WO2012053223A1 - アンテナ装置 - Google Patents
アンテナ装置 Download PDFInfo
- Publication number
- WO2012053223A1 WO2012053223A1 PCT/JP2011/005910 JP2011005910W WO2012053223A1 WO 2012053223 A1 WO2012053223 A1 WO 2012053223A1 JP 2011005910 W JP2011005910 W JP 2011005910W WO 2012053223 A1 WO2012053223 A1 WO 2012053223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parasitic
- antenna
- antenna device
- parasitic elements
- parasitic element
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/28—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
- H01Q19/30—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
Definitions
- the present invention relates to an antenna device including a dipole antenna and a wireless communication device including the antenna device.
- Patent Document 1 describes an antenna device that broadens a horizontally polarized antenna using a dipole antenna element.
- the antenna device described in Patent Document 1 is characterized in that a pair of linear parasitic elements are provided in the same plane as the elements of the dipole antenna in the vicinity of both ends of the elements of the printed dipole antenna.
- Patent Document 2 describes a bidirectional antenna having a printed Yagi antenna and having bidirectionality in the endfire direction.
- two Yagi antennas are provided on a single printed circuit board so as to have directivity in both directions, and the excitation elements constituting each printed Yagi antenna are in opposite phases to each other. It is characterized by supplying power.
- JP 2001-284946 A Japanese Patent Laid-Open No. 7-245525.
- the printed Yagi antenna is an endfire antenna device that can be easily manufactured using a dielectric substrate, and is known to have a relatively high gain.
- a general printed circuit board such as a glass epoxy board is used as a dielectric substrate of a printed Yagi antenna used in a high frequency band such as a millimeter wave band or a microwave band
- a high gain is caused by a loss in the dielectric substrate.
- characteristics could not be obtained.
- An object of the present invention is to solve the above problems and provide an antenna device that is smaller and has higher gain characteristics as compared with the prior art, and a wireless communication device including the antenna device.
- An antenna device is A dielectric substrate having first and second surfaces; A ground conductor formed on the first surface; A strip conductor formed on the second surface so as to constitute a feed line facing the ground conductor; A first feeding element formed on the second surface and connected to the strip conductor; and a second feeding element formed on the first surface and connected to the ground conductor.
- a dipole antenna having an electrical length substantially half of the wavelength of the high-frequency signal transmitted through the line;
- An antenna device including a plurality of first parasitic element pairs each including first and second parasitic elements formed on the second surface, The first and second parasitic elements of each first parasitic element pair have a strip shape, are parallel to the longitudinal direction of the dipole antenna, and are straight lines positioned in the radiation direction of the radio wave from the dipole antenna On top of each other, formed to have a gap between each other and to be electromagnetically coupled to each other, The dipole antenna and each of the first parasitic element pairs are arranged at a predetermined interval so as to face each other and to be electromagnetically coupled.
- a plurality of third parasitic elements formed in the gaps so as to be electromagnetically coupled to the first parasitic element and electromagnetically coupled to the second parasitic element are provided. It is further provided with a feature.
- the dipole antenna is A fourth parasitic element formed on the first surface so as to face the first feeding element; A fifth parasitic element formed on the second surface so as to face the second feeding element,
- the antenna device is A plurality of sixth parasitic elements formed on the first surface so as to face the first parasitic elements; A plurality of seventh parasitic elements formed on the first surface so as to face the second parasitic elements; And a plurality of eighth parasitic elements formed on the first surface so as to face each of the third parasitic elements.
- the dipole antenna is A third parasitic element formed on the first surface so as to face the first feeding element; A fourth parasitic element formed on the second surface so as to face the second feeding element, and
- the antenna device is A plurality of fifth parasitic elements formed on the first surface so as to face each of the first parasitic elements; And a plurality of sixth parasitic elements formed on the first surface so as to face each of the second parasitic elements.
- the electrical length of the first feeding element and the electrical length of the second feeding element are set to be different from each other.
- the electrical length of the first feeding element and the electrical length of the second feeding element are set to be substantially equal to each other.
- the antenna device further includes at least one second parasitic element pair including two parasitic elements that are formed on the first or second surface and operate as a reflector.
- the two parasitic elements have a strip shape, are parallel to the longitudinal direction, and are opposed to the dipole antenna and electromagnetically coupled on a straight line located on the opposite side of the radiation direction with respect to the dipole antenna. It was formed as follows.
- the feed line is an unbalanced line.
- the electrical length of each first parasitic element and the electrical length of each second parasitic element are set to substantially 1 ⁇ 4 of the wavelength. It is characterized by that.
- the interval is set to an interval substantially equal to or less than 1/8 of the wavelength.
- a wireless communication device includes the antenna device.
- the antenna device and the wireless communication device include a plurality of first parasitic element pairs each including a first parasitic element and a second parasitic element formed on the second surface of the dielectric substrate.
- the first and second parasitic elements of each first parasitic element pair have a strip shape, and are parallel to the longitudinal direction of the dipole antenna and on a straight line positioned in the radiation direction of the radio wave from the dipole antenna
- the dipole antenna and each first parasitic element pair are arranged at predetermined intervals so as to be opposed to each other and to be electromagnetically coupled to each other, and to be electromagnetically coupled to each other. Therefore, it is possible to provide an antenna device and a wireless communication device that are smaller than those of the prior art and have high gain characteristics.
- FIG. 1 is a front view of an antenna device 100 according to a first embodiment of the present invention. It is a reverse view of the antenna apparatus 100 of FIG. It is a graph which shows the radiation pattern in xz plane of the antenna apparatus 100 of FIG. It is a graph which shows the radiation pattern in xy plane of the antenna apparatus 100 of FIG. 2 is a graph showing a relationship between an interval L2 between dielectric element pairs 6 of the antenna device 100 of FIG. 1 and a peak gain. It is a surface view of 100 A of antenna apparatuses which concern on the 2nd Embodiment of this invention. It is a reverse view of the antenna device 100A of FIG. It is a surface view of the antenna apparatus 100B which concerns on the 3rd Embodiment of this invention.
- FIG. 18 is a rear view of the antenna device 300 of FIG. 17. It is a graph which shows the radiation pattern in xz plane of the antenna apparatus 300 of FIG. It is a graph which shows the radiation pattern in xy plane of the antenna apparatus 300 of FIG.
- FIG. 1 is a front view of the antenna device 100 according to the first embodiment of the present invention
- FIG. 2 is a rear view of the antenna device 100 of FIG.
- the antenna device 100 according to the present embodiment is an endfire antenna device for a wireless communication device that performs wireless communication in a high frequency band such as a microwave band or a millimeter wave band.
- the antenna device 100 includes six parasitic element pairs each including a dielectric substrate 1, strip conductors 2, 30, and 31, feeder elements 4a and 4b, and parasitic elements 5a and 5b. 6.
- an xyz coordinate system is defined as shown in FIG.
- the antenna device 100 includes: (A) a dielectric substrate 1 having a first surface that is a back surface and a second surface that is a front surface; (B) a ground conductor 3 formed on the first surface; (C) a strip conductor 2 formed on the second surface so as to constitute the feeder line 20 so as to face the ground conductor 3; (D) a feed element 4a formed on the second surface and connected to the strip conductor 2; and a feed element 4b formed on the first surface and connected to the ground conductor 3; A dipole antenna 4 having an electrical length L1 substantially half the wavelength ⁇ of the high-frequency signal transmitted through (E) A plurality of parasitic element pairs 6 each including the parasitic elements 5a and 5b formed on the second surface.
- the parasitic elements 5 a and 5 b of each parasitic element pair 6 have a strip shape, are parallel to the longitudinal direction (y-axis direction) of the dipole antenna 4, and are the dipole antenna 4.
- the dipole antenna 4 and the parasitic element pair 6 closest to the dipole antenna 4 are opposed to each other on the straight line located in the radiation direction of the radio wave from the antenna. However, they are arranged at a predetermined interval L5 so as to be electromagnetically coupled, and are arranged at a predetermined interval L2 so as to be opposed to each other and electromagnetically coupled to the parasitic element pairs 6.
- a dielectric substrate 1 is, for example, a glass epoxy substrate.
- the strip conductors 2, 30, the feed element 4 a, and the feed element pair 6 are formed on the surface of the dielectric substrate 1, and the ground conductor 3, the strip conductor 31, and the feed element 4 b are the dielectric substrate. 1 is formed on the back surface.
- the ground conductor 3 is formed at the left end of the dielectric substrate 1 of FIG.
- the strip conductor 2 is formed so as to face the ground conductor 3 and extend from the left end portion of the dielectric substrate 1 in the positive direction of the x axis.
- the strip conductor 30 has an electrical length L6, has one end and the other end connected to the right end of the strip conductor 2 of FIG. 1, and is formed to extend in the x-axis direction.
- the feed element 4a has a strip shape extending in the y-axis direction, and has one end connected to the other end of the strip conductor 30 and the other end being an open end.
- the strip conductor 31 has one end connected to the ground conductor 3 and the other end connected to one end of the feed element 4b, and is formed to face the strip conductor 30.
- the power feeding element 4b has a strip shape extending in the y-axis direction, and has one end connected to the other end of the strip conductor 31 and the other end being an open end.
- the ground conductor 3 and the strip conductor 2 that sandwich the dielectric substrate 1 constitute a microstrip line and are used as the feed line 20.
- the feed elements 4a and 4b operate as a half-wavelength printed dipole antenna 4 (hereinafter referred to as a dipole antenna 4) having an electrical length L1 from the open end of the feed element 4a to the open end of the feed element 4b.
- the parasitic elements 5a and 5b each have a strip shape having an electrical length L4, and are straight lines parallel to the y-axis (that is, the longitudinal direction of the dipole antenna 4).
- a gap 5c having a predetermined interval L3 is formed thereon.
- the six parasitic element pairs 6 face each other at a predetermined interval L2 in the radiation direction of the radio wave from the dipole antenna 4 (which is the positive direction of the x axis, hereinafter also referred to as the endfire direction). To be formed.
- the interval between the parasitic element pair 6 closest to the dipole antenna 4 and the dipole antenna 4 is set to the interval L5.
- the electrical length L1 of the dipole antenna 4 is set to be substantially equal to 1 ⁇ 2 of the wavelength ⁇ of the high-frequency signal fed to the feed line 20.
- the electrical lengths of the power feeding elements 4a and 4b are set to be substantially equal to each other.
- the interval L2 is set such that adjacent parasitic element pairs 6 are electromagnetically coupled to each other.
- the interval L3 is set to ⁇ / 25, for example, so that the parasitic elements 5a and 5b are electromagnetically coupled to each other in each parasitic element pair 6.
- the electrical length L4 is set to an electrical length substantially equal to ⁇ / 4.
- interval L5 is set so that the parasitic element pair 6 closest to the dipole antenna 4 and the dipole antenna 4 are electromagnetically coupled to each other, and is preferably set to a value equal to the interval L2.
- the electrical length L6 is set to be equal to the interval L2, for example.
- a high frequency signal from a high frequency circuit that outputs a high frequency signal having a frequency component of a high frequency band such as a microwave band or a millimeter wave band is a strip that sandwiches the feeder line 20 and the dielectric substrate 1.
- the signal is transmitted through the transmission line made up of the conductors 30 and 31, is fed to the dipole antenna 4, and is radiated from the dipole antenna 4.
- a strong coupling electric field electromagnetically coupled is generated in the gap 5c between the parasitic elements 5a and 5b.
- the parasitic elements 5a and 5b resonate.
- the radio wave radiated from the dipole antenna 4 is guided along the surface of the dielectric substrate 1 along the gap 5c of each parasitic element pair 6 and radiated in the endfire direction.
- the phases of the radio waves are aligned and an equiphase surface is generated.
- the parasitic elements 5a and 5b operate as a director.
- FIG. 17 is a front view of the antenna device 300 according to the comparative example
- FIG. 18 is a rear view of the antenna device 300 of FIG.
- the antenna device 300 according to the comparative example is a printed Yagi antenna.
- the antenna device 300 includes a dielectric substrate 1, strip conductors 2, 30 and 31, feed elements 4 a and 4 b, and five parasitic elements 190.
- the strip conductors 2, 30 and 31 and the feed elements 4a and 4b are the strip conductors 2, 30 and 31 and the feed element 4a of the antenna device 100 according to the first embodiment.
- the dielectric substrate 1 is formed.
- each parasitic element 190 has a strip shape with an electrical length L90 extending in the y-axis direction, and is formed to have a predetermined interval L91 in the radiation direction of the radio wave from the dipole antenna 4. Is done.
- the electrical length L90 of each parasitic element 190 is substantially set to ⁇ / 2
- the interval L91 is substantially set to ⁇ / 4.
- a high frequency signal from a high frequency circuit that outputs a high frequency signal having a frequency component of a high frequency band such as a microwave band or a millimeter wave band is similar to the antenna device 100 according to the first embodiment.
- the dipole antenna 4 is fed and radiated.
- the radio wave radiated from the dipole antenna 4 is guided by the parasitic element 190 that operates as a director, and is radiated from the right end portion of the dielectric substrate 1 in FIG. 17 in the endfire direction.
- 3 and 4 are graphs showing radiation patterns in the xz plane and the xy plane, respectively, of the antenna device 100 of FIG.
- FIGS. 19 and 20 are graphs showing radiation patterns on the xz plane and the xy plane of the antenna device 300 of FIG. 17, respectively.
- 3, 4, 19, and 20 a glass epoxy substrate is used as the dielectric substrate 1, and the frequency of the high-frequency signal fed to the dipole antenna 4 is set to 60 GHz.
- the interval L2 between the parasitic element pairs 6 is set to ⁇ / 8
- the interval L3 is set to ⁇ / 25
- the interval L5 and the electrical length L6 are set to be equal to the interval L3. did.
- a main beam is formed in the endfire direction in the antenna device 300 according to the comparative example.
- the theoretical peak gain is expected to be 9.1 dBi, but the actual peak gain is reduced to 7.6 dBi, and high gain characteristics are not obtained. This is considered to be due to the fact that the high frequency band such as the millimeter wave band or the microwave band is greatly affected by the dielectric loss due to the dielectric substrate 1 as compared with the lower frequency band. Conventionally, it has been necessary to increase the antenna size in order to overcome such a gain reduction.
- the antenna device 100 according to the present embodiment as shown in FIGS. 3 and 4, a radiation pattern having substantially the same shape as that of the antenna device 300 according to the comparative example is obtained, and the peak gain is up to 8.3 dBi. It became bigger.
- FIG. 5 is a graph showing the relationship between the distance L2 between the dielectric element pairs 6 of the antenna device 100 of FIG. 1 and the peak gain.
- the peak gain increases as the interval L2 decreases.
- the peak gain is improved even if the distance L2 is smaller than the distance L91 ( ⁇ / 4) between the parasitic elements 109 in the antenna device 300 according to the comparative example. Therefore, the interval L2 is preferably set to a value smaller than ⁇ / 8. More preferably, the distance L2 is set to a minimum value (for example, 100 ⁇ m) that can be realized by the manufacturing process of the antenna device 100. In this case, the widths of the parasitic elements 5a and 5b are set to a value substantially equal to the distance L2.
- each parasitic element pair 6 a strong coupling electric field electromagnetically coupled is generated in the gap 5c between the parasitic elements 5a and 5b. For this reason, the radio wave radiated from the dipole antenna 4 is guided along the surface of the dielectric substrate 1 along the gap 5c of each parasitic element pair 6 and radiated in the endfire direction.
- the distance L2 as small as possible as described above, the parasitic element pairs 6 are strongly electromagnetically coupled via the free space on the surface of the dielectric substrate 1, and the electric power in the dielectric substrate 1 is reduced. Since the density of the force lines can be reduced, the influence of the dielectric loss due to the dielectric substrate 1 can be reduced. For this reason, a high gain characteristic can be obtained as compared with the antenna device 300 according to the comparative example.
- the interval L3 by changing the interval L3, it is possible to change only the beam width in the horizontal plane (xy plane) without changing the beam width in the vertical plane (xz plane). Specifically, as the interval L3 is set larger, the width of the horizontal equiphase surface generated at the end portion in the endfire direction of the dielectric substrate 1 is increased, so that the antenna size in the horizontal direction is increased. For this reason, the width of the horizontal beam is reduced and the gain is increased. That is, according to the present embodiment, unlike a general Yagi antenna in which the interval L91 of the parasitic elements 190 is set to ⁇ / 4, the beam width in the horizontal plane is changed in the vertical plane by changing the interval L3. Can be changed independently of the beam width. Moreover, according to this embodiment, since all the parasitic element pairs 6 have the same shape, the interval L3 can be designed relatively easily.
- the number of parasitic element pairs 6 is six, but the present invention is not limited to this, and by changing the number of parasitic element pairs 6, the number of parasitic element pairs 6 can be increased within the vertical plane (xz plane). And the beam width in the horizontal plane can be changed. Generally, in the endfire antenna device, the beam width in the vertical plane can be narrowed as the antenna size in the waveguide direction increases. In the case of this embodiment, when the number of parasitic element pairs 6 is increased, the antenna size in the waveguide direction is increased, and the beam width in the vertical plane can be reduced.
- the antenna device 100 As described above, according to the antenna device 100 according to the present embodiment, a high gain characteristic can be obtained as compared with the conventional technique. Further, by setting the interval L2 to be smaller than ⁇ / 8, for example, it is possible to realize a small antenna device 100 as compared with the prior art. Further, since an equiphase surface is generated at the end of the dielectric substrate 1, the beam width in the vertical plane and the beam width in the horizontal plane can be made narrower than those in the prior art.
- the antenna device 100 by increasing the gap L3 of the gap 5c between the parasitic elements 5a and 5b, the beam width in the horizontal plane is reduced, and the antenna gain is increased. It can be improved. However, if the interval L3 is set to be larger than a predetermined value, the degree of electromagnetic coupling between the parasitic elements 5a and 5b decreases, and the antenna gain decreases.
- a parasitic element 7 is further provided in each gap 5c in order to suppress such a decrease in antenna gain.
- FIG. 6 is a front view of the antenna device 100A according to the second embodiment of the present invention
- FIG. 7 is a rear view of the antenna device 100A of FIG. 6 and 7,
- the antenna device 100A includes nine parasitic element pairs 6 instead of the six parasitic element pairs 6 as compared with the antenna device 100 according to the first embodiment. It further has six parasitic elements 7 provided in the gap 5c of the parasitic element pair 6. In the present embodiment, only differences from the first embodiment will be described.
- each parasitic element pair 6 includes parasitic elements 5a and 5b.
- the parasitic elements 5a and 5b each have a strip shape having an electrical length L4, and are formed to have a gap 5c with a predetermined interval L9 on a straight line parallel to the y-axis. Is done.
- each parasitic element 7 has a strip shape that has an electrical length L7 and extends in the y-axis direction, and is formed in each gap 5c.
- the interval between one end of the parasitic element 7 and the parasitic element 5a and the interval between the other end of the parasitic element 7 and the parasitic element 5b are set to an interval L8.
- the electrical length L4 is set to an electrical length substantially equal to ⁇ / 4.
- the electrical length L7 is set to, for example, 1/3 or less of the electrical length L4 in order to prevent the parasitic element 7 from resonating with the parasitic elements 5a and 5b.
- the interval L8 is set so that the parasitic element 7 and the parasitic element 5a are electromagnetically coupled, and the parasitic element 7 and the parasitic element 5b are electromagnetically coupled.
- the parasitic element 7 and the parasitic element 5a are electromagnetically coupled, and the parasitic element 7 and the parasitic element 5b are electromagnetically coupled. Accordingly, even if the gap L9 of the gap 5c is larger than the gap necessary for directly electromagnetically coupling the parasitic element 5a and the parasitic element 5b, the parasitic elements 5a and 5b are connected to the parasitic element. 7 can be coupled electromagnetically. Therefore, compared with the antenna device 100 according to the first embodiment, the horizontal antenna size can be increased. For this reason, compared to the first embodiment, the width of the horizontal beam is reduced, and the gain can be increased.
- FIG. 8 is a front view of the antenna device 100B according to the third embodiment of the present invention
- FIG. 9 is a rear view of the antenna device 100B of FIG.
- the antenna device 100B according to this embodiment includes a dipole antenna 4A instead of the dipole antenna 4 as compared with the antenna device 100A according to the second embodiment, and includes 12 parasitic element pairs 6A and 12 A parasitic element 10 is further provided.
- the present embodiment only differences from the second embodiment will be described.
- the dipole antenna 4A includes feed elements 4a and 4b and parasitic elements 4c and 4d.
- the parasitic element 4c is formed on the surface of the dielectric substrate 1 so as to face the feeding element 4b and to have a predetermined interval between the feeding element 4a.
- the parasitic element 4d is formed on the back surface of the dielectric substrate 1 so as to face the feeding element 4a and to have a predetermined interval between the feeding element 4b. Therefore, since the parasitic element 4c is electromagnetically coupled to the feeder element 4b and the parasitic element 4d is electromagnetically coupled to the feeder element 4a, the dipole antenna 4A is compared with the dipole antenna 4 according to each of the embodiments described above. Thus, radio waves can be radiated efficiently.
- each parasitic element pair 6 ⁇ / b> A includes parasitic elements 9 a and 9 b formed on the back surface of the dielectric substrate 1.
- Each parasitic element 9a is formed to face each parasitic element 5a
- each parasitic element 9b is formed to face each parasitic element 5b.
- each parasitic element 10 is formed on the back surface of the dielectric substrate 1 so as to face each parasitic element 7. Accordingly, in each parasitic element pair 6A, the parasitic elements 9a and 10 are electromagnetically coupled to each other, and the parasitic elements 9b and 10 are electromagnetically coupled to each other. Furthermore, the dipole antenna 4A and the parasitic element pair 6A face each other and are electromagnetically coupled.
- the radiation efficiency and the aperture efficiency are increased as compared with the above-described embodiments. be able to.
- FIG. 10 is a front view of an antenna device 100C according to the fourth embodiment of the present invention
- FIG. 11 is a rear view of the antenna device 100C of FIG.
- the antenna device 100C according to the present embodiment includes a power feeding element 4e instead of the power feeding element 4b, as compared with the antenna device 100A according to the second embodiment (see FIGS. 6 and 7). It is said.
- the electrical lengths of the feeding elements 4a and 4b are set to be equal to each other.
- the electrical length of the feeding element 4e is set to a value shorter than the electrical length of the feeding element 4b.
- the feed elements 4a and 4e operate as a dipole antenna 4B having an electrical length L1 from the open end of the feed element 4a to the open end of the feed element 4e.
- the feed line 20 is an unbalanced transmission line
- the current that flows in the feed element 4 a and the feed element 4 b flow.
- the current may become unbalanced and the beam in the horizontal plane may not face the endfire direction.
- the antenna devices 100, 100A, and 100B according to each of the above-described embodiments have a smaller beam width compared to the related art, it is convenient for the user if the direction of the beam does not face the front of the antenna devices 100, 100A, and 100B. Will get worse.
- the electrical length of the feed element 4e is set to be shorter than the electrical length of the feed element 4a, it is possible to adjust the current imbalance and to direct the beam toward the endfire direction. it can. Further, since the radiation direction of the radio wave from the dipole antenna 4B is directed to the endfire direction, the waveguide efficiency in the parasitic element pair 6 is improved as compared with the above-described embodiments.
- the present invention is not limited to this, and the power feeding element 4a is directed so that the radiation direction of the radio wave from the dipole antenna 4B is directed to the endfire direction. And the electrical length of the feed element 4e may be set to be different from each other.
- a dipole antenna 4B may be provided instead of the dipole antenna 4.
- a power feeding element 4e is formed on the back surface of the dielectric substrate 1 instead of the power feeding element 4b, and is opposed to the power feeding element 4e and has a predetermined interval between the power feeding element 4a.
- the formed parasitic element may be further formed on the surface of the dielectric substrate 1.
- FIG. 12 is a front view of an antenna device 100D according to the fifth embodiment of the present invention
- FIG. 13 is a rear view of the antenna device 100D of FIG.
- the antenna device 100D according to this embodiment includes a parasitic element pair 11 including parasitic elements 11a and 11b, as compared to the antenna device 100B according to the third embodiment (see FIGS. 8 and 9).
- a parasitic element pair 12 including parasitic elements 12a and 12b is further provided. In the present embodiment, only differences from the third embodiment will be described.
- the parasitic elements 11a and 11b have a strip shape, are parallel to the longitudinal direction of the dipole antenna 4A, and are positioned on the side opposite to the radiation direction of the radio wave from the dipole antenna 4A with respect to the dipole antenna 4A.
- the dipole antenna 4A On the straight line, the dipole antenna 4A is formed so as to face and electromagnetically couple, and operates as a reflector.
- the parasitic elements 12a and 12b have a strip shape, are parallel to the longitudinal direction of the dipole antenna 4A, and are on a straight line located on the opposite side to the radiation direction of the radio wave from the dipole antenna 4A with respect to the dipole antenna 4A. It is formed so as to oppose and electromagnetically couple to the dipole antenna 4A, and operates as a reflector.
- the parasitic element 11a is formed on the surface of the dielectric substrate 1 and in the region between the feeder element 4a and the ground conductor 3 so as to extend in the y-axis direction.
- the parasitic element 11b is formed on the surface of the dielectric substrate 1 and in a region between the parasitic element 4c and the ground conductor 3 so as to extend in the y-axis direction.
- the parasitic elements 12a and 12b are formed on the back surface of the dielectric substrate 1 so as to face the parasitic elements 11a and 11b, respectively.
- the electrical lengths of the parasitic elements 11a, 11b, 12a, and 12b are set to substantially the same value as the electrical length L4 of the parasitic elements 5a and 5b.
- the parasitic element pair 11 is provided so as to face the parasitic element pair 6.
- the parasitic element 11a is electromagnetically coupled to the feeder element 4a
- the parasitic element 11b is electromagnetically coupled to the parasitic element 4c
- the parasitic element 12a is electromagnetically coupled to the parasitic element 4d
- the parasitic element 12b is electromagnetically coupled to the feeder element 4b.
- the parasitic element pairs 11 and 12 that operate as reflectors are provided at positions opposite to the radiation direction of the radio wave from the dipole antenna 4A with respect to the dipole antenna 4A.
- the radio wave radiated from the dipole antenna 4 can be efficiently directed toward the endfire, and the FB (Front-to-Back) ratio can be improved.
- the effect of the parasitic elements 11a, 11b, 12a, and 12b increases as the antenna size in the horizontal direction of the antenna device 100D increases.
- the antenna device 100D includes the two parasitic element pairs 11 and 12, but the present invention is not limited thereto, and may include only one of the parasitic element pairs 11 and 12. Further, the electrical lengths of the feed elements 4a and 4b may be set to be different from each other so that the main beam of the dipole antenna 4A is directed in the endfire direction.
- At least one of the parasitic element pairs 11 and 12 may be provided in the antenna devices 100, 100A, 100B, and 100C.
- FIG. 14 is a front view of an antenna device 100E according to the sixth embodiment of the present invention
- FIG. 15 is a rear view of the antenna device 100E of FIG.
- the antenna device 100E according to this embodiment includes a dipole antenna 4A instead of the dipole antenna 4 as compared with the antenna device 100 according to the first embodiment, and a parasitic element pair is provided on the back surface of the dielectric substrate 1. 6 is provided with a parasitic element pair 6A facing each other.
- the dipole antenna 4A is configured similarly to the dipole antenna 4A (see FIGS. 8 and 9) of the antenna device 100B according to the third embodiment.
- Each parasitic element 9a is formed to face each parasitic element 5a, and each parasitic element 9b is formed to face each parasitic element 5b. Further, each parasitic element 10 is formed on the back surface of the dielectric substrate 1 so as to face each parasitic element 7. Accordingly, in each parasitic element pair 6A, the parasitic elements 9a and 9b are electromagnetically coupled to each other. Furthermore, the dipole antenna 4A and the parasitic element pair 6A face each other and are electromagnetically coupled.
- the radiation efficiency and the aperture efficiency can be increased as compared with the first embodiment.
- the antenna device 100E may include the dipole antenna 4 or 4B instead of the dipole antenna 4A. Further, a dipole antenna 4B may be provided instead of the dipole antenna 4A, and a parasitic element facing the parasitic elements 4a and 4e may be further provided.
- FIG. 16 is a front view of a wireless communication apparatus 200 according to the seventh embodiment of the present invention.
- a wireless communication device 200 is a wireless communication device such as a wireless module substrate, and includes an antenna device 100C according to the fourth embodiment, an upper layer circuit 501, a baseband circuit 502, and a high frequency circuit 503. It is configured with.
- the upper layer circuit 501, the baseband circuit 502, and the high frequency circuit 503 are on the surface of the dielectric substrate 1 on which the strip conductor 2 is formed, and are dipoles with respect to the dipole antenna 4B. It is provided at a position opposite to the radiation direction of the radio wave from the antenna 4B.
- an upper layer circuit 501 is a circuit in a layer higher than a physical layer such as a MAC (Media Access Control) layer and an application layer, and includes, for example, a communication circuit and a host processing circuit.
- the upper layer circuit 501 outputs a predetermined data signal to the baseband circuit 502, and performs predetermined signal processing on the baseband signal from the baseband circuit 502 to convert it into a data signal.
- the baseband circuit 502 performs waveform shaping processing on the data signal from the upper layer circuit 501, modulates a predetermined carrier wave signal according to the processed data signal, converts the signal into a high frequency signal, and converts the signal to the high frequency circuit 503. Output. Further, the baseband circuit 502 demodulates the high frequency signal from the high frequency circuit 503 into a baseband signal and outputs the demodulated signal to the upper layer circuit 501.
- the high frequency circuit 503 performs power amplification processing and waveform shaping processing in the radio frequency band on the high frequency signal from the baseband circuit 502, and outputs the result to the dipole antenna 4 ⁇ / b> B via the feed line 2. Further, the high frequency circuit 503 performs predetermined processing such as frequency conversion on the high frequency signal wirelessly received by the dipole antenna 4B, and then outputs the high frequency signal to the baseband circuit 502.
- the high-frequency circuit 503 and the antenna device 100C are connected via a high-frequency transmission route. Further, an impedance matching circuit is provided between the high frequency circuit 503 and the antenna device 100C as necessary.
- the wireless communication device 200 configured as described above wirelessly transmits and receives high-frequency signals using the antenna device 100C, so that a wireless communication device that is smaller and has a higher gain than the prior art can be realized.
- the wireless communication apparatus 200 includes the antenna apparatus 100C
- the present invention is not limited to this, and may include the antenna apparatuses 100, 100A, 100B, 100D, or 100E.
- the microstrip line is used as the feed line 20 for transmitting a high-frequency signal.
- the present invention is not limited to this, and an unbalanced transmission line such as a coplanar line or a balanced transmission line is used. What is necessary is just to use as the feed line 20.
- a plurality of first elements each including the first and second parasitic elements formed on the second surface of the dielectric substrate.
- a parasitic element pair is provided, and the first and second parasitic elements of each first parasitic element pair have a strip shape, are parallel to the longitudinal direction of the dipole antenna, and the radiation direction of radio waves from the dipole antenna Are formed so as to have a gap between each other and to be electromagnetically coupled to each other, and so that the dipole antenna and each first parasitic element pair face each other and are electromagnetically coupled to each other. Therefore, it is possible to provide an antenna device and a wireless communication device that are smaller than those of the prior art and have high gain characteristics.
Landscapes
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
第1及び第2の面を有する誘電体基板と、
上記第1の面に形成された接地導体と、
上記第2の面に、上記接地導体に対向して給電線路を構成するように形成されたストリップ導体と、
上記第2の面に形成されかつ上記ストリップ導体に接続された第1の給電素子と、上記第1の面に形成されかつ上記接地導体に接続された第2の給電素子とを備え、上記給電線路を介して伝送される高周波信号の波長の実質的に1/2の電気長を有するダイポールアンテナと、
上記第2の面に形成された第1及び第2の無給電素子をそれぞれ備えた複数の第1の無給電素子ペアとを備えたアンテナ装置であって、
上記各第1の無給電素子ペアの第1及び第2の無給電素子はストリップ形状を有し、上記ダイポールアンテナの長手方向に平行でありかつ上記ダイポールアンテナからの電波の放射方向に位置する直線上に、互いにギャップを有しかつ互いに電磁的に結合するように形成され、
上記ダイポールアンテナと上記各第1の無給電素子ペアとが互いに対向しかつ電磁的に結合するように、所定の間隔で配置されたことを特徴とする。
上記ダイポールアンテナは、
上記第1の給電素子に対向するように上記第1の面に形成された第4の無給電素子と、
上記第2の給電素子に対向するように上記第2の面に形成された第5の無給電素子とをさらに備え、
上記アンテナ装置は、
上記各第1の無給電素子に対向するように上記第1の面に形成された複数の第6の無給電素子と、
上記各第2の無給電素子に対向するように上記第1の面に形成された複数の第7の無給電素子と、
上記各第3の無給電素子に対向するように上記第1の面に形成された複数の第8の無給電素子とをさらに備えたことを特徴とする。
上記ダイポールアンテナは、
上記第1の給電素子に対向するように上記第1の面に形成された第3の無給電素子と、
上記第2の給電素子に対向するように上記第2の面に形成された第4の無給電素子とをさらに備え、
上記アンテナ装置は、
上記各第1の無給電素子に対向するように上記第1の面に形成された複数の第5の無給電素子と、
上記各第2の無給電素子に対向するように上記第1の面に形成された複数の第6の無給電素子とをさらに備えたことを特徴とする。
上記第1の給電素子の電気長と上記第2の給電素子の電気長とは、互いに異なるように設定されたことを特徴とする。
上記2つの無給電素子はストリップ形状を有し、上記長手方向に平行でありかつ上記ダイポールアンテナに関して上記放射方向と反対側に位置する直線上に、上記ダイポールアンテナに対向しかつ電磁的に結合するように形成されたことを特徴とする。
図1は、本発明の第1の実施形態に係るアンテナ装置100の表面図であり、図2は、図1のアンテナ装置100の裏面図である。本実施形態に係るアンテナ装置100は、マイクロ波帯又はミリ波帯などの高周波帯で無線通信を行う無線通信装置のためのエンドファイアアンテナ装置である。
(a)裏面である第1の面と、表面である第2の面とを有する誘電体基板1と、
(b)第1の面に形成された接地導体3と、
(c)第2の面に、接地導体3に対向して給電線路20を構成するように形成されたストリップ導体2と、
(d)第2の面に形成されかつストリップ導体2に接続された給電素子4aと、第1の面に形成されかつ接地導体3に接続された給電素子4bとを備え、給電線路20を介して伝送される高周波信号の波長λの実質的に1/2の電気長L1を有するダイポールアンテナ4と、
(e)第2の面に形成された無給電素子5a,5bをそれぞれ備えた複数の無給電素子ペア6とを備えて構成される。
上述したように、第1の実施形態に係るアンテナ装置100によれば、無給電素子5a,5b間のギャップ5cの間隔L3を広くすることにより、水平面内のビーム幅を小さくしてアンテナ利得を向上できる。しかしながら、間隔L3を所定の値よりも大きく設定すると、無給電素子5aと5bとの間の電磁的結合の度合いが低下してしまい、アンテナ利得が低下する。本実施形態では、このようなアンテナ利得の低下を抑制するために、各ギャップ5cに無給電素子7をさらに設ける。
図8は、本発明の第3の実施形態に係るアンテナ装置100Bの表面図であり、図9は、図8のアンテナ装置100Bの裏面図である。本実施形態に係るアンテナ装置100Bは、第2の実施形態に係るアンテナ装置100Aに比較して、ダイポールアンテナ4に代えてダイポールアンテナ4Aを備え、12組の無給電素子ペア6Aと、12個の無給電素子10とをさらに備えたことを特徴としている。本実施形態において、第2の実施形態との相違点のみを説明する。
図10は、本発明の第4の実施形態に係るアンテナ装置100Cの表面図であり、図11は、図10のアンテナ装置100Cの裏面図である。本実施形態に係るアンテナ装置100Cは、第2の実施形態に係るアンテナ装置100A(図6及び図7参照。)に比較して、給電素子4bに代えて、給電素子4eを備えたことを特徴としている。本実施形態において、第2の実施形態との相違点のみを説明する。上述した各実施形態において、給電素子4a及び4bの各電気長は互いに等しい値に設定されたが、本実施形態において、給電素子4eの電気長は給電素子4bの電気長より短い値に設定される。また、給電素子4aと4eとは、給電素子4aの開放端から給電素子4eの開放端までの電気長L1を有するダイポールアンテナ4Bとして動作する。
図12は、本発明の第5の実施形態に係るアンテナ装置100Dの表面図であり、図13は、図10のアンテナ装置100Dの裏面図である。本実施形態に係るアンテナ装置100Dは、第3の実施形態に係るアンテナ装置100B(図8及び図9参照。)に比較して、無給電素子11a,11bを備えた無給電素子ペア11と、無給電素子12a,12bを備えた無給電素子ペア12とをさらに備えて構成される。本実施形態において、第3の実施形態との相違点のみを説明する。
図14は、本発明の第6の実施形態に係るアンテナ装置100Eの表面図であり、図15は、図14のアンテナ装置100Eの裏面図である。本実施形態に係るアンテナ装置100Eは、第1の実施形態に係るアンテナ装置100に比較して、ダイポールアンテナ4に代えてダイポールアンテナ4Aを備え、誘電体基板1の裏面上に、無給電素子ペア6にそれぞれ対向する無給電素子ペア6Aを備えたことを特徴としている。ここで、本実施形態において、ダイポールアンテナ4Aは、第3の実施形態に係るアンテナ装置100Bのダイポールアンテナ4A(図8及び図9参照。)と同様に構成される。また、また、各無給電素子9aは各無給電素子5aに対向するように形成され、各無給電素子9bは各無給電素子5bに対向するように形成される。さらに、各無給電素子10は、誘電体基板1の裏面に、各無給電素子7と対向するように形成される。従って、各無給電素子ペア6Aにおいて、無給電素子9aと9bは互いに電磁的に結合する。さらに、ダイポールアンテナ4Aと、無給電素子ペア6Aとは互いに対向しかつ電磁的に結合する。
図16は、本発明の第7の実施形態に係る無線通信装置200の表面図である。図16において、無線通信装置200は、無線モジュール基板などの無線通信装置であって、第4の実施形態に係るアンテナ装置100Cと、上位層回路501と、ベースバンド回路502と、高周波回路503とを備えて構成される。ここで、無線通信装置200は、上位層回路501と、ベースバンド回路502と、高周波回路503とは、ストリップ導体2が形成された誘電体基板1の表面上であって、ダイポールアンテナ4Bに関してダイポールアンテナ4Bからの電波の放射方向と反対側の位置に設けられる。
2,30,31…ストリップ導体、
3…接地導体、
4,4A,4B…ダイポールアンテナ、
4a,4b,4e…給電素子、
4c,4d,5a,5b,7,9a,9b,10,11a,11b,12a,12b…無給電素子、
6,6A,11,12…無給電素子ペア、
20…給電線路、
100,100A,100B,100C,100D,100E…アンテナ装置、
200…無線通信装置。
Claims (11)
- 第1及び第2の面を有する誘電体基板と、
上記第1の面に形成された接地導体と、
上記第2の面に、上記接地導体に対向して給電線路を構成するように形成されたストリップ導体と、
上記第2の面に形成されかつ上記ストリップ導体に接続された第1の給電素子と、上記第1の面に形成されかつ上記接地導体に接続された第2の給電素子とを備え、上記給電線路を介して伝送される高周波信号の波長の実質的に1/2の電気長を有するダイポールアンテナと、
上記第2の面に形成された第1及び第2の無給電素子をそれぞれ備えた複数の第1の無給電素子ペアとを備えたアンテナ装置であって、
上記各第1の無給電素子ペアの第1及び第2の無給電素子はストリップ形状を有し、上記ダイポールアンテナの長手方向に平行でありかつ上記ダイポールアンテナからの電波の放射方向に位置する直線上に、互いにギャップを有しかつ互いに電磁的に結合するように形成され、
上記ダイポールアンテナと上記各第1の無給電素子ペアとが互いに対向しかつ電磁的に結合するように、所定の間隔で配置されたことを特徴とするアンテナ装置。 - 上記第1の無給電素子に電磁的に結合しかつ上記第2の無給電素子と電磁的に結合するように上記各ギャップに形成された複数の第3の無給電素子をさらに備えたことを特徴とする請求項1のアンテナ装置。
- 上記ダイポールアンテナは、
上記第1の給電素子に対向するように上記第1の面に形成された第4の無給電素子と、
上記第2の給電素子に対向するように上記第2の面に形成された第5の無給電素子とをさらに備え、
上記アンテナ装置は、
上記各第1の無給電素子に対向するように上記第1の面に形成された複数の第6の無給電素子と、
上記各第2の無給電素子に対向するように上記第1の面に形成された複数の第7の無給電素子と、
上記各第3の無給電素子に対向するように上記第1の面に形成された複数の第8の無給電素子とをさらに備えたことを特徴とする請求項2記載のアンテナ装置。 - 上記ダイポールアンテナは、
上記第1の給電素子に対向するように上記第1の面に形成された第3の無給電素子と、
上記第2の給電素子に対向するように上記第2の面に形成された第4の無給電素子とをさらに備え、
上記アンテナ装置は、
上記各第1の無給電素子に対向するように上記第1の面に形成された複数の第5の無給電素子と、
上記各第2の無給電素子に対向するように上記第1の面に形成された複数の第6の無給電素子とをさらに備えたことを特徴とする請求項1記載のアンテナ装置。 - 上記第1の給電素子の電気長と上記第2の給電素子の電気長とは、互いに異なるように設定されたことを特徴とする請求項1から4のうちのいずれか1つの請求項記載のアンテナ装置。
- 上記第1の給電素子の電気長と上記第2の給電素子の電気長とは、実質的に互いに等しいように設定されたことを特徴とする請求項1から4のうちのいずれか1つの請求項記載のアンテナ装置。
- 上記第1又は第2の面に形成され反射器として動作する2つの無給電素子を備えた少なくとも1組の第2の無給電素子ペアをさらに備え、
上記2つの無給電素子はストリップ形状を有し、上記長手方向に平行でありかつ上記ダイポールアンテナに関して上記放射方向と反対側に位置する直線上に、上記ダイポールアンテナに対向しかつ電磁的に結合するように形成されたことを特徴とする請求項1から6のうちのいずれか1つの請求項記載のアンテナ装置。 - 上記給電線路は不平衡線路であることを特徴とする請求項1から7のうちのいずれか1つの請求項記載のアンテナ装置。
- 上記各第1の無給電素子の電気長と、上記各第2の無給電素子の電気長とは、上記波長の実質的に1/4の電気長に設定されたことを特徴とする請求項1から8のうちのいずれか1つの請求項記載のアンテナ装置。
- 上記間隔は、上記波長の実質的に1/8以下の間隔に設定されたことを特徴とする請求項1から9のうちのいずれか1つの請求項記載のアンテナ装置。
- 請求項1から10のうちのいずれか1つの請求項記載のアンテナ装置を備えたことを特徴とする無線通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012539613A JP5548779B2 (ja) | 2010-10-22 | 2011-10-21 | アンテナ装置 |
US13/519,708 US8736507B2 (en) | 2010-10-22 | 2011-10-21 | Antenna apparatus provided with dipole antenna and parasitic element pairs as arranged at intervals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010236995 | 2010-10-22 | ||
JP2010-236995 | 2010-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012053223A1 true WO2012053223A1 (ja) | 2012-04-26 |
Family
ID=45974952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/005910 WO2012053223A1 (ja) | 2010-10-22 | 2011-10-21 | アンテナ装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8736507B2 (ja) |
JP (1) | JP5548779B2 (ja) |
WO (1) | WO2012053223A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166589A1 (en) * | 2012-05-08 | 2013-11-14 | Peraso Technologies Inc. | Broadband end-fire multi-layer yagi antenna |
JP2014082747A (ja) * | 2012-10-12 | 2014-05-08 | Lts Co Ltd | レーザを用いた内蔵型アンテナの製造方法 |
WO2014112357A1 (ja) * | 2013-01-15 | 2014-07-24 | パナソニック株式会社 | アンテナ装置 |
WO2015133114A1 (ja) * | 2014-03-07 | 2015-09-11 | パナソニックIpマネジメント株式会社 | アンテナ装置、無線通信装置、及び電子機器 |
CN105789842A (zh) * | 2016-03-23 | 2016-07-20 | 佛山市粤海信通讯有限公司 | 新型宽带双极化八木天线 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8558748B2 (en) * | 2009-10-19 | 2013-10-15 | Ralink Technology Corp. | Printed dual-band Yagi-Uda antenna and circular polarization antenna |
JP2011182392A (ja) * | 2010-02-08 | 2011-09-15 | Sinfonia Technology Co Ltd | ダイポール型icタグ用アンテナ、アンテナロール及びicタグの使用方法 |
US9337542B2 (en) * | 2012-03-14 | 2016-05-10 | The United States Of America As Represented By The Secretary Of The Army | Modular gridded tapered slot antenna |
KR20140069971A (ko) * | 2012-11-30 | 2014-06-10 | 주식회사 케이엠더블유 | 빔폭 확대 장치를 구비한 이동통신 기지국 안테나 |
DE102012112218A1 (de) * | 2012-12-13 | 2014-07-10 | Endress + Hauser Gmbh + Co. Kg | Füllstandsmessgerät |
WO2014122902A1 (ja) * | 2013-02-07 | 2014-08-14 | パナソニック株式会社 | アンテナ装置及び、無線通信装置 |
US20140266953A1 (en) * | 2013-03-15 | 2014-09-18 | Sierra Wireless, Inc. | Antenna having split directors and antenna array comprising same |
US9954280B1 (en) * | 2013-09-19 | 2018-04-24 | Mano D. Judd | Dipole antenna with parasitic elements |
JP6263967B2 (ja) * | 2013-11-07 | 2018-01-24 | 富士通株式会社 | アンテナ装置 |
JP2017079340A (ja) * | 2014-03-07 | 2017-04-27 | パナソニックIpマネジメント株式会社 | アンテナ装置、無線通信装置、及び電子機器 |
RU2560746C1 (ru) * | 2014-06-02 | 2015-08-20 | Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации | Излучающий элемент малогабаритной фазированной антенной решетки повышенной диапазонности |
KR102139217B1 (ko) * | 2014-09-25 | 2020-07-29 | 삼성전자주식회사 | 안테나 장치 |
US10389015B1 (en) | 2016-07-14 | 2019-08-20 | Mano D. Judd | Dual polarization antenna |
WO2018198981A1 (ja) * | 2017-04-27 | 2018-11-01 | Agc株式会社 | アンテナ及びmimoアンテナ |
CN111201672A (zh) | 2017-10-11 | 2020-05-26 | 维斯普瑞公司 | 使端射天线和低频天线并置的系统、设备和方法 |
US11211697B2 (en) * | 2017-10-12 | 2021-12-28 | TE Connectivity Services Gmbh | Antenna apparatus |
US10847885B2 (en) * | 2018-06-05 | 2020-11-24 | King Fahd University Of Petroleum And Minerals | Miniaturized UWB bi-planar Yagi-based MIMO antenna system |
CN112088465B (zh) * | 2018-08-07 | 2022-04-12 | 华为技术有限公司 | 一种天线 |
US11018431B2 (en) * | 2019-01-02 | 2021-05-25 | The Boeing Company | Conformal planar dipole antenna |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4866761A (ja) * | 1971-12-15 | 1973-09-12 | ||
JPH02113706A (ja) * | 1988-10-24 | 1990-04-25 | Nippon Telegr & Teleph Corp <Ntt> | アンテナ装置 |
JP2001244731A (ja) * | 2000-02-28 | 2001-09-07 | Mitsubishi Electric Corp | アンテナ装置及びこれを用いたアレーアンテナ |
JP2003309417A (ja) * | 2002-04-17 | 2003-10-31 | Denki Kogyo Co Ltd | 多周波共用ダイポールアンテナ装置 |
WO2007097282A1 (ja) * | 2006-02-23 | 2007-08-30 | Murata Manufacturing Co., Ltd. | アンテナ装置、アレイアンテナ、マルチセクタアンテナ、および高周波送受波装置 |
JP2007300266A (ja) * | 2006-04-28 | 2007-11-15 | Seiko Epson Corp | Ic部品 |
JP2009194844A (ja) * | 2008-02-18 | 2009-08-27 | Mitsumi Electric Co Ltd | アンテナ装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3477478B2 (ja) | 1994-03-04 | 2003-12-10 | 日本電信電話株式会社 | 双指向性アンテナ |
JP3623714B2 (ja) | 2000-03-30 | 2005-02-23 | 株式会社エヌ・ティ・ティ・ドコモ | 広帯域アンテナ及びアレイアンテナ装置 |
US7015860B2 (en) * | 2002-02-26 | 2006-03-21 | General Motors Corporation | Microstrip Yagi-Uda antenna |
US6839038B2 (en) * | 2002-06-17 | 2005-01-04 | Lockheed Martin Corporation | Dual-band directional/omnidirectional antenna |
JP4372156B2 (ja) | 2004-10-01 | 2009-11-25 | パナソニック株式会社 | アンテナ装置およびそのアンテナ装置を用いた無線端末 |
US7342299B2 (en) * | 2005-09-21 | 2008-03-11 | International Business Machines Corporation | Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications |
JP4866761B2 (ja) | 2007-03-07 | 2012-02-01 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信システム、ユーザ共通データ伝送装置及び無線基地局 |
JP4959594B2 (ja) | 2008-02-01 | 2012-06-27 | パナソニック株式会社 | エンドファイアアンテナ装置 |
TWI358854B (en) * | 2008-05-30 | 2012-02-21 | Univ Nat Taiwan Science Tech | Ultra high frequency planar antenna |
US20130300624A1 (en) * | 2012-05-08 | 2013-11-14 | Peraso Technologies Inc. | Broadband end-fire multi-layer antenna |
-
2011
- 2011-10-21 US US13/519,708 patent/US8736507B2/en active Active
- 2011-10-21 WO PCT/JP2011/005910 patent/WO2012053223A1/ja active Application Filing
- 2011-10-21 JP JP2012539613A patent/JP5548779B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4866761A (ja) * | 1971-12-15 | 1973-09-12 | ||
JPH02113706A (ja) * | 1988-10-24 | 1990-04-25 | Nippon Telegr & Teleph Corp <Ntt> | アンテナ装置 |
JP2001244731A (ja) * | 2000-02-28 | 2001-09-07 | Mitsubishi Electric Corp | アンテナ装置及びこれを用いたアレーアンテナ |
JP2003309417A (ja) * | 2002-04-17 | 2003-10-31 | Denki Kogyo Co Ltd | 多周波共用ダイポールアンテナ装置 |
WO2007097282A1 (ja) * | 2006-02-23 | 2007-08-30 | Murata Manufacturing Co., Ltd. | アンテナ装置、アレイアンテナ、マルチセクタアンテナ、および高周波送受波装置 |
JP2007300266A (ja) * | 2006-04-28 | 2007-11-15 | Seiko Epson Corp | Ic部品 |
JP2009194844A (ja) * | 2008-02-18 | 2009-08-27 | Mitsumi Electric Co Ltd | アンテナ装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166589A1 (en) * | 2012-05-08 | 2013-11-14 | Peraso Technologies Inc. | Broadband end-fire multi-layer yagi antenna |
JP2014082747A (ja) * | 2012-10-12 | 2014-05-08 | Lts Co Ltd | レーザを用いた内蔵型アンテナの製造方法 |
WO2014112357A1 (ja) * | 2013-01-15 | 2014-07-24 | パナソニック株式会社 | アンテナ装置 |
US9502778B2 (en) | 2013-01-15 | 2016-11-22 | Panasonic Intellectual Property Management Co., Ltd. | Antenna apparatus less susceptible to surrounding conductors and dielectrics |
JPWO2014112357A1 (ja) * | 2013-01-15 | 2017-01-19 | パナソニックIpマネジメント株式会社 | アンテナ装置 |
WO2015133114A1 (ja) * | 2014-03-07 | 2015-09-11 | パナソニックIpマネジメント株式会社 | アンテナ装置、無線通信装置、及び電子機器 |
CN105789842A (zh) * | 2016-03-23 | 2016-07-20 | 佛山市粤海信通讯有限公司 | 新型宽带双极化八木天线 |
CN105789842B (zh) * | 2016-03-23 | 2019-05-31 | 佛山市粤海信通讯有限公司 | 新型宽带双极化八木天线 |
Also Published As
Publication number | Publication date |
---|---|
US20120293387A1 (en) | 2012-11-22 |
JP5548779B2 (ja) | 2014-07-16 |
JPWO2012053223A1 (ja) | 2014-02-24 |
US8736507B2 (en) | 2014-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5548779B2 (ja) | アンテナ装置 | |
JP5514325B2 (ja) | アンテナ装置 | |
US11581661B2 (en) | Dual polarized antenna and dual polarized antenna assembly comprising same | |
JP6569915B2 (ja) | アンテナ及びこれを備えるアンテナモジュール | |
US7965242B2 (en) | Dual-band antenna | |
US20180123245A1 (en) | Broadband antenna array for wireless communications | |
US7936314B2 (en) | Dual polarized antenna | |
US8907857B2 (en) | Compact multi-antenna and multi-antenna system | |
EP3172797B1 (en) | Slot antenna | |
WO2012102576A2 (en) | Broad-band dual polarization dipole antenna and antenna array | |
US20160006132A1 (en) | Dual-feed dual-polarization high directivity array antenna system | |
CN101572351B (zh) | 多输入多输出天线 | |
JP2015531577A (ja) | 自己接地型アンテナ装置 | |
EP2833475B1 (en) | Dipole antenna | |
US20160352000A1 (en) | Antenna device, wireless communication device, and electronic device | |
CN210897639U (zh) | 一种偶极子阵列天线 | |
TWI451632B (zh) | 高增益迴圈陣列天線系統及電子裝置 | |
KR102039398B1 (ko) | 복수의 주파수 대역에서 동작하는 통합 안테나 | |
US9761956B2 (en) | Antenna systems providing simultaneously identical main beam radiation characteristics | |
KR102158981B1 (ko) | 안테나 패턴을 개선하기 위한 대칭 급전회로를 갖는 안테나 | |
EP2511980B1 (en) | Wideband printed antenna | |
TWM444617U (zh) | 雙極化偶極天線陣列 | |
TWI523327B (zh) | 用於一多輸入多輸出無線通訊系統之圓極化天線 | |
JP2006279515A (ja) | アンテナ装置 | |
CN115882204A (zh) | 一种圆极化天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11834069 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012539613 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13519708 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11834069 Country of ref document: EP Kind code of ref document: A1 |