態に係る指向性切替アンテナにおける、 G= 19Z20 X Dのときの断面構成図 (b)本発明の第 1実施形態に係る指向性切替アンテナに おける、 G= 19Z20 X Dのときのスィッチ切替時の指向性
[図 9]本発明の第 1実施形態に係る指向性切替アンテナにおける、 0≤G< Dのとき のスィッチ切替時の最大放射方向切替角度
圆 10]音声通話時における無線端末とユーザとの位置関係の一例を示す図
[図 11]データ通信時における無線端末とユーザとの位置関係の一例を示す図 圆 12]音声通話時、データ通信時それぞれにおけるアンテナの放射指向性の一例 を示す図
圆 13]本発明の第 2実施形態に係る指向性切替アンテナの概略構成図
圆 14]本発明の第 2実施形態に係る指向性切替アンテナの概略構成図
圆 15]本発明の第 3実施形態に係る指向性切替アンテナの概略構成図
圆 16]本発明の第 3実施形態に係るスィッチの切り替え動作とアンテナ指向性の関 係を示す図
圆 17]本発明の第 4実施形態に係る指向性切替アンテナの概略構成図
[図 18]本発明の第 4実施形態に係る XY面に折り返し構造を有する放射素子の構成 例を示す図
[図 19]本発明の第 4実施形態に係る YZ面に折り返し構造を有する放射素子の構成 例を示す図
圆 20]本発明の第 4実施形態に係る折り返し構造を有する放射素子を用いた指向性 切替アンテナの概略構成図
圆 21]本発明の第 4実施形態に係る多層構造の誘電体基板を用いた指向性切替ァ ンテナの概略構成図
圆 22]本発明の第 4実施形態に係る誘電体ブロックを用いた指向性切替アンテナの 概略構成図
圆 23]本発明の第 5実施形態に係る無線端末の概略構成図 圆 24]本発明の第 6実施形態に係る指向性切替アンテナの概略構成図
圆 25]本発明の第 6実施形態に係る指向性切替アンテナの指向性切替動作の原理 圆 26]本発明の第 6実施形態に係る指向性切替アンテナの構成の一例を示す図 圆 27] (a)本発明の第 6実施形態に係る指向性切替アンテナにおけるスィッチ切替 時の指向性 (b)本発明の第 6実施形態に係る指向性切替アンテナにおける第 1の 金属導体の長さを変えたときの指向性の一例を示す図
圆 28]本発明の第 6実施形態に係る指向性切替アンテナの構成の一例を示す図 圆 29] (a)本発明の第 6実施形態に係る指向性切替アンテナにおけるスィッチ切替 時の指向性 (b)本発明の第 6実施形態に係る指向性切替アンテナにおける第 1の 金属導体の長さを変えたときの指向性の一例を示す図
圆 30]音声通話時における無線端末とユーザとの位置関係の一例を示す図
[図 31]データ通信時における無線端末とユーザとの位置関係の一例を示す図
[図 32]データ通信時、音声通話時のそれぞれにおけるアンテナの放射指向性の一 例を示す図
圆 33]本発明の第 6実施形態に係る指向性切替アンテナの構成の一例を示す図 圆 34]本発明の第 7実施形態に係る指向性切替アンテナの概略構成図
圆 35]本発明の第 7実施形態に係る指向性切替アンテナにおける、放射素子の長さ 方向に対称に配置したスィッチの指向性
圆 36]本発明の第 7実施形態に係る指向性切替アンテナにおける、放射素子の長さ 方向に非対称に配置したスィッチの指向性
圆 37]本発明の第 8実施形態に係る指向性切替アンテナの概略構成図
圆 38]本発明の第 8実施形態に係るスィッチの切替動作とアンテナ指向性の関係を 示す図
圆 39]本発明の第 9実施形態に係る指向性切替アンテナの概略構成図
圆 40]本発明の第 9実施形態に係る指向性切替アンテナにおける、 XY面に折り返し 構造を有する放射素子の構成例を示す図
圆 41]本発明の第 9実施形態に係る指向性切替アンテナにおける、 YZ面に折り返し 構造を有する放射素子の構成例を示す図 [図 42]本発明の第 9実施形態に係る指向性切替アンテナにおける、 YZ面に折り返し 構造を有する放射素子を用いた指向性切替アンテナの概略構成図
[図 43]本発明の第 9実施形態に係る多層構造の誘電体基板を用いた指向性切替ァ ンテナの概略構成図
[図 44]本発明の第 9実施形態に係る誘電体ブロックを用いた指向性切替アンテナの 概略構成図
[図 45]本発明の第 10実施形態に係る無線端末の概略構成図
[図 46]特許文献 1の従来の指向性切替アンテナの概略構成図
圆 47]特許文献 2の従来の指向性切替アンテナの概略構成図
[図 48]特許文献 3の従来の指向性切替アンテナの概略構成図
[図 49]特許文献 3の従来の指向性切替アンテナの指向性
[図 50]特許文献 4の従来の指向性切替アンテナの概略構成図
[図 51]特許文献 4の従来の指向性切替アンテナの指向性
符号の説明
1 指向性切替アンテナ
2 誘電体基板
3 放射素子
4 給電点
5 第 1の接地導体
6 無給電素子
7 スィッチ
8 第 2の接地導体
9 先端部
10 制御回路
11 ユーザ
12 無線端末
13 表示部
14 操作部 補助素子
反射器
無給電素子 スィッチ
先端部
放射素子
下部導体
折り返し部
上部導体
誘電体基板 誘電体ブロック 送受信部
制御部
アンテナ指向性切替部 、 30 制御信号
1 無給電素子
2 給電素子
3 補助素子
制御素子
1 地板
2 アンテナ素子3〜116 無給電素子7〜120 誘電体基板1 指向性切替アンテナ2 誘電体基板
3 放射素子
給電点
接地導体 206 第一の金属導体
207a, b スィッチ
208 先端部
209 制御回路
210 ーザ
211 無線端末
212 表示部
213 操作部
214 導体片
215 ダイオードスィッチ
216 放射素子
217 下部導体
218 折り返し部
219 上部導体
220 誘電体基板
221 誘電体ブロック
222 送受信部
223 制御部
224 アンテナ指向性切替部
225、 226 制御信号
227 第二の金属導体
301 アンテナエレメント
302 マッチング回路
303 受信回路
304 受信電界強度比較器
305 制御回路
306、 307 アース金属導体
308 高周波スィッチ 311 アンテナ
312 アンテナエレメント
313、 314 アンテナリフレクタ
315 モールド
発明を実施するための最良の形態
[0122] 以下、本発明の実施形態のアンテナ装置およびそのアンテナ装置を用いた無線端 末につ 、て図面を用いて詳細に説明する。
[0123] (第 1実施形態)
図 1は、本発明の第 1実施形態に係る指向性切替アンテナ装置の概略構成図であ り、図 1 (a)は斜視図、図 1 (b)は図 1 (a)の A—A'における断面図である。
指向性切替アンテナ装置 1は、厚さ tの誘電体基板 2と、誘電体基板 2上に配置さ れた線状導体より成る長さ Lの放射素子 3と、給電点 4と、誘電体基板 2上に放射素 子 3と同一平面上に配置された第 1の接地導体 5と、誘電体基板上に放射素子 3と同 一平面上に配置された、放射素子 3と略平行な長さ Ld (<L)の無給電素子 6と、第 1 の接地導体 5と無給電素子 6との間に配置されたスィッチ 7と、誘電体基板 2上でかつ 放射素子 3とは反対側の面に配置された第 2の接地導体 8と、第 2の接地導体 8の先 端部 9と、スィッチ 7の短絡、開放を制御する制御回路 10と、を含む構成である。
[0124] ここで、放射素子 3、第 1の接地導体 5、無給電素子 6、第 2の接地導体 8は、いずれ も誘電体基板 2上に導体パターンにより形成されているものとして説明する。誘電体 基板 2上に形成することで、誘電率による波長の短縮効果の影響でアンテナ装置を 小型化することが可能になり、また安価で、大量生産し易ぐアンテナ特性も安定する という利点がある。
[0125] 以下、本発明の第 1実施形態に係る指向性切替アンテナ装置の動作を説明する。
給電点 4より給電された高周波信号は、放射素子 3より空間中に放射される。ここで、 本実施形態では、放射素子 3をダイポール構成として説明する。図 2は、本発明の指 向性の切替動作の原理を示す。図 2 (a)の(1)のように、放射素子 3の周囲に接地導 体がなければ、アンテナの指向性は図 2 (b)が示す(1)のように、 XZ面内において無 指向性となる。 [0126] 第 1の接地導体 5および無給電素子 6を放射素子 3と同一面上に配置して、制御回 路 10からの制御信号によりスィッチ 7を短絡させて、第 1の接地導体 5と無給電素子 6 を導通させた状態、すなわち、図 2 (a)の(2)のように放射素子 3の周囲を接地導体 で覆った状態とすることによって、アンテナの指向性は図 2 (b)が示す(2)のように、 士 Z方向に最大放射方向を持つ指向性となる。さらに、制御回路 10からの制御信号 によりスィッチ 7を開放させた状態、すなわち、図 2 (a)の(3)のように放射素子 3の周 囲の一部が接地導体から切り離され、無給電素子 6が導波器として作用する状態に おいては、アンテナの指向性は図 2 (b)が示す(3)のように、 +X方向に最大放射方 向を持つ単指向性となる。すなわち、スィッチ 7を短絡または開放させることによって 、アンテナの指向性を約 90度切り替えることが可能となる。
[0127] し力しながら、上記構成では、図 2 (a)の(2)のように、スィッチ 7を短絡した状態に おいて士 Z方向に最大放射方向を持つ双指向性となるため、無線端末の誘電体基 板 2上に(2)の導体パターンのみを搭載すると、 Z方向の人体方向(背面方向の反 対方向)にも放射電磁界が発生し、 SARの劣化を招いてしまう。そこで、図 1に示す ように、誘電体基板 2上で放射素子 3とは反対側の面に、第 2の接地導体 8を設けるこ とによって、スィッチ 7を短絡した状態において Z方向の人体方向への放射電磁界 を遮断し、 +Z方向の単指向性ィ匕を実現することができる。ここで、第 2の接地導体 8 の配置位置力 アンテナの指向性の切り替えに与える影響について詳細に説明する
[0128] 図 1 (b)において、放射素子 3と無給電素子 6との X軸方向における間隔を Dとし、 放射素子 3から第 2の接地導体 8の先端部 9への X軸方向における間隔を Gとする。 このとき、図 3 (a)に示す本発明の第 1実施形態に係る指向性切替アンテナにおける G = Dのときの断面構成図のように、間隔 Gを間隔 Dと同等若しくはそれよりも長くした 場合、スィッチ 7を短絡または開放させた状態でほぼ同等の指向性となる。
図 3 (b)に、本発明の第 1実施形態に係る指向性切替アンテナにおける、 G = Dの ときのスィッチ切替時の指向性を示す。図 3 (b)より、スィッチ 7の切り替え動作によつ て、アンテナの指向性の切り替えがなされていないことが確認される。これは、無給電 素子 6の下部にも第 2の接地導体 8が配置されることで、無給電素子 6が導波器として 動作して!/、な 、ことを示して 、る。
[0129] 一方、図 4 (a)に示す本発明の第 1実施形態に係る指向性切替アンテナ装置にお ける G≤0のときの断面構成図のように、間隔 Gが負の値をとるような場合は、放射素 子 3の下部に第 2の接地導体 8が存在しないため、スィッチ 7を短絡させた状態にお いて、 Z方向にも電磁波が強く放射されてしまう。図 4 (b)は、本発明の第 1実施形 態に係る指向性切替アンテナ装置における、 G≤ 0のときのスィッチ短絡時の指向性 を示しており、間隔 Gがー 2mm、 - lmm, Ommときにおいて、それぞれスィッチ 7短 絡時の指向性を示す図である。図 4 (b)より、間隔 Gがー 2mm、—lmmのときは、 Z方向にも、 +Z方向とほぼ同等の強度の電磁波が放射されていることがわかる。そ れに対して間隔 Gが Ommのときは Z方向の放射電磁界が + Z方向と比べて 5dB程 度抑圧されて!ヽることがゎカゝる。
[0130] 図 5 (a)に示す本発明の第 1実施形態に係る指向性切替アンテナ装置における、 G
= DZ4のときの断面構成図のように、第 2の接地導体 8の先端部 9が X軸方向にお ける放射素子 3と無給電素子 6の間になるように配置することによって、すなわち、間 隔 Gが 0≤G< Dなる関係式を満たすことによって、スィッチ 7を切り替えることにより 所望の指向性切替動作を実現することができる。一例として、周波数 Fにおいて、誘 電率 3. 8、基板厚 t=0. 03えの誘電体基板 2上に長さ L = 0. 7えの放射素子 3を配 置し、放射素子 3から距離 D = 0. 13 λ離れた位置に長さ Ld=0. 6えの無給電素子 6を配置し、さらに放射素子 3と第 2の接地導体 8の先端部 9との X軸方向における間 隔 G力 G = DZ4となる位置のときのスィッチ 7の短絡 Z開放時のそれぞれの指向 性を図 5 (b)に示す。図 5 (b)より、スィッチ 7の切り替え動作によって指向性が約 90 度切り替えられて ヽることがわかる。
[0131] 無給電素子 6を導波器として動作させるためには、放射素子 3と無給電素子 6の間 隔 Dは 0. 25 λ程度離すことが本来望ましいが、間隔 Dを離すとアンテナサイズが大 きくなるため、本実施形態のように、間隔 Dを 0. 25 λ程度離さなくても指向性の切り 替えは可能である。また、無給電素子 6はスィッチ 7が開放状態において導波器とし て作用するように長さが調整されているが、例えば、無給電素子 6の長さを可変でき る構成としておくことによって、導波器の持つリアクタンス成分を調整して、指向性を 可変させることも可能である。無給電素子 6の長さを可変する方法としては、無給電 素子 6を複数の導体片に分割して、それぞれの間にスィッチ 7を配置し、スィッチ 7の 短絡 Z開放によって長さを可変しても良いし、無給電素子 6にバラクタダイオードなど の可変容量素子を付加し、制御電圧に応じて電気的に長さを調節するようにしても 良い。
[0132] 図 5 (b)では、間隔 Gが G = DZ4となるときの、スィッチ切替時の指向性を示したが 、間隔 Gが 0≤G<Dなる関係式を満たす別の場合の例を、図 6から図 8に示す。図 6 に、(a)本発明の第 1実施形態に係る指向性切替アンテナ装置における、 G = D/2 のときの断面構成図、及び (b)本発明の第 1実施形態に係る指向性切替アンテナ装 置における、 G = DZ2のときのスィッチ切替時の指向性を示す。図 7に、(a)本発明 の第 1実施形態に係る指向性切替アンテナ装置における、 G = 3Z4 X Dのときの断 面構成図、及び (b)本発明の第 1実施形態に係る指向性切替アンテナ装置における 、 G = 3Z4 X Dのときのスィッチ切替時の指向性を示す。図 8に、(a)本発明の第 1 実施形態に係る指向性切替アンテナ装置における、 G = 19Z20 X Dのときの断面 構成図、及び (b)本発明の第 1実施形態に係る指向性切替アンテナ装置における、 G= 19Z20 X Dのときのスィッチ切替時の指向性を示す。図 6から図 8の間隔 G以外 の数値は、図 5 (a)で用いた数値と共通している。図 6 (b)、図 7 (b)及び図 8 (b)より、 スィッチ 7の切り替え動作によって指向性が約 90度切り替えられていることを確認で きる。
[0133] また、図 9には、本発明の第 1実施形態に係る指向性切替アンテナ装置における、
DZ2<G<Dのときのスィッチ切替時の指向性切替角度を示す。横軸には GZD 比を、縦軸にはスィッチ切替時における最大放射方向の切替角度を表す指向性切 替角度を、それぞれ示す。図 9は、図 5から図 8が示しているように、 GZDが 0から 1 の間、指向性切替角度が約 90度付近にあることから、 GZDが 0から 1の間であれば 指向性を切り替えることができることを示している。一方、 GZDが 1に近づくにつれて 、スィッチ 7の切り替え動作をしても、アンテナの指向性の切替がなされていないこと が確認される。これは、無給電素子 6の下部に第 2の接地導体 8が接近して配置され るほど、無給電素子 6が導波器として動作しなくなってしまうことを示している。さらに、 GZDが 0付近であっても、指向性切替角度は 90度付近にある力 このときには、図 4 (b)の G = Ommのときのスィッチ短絡時の指向性が示すように、 +Z方向の放射電 磁界と比べると抑圧されてはいるものの、 Z方向にも電磁界が放射されてしまう。こ のため、間隔 Gは、 0または Dとなる付近を除ぐ 0< G< Dの範囲で設定することが好 ましいが、 Z方向への放射を考慮しない場合には、—DZ4< G< Dの範囲で設定 することで、指向性切り替えが可能であることを示している。
[0134] ここで、音声通話およびデータ通信を行う際のユーザと無線端末の位置関係につ いて詳細に説明する。図 10に、音声通話時における無線端末とユーザとの位置関 係の一例を、図 11に、データ通信時における無線端末とユーザとの位置関係の一 例示す。一般に、音声通話を行う際には、ユーザ 11と無線端末 12の間には図 10に 示すような位置関係が想定され、データ通信を行う際には、ユーザ 11と無線端末 12 の間には図 11に示すような位置関係が想定される。
すなわち、音声通話時にはユーザ 11は無線端末 12を頭部側面に隣接させて使用 し、データ通信時にはユーザ 11は無線端末 12の表示部 13の表示内容を確認しな 力 操作部 14を用いて操作するのが一般的である。そのため、無線端末 12に備わ るアンテナ装置の有する指向性としては、図 12に示すように、音声通話時にはアンテ ナ指向性の最大放射方向が無線端末 12の背面方向(表示部 13の表示面に対して 反対方向)となり、データ通信時にはアンテナ指向性の最大放射方向が無線端末 12 の天頂方向(表示部 13の表示面に対して水平方向で、かつ表示内容に対して上方 向)となるよう切り替えられることが望ま 、。
[0135] このような指向性切替機能を無線端末 12が有することで、アンテナ力ゝらの放射電磁 界がユーザ 11の方向を向かないため、 SARの改善にもつながり、またアンテナ利得 の向上も期待できる。よって、図 12における天頂方向が X方向、背面方向が Z方向に 対応するように、無線端末 12内に指向性切替アンテナ装置 1を配置することによって 、音声通話時とデータ通信時でそれぞれ所望の指向性を得ることが可能となる。
[0136] 以上のように、誘電体基板 2上に配置された放射素子 3と同一平面上の周囲に第 1 の接地導体 5および無給電素子 6を配置し、第 1の接地導体 5と無給電素子 6の間に スィッチ 7を配置し、さらに誘電体基板 2を挟んで放射素子 3の下部に第 2の接地導 体 8を設けた構成において、第 2の接地導体 8の先端部 9が放射素子 3と無給電素子 6の間になるように配置され、さらに制御回路 10を用いてスィッチ 7を切り替えることに よって、アンテナの指向性を約 90度切り替えることができるため、無線端末の使用形 態によって指向性を切り替えるアンテナ装置を実現することが可能になるという作用 を有する。
[0137] さらに、本実施形態で示した指向性切替アンテナ装置を用いて無線端末を構成す ることで、無線端末の使用形態に応じてアンテナの指向性を切り替えて無線端末とし ての性能を向上させることができ、信頼性の高い無線通信システムを提供することが 可能となる。
[0138] なお、本実施形態では、放射素子 3を導体パターンにより誘電体基板 2上に形成し ているとして説明したが、ワイヤ等の線状導体や板金加工により放射素子 3を構成し ても良い。
[0139] また、本実施形態では、放射素子 3を直線状のダイポール構成として説明して ヽる 力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0140] また、本実施形態では、誘電体基板 2上に放射素子 3、第 1の接地導体 5、無給電 素子 6、第 2の接地導体 8が形成されているとしたが、誘電体基板を必ずしも使用す る必要はない。例えば放射素子 3、無給電素子 6、接地導体 5、 8等を板金加工により 製作し、発泡材等を使用して各構成要素を発泡材等に固定していっても良い。
[0141] また、本実施形態では、第 2の接地導体 8を、誘電体基板 2上でかつ放射素子 3と 反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 2上ではなく 、誘電体基板 2から一定の距離を離れた無線端末 12の筐体上に第 2の接地導体を 配置しても良い。このような構成とすることで、放射素子 3と第 2の接地導体 8の間隔を 広く取ることができ、アンテナの整合を合わせ易くなるという利点がある。
また、本実施形態では、スィッチ 7の構成について特に触れていないが、ダイオード スィッチや FETスィッチ、 MEMSスィッチ等を使用することが可能である。
[0142] (第 2実施形態)
図 13は、本発明の第 2実施形態に係る指向性切替アンテナ装置の概略構成図で あり、図 13 (a)は斜視図、図 13 (b)は図 13 (a)の A— A'における断面図である。図 1 3において、補助素子 15を含む構成である。その他の構成は、第 1実施形態と同じで あるため説明を省略する。
[0143] 以下、本発明の第 2実施形態に係る指向性切替アンテナ装置の動作を説明する。
基本動作は第 1実施形態で説明したとおりであるため省略するが、無給電素子 6の 両端部に補助素子 15を配置して、スィッチ 7を無給電素子 6と補助素子 15の間に配 置した構成とする。ここで、補助素子 15は、スィッチ 7を短絡させたときに無給電素子 6と補助素子 15を合わせた長さが、放射素子 3に対して反射器として作用するように 長さを設定する。このような構成とすることで、スィッチ 7を開放させたときは、無給電 素子 6が導波器として作用して指向性が +X方向となり、スィッチ 7を短絡させたとき は、無給電素子 6が反射器として作用して指向性が +Z方向となるため、放射素子 3 の周囲を接地導体で覆った状態と同等の効果が得られる。
[0144] 以上のように、無給電素子 6の両端に補助素子 15を設け、制御回路 10を用いてス イッチ 7を切り替えて無給電素子 6を導波器と反射器で切り替えることにより、アンテ ナの指向性を約 90度切り替えることができるため、使用形態によって指向性を切り替 えるアンテナ装置を実現することが可能になるという作用を有する。
[0145] さらに、本実施形態で示した指向性切替アンテナ装置を用いて無線端末を構成す ることで、使用形態に応じてアンテナの指向性を切り替えて無線端末としての性能を 向上させることができ、信頼性の高い無線通信システムを提供することが可能となる。
[0146] なお、本実施形態では、放射素子 3を導体パターンにより誘電体基板 2上に形成し ているとして説明した力 その限りではなぐワイヤ等の線状導体や板金加工により放 射素子 3を構成しても良い。
[0147] また、本実施形態では、放射素子 3を直線状のダイポール構成として説明して ヽる 力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0148] なお、本実施形態では放射素子 3の X方向には第 1の接地導体 5が配置されて いる構成として説明したが、図 14に示すように、第 1の接地導体 5の代わりに反射器 1 6を用いても同様の効果が得られる。
[0149] また、本実施形態では、誘電体基板 2上に放射素子 3、第 1の接地導体 5、無給電 素子 6、第 2の接地導体 8、補助素子 15が形成されているとしたが、誘電体基板を必 ずしも使用する必要はない。例えば放射素子 3、無給電素子 6、接地導体 5、 8、補助 素子 15等を板金加工により製作し、発泡材等を使用して各構成要素を発泡材等に 固定していっても良い。
[0150] また、本実施形態では、第 2の接地導体 8を、誘電体基板 2上でかつ放射素子 3と 反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 2上ではなく 、誘電体基板 2から一定の距離を離れた無線端末 12の筐体上に、第 2の接地導体を 配置しても良い。このような構成とすることで、放射素子 3と第 2の接地導体 8の間隔を 広く取ることができ、アンテナの整合を合わせ易くなるという利点がある。
また、本実施形態では、スィッチ 7の構成について特に触れていないが、ダイオード スィッチや FETスィッチ、 MEMSスィッチ等を使用することが可能である。
[0151] (第 3実施形態)
図 15は、本発明の第 3実施形態に係る指向性切替アンテナ装置の概略構成図で あり、図 15 (a)は斜視図、図 15 (b)は図 15 (a)の A— A'における断面図である。図 1 5において、指向性切替アンテナ装置 1は、補助素子 15、無給電素子 17、スィッチ 1 8、第 2の接地導体 8の無給電素子 17側の先端部 19を含む構成である。その他の構 成は第 1実施形態と同じであるため説明を省略する。
[0152] 以下、本発明の第 3実施形態に係る指向性切替アンテナ装置 1の動作を説明する 。基本動作は第 1実施形態で説明したとおりであるため省略するが、無給電素子 6の 両端部に補助素子 15を配置して、スィッチ 7を無給電素子 6と補助素子 15の間に配 置した構成とする。ここで、補助素子 15は、スィッチ 7を短絡させたときに、無給電素 子 6と補助素子 15を合わせた長さが、放射素子 3に対して反射器として作用するよう に長さを設定する。
また、第 1の接地導体 5の代わりに、無給電素子 6と同じ長さの無給電素子 17を設 け、その両端部にも補助素子 15を配置し、スィッチ 18を無給電素子 17と補助素子 1 5の間に配置した構成とする。また、放射素子 3と無給電素子 17の間隔を、放射素子 3と無給電素子 6の間隔 Dと等しくし、さらに第 2の接地導体 8の無給電素子 17側先 端部 19と放射素子 3の +X軸方向における間隔 Gも、第 2の接地導体 8の無給電素 子 6側先端部 9と放射素子 3の +X軸方向における間隔 Gと等しくする。すなわち、放 射素子 3を含む YZ面にぉ 、て対称な構造となるように配置する。
[0153] このとき、制御回路 10を用いてスィッチ 7、スィッチ 18を制御して指向性切替を行う 力 この点について詳細に説明する。図 16にスィッチ 7、 18の短絡 Ζ開放動作とアン テナ指向性との関係を示す。スィッチ 7、 18を両方短絡させた場合は、無給電素子 6 、 17が共に反射器として動作するため、アンテナの指向性は図 11における +Ζ方向 となる。
次にスィッチ 7を短絡させ、スィッチ 18を開放させると、無給電素子 6は反射器、無 給電素子 17は導波器として動作するため、アンテナの指向性は図 15における X 方向となる。次にスィッチ 7を開放させ、スィッチ 18を短絡させると、無給電素子 6は 導波器、無給電素子 17は反射器として動作するため、アンテナの指向性は図 15に おける +Χ方向となる。また、スィッチ 7、 18を両方開放させた場合は、無給電素子 6 、 17が共に導波器として動作するため、アンテナの指向性としては、最大放射方向 は + Ζ方向だが、ほぼ無指向性の特性が得られる。
[0154] 以上のように、無給電素子 6、 17の両端に補助素子 15を設け、さらに制御回路 10 を用いて無給電素子 6、 17をスィッチ 7、 18の切り替え動作により導波器と反射器で 切り替えるように制御することによって、アンテナの指向性を ±Χ方向と +Ζ方向に 90 度ずつ切り替えることができるため、無線端末の使用形態によって、例えばデータ通 信時に、放射方向がユーザに向力うように無線端末が配置されていても、ユーザに 向力う方向とは逆の ±Χ方向を選択して、指向性を切り替えるアンテナ装置を実現す ることが可能になるという作用を有する。
[0155] さらに、本実施形態で示した指向性切替アンテナ装置を用いて無線端末を構成す ることで、使用形態に応じてアンテナの指向性を切り替えて無線端末としての性能を 向上させることができ、信頼性の高い無線通信システムを提供することが可能となる。
[0156] なお、本実施形態では、放射素子 3を導体パターンにより誘電体基板 2上に形成し ているとして説明した力 その限りではなぐワイヤ等の線状導体や板金加工により放 射素子 3を構成しても良い。
[0157] また、本実施形態では、放射素子 3を直線状のダイポール構成として説明して ヽる 力 その限りではなぐ例えば、メアンダライン状に構成しても良い。 [0158] また、本実施形態では、誘電体基板 2上に放射素子 3、無給電素子 6、 17、第 2の 接地導体 8、補助素子 15が形成されているとしたが、誘電体基板を必ずしも使用す る必要はない。例えば放射素子 3、無給電素子 6、 17、接地導体 8、補助素子 19等 を板金加工により製作し、発泡材等を使用して各構成要素を発泡材等に固定してい つても良い。
[0159] また、本実施形態では、第 2の接地導体 8を誘電体基板 2上でかつ放射素子 3と反 対側の面に導体パターンにより形成しているが、例えば、誘電体基板 2上ではなぐ 誘電体基板 2から一定の距離はなれた無線端末 12の筐体上に第 2の接地導体を配 置しても良い。このような構成とすることで、放射素子 3と第 2の接地導体 8の間隔を広 く取ることができ、アンテナの整合を合わせ易くなるという利点がある。
また、本実施形態では、スィッチ 7の構成について特に触れていないが、ダイオード スィッチや FETスィッチ、 MEMSスィッチ等を使用することが可能である。
[0160] (第 4実施形態)
図 17は、本発明の第 4実施形態に係る指向性切替アンテナ装置の概略構成図で あり、図 17 (a)は斜視図、図 17 (b)は図 17 (a)の A— A'における断面図である。図 1 7において、指向性切替アンテナ装置 1は、折り返し構造を有する放射素子 20を含 む構成である。その他の構成は第 1実施形態と同じであるため説明を省略する。
[0161] 以下、本発明の第 4実施形態に係る指向性切替アンテナ装置の動作を説明する。
例えば、図 1において、放射素子 3と第 2の接地導体 8は、誘電体基板 2の厚さ t=0. 008 λ離して配置されている。このように、放射素子 3の極近傍に接地導体 8を配置 すると、放射素子 3の入力インピーダンスが、接地導体 8がない状態と比較して極端 に小さくなつてしまう。
[0162] 一方、放射素子 3を放射素子 20のような折り返し構成にすると、放射素子の入カイ ンピーダンスを高くすることができる。例えば、図 18 (b)の 2重折り返しダイポールの 入力インピーダンスは、図 18 (a)に示す一般的なダイポールアンテナの入力インピ 一ダンスの 4倍となり、図 18 (c)のような 3重折り返しダイポールの入力インピーダンス は、一般的なダイポールアンテナの入力インピーダンスの 8倍となる。そこで、図 17の ように折り返し構造の放射素子 20を用いることで、給電点 4でのアンテナの入力イン ピーダンスを高くすることができ、 50 Ω系のマイクロストリップ線路や同軸線路との整 合をとり易くなる。
[0163] 以上のように、放射素子 20を折り返し構造とし、さらに制御回路 10を用いてスイツ チ 7を切り替えることによって、アンテナの指向性を約 90度切り替えながら、アンテナ の入力インピーダンスを高くして整合をとり易くすることができ、無線端末の使用形態 によって指向性を切り替えるアンテナ装置を実現することが可能になるという作用を 有する。
[0164] さらに、本実施形態で示した指向性切替アンテナ装置を用いて無線端末を構成す ることで、使用形態に応じてアンテナの指向性を切り替えて無線端末としての性能を 向上させることができ、信頼性の高い無線通信システムを提供することが可能となる。
[0165] なお、本実施形態では、放射素子 20を導体パターンにより誘電体基板 2上に形成 しているが、その限りではなぐワイヤ等の線状導体や板金加工により放射素子 3を 構成しても良い。
[0166] また、本実施形態では、放射素子 3を直線状のダイポール構成として説明して ヽる 力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0167] また、本実施形態では、誘電体基板 2上に放射素子 20、第 1の接地導体 5、無給 電素子 6、第 2の接地導体 8が形成されているとしたが、誘電体基板を必ずしも使用 する必要はない。例えば放射素子 20、無給電素子 6、接地導体 5、 8等を板金加工 により製作し、発泡材等を使用して各構成要素を発泡材等に固定していっても良い。
[0168] また、本実施形態では、第 2の接地導体 8を誘電体基板 2上でかつ放射素子 20と 反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 2上ではなく 、誘電体基板 2から一定の距離はなれた無線端末 12の筐体上に第 2の接地導体を 配置しても良い。このような構成とすることで、放射素子 3と第 2の接地導体 8の間隔を 広く取ることができ、アンテナの整合を合わせ易くなるという利点がある。
[0169] また、本実施形態では、放射素子 3、 20を XY面上の 2次元構造としている力 その 限りではなぐ例えば図 19 (a)、 (b)のように放射素子 3、 20の端部を折り返した構成 としても良い。このような折り返し構成とすることで、アンテナ長を短くすることができ、 アンテナの小型化が可能となる。 [0170] ここで、図 19 (a)、(b)のような YZ面上に折り返されたアンテナの製作法について 説明する。最も簡易に製作する方法としては、図 20に示すように、板金加工により製 作できる。ここで、放射素子を構成する下部導体 21、折り返し部 22、上部導体 23の すべてを、一体的に板金加工により製作しても良いし、下部導体 21は誘電体基板 2 上に導体パターンにより形成しておき、折り返し部 22、上部導体 23のみを板金加工 により製作しても良い。
また、板金加工以外にも、例えば図 21に示すように、誘電体基板 2上に新たに誘電 体基板 24を設け、下部導体 21は誘電体基板 2、 24に挟まれた面状に導体パターン により形成し、上部導体 23は誘電体基板 24上でかつ誘電体基板 2と反対側の面に 導体パターンにより形成し、折り返し部 22を、誘電体基板 24を貫通するスルーホー ル等で形成して、下部導体 21と上部導体 23を電気的に接続するような構成としても 良い。
[0171] このような構成とすることで、多層基板を用いて指向性切替アンテナ装置を製作す ることができる。また、図 22に示すように、セラミック等の高誘電体材料で形成された 誘電体ブロック 25上に、下部導体 21、折り返し部 22、上部導体 23をそれぞれパタ ーンにより形成した構成としても良い。このような構成とすることで、アンテナ装置を非 常に小型化することができる。さらに、誘電体ブロック 25上に無給電素子 6、接地導 体 5もパターンにより形成することで、指向性切替機能を有する誘電体アンテナを製 作することができる。
[0172] (第 5実施形態)
図 23に、本発明の実施形態の無線端末の概略構成図を示す。図 23において、無 線端末 12は、データ通信および音声通話を行う周波数帯に設定された送受信部 26 、制御部 27、アンテナ指向性切替部 28を含む構成である。
[0173] 以下、本発明の実施形態の無線端末の動作を説明する。例えば、屋内で無線端 末を使用する際には、壁などの障害物によりマルチパス環境が発生することが想定さ れる。このような状況下では、ダイバーシチ受信することによってマルチパス環境にも 対応することができる。一般的なダイバーシチ受信としては、複数のアンテナを空間 的に離して配置することで構成されるが、複数のアンテナを用いるとアンテナの実装 面積が大きくなるば力りでなぐ複数のアンテナを選択するためのアンテナスィッチを 使用するため、アンテナスィッチの実装面積も必要となる。
[0174] そこで、第 1実施形態力 第 4実施形態で説明した指向性切替アンテナ装置 1を用 いることで、アンテナの実装面積は単体アンテナ相当に保ちながら、指向性ダイバー シチを行うことができる。この点について詳細に説明する。
[0175] 図 23において、無線端末 12は、指向性切替アンテナ 1、送受信部 26、制御部 27 、アンテナ指向性切替部 28で構成される。このような構成において、受信時には、指 向性切替アンテナ 1で受信された高周波信号は、送受信部 26にて周波数変換、復 調され、制御部 27に伝送される。このとき、制御部 27では、指向性切替アンテナ 1の 指向性を切り替えた、それぞれの場合における受信電力をモニタし、受信電力のより 大きいアンテナ指向性となるように、制御信号 29をアンテナ指向性切替部 28に送信 する。アンテナ指向性切替部 28では制御部 27からの制御信号 29に基づいて、どち らの指向性のときに受信感度が良いか判定し、より受信感度の良い指向性となるよう に、指向性切替アンテナ 1の指向性を切り替えるように制御信号 30を送信する。指向 性切替アンテナ 1は、制御信号 30によって所望の指向性となるように切り替えられる 。一方、送信時には、制御部 27から伝送された信号を、送受信部 26にて、変調、周 波数変換して、指向性切替アンテナ 1から送信する。このとき、指向性切替アンテナ 1 の指向性は受信時に選択した指向性を使用する。
[0176] 以上のように、指向性切替アンテナ 1、送受信部 26、制御部 27、アンテナ指向性 切替部 28を用いて無線端末を構成することで、アンテナ 1つでダイバーシチ受信を 可能とするため、小型で高性能な無線端末を実現することが可能になるという作用を 有する。
[0177] なお、本実施形態では、送信時には指向性切替アンテナ 1を受信時と同じ指向性 で使用するとして説明したが、その限りではなぐ受信時には指向性切替アンテナ 1 を用いてダイバーシチ受信を行 ヽ、送信時には指向性切替アンテナからの放射電磁 界カ 無線端末 12を使用するユーザ 11の方向を向かな 、ように設定するようにして も良い。例えば、音声通話時には、送信時に指向性切替アンテナ 1の指向性最大放 射方向が、無線端末 12の背面方向に固定され、データ通信時には、送信時に指向 性切替アンテナ 1の指向性最大放射方向が、無線端末 12の天頂方向に固定される ような構成としても良い。
[0178] また、本実施形態では、第 1実施形態から第 4実施形態で説明した指向性切替アン テナ装置 1を用いた無線端末 12について説明したが、その限りではなぐアンテナの 指向性を無線端末 12に対して天頂方向(表示部 13の表示面に対して水平方向で、 かつ表示内容に対して上方向)と背面方向(表示部 13の表示面に対して反対方向) で約 90度切り替えることができれば、どのような構成のアンテナ装置を用いても良い
[0179] (第 6実施形態)
図 24は、本発明の第 6実施形態に係る指向性切替アンテナ装置の概略構成図で あり、図 24 (a)は斜視図、図 24 (b)は A—A'における断面図である。図 24において 、指向性切替アンテナ装置は、指向性切替アンテナ 201、厚さ tの誘電体基板 202、 誘電体基板 202上に配置された線状導体より成る長さ Lの放射素子 203、給電点 20
4、誘電体基板 202上でかつ放射素子 203とは反対側の面に配置された接地導体 2
05、誘電体基板 202上の接地導体 205と同一面上に配置され、放射素子 203と平 行でかつ接地導体 205と電気的に絶縁して配置された長さ Lm、幅 Wmの第 1の金 属導体 206、は接地導体 205と第 1の金属導体 206の間に配置されたスィッチ 207a 、接地導体 205の第 1の金属導体 206側の先端部 208、スィッチ 207aの短絡、開放 を制御する制御回路 209を含む構成である。
ここで、放射素子 203、接地導体 205、第 1の金属導体 206は、いずれも誘電体基 板 202上に、導体パターンにより形成されているものとして説明する。誘電体基板 20 2上に形成することで、誘電率による波長の短縮効果の影響でアンテナを小型化す ることが可能になり、また安価で大量生産し易ぐアンテナ特性も安定するという利点 が得られる。
[0180] 以下、本発明の第 6実施形態に係る指向性切替アンテナ装置の動作を説明する。
給電点 204より給電された高周波信号は、放射素子 203より空間中に放射される。こ こで、本実施形態では、放射素子 203をダイポールアンテナ構成として説明する。図 25は、本発明の指向性の切替動作の原理を示す。 図 25 (a)の(1)のように、放射素子 203の下部に接地導体 205が存在する場合、ァ ンテナの指向'性は、図 25 (b)の(1)のように、 +Z方向に最大放射方向を持つ単指 向性となる。次に図 25 (a)の(2)のように、接地導体 205が放射素子 203に対して + X方向の領域に存在しない場合、アンテナの指向性は、図 25 (b)の(2)のように、 + X方向に最大放射方向を持つ単指向性となる。さらに図 25 (a)の(3)のように、第 1の 金属導体 206が、接地導体 205から電気的に絶縁した状態で、放射素子 203に対し て +X方向に配置した場合も、第 1の金属導体 206の長さ Lm、 Wmを適切に調整す ることで、アンテナの指向'性は、図 25 (b)の(2)とほぼ同様で、 +X方向に最大放射 方向を持つ単指向性となる。
よって、接地導体 205と第 1の金属導体 206をスィッチ 207aで接続し、スィッチ 207 aを短絡すれば、第 1の金属導体 206は接地導体 205として動作して、図 25 (b)の(1 )のように +Z方向に最大放射方向を持つ指向性となる。また、スィッチ 207aを開放 すれば、第 1の金属導体 206は放射素子 203に対する導波器として動作して、図 25 (b)の(3)のように +X方向に最大放射方向を持つ指向性となる。このため、スィッチ 207aの切替によりアンテナの指向性を約 90度切り替えることができる。ここで、アン テナの指向性を切り替えるには、接地導体 205、第 1の金属導体 206のサイズ、さら に放射素子 203と接地導体 205、第 1の金属導体 206の相対的な位置関係が重要 となるが、この点について詳細に説明する。
[0181] 図 26の本発明の第 6実施形態に係る指向性切替アンテナの構成の一例に示すよ うに、放射素子 203の長さを L、第 1の金属導体 206の Y方向の長さを Lm、 X方向の 幅を Wm、放射素子 203と接地導体 205の第 1の金属導体 206側の先端部 208との X方向の間隔を D ( + X方向を正とする)、接地導体 205と第 1の金属導体 206の間 隔を swとする。このとき、放射素子 203から接地導体 205の第 1の金属導体 206側の 先端部 208への X方向の間隔 Dが正の場合と、負の場合とではアンテナ装置の動作 が異なるので、それぞれについて説明する。
[0182] まず、間隔 Dが正の場合について考える。図 26に示すように、放射素子 203の下 部には接地導体 205が存在するため、スィッチ 207aを短絡させ第 1の金属導体 206 を接地導体として動作させた場合は、そのまま +Z方向に最大放射方向を持つ単指 向性となる。一方、スィッチ 207aを開放し第 1の金属導体 206を接地導体力も切り離 した場合に、アンテナの最大放射方向が +X方向とするには、第 1の金属導体 206 が放射素子 203に対して導波器として動作するように、 Lmを設定することで実現でき る。
[0183] 図 27は、本発明の第 6実施形態に係る指向性切替アンテナにおける指向性である 。図 27 (a)は、誘電率 3. 8、厚さ t=0. 5mm (0. 02 λ )の誘電体基板 202上に長さ L= 16. 5mm (0. 54 λ )の放射素子 203を配置した状態で、間隔 D = 2mm (0. 06 λ )、第 1の金属導体 206の長さ Lm= 19mm (0. 62 λ )、幅 Wm= 2mm (0. 06 λ ) 、接地導体 205と第 1の金属導体 206の間隔 sw= lmm (0. 03 λ )の場合において 、スィッチ 207a切り替え時の指向性を示す図である。
また、図 27 (b)は上記パラメータのうち、第 1の金属導体 206の長さ Lmをそれぞれ 13mm (0. 42え)、 21mm (0. 68 λ )としたときのスィッチ 207a開放時の旨向'性を 示す図である。図 27 (a)より、第 1の金属導体 206の長さ Lm= 19mmのときは、スィ ツチ 207aの切り替え動作によってアンテナの指向性が約 90度切り替えられており、 導波器として動作するような長さに設定された第 1の金属導体 206によって、指向性 切り替えが可能であることがわかる。一方、図 27 (b)より第 1の金属導体 206の長さ L mを 13mm、 21mmとしたときは、スィッチ 207aの開放時において、アンテナの最大 放射方向が +X方向を向いていないことが確認できる。
すなわち、第 1の金属導体 206の長さ Lmが 13mmでは導波器として十分な動作を するには短すぎ、逆に第 1の金属導体 206の長さ Lmが 21mmでは第 1の金属導体 2 06が反射器として動作してしまい、 +X方向への放射を抑圧していることがわかる。こ れは、第 1の金属導体 206を導波器として使用する際には、約 0. 42 λ力 0. 68 λ の範囲に設定する必要があることを示して 、る。
[0184] 次に、間隔 Dが負の場合について考える。図 28の本発明の第 6実施形態に係る指 向性切替アンテナの構成の一例に示すように、放射素子 203の下部には接地導体 2 05が存在しな 、ため、スィッチ 207aを短絡したときに最大放射方向を + Z方向とす るためには、第 1の金属導体 206が放射素子 203の下部に存在するような構成とす る必要がある。すなわち、接地導体 205と第 1の金属導体 206の間隔 swと第 1の金 属導体 206の幅 Wmの和を、間隔 Dよりも大きくすることで、放射素子 203の下部に 第 1の金属導体 206を配置することができる。
[0185] 図 29は、本発明の第 6実施形態に係る指向性切替アンテナにおける指向性である 。図 29 (a)は誘電率 3. 8、厚さ t=0. 5mm (0. 02 λ )の誘電体基板 202上に、長さ L= 16. 5mm (0. 54 λ )の放射素子 203を配置した状態で、間隔 D=— 2mm(— 0 . 06 λ )、第 1の金属導体 206の長さ Lm= 19mm (0. 62 λ )、幅 Wm=4mm (0. 1 2 λ )、接地導体 205と第 1の金属導体 206の間隔 sw= lmm (0. 03 λ )の場合にお いて、スィッチ 207a切り替え時の指向性を示す図である。また、図 29 (b)は上記パラ メータのうち、第 1の金属導体 206の長さ Lmを、放射素子 203の長さ Lより短い 10m m (0. 32 λ )としたときのスィッチ短絡時の指向性を示す図である。
図 29 (a)より、第 1の金属導体 206の長さ Lmが 19mmのときは、スィッチ 207aの切 り替え動作によって、アンテナの指向性が約 90度切り替えられて 、ることがわ力る。 一方、図 29 (b)より第 1の金属導体 206の長さ Lmが放射素子 203より短い 10mmの ときは、スィッチ 207aの短絡時において、アンテナの最大放射方向が +Z方向を向 いていないことが確認できる。すなわち、第 1の金属導体 206の長さ Lmが放射素子 2 03の長さ Lに対して短いと、スィッチ 207aの短絡時に、第 1の金属導体 206が接地 導体として十分に動作していないことがわかる。よって、第 1の金属導体 206の長さ L mは、放射素子 203の長さ Lよりも長くすることが望ま U、。
[0186] ここで、音声通話およびデータ通信を行う際のユーザと無線端末の位置関係につ いて詳細に説明する。図 30に、音声通話時における無線端末とユーザとの位置関 係の一例を、図 31に、データ通信時における無線端末とユーザとの位置関係の一 例示す。一般に、音声通話を行う際には、ユーザ 210と無線端末 11の間には図 30 に示すような位置関係が想定され、データ通信を行う際には、ユーザ 210と無線端末 211の間には図 31に示すような位置関係が想定される。
すなわち、音声通話時にはユーザ 210は無線端末 211を頭部側面に隣接させて 使用し、データ通信時にはユーザ 210は無線端末 211の表示部 212の表示内容を 確認しながら操作部 213を用いて操作するのが一般的である。そのため、無線端末 2 11に備わるアンテナ装置の有する指向性としては、図 32に示すように、音声通話時 にはアンテナ指向性の最大放射方向が無線端末 211の背面方向(表示部 212の表 示面に対して反対方向)となり、データ通信時にはアンテナ指向性の最大放射方向 が無線端末 211の天頂方向(表示部 212の表示面に対して水平方向で、かつ表示 内容に対して上方向)となるよう切り替えられることが望ま U、。
[0187] このような指向性切替機能を無線端末 211が有することで、アンテナ力 の放射電 磁界がユーザ 210の方向を向かないため、 SARの改善にもつながり、またアンテナ 利得の向上も期待できる。よって、図 32における天頂方向が X方向、背面方向が Z方 向に対応するように、無線端末 212内に指向性切替アンテナ 201を配置することによ つて、音声通話時とデータ通信時でそれぞれ所望の指向性を得ることが可能となる。
[0188] 以上のように、誘電体基板 202上に配置された放射素子 203と、誘電体基板 202 上でかつ放射素子 203とは反対側の面に配置された接地導体 205と、誘電体基板 2 02上の接地導体 205と同一面上に配置され、放射素子 203と平行でかつ接地導体 205と電気的に絶縁して配置された第 1の金属導体と、接地導体 205と第 1の金属導 体 206の間に配置されたスィッチ 207aとで構成され、さらに制御回路 210を用いて スィッチ 207aの短絡、開放を切り替えることによって、アンテナの指向性を約 90度切 り替えることができるため、無線端末の使用形態によって指向性を切り替えるアンテ ナを実現することが可能になるという作用を有する。
[0189] さらに、本実施形態で示した指向性切替アンテナを用いて無線端末を構成すること で、無線端末の使用形態に応じてアンテナの指向性を、切り替えて無線端末として の性能を向上させることができ、信頼性の高い無線通信システムを提供することが可 能となる。
[0190] なお、本実施形態では、放射素子 203を導体パターンにより誘電体基板 202上に 形成しているとして説明したが、ワイヤ等の線状導体や板金加工により放射素子 203 を構成しても良い。
[0191] また、本実施形態では、放射素子 203を直線状のダイポール構成として説明してい る力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0192] また、本実施形態では、誘電体基板 202上に放射素子 203、接地導体 205、第 1 の金属導体 206が形成されて ヽるとしたが、誘電体基板 202を必ずしも使用する必 要はない。例えば、放射素子 203、接地導体 205、第 1の金属導体 206を板金加工 により製作し、発泡材等を使用して書く構成要素を発泡材等に固定していっても良い
[0193] また、第 1の金属導体 206が、スィッチ 207aが開放状態において、導波器として作 用するように長さが設定されているが、例えば、第 1の金属導体 206の長さを可変で きる構成としておくことによって、導波器の持つリアクタンス成分を調整して、指向性を 可変させることも可能である。
第 1の金属導体 206の長さを可変する方法としては、第 1の金属導体 206を長さ方 向に対して複数の導体片に分割して、それぞれの間にスィッチ 207aを配置し、スイツ チ 207aの短絡 Z開放によって長さを可変しても良いし、第 1の金属導体 206にバラ クタダイオードなどの可変容量素子を付加し、制御電圧に応じて電気的に長さを調 整するようにしても良い。
[0194] また、本実施形態では、接地導体 205、および第 1の金属導体 206を、誘電体基板 202上でかつ放射素子 203と反対側の面に導体パターンにより形成されているが、 例えば、誘電体基板 202上ではなぐ誘電体基板 202から一定の距離離れた無線端 末 211の筐体上に配置しても良い。このような構成とすることで、放射素子 203と接地 導体 205の間隔を広く取ることができ、接地導体 205が放射素子 203の下部に存在 する場合にアンテナの整合を合わせ易くなるという利点がある。
[0195] また、第 1の金属導体 206の幅 Wmを変えることによって、スィッチ 207a短絡時の 指向性が変化することを利用して、スィッチ 207aを短絡、開放で切り替えたときのァ ンテナの指向性切替角度を調整することができる。例えば図 33の本発明の第 6実施 形態に係る指向性切替アンテナの構成を一例に示すように、第 1の金属導体 206を X軸方向に対して複数の導体片 214に分割し、それぞれの導体片をスィッチ 207aで 接続するような構成としても良い。
[0196] (第 7実施形態)
図 34は、本発明の第 7実施形態に係る指向性切替アンテナの概略構成図である。 図 34において、指向性切替アンテナは、ダイオードスィッチ 215を含む構成である。 その他の構成は、第 6実施形態と同じであるため説明を省略する。 [0197] 以下、本発明の第 7実施形態に係る指向性切替アンテナの動作を説明する。基本 動作は第 6実施形態で説明したとおりであるため説明を省略するが、図 34に示すよう に、接地導体 205と第 1の金属導体 206との間を、ダイオードスィッチ 215で複数箇 所接続した構成とする。
このような構成とすることで、ダイオードスィッチ 215を短絡させたときは、第 1の金属 導体 206は接地導体 205として動作して指向性が +Z方向となり、ダイオードスィッチ 215を開放させたときは、第 1の金属導体 206は放射素子 203に対する導波器として 動作して、指向性が +X方向となり、ダイオードスィッチ 215の切替によりアンテナの 指向性を約 90度切り替えることができる。しかし、このとき、ダイオードスィッチ 215の 実装位置によって指向特性に影響が出るため、この点について詳細に説明する。
[0198] 2個のダイオードスィッチ 215を、給電点 204から士 Y方向それぞれに dl、 d2だけ ずらして実装した場合について考える。図 35は、誘電率 3. 8、厚さ t=0. 5mm (0. 02 λ )の誘電体基板 202上に、長さ L= 16. 5mm (0. 54 λ )の放射素子 203を配 置した状態で、第 1の金属導体 206の長さ Lm= 19mm (0. 62 λ )、幅 Wm=4mm ( 0. 12 λ )、接地導体 205と第 1の金属導体 206の間隔 sw= lmm (0. 03 λ )の場合 において、ダイオードスィッチ 215の実装位置を dl = d2 = dとして、 dを変更したとき のそれぞれのダイオードスィッチ 215を短絡させた状態の指向性を示す図である。 図 35において、 refは接地導体 205と第 1の金属導体 206を理想的に全面電気的 に接続した状態である。 d= 2mmのときは、指向性が +Z方向を向いておらず、ダイ オードスィッチ 215を短絡させても、第 1の金属導体 206が接地導体 205として動作 していないことがわかる。しかし、 dを大きくしてダイオードスィッチ 215の実装位置が ほぼ放射素子 203の両端部の下部に相当する d= 7mmとすると、指向性は refとほ ぼ同等の特性となり、 +Z方向に最大放射方向を持つ単指向性が得られていること が確認できる。
放射素子 203の両端部は最も電位の高 ヽ場所であり、この位置付近で接地導体 2 05と第 1の金属導体 206を電気的に接続することにより、理想的に全面電気的に接 続した状態とほぼ等価となることから、ダイオードスィッチ 215の実装位置を放射素子 203の高電位箇所の下部にすることが望ましい。 [0199] 以上のように、接地導体 205と第 1の金属導体 206の間にダイオードスィッチ 215を 2個配置し、さらにダイオードスィッチ 215の実装位置を放射素子 203の高電位付近 に設定することで、スィッチの短絡、開放によりアンテナの指向性を約 90度切り替え ることができるため、無線端末の仕様形態によって指向性を切り替えるアンテナを実 現することが可能になるという作用を有する。
[0200] さらに、本実施形態で示した指向性切替アンテナを用いて無線端末を構成すること で、無線端末の使用形態に応じてアンテナの指向性を切り替えて、無線端末として の性能を向上させることができ、信頼性の高い無線通信システムを提供することが可 能となる。
[0201] なお、本実施形態では、放射素子 203を、導体パターンにより誘電体基板 202上 に形成しているとして説明したが、その限りではなぐワイヤ等の線状導体や板金カロ ェにより放射素子 203を構成しても良い。
[0202] また、本実施形態では、放射素子 203を直線状のダイポール構成として説明して ヽ る力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0203] また、本実施形態では、誘電体基板 202上に放射素子 203、接地導体 205、第 1 の金属導体 206が形成されて ヽるとしたが、誘電体基板を必ずしも使用する必要は ない。例えば放射素子 203、接地導体 205、第 1の金属導体 206を板金加工により 製作し、発泡材等を使用して各構成要素を発泡材等に固定していっても良い。
[0204] また、本実施形態では、接地導体 205を、誘電体基板 202上でかつ放射素子 203 と反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 202上で はなぐ誘電体基板 202から一定の距離を離れた無線端末 211の筐体上に接地導 体 205を配置しても良い。このような構成とすることで、放射素子 203と接地導体 205 の間隔を広く取ることができ、接地導体 205が放射素子 203の下部に存在する場合 にアンテナの整合を合わせ易くなるという利点がある。
[0205] また、本実施形態では、ダイオードスィッチ 215をスイッチング素子として使用して いるが、その限りではなぐ FETスィッチや MEMS技術を用いたスィッチ等、その他 のスィッチ回路を用いても良 、。
[0206] また、本実施形態では、 2個のダイオードスィッチ 215を放射素子 203の長さ方向 に対して対称となるように配置した場合について説明したが、 dlと d2をそれぞれ異な る長さで配置しても良い。図 36 (a)に、 dl = 2mmの状態において、 d2を 2mm、 7m mとしたときの、それぞれの XY面における指向性を示す。
図 36 (a)力もわ力るように、 dlと d2の距離を変えることで、 XY面における指向性を 調整することができる。さらに、ダイオードスィッチ 215の片方を短絡、もう一方を開放 状態とすることによつても、 XY面における指向性を調整することができる。図 36 (b) は、図 34において、 dl = d2 = 7mmとし、片方のダイオードスィッチ 215を短絡し、も う一方を開放状態とした場合の XY面内の指向性を示す図である。図 36 (b)より、片 側のダイオードスィッチ 215を開放とすることで、放射素子 203の長さ方向に対して、 電磁界が非対称となり、指向性の最大放射方向が XY面内において X軸方向からず れていることがわかる。これを利用して、指向性を 3次元に調整することが可能となる
[0207] また、本実施形態では、ダイオードスィッチ 215を 2個用いた場合にっ 、て説明した 力 2個に限る必要はなぐ 2個以上の複数個を接地導体 205と第 1の金属導体 206 の間に配置する構成としても良いことは言うまでもない。スィッチの数を増すことで、 X Y面内における指向性の制御をより高精度に制御することが可能となる。
[0208] また、第 1の金属導体 206の幅 Wmを変えることで、ダイオードスィッチ 215を短絡、 開放で切り替えたときのアンテナの指向性切替角度を調整することができる。例えば 、第 1の金属導体 206を X軸方向に対して複数の導体片 214に分割し、それぞれの 導体片をスィッチ 207aで接続するような構成としても良い。
[0209] (第 8実施形態)
図 37は、第 8実施形態に係る指向性切替アンテナの概略構成図であり、図 37 (a) は斜視図、図 37 (b)は図 37 (a)の A— A'における断面図である。図 37において、第 2の金属導体 127は誘電体基板 202上の接地導体 205と同一面上に配置され、放 射素子 203と平行でかつ第 1の金属導体 206と Y軸に対して対称となるように接地導 体 205と電気的に絶縁して配置された長さ Lm、幅 Wmの第 2の金属導体 127、接地 導体 205の第 2の金属導体 127側の先端部 128、接地導体 205と第 2の金属導体 1 27の間に配置されたスィッチ 207bを含む構成である。その他の構成は第 6実施形 態と同じであるため省略する。
[0210] 以下、本発明の第 8実施形態に係る指向性切替アンテナ装置の動作を説明する。
基本動作は第 1実施形態で説明したとおりであるため省略するが、第 2の金属導体 1 27を接地導体 205に対して、第 1の金属導体と Y軸対称となるように配置した構成と する。
[0211] このとき、制御回路 209を用いてスィッチ 207a、 207bを制御して指向性切替を行う 力 この点について詳細に説明する。
図 38にスィッチ 207a、 207bの短絡 Z開放動作とアンテナ指向性との関係を示す 。スィッチ 207a、 207bを両方短絡させた場合は、第 1の金属導体 206、第 2の金属 導体 127は共に接地導体 205の一部となるため、アンテナの指向性は図 37における +Z方向となる。次にスィッチ 207bを短絡させ、スィッチ 207aを開放させると、第 1の 金属導体 206は導波器、第 2の金属導体 127は接地導体 205の一部として動作する ため、アンテナの指向性は図 37における +X方向となる。
次にスィッチ 207aを短絡させ、スィッチ 207bを開放させると、第 1の金属導体 206 は接地導体 205の一部、第 2の金属導体 127は導波器として動作するため、アンテ ナの指向性は図 37における— X方向となる。また、スィッチ 207a、 207bを両方開放 させた場合は、金属導体 206、 127が共に導波器として動作するが、アンテナの指向 性としては、ほぼ無指向性の特性が得られる。
[0212] 以上のように、第 1の金属導体 206と Y軸に対して対称となるように第 2の金属導体 127を設け、さらに制御回路 209を用いて第 1の金属導体 206、第 2の金属導体 127 を、スィッチ 207a、 207bの切り替え動作により、導波器と接地導体とで切り替えるよう に制御することによって、アンテナの指向性を ±X方向と +Z方向に 90度ずつ切り替 えることができるため、無線端末の使用形態によって、例えばデータ通信時に放射方 向がユーザに向力うように無線端末が配置されていても、ユーザに向かう方向とは逆 の ±X方向を選択して、指向性を切り替えるアンテナ装置を実現することが可能にな るという作用を有する。
[0213] さらに、このような構成のアンテナを車に搭載することによって、例えば車の向きが 変化しても、指向性を前後に切り替えることができるため、地上波デジタル放送などを 受信することが可能になるという作用を有する。
[0214] さらに、本実施形態で示した指向性切替アンテナを用いて無線端末を構成すること で、無線端末の使用形態に応じてアンテナの指向性を切り替えて無線端末としての 性能を向上させることができ、信頼性の高い無線通信システムを提供することが可能 となる。
[0215] なお、本実施形態では、放射素子 203を導体パターンにより誘電体基板 202上に 形成しているとして説明したが、その限りではなぐワイヤ等の線状導体や板金加工 により放射素子 203を構成しても良い。
[0216] また、本実施形態では、放射素子 203を直線状のダイポール構成として説明して ヽ る力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0217] また、本実施形態では、誘電体基板 202上に放射素子 203、接地導体 205、第 1 の金属導体 206、第 2の金属導体 127が形成されているとしたが、誘電体基板を必 ずしも使用する必要はない。例えば放射素子 203、接地導体 205、第 1の金属導体 2 06、第 2の金属導体 127を板金加工により製作し、発泡材等を使用して各構成要素 を発泡材等に固定していっても良い。
[0218] また、本実施形態では、接地導体 205を誘電体基板 202上でかつ放射素子 203と 反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 202上では なぐ誘電体基板 202から一定の距離はなれた無線端末 211の筐体上に接地導体 2 05を配置しても良い。このような構成とすることで、放射素子 203と接地導体 205の 間隔を広く取ることができ、接地導体 205が放射素子 203の下部に存在する場合に 、アンテナの整合を合わせ易くなるという利点がある。
[0219] また、本実施形態では、ダイオードスィッチ 215をスイッチング素子として使用して いるが、その限りではなぐ FETスィッチや MEMS技術を用いたスィッチ等、その他 のスィッチ回路を用いても良 、。
[0220] また、第 1の金属導体 206、第 2の金属導体 127は、スィッチ 207a、 207bが開放状 態において導波器として作用するように長さが設定されているが、例えば、第 1の金 属導体 206、第 2の金属導体 127の長さを可変できる構成としておくことによって、導 波器の持つリアクタンス成分を調整して、指向性を可変させることも可能である。 第 1の金属導体 206、第 2の金属導体 127の長さを可変する方法としては、第 1の 金属導体 206、第 2の金属導体 127を長さ方向に対して複数の導体片に分割して、 それぞれの間にスィッチ 207a、 207bを配置し、スィッチ 207a、 207bの短絡 Z開放 によって長さを可変しても良いし、第 1の金属導体 206、第 2の金属導体 127にバラク タダイオードなどの可変容量素子を付加し、制御電圧に応じて電気的に長さを調整 するようにしても良い。
[0221] また、第 1の金属導体 206、第 2の金属導体 127の幅 Wmを変えることによってスィ ツチ 207a、 207b短絡時の指向性が変化することを利用して、スィッチ 207a、 207b を短絡、開放で切り替えたときのアンテナの指向性切替角度を調整することができる
[0222] (第 9実施形態)
図 39は、第 8実施形態に係る指向性切替アンテナの概略構成図であり、図 39 (a) は斜視図、図 39 (b)は図 39 (a)の A— A'における断面図である。図 39において、指 向性切替アンテナは、折り返し構造を有する放射素子 216を含む構成である。その 他の構成は第 6実施形態と同じであるため省略する。
[0223] 以下、第 9実施形態に係る指向性切替アンテナの動作を説明する。例えば、図 24 において、放射素子 203と接地導体 205は、誘電体基板 202の厚さ t=0. 016 λ離 して配置されている。このように、放射素子 203の極近傍に接地導体 205を配置する と、放射素子 203の入力インピーダンス力 接地導体 205がない状態と比較して極端 に小さくなつてしまう。
[0224] 一方、放射素子 203を放射素子 216のような折り返し構成にすると、放射素子の入 力インピーダンスを高くすることができる。例えば、図 40 (b)の 2重折り返しダイポール の入力インピーダンスは、図 40 (a)に示す一般的なダイポールアンテナの入力インピ 一ダンスの 4倍となり、図 40 (c)のような 3重折り返しダイポールの入力インピーダンス は、一般的なダイポールアンテナの入力インピーダンスの 8倍となる。そこで、図 39の ように折り返し構造の放射素子 216を用いることで給電点 204でのアンテナの入カイ ンピーダンスを高くすることができ、 50 Ω系のマイクロストリップ線路や同軸線路との 整合をとり易くなる。 [0225] 以上のように、放射素子 216を折り返し構造とし、さらに制御回路 209を用いてスィ ツチ 207aを切り替えることによって、アンテナの指向性を約 90度切り替えながら、ァ ンテナの入力インピーダンスを高くして整合をとり易くすることができ、無線端末の使 用形態によって指向性を切り替えるアンテナを実現することが可能になるという作用 を有する。
[0226] さらに、本実施形態で示した指向性切替アンテナを用いて無線端末を構成すること で、無線端末の使用形態に応じてアンテナの指向性を切り替えて無線端末としての 性能を向上させることができ、信頼性の高い無線通信システムを提供することが可能 となる。
[0227] なお、本実施形態では、放射素子 216を導体パターンにより誘電体基板 202上に 形成しているが、その限りではなぐワイヤ等の線状導体や板金加工により放射素子 203を構成しても良い。
[0228] また、本実施形態では、放射素子 216を直線状のダイポール構成として説明して ヽ る力 その限りではなぐ例えば、メアンダライン状に構成しても良い。
[0229] また、本実施形態では、誘電体基板 202上に放射素子 216、接地導体 205、第 1 の金属導体 206が形成されて ヽるとしたが、誘電体基板を必ずしも使用する必要は ない。例えば放射素子 216、接地導体 205、第 1の金属導体 206を板金加工により 製作し、発泡材等を使用して各構成要素を発泡材等に固定していっても良い。
[0230] また、本実施形態では、接地導体 205を誘電体基板 202上でかつ放射素子 216と 反対側の面に導体パターンにより形成しているが、例えば、誘電体基板 202上では なぐ誘電体基板 202から一定の距離はなれた無線端末 211の筐体上に接地導体 2 05を配置しても良い。このような構成とすることで、放射素子 216と接地導体 205の 間隔を広く取ることができ、アンテナの整合を合わせ易くなるという利点がある。
[0231] また、本実施形態では、放射素子 203、 216を XY面上の 2次元構造としているが、 その限りではなぐ例えば図 41 (a)、(b)のように、放射素子 203、 216の端部を折り 返した構成としても良い。このような折り返し構成とすることで、アンテナ長を短くする ことができ、アンテナの小型化が可能となる。
ここで、図 41 (a)、(b)のような YZ面上に折り返されたアンテナの製作法について 説明する。最も簡易に製作する方法としては、図 42に示すように、板金加工により製 作できるが、このとき放射素子を構成する下部導体 217、折り返し部 218、上部導体 219のすベてを一体的に板金カ卩ェにより製作しても良いし、下部導体 217は誘電体 基板 202上に導体パターンにより形成しておき、折り返し部 218、上部導体 219のみ を板金加工により製作しても良い。
また、板金加工以外にも、例えば図 43に示すように、誘電体基板 202上に第 2の誘 電体基板 220を設け、下部導体 217を誘電体基板 202、 220に挟まれた面状に導 体パターンにより形成し、上部導体 219を第 2の誘電体基板 220上でかつ誘電体基 板 202と反対側の面に導体パターンにより形成し、折り返し部 218を、第 2の誘電体 基板 220を貫通するスルーホール等で形成して、下部導体 217と上部導体 219を、 電気的に接続するような構成としても良 、。
このような構成とすることで、多層基板を用いて指向性切替アンテナを製作すること ができる。また、図 44に示すように、セラミック等の高誘電体材料で形成された誘電 体ブロック 221上に、下部導体 217、折り返し部 218、上部導体 219をそれぞれパタ ーンにより形成した構成としても良い。このような構成とすることで、アンテナを非常に 小型化することができる。
[0232] (第 10実施形態)
図 45は、本発明の実施形態の無線端末の概略構成図である。図 45において、無 線端末は、データ通信および音声通話を行う周波数帯に設定された送受信部 222、 制御部 223、アンテナ指向性切替部 224を含む構成である。
[0233] 以下、本発明の第 10実施形態の無線端末の動作を説明する。例えば、屋内で無 線端末を使用する際には、壁などの障害物によりマルチパス環境が発生することが 想定される。このような状況下では、ダイバーシチ受信することによってマルチパス環 境にも対応することができる。一般的なダイバーシチ受信としては、複数のアンテナ を空間的に離して配置することで構成されるが、複数のアンテナを用いるとアンテナ の実装面積が大きくなるば力りでなぐ複数のアンテナを選択するためのアンテナス イッチを使用するため、アンテナスィッチの実装面積も増すこととなる。
[0234] そこで、第 6実施形態力 第 9実施形態で説明した指向性切替アンテナを用いるこ とで、アンテナの実装面積は単体アンテナ相当に保ちながら、指向性ダイバーシチ を行うことができる。この点について詳細に説明する。
[0235] 図 45において、無線端末 211は、指向性切替アンテナ 201、送受信部 222、制御 部 223、アンテナ指向性切替部 224で構成される。このような構成において、受信時 には、指向性切替アンテナ 201で受信された高周波信号は、送受信部 222にて周 波数変換、復調され、制御部 223に伝送される。このとき、制御部 223では、指向性 切替アンテナ 201の指向性を切り替えたそれぞれの場合における受信電力をモニタ し、受信電力のより大きいアンテナ指向性となるように制御信号 225をアンテナ指向 性切替部 224に送信する。
アンテナ指向性切替部 224では制御部 223からの制御信号 225に基づいて、どち らの指向性のときに受信感度が良いか判定し、より受信感度の良い指向性となるよう に、指向性切替アンテナ 201の指向性を切り替えるように制御信号 226を送信する。 指向性切替アンテナ 201は、制御信号 226によって所望の指向性となるように切り替 えられる。一方、送信時には、制御部 223から伝送された信号を送受信部 222にて 変調、周波数変換して、指向性切替アンテナ 201から送信する。このとき、指向性切 替アンテナ 201の指向性は受信時に選択した指向性を使用する。
[0236] 以上のように、指向性切替アンテナ 201、送受信部 222、制御部 223、アンテナ指 向性切替部 224を用いて無線端末を構成することで、アンテナ 1つでダイバーシチ 受信を可能とするため、小型で高性能な無線端末を実現することが可能になるという 作用を有する。
[0237] なお、本実施形態では、送信時には指向性切替アンテナ 201を受信時と同じ指向 性で使用するとして説明したが、その限りではなぐ受信時には指向性切替アンテナ 201を用いてダイバーシチ受信を行い、送信時には指向性切替アンテナ力もの放射 電磁界カ 無線端末 211を使用するユーザ 210の方向を向かないように設定するよ うにしても良い。例えば、音声通話時には、送信時に指向性切替アンテナ 201の指 向性最大放射方向力 無線端末 211の背面方向に固定され、データ通信時には、 送信時に指向性切替アンテナ 201の指向性最大放射方向が、無線端末 211の天頂 方向に固定されるような構成としても良い。 [0238] また、本実施形態では、第 6実施形態から第 9実施形態で説明した指向性切替アン テナ 201を用いた無線端末 211について説明したが、その限りではなぐアンテナの 指向性を無線端末 211に対して天頂方向(表示部 212の表示面に対して水平方向 で、かつ表示内容に対して上方向)と背面方向(表示部 212の表示面に対して反対 方向)で約 90度切り替えることができれば、どのような構成のアンテナを用いても良い
[0239] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 10月 1日出願の日本特許出願(特願 2004— 290063)、 2004年 10 月 1日出願の日本特許出願 (特願 2004— 290143)、に基づくものであり、その内容は ここに参照として取り込まれる。
産業上の利用可能性
[0240] 本発明のアンテナ装置およびそのアンテナ装置を用いた無線端末によれば、スイツ チの短絡 Z開放によってアンテナの指向性を背面方向 Z天頂方向に切り替えること ができるという効果を有し、音声通話やデータ通信など、様々な使用形態が想定され る無線端末に適用して高品質な通信を行うことができるアンテナとして有用である。ま た、ダイバーシチ受信が必要な無線端末や PC等の情報端末にも有用である。
[0241] また、本発明のアンテナ装置およびそのアンテナ装置を用いた端末によれば、スィ ツチの短絡 Z開放によってアンテナの指向性を 3方向に切り替えることができるという 効果を有し、車載用地上波デジタル放送受信などに対しても高品質な通信を行うこと ができるアンテナとして有用である。

Claims

請求の範囲
[1] 第 1の面に配置された線状の放射素子と、
前記放射素子と平行に、前記第 1の面に配置された第 1の無給電素子と、 第 1の面に配置された第 1の接地導体と、
前記第 1の無給電素子の両端それぞれと前記第 1の接地導体とを接続する第 1の スィッチと、
前記第 1の面に対向する第 2の面に配置された第 2の接地導体と、
前記スィッチの短絡 Z開放を制御する制御手段と、を備えるアンテナ装置であって 前記第 1の接地導体の一部は、前記放射素子を挟んで前記第 1の無給電素子の 反対側に、前記放射素子と平行に配置され、
前記第 2の接地導体は、前記放射素子に対向するように配置され、前記第 2の接地 導体の端部は、前記放射素子と前記第 1の無給電素子によって挟まれる領域に対向 しているアンテナ装置。
[2] 第 1の面に配置された線状の放射素子と、
前記放射素子と平行に、前記第 1の面に配置された線状の第 1の無給電素子と、 前記第 1の無給電素子の長手方向延長線上の両側に配置された線状の補助素子 と、
前記第 1の面に配置された第 1の接地導体と、
前記第 1の無給電素子の両端と前記補助素子とをそれぞれ接続する第 1のスィッチ と、
前記第 1の面に対向する第 2の面に配置された第 2の接地導体と、
前記スィッチの短絡 Z開放を制御する制御手段と、を備えるアンテナ装置であって 前記第 1の接地導体は、前記放射素子を挟んで前記第 1の無給電素子の反対側 に、前記放射素子と平行に配置され、
前記第 2の接地導体は、前記放射素子に対向するように配置され、前記第 2の接地 導体の端部は、前記放射素子と前記第 1の無給電素子によって挟まれる領域に対向 しているアンテナ装置。
[3] 第 1の面に配置された線状の放射素子と、
前記放射素子と平行に、前記第 1の面に配置された線状の第 1の無給電素子と、 前記放射素子を挟んで前記第 1の無給電素子の反対側の前記第 1の面に、前記 放射素子と平行に配置された線状の第 2の無給電素子と、
前記第 1、第 2の無給電素子の長手方向延長線上の両側に配置された線状の補助 素子と、
前記第 1、第 2の無給電素子の両端と、前記第 1、第 2の無給電素子それぞれの両 端に配置された前記補助素子とを、それぞれ接続する第 1、第 2のスィッチと、 前記第 1の面に対向する第 2の面に配置された第 2の接地導体と、
前記スィッチの短絡 Z開放を制御する制御手段と、を備えるアンテナ装置であって 前記第 2の接地導体は、前記放射素子に対向するように配置され、前記第 2の接地 導体の一端部は、前記放射素子と前記第 1の無給電素子によって挟まれる領域に対 向し、前記第 2の接地導体の別の端部は、前記放射素子と前記第 2の無給電素子に よって挟まれる領域に対向して 、るアンテナ装置。
[4] 請求項 1から 3 、ずれかに記載のアンテナ装置であって、
前記第 1の平面と前記第 2の平面とが配置される第 1の基板を備えるアンテナ装置
[5] 請求項 1から 4 、ずれかに記載のアンテナ装置であって、
前記無給電素子は、前記スィッチを開放する場合に、前記放射素子に対する導波 器になるアンテナ装置。
[6] 請求項 2から 5 、ずれかに記載のアンテナ装置であって、
前記無給電素子と前記補助素子は、前記スィッチを短絡する場合に、前記放射素 子に対する反射器になるアンテナ装置。
[7] 請求項 1から 6 、ずれかに記載のアンテナ装置であって、
前記無給電素子は、リアクタンスが可変であるアンテナ装置。
[8] 請求項 4から 7 、ずれかに記載のアンテナ装置であって、
前記放射素子と前記第 2の接地導体は、前記放射素子と前記第 2の接地導体の間 隔が前記第 1の基板の厚さよりも大きくなるよう配置されたアンテナ装置。
[9] 第 1の基板と、
前記第 1の基板の一方の面である第 1の面に配置された線状の放射素子と、 前記第 1の基板のもう一方の面である第 2の面に配置された接地導体と、 前記放射素子と平行に、前記第 2の面上に前記接地導体と電気的に絶縁して配置 された第 1の導体と、
前記接地導体と前記導体とを接続する第 1のスィッチと、
前記スィッチの短絡 Z開放を制御する制御手段と、
を備えるアンテナ装置であって、
前記接地導体と前記導体の一方は、前記放射素子に対向して配置されるアンテナ 装置。
[10] 請求項 9記載のアンテナ装置であって、
前記第 1の導体と前記接地導体に対して対称な位置に配置された第 2の導体と、 前記接地導体と前記第 2の導体とを接続する第 2のスィッチと、
を、更に、備えるアンテナ装置であって、
前記接地導体が、前記放射素子に対向して配置されるアンテナ装置。
[11] 請求項 9から 10いずれかに記載のアンテナ装置であって、
前記導体は、リアクタンスが可変であるアンテナ装置。
[12] 請求項 9から 10いずれかに記載のアンテナ装置であって、
前記導体は、前記導体の幅方向に分割された複数の導体片と、前記複数の導体 片を接続する第 3のスィッチと、を含んで構成されるアンテナ装置。
[13] 請求項 9から 12いずれかに記載のアンテナ装置であって、
前記第 1のスィッチは、前記接地導体と前記金属導体とを複数箇所で接続する複 数のスィッチで構成されるアンテナ装置。
[14] 請求項 13に記載のアンテナ装置であって、
前記第 3のスィッチは、前記放射素子上の電圧最大位置付近に対向する位置にあ る、前記接地導体と前記金属導体とを接続するアンテナ装置。
[15] 請求項 4から 14いずれかに記載のアンテナ装置であって、 前記放射素子は、前記基板に対して垂直方向に折り返し構造を有するダイポール 構成であって、前記第 1の基板上に配置された下部導体と、前記下部導体の両端部 それぞれから第 1の基板に対して垂直方向に配置された折り返し部と、前記折り返し 部の端部間を接続するよう配置された上部導体と、を含んで構成されるアンテナ装置
[16] 請求項 15記載のアンテナ装置であって、
前記第 1の基板の上部に第 2の基板を備え、
前記下部導体は、前記第 1、第 2の基板間に狭設され、前記折り返し部は、前記第 2の基板を貫通して配置され、前記上部導体は、前記第 2の基板上に配置されたァ ンテナ装置。
[17] 請求項 15記載のアンテナ装置であって、
前記第 1の基板の上部に誘電体ブロックを備え、
前記下部導体、前記折り返し部および前記上部導体は、誘電体ブロックの表面上 及び Zまたは内部に配置されたアンテナ装置。
[18] 請求項 1から 17いずれかに記載のアンテナ装置と、前記アンテナ装置により電波を 送受信する送受信部と、前記アンテナ装置の指向性を切り替えるアンテナ指向性切 替部と、各部の制御を行う制御部と、を備える無線端末であって、
前記制御部は、前記アンテナ指向性切替部に前記アンテナ装置の指向性を切り替 えさせて、前記送受信部に電波を受信させ、検出した電波の強度に基づいて、より 良い受信感度と判定した指向性状態の前記アンテナ装置により、送受信させるよう前 記アンテナ指向性切替部と前記送受信部とを制御する無線端末。
[19] 請求項 18記載の無線端末であって、
前記制御部は、受信状態では前記アンテナ装置にダイバーシチ受信させ、送信状 態では受信状態に使用した指向性状態で前記アンテナ装置力 送信させるよう制御 する無線端末。
[20] 請求項 18記載の無線端末であって、
前記制御部は、受信状態では前記アンテナ装置にダイバーシチ受信させ、送信状 態では前記アンテナ装置の最大放射方向が、当該無線端末から当該無線端末使用 者に向力う方向と反対方向となる指向性状態で、前記アンテナ装置力 送信させるよ う制御する無線端末。
PCT/JP2005/016735 2004-10-01 2005-09-12 アンテナ装置およびそのアンテナ装置を用いた無線端末 WO2006038432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006539202A JP4372156B2 (ja) 2004-10-01 2005-09-12 アンテナ装置およびそのアンテナ装置を用いた無線端末
US11/574,894 US7602340B2 (en) 2004-10-01 2005-09-12 Antenna device and wireless terminal using the antenna device
EP05782387A EP1814195A4 (en) 2004-10-01 2005-09-12 ANTENNA DEVICE AND WIRELESS TERMINAL USING THE ANTENNA DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-290143 2004-10-01
JP2004-290063 2004-10-01
JP2004290143 2004-10-01
JP2004290063 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038432A1 true WO2006038432A1 (ja) 2006-04-13

Family

ID=36142513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016735 WO2006038432A1 (ja) 2004-10-01 2005-09-12 アンテナ装置およびそのアンテナ装置を用いた無線端末

Country Status (4)

Country Link
US (1) US7602340B2 (ja)
EP (1) EP1814195A4 (ja)
JP (1) JP4372156B2 (ja)
WO (1) WO2006038432A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028023A (ja) * 2005-07-14 2007-02-01 Nippon Antenna Co Ltd 平面アンテナ
JP2008236046A (ja) * 2007-03-16 2008-10-02 Yagi Antenna Co Ltd 小型スロットアンテナ
WO2008152731A1 (ja) * 2007-06-15 2008-12-18 Pioneer Corporation ダイポールアンテナ
JP2009005248A (ja) * 2007-06-25 2009-01-08 Nippon Soken Inc 車載アンテナ装置
WO2009022439A1 (ja) * 2007-08-10 2009-02-19 Japan Aerospace Exploration Agency アレーアンテナ
JP2010161495A (ja) * 2009-01-06 2010-07-22 Kddi Corp アンテナ装置及びアレーアンテナ
JP2011024183A (ja) * 2009-07-16 2011-02-03 Kotatsu Kokusai Denshi Kofun Yugenkoshi 平面再構成可能アンテナ
JP2012191317A (ja) * 2011-03-09 2012-10-04 Murata Mfg Co Ltd 水平方向放射アンテナ
CN101459284B (zh) * 2007-12-11 2013-01-02 索尼株式会社 天线装置
US8766871B2 (en) 2010-07-06 2014-07-01 Panasonic Corporation Antenna apparatus and display apparatus
US8797224B2 (en) 2008-12-26 2014-08-05 Panasonic Corporation Array antenna apparatus including multiple steerable antennas and capable of eliminating influence of surrounding metal components
CN104393398A (zh) * 2010-02-23 2015-03-04 卡西欧计算机株式会社 多频天线
US9172142B2 (en) 2011-03-09 2015-10-27 Murata Manufacturing Co., Ltd. Horizontal radiation antenna
WO2016020954A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
TWI568079B (zh) * 2015-07-17 2017-01-21 緯創資通股份有限公司 天線陣列
JP6466019B1 (ja) * 2017-10-03 2019-02-06 バヤール イメージング リミテッド 凹部励起を有するフローティングダイポールアンテナ
KR102230677B1 (ko) * 2019-11-25 2021-03-19 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
JP7446770B2 (ja) 2019-10-29 2024-03-11 キヤノン株式会社 無線通信装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677523A3 (en) * 2004-12-28 2011-03-30 LG Electronics, Inc. Digital broadcasting transmitter-receiver for portable computer
TWI343672B (en) * 2007-11-15 2011-06-11 Lite On Technology Corp Antenna device and antenna system utilizing which
US20100265041A1 (en) * 2009-04-16 2010-10-21 Powerid Ltd. Rfid transponder
US20100317302A1 (en) * 2009-06-12 2010-12-16 Novatel Wireless System and method for controlling rf explosure levels
CN102104192B (zh) * 2009-12-08 2014-05-07 阿尔卑斯电气株式会社 天线装置
JP2011199494A (ja) 2010-03-18 2011-10-06 Panasonic Corp アンテナ装置、およびそれを備えた電子機器
TWI429138B (zh) * 2010-03-25 2014-03-01 Htc Corp 平面雙向輻射天線
CN102208717B (zh) * 2010-03-31 2014-03-12 宏达国际电子股份有限公司 平面双向辐射天线
WO2011141860A1 (en) 2010-05-14 2011-11-17 Assa Abloy Ab Wideband uhf rfid tag
TWM400105U (en) * 2010-05-31 2011-03-11 Inpaq Technology Co Ltd Assembly of chip antenna and circuit board
WO2012053223A1 (ja) 2010-10-22 2012-04-26 パナソニック株式会社 アンテナ装置
US9871293B2 (en) * 2010-11-03 2018-01-16 The Boeing Company Two-dimensionally electronically-steerable artificial impedance surface antenna
JP5514325B2 (ja) 2011-06-02 2014-06-04 パナソニック株式会社 アンテナ装置
US9794848B2 (en) * 2011-07-25 2017-10-17 Ethertronics, Inc. Method and system for priority-based handoff
JP5148740B1 (ja) * 2011-11-30 2013-02-20 株式会社東芝 携帯型情報端末
KR101941208B1 (ko) * 2012-04-27 2019-01-23 삼성전자주식회사 기울기를 이용한 통신 단말의 상향 링크 전송 전력 제어 방법 및 장치와 그 방법에 대한 프로그램 소스를 저장한 기록 매체
US9246235B2 (en) 2012-10-26 2016-01-26 Telefonaktiebolaget L M Ericsson Controllable directional antenna apparatus and method
US9147939B2 (en) * 2013-03-29 2015-09-29 Alcatel Lucent Broadside antenna systems
US10020571B2 (en) * 2013-04-09 2018-07-10 Essex Electronics, Inc. Antenna mounting system for metallic structures
US9543648B2 (en) * 2013-04-27 2017-01-10 Commsky Technologies, Inc. Switchable antennas for wireless applications
US9705183B2 (en) * 2013-06-19 2017-07-11 Intermec Ip Corp. Wirelessly reconfigurable antenna
US9748657B1 (en) * 2013-11-21 2017-08-29 FIRST RF Corp. Cavity backed dipole antenna
US9196953B1 (en) * 2014-11-24 2015-11-24 Amazon Technologies, Inc. Antenna with adjustable electrical path length
WO2016092801A1 (ja) * 2014-12-08 2016-06-16 パナソニックIpマネジメント株式会社 アンテナ及び電気機器
KR102550706B1 (ko) 2016-07-20 2023-07-03 삼성전자 주식회사 코일 공유 방법 및 장치
US20180301791A1 (en) * 2017-04-17 2018-10-18 Qualcomm Incorporated Antenna module with a vertical dipole antenna to cover a broadside radiation pattern
GB2571279B (en) 2018-02-21 2022-03-09 Pet Tech Limited Antenna arrangement and associated method
US10862211B2 (en) 2018-08-21 2020-12-08 Htc Corporation Integrated antenna structure
CN116018726A (zh) * 2020-10-01 2023-04-25 谷歌有限责任公司 用于使毫米波天线覆盖转向和变宽的金属结构
CN117410728B (zh) * 2023-12-11 2024-04-19 四川九洲电器集团有限责任公司 一种定向天线的引向器及天线系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292017A (ja) * 2000-04-07 2001-10-19 Nec Corp 携帯電話装置
JP2004363909A (ja) * 2003-06-04 2004-12-24 Toshiba Corp アンテナ装置および無線通信装置
JP2005110231A (ja) * 2003-09-09 2005-04-21 Advanced Telecommunication Research Institute International アレーアンテナ装置とその制御方法
JP2005253043A (ja) * 2004-02-03 2005-09-15 Advanced Telecommunication Research Institute International アレーアンテナ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127616A (en) 1978-03-27 1979-10-03 Toshiba Corp Control system for radio communication antenna
JP2614789B2 (ja) 1991-03-28 1997-05-28 太洋無線株式会社 八木アンテナ
JP2943426B2 (ja) 1991-08-09 1999-08-30 松下電器産業株式会社 アンテナ装置
DE69928074T2 (de) 1998-06-10 2006-08-03 Matsushita Electric Industrial Co., Ltd., Kadoma Funkantenne
JP3838815B2 (ja) 1999-05-10 2006-10-25 日本電気株式会社 携帯電話機
US6456249B1 (en) * 1999-08-16 2002-09-24 Tyco Electronics Logistics A.G. Single or dual band parasitic antenna assembly
JP2001345633A (ja) 2000-03-28 2001-12-14 Matsushita Electric Ind Co Ltd アンテナ装置
CN100362749C (zh) 2002-03-14 2008-01-16 美商智慧财产权授权股份有限公司 具自适应天线阵列的移动通信终端
US6987493B2 (en) * 2002-04-15 2006-01-17 Paratek Microwave, Inc. Electronically steerable passive array antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292017A (ja) * 2000-04-07 2001-10-19 Nec Corp 携帯電話装置
JP2004363909A (ja) * 2003-06-04 2004-12-24 Toshiba Corp アンテナ装置および無線通信装置
JP2005110231A (ja) * 2003-09-09 2005-04-21 Advanced Telecommunication Research Institute International アレーアンテナ装置とその制御方法
JP2005253043A (ja) * 2004-02-03 2005-09-15 Advanced Telecommunication Research Institute International アレーアンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1814195A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028023A (ja) * 2005-07-14 2007-02-01 Nippon Antenna Co Ltd 平面アンテナ
JP2008236046A (ja) * 2007-03-16 2008-10-02 Yagi Antenna Co Ltd 小型スロットアンテナ
WO2008152731A1 (ja) * 2007-06-15 2008-12-18 Pioneer Corporation ダイポールアンテナ
JP2009005248A (ja) * 2007-06-25 2009-01-08 Nippon Soken Inc 車載アンテナ装置
WO2009022439A1 (ja) * 2007-08-10 2009-02-19 Japan Aerospace Exploration Agency アレーアンテナ
CN101459284B (zh) * 2007-12-11 2013-01-02 索尼株式会社 天线装置
US8797224B2 (en) 2008-12-26 2014-08-05 Panasonic Corporation Array antenna apparatus including multiple steerable antennas and capable of eliminating influence of surrounding metal components
JP2010161495A (ja) * 2009-01-06 2010-07-22 Kddi Corp アンテナ装置及びアレーアンテナ
JP2011024183A (ja) * 2009-07-16 2011-02-03 Kotatsu Kokusai Denshi Kofun Yugenkoshi 平面再構成可能アンテナ
US8482473B2 (en) 2009-07-16 2013-07-09 Htc Corporation Planar reconfigurable antenna
CN104393398A (zh) * 2010-02-23 2015-03-04 卡西欧计算机株式会社 多频天线
CN104393398B (zh) * 2010-02-23 2017-05-24 卡西欧计算机株式会社 多频天线
US8766871B2 (en) 2010-07-06 2014-07-01 Panasonic Corporation Antenna apparatus and display apparatus
JP2012191317A (ja) * 2011-03-09 2012-10-04 Murata Mfg Co Ltd 水平方向放射アンテナ
US9172142B2 (en) 2011-03-09 2015-10-27 Murata Manufacturing Co., Ltd. Horizontal radiation antenna
WO2016020954A1 (ja) * 2014-08-06 2016-02-11 三菱電機株式会社 アンテナ装置およびアレーアンテナ装置
US10120065B2 (en) 2015-07-17 2018-11-06 Wistron Corp. Antenna array
TWI568079B (zh) * 2015-07-17 2017-01-21 緯創資通股份有限公司 天線陣列
JP6466019B1 (ja) * 2017-10-03 2019-02-06 バヤール イメージング リミテッド 凹部励起を有するフローティングダイポールアンテナ
JP7446770B2 (ja) 2019-10-29 2024-03-11 キヤノン株式会社 無線通信装置
KR102230677B1 (ko) * 2019-11-25 2021-03-19 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
CN112838359A (zh) * 2019-11-25 2021-05-25 东友精细化工有限公司 天线装置和显示装置
KR20210064118A (ko) * 2019-11-25 2021-06-02 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
WO2021107521A1 (ko) * 2019-11-25 2021-06-03 동우화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
KR102494269B1 (ko) 2019-11-25 2023-01-31 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치

Also Published As

Publication number Publication date
JPWO2006038432A1 (ja) 2008-05-15
EP1814195A4 (en) 2009-07-15
US7602340B2 (en) 2009-10-13
EP1814195A1 (en) 2007-08-01
JP4372156B2 (ja) 2009-11-25
US20090046019A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP4372156B2 (ja) アンテナ装置およびそのアンテナ装置を用いた無線端末
JP3613525B2 (ja) 携帯無線機
EP2448065B1 (en) Mobile communiction terminal with a frame and antenna
US5945954A (en) Antenna assembly for telecommunication devices
JP4523211B2 (ja) 無線通信機のための折りたたみデュアル周波数バンドアンテナ
JP4358084B2 (ja) 折畳式携帯無線機
US8798694B2 (en) Communication device
US7069043B2 (en) Wireless communication device with two internal antennas
AU750257B2 (en) Multiple frequency band antenna
US7760150B2 (en) Antenna assembly and wireless unit employing it
KR101718032B1 (ko) 이동 단말기
JP3266190B2 (ja) 折り畳み式移動電話
JP4227141B2 (ja) アンテナ装置
JP2002064324A (ja) アンテナ装置
EP1332533A2 (en) Notch antennas and wireless communicators incorporating same
WO2006062060A1 (ja) 無線機用アンテナ装置及びそれを備えた携帯無線機
JPWO2005069439A1 (ja) マルチバンドアンテナ及び携帯型の通信機器
JP4803881B2 (ja) 携帯無線機の内蔵アンテナ
KR20070101168A (ko) 안테나 장치 및 이를 이용한 멀티 밴드 타입 무선 통신기기
WO2006062059A1 (ja) 携帯無線機
JP2004129234A (ja) アンテナ装置
JP2002232224A (ja) アンテナシステムおよびそれを用いた無線装置
JP2001156517A (ja) アンテナ装置
EP2375488B1 (en) Planar antenna and handheld device
US8884828B2 (en) Mobile wireless terminal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006539202

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11574894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005782387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580033520.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005782387

Country of ref document: EP