WO2006035848A1 - グリコーゲンの製造方法 - Google Patents

グリコーゲンの製造方法 Download PDF

Info

Publication number
WO2006035848A1
WO2006035848A1 PCT/JP2005/017900 JP2005017900W WO2006035848A1 WO 2006035848 A1 WO2006035848 A1 WO 2006035848A1 JP 2005017900 W JP2005017900 W JP 2005017900W WO 2006035848 A1 WO2006035848 A1 WO 2006035848A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
glycogen
substrate
molecular weight
glucan
Prior art date
Application number
PCT/JP2005/017900
Other languages
English (en)
French (fr)
Inventor
Hideki Kajiura
Hiroki Takata
Takeshi Takaha
Takashi Kuriki
Original Assignee
Ezaki Glico Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ezaki Glico Co., Ltd. filed Critical Ezaki Glico Co., Ltd.
Priority to EP05788229.2A priority Critical patent/EP1813678B1/en
Priority to CN200580038018XA priority patent/CN101198703B/zh
Priority to JP2006537787A priority patent/JP4086312B2/ja
Priority to US11/575,794 priority patent/US7670812B2/en
Priority to DK05788229.2T priority patent/DK1813678T3/da
Publication of WO2006035848A1 publication Critical patent/WO2006035848A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins

Definitions

  • the present invention relates to a method for producing a highly branched and high molecular weight a-glucan, particularly glycogen.
  • ⁇ -glucan is a polymer of a-D-glucose.
  • ⁇ -glucan exists in various forms in nature.
  • glycogen and starch are typical.
  • the structural and physical properties of glycogen and starch differ greatly from each other.
  • Glycogen is the main storage polysaccharide of animals, fungi, yeasts and bacteria. Glycogen is soluble in water and becomes a milky white solution. The molecular structure of animal glycogen is well studied. Natural glycogen is branched from ⁇ - 1, 6-dalcoside bonds from sugar chains that are linearly linked via ⁇ -1, 4-darcoside bonds of glucose (glucose). Homo dalcan with a network structure. Natural glycogen is also composed of ⁇ -1,4, -dalcoside bond chain strength having an average degree of polymerization of about 10 to about 14, linked by ⁇ -1,6, dalcoside bonds.
  • Natural glycogen exists as particles having a molecular weight of about 10 7 ( ⁇ particles) or larger particles (oc particles) formed by aggregation of ⁇ particles.
  • the structure of bacterial glycogen is thought to be similar to that of animal glycogen.
  • Certain types of plants such as sweet corn
  • Starch is the main storage polysaccharide of plants and exists as water-insoluble particles. This particle contains two different polysaccharides. This polysaccharide is amylose and amylopectin.
  • Amylose is an essentially linear D-glucose unit connected by ⁇ -1,4 bonds.
  • Amylopectin is a branched polymer and is thought to have a cluster structure. Each cluster unit is linked together by ⁇ — 1, 6-darcoside bonds The chain strength of a-1,4-darcoside bonds having an average degree of polymerization of about 12 to about 24. The cluster units are further linked together by longer ⁇ 1,4 dalcoside linkage chains with a degree of polymerization of about 30 to about 100.
  • amylopectin The average chain length of the entire amylopectin is about 18 to about 25 polymerization. Similar to glycogen, starch amylopectin is a glucan linked by a-1,4-glycosidic and a-1,6-glycosidic linkages. Compared to amylopectin, glycogen is more highly branched. ing.
  • glycogen has recently been demonstrated to have an immunostimulatory effect. Therefore, glycogen can be expected to be used as an immunostimulant or health food material. In addition, it can be used as a cosmetic material, food material (seasoning), and other industrial materials. Glycogen is used in various industrial fields. Applications of glycogen include, for example: microbial infection treatment agents, moisturizers (e.g., cosmetics effective for improving skin moisturizing properties, lip cosmetics that prevent roughening of the lips), complex seasonings (E.g., complex seasonings with the taste of scallops), antitumor agents, fermented milk formation promoters, colloidal particle aggregates, hair combability and hair surface abrasion resistance.
  • moisturizers e.g., cosmetics effective for improving skin moisturizing properties, lip cosmetics that prevent roughening of the lips
  • complex seasonings E.g., complex seasonings with the taste of scallops
  • antitumor agents fermented milk formation promoters, colloidal particle aggregates, hair combability
  • Cell activating agents epidermal cell activating agents, fibroblast proliferating agents, etc.
  • ATP production promoters epidermal cell activating agents, fibroblast proliferating agents, etc.
  • skin aging symptom improving agents such as wrinkles, rough skin improving agents
  • phosphor particle surface treatment agents cyclic tetrasaccharides (CTS; cyclo ⁇ 6)-a— D— glcp— (1 ⁇ 3)-a— D— glcp— (1 ⁇ 6)-a— D— gl cp-(1 ⁇ 3) a -D-glcp -Substrate for the synthesis of (1 ⁇ ).
  • CTS cyclic tetrasaccharides
  • Glycogen is a skin external preparation (for example, lotion, milky lotion, cream, serum, hair nourishing agent, hair restorer, pack, lipstick, lip balm, makeup base lotion, makeup base cream, foundation, eye color. , Cheek color, shampoo, rinse, hair liquid, hair nick, permanent maneuver, hair color, treatment, bath preparation, hand cream, leg cream, neck cream, body lotion, etc.) and in ophthalmic solutions Can be.
  • lotion, milky lotion, cream, serum, hair nourishing agent, hair restorer, pack lipstick, lip balm, makeup base lotion, makeup base cream, foundation, eye color.
  • Cheek color shampoo, rinse, hair liquid, hair nick, permanent maneuver, hair color, treatment, bath preparation, hand cream, leg cream, neck cream, body lotion, etc.
  • ophthalmic solutions Can be.
  • Glycogen derived from mussels (mussels) and plant glycogen derived from sweet corn (phytoglycogens) are commercially available but expensive, and are mainly used as a moisturizing agent in cosmetics. As reagents, glycogens derived from various shellfish or animal livers are also sold, but they are extremely expensive and difficult to use for industrial purposes.
  • Mn is the total mass of the system divided by the number of molecules in the system It is. In other words, it is an average by a fraction.
  • MwZMn is about 2 to about 5 (Eliasson, AC (1996) Carbohydrates in food, Marcel Dekker, Inc, New York, 347-42).
  • Mn can be determined by evaluating the number of molecules. That is, in amylose etc., it can be determined by measuring the number of reducing ends.
  • the number of reducing terminals can be measured by, for example, the Modified Park-Johnson method described in Non-Patent Document 7. It can also be determined by gel filtration chromatography (MALLS method) using a differential refractometer described in Non-Patent Document 8 and a multi-angle light scattering detector. Mw can be determined by the MALLS method described in Non-Patent Document 8.
  • the molecular weight of the substrate is mainly evaluated by the number average molecular weight (Mn), and the molecular weight of the product glucan is mainly evaluated by the weight average molecular weight (Mw).
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • BE is allowed to act on amylopectin or starch to obtain high molecular weight ⁇ -glucan.
  • BE acting on ⁇ -glucan eg, amylose
  • BE is allowed to act on amylose to obtain a high molecular weight a-glucan having a molecular weight of about 1 million or more.
  • the high molecular weight a-glucan obtained when BE is allowed to act on amylopectin is considered to have an increased number of branches in the basic structure of amylopectin, as described in Non-Patent Document 17.
  • glycogen having a spherical structure
  • a neurospora crassa-derived BE is allowed to act on amylopectin or amylose to convert them into a hyperbranched glycogen-like molecule having a unit chain strength of 6 glucose units. It is written.
  • “Glycogen-like” means that the coloration degree by iodine resembles that of glycogen.
  • the amylose used here as a substrate has a number average degree of polymerization of 15, 22 or 130, and Mn is about 2430, about 3600 and about 21000, respectively.
  • Non-Patent Document 2 indicates that it can act on amylose with a short chain length of 15 or 22 BE force average degree of polymerization derived from N. crassa, and the minimum degree of polymerization that can act on BE of plant origin is 30-40 or more. It is described. Non-patent document 2 also states that it has been suggested to act on a glucose chain having a BE force of 12 residues or more derived from N. crassa and to carry out a transfer reaction with hexasaccharide as a minimum unit. As can be seen from Figs. 1 and 2 of Non-Patent Document 1 and Figs. 3 and 4 of Non-Patent Document 2, when N.
  • crassa-derived BE is allowed to act on amylopectin and amylose, the molecular weight of these substrates is It did not change. Furthermore, Figs. 4 and 5 of Non-Patent Document 1 and Figs. 5 and 6 of Non-Patent Document 2 show that a slightly larger molecule and a slightly smaller molecule were obtained. No significant polymerisation was observed.
  • Non-Patent Document 3 by causing corn BEI to act on amylose having an average chain length of more than 300, a delay in the elution time in gel filtration of the product occurred, which was due to a change in shape. It is attributed to the fact that it is not due to a change in molecular weight.
  • Non-Patent Document 4 describes that the molecular weight of Ami-bectin-like molecules obtained by allowing BE (particularly Q enzyme) to act on amylose decreases as the reaction time increases. ing.
  • Non-Patent Document 5 describes that potato-derived BE (Q enzyme) is added to amylose of Mw67600. It is described that the reaction product of Mw33500 can be obtained by acting.
  • Non-Patent Document 6 describes that Mw22,000 glucan can be obtained by allowing potato-derived BE to act on Mn200,000 amylose.
  • Non-Patent Document 7 describes that when BE derived from Bacillus stearothermophilus was allowed to act on enzyme-synthesized amylose of Mw302, 000, the molecular weight decreased due to the cyclization reaction. It is known that the enzyme-synthesized amylose used as a substrate has a narrow molecular weight distribution.
  • MwZMn ⁇ l. 2 and according to Fujii, K. et al. (2003) Biocatalysis and Biotransformation 21 ⁇ , 167-1 72, Mw / Mn l. 005-1 006. According to the pamphlet of the manufacturer Azinoki, it is MwZMn 1.1. Therefore, the ⁇ of the enzyme-synthesized amylose used here is about 252,000 to 302,000. Therefore, the approximate ⁇ of enzyme-synthesized amylose can be estimated by dividing Mw by 1.1.
  • Non-Patent Document 8 describes that when a BE derived from Aquifex aeolicus is allowed to act on ⁇ -glucan, a cyclic glucan is obtained. As is clear from FIG. 1B, this means that the molecular weight of glucan is reduced.
  • Non-Patent Document 9 describes that when BE derived from Bacillus cereus was allowed to act on enzymatic amylose of various sizes, glucos of almost the same size were obtained from any enzymatically synthesized amylose. (Fig. 5. 8). Also, from Fig. 5. 9 of this document, it is clear that components with a molecular weight exceeding about 1 million were not detected at all. Furthermore, from the reaction model shown in Fig. 5.13 in this document, it is not expected that highly branched high molecular weight ⁇ -glucan is produced. As is clear from Fig. 1, the intermolecular branching reaction by BE (Fig. 1A) produces both larger and smaller molecules than the original molecule, and the circularization reaction (Fig.
  • Non-Patent Document 9 differ depending on the substrate molecular weight, as a result, all three reactions are catalyzed, and as a result, the same results can be obtained from any size of amylose. It states that a glucan of the size was obtained. High molecular weight glucan with a molecular weight of 1 million or more can be obtained. In order to achieve this, it is necessary to catalyze the intermolecular branching reaction of A at an overwhelmingly high frequency. It is necessary to receive it. This was not expected at all from the catalytic mechanism of conventional BE, and there was no result suggesting it.
  • Patent Document 2 describes an internally branched cyclic structure by allowing BE (particularly, a branching enzyme) to act on amylose, partially decomposed starch, starch debranched, enzyme synthesized amylose using phosphorylase, maltooligosaccharide, and the like.
  • BE particularly, a branching enzyme
  • a method for producing a glucan having a portion and an outer branched structure portion and having a degree of polymerization in the range of 50 to 5000 is described. This method is a method of producing a cyclic glucan having a degree of polymerization of 50 to 5000 and a maximum degree of polymerization of 10,000 by making the substrate cyclic and low molecular by BE.
  • amylose having a degree of polymerization of about 400 or more can be suitably used.
  • the molecular weight of amylose having a polymerization degree of 400 is about 65,000, and it is not clear from this patent publication whether high molecular weight ⁇ -glucan can be obtained using low molecular weight amylose as a substrate.
  • Non-patent Documents 10 and 16 There is also a document (eg, Non-Patent Document 18 (Walker et al., Eur. J. Biochem. (1971) 20 ⁇ , pl4-21)) that described that “glycogen” was obtained by acting BE on amylose. For these, the molecular weight of the obtained glucan was not measured, and extinction was also analyzed.
  • Non-Patent Document 13 states that it hardly acts on amylose having a degree of polymerization of 40 or less (molecular weight of about 6480). The reason is that BE is considered to require that the substrate amylose has some higher-order structure, and that amylose cannot take its higher-order structure without a certain length. (Non-patent document 14).
  • the higher order structure is related to temperature, and it is considered that amylose should not have such a higher order structure when the temperature is high.
  • Non-patent Document 15 Bacterial BE seems to act on short substrates (Non-patent Document 15), but its effect is weak (Non-patent Document 9, Fig. 4).
  • BE is the amylose as substrate, is not expected to be synthesized glucan having a molecular weight of 1,000,000 or more highly branched, high molecular weight, let alone its high molecular weight glucan flops Rurana Ichize and a amylase It was not expected that the digestibility would be low. Furthermore, the activity of Mn4800 and 9,300 on enzyme-synthesized amylose is low (Non-patent document 9, Fig.4. Compared with the enzyme-synthesized amylose of Mn270,000, which shows the maximum activity, 7% and 12% activity), the benefits of using Mn 8,000 or less (especially Mn 4,000 or less) amylose as a substrate were unpredictable.
  • the electrolyte content and the monosaccharide content are high unless advanced purification is performed, so that it is very expensive to obtain high-purity glycogen. is there.
  • a method for producing glycogen by adding BE to sucrose phosphorylase or a- glucan phosphorylase it is necessary to add about 10 mM phosphoric acid to the reaction solution, and the resulting reaction product contains a large amount of fructose and a small amount.
  • An amount of phosphoric acid enters (sucrose + phosphate + oligosaccharide ⁇ a-glucan + fructose + phosphate).
  • GS glycogen synthase
  • ADP ADP glucose + oligosaccharide ⁇ a-glucan + ADP
  • Patent Document 1 JP 2000-316581 A
  • Patent Document 2 Japanese Patent No. 3107358, claim 1, paragraph 0066
  • Patent Document 3 Japanese Translation of Special Publication 2002-539822
  • Non-patent literature l Matsumoto et al., J. Biochem 107 ⁇ , 118—122 (1990) (Fig. 2)
  • Non-patent literature 2 Matsumoto and Matsuda Starch Science 30 ⁇ p212—222 (1983) (Fig. 3 and Four)
  • Non-Patent Document 3 Boyer et al., StarchZstaerke 34 Nr. 3, S.81-85 (1982) (Tabl e 1, Figure 2 and Figure d)
  • Patent Document 4 Kitamura, Polymeric Materials Encyclopedia, Vol. 10, p79 15 -7922 (Table 2)
  • Non-Patent Document 5 Praznik et al., Carbohydrate Research, 227 (1992) pl71—182
  • Non-Patent Document 6 Griffin and Victor, Biochemistry Vol. 7, No. 9, September 1968
  • Non-Patent Document 7 Takata, H. et al., Cyclization reaction catalyzed by branching enzyme. J. Bacteriol., 1996. 178: p. 1600—1606
  • Non-patent literature 8 Takata, H. et al., Appl. Glycosci., 2003. 50: p. 15— 20
  • Non-patent literature 9 Doctoral dissertation of Hiroki Takata (Kyoto University) 1997 (Studies on Enzymes in Involved in Glycogen Metabolism of Bacillus Species)
  • Non-Patent Document 10 Charles Boyer and Jack Preiss, Biochemistry 1977, Vol
  • Non-Patent Document ll Shinohara, M. L. et al., Appl Microbiol Biotechnol, 2001. 57 (5-6): p.653-9
  • Non-Patent Document 12 Takata, H. et al., Appl. Environ. Microbiol., 1994.60: p. 309 6-3104
  • Non-Patent Document 13 Borovsky, D., Smith, E. E., and Whelan, W.J. (1976) Eur. J. Biochem. 62, 307-312
  • Non-Patent Document 14 Borovsky, D., Smith, EE, and Whelan, WJ (1975) F EBS Lett. 54, 201— 205
  • Non-Patent Document 15 Okada et al., Starch Science 30 ⁇ p223-230 (1983)
  • Non-Patent Document 16 Kitahata, S., and Okada, S. (1988) in Handbook of am ylase and related enzymes.Their sources, isolation methods, prop erties and applications. ( ⁇ he Amylase Reseach Society of Japan ed), pp 143— 154, Pergamon Press, Oxford
  • Non-Patent Document 17 Kawabata et al. (2002) J. Appl. Glycosci. Vol. 49, No. 3, pp. 273-279
  • Non-Patent Document 18 Walker et al., Eur. J. Biochem. (1971) 20 ⁇ , pl4-21
  • the present invention is intended to solve the above-described problems, and an object thereof is to provide a method for producing a hyperbranched and high molecular weight ex glucan, particularly glycogen.
  • the present inventors have the ability to synthesize BE force glycogen having a ratio of branching zyme activity Z depolymerization activity of 500 or less. And the present invention was completed based on this.
  • the production method of the present invention is a method for producing glycogen, and includes a step of producing glycogen by allowing BE having an ability to synthesize glycogen to act on a substrate, and the substrate mainly comprises ⁇ — ⁇ -glucan having a degree of polymerization of 4 or more linked by a 1,1,4-darcoside bond, and the number average molecular weight ( ⁇ ) of the sugar in the solution before the start of the reaction is greater than 180 and less than 150,000.
  • the above-mentioned BE branching enzyme activity ⁇ lowering activity is
  • the BE may be a heat-resistant BE.
  • the BE may be derived from a thermophilic bacterium or a mesophilic bacterium.
  • the BE is an Aquifex genus, a Rhodothermus genus, a Bacillus genus,
  • Genus selected from the group consisting of Thermosynechococcus and Escherichia May be derived from bacteria.
  • the BE is Aquifex aeolicus, Aquifex pyrophilus, R hodothermus obamensis, Rho dothermus marinus, Bacillus stearotherm ophilus, Bacillus caldovelox, Bacillus thermocatenulatus, Bacillus cald olyticus, Bacillus flavoc It may be derived from a bacterium selected from the group consisting of enax, Bacillus smithu, Thermosynechococcus elongatus and Escherich ia coli.
  • the BE is derived from a bacterium selected from the group consisting of Aquifex aeolicus, Rhodothermus obame nsis, Bacillus stearothermophilus, Bacillus caldovelox, Bacillus tnermo catenulatus, Bacillus caldolyticus and Escherichia coli. obtain.
  • the optimum reaction temperature of the BE may be 45 ° C or higher and 90 ° C or lower.
  • the substrate can be starch debranches, dextrin debranches or enzymatically synthesized amylose.
  • the Mn of the sugar in the solution before the start of the reaction is greater than 180, 4, 0
  • the Mn of the sugar in the solution before the start of the reaction may be 4,000 or more and less than 8,000, and the product of the amount of BE used and the reaction time is 25,000 U 'Time The amount of BE used and the reaction time can be adjusted to be equal to or greater than the Zg substrate.
  • the Mn of the sugar in the solution before the start of the reaction may be 8,000 or more and less than 100,000, and the product of the amount of BE used and the reaction time is 40,000U. Time The amount of BE used and the reaction time can be adjusted so as to be over Zg substrate.
  • the Mn of the sugar in the solution before the start of the reaction may be 100,000 or more and 150,000 or less, and the product of the amount of BE used and the reaction time is 150,000U. .Time The amount of BE used and the reaction time can be adjusted to be more than the Zg substrate.
  • the method of the present invention produces the substrate by allowing 4a-dalcanotransferase to act on a-glucan having an Mn force of 80 and less than 1,500.
  • the process of carrying out may be further included.
  • the ⁇ -glucan having an Mn greater than 180 and less than 1,500 may comprise a maltooligosaccharide having a degree of polymerization of 4-7.
  • the method of the present invention may further include a step of producing the substrate by causing a debranching enzyme to act on a low-branched a-glucan having a ⁇ of 500 or more.
  • the method of the present invention does not use (! / Slack of X-glucan phosphorylase or glycogen synthase).
  • 4a-Dalcanotransferase can coexist with the BE.
  • glycogen can be produced in a large amount at a low cost.
  • the method of the present invention has the advantage that glycogen with a very low electrolyte content and monosaccharide content can be obtained without a high degree of purification. Therefore, low cost and high purity
  • V ⁇ glycogen The ability to obtain V ⁇ glycogen has the advantage.
  • FIG. 1 is a diagram schematically showing various actions of BE.
  • FIG. 1A shows that BE catalyzes the intermolecular branching reaction.
  • FIG. 1B shows that BE catalyzes the cyclization reaction.
  • FIG. 1C shows that BE catalyzes the intramolecular branching reaction.
  • FIG. 2 is a schematic diagram of glycogen production from a-glucan.
  • FIG. 3 is a graph showing Mw of a product obtained when various amounts of BE are used. The amount of BE is shown in U / g of substrate.
  • FIG. 4 is a graph showing the Mw of products obtained when substrates of various molecular weights are used.
  • FIG. 5 is a schematic diagram of a reaction in which starch is decomposed by a debranching enzyme to obtain amylose, and this amylose is reacted with BE to produce glycogen.
  • Fig. 6 is a graph showing Mw of a product obtained when a-glucan is produced from starch using isoamylase and various amounts of BE. The amount of BE is shown in U / g substrate.
  • FIG. 7 It is a schematic diagram showing that amylose is produced by BE and amylose-powered glycogen is produced by BE.
  • FIG. 8 is a graph showing Mw of products obtained when substrates (G5, G6, or G7) of various substrates DP (degree of polymerization) are used.
  • Fig. 9 shows glycogen produced according to the present invention (white triangle, “currently produced GLY”), reagent glycogen (black triangle, “reagent GLY”), ⁇ xycorn starch (black circle, ⁇ xy ”). Or a graph showing the Mw of the product after various amounts of pullulanase were allowed to act on corn starch (white circle, “Cons”).
  • FIG. 10 shows glycogen produced according to the present invention (white triangle, “currently produced GLY”), reagent glycogen (black triangle, “reagent GLY”), cocoon xy starch (black circle, ⁇ oxy), or corn starch.
  • FIG. 3 is a graph showing Mw of a product after various amounts of ⁇ -amylase are allowed to act on (white circle, “Cons”).
  • FIG. 11A is a reaction model of BE having the ability to synthesize glycogen.
  • FIG. 11B is a reaction model of BE having no ability to synthesize glycogen.
  • FIG. 12 is a graph showing the correlation between the amount of enzyme and Mw of the product obtained when Aquifex aeolicus VF5-derived BE is allowed to act on persimmon corn starch.
  • the vertical axis shows the product Mw, and the horizontal axis shows the amount of BE added.
  • SEQ ID NO: l base sequence encoding natural BE of Aquifex aeolicus VF5;
  • SEQ ID NO: 2 amino acid sequence of natural BE of Aquifex aeolicus VF5;
  • SEQ ID NO: 3 Base sequence encoding natural BE of Rhodothermus obamensis JCM9785;
  • SEQ ID NO: 4 Amino acid sequence of natural BE of Rhodothermus obamensis JCM9785;
  • SEQ ID NO: 5 Base sequence encoding natural BE of Bacillus stearothermophilus TRBE14;
  • SEQ ID NO: 6 Amino acid sequence of natural BE of Bacillus stearothermophilus TRBE14;
  • SEQ ID NO: 7 Base sequence encoding natural BE of Bacillus stearothermophilus 1503— 4R var. 4;
  • SEQ ID NO: 8 Amino acid sequence of natural BE of Bacillus stearothermophilus 1503— 4R var. 4;
  • SEQ ID NO: 9 Base sequence encoding natural BE of Bacillus caldovelox IF015315;
  • SEQ ID NO: 10 Bacillus caldovelox IFO 15315 natural BE amino acid sequence
  • SEQ ID NO: 11 Bacillus thermocatenulatus natural BE-encoding nucleotide sequence
  • SEQ ID NO: 12 Bacillus thermocatenulatus natural BE amino acid sequence
  • SEQ ID NO: 13 Bacillus caldolyticus IFOl A nucleotide sequence encoding 5313 natural BE;
  • SEQ ID NO: 14 Bacillus caldolyticus IF015313 natural BE amino acid sequence; SEQ ID NO: 15 rhermosynechococcus elongatus BP—base sequence encoding natural BE of BP-1
  • SEQ ID NO: 16 Thermosynechococcus elongatus BP—an approximate BE amino acid sequence of 1;
  • SEQ ID NO: 17 Base sequence encoding natural BE of Escherichia coli W3110; SEQ ID NO: 18 Amino acid sequence of natural BE of Escherichia coli W3110; SEQ ID NO: 19 Base sequence encoding Taq MalQ from Thermus aquaticus; SEQ ID NO: 20 Thermus aquaticus Amino acid sequence of Taq MalQ derived from; SEQ ID NO: 21 primer ECBEN—sequence of NCO;
  • SEQ ID NO: 22 primer ECBEC—sequence of HIN
  • SEQ ID NO: 23 primer ROBEN—sequence of ECO
  • SEQ ID NO: 24 Primer ROBEC—sequence of PST.
  • the method of the present invention is a method for producing a highly branched and high molecular weight ⁇ -glucan (ie, glycogen), wherein BE having glycogen synthesis ability is allowed to act on a substrate in a solution.
  • the substrate is an oc-glucan having a degree of polymerization of 4 or more linked mainly by ⁇ -1,4-darcoside bonds, and the sugars in the solution before the start of the reaction ⁇ force is greater than about 180 and less than about 150,000.
  • glycogen is a sugar having D-glucose as a structural unit, and is linked only by ⁇ -1,4-darcoside bonds and ⁇ -1,6, dalcoside bonds,
  • the molecular weight is 1 million Da or more
  • the Mw force when analyzed by the MALLS method is 0,000 Da or more
  • 300 UZg substrate When a product obtained by using ⁇ -amylase under the conditions of Evaluation Example 2 is analyzed by the MALLS method, a sugar having an Mw of 500,000 Da or more is selected.
  • 1U pullulanase activity is a reduction equivalent to 1 ⁇ mol of glucose in 1 minute of the initial reaction when reacted with pullulan at a final concentration of 1% at pH 5.0 and 40 ° C. The amount of enzyme required to generate force.
  • Brainenzyme with ability to synthesize glycogen refers to BE having the ability to synthesize glycogen. Whether or not a certain BE has the ability to synthesize glycogen can be determined by a method known in the art. That is, for example, when BE is allowed to act on amylose, and then whether or not a high molecular weight a-glucan having a molecular weight of 1 million Da or more is produced in the solution, and the produced high molecular weight a-glucan pullulanase is examined. It can be determined by determining degradation resistance and amylase degradation resistance.
  • Whether or not the polymer ⁇ -glucan exists in the solution is determined by HPLC gel filtration using a multi-angle light scattering detector and a differential refractometer as a detector described in Non-Patent Document 8. It can be determined by analytical methods. Pullulanase degradation resistance can be determined according to the method of Evaluation Example 1. The resistance to a-amylase degradation can be determined according to the method of Evaluation Example 2.
  • BE having a branching enzyme activity Z depolymerization activity of 500 or less has a glycogen synthesis ability and has a branching enzyme activity.
  • BE with low molecular weight-lowering activity of more than 500 BE had the ability to synthesize glycogen.
  • the branching enzyme activity is an activity that decreases the absorbance at 660 nm of a complex of amylose and iodine, and BE cleaves the -1,4-darcoside bond, leaving another glucose residue.
  • BE cleaves the -1,4-darcoside bond, leaving another glucose residue.
  • a method for measuring the branching enzyme activity of BE is known in the art, and is described, for example, in Non-Patent Document 8.
  • the branching enzyme activity of BE is measured, for example, as follows. First, the reaction is started by adding 50 ⁇ L of an enzyme solution to 50 L of a substrate solution (0.12% (wZv) amylose (Type III, manufactured by Sigma Chemical)). The reaction is performed at the optimum reaction temperature for the BE. After allowing BE to act for 10 minutes, the reaction is stopped by adding ImL of 0.4 mM hydrochloric acid solution. Then, after adding ImL iodine solution and mixing well, the absorbance at 660 nm is measured.
  • the BE activity of the enzyme solution is determined by the following formula.
  • BE activity (unit (U), mL)
  • BE activity is used in principle as the BE activity. Therefore, when it is simply referred to as “activity”, it represents “BE activity” and is simply indicated as “unit” or “U”. Represents “unit” or “U” measured by BE activity.
  • the activity of lowering the molecular weight is an activity defined by the present inventors.
  • the activity to lower the molecular weight is also referred to as the activity to lower the molecular weight of amylopectin.
  • 1 unit of low molecular weight activity is reacted for 16 hours at the same temperature and pH as the measurement temperature and pH of BE activity (preferably the optimum reaction temperature and pH of the enzyme)
  • the amount of enzyme required to reduce the Mw of the substrate ( ⁇ xycorn starch) lg to 4 OOkDa is defined.
  • the activity of lowering the molecular weight is measured, for example, as follows. First, add 100 1 distilled water to 50 mg of waxy corn starch (WCS; manufactured by Sanwa Starch) and stir well. Next, add 900 1 dimethyl sulfoxide, stir, and heat in a boiling water bath for 20 minutes. 8. Add 9 ml of distilled water, stir well, and heat in a boiling water bath for an additional 10 minutes. To this solution, add 100 1 1M Tris-HCl (pH 7.5) or 1M phosphate buffer (pH 7.5) and stir to make a substrate solution. The pH of the buffer is adjusted to the measured pH of BE activity.
  • WCS waxy corn starch
  • each tube contains 4 mg of WCS.
  • start the reaction by adding an appropriate amount of X / z L of appropriately diluted BE solution per tube and (200-X) ⁇ L of diluted solution per tube.
  • the reaction temperature is adjusted to the measurement temperature for BE activity.
  • the diluent is 10 mM potassium phosphate buffer containing 0.05% Triton X-100 (pH is adjusted to the BE activity measurement pH).
  • the reaction time reaches 16 hours, add IN HC1 to lower the pH of the reaction solution to 3-4, and then heat at 100 ° C for 10 minutes to stop the reaction. In the case of BE with sufficiently low heat resistance, the reaction can be stopped by simply heating the reaction solution at 100 ° C for 10 minutes.
  • Mw force Reduce the amount of BE so that it falls within the 200 kDa range from S2500 kDa force. Mw is measured by the method described in “Method for measuring weight average molecular weight (Mw) of produced glucan” below.
  • the calculated Mw (kDa) is logarithmically plotted on the vertical axis (y-axis), the amount of enzyme used ( ⁇ L) is plotted on the horizontal axis ( ⁇ -axis), and the software MS-Excel from Microsoft Corporation is used.
  • y 400 (kDa) for, the amount of enzyme VI ( ⁇ L) required to reduce the substrate Mw to 4 OOkDa when 4 mg of WCS is used as the substrate is calculated.
  • the amount of enzyme V2 (V 1 ⁇ L / IOOO) X (1000mg / 4mg) (mL)) required for 1 unit of low molecular weight activity is calculated. Is done.
  • BE activity The upper limit of the Z-lowering activity is about 500, more preferably about 400, even more preferably about 300, even more preferably about 200, and most preferably about 10 0. BE activity There is no particular lower limit to the Z-lowering activity.
  • the lower limit can be about 1 or more, about 5 or more, or about 10 or more.
  • BE activity The value of Z-lowering activity is about 500 or less
  • the mechanism of BE having the ability to synthesize glycogen is not clear. This mechanism is probably based on the principle described below, but is not bound by this principle:
  • the intermolecular branching reaction shown in Fig. 1 needs to occur more frequently than the cyclic chain reaction and the intramolecular branching reaction.
  • a high frequency intermolecular branching reaction is achieved by using low molecular weight amylose as a substrate.
  • branched molecules need to continue to be used preferentially as substrates. Branched molecules must be affected by BE while retaining large structural units. This is explained by a reaction model (Fig. 11A). First, two molecules of amylose produce a molecule with a single ⁇ -1,6 bond.
  • the resulting molecular force S is further used as a substrate, resulting in a molecule with two ⁇ -1,6 bonds. Furthermore, the resulting branched molecule is preferentially used as a substrate, resulting in a small number of high molecular a-glucan molecules and a large number of small molecules.
  • BE acts on the cluster structure of amylopectin and is caused by circularizing it.
  • BE acts on the branching molecule and cyclically unites the unit chain of the cluster structure while retaining its large structural unit. Therefore, BE, which has a relatively high amylopectin-lowering activity, is considered to have the property of using branched molecules preferentially and using them as reaction substrates while retaining large structural units.
  • the BE having the ability to synthesize glycogen is preferably a heat-resistant BE.
  • Heat-resistant BE means BE whose optimum reaction temperature is 45 ° C or higher when BE activity measurement is performed while changing the reaction temperature.
  • the optimum reaction temperature of BE having the ability to synthesize glycogen is preferably about 45 ° C or higher and about 90 ° C or lower.
  • “optimum reaction temperature” refers to a temperature at which the activity is highest when the above BE activity measurement is performed by changing only the temperature.
  • the optimum reaction temperature is preferably about 45 ° C or higher, about 50 ° C or higher, more preferably about 55 ° C or higher, particularly preferably about 60 ° C or higher, most preferably. About 65 ° C or higher.
  • it is preferably about 90 ° C or less, preferably about 85 ° C or less, more preferably about 80 ° C or less, and particularly preferably about 75 ° C or less. is there.
  • the BE having the ability to synthesize glycogen is more preferably a BE derived from a thermophilic bacterium or a mesophilic bacterium.
  • thermophilic bacterium refers to a microorganism having an optimum growth temperature of about 50 ° C. or higher and hardly proliferating at about 40 ° C. or lower. Thermophilic bacteria are divided into moderate thermophilic bacteria and highly thermophilic bacteria.
  • Mode thermophilic bacterium refers to a microorganism having an optimum growth temperature of about 50 ° C. to about 70 ° C.
  • “Highly thermophilic bacteria” refers to microorganisms having an optimum growth temperature of about 70 ° C or higher.
  • thermophilic bacteria the microorganisms having an optimum growth temperature of about 80 ° C or higher are called "superthermophilic bacteria".
  • a “mesophilic bacterium” refers to a microorganism whose growth temperature is in a normal temperature environment, particularly a microorganism whose optimal growth temperature is about 20 ° C. to about 40 ° C.
  • the thermophilic bacterium producing BE having the ability to synthesize glycogen preferably belongs to the genus Aquifex, Rhodothermus, Bacillus, or rhermosynechococcusj.
  • the mesophilic bacterium that produces BE having the ability to synthesize clinogen preferably belongs to the genus Escherichia.
  • BE having glycogen synthesis ability is more preferably Aquifex aeolicus, Aquife x pyropnilus, Rhodothermus obamensis, Rhodothermus marmus, Bacili us stearothermophilus, Bacillus caldovelox, Bacillus thermocatenulatus, Bacillus caldolyticus, Bacillus flavothermus, Bacillus flavothermus, , Bacillus smithii, Thermosynechococcus elongatu s, and Escherichia coli Derived from a bacterium selected from the group consisting of coU.
  • thermophilic Bacillus bacteria are often described as Geobacillus bacteria. ⁇ row XJ3 ⁇ 4, Bacillus stearothermophilus ⁇ 3 ⁇ 4 ⁇ Refers to the same bacteria as Geobacillus stearothermophilus.
  • the phrase "derived from” an organism means that the enzyme can be obtained by utilizing the organism in some form rather than only directly isolated from the organism. It means being done. For example, when a gene encoding the enzyme obtained from the biological force is introduced into Escherichia coli and the enzyme is isolated, the enzyme is said to be “derived” from the organism.
  • the base sequence encoding the natural BE of Aquifex aeolicus VF5 is shown in SEQ ID NO: 1, and the amino acid sequence is shown in SEQ ID NO: 2.
  • “native” BE also includes genetically engineered BEs that have the same amino acid sequence as natural BE but only with isolated BE. To do.
  • a method for cloning a base sequence encoding a natural BE derived from Aquifex aeolicus VF5 is described in Non-Patent Document 8 and van der Maarel, MJEC et al., Biocataiysis and Biotransformation, 2003, 21 ⁇ , pl99-207.
  • BE from Aquifex aeolicus is a species Substrate strength of various Mn It has the characteristic of producing glycogen very well.
  • Non-patent Document 11 and Patent Document 3 describe a method for cloning a base sequence encoding natural BE derived from Rhodothermus obame nsis JCM9785.
  • the base sequence encoding the natural BE of Bacillus stearothermophilus TRBE 14 is shown in SEQ ID NO: 5, and the amino acid sequence is shown in SEQ ID NO: 6.
  • Non-patent document 9 and non-patent document 12 describe a method for cloning a base sequence encoding natural BE derived from Bacillus stearother mophilus TRBE14.
  • BE derived from Bacillus stearothermophilus has the property of producing very good low molecular weight substrate strength glycogen.
  • TTG and GTG are used as start codons and translated as methionine.
  • TTG at positions 1 to 3 in SEQ ID NO: 5 acts as an initiation codon and is translated into methionine.
  • T at position 1 is substituted with A.
  • the base sequence encoding the natural BE of Bacillus stearothermophilus 1503-4R var. 4 is shown in SEQ ID NO: 7, and the amino acid sequence is shown in SEQ ID NO: 8.
  • Bacillus ste arothermophilus 1503 The cloning method of the base sequence encoding natural BE derived from 4R var. 4 is described in Kiel, JAKW et al., Mol. Gen. Genet., 1991. 230: p. 1 36—144 and EP0418945B1. be written. TTG at positions 1 to 3 of SEQ ID NO: 7 acts as a start codon and is translated into methionine.
  • T at position 1 is generally replaced with A.
  • the base sequence encoding the natural BE of Bacillus caldovelox IF015315 is shown in SEQ ID NO: 9, and the amino acid sequence is shown in SEQ ID NO: 10. TTG at positions 1-3 of SEQ ID NO: 9 acts as an initiation codon and is translated into methionine. In general, when BE is expressed in another organism using a nucleic acid molecule having the base sequence of SEQ ID NO: 9, T at position 1 is substituted with A.
  • the base sequence encoding the natural BE of Bacillus thermocatenulatus is shown in SEQ ID NO: 11, and the amino acid sequence is shown in SEQ ID NO: 12.
  • TTG at positions 1 to 3 of SEQ ID NO: 11 acts as an initiation codon and is translated into methionine.
  • T at position 1 is generally replaced with A.
  • the base sequence encoding the natural BE of Bacillus caldolyticus IF015313 is shown in SEQ ID NO: 13, and the amino acid sequence is shown in SEQ ID NO: 14. TTG at positions 1-3 of SEQ ID NO: 13 acts as an initiation codon and is translated into methionine.
  • T at position 1 is substituted with A.
  • the base sequence encoding the natural BE of Thermosynechococcus elongatus BP-1 is shown in SEQ ID NO: 15, and the amino acid sequence is shown in SEQ ID NO: 16.
  • the base sequence and amino acid sequence of these natural BEs are illustrative, and it is known that variants having a slightly different sequence from these sequences (so-called allelic variants) may exist in nature. is there.
  • allelic variants variants having a slightly different sequence from these sequences
  • in addition to the BE having the exemplified sequence as long as it has the ability to synthesize glycogen, such a naturally occurring variant and a variant in which a mutation has been artificially introduced into the natural BE Can also be used.
  • WO2000 Z058445 publication and Patent Document 3 describe a modified form of BE derived from Rhodothermus obamensis.
  • the modified BE preferably has an activity equal to or higher than that of the BE before introducing the modification.
  • the amino acid sequence of BE used in the present invention is, in one embodiment, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16 And in another embodiment, which may be 100% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 18 (ie, a control amino acid sequence)
  • the amino acid may be changed up to a certain number in comparison. Such changes include deletions, substitutions (including conservative and non-conservative substitutions) of at least one (preferably one or several) amino acids, and Can be selected from the group of insertion forces.
  • This change may occur at the amino or carboxy terminal position of the control amino acid sequence or may occur at any position other than these terminals.
  • a change in amino acid residues may be a sequence of several residues, even if they are scattered one by one.
  • a person skilled in the art can easily select a BE having the desired properties.
  • the gene encoding the target BE may be directly synthesized. Such chemical synthesis methods are well known in the art.
  • Modification of BE can be performed using methods well known in the art, for example, site-directed mutagenesis method, mutagenesis method using mutagen (treating the target gene with a mutagen such as nitrite, This can be done by performing UV treatment, error-blown PCR, etc.
  • Site-directed mutagenesis is preferably used from the viewpoint of easily obtaining the desired mutation. If site-specific mutagenesis is used, it is the ability to introduce the target modification at the target site. Alternatively, a nucleic acid molecule having a target sequence may be directly synthesized. Such chemical synthesis methods are well known in the art. The method of site-directed mutagenesis is described, for example, in Nucl. Acid Research, Vol. 10, pp. 6487-6500 (1982).
  • hydrophobicity index of amino acids can be taken into account.
  • the importance of the hydrophobic amino acid index in conferring interactive biological functions in proteins is generally recognized in the art (Kyte. J and Doolittle, RFJ Mol. Biol. 157 (1): 105-132, 1982).
  • the hydrophobic nature of amino acids contributes to the secondary structure of the protein produced, and then defines the interaction of the protein with other molecules (eg, enzymes, substrates, receptors, DNA, antibodies, antigens, etc.).
  • Each amino acid is assigned a hydrophobicity index based on their hydrophobicity and charge properties.
  • substitution of one amino acid with another amino acid having a similar hydrophobicity index, and still a protein having a substantially similar biological function Is well known in the art.
  • the hydrophobicity index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5. It is understood in the art that such amino acid substitutions based on hydrophobicity are efficient. As described in US Pat. No.
  • an amino acid can be substituted with another that has a similar hydrophilicity index and still can provide a bioequivalent.
  • the hydrophilicity index is preferably within ⁇ 2, more preferably within ⁇ 1, and even more preferably within ⁇ 0.5.
  • “conservative substitution” means that the amino acid substitution is similar to the hydrophilicity index or Z and hydrophobicity index with the amino acid substituted with the original amino acid as described above. This refers to substitution. Examples of conservative substitutions are well known to those of skill in the art and include, but are not limited to, substitutions within the following groups: arginine and lysine; glutamic acid and aspartic acid; serine and threonine; glutamine and asparagine And parin, leucine, and isoleucine.
  • the BE used in the method of the present invention may be isolated from a natural microbial force producing BE.
  • natural BE can be isolated from Aqmfex aeolicus VF 5, Bacillus stearothermophilus, and the like.
  • Bacillus stearothermophilus TRBE14 should be treated with an appropriate medium (for example, L broth (1% Bactto- Tryptone (Difco Laboratories, Detroit, Mich., USA), 0. 5% Bacto— YeastExtract (Difco), 0.5% NaCl, p H7.
  • an appropriate medium for example, L broth (1% Bactto- Tryptone (Difco Laboratories, Detroit, Mich., USA), 0. 5% Bacto— YeastExtract (Difco), 0.5% NaCl, p H7.
  • the obtained supernatant is passed through an anion exchange resin Q-Sepharose that has been equilibrated in advance to adsorb BE to the resin. Wash the resin with a buffer containing 100 mM sodium chloride to remove impurities. Subsequently, BE is eluted with a buffer containing 400 mM sodium chloride to obtain a BE enzyme solution derived from Bacillus stearothermophilus TRBE 14.
  • a solution containing BE derived from Bacillus stearother mophilus TRBE 14 can be obtained by combining fractions obtained by hydrophobic chromatography using, for example. Purification of BE from other bacterial species can be performed as well.
  • the BE used in the method of the present invention introduces a nucleic acid molecule containing a base sequence encoding BE into an appropriate host cell to express the BE, and expresses the expressed BE to the host cell or It can be obtained by purifying the culture fluid.
  • Nucleic acid molecules containing the base sequence encoding natural BE are trypsinized from the purified BE obtained as described above, and the resulting trypsin-treated fragment is separated by HPLC and separated.
  • the amino acid sequence at the N-terminus of any of the peptide fragments identified was identified by a peptide theta sensor, and then the appropriate genomic library or cDNA was synthesized using a synthetic oligonucleotide probe created based on the identified amino acid sequence. It can be obtained by screening the library.
  • the basic strategies for preparing oligonucleotide probes and DNA libraries and for screening them by nucleic acid hybridization are well known to those skilled in the art.
  • degenerate primers corresponding to regions conserved in the amino acid sequences of various BEs can be prepared, and the base sequence of BE can be obtained by PCR. Such methods are well known in the art.
  • the resulting nucleic acid molecules can be subcloned using methods well known to those of skill in the art.
  • a plasmid containing the target gene can be easily obtained by mixing ⁇ phage containing the target gene, appropriate E. coli, and appropriate helper phage. Thereafter, the gene of interest can be subcloned by transforming appropriate E. coli with a solution containing the plasmid. The obtained transformant is cultured, and plasmid DN DN is obtained by, for example, alkaline SDS method, and the base sequence of the target gene can be determined. Methods for determining the base sequence are well known to those skilled in the art.
  • Aquifex aeolicus for primer synthesized based on the base sequence of DNA fragment, Aquifex aeolicus, Rhodotnermus obamensis, Bacillus stearothe rmophilus, Bacillus caldovelox, Bacillus thermocatenulatus, Bacillus caldolyticus, etc.
  • the BE gene can also be amplified directly using a reaction (PCR).
  • a known base sequence eg, a base sequence encoding an amino acid sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 or 18 (eg, SEQ ID NO: 1, 3, 5, Can be chemically synthesized based on 7, 9, 11, 13, 15 or 17 base sequence)!
  • the base sequence encoding the amino acid sequence of BE used in the method of the present invention varies to a certain number as compared with the nucleotide sequence encoding the above-mentioned reference amino acid sequence (that is, the control base sequence). It may be. Such changes include deletions of at least one nucleotide, substitutions involving transitions and transversions, or groups of insertions. More can be selected. This change may occur at the 5 'end or 3' end position of the control base sequence, or may occur at any position other than these ends. The base change may be scattered by one base or several consecutive bases.
  • Base changes can result in nonsense, missense or frameshift mutations in the coding sequence and can cause changes in BE encoded by the base sequence after such changes.
  • the amino acid strength between the amino acid sequences is typically at least about 20%, preferably at least about 30%, more preferably at least about 40%, and even more preferably at least about 50. %, Particularly preferably at least about 60%, about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98% or about 99% identical.
  • the natural enzyme or nucleic acid molecule is also not identical to the amino acid sequence of BE specifically described in the present specification or the base sequence encoding BE (eg, SEQ ID NOs: 1, 2, etc.). Those having sequences with homology may also be used. As such an enzyme or nucleic acid molecule having homology to a natural enzyme or nucleic acid molecule, for example, when compared under the above conditions in GENETYX—WIN Ver.
  • nucleic acids at least about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70% for the sequence of interest , About 75%, about 80%, about 85%, about 90%, about 95%, about 99% nucleic acid molecules comprising a base sequence with identity, and in the case of enzymes, at least about 40%, Approximately 45%, approximately 50%, approximately 55%, approximately 60%, approximately 65%, approximately 70%, approximately 75%, approximately 80%, approximately 85%, approximately 90%, approximately 95% or approximately 99% identical Examples include, but are not limited to, an enzyme having an amino acid sequence.
  • a BE encoded by a nucleic acid molecule that hybridizes under stringent conditions with a nucleic acid molecule consisting of a sequence can be used in the method of the present invention as long as it has the ability to synthesize glycogen.
  • the nucleotide sequence ability selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15 and SEQ ID NO: 17
  • the method of the present invention is hybridized with the nucleic acid molecule under stringent conditions.
  • Can be used in A person skilled in the art can easily select a desired BE gene.
  • stringent conditions refers to conditions that hybridize to specific sequences but do not hybridize to non-specific sequences.
  • the setting of stringent conditions is well known to those skilled in the art and is described, for example, in Moleculer Cloning (Sambrook et al., Supra). Specifically, for example, 50% formamide, 5 X SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6) using a filter immobilized with DNA derived from colonies or plaques.
  • the nucleic acid molecule used to produce BE used in the method of the present invention is natural B. It may be a nucleic acid molecule conservatively modified with respect to a nucleic acid molecule containing a base sequence encoding E.
  • a nucleic acid molecule conservatively modified with respect to a nucleic acid molecule containing a base sequence encoding natural BE encodes an amino acid sequence that is identical or essentially identical to the amino acid sequence of natural BE.
  • a nucleic acid molecule containing a base sequence A nucleic acid molecule containing a base sequence.
  • the “amino acid sequence essentially identical to the amino acid sequence of natural BE” refers to an amino acid sequence having essentially the same enzymatic activity as natural BE.
  • the codons GCA, GCC, GCG and GCU all encode the amino acid alanine.
  • the codon can be changed to GCC, GCG or GCU without changing the encoded alanine.
  • the codon is responsible for encoding that amino acid without altering the specific amino acid encoded. It can be changed to any other codon.
  • siRNA mutations Such variations in base sequence are “silent mutations,” which are one species of conservatively modified mutations. All base sequences herein that encode a polypeptide also include all possible silent variations of the nucleic acid. Silent mutation includes “silent substitution” in which the encoded amino acid does not change, and the case where the nucleic acid does not encode an amino acid in the first place (for example, mutation in an intron, mutation in another untranslated region, etc.). If a nucleic acid encodes an amino acid, silent mutation is synonymous with silent substitution. As used herein, “silent substitution” refers to substituting a base sequence encoding a certain amino acid with another base sequence encoding the same amino acid in the base sequence.
  • a polypeptide having an amino acid sequence encoded by a base sequence generated by silent substitution has the same amino acid sequence as the original polypeptide.
  • each codon in a nucleic acid except AUG, which is usually the only codon that encodes methionine, and TGG, which is usually the only codon that encodes tryptophan
  • AUG which is usually the only codon that encodes methionine
  • TGG which is usually the only codon that encodes tryptophan
  • the base sequence encoding BE used in the present invention can be changed in accordance with the frequency of codon usage in an organism to be introduced for expression.
  • Codon usage reflects the frequency of use of genes that are highly expressed in the organism. For example, if it is intended to be expressed in E. coli, the expression of the expression in the Otsuki bacterium according to the published codon usage table (for example, Sharp et al., Nucleic Acids Research 16 No. 17, page 8207 (1988)). Can be optimized for.
  • An expression vector can be prepared using a nucleic acid molecule containing a base sequence modified as described above. Methods for producing expression vectors using specific nucleic acid sequences are well known to those skilled in the art.
  • vector refers to a nucleic acid molecule capable of transferring a target base sequence to a target cell.
  • a vector is suitable for the ability of autonomous replication to the target cell, or for integration into the chromosome of the target cell and suitable for transcription of the modified nucleotide sequence. Examples include those containing a promoter.
  • a vector can be a plasmid.
  • an "expression vector” refers to a vector that can express a modified base sequence (that is, a base sequence encoding a modified BE) in a target cell.
  • the expression vector is required for various regulatory elements such as a promoter that regulates its expression, and, if necessary, for replication in the cell of interest and selection of recombinants. Other factors (eg, origin of replication (ori) and selectable markers such as drug resistance genes).
  • the modified nucleotide sequence is operably linked so as to be transcribed and translated. Regulatory elements include promoters, terminators and enhancers.
  • the base sequence encoding the secretory signal peptide is aligned upstream of the modified base sequence and bound in the reading frame.
  • the type of expression vector used for introduction into a particular organism eg, a bacterium
  • its expression vector It is well known to those skilled in the art that the type of regulatory elements and other factors used in one can vary depending on the cell of interest.
  • terminal 1 is a sequence that is located downstream of the protein coding region and is involved in termination of transcription when a base sequence is transcribed into mRNA, and addition of a poly A sequence. . Terminators are known to be involved in mRNA stability and affect gene expression levels.
  • a "promoter” is a region on DNA that determines the transcription start site of a gene and directly regulates the transcription frequency, and is transcribed by RNA polymerase binding. It is the base sequence which starts. Since the promoter region is usually a region within about 2 kbp upstream of the first exon of the putative protein coding region, if the protein coding region in the genomic nucleotide sequence is predicted using DNA analysis software, The promoter region can be deduced.
  • the putative promoter region varies from structural gene to structural gene, but is usually upstream of the structural gene, but is not limited to this and may be downstream of the structural gene. Preferably, the putative promoter region is present within about 2 kbp upstream from the first exon translation start point.
  • Enno, sensor can be used to increase the expression efficiency of a target gene. Such a sensor is well known in the art. You can use multiple Hansa, but you can use one! /, Or not! /.
  • operably linked refers to transcriptional translational regulatory sequences (eg, promoters, enzymes) that provide the desired base sequence force expression (ie, activation). Or the like under the control of a translational regulatory sequence.
  • transcriptional translational regulatory sequences eg, promoters, enzymes
  • base sequence force expression ie, activation
  • the force with which the promoter is usually placed immediately upstream of the gene does not necessarily have to be placed adjacent.
  • the target BE gene may be processed.
  • Processing methods include digestion with restriction enzymes, digestion with exonucleases such as Bal31 and ⁇ , or single-stranded D such as M13. Introducing site-specific mutations using NA or PCR.
  • expression of an enzyme refers to the ability of the base sequence encoding the enzyme to be transcribed and translated in vivo or in vitro to produce the encoded enzyme.
  • Examples of cells (also called hosts) into which an expression vector is introduced include prokaryotes and eukaryotes.
  • a cell into which an expression vector is introduced can be easily selected in consideration of various conditions such as ease of BE expression, ease of culture, speed of growth, and safety.
  • BE when BE is used for glycogen synthesis, BE preferably does not contain amylase as a contaminant, so use cells that do not produce amylase or express low-level forces. Is preferred.
  • Examples of such cells include microorganisms such as bacteria and fungi. More preferable examples of the cells include mesophilic bacteria (for example, Escherichia coli and Bacillus subtilis).
  • the cell may be a microbial cell, but may be a plant, animal cell or the like.
  • the enzyme of the present invention may have been subjected to post-translational processing.
  • the technique for introducing an expression vector into a cell can be any technique known in the art. Examples of such techniques include transformation, transfection, and transformation. Such nucleic acid molecule introduction techniques are well known and frequently used in the art, for example, Ausubel FA et al. (1988), Current Protocols in Molecular Biology, Wiley, New York, NY; Sambrook J et al. (1987) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, published in separate volume of experimental medicine ⁇ Gene transfer & expression analysis experiment method '' Yodosha, 1997, etc. It is done.
  • a-glucan having a degree of polymerization of 4 or more linked mainly by ⁇ 1,4 dalcoside bond is used as a substrate.
  • ⁇ -glucan is a sugar having D-glucose as a constituent unit.
  • the a-glucan can be a linear, branched or cyclic molecule.
  • Linear ⁇ -dulcan and ⁇ -1,4-glucan are synonymous.
  • sugar units are linked only by 4-Dalcoside bonds.
  • An ⁇ -glucan containing one or more ⁇ -1,6-darcoside bonds is a branched ⁇ -dulcan.
  • the glucan preferably contains some linear moieties. Non-branched linear ⁇ -glucan is more preferred.
  • “mainly linked by ⁇ -1,4-darcoside bonds” means that sugar units are mainly linked by ⁇ -1,4-darcoside bonds. “Mainly” means that it accounts for 50% or more of the bonds between sugar units.
  • the linkage between sugar units other than the ⁇ -1,4-darcoside bond may be any possible bond, but is generally an ⁇ -1,6-darcoside bond.
  • the ⁇ -glucan used as a substrate preferably has a small number of branches (that is, the number of ⁇ -1,6-darcoside bonds).
  • the number of branches is typically about 0 to about 100, preferably about 0 to about 50, more preferably about 0 to about 25, about 0 to about 10, per molecule. , About 0 to about 5, more preferably 0.
  • the ⁇ -1, 6-darcoside bond may be distributed randomly in the ⁇ -glucan or may be distributed homogeneously. It is preferable that the distribution is such that a linear part of 5 or more sugar units can be formed in a-glucan.
  • the a-glucan used as a substrate in the present invention has a degree of polymerization of 4 (molecular weight 666) or more.
  • the substrate a-glucan may be a pure substance with a single molecular weight or a mixture of molecules with various molecular weights.
  • a mixture containing glucose that does not act as a substrate may be added to the solution.
  • a mixture of molecules of various molecular weights is often used as a raw material sugar.
  • the Mn of the sugar in the solution before the start of the reaction is more than about 180, preferably about 181 or more, more preferably about 182 or more, more preferably about 183 or more, more preferably about 184 or more, more preferably about 185 or more.
  • the number average molecular weight of sugar in the solution before the start of reaction is, for example, about 190 or more, about 195 or more, about 200 or more, about 250 or more, about 300 About 350 or more, about 400 or more, about 450 or more, about 500 or more, about 550 or more, about 600 or more, about 650 or more, about 700 or more, about 750 or more, about 800 or more, about 850 or more, about 900 or more Approx. 950 or more, approx. 1000 or more, approx. 1,000 or more, approx. 1,500 or more, approx. 2,000 or more, approx. 2,
  • Glucose molecular weight 180
  • ⁇ -glucan with a polymerization degree of 3 or less cannot be a substrate for BE, but X-glucan with a polymerization degree of 4 or more can be a substrate.
  • the Mn of the mixture approaches 180. Even if the Mn of the sugar in the solution before the start of the reaction is around 180, the reaction occurs if oc-glucan having a degree of polymerization of 4 or more is present. Therefore, even if the Mn of the sugar in the solution before the start of the reaction is around 180, it can be used for the reaction if it contains a-glucan having a polymerization degree of 4 or more.
  • the Mn of the sugar in the solution before the start of the reaction is about 150,000 or less, preferably about 120,000 or less, more preferably about 100,000 or less, more preferably about 80,000 or less. And even more preferably less than about 50,000, even more preferably less than about 20,000, even more preferably less than about 8,000, and most preferably less than about 4,000.
  • the Mw is 1 million or more and the solubility in water is high.
  • the a-glucan used as a substrate in the present invention is composed only of D-glucose !, but the reaction rate modified by BE is not reduced to 20% or less. Even a conductor. Qualified!
  • the a-glucan used as a substrate in the present invention may be natural amylose, but is preferably starch debranched, dextrin debranched or enzyme-synthesized amylose. Natural amylose may have some branched structure. Starch debris and dextrin debranches may also have some branched structure if the debranching reaction is insufficient.
  • the starch debranches can be those obtained by decomposing starch known in the art with isoamylase or pullulanase.
  • starches used to obtain starch debris As, for example, potato starch, tapio force starch, sweet potato starch, crumb starch and other underground starch; corn starch (rice cake corn starch, high amylose corn starch, etc.), wheat starch, rice starch (for example, glutinous rice starch, glutinous rice starch), Examples include sago starch and ground starch such as bean starch.
  • Starch debris is particularly preferred because it is inexpensive and readily available. It is also preferable to use a amylose cornstarch 1,6-dalcoside bond degradation product.
  • 4a-dalcanotransferase is allowed to act on a-glucan having a polymerization degree of 2 or more in a solution having a sugar Mn of greater than 180 and less than 1,500 in the solution before the start of the reaction. , Further comprising the step of producing the substrate.
  • 4-a-dalcanotransferase may be allowed to coexist with BE.
  • 4a-Dalcanotransferase that can be used in the present invention transfers a non-reducing end of a donor molecule from a non-reducing end of an acceptor molecule from a non-reducing end of a donor molecule to a non-reducing end of a acceptor molecule. It is an enzyme. Thus, the enzymatic reaction results in a heterogeneity of the degree of polymerization of the initially given maltooligosaccharide. If the donor and acceptor molecules are the same, an intramolecular transition occurs, resulting in a product with a cyclic structure.
  • Typel is called cyclodextrin glucanotransferase (hereinafter referred to as CGTase) (EC2. 4. 1. 19)
  • CGTase cyclodextrin glucanotransferase
  • Typell is a disposition proportioning enzyme.
  • MalQ Typelll is a 4-alpha group called Glycogen Debranching Enzyme.
  • An enzyme that has both Norecanotransferase and Amiguchi 1,6 darcosidase activity EC 3. 2.
  • TypelV and V are derived from hyperthermophilic bacteria.
  • 4-a-Dalcanotransferase is present in microorganisms and plants.
  • microorganisms producing 4- ⁇ -glucanotransferase include Aquifex aeolicus, Stre ptococcus pneumoniae ⁇ Clostridium butylicum, Deinococcus radiodura ns, Haemophilus influenzae ⁇ Mycobacterium tuberculosis ⁇ Thermococcus diatrotia sp., Dictyoglomus thermophilum, Borrelia burg dorferi ⁇ Synechosystis sp., E.
  • 4- ⁇ -gnolecanotransferase examples include potatoes such as potato, sweet potato, yam, and cassava, cereals such as corn, rice, and wheat, and beans such as peas, soybeans, etc. Is mentioned.
  • 4 a Organisms that produce dalcanotransferase are not limited to these.
  • 4-a-Dalcanotransferase may be a commercially available product or may be prepared from these organisms by a known method in the field, or a gene assembly using a debranching enzyme gene of these organisms. It may be prepared by alternative methods. Any 4a-Dalcanotransferase known in the art can be used.
  • CGTase (EC2. 4. 1. 19) is also a kind of 4-a-glucanotransferase and can be used in the production method of the present invention.
  • CGTase that can be used in the present invention is an enzyme that can catalyze a transglycosylation reaction (a heterogenization reaction) of maltooligosaccharide.
  • CGTase recognizes 6 to 8 glucose chains at the non-reducing end of the donor molecule and carries out a transfer reaction to make this part cyclic, and a cyclodextrin with a polymerization degree of 6 to 8 and an acyclic limit dextrin.
  • CGTase a well-known CGTase derived from a microorganism, or a commercially available CGTase may be used.
  • a commercially available CGTase derived from Bacillus stearothrmophilus strain CGTase derived from the formula company Hayashibara Biochemical Research Institute (Okayama), Bacillus macerans (trade name: Contiszym, Amano Pharmaceutical Co., Ltd., Nagoya), or CGTase derived from Alkalophilic Bacillus sp. A2-5a can be used. More preferably, CGTase derived from Alkalophilic Bacillus sp.
  • A2-5a can be used.
  • Alkalophilic Bacillus sp. A2-5a which is disclosed in JP-A-7-107972, is a strain that produces CGTase having high activity in the alkaline region. Is deposited with the deposit number (FERM P— 13864).
  • the organism producing CGTase is not limited to these.
  • CGTase may be commercially available, or may be prepared by a method known in the art, or may be prepared by a genetic recombination method using the CGTase gene of these organisms. . Any CGTase known in the art can be used.
  • 4-a-glucanotrans phrerase other than CGTase is preferably used. When a 4-a-glucanotransferase other than CGTase coexists with BE, the yield of glycogen is significantly improved compared to the case where CGTase coexists with BE.
  • examples include maltooligosaccharides having a degree of polymerization of 2-9.
  • it is a maltooligosaccharide having a polymerization degree of 3 to 8, more preferably a maltooligosaccharide having a polymerization degree of 3 to 7, even more preferably a maltooligosaccharide having a polymerization degree of 4 to 6, and particularly preferably a polymerization degree of 4 -5 malto-oligosaccharides, most preferably maltooligosaccharides with a degree of polymerization of 4.
  • an a-glucan having a ⁇ force of greater than 80 and less than 1,500 is a mixture
  • examples include a mixture containing a maltooligosaccharide having a degree of polymerization of 4 to 12.
  • An ex-glucan having an Mn greater than 180 and less than 1,500 may contain a low-molecular sugar such as glucose in addition to a maltooligosaccharide having a polymerization degree of 4-12.
  • ⁇ -glucan with Mn force greater than 80 and less than 1,500 is preferred Alternatively, it contains a malto-oligosaccharide having a polymerization degree of 4 to 7, more preferably a malto-oligosaccharide having a polymerization degree of 4 to 7.
  • Malto-oligosaccharides having a degree of polymerization of 4-7 are also called maltotetraose, maltopentaose, maltohexaose, and maltoheptaose, respectively.
  • the production method of the present invention may further include a step of producing the substrate by allowing a debranching enzyme to act on a low-branched ⁇ -dulcan having a Mn of 500 or more.
  • a debranching enzyme is an enzyme that can cleave (X 1, 6-darcoside bond.
  • Debranching enzyme is an isoamylase (EC 3.2.1.68) that works well with amylopectin and glycogen. , Which acts well on pullulan (X-dextrin endo 1,6-a-darcosidase (also called pullulanase) (EC 3.2.1.41), both isoamylase and pullulanase.
  • the debranching enzyme can be used in the method of the present invention to produce ⁇ -glucan having a degree of polymerization of 4 or more linked mainly by ⁇ -1,4-darcoside bonds from an inexpensive material such as starch.
  • the debranching enzyme activity can be determined by Yokobayashi et al. (Biochim. Biophys. Acta, vol. 212, p458—469 (1970)).
  • the reaction temperature at the time of measurement, reaction pH, etc. can be adjusted.
  • Debranching enzymes are present in microorganisms, prokaryotes, and plants.
  • the microorganisms that produce the debranching enzyme can be powered by Saccharomyces cerevisiae, Cnlamydomonas sp.
  • prokaryotes that produce debranching enzymes include Bacillus brevis, Bacillu s acidopullulyticus, Bacillus macerans, Bacillus stearothermopnilus, B acillus circulans, Thermus aquaticus, Klebsiella pneumoniae ⁇ Thermo a ctinomyces thalperous Falvobacterium sp., Cyto phaga sp., Eschericnia coli, Sulfolobus acidocaldarius, Sulfolobustokoda ii, Sulfolobus solfataricus, Metallosphaera hakonensis and the like.
  • Examples of plants that produce a debranching enzyme include potato, sweet potato, corn, rice, wheat, barley, oats, and sugar beet.
  • the organism that produces the debranching enzyme is not limited to these.
  • the debranching enzyme may be commercially available, prepared from these organisms by methods known in the art, or the debranching enzyme residues of these organisms. It may be prepared by gene recombination using a gene! Any debranching enzyme known in the art can be used.
  • the debranching enzyme is preferably added before BE is added to the reaction solution.
  • the low-branched ⁇ -glucan with ⁇ 500 or more can be a naturally occurring a-glucan.
  • “low branching” means that the frequency of branching is low.
  • the low-branched ⁇ -glucan may not contain branches.
  • the number of ⁇ -1,4-darcoside bonds when the number of ⁇ -1,6-darcoside bonds is 1, preferably about 10 to about 10,000, more preferably It is about 10 to about 5000, more preferably about 15 to about 1000, and more preferably about 20 to about 600.
  • Examples of the low-branched ⁇ -glucan having ⁇ of about 500 or more include starch, amylose, amylopectin, and derivatives or partial degradation products thereof.
  • starch examples include potato starch, tapio force starch, sweet potato starch, crumb starch, and other underground starch; ), Ground starch such as sago starch and bean starch.
  • amylose examples include amylose isolated from these starches.
  • Amylopectin includes amylopectin isolated from these starches. Low-branched ⁇ -glucans having ⁇ 500 or more are known in the art and can be easily obtained.
  • BE having the ability to synthesize glycogen
  • a substrate that is, ⁇ -glucan having a degree of polymerization of 4 or more linked mainly by ⁇ 1, 4 darcoside bond
  • a buffer that is, a buffer
  • the solvent that is solvent power is used as the main material.
  • all of these materials are added at the start of the reaction, but any of these materials may be supplemented during the reaction.
  • at-glucan and 4-a-glucanotransferase having ⁇ greater than 180 and less than 1,500 can be used as necessary.
  • a low-branching ⁇ -dalcan having a Mn of 500 or more and a debranching enzyme can be used.
  • the amount of BE contained in the solution at the start of the reaction is typically about lOOUZg substrate or more, preferably about 500 UZg substrate or more, relative to ⁇ -glucan in the solution at the start of the reaction. More preferably about 1, OOOUZg substrate or more.
  • the amount of BE contained in the solution at the start of the reaction is typically less than about 500, OOOUZg substrate, preferably about 100, OOOUZg substrate, relative to the ⁇ -glucan in the solution at the start of the reaction. Less than or equal to about 80, OOOUZg substrate. If too much BE is used, the denatured enzyme may easily aggregate during the reaction. If the amount used is too small, the yield of glycogen may decrease.
  • the amount of BE used is related to the time it takes BE to act on the substrate (ie, a-glucan). If the amount used is at least a longer reaction time, the reaction will proceed. If the amount used is larger, the reaction will proceed even if the reaction time is shorter. Therefore, the product of the amount of enzyme and the reaction time has a great influence on the formation of reactants.
  • the amount of BE used and the reaction time are adjusted so that the product of the amount of BE used and the reaction time is about 150, ⁇ ⁇ hour Zg substrate or more.
  • “ ⁇ ⁇ time Zg substrate” means the product of the amount of enzyme used per substrate lg (UZg substrate) and the reaction time (hours).
  • the product of the amount of BE used and the reaction time is more preferably about 160, ⁇ ⁇ hour Zg substrate or more, more preferably about 170,000 U * hour Zg substrate or more, more preferably about 180, 000 U *.
  • Time Zg substrate or more more preferably about 200,000 U * hour Zg substrate or more, even more preferably about 250,000 ⁇ hours Zg substrate or more, even more preferably about 300,000 ⁇ hours Hg More than the substrate, still more preferably more than about 350,000 ⁇ hours Zg substrate.
  • Behave The product of quantity and time is about 10,000, ⁇ ⁇ hour / g substrate, about 8,000, 000 ⁇ ⁇ hour Zg substrate, about 50, ⁇ , ⁇ ⁇ hour Zg substrate, About 10, 000, 000U 'hour Zg substrate or less, about 8, ⁇ , ⁇ ⁇ hour Zg substrate or less, about 5, ⁇ , ⁇ ⁇ hour Zg substrate or less, about 1, ⁇ , ⁇ ⁇ hour Zg substrate or less possible.
  • the preferred range of the product of the enzyme amount and the reaction time varies depending on the Mn of the sugar in the solution before the start of the reaction.
  • Mn of the sugar in the solution before the start of the reaction is small, a high molecular weight product can be obtained regardless of the range of the product of the enzyme amount and the reaction time, and the solubility of the resulting product Is also expensive.
  • the greater the Mn of the sugar in the solution before the start of the reaction the greater the product of the enzyme amount and the reaction time required to obtain a highly soluble high molecular weight product.
  • the product of the amount of BE used and the reaction time is not particularly limited in the method of the present invention.
  • a high molecular weight product can be obtained if this product is greater than about 25,000 U 'hour Zg substrate.
  • This product is preferably about 35,000 U. hour Zg substrate or more, more preferably about 100,000 U 'hour Zg substrate or more, most preferably about 150, ⁇ ⁇ hour Zg substrate or more. .
  • the product of the amount of BE used and the reaction time is preferably about 25,000 U 'hours Zg substrate More preferably about 50, ⁇ ⁇ hour Zg substrate or more, most preferably about 100,000 U • hour Zg substrate or more.
  • the product of the amount of BE used and the reaction time is preferably about 40,000 U 'hour Zg substrate More preferably, it is at least about 100,000,000 ⁇ ⁇ hour of Zg substrate, and most preferably at least about 150,00 ou ⁇ hour of Zg substrate.
  • the product of the amount of BE used and the reaction time is preferably about 150,000 U 'hour Zg substrate More preferably about 200,000 U 'hour Zg substrate or more, most preferably about 30
  • the solvent used in the production method of the present invention can be any solvent as long as it does not impair the enzyme activity of BE.
  • the enzyme when the enzyme is supported on a solid support, the enzyme need not be dissolved in a solvent.
  • a typical solvent is water.
  • the solvent may be water in the cell lysate obtained along with BE when preparing the BE.
  • a solution containing BE having the ability to synthesize glycogen and a substrate that is, ⁇ -dalkane having ⁇ greater than 180 and less than or equal to 150,000 mainly linked by ⁇ 1,4 darcoside bond
  • a substrate that is, ⁇ -dalkane having ⁇ greater than 180 and less than or equal to 150,000 mainly linked by ⁇ 1,4 darcoside bond
  • Any other substance can be included as long as it does not interfere with the interaction between the aglucan and this.
  • examples of such substances include buffers, components of microorganisms (eg, bacteria, fungi, etc.) that produce BE, salts, medium components, and the like.
  • a reaction solution is prepared.
  • the reaction solution may be, for example, BE having glycogen synthesis ability in an appropriate solvent and an ⁇ -glucan having a substrate (that is, ⁇ ⁇ ⁇ mainly linked by ⁇ -1,4-darcoside bonds of more than 180 and less than 150,000).
  • the reaction solution is composed of a solution containing BE having glycogen synthesis ability and a substrate (that is, ⁇ -dulcan having ⁇ greater than 180 and less than 150,000 mainly linked by ⁇ -1,4-dalcoside bonds). It may be prepared by mixing the solution containing it.
  • the reaction solution used as long as it does not inhibit the enzymatic reaction, if necessary, [rho Eta may any buffer in order to adjust example mosquitoes ⁇ a.
  • the ⁇ of the reaction solution can be arbitrarily set as long as the BE used can exhibit the activity.
  • the ⁇ of the reaction solution is preferably in the vicinity of the optimum ⁇ of BE used.
  • the ⁇ of the reaction solution is typically about 2 or more, preferably about 3 or more, more preferably about 4 or more, particularly preferably about 5 or more, particularly preferably about 6 or more. And most preferably about 7 or more.
  • the ⁇ of the reaction solution is typically about 13 or less, preferably about 12 or less, more preferably about 11 or less, particularly preferably about 10 or less, particularly preferably about 9 or less.
  • the ⁇ of the reaction solution is Tablewise, it is within ⁇ 3 of the optimum pH of the BE used, preferably within ⁇ 2 of the optimum pH, more preferably within ⁇ 1 of the optimum pH, most preferably optimum pH. Within ⁇ 0.5.
  • 4a-Dalcanotransferase or a debranching enzyme may be added to this reaction solution as necessary.
  • the amount of 4 a-dalcanotransferase contained in the solution at the start of the reaction is typically about 0.1 lUZg substrate or more with respect to ⁇ -glucan in the solution at the start of the reaction. Is about 0.5 UZg substrate or more, more preferably about 1 UZg substrate or more.
  • the amount of 4a-Dalcanotransferase contained in the solution at the start of the reaction is not particularly limited, but is typically about 50,000 UZg or less relative to ⁇ -dulcan in the solution at the start of the reaction. Preferably, it is less than about 10, OOOUZg substrate, more preferably less than about 8, OOOUZg substrate. If the amount of 4-a-Dalcanotransferase used is too large, the denatured enzyme may easily aggregate during the reaction. If the amount used is too small, the yield of glycogen may decrease.
  • the amount of debranching enzyme contained in the solution at the start of the reaction is typically about lOUZg substrate or more, preferably about 50 UZg substrate or more, with respect to ex glucan in the solution at the start of the reaction. And more preferably about lOOUZg substrate or more.
  • the amount of the debranching enzyme contained in the solution at the start of the reaction is not particularly limited, but is typically about 500, less than the OOOUZg substrate relative to the OC-glucan in the solution at the start of the reaction. Is less than about 100,000 UZg substrate, more preferably less than about 80, OOOUZg substrate. If the amount of debranching enzyme used is too large, the enzyme denatured during the reaction may easily aggregate. If the amount used is too small, the yield of glycogen may decrease.
  • the reaction solution is reacted by heating as necessary by a method known in the art.
  • the reaction temperature can be any temperature as long as the effects of the present invention are obtained.
  • the reaction temperature can typically be about 20 ° C or higher, Can be below about 100 ° C.
  • the temperature of the solution in this reaction step is about 50% or more, more preferably about 80% or more of the activity of BE contained in this solution before the reaction after a predetermined reaction time. The remaining temperature is preferred.
  • the reaction temperature is preferably about 30 ° C or higher, more preferably about 40 ° C or higher, even more preferably about 50 ° C or higher, and even more preferably about 55 ° C or higher. Particularly preferred is about 60 ° C or higher, and most preferred is 65 ° C or higher.
  • the reaction temperature is about 90 ° C or lower, preferably about 85 ° C or lower, even more preferably about 80 ° C or lower, more preferably about 75 ° C or lower, particularly preferably about 70 ° C or lower. Most preferably, it is 65 ° C or lower.
  • the reaction time can be set at any time in consideration of the reaction temperature, the molecular weight of a-glucan produced by the reaction, and the residual activity of the enzyme.
  • the reaction time is typically about 1 hour or longer, more preferably about 2 hours or longer, even more preferably about 4 hours or longer, and most preferably about 6 hours or longer.
  • the reaction time is not particularly limited but is preferably about 100 hours or less, more preferably about 72 hours or less, even more preferably about 36 hours or less, and most preferably about 24 hours or less.
  • the Mw of glycogen produced by the method of the present invention is preferably about 1 million (Da) or more, more preferably about 2 million (Da) or more, and even more preferably about 5 million (Da) or more. The most preferable is about 10 million (Da) or more.
  • the Mw of glycogen produced by the production method of the present invention There is no particular upper limit to the Mw of glycogen produced by the production method of the present invention. For example, glycogen of up to about 50 million (Da), up to about 100 million (Da), up to about 1 billion (Da) is good. Can be synthesized with productivity.
  • Mw of the obtained glycogen can be confirmed by a method known in the art. The Mw of glycogen can be measured, for example, by the following method.
  • the synthesized ⁇ -glucan was completely dissolved with IN sodium hydroxide and neutralized with an appropriate amount of hydrochloric acid, and then about 1 ⁇ g to about 300 g of ex-glucan was added to a differential refractometer. And the average molecular weight is obtained by subjecting to gel filtration chromatography using a multi-angle light scattering detector.
  • Shodex OH-Pack SB806MHQ inner diameter 8 mm, length 300 mm, Showa Denko
  • Shodex OH-Pack SB—G inner diameter
  • DA WN-DSP multi-angle light scattering detector
  • a differential refractometer Shoodex RI-71, manufactured by Showa Denko
  • ⁇ -glucan with a molecular weight of about 10,000 or more should have a peak apex force of 9.3 min for Shodex pullulan ⁇ -50 (included in standard sample STANDARD P-82 for GFC (aqueous GPC)) Elutes before 11 minutes in the above HP LC system with adjusted piping. Specifically, the position force at the beginning of the signal is taken as a peak so that both signals of the differential refractometer and multi-angle light scatter detector eluting up to 11 minutes are included, and these signals are converted into data analysis software ( Mw is obtained by collecting using product name A STRA, manufactured by Wyatt Technology) and analyzing using the same software. This method is hereinafter referred to as the MALLS method.
  • the Mw determined according to the MALLS method in the present invention is the Mw of a high molecular weight glucan having a molecular weight of about 10,000 or more, which is not the Mw of the entire dulcan in the reaction solution. Furthermore, when the length and thickness of the pipe between the HPLC column and the detector are changed, the elution time of glucan having a molecular weight of about 10,000 or more can change. In such a case, those skilled in the art can appropriately set an appropriate elution time for determining Mw by the MALLS method according to the method of the present invention by using the pullulan P-50.
  • Glycogen produced by the method of the present invention has the property of being hardly degraded by pluralase and ⁇ -amylase, like natural glycogen. Therefore, glycogen produced by the method of the present invention can be used in the same manner as natural glycogen.
  • Glycogen produced by the method of the present invention has a property of high solubility.
  • the solubility of the ⁇ -glucan produced is dried and added to distilled water at 20 ° C to 2 mg / mL, stirred at room temperature for 30 seconds, and filtered through a 0.45 m filter. Preferably, it is about 20% or more, more preferably about 30% or more, more preferably about 40% or more, and still more preferably about 50% or more.
  • Glycogen produced by the method of the present invention can be used for use as an immune activator, health food material, cosmetic material, food material (condiment), and other industrial materials in the same manner as conventional glycogen.
  • a gene (SEQ ID NO: 1) encoding the amino acid sequence of SEQ ID NO: 2 was chemically synthesized. An SD sequence was added upstream of the translation initiation codon of the gene, and a BamHI site was provided further upstream. An EcoRI site was established downstream of the translation stop codon. This synthetic gene was cleaved with BamHI and EcoRI to produce a gene fragment, and ligated to plasmid pUC19 (manufactured by Takara Shuzo Co., Ltd.) cleaved with BamHI and EcoRI using T4-DNA ligase to obtain plasmid pAQBEl. .
  • E. coli TG-1 was transformed with this plasmid, and the transformant was transformed into ampicillin-containing LB agar medium (100 gZml ampicillin, Difco tryptone 1%, Difco yeast extract 0. 5%, NaCl 0. 5 0/ 0, agar 1.5%, was applied diluted to obtain independent colonies force S to the pH 7. 3), and 37 ° C De ⁇ culture. Escherichia coli grown on this ampicillin-containing LB agar medium has the introduced plasmid. In this way, E. coli expressing BE was produced.
  • ampicillin-containing LB agar medium 100 gZml ampicillin, Difco tryptone 1%, Difco yeast extract 0. 5%, NaCl 0. 5 0/ 0, agar 1.5%
  • Escherichia coli TG-1 transformed with recombinant plasmid pAQBEl was added to 0.2 liter of L medium (1% tryptone (Difco), 0.5% solution) containing ampicillin at a final concentration of 100 ⁇ g / ml. After culturing at 37 ° C in mid-logarithmic growth phase (about 3 hours) in 1st extratate (Difco), 1% NaCl, pH 7.5, final concentration of 0. ImM IPTG (isopropyl- ⁇ -D —Chio Galatatopyranoside) was added. After further culturing at 37 ° C for 21 hours, the cells were collected by centrifugation.
  • L medium 1% tryptone (Difco), 0.5% solution
  • the obtained cells were washed with 50 ml of buffer A (10 mM sodium phosphate buffer (pH 7.5)) and then dispersed in 20 ml of buffer A, and then disrupted by ultrasound. This cell disruption solution was heated at 70 ° C for 30 minutes to denature E. coli-derived protein, and this was used as a BE enzyme solution.
  • the BE enzyme solution and the solution obtained by treating the colon bacteria without pAQBEl in the same manner were subjected to SDS-polyacrylamide gel electrophoresis to compare their patterns. As a result, it was confirmed that the transformed Escherichia coli TG-1 expressed the BE gene and the protein encoded by this gene was produced.
  • Bacillus stearothermophilus TRBE 14-derived BE was recombinantly produced from E. coli TG-1 strain carrying plasmid pUBE821 shown in Non-Patent Document 12 by the method shown in the same document.
  • TaadaMalQ was recombinantly produced from E. coli strain MC1061 carrying the plasmid pFGQ8 shown in Terada et al., Applied and Environmental Microbiology, 65, pp. 910-915 (1999)) by the method shown in the literature.
  • the following primers were used to amplify the E. coli BE gene using the chromosomal DNA of E. coli W3110 strain as a saddle type. This primer was designed to amplify the full length E. coli BE structural gene with reference to the following literature: Hilden, I. et al. (2000) Eur J Biochem 267, 2150-2155. The designed primer sequences are shown in Table 1A below.
  • PCR was performed according to the protocol using DNA polymerase PyroBest manufactured by Takara Bio Inc.
  • the amplified fragment was inserted into the TA cloning site of pGEM-T Easy (manufactured by Promega), and the resulting plasmid was named pEBEl.
  • pEBEl was treated with restriction enzymes Ncol and Hindm to obtain a fragment.
  • the obtained fragment was ligated with pTrc 99 A treated with the same restriction enzymes (Ncol and Hindm), and E. coli TG-1 strain was transformed with the solution containing this ligation product.
  • the transformed E. coli TG-1 strain was also isolated and the resulting plasmid was designated PEBE2-1.
  • Escherichia coli TG-1 containing pEBE2-1 is cultured with shaking at 37 ° C in a medium containing ampicillin 50 ⁇ gZmL.
  • IPTG at a final concentration of 0. ImM is added, and 37 ° C is added. Incubated for a while.
  • the cells were collected by centrifugation, suspended in 10 mM potassium phosphate buffer (pH 7.5), and disrupted by sonication. The supernatant was collected by centrifugation to obtain a crude enzyme solution.
  • a column packed with Q-Sephalose Fast Flow (Amersham-Pharmacia) was prepared, and the resin was equilibrated with 20 mM Tris-HCl (pH 7).
  • the crude enzyme solution was adsorbed onto the resin, and the same buffer containing 0.1 M NaCl (ie, 20 mM Tris-HCl (pH 7) containing 0.1 M NaCl).
  • BE activity was eluted with the same buffer containing 0.2 M NaCl (ie, 20 mM Tris-HCl (pH 7) containing 0.2 M NaCl).
  • Ammonium sulfate was added to the eluate having BE activity to a final concentration of 0.3M.
  • the BE enzyme was purified by hydrophobic chromatography as follows. First, a column packed with phenyl-Toyopearl 650M (Tosohichi) was prepared and equilibrated with 20 mM Tris-HCl (pH 7) containing 0.3 M ammonium sulfate. Enzyme was adsorbed on this resin and washed with 20 mM Tris-HCl (pH 7). The enzyme was recovered by flowing distilled water over the column. In this way, purified BE was obtained.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) or amylose AS 10 (manufactured by Ajinoki Co., Ltd., MwlO, 000, number average 9100) was dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition and reacted at 30 ° C. for 24 hours. Composition of reaction solution: E. coli-derived BE40, OOOUZg substrate, substrate concentration 0.5% by weight, potassium phosphate concentration 20 mM, pH 7.5. The average molecular weight and yield of dolcan synthesized in the reaction solution were examined by the MALLS method. The results are shown in Table 1B below.
  • BE derived from E. coli has the ability to synthesize glycogen of MwlOOOkDa or more.
  • Rhodothermus obamensis JCM9785 was purchased from the Institute of Physical and Chemical Research Resource Center. This strain was subjected to liquid culture at 70 ° C. using Marine Broth 2216 (manufactured by Difco), and chromosomal DNA was extracted from the resulting cells.
  • Rhodothermus ob amensis BE gene was amplified with the above-mentioned chromosomal DNA as a saddle type using the following primers.
  • This primer was designed to amplify the full length Rhodothermus obamensis BE structural gene with reference to the nucleotide sequence information published in Non-Patent Document 11. The designed primer sequences are shown in Table 1C below.
  • Primer 1 AATCMTCMTCMCTGCAGACGGTTACCCGTGCTCCGGC (SEQ ID NO: 24)
  • Chromosomal DNA (approx. 0.2 ⁇ L ⁇
  • the obtained DNA fragment was treated with restriction enzymes EcoRI and Pstl, ligated with pTrc 99 A treated with the same restriction enzymes (EcoRI and Pstl), and Escherichia coli TG1 was transformed with a solution containing this ligation product. Converted.
  • the transformed E. coli TG-1 strain plasmid was isolated, and the resulting plasmid was named pRBE1.
  • Escherichia coli TG-1 strain containing pRBEl was cultured with shaking at 37 ° C in a medium containing 50 ⁇ g ZmL ampicillin, and IPTG at a final concentration of 0. ImM was added in the late logarithmic phase, followed by further incubation at 37 ° C. The evening mouth.
  • the cells were collected by centrifugation, suspended in 20 mM Tris-HC1 buffer (pH 7), and disrupted by ultrasonic treatment. The supernatant was collected by centrifugation, further heat-treated at 70 ° C for 30 minutes, centrifuged, and the supernatant was collected to obtain a crude enzyme solution.
  • a column packed with Q-Sephalose Fast Flow (Amersham-Pharmacia) was prepared, and the resin was equilibrated with 20 mM Tris-HCl (pH 7).
  • the crude enzyme solution was adsorbed on the resin, and the same buffer containing 0.1 M NaCl was added. Rinse and wash.
  • BE activity was eluted with the same buffer containing 0.5M NaCl. This eluate was dialyzed against 20 mM Tris-HCl (pH 7) to obtain purified BE.
  • the resulting purified BE has the ability to synthesize glycogen of MwlOOOOkDa or higher.
  • KBE2 described in the following document was used as BE derived from Toramame bean (Phaseolus vulugaris L.): Nozaki, K. et al. (2001) Biosci. Biotechnol. Biochem. 65, 1141-1148.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) or amylose AS 10 (manufactured by Ajinoki Co., Ltd., MwlO, 000, number average 9100) was dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition and reacted at 30 ° C. for 24 hours. Reaction solution composition: KBE2 weight 40, OOOUZg substrate, substrate concentration 0.5 wt 0/0, concentration of potassium phosphate 20 mM, pH 7. 5. The average molecular weight and yield of glucan synthesized in the reaction solution were examined by the MALLS method. The results are shown in Table 1D below.
  • glycogen of lOOOOkDa or higher cannot be synthesized when KBE2 is used.
  • distilled water 100 ⁇ 1 distilled water was added to 50 mg of oxy-starch corn starch (WCS; manufactured by Sanwa Starch) and stirred thoroughly. Then, 900 ⁇ 1 dimethyl sulfoxide (DMSO) was added, stirred, and heated in a boiling water bath for 20 minutes. 8. Add 9ml distilled water, stir well and heat in boiling water bath for another 10 minutes. To this solution, 100 1 1M phosphate buffer (pH 7.5) was added and stirred to obtain a substrate solution.
  • WCS oxy-starch corn starch
  • DMSO dimethyl sulfoxide
  • the substrate solution was dispensed in 800 ⁇ LZ tubes. That is, each tube contained 4 mg of WCS.
  • the BE solution (BE activity 2.4 UZmL) derived from Aquifex aeolicu s VF5 produced in the same manner as in Production Example 1 was used for 66.7, 83.3, 100, 116, 7, 133. 3 or 150 / z L, respectively, add 133.3, 116.7, 100, 83.3, 66.7, or 50 L of diluent to bring the reaction volume to 1000 L, The reaction was carried out at 70 ° C for 16 hours.
  • the diluent was 10 mM phosphate buffered saline (PH7.5) containing 0.05% Triton X-100.
  • IN HCl was added, the ⁇ of the reaction solution was lowered to 3-4, and the reaction was further stopped by heating at 100 ° C for 10 minutes.
  • the reaction solution was filtered through a 0.45 ⁇ m filter, and the Mw of the contained product was measured by the MALLS method. Details of the MALLS method are described in “Method for measuring weight average molecular weight (Mw) of produced glucan” below.
  • BE activity derived from Bacillus stearothermophilus produced in Production Example 2 was used, and the reaction temperature was changed to 50 ° C. It was determined. As a result, BE activity Z molecular-lowering activity was 270.
  • Rho activity other than Rhodothermus us obamensis produced in Production Example 5 was used, and the reaction temperature was 65 ° C. It was determined. As a result, the BE activity Z molecular-lowering activity was 35.
  • BE activity Z depolymerization activity was determined in the same manner as Measurement Example 1 except that the E. coli-derived BE produced in Production Example 4 was used instead of Aquifex aeolicus VF5-derived BE and the reaction temperature was 30 ° C. did. As a result, BE activity Z molecular-lowering activity was 273.
  • BE derived from Aquifex aeolicus VF5 BE derived from Bacillus cereus manufactured according to the method described in Non-Patent Document 9 was used, and the reaction temperature was changed to 30 ° C. Activity The activity of depolymerizing Z was determined. As a result, BE activity Z depolymerization activity was 1086.
  • BE activity Z depolymerization activity was determined in the same manner as in Measurement Example 1, except that the reaction temperature was 30 ° C. As a result, BE activity Z molecular-lowering activity was 130069.
  • BE activity Z molecular weight reduction activity was 466 o
  • the Mw of the produced glucan was measured by the MALLS method as follows.
  • Shodex OH -Pack SB806MHQ inner diameter 8 mm, length 300 mm, Showa Denko
  • Shodex OH -Pack SB—G inner diameter 6 mm, length 50 mm, Showa Denko
  • Multi-angle light scattering detector DAWN—DSP, manufactured by Wyatt Technology
  • differential refractometer Sidex RI—71, manufactured by Showa Denko
  • ⁇ -glucan with a molecular weight of about 10,000 or more has a peak apex of Pullulan P-50 (included in standard sample STANDARD P-82 for GFC (aqueous GPC)!
  • Pullulan P-50 included in standard sample STANDARD P-82 for GFC (aqueous GPC)!
  • Mw was obtained by collecting using the product name ASTRA (manufactured by Wyatt Technology) and analyzing using the same software.
  • glucans with a molecular weight of about 10,000 or less are excluded.
  • dnZdc increment of intrinsic refractive index
  • the peak area of the differential refractometer is measured, and the peak area is divided by the dnZdc value to calculate the amount (g) of the eluted polymer glucan. Divide the amount of the eluted polymer glucan by the base mass used in the synthesis (the calculation formula is the product of the substrate concentration and the volume loaded on the HPLC), and multiply by 100 to obtain the percentage. calculate. That is, the yield is determined by the following formula:
  • Yield (%) ⁇ (Amount of eluted polymer glucan (g)) ⁇ (Substrate concentration (gZmL) X Volume loaded in HPLC) (mL) ⁇ X 100
  • the yield of glycogen can be determined.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) was dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition, and reacted at 70 ° C for 17 hours.
  • Composition of reaction solution Aquifex aeolicus origin BE amount 1000 0, 20000 or 40000 UZg substrate, substrate concentration 2% by weight, potassium phosphate concentration 20 mM, pH 7.5 0
  • Amylose AS-5, AS-10, AS-30, AS-70, or AS-1 10 (all manufactured by Ajinoki Co., Ltd .; Mw5000, 10000, 30000, 70000, 1100 00, respectively) It was. Since Mw / Mn is approximately 1.1, Mn is 4,500, 9,100, 27,000, 64,000, 100,000.
  • reaction solution composition Aquifex aeolicus-derived BE amount lOOOOUZg substrate, substrate concentration 2 wt 0/0, concentration of potassium phosphate 40 mM, pH 7 5.
  • amylose A manufactured by Nacalai Tester Co., Ltd., Mn2900
  • HC1 HC1
  • water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition and reacted at 70 ° C for 17 hours.
  • Composition of reaction solution BE amount derived from Aquifex aeolicus 10000 or 40,000 UZg substrate, substrate concentration 24, 8 or 12% by weight, potassium phosphate concentration 40 mM, pH 7.5.
  • glycogen yield indicates the yield of glucan (ie, glycogen) having a molecular weight of 1 million or more.
  • glycogen was produced at least up to a substrate concentration of about 12%. There was a tendency for the product Mw to decrease with increasing substrate concentration.
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) (2% by weight) was suspended in water and heated at 100 ° C. for 30 minutes to gelatinize corn starch. Cool it to 40 ° C and add isoamylase (abbreviated as IAM; 5000 or 50000 UZg substrate; Hayashibara Biochemical Laboratories Co., Ltd.) for 4 hours, 6 hours, 8 hours, or 20 hours at 40 ° C. Reaction was performed for a period of time to produce amylose. Thereafter, the solution was adjusted to pH 7.
  • IAM isoamylase
  • FIG. 5 shows a schematic diagram of a reaction in which starch is decomposed by a debranching enzyme to obtain amylose, and this amylose is reacted with BE to produce glycogen. After the reaction, the molecular weight of the produced ⁇ -dulcan was measured. The results are shown in Table 2 below and FIG. FIG. 6 is a graph plotting the results when the amount of soot is 5000 UZg substrate and the BE amount is OOOO, 20000, 40000, or 60000 UZg.
  • glycogen yield (%) indicates the yield of glucan having a molecular weight of 1 million or more (ie, glycogen).
  • I AM Isoamylase from Pseudomonas amy loderamosa
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.), Kishi-Ichi Corn Starch (manufactured by Roquette), wheat starch (manufactured by Wako Pure Chemical Industries, Ltd.), potato starch (manufactured by Wako Pure Chemical Industries, Ltd.), or tapio Starch was gelatinized by suspending potato starch (VEDAN ENTERPRISE Co., Ltd.) (2% by weight) in water and heating at 100 ° C. for 30 minutes. It was cooled to 40 ° C., isoamylase (5000 UZg substrate; manufactured by Hayashibara Biochemical Laboratories) was added and reacted at 40 ° C. for 20 hours to produce amylose.
  • VEDAN ENTERPRISE Co., Ltd. 2% by weight
  • This solution is then added to a 5 mM potassium phosphate buffer.
  • the pH was adjusted to 7.5, and BE derived from Aquifex aeolicus was added to make a substrate concentration of 2% by weight and a BE20000UZg substrate, followed by reaction at 55 ° C, 65 ° C or 75 ° C for 20 hours.
  • glycogen can be produced using various starches as substrates for isoamylase.
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) (2% by weight) was suspended in water and heated at 100 ° C. for 30 minutes to gelatinize the starch. It was cooled to 40 ° C, isoamylase (5000 UZg substrate; manufactured by Hayashibara Biochemical Laboratories) was added, and the mixture was reacted at 40 ° C for 20 hours to produce amylose. Thereafter, the solution was adjusted to pH 7. 5 in 40mM potassium phosphate buffer, ⁇ Ka ⁇ the BE from Bacillus stearothermophilus, after the concentration of substrate 2 by weight 0/0, BE20000UZg substrate, 20 hours at 55 ° C I let you.
  • the molecular weight of the produced a-glucan was measured. The results are shown in Table 3 below.
  • the glucan yield indicates the overall yield of glucan having a molecular weight of 10,000 or more
  • the darlicogen yield indicates the yield of glucan having a molecular weight of 1 million or more (ie, glycogen).
  • glycogen can be produced using BE derived from Bacillus stearothermophilus.
  • Corn starch (Wako Pure Chemical Industries, Ltd.) (1% by weight) is suspended in water and heated at 100 ° C for 30 minutes. , Gelatinized. After cooling to 65 ° C, isoamylase (500000 UZ g substrate; manufactured by Hayashibara Biochemical Laboratories Co., Ltd.) and BE (60000 UZg substrate) derived from Aquifex aeolicus were added, and this solution was added to 40 mM potassium phosphate buffer. The pH was adjusted to 7.5 with a 65 ° C reaction for 16 hours.
  • reaction solution Aquifex aeolicus origin BE amount 400 00, 80000, or 160000 UZg substrate, TaqMalQ amount lOUZg substrate, substrate concentration 1%, potassium phosphate concentration 10 mM, pH 7.5.
  • Fig. 7 shows a schematic diagram showing that amylose is produced from maltopentaose by 4a-glucanotransferase and amylose-powered glycogen is produced by BE. After the reaction, the molecular weight of the produced ⁇ -glucan was measured. The results are shown in Table 4 below and FIG. In FIG. 8, the Mw for the BE amount of 80000 UZg substrate is shown. When the peaks were separated, only the high molecular weight peak was measured.
  • glycogen is produced from G5, G6, and G7 with high efficiency by using 4 a-glucanotransferase together.
  • Reaction solution composition Bacillus stearothermophilus-derived BE amount 160,000 UZg substrate, TaqMalQ amount 2.3 UZg substrate, substrate concentration 0.5%, potassium phosphate concentration 5 mM, pH 7.5.
  • the molecular weight of the produced a-glucan was measured.
  • the results are shown in Table 4 below.
  • the glucan yield indicates the yield of the whole glucan having a molecular weight of 10,000 or more
  • the darlicogen yield indicates the yield of glucan (that is, glycogen) having a molecular weight of 1 million or more.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) was dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, an enzyme solution and a buffer solution were added so as to have the following reaction solution composition and reacted at 30 ° C. for 16 hours.
  • Reaction solution composition Aquifex aeolicus or Bacillus s tearothermophilus derived BE amount 80, OOOUZg substrate, substrate concentration 2 wt 0/0, potassium phosphate ⁇ beam concentration 20 mM, pH 7. 5.
  • the molecular weight of the produced a-glucan was measured. The results are shown in Table 5.
  • the glucan yield indicates the overall yield of glucan having a molecular weight of 10,000 or more
  • the glycogen yield indicates the yield of glucan having a molecular weight of 1 million or more (ie, glycogen).
  • Amylose cake or enzyme-synthesized amylose (AS-10 (MwlOOOO; Mn9100) or AS-320 (Mw320000; Mn290000) was dissolved in IN NaOH, and the mixture was then added to HC1. Immediately after that, water, enzyme solution and buffer solution were added so as to have the following reaction solution composition and reacted at 30 ° C. for 24 hours.
  • Composition of reaction solution BE amount derived from B. cereus 40, OOOUZg substrate, substrate concentration 0.5% by weight, potassium phosphate concentration 20 mM, pH 7.5.
  • B. cereus-derived BE was produced according to the method described in Non-Patent Document 9.
  • the reaction was stopped by heating in a boiling water bath for 10 minutes, and the resulting oc-glucan was analyzed by the M ALLS method.
  • the results are shown in Table 6.
  • the glucan yield indicates the yield of the whole glucan having a molecular weight of 10,000 or more
  • the glycogen yield indicates the yield of glucan having a molecular weight of 1 million or more (ie, glycogen).
  • B. cereus BE was similarly applied to amylose of various sizes of Mn4500 to 290000, and then the gel filtration analysis of the product was performed.
  • the molecular weight of the main component was almost the same as the above experiment. It has been shown. In other words, in any case, a high molecular weight molecular weight exceeding 1 million (X-glucan could not be obtained.
  • Example 3B Production of monoglucan by allowing only BE to act on amylose having a short sugar chain
  • the substrate (maltotetraose (G4), maltopentaose (G5), maltohexaose (G6), or maltoheptaose (G7)) is dissolved in water, BE from Aquifex aeolicus is added, and the reaction mixture is added. , the substrate concentration and the amount of bE is shown in Table 7 below, it was adjusted to P H7. 5 with 10mM phosphate force Liu Takeno Ffa, at the temperature shown in Table 7 below, were reacted for 17 hours
  • glycogen yield (%) indicates the yield of glucan (ie, glycogen) having a molecular weight of 1 million or more.
  • glycogen can be synthesized when G4 to G7 and low molecular weight substrates are used.
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) (2% by weight) was suspended in water and heated at 100 ° C. for 30 minutes to gelatinize corn starch. It is cooled to 60 ° C, pullulanase (5UZg substrate; Christaase manufactured by Daiwa Kasei Co., Ltd.) is added and reacted at 60 ° C for 20 hours to produce amylose, and then 10 ° C at 100 ° C. The reaction was stopped by heating for minutes. Thereafter, this solution was adjusted to pH 7.5 with 10 mM potassium phosphate buffer, BE derived from Aquifex aeolicus was added to become 20000 U / g substrate, and reacted at BE 65 ° C for 20 hours.
  • glycogen yield indicates the yield of glucan (ie, glycogen) having a molecular weight of 1 million or more.
  • corn starch debranched with pullulanase was able to produce glycogen as well as corn starch debranched with isoamylase.
  • Non-patent Document 10 It has been reported that a-glucan obtained when BE is allowed to act on amylose by conventional techniques is different from natural glycogen in that it is easily degraded by pullulanase.
  • glycogen produced by the method of the present invention is resistant to degradation by pullulanase in the same manner as natural glycogen.
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) (1 wt%) was suspended in water, and the corn starch was gelatinized with a jet tacker. It is cooled to 40 ° C, isoamylase (40000 UZg substrate; manufactured by Hayashibara Biochemical Laboratories) is added and reacted at 40 ° C for 6 hours to produce amylose. Made. After that, this solution was adjusted to pH 7.5 with 3 mM phosphate buffer (pH 7.0) and 5N NaOH, and BE from Aquifex aeolicus was added to 20000 UZg substrate, and then reacted at 65 ° C for 19 hours.
  • Glycogen with a weight average molecular weight of 9719 kDa was produced, and this glycogen, a reagent derived from oysters, glycogen (manufactured by Wako Pure Chemical Industries, Ltd.), Xixie corn starch (manufactured by Roquette) or corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in IN NaOH and neutralized with HC1, and then immediately, a pullulanase derived from Bacillus brevis (manufactured by Daiwa Kasei Co., Ltd.) was added, and the reaction solution was mixed with a substrate concentration of 0.5% by weight, pullulanase (0, 2, 4, 16, 64, 256 U / g substrate), adjusted to pH 5.0 with 10 mM sodium oxalate (pH 5.0), and reacted at 60 ° C for 30 minutes.
  • Glycogen is known to undergo little degradation by pullulanase
  • ⁇ S-amylase is very difficult to be decomposed.
  • potato starch and normal corn starch were decomposed to a molecular weight of 10,000 or less by treatment with 300 UZg of human salivary ⁇ -amylase for 30 minutes, but the oyster-derived glycogen of the reagent was hardly degraded under the same conditions. I got it.
  • glycogen produced by the method of the present invention is resistant to degradation by a amylase as natural glycogen is.
  • Glycogen prepared in Evaluation Example 1 oyster-derived reagent glycogen (manufactured by Wako Pure Chemical Industries, Ltd.), Kisushi corn starch (Roquette) or corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) And neutralized with HC1.
  • human saliva-derived a-amylase Sigma Type A-A was added, and the reaction solution was mixed with a substrate concentration of 0.5% by weight, a-amylase (0, 5, 37.5, 75, 150).
  • 300 UZg substrate) and 20 mM potassium phosphate After adjusting the pH to 7.0 with a buffer solution (pH 7.0), the mixture was reacted at 37 ° C for 30 minutes.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) or amylose AS 10 (manufactured by Azinoki Co., Ltd., MwlO, 000, Mn as 9100) was dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition and reacted at 70 ° C for 24 hours.
  • Reaction solution composition Aquif ex aeolicus-derived BE amount 34, OOOUZg group substance, substrate concentration 0.5 wt 0/0, concentration of potassium phosphate 20 mM, pH 7. 5. The yield (%) of glycogen obtained by this reaction was 10.1% when amylose A was used as a substrate, and 59.0% when amylose AS10 was used as a substrate.
  • the solubility was determined by the following method.
  • the resulting glycogen was recovered by precipitation with ethanol, dried, added with distilled water at room temperature (about 20 ° C) to 2 mgZmL, and stirred at room temperature for 30 seconds with a vortex mixer. Filtered through a / zm filter. The amount of glycogen dissolved in the filtrate was calculated by the MALLS method.
  • the method of the present invention provides a glycogen having high solubility, high pullulanase resistance and high a-amylase resistance.
  • Example 7 Improvement of glycogen yield by combined use of BE derived from Aquifex aeolicus VF5 and 4 ⁇ —Dalcanotransferase (TaqMalQ) derived from Thermus aquaticus)
  • Example 7-1 Amylose A with TaqMalQ and Aquifex To make BE from aeolicus work.
  • Amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) was dissolved in IN NaOH and neutralized with HC1. Immediately thereafter, water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition, and reacted at 65 ° C for 20 hours. Composition of reaction solution: Aquifex aeolicus derived BE amount 5000 or 20000 UZg substrate, TaqMalQ amount 5, 10, or 20 UZg substrate, substrate concentration 2% by weight, potassium phosphate concentration 20 mM, pH 7.5. The reaction conditions and product analysis results are shown in Table 10 below.
  • glycogen of MwlOOOk Da or higher can be produced using BE and TaqMalQ derived from Aquifex aeolicus.
  • the yield of glycogen was greatly improved by adding TaqMalQ.
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) (2% by weight) was suspended in water and heated at 100 ° C. for 30 minutes to gelatinize corn starch. It was cooled to 40 ° C, isoamylase (manufactured by Hayashibara Biochemical Laboratories Co., Ltd.) 5000 UZg substrate was added and reacted at 40 ° C for 20 hours to produce amylose. The solution is then adjusted to pH 7.5 with 5 mM potassium phosphate buffer, BE (20000 UZg substrate) and TaqMalQ (0.1, 0.5, 1, 2, 3, 4, 5, 10, or 20 UZg substrate) from Aquifex aeolicus Add 65. C was allowed to react for 20 hours. The reaction conditions and product analysis results are shown in Table 11 below.
  • Substrate Corn starch
  • glycogen of MwlOOOOkDa or higher can be produced with high efficiency and high efficiency using BE and TaqMalQ derived from Aquifex aeolicus.
  • Example 7-3 Production of glycogen by using TaqMalQ and Aquifex ae olicus-derived BE using liquefied cornstarch debris as a substrate
  • Corn starch (manufactured by Wako Pure Chemical Industries, Ltd.) is suspended in water to a concentration of 6% by weight, and ⁇ -amylase (manufactured by Daiwa Kasei Co., Ltd.) is used to make liquid up to DE 12 at 100 ° C. I let you. After stopping the reaction, isoamylase (5000 UZg substrate; manufactured by Hayashibara Biochemical Laboratories) was added and reacted at 40 ° C. for 20 hours to prune. The Mn of the debris was about 600.
  • Example 8 Production of glycogen using BE derived from Rhodothermus obamensis
  • BE produced from Rhodothermus obamensis was allowed to act on amylose A and AS-10 to produce glycogen.
  • amylose A manufactured by Nacalai Testa Co., Ltd., Mn2900;
  • AS-10 manufactured by Ajinoki Co., Ltd., Mn9100
  • water, enzyme solution, and buffer solution were added so as to have the following reaction solution composition and reacted at 65 ° C for 17 hours.
  • the reaction conditions and product analysis results are shown in Table 12 below.
  • glycogen of MwlOOOOkDa or more can be produced with high efficiency by using BE derived from Rhodothermus obamensis.
  • Example 9 Production of glycogen using BE derived from Bacillus caldovelox
  • BE derived from Bacillus caldovelox was allowed to act on amylose A and AS-10 to produce glycogen. Specifically, amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900), AS-10 (manufactured by Ajinoki Co., Ltd., Mn9100) was dissolved in IN NaOH and neutralized with HC1.
  • reaction solution Ba amount derived from Bacillus caldovelox 20, OOOUZg substrate, substrate concentration 2% by weight, Tris concentration 20 mM, pH 7.0.
  • the reaction conditions and results of product analysis are shown in Table 13 below.
  • glycogen of MwlOOOOkDa or more can be produced using BE derived from Bacillus caldovelox.
  • Example 10 Production of glycogen using BE derived from Bacillus caldolyticus
  • Glycogen was produced by reacting amylose A and AS-10 with BE derived from Bacillus caldolyticus. Specifically, amylose A (manufactured by Nacalai Testa Co., Ltd., Mn2900) and AS-10 (manufactured by Ajinoki Co., Ltd., Mn9100) were dissolved in IN NaOH and neutralized with HC1. Immediately after that, water, enzyme solution and buffer solution were added so as to have the following reaction solution composition and reacted at 45 ° C for 16 hours. Reaction solution composition: Bacillus caldolyticus-derived BE amount 20,000 U / g substrate, substrate concentration 2% by weight, Tris concentration 20 mM, pH 7.0. The reaction conditions and product analysis results are shown in Table 14 below.
  • glycogen of MwlOOOOkDa or more can be produced using BE derived from Bacillus caldolyticus.
  • a method for producing glucan at low cost is provided.
  • the glycogen produced by the method of the present invention can be used in a wide range of fields in the same manner as conventional naturally-derived glycogen. Natural glycogen is used in various fields in industry.
  • Glycogen produced by the method of the present invention can be used, for example, as an immunostimulant or health food material.
  • Glycogen produced by the method of the present invention can also be expected to be used as a cosmetic material, a food material (condiment), and other industrial materials.
  • glycogen produced by the method of the present invention examples include the following: therapeutic agents for microbial infections, moisturizers (for example, cosmetics effective for improving the moisture retention of the skin, lips that prevent roughening of the lips Cosmetics), complex seasonings (e.g.
  • Glycogen produced by the method of the present invention can be used as an external preparation for skin (for example, lotion, milky lotion, cream, cosmetic liquid, hair nourishing agent, hair restorer, pack, lipstick, lip balm, makeup base lotion, makeup base cream, foundation salt).
  • skin for example, lotion, milky lotion, cream, cosmetic liquid, hair nourishing agent, hair restorer, pack, lipstick, lip balm, makeup base lotion, makeup base cream, foundation salt.
  • glycogen having high solubility and low degradation by a amylase (similar to natural glycogen) can be obtained. This is thought to be caused by the fact that BE, which has the ability to synthesize glycogen (particularly heat-resistant BE), has special properties!
  • the low enzymatic digestibility of the resulting glycogen is important for, for example, the expression of glycogen immunostimulatory activity, and thus the present invention is particularly useful.

Abstract

 グリコーゲンの製造方法であって、グリコーゲンを合成する能力を有するブランチングエンザイムを溶液中で基質に作用させて、グリコーゲンを生産する工程を包含し、該基質が、主にα-1,4-グルコシド結合で連結された重合度4以上のα-グルカンであり、反応開始前の該溶液中の糖の数平均分子量が180より大きく150,000以下である、方法。このブランチングエンザイムのブランチングエンザイム活性/低分子化活性は、500以下であり得る。このブランチングエンザイムは、耐熱性ブランチングエンザイムであり得る。

Description

明 細 書
グリコーゲンの製造方法
技術分野
[0001] 本発明は、高分岐かつ高分子量の aーグルカン、特にグリコーゲンの製造方法に 関する。
背景技術
[0002] α—グルカンは、 a—D—グルコースの重合体である。 α—グルカンは、自然界に 種々の形態で存在する。 aーグルカンの中でも、グリコーゲンおよび澱粉が代表的 である。しかし、グリコーゲンと澱粉との構造的特性および物理的特性は互いに大き く異なる。
[0003] グリコーゲンは、動物、真菌、酵母および細菌の主な貯蔵多糖である。グリコーゲン は、水に可溶性であり、乳白色の溶液となる。動物のグリコーゲンの分子構造はよく 研究されている。天然グリコーゲンは、ブドウ糖 (グルコース)の α—1 , 4—ダルコシド 結合を介して直鎖状に連結した糖鎖から α— 1 , 6—ダルコシド結合で枝分れし、さら にそれも枝分かれして網状構造を形成したホモダルカンである。天然グリコーゲンは 、 α— 1 , 6—ダルコシド結合によって連結された、平均重合度約 10〜約 14の α— 1 , 4—ダルコシド結合鎖力も構成されている。天然グリコーゲンの分子量については、 色々な説があるが、約 105〜約 108とされている。天然グリコーゲンは、分子量約 107 の粒子( β粒子)または β粒子の凝集により形成されたさらに大きな粒子( oc粒子)と して存在する。細菌のグリコーゲンの構造は、動物のグリコーゲンの構造と類似すると 考えられる。ある種の植物(たとえばスイートコーン)にもグリコーゲンと類似した構造 のグルカンが存在し、植物グリコーゲン(フイトグリコーゲン)と呼ばれる。
[0004] 澱粉は、植物の主な貯蔵多糖であり、水不溶性粒子として存在する。この粒子は、 2つの異なる多糖を含む。この多糖は、アミロースおよびアミロぺクチンである。アミ口 ースは、 α— 1 , 4結合によって連結された、本質的に直鎖の D—グルコース単位で ある。アミロぺクチンは、分岐した重合体であり、クラスター構造をとると考えられてい る。各々のクラスター単位は、 α— 1 , 6—ダルコシド結合によって一緒に連結された 、平均重合度約 12〜約 24の a—1, 4—ダルコシド結合した鎖力 なる。クラスター 単位は、約 30〜約 100の重合度の、より長い α 1, 4 ダルコシド結合鎖によって さらに一緒に連結される。アミロぺクチン全体の平均鎖長は、重合度約 18〜約 25で ある。澱粉のアミロぺクチンも、グリコーゲンと同様に a—1, 4—グリコシド結合および a - 1, 6グリコシド結合によって連結されたグルカンである力 アミロぺクチンと比較 して、グリコーゲンはより高度に枝分かれしている。
[0005] グリコーゲンは、最近、免疫賦活効果を持つことが証明された。そのため、グリコー ゲンは、免疫賦活剤、健康食品素材などとしての用途が期待できる。他には化粧品 素材、食品素材 (調味料)、その他産業用素材としての用途が期待できる。グリコーゲ ンは、産業上種々の分野で利用されている。グリコーゲンの用途としては、例えば、 以下が挙げられる:微生物感染症治療剤、保湿剤 (例えば、皮膚の保湿性向上に有 効な化粧料、口唇の荒れを防ぐ口唇用化粧料)、複合調味料 (例えば、ホタテ貝柱の 味を有する複合調味料)、抗腫瘍剤、発酵乳の生成促進剤、コロイド粒子凝集体、毛 髪の櫛通り性および毛髪のツヤに影響する毛髪表面の耐摩耗性を改善する物質、 細胞賦活剤 (表皮細胞賦活剤、線維芽細胞増殖剤など)、 ATP産生促進剤、しわな どの皮膚の老化症状改善剤、肌荒れ改善剤、蛍光体粒子表面処理剤、環状四糖( CTS ; cyclo{→6) - a— D— glcp— (1→3) - a— D— glcp— (1→6) - a— D— gl cp - (1→3) a -D-glcp- (1→})の合成の際の基質。グリコーゲンは、皮膚外 用剤(例えば、化粧水、乳液、クリーム、美容液、養毛剤、育毛剤、パック、口紅、リツ プクリーム、メイクアップベースローション、メイクアップベースクリーム、ファンデーショ ン、アイカラー、チークカラー、シャンプー、リンス、ヘアーリキッド、ヘアートニック、パ 一マネントゥエーブ剤、ヘアカラー、トリートメント、浴用剤、ハンドクリーム、レツグクリ ーム、ネッククリーム、ボディローションなど)中、眼用溶液中などで用いられ得る。
[0006] ィガイ (ムール貝)由来のグリコーゲン、およびスイートコーン由来の植物性グリコー ゲン (フイトグリコーゲン)は、販売されているが高価であり、主に化粧品に保湿剤として 用いられている。試薬としては、各種貝類由来または動物の肝臓由来のグリコーゲン も販売されているが極めて高価であり、産業用に利用することは困難である。
[0007] そのため、グリコーゲンを多量にかつ安価に提供することが望まれている。 [0008] ブランチングェンザィム(系統名: 1, 4— a—D グノレカン: 1, 4— a— D グノレ力 ン 6— α— D—(1 , 4 α— D グノレカノ) トランスフェラーゼ、 EC 2. 4. 1. 18 ; 本明細書中では、 BEとも記載する)は、 α— 1, 4—ダルコシド結合を切断し、別のグ ルコース残基の 6位 ΟΗ基に転移することにより、 α - 1, 6—ダルコシド結合を形成 する酵素である。 BEは、動物、植物、糸状菌類、酵母および細菌に広く分布しており 、グリコーゲンまたは澱粉の分岐結合合成を触媒して ヽる。
[0009] 馬鈴薯由来 BEの触媒作用は、 1970年代に詳細に調べられており、 BEが分子間 枝作り反応(図 1A)を触媒することが証明されている。また、 BEが環状化反応(図 1B )を触媒することは、 1990年代後半に証明された。この環状化反応の証明により、分 子内枝作り反応(図 1C)が触媒されることも、論理的に推定された。すなわち、 α—1 , 4—ダルコシド結合を切断して、別のグルコース残基の 6位 ΟΗ基に転移して α 1 , 6—ダルコシド結合を形成する、というミクロな観点から見ると、これら 3つの反応は 同一であるといえるためである。なお、 BEは、グリコシドヒドロラーゼファミリー 13
—アミラーゼファミリー)の一員とされ、 —アミラーゼと基本的に同一のメカニズムに より、単一の活性中心において α 1, 4 ダルコシド結合の切断および 6位 ΟΗ基 への転移を触媒すると考えられて!/、る。
[0010] BEを、別の酵素 α -グルカンホスホリラーゼとともにグルコース 1 リン酸とオリゴ 糖に作用させることにより、およびグリコーゲン合成酵素 (またはデンプン合成酵素)と ともに UDP グルコース(または ADP グルコース)に作用させることにより、天然グ リコーゲンと類似の構造と性質を持つグリコーゲンを合成できることは知られている。 しかし、 —グルカンホスホリラーゼは試薬として販売されている力 きわめて高価で ある。またグリコーゲン合成酵素、デンプン合成酵素の入手は困難である。さらに、グ ルコース— 1—リン酸、 UDP グルコース、 ADP グルコースは極めて高価である。 これらのことから、この方法では、グリコーゲンを多量にかつ安価に提供するという課 題は達成できな力つた。
[0011] グルカンのような高分子は、一般に均一な分子ではなぐ種々の大きさの分子の混 合物であるため、その分子量は数平均分子量 (Μη)もしくは重量平均分子量 (Mw) で評価する。 Mnは、その系の全質量を、その系に含まれる分子の個数で割ったもの である。すなわち数分率による平均である。一方、 Mwは重量分率による平均である 。完全に均一な物質であれば、 Mw=Mnとなるが、高分子は一般に分子量分布を 有するため Mw>Mnとなる。したがって、 MwZMnが 1より大きいほど、分子量の不 均一度が大き ヽ (分子量分布が広 、) 、うことになる。
[0012] 酵素を用いて合成したアミロース (例えば、(株)アジノキ製の酵素合成アミロース) は、分子量分布が狭いことが知られている(MwZMn< l. 2、非特許文献 4、および Fujii, K. ¾ (2003) Biocatalysis and Biotransformation 21卷, 167—172 頁では、 Mw/Mn= l. 005〜1. 006)。一方天然から抽出したアミロースは、分子 量分布が比較的広ぐ MwZMnは約 2〜約 5である(Eliasson, A. C.編(1996 ) Carbohydrates in food、 Marcel Dekker, Inc、 New York、中の 347— 42 9頁、 Hizukuri, S. , Starch : analytical aspects、の Talbe 15に重合度 DP ( 数平均 DPn、重量平均 DPw)で記載。これらの DPに 162を乗ずれば、それぞれの 平均分子量となる)。
[0013] Mnは、分子の個数を評価することにより、決定できる。すなわち、アミロースなどに おいては、還元性末端数を測定することにより決定できる。還元性末端数の測定は、 例えば非特許文献 7に記載される Modified Park— Johnson法により決定できる。 また、非特許文献 8に記載される示差屈折計と多角度光散乱検出器とを併用したゲ ルろ過クロマトグラフィー(MALLS法)によっても、決定できる。 Mwは、非特許文献 8に記載される MALLS法によって決定できる。
[0014] 本明細書にお!、ては、基質の分子量は主として数平均分子量 (Mn)で評価し、生 成物グルカンの分子量は主として重量平均分子量 (Mw)で評価している。生成物に おいては、図 1Bに示すような環状化反応が起こった場合、還元末端数評価法では、 Mnを正しく評価できないためである。また、非常に巨大な分子の分子量を評価する 場合、相対的に還元末端数が少なぐ正確な Mn評価が行いにくいためでもある。さ らに、 MALLS法による Mn評価法は、ゲルろ過による分画が完全であることを前提と しており、分画が不完全であると正確な Mn評価ができな 、ためでもある。
[0015] BEをアミロぺクチンまたはデンプンに作用させて高分子量 α—グルカンを得た例 は存在する。 BEを単独で α—グルカン (例えば、アミロース)に作用させた例は数多 くある。しかし、アミロースに BEを作用させて分子量約 100万以上の高分子量 a -グ ルカンを得た例は存在しない。また、アミロぺクチンに BEを作用させた場合に得られ る高分子量 a—グルカンは、非特許文献 17にあるように、アミロぺクチンの基本構造 に枝が増えたようなものであると考えられており、グリコーゲン (球状の構造を有する) は合成されていなカゝつたと言える。例えば、非特許文献 1および非特許文献 2には、 Neurospora crassa由来の BEをアミロぺクチンまたはアミロースに作用させて、こ れらを 6グルコース単位の単位鎖力 なる高分岐グリコーゲン様分子に変換させたこ とが記載されている。しかし、「グリコーゲン様」とは、ヨウ素による呈色度がグリコーゲ ンに似たものとなったと 、うことを示して 、るにすぎな!/、。ここで基質として用いられた アミロースは、数平均重合度 15、 22または 130であり、それぞれ、 Mnは約 2430、約 3600および約 21000である。特に、非特許文献 2は、 N. crassa由来の BE力 平均 重合度 15あるいは 22の短鎖長のアミロースに作用できること、植物起源の BEでは 作用しうる最小の重合度が 30〜40以上であることを記載している。非特許文献 2は また、 N. crassa由来の BE力 12残基以上のグルコース鎖に対して作用し、六糖を 最小単位として転移反応を行うことが示唆されたと記載して ヽる。非特許文献 1の Fig . 1と 2、および非特許文献 2の Fig. 3および 4からわかるように、 N. crassa由来の B Eをアミロぺクチンおよびアミロースに作用させると、これらの基質の分子量は変化し なかった。さらに、非特許文献 1の Fig. 4と 5および非特許文献 2の Fig. 5と 6からは 、基質分子よりも若干大きな分子と、若干小さな分子が得られたことが示されており、 大幅な高分子化は観察されな力 た。
[0016] 例えば、非特許文献 3は、トウモロコシの BEIを平均鎖長 300を超えるアミロースに 作用させることにより、生成物のゲルろ過での溶出時間の遅れが生じたこと、これは 形状の変化に起因するものであって、分子量の変化によるものではないことを記載し ている。
[0017] 例えば、非特許文献 4は、 BE (特に、 Q酵素)をアミロースに作用させることにより得 られたアミ口べクチン様分子の分子量が、反応時間が長くなるほど低下することを記 載している。
[0018] 例えば、非特許文献 5は、 Mw67600のアミロースに馬鈴薯由来の BE (Q酵素)を 作用させると、 Mw33500の反応産物が得られることを記載している。
[0019] 例えば、非特許文献 6は、 Mn200, 000のアミロースに馬鈴薯由来の BEを作用さ せることにより、 Mw22, 000のグルカンが得られることを記載している。
[0020] 例えば、非特許文献 7は、 Bacillus stearothermophilus由来の BEを、 Mw302 , 000の酵素合成アミロースに作用させると、環状化反応により分子量が低下したこと を記載している。なお、基質として用いられた、酵素合成アミロースは、その分子量分 布が狭いことが知られている。例えば、非特許文献 4によれば、 MwZMn< l. 2で あり、 Fujii,K.ら(2003) Biocatalysis and Biotransformation 21卷, 167—1 72頁によれば、 Mw/Mn= l. 005〜1. 006である。また、メーカーである(株)アジ ノキのパンフレットによると MwZMnく 1. 1である。したがって、ここで用いられた酵 素合成アミロースの Μηは、約 252, 000〜302, 000である。そのため、酵素合成ァ ミロースのおよその Μηは、 Mwを 1. 1で割り算することにより概算できる。
[0021] 例えば、非特許文献 8は、 Aquifex aeolicus由来の BEを、 α—グルカンに作用 させると、環状ィ匕したグルカンが得られることを記載している。これは、図 1Bからも明 らかなように、グルカンの低分子化が起こることを意味して 、る。
[0022] 例えば、非特許文献 9は、 Bacillus cereus由来の BEを種々の大きさの酵素合成 アミロースに作用させたところ、どの酵素合成アミロースからもほとんど同じサイズのグ ルカンが得られたことを記載している(Fig. 5. 8)。また、この文献の Fig. 5. 9からは 、分子量約 100万を超える成分はまったく検出されな力 たことが明らかである。さら に、この文献の Fig. 5. 13の反応モデルからは、高分岐の高分子量 α—グルカンが 生成されることは全く予想されない。図 1から明らかなように、 BEによる分子間枝作り 反応(図 1A)では元の分子よりも大きな分子と小さな分子の両方が生じ、環状化反応 (図 1B)では元の分子よりも小さな分子が生じ、分子内枝作り反応(図 1C)では反応 前後で分子量は変化しない。メカニズムが同一であることから、 3つの反応の起こる頻 度がそれほど偏るということは予想されない。実際、非特許文献 9の Fig. 5. 8の結果 は、基質分子量により差はあるものの、結果として 3つの反応がいずれも触媒され、結 果的にどのような大きさのアミロースからも、同じサイズのグルカンが得られたことを記 載して 、るものである。アミロース力も分子量 100万以上の高分子グルカンが得られ るためには、圧倒的な高頻度で Aの分子間枝作り反応が触媒される必要があり、さら に、生じた分子のうち、大きい方の分子は、さらに高分子化し続ける方向の反応を受 ける必要がある。これは従来の BEの触媒メカニズムからは全く予想されず、それを示 唆する結果も全く得られて 、なかった。
[0023] 特許文献 2は、 BE (特に、枝作り酵素)をアミロース、澱粉の部分分解物、澱粉枝切 り物、ホスホリラーゼによる酵素合成アミロース、マルトオリゴ糖などに作用させること により、内分岐環状構造部分と外分岐構造部分とを有する、重合度が 50から 5000 の範囲にあるグルカンを製造する方法を記載する。この方法は、 BEによって基質を 環状ィ匕および低分子化させて、重合度 50〜5000、最大重合度 10, 000の環状グ ルカンを製造する方法である。この方法は、基質の低分子化によって生成物を得て いるので、基質として用いられるのは、高分子量のアミロースである。これは、 0066段 落に、重合度が約 400以上のアミロースが好適に用いられ得ると記載されて 、ること 力 明らかである。重合度 400のアミロースの分子量は約 65, 000であり、低分子量 アミロースを基質として用いて高分子量 α—グルカンが得られるか否かは、この特許 公報からは明らかでない。
[0024] このように、従来、 BEをアミロースに作用させると、アミロースの低分子化が生じるか
、一部分子の分子量が高くなることはあっても、その高分子化はごくわずかであって、 ほとんど変わらな 、と考えられて 、た。
[0025] さらに、アミロースに BEを作用させた場合に得られる a—グルカンは、プルラナ一 ゼにより分解されやすいという点でグリコーゲンとは異なるという報告がある(非特許 文献 10、 16)。アミロースに BEを作用させて「グリコーゲン」を得た、と記述した文献( 例えば、非特許文献 18 (Walkerら、 Eur. J. Biochem. (1971) 20卷、 pl4— 21) ) も存在するが、これらについては、得られたグルカンの分子量も測定しておらず、消 化性の分析も行われて 、な 、。
[0026] さらに、酵素の特性を調べるために BEをアミロースに作用させた例は多数ある(例 えば、特許文献 3および非特許文献 11〜12)。しかし、これらの例ではいずれも、反 応産物の分子量を測定して 、な 、。
[0027] BE (特に植物由来 BE)は、短鎖長のアミロースには作用しにくいことが知られてい る。例えば、非特許文献 13には、重合度 40以下 (分子量約 6480)のアミロースには ほとんど作用しないとかかれている。その理由は、 BEは、基質アミロースが何らかの 高次構造をとっていることを必要とするためであり、ある程度の長さがないとアミロース はその高次構造をとれないためであると考察されている(非特許文献 14)。また、そ の高次構造は温度に関係するものであり、温度が高いとアミロースは、そのような高 次構造をとれな ヽのだと考察されて ヽる。
[0028] 細菌由来 BEは、短い基質にも作用するようであるが(非特許文献 15)、その作用は 弱いことがわ力つている(非特許文献 9、 Fig4. 5)。
[0029] 以上のことから、 BEがアミロースを基質として、分子量 100万以上の高分岐かつ高 分子量のグルカンを合成しうるとは予想されず、ましてやその高分子量グルカンがプ ルラナ一ゼおよび a アミラーゼによる消化性の低いものであるとは全く予想されな かった。さらに、 Mn4800および 9, 300の酵素合成アミロースへの作用性が低いこと (非特許文献 9、 Fig4. 5。最大活性を示す Mn270, 000の酵素合成アミロースを基 質としたときと比較し、約 7%および 12%の活性)から、 Mn8, 000以下(特に、 Mn4 , 000以下)のアミロースを基質とすることに関する利点は全く想定されていな力つた
[0030] また、従来のグリコーゲンの製造方法においては、高度の精製を行わないと電解質 含量および単糖類の含量が高いため、純度の高いグリコーゲンを得るためには非常 にコストがかかるという問題点もある。例えば、スクロースホスホリラーゼ、 a—グルカ ンホスホリラーゼに BEをカ卩えてグリコーゲンを製造する方法では、反応液に 10mM 程度のリン酸を入れる必要があり、得られた反応産物には、多量のフルクトースと少 量のリン酸が入る(スクロース +リン酸 +オリゴ糖→ a—グルカン +フルクトース +リン 酸)。 GPと BEとを組み合わせる方法では、さらに多量に電解質が入る(グルコース 1—リン酸 +オリゴ糖→ひ一グルカン +リン酸)。グリコーゲンシンターゼ(GS)と BEと を組み合わせる方法も同様である (ADP グルコース +オリゴ糖→ a—グルカン + ADP)。
[0031] 天然力 グリコーゲンを抽出したとしても、電解質の他にさらに、タンパク質、脂質、 他の糖質など、非常に色々な物質が混入するので、高純度のグリコーゲンを得るた めには非常にコストがかかると 、う問題点がある。
特許文献 1:特開 2000— 316581号公報
特許文献 2:特許第 3107358号公報、請求項 1、 0066段落
特許文献 3:特表 2002— 539822号公報
非特許文献 l:Matsumotoら、 J. Biochem 107卷、 118— 122(1990) (Fig. 2) 非特許文献 2:松本および松田 澱粉科学 30卷 p212— 222(1983) (Fig. 3およ び 4)
非特許文献 3:Boyerら、 StarchZstaerke 34 Nr. 3, S.81-85(1982) (Tabl e 1、 Figure 2および Figure d)
特許文献 4:Kitamura, Polymeric Materials Encyclopedia, Vol. 10, p79 15 -7922 (Table 2)
非特許文献 5:Praznikら, Carbohydrate Research, 227 (1992) pl71— 182 非特許文献 6: Griffinおよび Victor, Biochemistry Vol. 7, No. 9、 September 1968
非特許文献 7:Takata, H.ら, Cyclization reaction catalyzed by branchin g enzyme. J. Bacteriol. , 1996. 178:p. 1600—1606
非特許文献 8:Takata, H.ら, Appl. Glycosci. , 2003. 50:p. 15— 20 非特許文献 9:Hiroki Takata博士論文(京都大学) 1997 (Studies on Enzyme s Involved in Glycogen Metabolism of Bacillus Species)
非特許文献 10: Charles Boyerおよび Jack Preiss, Biochemistry 1977, Vol
. 16, No. 16, p. 3693-3699
非特許文献 ll:Shinohara, M. L.ら, Appl Microbiol Biotechnol, 2001. 57 (5-6): p.653-9
非特許文献 12: Takata, H.ら, Appl. Environ. Microbiol. , 1994.60:p. 309 6-3104
非特許文献 13:Borovsky, D. , Smith, E. E. ,および Whelan, W.J. (1976)E ur. J. Biochem. 62, 307— 312
非特許文献 14:Borovsky, D. , Smith, E. E. ,および Whelan, W.J. (1975)F EBS Lett. 54, 201— 205
非特許文献 15 :岡田ら,澱粉科学 30卷 p223— 230 ( 1983)
非特許文献 16 : Kitahata, S . ,および Okada, S . ( 1988) in Handbook of am ylase and related enzymes. Their sources, isolation methods, prop erties and applications . (Ί he Amylase Reseach Society of Japan ed ) , pp . 143— 154, Pergamon Press, Oxford
非特許文献 17 : Kawabataら(2002)J. Appl. Glycosci. Vol. 49, No . 3, 273— 279頁
非特許文献 18 : Walkerら、 Eur. J. Biochem. ( 1971) 20卷、 p l4— 21
発明の開示
発明が解決しょうとする課題
[0032] 本発明は、上記問題点の解決を意図するものであり、高分岐かつ高分子量の ex グルカン、特にグリコーゲンの製造方法を提供することを目的とする。
課題を解決するための手段
[0033] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ブランチング ェンザィム活性 Z低分子化活性の比が 500以下である BE力 グリコーゲンを合成す る能力を有することを見出し、これに基づいて本発明を完成させた。
[0034] 本発明の製造方法は、グリコーゲンの製造方法であって、グリコーゲンを合成する 能力を有する BEを基質に作用させて、グリコーゲンを生産する工程を包含し、該基 質は、主に α—1 , 4—ダルコシド結合で連結された重合度 4以上の α—グルカンで あり、反応開始前の該溶液中の糖の数平均分子量 (Μη)が 180より大きく 150, 000 以下である。
[0035] 1つの実施形態では、上記 BEのブランチングェンザィム活性 Ζ低分子化活性は、
500以下であり得る。
[0036] 1つの実施形態では、上記 BEは、耐熱性 BEであり得る。
[0037] 1つの実施形態では、上記 BEは、好熱性菌または中温性菌由来であり得る。
[0038] 1つの実施开態では、上記 BEは、 Aquifex属、 Rhodothermus属、 Bacillus属、
Thermosynechococcus属および Escherichia属からなる群より選択される属に属 する細菌に由来し得る。
[0039] 1つの実施开態では、上記 BEは、 Aquifex aeolicus、 Aquifex pyrophilus, R hodothermus obamensis、 Rho dothermus marinus、 Bacillus stearotherm ophilus、 Bacillus caldovelox、 Bacillus thermocatenulatus、 Bacillus cald olyticus、 Bacillus flavothermus、 Bacillus acidocaldarius、 Bacillus caldot enax、 Bacillus smithu、 Thermosynechococcus elongatusおよび Escherich ia coliからなる群より選択される細菌に由来し得る。
[0040] 1つの実施开態では、上記 BEは、 Aquifex aeolicus、 Rhodothermus obame nsis、 Bacillus stearothermophilus、 Bacillus caldovelox、 Bacillus tnermo catenulatus、 Bacillus caldolyticusおよひEscherichia coli»らな 群より選択 される細菌に由来し得る。
[0041] 1つの実施形態では、上記 BEの反応至適温度は、 45°C以上 90°C以下であり得る
[0042] 1つの実施形態では、上記基質は、澱粉枝切り物、デキストリン枝切り物または酵素 合成アミロースであり得る。
[0043] 1つの実施形態では、上記反応開始前の溶液中の糖の Mnは、 180より大きく 4, 0
00未満であり得る。
[0044] 1つの実施形態では、上記反応開始前の溶液中の糖の Mnは、 4, 000以上 8, 00 0未満であり得、上記 BEの使用量と反応時間との積が 25, 000U '時間 Zg基質以 上になるように該 BEの使用量と反応時間とを調整され得る。
[0045] 1つの実施形態では、上記反応開始前の溶液中の糖の Mnは、 8, 000以上 100, 000未満であり得、上記 BEの使用量と反応時間との積が 40, 000U .時間 Zg基質 以上になるように該 BEの使用量と反応時間とを調整され得る。
[0046] 1つの実施形態では、上記反応開始前の溶液中の糖の Mnは、 100, 000以上 15 0, 000以下であり得、上記 BEの使用量と反応時間との積が 150, 000U .時間 Zg 基質以上になるように該 BEの使用量と反応時間とを調整され得る。
[0047] 1つの実施形態では、本発明の方法は、 Mn力 80より大きく 1, 500未満の aーグ ルカンに 4 a—ダルカノトランスフェラーゼを作用させることにより、前記基質を生産 する工程をさらに包含し得る。
[0048] 1つの実施形態では、上記 Mnが 180より大きく 1, 500未満の α—グルカンは、重 合度 4〜7のマルトオリゴ糖を含み得る。
[0049] 1つの実施形態では、本発明の方法は、 Μη500以上の低分岐 aーグルカンに枝 切り酵素を作用させることにより、上記基質を生産する工程をさらに包含し得る。
[0050] 1つの実施形態では、本発明の方法は、 (Xーグルカンホスホリラーゼまたはグリコー ゲン合成酵素の!/ヽずれも使用しな ヽ。
[0051] 1つの実施形態では、 4 a—ダルカノトランスフェラーゼが前記 BEと共存し得る。
発明の効果
[0052] 本発明により、グリコーゲンを安価にかつ多量に製造することができる。
[0053] 本発明の方法は、高度の精製なしで、電解質含量および単糖類含量の非常に低 いグリコーゲンを得ることができるという利点を有する。そのため、低コストで純度の高
Vヽグリコーゲンを得ることができると 、う利点を有する。
図面の簡単な説明
[0054] [図 1]図 1は、 BEの種々の作用を模式的に示す図である。図 1Aは、 BEが分子間枝 作り反応を触媒することを示す図である。図 1Bは、 BEが環状化反応を触媒すること を示す図である。図 1Cは、 BEが分子内枝作り反応を触媒することを示す図である。
[図 2]図 2は、 aーグルカンからのグリコーゲン生成の模式図である。
[図 3]図 3は、種々の量の BEを用いた場合に得られる生成物の Mwを示すグラフであ る。 BE量は基質 gあたりの Uで示している。
[図 4]図 4は、種々の分子量の基質を用いた場合に得られる生成物の Mwを示すダラ フである。
[図 5]図 5は、澱粉を枝切り酵素により分解してアミロースを得て、このアミロースに BE を反応させてグリコーゲンを製造する反応の模式図である。
[図 6]図 6は、イソアミラーゼおよび種々の量の BEを用いて澱粉から aーグルカンを 生成する場合に得られる生成物の Mwを示すグラフである。 BE量は基質 gあたりの U で示している。
[図 7]図 7は、 4 aーグルカノトランスフェラーゼによってマルトペンタオースからアミ ロースが生成され、 BEによってアミロース力 グリコーゲンが生成されることを示す模 式図である。
[図 8]図 8は、種々の基質 DP (重合度)の基質 (G5、 G6、または G7)を用いた場合に 得られる生成物の Mwを示すグラフである。
[図 9]図 9は、本発明により製造されたグリコーゲン(白三角、「今回製造 GLY」)、試 薬グリコーゲン(黒三角、「試薬 GLY」)、ヮキシーコーンスターチ(黒丸、「ヮキシ」)ま たはコーンスターチ(白丸、「コンス」)に種々の量のプルラナーゼを作用させた後の 生成物の Mwを示すグラフである。
[図 10]図 10は、本発明により製造されたグリコーゲン(白三角、「今回製造 GLY」)、 試薬グリコーゲン(黒三角、「試薬 GLY」)、ヮキシーコーンスターチ(黒丸、「ヮキシ」) またはコーンスターチ(白丸、「コンス」)に種々の量の α—アミラーゼを作用させた後 の生成物の Mwを示すグラフである。
[図 11A]図 11Aは、グリコーゲン合成能力を有する BEの反応モデルである。
[図 11B]図 11Bは、グリコーゲン合成能力を有さない BEの反応モデルである。
[図 12]図 12は、ヮキシ一コーンスターチに Aquifex aeolicus VF5由来 BEを作用 させた場合の、酵素量と得られる生成物の Mwとの相関を示すグラフである。縦軸は 生成物の Mwを、横軸は BE添加量を示す。
配列表フリーテキスト
配列番号 l :Aquifex aeolicus VF5の天然の BEをコードする塩基配列; 配列番号 2 :Aquifex aeolicus VF5の天然の BEのアミノ酸配列;
配列番号 3 :Rhodothermus obamensis JCM9785の天然の BEをコードする 塩基配列;
配列番号 4 :Rhodothermus obamensis JCM9785の天然の BEのアミノ酸配 列;
配列番号 5 : Bacillus stearothermophilus TRBE14の天然の BEをコードする 塩基配列;
配列番号 6 : Bacillus stearothermophilus TRBE14の天然の BEのアミノ酸配 列; 配列番号 7 : Bacillus stearothermophilus 1503— 4R var. 4の天然の BEを コードする塩基配列;
配列番号 8: Bacillus stearothermophilus 1503— 4R var. 4の 然の BEの アミノ酸配列;
配列番号 9 : Bacillus caldovelox IF015315の天然の BEをコードする塩基配 列;
配列番号 10 : Bacillus caldovelox IFO 15315の天然の BEのアミノ酸配列; 配列番号 11 Bacillus thermocatenulatusの天然の BEをコードする塩基配列; 配列番号 12 Bacillus thermocatenulatusの天然の BEのアミノ酸配列; 配列番号 13 Bacillus caldolyticus IFOl 5313の天然の BEをコードする塩基 配列;
配列番号 14 Bacillus caldolyticus IF015313の天然の BEのアミノ酸配列; 配列番号 15 rhermosynechococcus elongatus BP— 1の天然の BEをコード する塩基配列
配列番号 16 Thermosynechococcus elongatus BP— 1の大然の BEのァミノ 酸配列;
配列番号 17 Escherichia coli W3110の天然の BEをコードする塩基配列; 配列番号 18 Escherichia coli W3110の天然の BEのアミノ酸配列; 配列番号 19 Thermus aquaticus由来の Taq MalQをコードする塩基配列; 配列番号 20 Thermus aquaticus由来の Taq MalQのアミノ酸配列; 配列番号 21 プライマー ECBEN— NCOの配列;
配列番号 22 プライマー ECBEC— HINの配列;
配列番号 23 プライマー ROBEN— ECOの配列;
配列番号 24 プライマー ROBEC— PSTの配列。
発明を実施するための最良の形態
[0056] 以下、本発明を詳細に説明する。
[0057] 本発明の方法は、高分岐かつ高分子量の α—グルカン (すなわち、グリコーゲン) の製造方法であって、グリコーゲン合成能力を有する BEを溶液中で基質に作用させ て、グリコーゲンを生産する工程を包含し、該基質は、主に α—1 , 4—ダルコシド結 合で連結された重合度 4以上の ocーグルカンであり、反応開始前の該溶液中の糖の Μη力約 180より大きく約 150, 000以下である。
[0058] 本明細書では、「グリコーゲン」とは、 D グルコースを構成単位とする糖であって、 α - 1 , 4—ダルコシド結合および α— 1 , 6—ダルコシド結合のみによって連結され ており、分子量が 100万 Da以上であり、 50UZg基質のプルラナーゼを評価例 1の 条件で作用させた場合に得られる生成物を MALLS法によって分析した場合の Mw 力 0万 Da以上であり、かつ 300UZg基質の α アミラーゼを評価例 2の条件で作 用させた場合に得られる生成物を MALLS法によって分析した場合の Mwが 50万 D a以上である糖を 、う。ある糖に 50UZg基質のプルラナーゼを評価例 1の条件で作 用させた場合に得られる生成物の分子量 Mwが 50万 Da以上である場合、その糖は 、「プルラナーゼ分解耐性がある」という。ある糖に 300U/g基質の α アミラーゼを 評価例 2の条件で作用させた場合に得られる生成物の分子量 Mwが 50万 Da以上で ある場合、その糖は、「α—アミラーゼ分解耐性がある」という。ここで、 ひ一アミラーゼ 活性について、 1Uのひ アミラーゼ活性とは、 ρΗ6. 9、 20°Cで反応させた場合に、 澱粉から 3分間で lmgのマルトースを遊離する酵素量を 、う。プルラナーゼ活性につ いて、 1Uのプルラナーゼ活性とは、終濃度 1 %のプルランに pH5. 0、 40°Cで反応さ せた場合に、反応初期の 1分間に 1 μ molのグルコースに相当する還元力を生成す るのに必要な酵素量をいう。
[0059] (1.ブランチングェンザィム)
「グリコーゲン合成能力を有するブランチングェンザィム」とは、 BEのうちの、グリコ 一ゲンを合成する能力を有するものをいう。ある BEが、グリコーゲン合成能力を有す る力否かは、当該分野で公知の方法によって決定され得る。すなわち、例えば、アミ ロースに BEを作用させ、その後、その溶液中に分子量が 100万 Da以上である高分 子 a -グルカンが生成したか否かを調べることならびに生成した高分子 aーグルカン のプルラナーゼ分解耐性およびひ アミラーゼ分解耐性を決定することにより、決定 され得る。溶液中に高分子 α -グルカンが存在するカゝ否かは、非特許文献 8に記載さ れる、多角度光散乱検出器と、示差屈折計を検出器として併用した HPLCゲルろ過 分析法によって決定され得る。プルラナーゼ分解耐性は、評価例 1の方法に準じて 決定され得る。 a—アミラーゼ分解耐性は、評価例 2の方法に準じて決定され得る。
[0060] 本発明者らの研究によれば、 BEのうち、ブランチングェンザィム活性 Z低分子化 活性が 500以下の BEは、グリコーゲン合成能力を有し、ブランチングェンザィム活性 Z低分子化活性が 500より大きい BEは、グリコーゲン合成能力を有さな力つた。
[0061] ブランチングェンザィム活性とは、アミロースとヨウ素との複合体の 660nmにおける 吸光度を減少させる活性であり、 BEがひ— 1 , 4—ダルコシド結合を切断し、別のグ ルコース残基の 6位 OH基に転移することにより、 α - 1 , 6—ダルコシド結合を形成し 、アミロースの直鎖状部分を減少させる作用に基づく。
[0062] BEのブランチングェンザィム活性測定法は当該分野で公知であり、例えば、非特 許文献 8に記載される。 BEのブランチングェンザィム活性は、例えば、以下のように して測定される。まず、 50 Lの基質液(0. 12% (wZv)アミロース(TypeIII、 Sigm a Chemical社製) )に 50 μ Lの酵素液を添加することによって反応を開始する。反 応は、その BEの反応至適温度で行う。 10分間 BEを作用させた後、 ImLの 0. 4mM 塩酸溶液を添加することによって反応を停止する。その後、 ImLのヨウ素液を添加し 、よく混合した後、 660nmの吸光度を測定する。対照液として、酵素液添加前に 0. 4 mM塩酸溶液を添カ卩したものを同時に調製する。基質液は、 lOO ^ LO l . 2% (w/ v)アミロース Typelll溶液(ジメチルスルホキシドに溶解させる)に、 200 μ Lの 50m Mリン酸カリウム緩衝液 (pH7. 5)を添カロし、さらに 700 Lの蒸留水を添カロしてよく 混合することにより調製する。ただし、緩衝液の pHは、その BEの反応至適 pHに合 わせる。ヨウ素液は 0. 125mLのストック溶液(2. 6重量0 /01 、 26重量0 /0KI水溶液)
2
に 0. 5mLの 1規定塩酸を混合し、蒸留水で 65mLとすることにより調製する。酵素液 の BE活性は以下の計算式により求める。
[0063] BE活性(単位(U) ,mL)
= { (対照液 660nm吸光度—サンプル液 660nm吸光度) Z対照液 660nm吸光度 } X 100/10 X 200
[0064] 本明細書においては、 BEの活性としては、原則として BE活性を用いる。したがつ て、単に「活性」と呼ぶ場合は「BE活性」をあらわし、単に「単位」、あるいは「U」と示 す場合は、 BE活性で測定した「単位」、あるいは「U」をあらわす。
[0065] 低分子化活性は、本発明者らが定義した活性である。低分子化活性は、アミロぺク チン低分子化活性ともいう。本明細書中では、低分子化活性 1単位を、 BE活性の測 定温度および pH (好ましくは、その酵素の反応至適温度および至適 pH)と同じ温度 および pHで 16時間反応させた場合に、基質 (ヮキシーコーンスターチ) lgの Mwを 4 OOkDaに低下させるのに必要な酵素量と定義する。
[0066] 低分子化活性は、例えば、次のようにして測定される。まず、 50mgのヮキシーコー ンスターチ (WCS ;三和澱粉製)に 100 1 蒸留水を添加し、充分に攪拌する。つい で、 900 1 ジメチルスルホキシドを添カ卩して、攪拌し、沸騰湯浴中で、 20分間加熱 する。 8. 9mlの蒸留水を添加してよく撹拌し、沸騰湯浴中で、さらに 10分間加熱す る。この溶液に、 100 1の 1M Tris-HCl (pH7. 5)または 1Mリン酸緩衝液(pH7 . 5)を添加して攪拌し、基質液とする。緩衝液の pHは、 BE活性の測定 pHに合わせ る。
[0067] 基質液を 800 μ LZチューブで分注する。すなわち、各チューブは、 4mgの WCS を含む。次いで、適切に希釈した BE溶液をチューブ 1本あたり適当量 X/z Lおよび希 釈液をチューブ 1本あたり(200— X) μ L添加し、反応を開始する。反応温度は、 BE 活性の測定温度に合わせる。希釈液は 0. 05% Triton X— 100を含む 10mMリ ン酸カリウム緩衝液 (pHは、 BE活性測定 pHに合わせる)である。反応時間が 16時 間になつた時点で IN HC1を添カ卩して反応液の pHを 3〜4に下げ、さらに 100°Cで 10分加熱することにより、反応を停止させる。耐熱性の充分に低い BEの場合には、 単に反応液を 100°Cで 10分加熱するだけでも反応を停止できる。
[0068] 反応停止後、反応液を 0. 45 μ mのフィルターによりろ過し、含まれる生産物の Mw を測定する。 Mw力 S2500kDa力ら 200kDaの範囲に入るように、 BEの量をカ卩減する 。 Mwの測定は、以下の「製造されたグルカンの重量平均分子量 (Mw)の測定法」に 記載の方法により行う。
[0069] 算出された Mw (kDa)を縦軸 (y軸)に対数でとり、用いた酵素量( μ L)を横軸 (χ軸 )にとり、マイクロソフト社のソフト MS— Excelを使用して累乗近似曲線を作成する。 すなわち、 y=cxb (cと bは定数)の方程式で近似曲線を作成する。得られた方程式 に y=400 (kDa)を代入することにより、 4mgの WCSを基質としたときに基質 Mwを 4 OOkDaに低下させるのに必要な酵素量 VI ( μ L)が算出される。この酵素量 VIを基 質 lgあたりに換算することにより、 1単位の低分子化活性に必要な酵素量 V2 ( = (V 1 μ L/IOOO) X ( 1000mg/4mg) (mL) )が算出される。酵素液の低分子化活性 E1は、単位低分子化活性の逆数 (El = l/V2) (U/mL)である。
[0070] BE活性 Z低分子化活性の上限は、約 500であり、より好ましくは約 400であり、さら により好ましくは約 300であり、さらにより好ましくは約 200であり、最も好ましくは約 10 0である。 BE活性 Z低分子化活性の下限は特にない。下限は、約 1以上、約 5以上ま たは約 10以上であり得る。
[0071] BE活性 Z低分子化活性の値が約 500以下である BEがグリコーゲン合成能力を有 することについてのメカニズムは明確ではない。このメカニズムは、おそらぐ以下に 説明する原理に基づくと考えられるが、この原理には束縛されな ヽ:
BEによる高分子ひーグルカン合成が起こるためには、図 1に示した、分子間枝作り 反応が環状ィ匕反応および分子内枝作り反応に比べて高頻度で起こる必要がある。 高頻度の分子間枝作り反応は、低分子アミロースを基質とすることで達成される。さら に、この高頻度の分子間枝作り反応に加えて、分岐分子が優先して基質として使用 され続ける必要がある。そして、分岐分子は大きな構造単位を保持したままで BEの 作用を受けなければならない。このことを反応モデルによって説明する(図 1 1A)。ま ず、アミロース二分子から、一個の α—1 , 6—結合を持つ分子が生じる。生じた分子 力 Sさらに基質として使用され、二個の α—1 , 6—結合を持つ分子が生じる。さらにこ の生じた分岐分子が優先的に基質として使用されていくことによって、少数の高分子 aーグルカン分子と多数の低分子が生じる。
[0072] 一方、分岐分子を優先的に基質として使用しない BEの場合、あるいは分岐分子が 使用されても、大きな構造単位を崩すような使用のされ方をした場合には、多数の分 岐分子が生じ、さらなる高分子は生じにくい(図 11B)。
[0073] どちらの場合にも、反応系全体における α— 1 , 6—結合の比率が 10〜12%程度 になると、それ以上 BEの反応は進まなくなる。
[0074] ここで、 BEによるアミロぺクチンの低分子化作用につ 、て説明する。この反応は特 許 3107358号に示されているように、 BEがアミロぺクチンのクラスター構造に作用し 、これを環状ィ匕することによって起こる。この場合、 BEは分岐分子に作用し、その大 きな構造単位を保持したままで、クラスター構造の継ぎ目の単位鎖を環状ィ匕する。し たがって、アミロぺクチン低分子化活性が相対的に高い BEは、分岐分子を優先して 用い、かつ大きな構造単位を保持したまま反応の基質とする、という性質を持つと考 えられる。
[0075] さらに、本発明者らの研究によれば、現在公知の耐熱性 BEは、いずれも、グリコー ゲン合成能力を有した。一方、反応至適温度の低い中温性 BEの中には、グリコーゲ ン合成能力を有さないものがあった。
[0076] グリコーゲン合成能力を有する BEは、好ましくは、耐熱性 BEである。耐熱性 BEと は、 BE活性測定を、反応温度を変化させて行った場合の反応の至適温度が 45°C以 上である BEをいう。
[0077] グリコーゲン合成能力を有する BEの反応至適温度は、好ましくは、約 45°C以上で あり、約 90°C以下である。本明細書中では、「反応至適温度」とは、上述の BE活性 測定を温度のみ変化させて行い、最も活性が高い温度をいう。反応至適温度は好ま しくは、約 45°C以上であり、約 50°C以上であり、さらに好ましくは約 55°C以上であり、 特に好ましくは約 60°C以上であり、最も好ましくは約 65°C以上である。反応至適温 度に上限はないが、好ましくは約 90°C以下であり、約 85°C以下であり、さらに好まし くは約 80°C以下であり、特に好ましくは約 75°C以下である。
[0078] グリコーゲン合成能力を有する BEは、より好ましくは、好熱性菌または中温性菌由 来の BEである。本明細書中では、「好熱性菌」とは、生育最適温度が約 50°C以上で あり、約 40°C以下ではほとんど増殖しない微生物をいう。好熱性菌は、中等度好熱 性菌および高度好熱性菌に分けられる。「中等度好熱性菌」とは、生育最適温度が 約 50°C〜約 70°Cである微生物をいう。「高度好熱性菌」とは、生育最適温度が約 70 °C以上である微生物をいう。さらに、高度好熱性菌のうち、生育最適温度が約 80°C 以上である微生物を、「超好熱性菌」という。対照的に、「中温性菌」とは、生育温度 が通常の温度環境にある微生物をいい、特に、生育最適温度が約 20°C〜約 40°Cで ある微生物をいう。 [0079] グリコーゲン合成能力を有する BEを産生する好熱性菌は、好ましくは、 Aquifex属 、 Rhodothermus晨、 Bacillus または rhermosynechococcusj禹に属する。ク リコーゲン合成能力を有する BEを産生する中温性菌は、好ましくは、 Escherichia 属に属する。
[0080] グリコーゲン合成能力を有する BEは、より好ましくは、 Aquifex aeolicus、 Aquife x pyropnilus、 Rhodothermus obamensis、 Rhodothermus marmus、 Bacili us stearothermophilus、 Bacillus caldovelox、 Bacillus thermocatenulatu s、 Bacillus caldolyticus、 Bacillus flavothermus、 Bacillus acidocaldarius 、 Bacillus caldotenax、 Bacillus smithii、 Thermosynechococcus elongatu sおよび Escherichia coliからなる群より選択される細菌に由来し、さらにより好まし \ i¾、 Aquifex aeolicus、 Rhodothermus obamensis、 Bacillus stearotherm ophilus、 Bacillus caldovelox、 Bacillus thermocatenulatus、 Bacillus cald olyticusおよび Escherichia coUからなる群より選択される細菌に由来する。なお、 最近では、好熱性の Bacillus属細菌は、 Geobacillus属細菌と記載されることも多い 。 ί列 XJ¾、 Bacillus stearothermophilus ί¾ ^ Geobacillus stearothermophilus と同一の細菌を指す。
[0081] 本明細書中では、酵素がある生物に「由来する」とは、その生物から直接単離したこ とのみを意味するのではなぐその生物を何らかの形で利用することによりその酵素 が得られることをいう。例えば、その生物力 入手したその酵素をコードする遺伝子を 大腸菌に導入して、その大腸菌力 酵素を単離する場合も、その酵素はその生物に 「由来する」という。
[0082] Aquifex aeolicus VF5の天然の BEをコードする塩基配列を配列番号 1に示し 、そしてアミノ酸配列を配列番号 2に示す。本明細書中では、「天然の」 BEは、もとも と BEを産生する細菌力 単離された BEだけでなぐ天然の BEと同じアミノ酸配列を 有する、遺伝子組換えによって得られる BEをも包含する。 Aquifex aeolicus VF5 由来の天然の BEをコードする塩基配列のクローニング方法は、非特許文献 8および van der Maarel, M. J. E. C.ら、 Biocataiysis and Biotransformatio n、 2003、 21卷、 pl99— 207に記載される。 Aquifex aeolicus由来の BEは、種 々の Mnの基質力 グリコーゲンを極めて良好に製造するという特性を有する。
[0083] Rhodothermus obamensis JCM9785の天然の BEをコードする塩基配列を配 列番号 3に示し、そしてアミノ酸配列を配列番号 4に示す。 Rhodothermus obame nsis JCM9785由来の天然の BEをコードする塩基配列のクローニング方法は、非 特許文献 11および特許文献 3に記載される。
[0084] Bacillus stearothermophilus TRBE 14の天然の BEをコードする塩基配列を 配列番号 5に示し、そしてアミノ酸配列を配列番号 6に示す。 Bacillus stearother mophilus TRBE 14由来の天然の BEをコードする塩基配列のクローニング方法は 、非特許文献 9および非特許文献 12に記載される。 Bacillus stearothermophilu s由来の BEは、特に低分子量の基質力 グリコーゲンを極めて良好に製造するという 特'性を有する。なお、 Bacillus属および Escherichia属の細菌においては、 ATGに カロえて、 TTGおよび GTGが開始コドンとして使用され、メチォニンとして翻訳される。 そのため、配列番号 5の 1〜3位の TTGは開始コドンとして作用し、メチォニンに翻訳 される。配列番号 5の塩基配列を有する核酸分子を用いて他の生物において BEを 発現させる場合、一般に、 1位の Tは Aに置換される。
[0085] Bacillus stearothermophilus 1503— 4R var. 4の天然の BEをコードする塩 基配列を配列番号 7に示し、そしてアミノ酸配列を配列番号 8に示す。 Bacillus ste arothermophilus 1503— 4R var. 4由来の天然の BEをコードする塩基配列のク ローニング方法は、 Kiel, J. A. K. W.ら, Mol. Gen. Genet. , 1991. 230 : p. 1 36— 144および EP0418945B1に記載される。配列番号 7の 1〜 3位の TTGは開 始コドンとして作用し、メチォニンに翻訳される。配列番号 7の塩基配列を有する核酸 分子を用いて他の生物において BEを発現させる場合、一般に、 1位の Tは Aに置換 される。
[0086] Bacillus caldovelox IF015315の天然の BEをコードする塩基配列を配列番 号 9に示し、そしてアミノ酸配列を配列番号 10に示す。配列番号 9の 1〜3位の TTG は開始コドンとして作用し、メチォニンに翻訳される。配列番号 9の塩基配列を有する 核酸分子を用いて他の生物において BEを発現させる場合、一般に、 1位の Tは Aに 置換される。 [0087] Bacillus thermocatenulatusの天然の BEをコードする塩基配列を配列番号 11 に示し、そしてアミノ酸配列を配列番号 12に示す。配列番号 11の 1〜3位の TTGは 開始コドンとして作用し、メチォニンに翻訳される。配列番号 11の塩基配列を有する 核酸分子を用いて他の生物において BEを発現させる場合、一般に、 1位の Tは Aに 置換される。
[0088] Bacillus caldolyticus IF015313の天然の BEをコードする塩基配列を配列番 号 13に示し、そしてアミノ酸配列を配列番号 14に示す。配列番号 13の 1〜3位の TT Gは開始コドンとして作用し、メチォニンに翻訳される。配列番号 13の塩基配列を有 する核酸分子を用いて他の生物において BEを発現させる場合、一般に、 1位の Tは Aに置換される。
[0089] Thermosynechococcus elongatus BP— 1の天然の BEをコードする塩基配 列を配列番号 15に示し、そしてアミノ酸配列を配列番号 16に示す。
[0090] Escherichia coli W3110の天然の BEをコードする塩基配列を配列番号 17に 示し、そしてアミノ酸配列を配列番号 18に示す。
[0091] これらの天然の BEの塩基配列およびアミノ酸配列は例示であり、これらの配列とは わずかに異なる配列を有する改変体 (いわゆる、対立遺伝子改変体)が天然に存在 し得ることは公知である。本発明の方法においては、例示した配列を有する BE以外 にも、グリコーゲン合成能力を有する限り、このような、天然に存在する改変体および 天然の BEに対して人工的に変異を導入した改変体も用い得る。例えば、 WO2000 Z058445号公報および特許文献 3には、 Rhodothermus obamensis由来 BEの 改変体が記載されている。改変体 BEは、改変を導入する前の BEと同等以上の活性 を有することが好ましい。例えば、本発明で用いられる BEのアミノ酸配列は、ある実 施形態では、配列番号 2、配列番号 4、配列番号 6、配列番号 8、配列番号 10、配列 番号 12、配列番号 14、配列番号 16、および配列番号 18からなる群より選択される アミノ酸配列(すなわち、対照アミノ酸配列)と同一、すなわち、 100%同一であっても よぐ別の実施形態では、このアミノ酸配列は、対照アミノ酸配列と比較してある一定 の数までアミノ酸が変化していてもよい。このような変化は、少なくとも 1個(好ましくは 1または数個)のアミノ酸の欠失、置換 (保存的置換および非保存的置換を含む)また は挿入力もなる群より選択され得る。この変化は対照アミノ酸配列のァミノ末端もしく はカルボキシ末端の位置で生じてもよぐまたはこれら末端以外のどの位置で生じて もよい。アミノ酸残基の変化は、 1残基ずつ点在していてもよぐ数残基連続していて もよい。当業者は、所望の性質を有する BEを容易に選択することができる。あるいは 、目的とする BEをコードする遺伝子を直接ィ匕学合成してもよい。そのような化学合成 の方法は、当該分野において周知である。
[0092] BEの改変は、当該分野で周知の方法を用いて、例えば、部位特異的変異誘発法 、変異原を用いた変異誘発法 (対象遺伝子を亜硝酸塩などの変異剤で処理すること 、紫外線処理を行うこと)、エラーブローン PCRを行うことなどによって行われ得る。目 的の変異を得やすい点から、部位特異的変異誘発を用いることが好ましい。部位特 異的変異誘発を用いれば、目的とする部位で目的とする改変を導入することができ る力 である。あるいは、目的とする配列をもつ核酸分子を直接合成してもよい。その ような化学合成の方法は、当該分野において周知である。部位特異的変異誘発の手 法は、例えば、 Nucl. Acid Research, Vol. 10, pp. 6487— 6500 (1982)に記 載される。
[0093] 上記のような改変を設計する際に、アミノ酸の疎水性指数が考慮され得る。タンパク 質における相互作用的な生物学的機能を与える際の疎水性アミノ酸指数の重要性 は、一般に当該分野で認められている(Kyte. Jおよび Doolittle, R. F. J. Mol. Bi ol. 157 (1) : 105- 132, 1982)。アミノ酸の疎水的性質は、生成したタンパク質の 二次構造に寄与し、次いでそのタンパク質と他の分子 (例えば、酵素、基質、レセプ ター、 DNA、抗体、抗原など)との相互作用を規定する。各アミノ酸は、それらの疎水 性および電荷の性質に基づく疎水性指数を割り当てられる。それらは:イソロイシン( +4. 5);バリン(+4. 2);ロイシン( + 3. 8);フエ-ルァラニン( + 2. 8);システィン Zシスチン( + 2. 5);メチォニン( + 1. 9);ァラニン( + 1. 8);グリシン(一0. 4);スレ ォニン(一 0. 7) ;セリン(一0. 8);トリプトファン(一0. 9) ;チロシン(一1. 3) ;プロリン (— 1. 6) ;ヒスチジン(一3. 2);グノレタミン酸(一 3. 5);グノレタミン(一3. 5) ;ァスパラ ギン酸(一3. 5);ァスパラギン(一3. 5) ;リジン(一3. 9);およびアルギニン(一4. 5) である。 [0094] あるアミノ酸を、同様の疎水性指数を有する他のアミノ酸により置換して、そして依 然として実質的に同様の生物学的機能を有するタンパク質 (例えば、酵素活性にお いて実質的に等価なタンパク質)を生じさせ得ることは、当該分野で周知である。この ようなアミノ酸置換において、疎水性指数が ± 2以内であることが好ましぐ ± 1以内 であることがより好ましぐおよび ±0. 5以内であることがさらにより好ましい。疎水性 に基づくこのようなアミノ酸の置換は効率的であることが当該分野において理解され る。米国特許第 4, 554, 101号に記載されるように、以下の親水性指数がアミノ酸残 基に割り当てられている:アルギニン( + 3. 0) ;リジン( + 3. 0);ァスパラギン酸(+ 3 . 0± 1);グルタミン酸( + 3. 0± 1);セリン( + 0. 3);ァスパラギン( + 0. 2);グルタミ ン( + 0. 2);グリシン(0);スレオニン(一0. 4);プロリン(一0. 5 ± 1);ァラニン(一0. 5);ヒスチジン(一0. 5);システィン(一1. 0);メチォニン(一1. 3);バリン(一 1. 5); ロイシン(一 1. 8);イソロイシン(一1. 8) ;チロシン(一2. 3);フエ-ルァラニン(一2. 5);およびトリブトファン(一 3. 4)。アミノ酸が同様の親水性指数を有しかつ依然とし て生物学的等価体を与え得る別のものに置換され得ることが理解される。このような アミノ酸置換において、親水性指数が ± 2以内であることが好ましぐ ± 1以内である ことがより好ましぐおよび ±0. 5以内であることがさらにより好ましい。
[0095] 本発明にお 、て、「保存的置換」とは、アミノ酸置換にぉ 、て、元のアミノ酸と置換さ れるアミノ酸との親水性指数または Zおよび疎水性指数が上記のように類似して 、る 置換をいう。保存的置換の例は、当業者に周知であり、例えば、次の各グループ内 での置換が挙げられるがこれらに限定されない:アルギニンおよびリジン;グルタミン 酸およびァスパラギン酸;セリンおよびスレオニン;グルタミンおよびァスパラギン;なら びにパリン、ロイシン、およびイソロイシン。
[0096] 本発明の方法において使用する BEは、 BEを産生する天然の微生物力 単離され てもよい。例 は、 Aqmfex aeolicus VF 5、 Bacillus stearothermophilusなど から天然の BEを単離し得る。 Bacillus stearothermophilus TRBE14の BEにつ いての手順を例示すると、最初に、 Bacillus stearothermophilus TRBE14を適 切な培地(例えば、 Lブロス( 1 % Bactto— Tryptone (Difco Laboratories, Det roit, Mich. , USA) , 0. 5% Bacto— YeastExtract (Difco)、 0. 5% NaCl、 p H7. 3) )中に接種し、振盪させながら約 50°C〜約 60°Cで一晩培養する。次いで、こ の培養液を遠心分離して、菌体を収集する。得られた菌体を、 20mM Tris—塩酸 緩衝液 (pH7. 0)中に懸濁し、次いで超音波処理により破砕し、菌体破砕液を得る。 この菌体破砕液を、約 60°Cの水浴中で約 30分間加熱する。加熱後、この菌体破砕 液を、遠心機 (ベックマン社製、 AVANTI J— 251)を用いて遠心分離し、不溶性の タンパク質などを除去し、上清を得る。得られた上清を、あらかじめ平衡ィ匕しておいた 陰イオン交換榭脂 Q— Sepharoseに流して BEを榭脂に吸着させる。榭脂を、 100m M塩ィ匕ナトリウムを含む緩衝液で洗浄して不純物を除去する。続いて、 400mM塩ィ匕 ナトリウムを含む緩衝液で BEを溶出させ、 Bacillus stearothermophilus TRBE 14由来 BE酵素液とする。さらなる精製を必要とする場合、必要に応じて、 Sephacry 1 S - 200HR (フアルマシア社製)などを用いたゲルフィルトレーシヨンクロマトグラフ ィ一による分画、 Phenyl— TO YOPEARL 650M (東ソ一社製)などを用いた疎水 クロマトグラフィーによる分画を組み合わせることにより、精製 Bacillus stearother mophilus TRBE 14由来 BE含有溶液を得ることができる。他の細菌種からの BEの 精製も同様に行い得る。
[0097] あるいは、本発明の方法において使用する BEは、 BEをコードする塩基配列を含 む核酸分子を適切な宿主細胞に導入して BEを発現させ、この発現された BEをこの 宿主細胞またはその培養液力 精製することによって入手され得る。
[0098] 天然の BEをコードする塩基配列を含む核酸分子 (遺伝子とも!ヽぅ)は、上記のよう にして得た精製 BEをトリプシン処理し、得られるトリプシン処理断片を HPLCにより分 離し、分離されたいずれかのペプチド断片の N末端のアミノ酸配列を、ペプチドシー タエンサ一により同定し、次いで、同定したアミノ酸配列をもとに作製した合成オリゴヌ クレオチドプローブを用いて、適切なゲノムライブラリーまたは cDNAライブラリーをス クリーニングすることにより、入手され得る。オリゴヌクレオチドプローブおよび DNAラ イブラリーを調製するための、ならびに核酸のハイブリダィゼーシヨンによりそれらをス クリーニングするための基本的な戦略は、当業者に周知である。例えば、 Sambrook ら, Molecular Cloning : A Laboratory Manual (1989); DNA Cloning,第 I および II 卷(D. N. Glover編 1985) ; Oligonucleotide Synthesis (M. J. G ait編 1984) ; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgin s編 1984)を参照のこと。
[0099] あるいは、既知の BE遺伝子の塩基配列に対する相同性に基づいて、この塩基配 列の少なくとも一部を含む核酸プローブを用いたノ、イブリダィゼーシヨンによってスク リーニングして、別種の BE遺伝子を含む核酸分子を獲得することもできる。このような 方法は当該分野で公知である。
[0100] あるいは、種々の BEのアミノ酸配列において保存された領域に対応する縮重プラ イマ一を作製して、 PCRによって BEの塩基配列を獲得することも可能である。このよ うな方法は当該分野で公知である。
[0101] ゲノムライブラリーをスクリーニングする場合、得られた核酸分子は、当業者に周知 の方法を用いてサブクローニングされ得る。例えば、 目的の遺伝子を含む λファージ と、適切な大腸菌と、適切なヘルパーファージとを混合することにより、容易に目的の 遺伝子を含有するプラスミドを得ることができる。その後、プラスミドを含有する溶液を 用いて、適切な大腸菌を形質転換することにより、 目的の遺伝子をサブクローユング し得る。得られた形質転換体を培養して、例えばアルカリ SDS法によりプラスミド DN Αを得、 目的の遺伝子の塩基配列を決定し得る。塩基配列を決定する方法は、当業 者に周知である。さら〖こ、 DNAフラグメントの塩基配列を基に合成されたプライマー 用 ヽ、 Aquifex aeolicus、 Rhodotnermus obamensis、 Bacillus stearothe rmophilus、 Bacillus caldovelox、 Bacillus thermocatenulatus、 Bacillus c aldolyticusなどのゲノム DNAなどを铸型に、ポリメラーゼ連鎖反応(PCR)を用いて 直接 BE遺伝子を増幅することもできる。
[0102] あるいは、公知の塩基配列(例えば、配列番号 2、 4、 6、 8、 10、 12、 14、 16または 18のアミノ酸配列をコードする塩基配列(例えば、配列番号 1、 3、 5、 7、 9、 11、 13、 15または 17の塩基配列))に基づ 、て化学合成されてもよ!、。
[0103] 本発明の方法で用いられる BEのアミノ酸配列をコードする塩基配列は、上記の対 照アミノ酸配列をコードするヌクレオチド配列 (すなわち、対照塩基配列)と比較して ある一定の数まで変化していてもよい。このような変化は、少なくとも 1個のヌクレオチ ドの欠失、トランジシヨンおよびトランスバージョンを含む置換、または挿入力もなる群 より選択され得る。この変化は対照塩基配列の 5 '末端もしくは 3 '末端の位置で生じ てもよく、またはこれら末端以外のどの位置で生じてもよい。塩基の変化は、 1塩基ず つ点在していてもよぐ数塩基連続していてもよい。
[0104] 塩基の変化は、そのコード配列において、ノンセンス、ミスセンスまたはフレームシフ ト変異を生じ得、このような変化をした後の塩基配列によりコードされる BEに変化をも たらし得る。
[0105] 2つのアミノ酸配列を直接比較する場合、そのアミノ酸配列間でアミノ酸力 代表的 には少なくとも約 20%、好ましくは少なくとも約 30%、より好ましくは少なくとも約 40% 、さらに好ましくは少なくとも約 50%、特に好ましくは少なくとも約 60%、約 70%、約 8 0%、約 90%、約 95%、約 96%、約 97%、約 98%または約 99%同一であることが 好ましい。
[0106] 本明細書では配列の同一性は、 GENETYX— WIN Ver. 4. 0 (株式会社ゼネテ イツタス)のマキシマムマッチングを用いて算出される。このプログラムは、解析対象と なる配列データに対して、比較対照となる配列データを置き換えおよび欠損を考慮し ながら、配列間で一致するアミノ酸対が最大になるように並べ替え、その際、一致 (M atches)、不一致(Mismatches)、ギャップ(Gaps)についてそれぞれ得点を与え合 計を算出して最小となるァライメントを出力しその際の同一性を算出する (参考文献: Takashi, K. ,および Gotoh, O. 1984. Sequence Relationships among V arious 4. 5 S RNA Spacies J. Biochem. 92 : 1173— 1177)。本明細書で は配列の同一性は、 GENETYX— WIN Ver. 4. 0のマキシマムマッチングを Mat ches =— 1; Mismatches = 1; Gaps = 1; * N + = 2の条件で用 、て算出される。
[0107] 天然の酵素または核酸分子としてはまた、本明細書において具体的に記載された BEのアミノ酸配列または BEをコードする塩基配列(例えば、配列番号 1、 2など)に 対して同一ではないが相同性のある配列を有するものもまた使用され得る。天然の 酵素または核酸分子に対して相同性を有するそのような酵素または核酸分子として は、例えば、 GENETYX— WIN Ver. 4. 0のマキシマムマッチングにおいて、上記 の条件で用いて比較した場合に、比較対象の配列に対して、核酸の場合、少なくとも 約 30%、約 35%、約 40%、約 45%、約 50%、約 55%、約 60%、約 65%、約 70% 、約 75%、約 80%、約 85%、約 90%、約 95%、約 99%の同一性を有する塩基配 列を含む核酸分子が挙げられ、そして酵素の場合、少なくとも約 40%、約 45%、約 5 0%、約 55%、約 60%、約 65%、約 70%、約 75%、約 80%、約 85%、約 90%、約 95%または約 99%の同一性を有するアミノ酸配列を有する酵素が挙げられるがそれ らに限定されない。
[0108] 配列表の配列番号 1、配列番号 3、配列番号 5、配列番号 7、配列番号 9、配列番 号 11、配列番号 13、配列番号 15および配列番号 17からなる群より選択される塩基 配列からなる核酸分子とストリンジェントな条件下でハイブリダィズする核酸分子によ つてコードされる BEは、グリコーゲン合成能力を有する限り、本発明の方法において 使用され得る。配列表の配列番号 1、配列番号 3、配列番号 5、配列番号 7、配列番 号 9、配列番号 11、配列番号 13、配列番号 15および配列番号 17からなる群より選 択される塩基配列力もなる核酸分子とストリンジェントな条件下でハイブリダィズする 核酸分子に対して改変を行って得られる改変塩基配列を含む核酸分子によってコー ドされる BEもまた、グリコーゲン合成能力を有する限り、本発明の方法において使用 され得る。当業者は、所望の BE遺伝子を容易に選択することができる。
[0109] 本明細書中で使用する用語「ストリンジ ントな条件」とは、特異的な配列にはハイ ブリダィズする力 非特異的な配列にはハイブリダィズしな 、条件を 、う。ストリンジェ ントな条件の設定は、当業者に周知であり、例えば、 Moleculer Cloning (Sambro okら、前出)に記載される。具体的には、例えば、コロニーあるいはプラーク由来の D NAを固定化したフィルターを用いて、 50%ホルムアミド、 5 X SSC (750mM NaCl 、 75mM クェン酸三ナトリウム)、 50mM リン酸ナトリウム(pH7. 6)、 5 Xデンハル 卜溶液(0. 2% BSA、 0. 2% Ficoll 400および 0. 2%ポリビュルピロリドン)、 10 %硫酸デキストラン、および 20 gZml変性剪断サケ精子 DNAを含む溶液中での 65°Cでハイブリダィゼーシヨンを行った後、 0. 1〜2倍濃度の SSC (saline— sodiu m citrate)溶液(1倍濃度の SSC溶液の組成は、 150mM 塩化ナトリウム、 15m M クェン酸ナトリウムである)を用い、 65°C条件下でフィルターを洗浄するといぅ条 件を用いることにより同定できるポリヌクレオチドを意味する。
[0110] 本発明の方法で用いられる BEを製造するために用いられる核酸分子は、天然の B Eをコードする塩基配列を含む核酸分子に対して保存的に改変された核酸分子であ つてもよい。「天然の BEをコードする塩基配列を含む核酸分子に対して保存的に改 変された核酸分子」とは、天然の BEのアミノ酸配列と同一または本質的に同一のアミ ノ酸配列をコードする塩基配列を含む核酸分子を 、う。「天然の BEのアミノ酸配列と 本質的に同一のアミノ酸配列」とは、天然の BEと本質的に同じ酵素活性を有するアミ ノ酸配列をいう。遺伝コードの縮重のため、機能的に同一な多数の塩基配列が任意 の所定のアミノ酸配列をコードする。例えば、コドン GCA、 GCC、 GCGおよび GCU はすべて、アミノ酸ァラニンをコードする。したがって、 GCAコドンによってァラニンが 特定される全ての位置で、そのコドンは、コードされたァラニンを変更することなぐ G CC、 GCGまたは GCUに変更され得る。同様に、複数のコドンによってコードされ得 るアミノ酸に関しては、コドンによってそのアミノ酸が特定される全ての位置で、そのコ ドンは、コードされた特定のアミノ酸を変更することなぐそのアミノ酸をコードする任 意の別のコドンに変更され得る。このような塩基配列の変動は、保存的に改変された 変異の 1つの種である「サイレント変異」である。ポリペプチドをコードする本明細書中 のすベての塩基配列はまた、その核酸の可能なすべてのサイレント変異を包含する 。サイレント変異は、コードするアミノ酸が変化しない「サイレント置換」と、そもそも核 酸がアミノ酸をコードしない場合 (例えば、イントロン部分での変異、他の非翻訳領域 での変異など)を包含する。ある核酸がアミノ酸をコードする場合、サイレント変異は、 サイレント置換と同義である。本明細書において「サイレント置換」とは、塩基配列に おいて、あるアミノ酸をコードする塩基配列を、同じアミノ酸をコードする別の塩基配 列に置換することをいう。遺伝コード上の縮重という現象に基づき、あるアミノ酸をコー ドする塩基配列が複数ある場合 (例えば、グリシンなど)、このようなサイレント置換が 可能である。したがって、サイレント置換により生成した塩基配列によってコードされる アミノ酸配列を有するポリペプチドは、もとのポリペプチドと同じアミノ酸配列を有する 。当該分野において、核酸中の各コドン (通常メチォニンをコードする唯一のコドンで ある AUG、および通常トリプトファンをコードする唯一のコドンである TGGを除く)が、 機能的に同一な分子を産生するために改変され得ることが理解される。したがって、 ポリペプチドをコードする核酸の各サイレント変異は、記載された各配列にぉ 、て暗 黙に含まれる。好ましくは、そのような改変は、ポリペプチドの高次構造に多大な影響 を与えるアミノ酸であるシスティンの置換を回避するようになされ得る。
[0111] 本発明で用いられる BEをコードする塩基配列は、発現のために導入される生物に おけるコドンの使用頻度にあわせて変更され得る。コドン使用頻度は、その生物にお いて高度に発現される遺伝子での使用頻度を反映する。例えば、大腸菌において発 現させることを意図する場合、公開されたコドン使用頻度表 (例えば、 Sharpら, Nucl eic Acids Research 16 第 17号, 8207頁(1988) )に従って大月募菌での発現 のために最適にすることができる。
[0112] 上記のようにして改変された塩基配列を含む核酸分子を用いて、発現ベクターが 作製され得る。特定の核酸配列を用いて発現ベクターを作製する方法は、当業者に 周知である。
[0113] 本明細書において核酸分子について言及する場合、「ベクター」とは、目的の塩基 配列を目的の細胞へと移入させることができる核酸分子をいう。そのようなベクターと しては、目的の細胞にぉ 、て自律複製が可能である力、または目的の細胞の染色体 中への組込みが可能で、かつ改変された塩基配列の転写に適した位置にプロモー ターを含有しているものが例示される。本明細書において、ベクターはプラスミドであ り得る。
[0114] 本明細書において、「発現ベクター」とは、改変された塩基配列(すなわち、改変さ れた BEをコードする塩基配列)を目的の細胞中で発現し得るベクターをいう。発現べ クタ一は、改変された塩基配列に加えて、その発現を調節するプロモーターのような 種々の調節エレメント、および必要に応じて、目的の細胞中での複製および組換え 体の選択に必要な因子 (例えば、複製起点 (ori)、および薬剤耐性遺伝子のような選 択マーカー)を含む。発現ベクター中では、改変された塩基配列は、転写および翻 訳されるように作動可能に連結されている。調節エレメントとしては、プロモーター、タ 一ミネ一ターおよびェンハンサ一が挙げられる。また、発現された酵素を細胞外へ分 泌させることが意図される場合は、分泌シグナルペプチドをコードする塩基配列が、 改変された塩基配列の上流に正し 、リーディングフレームで結合される。特定の生物 (例えば、細菌)に導入するために使用される発現ベクターのタイプ、その発現べクタ 一中で使用される調節エレメントおよび他の因子の種類力 目的の細胞に応じて変 わり得ることは、当業者に周知の事項である。
[0115] 本明細書において使用される「ターミネータ一」は、タンパク質コード領域の下流に 位置し、塩基配列が mRNAに転写される際の転写終結、ポリ A配列の付加に関与す る配列である。ターミネータ一は、 mRNAの安定性に関与して遺伝子の発現量に影 響を及ぼすことが知られて 、る。
[0116] 本明細書において使用される「プロモーター」とは、遺伝子の転写の開始部位を決 定し、また転写頻度を直接的に調節する DNA上の領域をいい、 RNAポリメラーゼが 結合して転写を始める塩基配列である。プロモーターの領域は、通常、推定タンパク 質コード領域の第 1ェキソンの上流約 2kbp以内の領域であることが多いので、 DNA 解析用ソフトウェアを用いてゲノム塩基配列中のタンパク質コード領域を予測すれば 、プロモーター領域を推定することはできる。推定プロモーター領域は、構造遺伝子 ごとに変動するが、通常構造遺伝子の上流にあるが、これらに限定されず、構造遺 伝子の下流にもあり得る。好ましくは、推定プロモーター領域は、第一ェキソン翻訳 開始点から上流約 2kbp以内に存在する。
[0117] 本明細書において使用される「ェンノ、ンサ一」は、目的遺伝子の発現効率を高める ために用いられ得る。そのようなェンノヽンサ一は当該分野において周知である。ェン ハンサ一は複数個用いられ得るが 1個用いられてもよ!/、し、用いなくともよ!/、。
[0118] 本明細書にぉ 、て使用される「作動可能に連結された (る)」とは、所望の塩基配列 力 発現 (すなわち、作動)をもたらす転写翻訳調節配列 (例えば、プロモーター、ェ ンハンサ一など)または翻訳調節配列の制御下に配置されることをいう。プロモータ 一が遺伝子に作動可能に連結されるためには、通常、その遺伝子のすぐ上流にプロ モーターが配置される力 必ずしも隣接して配置される必要はない。
[0119] 改変した核酸配列を、上記調節エレメントに作動可能に連結するために、目的の B E遺伝子を加工すべき場合がある。例えば、プロモーターとコード領域との間が長す ぎて転写効率の低下が予想される場合、またはリボゾーム結合部位と翻訳開始コドン との間隔が適切でない場合などである。加工の手段としては、制限酵素による消化、 Bal31、 ΕχοΠΙなどのェキソヌクレアーゼによる消化、あるいは M13などの一本鎖 D NAまたは PCRを使用した部位特異的変異の導入が挙げられる。
[0120] 次いで、上記のようにして作製された発現ベクターを細胞に導入して BEが発現さ れる。
[0121] 本明細書において酵素の「発現」とは、その酵素をコードする塩基配列力 インビボ またはインビトロで転写および翻訳されて、コードされる酵素が生産されることをいう。
[0122] 発現ベクターを導入する細胞 (宿主とも 、う)としては、原核生物および真核生物が 挙げられる。発現ベクターを導入する細胞は、 BEの発現の容易さ、培養の容易さ、 増殖の速さ、安全性などの種々の条件を考慮して容易に選択され得る。例えば、 BE をグリコーゲンの合成に用いる場合、 BEは、夾雑物としてアミラーゼを含まないことが 好まし 、ので、アミラーゼを産生しな 、かまたは低レベルでし力発現しな 、細胞を用 いることが好ましい。このような細胞の例としては、細菌、真菌などの微生物が挙げら れる。より好ましい細胞の例としては、中温性菌 (例えば、大腸菌、枯草菌)が挙げら れる。細胞は、微生物細胞であってもよいが、植物、動物などの細胞であってもよい。 用いる細胞によっては、本発明の酵素は、翻訳後プロセシングを受けたものであり得 る。
[0123] 本発明の方法において、発現ベクターを細胞に導入する技術は、当該分野で公知 の任意の技術であり得る。このような技術の例としては、例えば、形質転換、形質導 入、トランスフエクシヨンなどが挙げられる。そのような核酸分子の導入技術は、当該 分野において周知であり、かつ、繁用されるものであり、例えば、 Ausubel F. A.ら 編 (1988)、 Current Protocols in Molecular Biology、 Wiley、 New York 、NY; Sambrook Jら (1987) Molecular Cloning : A Laboratory Manual, 2 nd Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY、別冊実験医学「遺伝子導入 &発現解析実験法」羊土社、 1997などに記載さ れる。
[0124] (2.基質)
本発明では、主に α 1, 4 ダルコシド結合で連結された重合度 4以上の aーグ ルカンが、基質として用いられる。
[0125] 本明細書中では「 α—グルカン」とは、 D—グルコースを構成単位とする、糖であつ て、 ひ— 1, 4—ダルコシド結合によって連結された糖単位を少なくとも 2糖単位以上 有する糖をいう。 aーグルカンは、直鎖状、分岐状または環状の分子であり得る。直 鎖状 α—ダルカンと α—1, 4—グルカンとは同義語である。直鎖状 α—ダルカンで は、 4—ダルコシド結合によってのみ糖単位の間が連結されている。 α - 1, 6—ダルコシド結合を 1つ以上含む α—グルカンは、分岐状 α—ダルカンである。 a —グルカンは、好ましくは、直鎖状の部分をある程度含む。分岐のない直鎖状 α—グ ルカンがより好ましい。
[0126] 本明細書中では「主に α— 1, 4—ダルコシド結合で連結された」とは、糖単位間が 主に α— 1, 4—ダルコシド結合によって連結されていることをいう。「主に」とは、糖単 位間の結合の 50%以上を占めることをいう。 α - 1, 4—ダルコシド結合以外の糖単 位間結合は、可能な任意の結合であり得るが、一般的には α— 1, 6—ダルコシド結 合である。
[0127] 基質として用いる α—グルカンは、分岐の数 (すなわち、 α—1, 6—ダルコシド結 合の数)が少ないことが好ましい。このような場合、分岐の数は、 1分子あたり、代表的 には約 0〜約 100個、好ましくは約 0〜約 50個、さらに好ましくは約 0〜約 25個、約 0 〜約 10個、約 0〜約 5個、さらに好ましくは 0個である。
[0128] α - 1, 6—ダルコシド結合は、 α—グルカン中に無秩序に分布していてもよいし、 均質に分布していてもよい。 aーグルカン中に糖単位で 5個以上の直鎖状部分がで きる程度の分布であることが好まし 、。
[0129] 本発明で基質として用いられる a—グルカンは重合度 4 (分子量 666)以上である。
基質である aーグルカンは単一の分子量の純粋な物質であっても、様々な分子量の 分子の混合物であってもよい。基質以外に、基質として作用しないグルコースを含む 混合物を溶液に添加してもよい。工業的には、種々の分子量の分子の混合物を原料 糖として用いることが多い。
[0130] 反応開始前の溶液中の糖の Mnは、約 180より大きぐ好ましくは約 181以上であり 、より好ましくは約 182以上であり、より好ましくは約 183以上であり、より好ましくは約 184以上であり、より好ましくは約 185以上である。反応開始前の溶液中の糖の数平 均分子量は、例えば、約 190以上、約 195以上、約 200以上、約 250以上、約 300 以上、約 350以上、約 400以上、約 450以上、約 500以上、約 550以上、約 600以 上、約 650以上、約 700以上、約 750以上、約 800以上、約 850以上、約 900以上、 約 950以上、約 1000以上、約 1, 000以上、約 1, 500以上、約 2, 000以上、約 2,
500以上などであってもよい。グルコース(分子量 180)または重合度 3以下の α—グ ルカンは BEの基質とはなり得ないが、重合度 4以上の (Xーグルカンは基質となり得る 。少量の基質 (例えば、重合度 4)に多量のグルコースを添加すると、その混合物の Mnは 180に近づく。反応開始前の溶液中の糖の Mnが 180付近であっても、重合 度 4以上の ocーグルカンが存在すれば反応は生じる。それゆえ、反応開始前の溶液 中の糖の Mnが 180付近であっても、重合度 4以上の a—グルカンを含めば、反応に 使用することができる。
[0131] 本発明で基質として用いられる aーグルカンの分子量に上限はない。反応開始前 の溶液中の糖の Mnは、約 150, 000以下であり、好ましくは約 120, 000以下であり 、より好ましくは約 100, 000以下であり、より好ましくは約 80, 000以下であり、さらに より好ましくは約 50, 000以下であり、さらにより好ましくは約 20, 000以下であり、さ らにより好ましくは約 8, 000未満であり、最も好ましくは約 4, 000未満である。特に、 反応開始前の溶液中の糖の Mnが約 1, 500以上約 4, 000未満という低分子の α— グルカンを基質として用いると、 Mwが 100万以上で、水への溶解性が高ぐプルラ ナーゼおよびひ アミラーゼに対して高い耐性を有する高分岐の aーグルカンを極 めて得やす 、と 、う利点がある。
[0132] 本発明で基質として用いられる a—グルカンは、 D—グルコースのみから構成され て!、てもよ 、し、 BEによる反応速度が 20%以下に低下しな 、程度に修飾された誘 導体であってもよ 、。修飾されて!、な 、ことが好ま U、。
[0133] 本発明で基質として用いられる a—グルカンは、天然のアミロースであってもよいが 、好ましくは、澱粉枝切り物、デキストリン枝切り物または酵素合成アミロースである。 天然のアミロースは、若干の分岐構造を有する場合がある。澱粉枝切り物およびデキ ストリン枝切り物もまた、枝切り反応が不十分な場合、若干の分岐構造を有する場合 がある。澱粉枝切り物は、当該分野で公知の澱粉をイソアミラーゼまたはプルラナ一 ゼによって分解したものであり得る。澱粉枝切り物を得るために用いられる澱粉の例 としては、例えば、馬鈴薯澱粉、タピオ力澱粉、甘藷澱粉、くず澱粉などの地下澱粉; コーンスターチ(ヮキシーコーンスターチ、ハイアミロースコーンスターチなど)、小麦 澱粉、米澱粉 (例えば、もち米澱粉、粳米澱粉)、サゴ澱粉、豆澱粉などの地上澱粉 が挙げられる。澱粉枝切り物は安価でかつ容易に入手できるため、特に好ましい。ハ ィアミロースコーンスターチのひ一 1, 6—ダルコシド結合分解物を用いることも好まし い。
[0134] (3.他の酵素)
(i. 4 - a—グルカノトランスフェラーゼ)
本発明の製造方法は、反応開始前の溶液中の糖の Mnが 180より大きく 1, 500未 満の溶液中で、重合度 2以上の aーグルカンに 4 a—ダルカノトランスフェラーゼ を作用させることにより、前記基質を生産する工程をさらに包含し得る。
[0135] 本発明の製造方法ではまた、 4— a—ダルカノトランスフェラーゼを BEと共存させ てもよい。
[0136] 本発明で用いられ得る 4 a—ダルカノトランスフェラーゼは、供与体分子の非還 元末端からダルコシル基、あるいは、 2個以上のグルコース力 なるユニットを受容体 分子の非還元末端に転移する酵素である。従って、酵素反応は、最初に与えられた マルトオリゴ糖の重合度の不均一化をもたらす。供与体分子と受容体分子とが同一 の場合は、分子内転移が生じ、その結果、環状構造をもつ生成物が得られる。 4 a —ダルカノトランスフェラーゼは、その一次構造力も 6つのタイプに分類されている(T ypel、 II、 III、 IV、 V、および Others) (Takaha, T.および Smith, S. M. Biotech nol. Genet. Eng. Rev. 16卷 p257— 280 (1999)。 Typelは、シクロデキストリン グルカノトランスフェラーゼ (以下、 CGTaseという)と呼ばれている(EC2. 4. 1. 19)。 Typellは、デイスプロポーショネーティングェンザィム、 D 酵素、アミ口マルターゼ、 不均化酵素などとも呼ばれる酵素である(EC 2. 4. 1. 25) (以下、 MalQと呼ぶ)。 Typelllは、 Glycogen Debranching Enzymeという、 4— α グノレカノトランスフ エラーゼ活性とアミ口 1, 6ダルコシダーゼ活性を併せ持つ酵素である(EC 3. 2. 1. 33 + EC 2. 4. 1. 25)。 TypelVおよび Vには、超好熱性菌由来の 4— a—グルカ ノトランスフェラーゼが分類されている。 Othersには、一次構造情報は得られていな いが、 4— a—ダルカノトランスフェラーゼ活性は報告されているいくつかの酵素が分 類されている。 4— a—グルカノトランスフェラーゼ活性は、 Teradaら(Applied and Environmental Microbiology, 65卷, 910〜915頁(1999) )【こ基づ!/、て決定 され得る。 4 α ダルカノトランスフェラーゼの性質に従って、測定時の反応温度、 反応 ρΗなどを調整し得る。
[0137] 4- a—ダルカノトランスフェラーゼは、微生物および植物に存在する。 4— α グ ルカノトランスフェラーゼを産生する微生物の例としては、 Aquifex aeolicus、 Stre ptococcus pneumoniae ^ Clostridium butylicum、 Deinococcus radiodura ns、 Haemophilus influenzae ^ Mycobacterium tuberculosis^ Thermococc us litralis、 Thermotoga maritima、 Thermotoga neapolitana、 Chlamydia psittaci、 Pyrococcus sp. 、 Dictyoglomus thermophilum、 Borrelia burg dorferiゝ Synechosystis sp. 、 E. coli、 Saccharomycescerevisiae、 Thermus aquaticus、 Thermus thermophilusなどが挙げられる。 4— α—グノレカノトランス フェラーゼを産生する植物の例としては、馬鈴薯、サツマィモ、ャマイモ、キヤッサバ などの芋類、トウモロコシ、イネ、コムギ、などの穀類、えんどう豆、大豆、などの豆類 などが挙げられる。 4 a ダルカノトランスフェラーゼを産生する生物はこれらに限 定されない。 4— a—ダルカノトランスフェラーゼは、巿販のものであっても、当該分 野で公知の方法によりこれらの生物から調製されてもよぐまたはこれらの生物の枝 切り酵素遺伝子を用いて遺伝子組換え法により調製されてもよい。当該分野で公知 の任意の 4 a—ダルカノトランスフェラーゼが使用され得る。
[0138] CGTase (EC2. 4. 1. 19)も1種の4— a—グルカノトランスフェラーゼであり、本 発明の製造方法に使用しうる。本発明で用いられ得る CGTaseは、マルトオリゴ糖の 糖転移反応 (不均一化反応)を触媒し得る酵素である。 CGTaseは、供与体分子の 非還元末端の 6〜8個のグルコース鎖を認識してこの部分を環状ィ匕させるように転移 反応を行い、重合度 6〜8個のシクロデキストリンと非環状リミットデキストリンとを生成 する酵素である。
[0139] CGTaseとしては、周知の微生物由来の CGTase、ある!/、は市販の CGTaseが用 いられ得る。好適には、市販の Bacillus stearothrmophilus 由来の CGTase (株 式会社林原生物化学研究所、岡山)、 Bacillus macerans由来の CGTase (商品 名:コンチザィム、天野製薬株式会社、名古屋)、あるいは Alkalophilic Bacillus sp. A2— 5a由来の CGTaseが用いられ得る。より好適には、 Alkalophilic Bacill us sp. A2— 5a由来の CGTaseが用いられ得る。 Alkalophilic Bacillus sp. A2— 5aは、特開平 7— 107972号に開示されて 、るアルカリ域で高 、活性を有する CGTaseを産生する株であり、出願人によって、工業技術院生命工学工業技術研究 所に受託番号 (FERM P— 13864)として寄託されている。 CGTaseを産生する生 物はこれらに限定されない。 CGTaseは、巿販のものであっても、当該分野で公知の 方法によりこれらの生物力 調製されてもよぐまたはこれらの生物の CGTase遺伝子 を用いて遺伝子組換え法により調製されてもょ 、。当該分野で公知の任意の CGTas eが使用され得る。本発明の製造方法では、 CGTase以外の 4— a—グルカノトラン スフエラーゼを用いることが好ましい。 CGTase以外の 4— a—グルカノトランスフェラ ーゼを BEと共存させると、 CGTaseを BEと共存させた場合よりも顕著にグリコーゲン の収率が向上する。
[0140] 4 a ダルカノトランスフェラーゼは、 BEと同時に添加することが好ましい。しかし 、生成するグリコーゲンの分子量および収率に影響しない限り、 BE添加の前、または 後に添カ卩しても良い。 4 - a—ダルカノトランスフェラーゼと BEとを共存させると、 BE を単独で用 、た場合と比較して、グリコーゲンの収率が顕著に向上する。
[0141] (ii. Mn力 80より大きく 1 , 500未満の α—グルカン)
Μη力 80より大きく 1 , 500未満の α ダルカンが単独の物質である場合、例とし ては、重合度 2〜9のマルトオリゴ糖が挙げられる。好ましくは、重合度 3〜8のマルト オリゴ糖であり、より好ましくは重合度 3〜7のマルトオリゴ糖であり、さらにより好ましく は重合度 4〜6のマルトオリゴ糖であり、特に好ましくは重合度 4〜5のマルトオリゴ糖 であり、最も好ましくは重合度 4のマルトオリゴ糖である。
[0142] Μη力 80より大きく 1 , 500未満の aーグルカンが混合物である場合、例としては、 重合度 4〜 12のマルトオリゴ糖を含む混合物が挙げられる。 Mnが 180より大きく 1 , 5 00未満の ex—グルカンは、重合度 4〜 12のマルトオリゴ糖に加えて、グルコースなど の低分子の糖を含み得る。 Mn力 80より大きく 1 , 500未満の α グルカンは、好ま しくは、重合度 4〜7のマルトオリゴ糖を含み、より好ましくは重合度 4〜7のマルトオリ ゴ糖である。重合度 4〜7のマルトオリゴ糖は、それぞれ、マルトテトラオース、マルト ペンタオース、マルトへキサオース、およびマルトへプタオースとも呼ばれる。
[0143] (iii.枝切り酵素)
本発明の製造方法は、 Mn500以上の低分岐 α ダルカンに枝切り酵素を作用さ せることにより、上記基質を生産する工程をさらに包含し得る。枝切り酵素とは、 (X 1, 6—ダルコシド結合を切断し得る酵素である。枝切り酵素は、アミロぺクチンおよび グリコーゲンにともによく作用するイソアミラーゼ (EC 3. 2. 1. 68)と、プルランによく 作用する (Xーデキストリンエンド 1, 6— a—ダルコシダーゼ(プルラナーゼともいう ) (EC 3. 2. 1. 41)との 2つに分類される。イソアミラーゼおよびプルラナーゼのい ずれも本発明の方法において用いられ得る。枝切り酵素は、澱粉のような安価な材 料から、主に α—1, 4—ダルコシド結合で連結された重合度 4以上の α—グルカン を生成するために用いられ得る。枝切り酵素活性は、 Yokobayashiら (Biochim.Bio phys.Acta,vol.212, p458— 469 (1970) )【こ基づ!/ヽて決定され得る。枝切り酵素 の性質に従って、測定時の反応温度、反応 pHなどを調整し得る。
[0144] 枝切り酵素は、微生物、原核生物、および植物に存在する。枝切り酵素を産生する 微生物の [列とし飞 、 Saccharomyces cerevisiae、 Cnlamydomonas sp.力 げられる。枝切り酵素を産生する原核生物の例としては、 Bacillus brevis、 Bacillu s acidopullulyticus、 Bacillus macerans、 Bacillus stearothermopnilus、 B acillus circulans、 Thermus aquaticus、 Klebsiella pneumoniae ^ Thermo a ctinomyces thalpophilus^ Ί hermoanaerobacter ethanolicus、 Pseudomon as amyloderamosa、 Flavobacteriumodoratum、 Falvobacterium sp.、 Cyto phaga sp.、 Eschericnia coli、 Sulfolobus acidocaldarius、 Sulfolobustokoda ii、 Sulfolobus solfataricus、 Metallosphaera hakonensisなど 罕げられる。枝 切り酵素を産生する植物の例としては、馬鈴薯、サツマィモ、トウモロコシ、イネ、コム ギ、ォォムギ、オートムギ、サトウダイコンなどが挙げられる。枝切り酵素を産生する生 物はこれらに限定されない。枝切り酵素は、市販のものであっても、当該分野で公知 の方法によりこれらの生物から調製されてもよぐまたはこれらの生物の枝切り酵素遺 伝子を用いて遺伝子組換え法により調製されてもよ!ヽ。当該分野で公知の任意の枝 切り酵素が使用され得る。
[0145] 枝切り酵素は、 BEを反応溶液中に添加する前に添加されることが好ましい。
[0146] (iv. Mn500以上の低分岐 α グルカン)
Μη500以上の低分岐 α グルカンは、天然に存在する a—グルカンであり得る。 本明細書中では、「低分岐」とは、分岐の頻度が低いことをいう。低分岐 α グルカン は、分岐を含まなくてもよい。低分岐 α グルカンでは、好ましくは、 α— 1 , 6—ダル コシド結合の数を 1としたときの α—1 , 4—ダルコシド結合の数力 好ましくは約 10〜 約 10000であり、より好ましくは約 10〜約 5000であり、さらに好ましくは約 15〜約 10 00であり、さらに好ましくは約 20〜約 600である。 Μη約 500以上の低分岐 α—グル カンの例としては、澱粉、アミロース、アミロぺクチンおよびこれらの誘導体あるいは部 分分解物が挙げられる。澱粉の例としては、馬鈴薯澱粉、タピオ力澱粉、甘藷澱粉、 くず澱粉などの地下澱粉;コーンスターチ(ヮキシーコーンスターチ、ハイアミロースコ ーンスターチなど)、小麦澱粉、米澱粉 (例えば、もち米澱粉、粳米澱粉)、サゴ澱粉 、豆澱粉などの地上澱粉が挙げられる。アミロースの例としては、これらの澱粉から単 離されたアミロースが挙げられる。アミロぺクチンとしては、これらの澱粉から単離され たアミロぺクチンが挙げられる。 Μη500以上の低分岐 α グルカンは、当該分野で 公知であり、容易に入手され得る。
[0147] (4.グリコーゲンの製造方法)
本発明の製造方法では、例えば、グリコーゲン合成能力を有する BEと、基質 (すな わち、主に α 1 , 4 ダルコシド結合で連結された重合度 4以上の α—グルカン)と 、緩衝剤と、それを溶力している溶媒とを主な材料として用いる。これらの材料は通常 、反応開始時に全て添加されるが、反応の途中でこれらのうちの任意の材料を追カロ してもよい。上記のように、本発明の製造方法では、必要に応じて、 Μηが 180より大 きく 1 , 500未満の at—グルカンおよび 4— a—グルカノトランスフェラーゼを用いるこ とができる。本発明の製造方法ではまた、 Mn500以上の低分岐 α—ダルカンおよび 枝切り酵素を用いることができる。
[0148] 当業者は、本発明の製造方法で用いられる基質の量、酵素の量、反応時間などを 適宜設定することによって所望の分子量の α—グルカンが得られることを容易に理 解する。
[0149] 反応開始時の溶液中に含まれる BEの量は、反応開始時の溶液中の α—グルカン に対して、代表的には約 lOOUZg基質以上であり、好ましくは約 500UZg基質以 上であり、より好ましくは約 1, OOOUZg基質以上である。反応開始時の溶液中に含 まれる BEの量は、反応開始時の溶液中の α—グルカンに対して、代表的には約 50 0, OOOUZg基質以下であり、好ましくは約 100, OOOUZg基質以下であり、さらに 好ましくは約 80, OOOUZg基質以下である。 BEの使用量が多すぎると、反応中に 変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎると、グリコーゲン の収率が低下する場合がある。
[0150] BEの使用量は、 BEを基質 (すなわち、 aーグルカン)に作用させる時間と関係が ある。使用量が少なくとも反応時間を長くすれば反応は進み、使用量が多ければ反 応時間が短くとも反応が進む力 である。よって酵素量と反応時間との積が、反応物 の生成に対して大きな影響を有する。本発明の方法においては、好ましくは、 BEの 使用量と反応時間との積が約 150, ΟΟθυ·時間 Zg基質以上になるように、 BEの使 用量と反応時間とを調整する。本明細書中では、「υ·時間 Zg基質」とは、基質 lgあ たりの酵素使用量 (UZg基質)と反応時間(時間)との積を示す。 BEの使用量と反応 時間との積は、より好ましくは約 160, οοου·時間 Zg基質以上であり、より好ましく は約 170, 000U *時間 Zg基質以上であり、より好ましくは約 180, 000U *時間 Zg 基質以上であり、より好ましくは約 200, 000U *時間 Zg基質以上であり、さらにより 好ましくは約 250, 000υ·時間 Zg基質以上であり、なおより好ましくは約 300, 000 υ·時間 Zg基質以上であり、なおより好ましくは約 350, 000υ·時間 Zg基質以上で ある。約 400, 000υ·時間 Zg基質以上、約 500, 000υ·時間 Zg基質以上、約 60 0, 000υ·時間 Zg基質以上、約 700, 000υ·時間 Zg基質以上、約 800, 000U- 時間 Zg基質以上のような量,時間で作用させても好適な結果が得られ得る。基質に 対して BEを多量に、あるいは長時間作用させることにより、グリコーゲンが生成される 。作用させる BEの量と時間との積に特に上限はないが、あまりにも多量の BEをあまり にも長時間作用させると製造コストが高価になりすぎる場合がある。作用させる BEの 量と時間との積は f列えば、、約 10, 000, ΟΟθυ·時間/ g基質以下、約 8, 000, 000 υ·時間 Zg基質以下、約 50, οοο, οοου·時間 Zg基質以下、約 10, 000, 000U '時間 Zg基質以下、約 8, οοο, οοου·時間 Zg基質以下、約 5, οοο, οοου·時 間 Zg基質以下、約 1, οοο, οοου·時間 Zg基質以下などであり得る。
[0151] 反応開始前の溶液中の糖の Mnに応じて、酵素量と反応時間との積の好適な範囲 は異なる。一般に、反応開始前の溶液中の糖の Mnが小さければ、酵素量と反応時 間との積がどのような範囲であっても高分子量の生成物が得られ、得られる生成物の 溶解性も高い。反応開始前の溶液中の糖の Mnが大きくなるほど、溶解性の高い高 分子量の生成物を得るために必要な、酵素量と反応時間との積が大きくなる。
[0152] 反応開始前の溶液中の糖の Mnが約 4, 000未満である場合、本発明の方法にお いては、 BEの使用量と反応時間との積は特に限定されない。例えば、この積が約 25 , 000U'時間 Zg基質以上であれば、高分子量の生成物が得られる。この積は、好 ましくは約 35, 000U.時間 Zg基質以上であり、さらに好ましくは約 100, 000U'時 間 Zg基質以上であり、最も好ましくは約 150, οοου·時間 Zg基質以上である。
[0153] 反応開始前の溶液中の糖の Mnが約 4, 000以上約 8, 000未満である場合、 BE の使用量と反応時間との積は、好ましくは約 25, 000U'時間 Zg基質以上であり、さ らに好ましくは約 50, οοου·時間 Zg基質以上であり、最も好ましくは約 100, 000U •時間 Zg基質以上である。
[0154] 反応開始前の溶液中の糖の Mnが約 8, 000以上約 100, 000未満である場合、 B Eの使用量と反応時間との積は、好ましくは約 40, 000U'時間 Zg基質以上であり、 さらに好ましくは約 100, 000υ·時間 Zg基質以上であり、最も好ましくは約 150, 00 ou ·時間 Zg基質以上である。
[0155] 反応開始前の溶液中の糖の Mnが約 100, 000以上約 150, 000未満である場合 、 BEの使用量と反応時間との積は、好ましくは約 150, 000U'時間 Zg基質以上で あり、さらに好ましくは約 200, 000U'時間 Zg基質以上であり、最も好ましくは約 30
0, οοου·時間 Zg基質以上である。
[0156] 本発明の製造方法に用いる溶媒は、 BEの酵素活性を損なわない溶媒であれば任 意の溶媒であり得る。 [0157] なお、グリコーゲンを生成する反応が進行し得る限り、溶媒が本発明の製造方法に 用いる材料を完全に溶解する必要はない。例えば、酵素が固体の担体上に担持さ れている場合には、酵素が溶媒中に溶解する必要はない。さらに、 OC—グルカンなど の反応材料も全てが溶解して 、る必要はなぐ反応が進行し得る程度の材料の一部 が溶解していればよい。
[0158] 代表的な溶媒は、水である。溶媒は、上記 BEを調製する際に BEに付随して得られ る細胞破砕液のうちの水分であってもよ 、。
[0159] グリコーゲン合成能力を有する BEと、基質 (すなわち、主に α 1, 4 ダルコシド 結合で連結された Μηが 180より大きく 150, 000以下の α—ダルカン)とを含む溶液 中には、 BEとこの aーグルカンとの間の相互作用を妨害しない限り、任意の他の物 質を含み得る。このような物質の例としては、緩衝剤、 BEを産生する微生物(例えば 、細菌、真菌など)の成分、塩類、培地成分などが挙げられる。
[0160] これらの材料の使用量は、公知であり、当業者によって適切に設定され得る。
[0161] 本発明の製造方法にお!、ては、まず、反応溶液を調製する。反応溶液は、例えば 、適切な溶媒に、グリコーゲン合成能力を有する BEと、基質 (すなわち、主に α— 1, 4—ダルコシド結合で連結された Μηが 180より大きく 150, 000以下の α—グルカン )とを添加することにより調製され得る。あるいは、反応溶液は、グリコーゲン合成能力 を有する BEを含む溶液と、基質 (すなわち、主に α—1, 4—ダルコシド結合で連結 された Μηが 180より大きく 150, 000以下の α—ダルカン)を含む溶液とを混合する ことによって調製してもよい。この反応溶液には、酵素反応を阻害しない限り、必要に 応じて、 ΡΗを調整する目的で任意の緩衝剤をカ卩えてもよい。反応溶液の ρΗは、使 用する BEが活性を発揮し得る ρΗであれば任意に設定され得る。反応溶液の ρΗは 、使用する BEの至適 ρΗ付近であることが好ましい。反応溶液の ρΗは、代表的には 約 2以上であり、好ましくは約 3以上であり、さらに好ましくは約 4以上であり、特に好ま しくは約 5以上であり、特に好ましくは約 6以上であり、最も好ましくは約 7以上である。 反応溶液の ρΗは、代表的には約 13以下であり、好ましくは約 12以下であり、さらに 好ましくは約 11以下であり、特に好ましくは約 10以下であり、特に好ましくは約 9以下 であり、最も好ましくは約 8以下である。 1つの実施形態では、反応溶液の ρΗは、代 表的には、使用する BEの至適 pHの ± 3以内であり、好ましくは至適 pHの ± 2以内 であり、さらに好ましくは至適 pHの ± 1以内であり、最も好ましくは至適 pHの ± 0. 5 以内である。
[0162] この反応溶液には、必要に応じて、 4 a—ダルカノトランスフェラーゼまたは枝切 り酵素を添加してもよい。
[0163] 反応開始時の溶液中に含まれる 4 a—ダルカノトランスフェラーゼの量は、反応 開始時の溶液中の α—グルカンに対して、代表的には約 0. lUZg基質以上であり 、好ましくは約 0. 5UZg基質以上であり、より好ましくは約 lUZg基質以上である。 反応開始時の溶液中に含まれる 4 a—ダルカノトランスフェラーゼの量は、特に上 限はないが、反応開始時の溶液中の α ダルカンに対して、代表的には約 50, 000 UZg基質以下であり、好ましくは約 10, OOOUZg基質以下であり、さらに好ましくは 約 8, OOOUZg基質以下である。 4 - a—ダルカノトランスフェラーゼの使用量が多 すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使用量が少なすぎ ると、グリコーゲンの収率が低下する場合がある。
[0164] 反応開始時の溶液中に含まれる枝切り酵素の量は、反応開始時の溶液中の ex グルカンに対して、代表的には約 lOUZg基質以上であり、好ましくは約 50UZg基 質以上であり、より好ましくは約 lOOUZg基質以上である。反応開始時の溶液中に 含まれる枝切り酵素の量は、特に上限はないが、反応開始時の溶液中の OCーグルカ ンに対して、代表的には約 500, OOOUZg基質以下であり、好ましくは約 100, 000 UZg基質以下であり、さらに好ましくは約 80, OOOUZg基質以下である。枝切り酵 素の使用量が多すぎると、反応中に変性した酵素が凝集しやすくなる場合がある。使 用量が少なすぎると、グリコーゲンの収率が低下する場合がある。
[0165] 次いで、反応溶液を、当該分野で公知の方法によって必要に応じて加熱することに より、反応させる。反応温度は、本発明の効果が得られる限り、任意の温度であり得る 。反応開始時の反応溶液中の BE活性が、反応至適条件で測定した活性の約 5〜約 100%である場合には、反応温度は代表的には、約 20°C以上であり得、約 100°C以 下であり得る。この反応工程における溶液の温度は、所定の反応時間後に反応前の この溶液に含まれる BEの活性の約 50%以上、より好ましくは約 80%以上の活性が 残る温度であることが好ましい。反応温度は、好ましくは約 30°C以上であり、さらに好 ましくは約 40°C以上であり、さらにより好ましくは約 50°C以上であり、さらにより好まし くは約 55°C以上であり、特に好ましくは約 60°C以上であり、最も好ましくは 65°C以上 である。反応温度は、約 90°C以下好ましくは約 85°C以下であり、さらにより好ましくは 約 80°C以下であり、より好ましくは約 75°C以下であり、特に好ましくは約 70°C以下で あり、最も好ましくは 65°C以下である。
[0166] 反応時間は、反応温度、反応により生産される aーグルカンの分子量および酵素 の残存活性を考慮して、任意の時間で設定され得る。反応時間は、代表的には約 1 時間以上であり、より好ましくは約 2時間以上であり、さらにより好ましくは約 4時間以 上であり、最も好ましくは約 6時間以上である。反応時間に特に上限はないが、好まし くは約 100時間以下、より好ましくは約 72時間以下、さらにより好ましくは約 36時間 以下、最も好ましくは約 24時間以下である。
[0167] 本発明の製造方法では、 α -グルカンホスホリラーゼまたはグリコーゲン合成酵素の V、ずれも使用しな 、ことが好ま 、。
[0168] このようにして、グリコーゲンを含有する溶液が生産される。本発明の方法によって 製造されるグリコーゲンの Mwは、好ましくは、約 100万(Da)以上であり、より好ましく は約 200万 (Da)以上であり、さらにより好ましくは約 500万 (Da)以上であり、最も好 ましくは約 1000万 (Da)以上である。本発明の製造方法によって製造されるグリコー ゲンの Mwに特に上限はないが、例えば、約 5000万(Da)まで、約 1億(Da)まで、 約 10億 (Da)までのグリコーゲンが良好な生産性で合成され得る。得られたグリコー ゲンの Mwは、当該分野で公知の方法によって確認され得る。グリコーゲンの Mwは 、例えば、以下の方法で測定され得る。
[0169] まず、合成した α—グルカンを IN水酸ィ匕ナトリウムで完全に溶解し、適当量の塩酸 で中和した後、 ex—グルカン約 1 μ g〜約 300 g分を、示差屈折計と多角度光散乱 検出器とを併用したゲル濾過クロマトグラフィーに供することにより平均分子量を求め る。
[0170] 詳しくは、カラムとして Shodex OH - Pack SB806MHQ (内径 8mm、長さ 300 mm、昭和電工製)を用い、ガードカラムとして Shodex OH - Pack SB— G (内径 6mm,長さ 50mm、昭和電工製)を用い、検出器としては多角度光散乱検出器 (DA WN-DSP, Wyatt Technology社製)および示差屈折計(Shodex RI— 71、昭 和電工製)をこの順序で連結して用いる。カラムを 40°Cに保ち、溶離液としては 0. 1 M硝酸ナトリウム溶液を流速 lmLZ分で用いる。分子量が約 1万以上の α—グルカ ンは、 Shodex製のプルラン Ρ— 50 (GFC (水系 GPC)用標準試料 STANDARD P— 82に含まれている)のピーク頂点力 9. 3分になるように配管を調整した上記 HP LCシステムにおいて、 11分より前に溶出される。具体的には、シグナルの出始めの 位置力 11分までに溶出される示差屈折計と多角度光散乱検出器の両シグナルを 含むように、ピークとしてとり、それらのシグナルを、データ解析ソフトウェア(商品名 A STRA, Wyatt Technology社製)を用いて収集し、同ソフトを用いて解析すること により、 Mwを求める。本方法を以下、 MALLS法という。この分析法においては、上 記シグナルよりも後のシグナルを収集しな 、ので、分子量が約 1万以下のグルカンを 除外している。このように、本発明において MALLS法に従って決定される Mwは、 反応液中のダルカン全体の Mwではなぐ分子量約 1万以上の高分子量グルカンの Mwである。さらに、 HPLCカラムと検出器との間の配管の長さ、太さなどを変更した 場合、分子量約 1万以上のグルカンの溶出時間は変化し得る。このような場合、当業 者は、上記プルラン P— 50を用いることにより、本発明の方法に従って MALLS法に より Mwを決定するための適切な溶出時間を適切に設定し得る。
[0171] 本発明の方法によって製造されたグリコーゲンは、天然のグリコーゲンと同様に、プ ルラナ一ゼおよび α—アミラーゼによって分解されにくいという性質を有する。従って 、本発明の方法によって製造されたグリコーゲンは、天然のグリコーゲンと同様に利 用され得る。
[0172] 本発明の方法によって製造されたグリコーゲンは、溶解性が高いという性質を有す る。溶解度は、当該分野で公知の方法により決定され得る。例えば、所定量の ーグ ルカンを水に添加し、所定時間攪拌し、フィルターによって濾過して濾液を得て、こ の濾液中に溶解している —グルカンの量を決定し、添カ卩した α—グルカンの量と 溶解している a—グルカンの量との比を算出することにより決定され得る。すなわち、 溶解度(%) = { (ろ液中の —グノレカン量) ÷ (ろ過前の溶液中の —グノレカン量) } X 100である。製造された α—グルカンを乾燥し、 2mg/mLとなるように 20°Cの蒸 留水に添カ卩し、室温で 30秒間攪拌し、 0. 45 mのフィルターによって濾過した場合 の溶解度は、好ましくは、約 20%以上であり、より好ましくは約 30%以上であり、より 好ましくは約 40 %以上であり、さらに好ましくは約 50 %以上である。
[0173] (グリコーゲンの用途)
本発明の方法によって製造されたグリコーゲンは、従来のグリコーゲンと同様に、免 疫賦活剤、健康食品素材、化粧品素材、食品素材 (調味料)、その他産業用素材とし ての用途に利用され得る。
実施例
[0174] 以下の実施例においては、製造例 1、 2、 4、 5、 7および 8で製造した各種 BEを、 B Eとして用いた。 Pseudomonas amyloderamosa由来のイソアミラーゼ(林原生物 化学研究所製)を枝切り酵素として用いた。枝切り酵素活性を、 Yokobayashiら (Bio chim.Biophys.Acta,vol.212, p458— 469 (1970) )に基づいて決定した。 Therm us aquaticus由来の MalQ (TaqMalQ)を 4— α—グルカノトランスフェラーゼとし て用いた。 4- a—グルカノトランスフェラーゼの酵素活性を、 Teradaら(Applied a nd Environmental Microbiology, 65卷, 910〜915頁(1999) )【こ基づ!/ヽて決 定した。
[0175] (製造例 l :Aquifex aeolicus VF5由来の BEの組換え生産)
(A) Aquifex aeolicus VF5 BE遺伝子の作製
配列番号 2のアミノ酸配列をコードする遺伝子 (配列番号 1)の化学的合成を行った 。遺伝子の翻訳開始コドン上流には SD配列を付与し、さらにその上流に BamHIサ イトを設けた。また、翻訳停止コドン下流には EcoRIサイトを設けた。この合成遺伝子 を BamHIと EcoRIで切断して遺伝子断片を作製し、 T4— DNAリガーゼを用いて、 BamHIおよび EcoRIで切断したプラスミド pUC19 (宝酒造株式会社製)に連結する ことにより、プラスミド pAQBElを得た。
[0176] (B) Aquifex aeolicus BE遺伝子の大腸菌における発現
このプラスミドで、大腸菌 TG— 1を形質転換し、形質転換体をアンピシリン含有 LB 寒天培地(100 gZmlアンピシリン、 Difco製トリプトン 1%、 Difco製酵母エキス 0. 5%, NaCl 0. 50/0、寒天 1. 5%, pH 7. 3)に独立したコロニー力 S得られるように 希釈して塗布し、 37°Cでー晚培養した。このアンピシリン含有 LB寒天培地で増殖し た大腸菌は、導入したプラスミドを保有する。このようにして、 BEを発現する大腸菌が 作製できた。
[0177] 組換えプラスミド pAQBElで形質転換された大腸菌 TG— 1株を、終濃度 100 μ g /mlのアンピシリンを含む 0. 2リットルの L培地(1% トリプトン(Difco)、 0. 5% ィ 一ストエキストラタト(Difco)、 1% NaCl、pH7. 5)中で対数増殖期中期まで (約 3 時間)、 37°Cで培養した後、終濃度 0. ImMの IPTG (イソプロピル— β— D—チォ ガラタトピラノシド)を加えた。さらに 37°Cで 21時間培養を継続した後、遠心分離を行 ぃ集菌した。得られた菌体を 50mlの緩衝液 A(10mMリン酸ナトリウム緩衝液 (pH7 . 5) )で洗浄し、次いで 20mlの緩衝液 Aに分散させた後、超音波により菌体を破砕 した。この菌体破砕液を 70°Cで 30分加熱することにより、大腸菌由来のタンパク質を 変性させ、これを BE酵素液とした。この BE酵素液および pAQBElを持たない大腸 菌を同様に処理して得た液を SDS—ポリアクリルアミドゲル電気泳動にかけてそれら のパターンを比較した。その結果、形質転換された大腸菌 TG—1株が BE遺伝子を 発現しており、本遺伝子にコードされているタンパク質が生産されていることが確認さ れた。
[0178] (製造例 2 : Bacillus stearothermophilus TRBE 14由来の BEの組換え生産 )
非特許文献 12に示されたプラスミド pUBE821を保持する大腸菌 TG— 1株より、同 文献に示された方法により Bacillus stearothermophilus TRBE 14由来の BE を組換え生産した。
[0179] (製造例 3 :Thermus aquaticus由来の MalQ (以下、 TaqMalQという)の組換え 生産)
Teradaら、 Applied and Environmental Microbiology, 65 , 910〜915 頁(1999) )に示されたプラスミド pFGQ8を保持する大腸菌 MC1061株より、同文献 に示された方法により TaqMalQを組換え生産した。
[0180] (製造例 4 :大腸菌由来 BEの組換え生産およびグリコーゲン合成能力のテスト) (手順)
以下のプライマーを用いて、大腸菌 W3110株染色体 DNAを铸型として大腸菌 B E遺伝子を増幅した。このプライマーは、以下の文献を参考にして、大腸菌 BE構造 遺伝子全長が増幅されるようにデザインした: Hilden, I.ら(2000) Eur J Bioche m 267, 2150— 2155。設計したプライマー配列を以下の表 1Aに示す。
[表 1A]
Figure imgf000050_0001
タカラバイオ(株)製の DNAポリメラーゼ PyroBestを用いて、そのプロトコールに従 つて PCRを行った。増幅された断片を pGEM—T Easy (プロメガ製)の TAクロー- ングサイトに挿入し、得られたプラスミドを pEBElと命名した。 pEBElを制限酵素 Nc olおよび Hindmで処理して断片を得た。得られた断片を、同じ制限酵素 (Ncolおよ び Hindm)で処理した pTrc 99 Aと連結し、この連結物を含む溶液で大腸菌 TG— 1 株を形質転換した。形質転換された大腸菌 TG—1株力もプラスミドを単離し、得られ たプラスミドを PEBE2— 1と命名した。
[0182] pEBE2— 1を含む大腸菌 TG— 1株をアンピシリン 50 μ gZmLを含む培地で 37°C で振盪培養し、対数期後期に、終濃度 0. ImMの IPTGを添加し、さらに 37°Cで一 晚培養した。
[0183] 菌体を遠心分離で集め、 10mMリン酸カリウム緩衝液 (pH7. 5)に懸濁し、超音波 処理によって破砕した。遠心分離によって上清を集めて粗酵素液とした。
[0184] Q-Sephalose Fast Flow (Amersham— Pharmacia)を充填したカラムを調 製し、榭脂を 20mM Tris— HCl (pH7)で平衡ィ匕した。このカラムに粗酵素液を流 すことによって、この樹脂に粗酵素液を吸着させ、 0. 1Mの NaClを含む同緩衝液( すなわち、 0. 1Mの NaClを含む 20mM Tris— HCl (pH7) )を流して洗浄した。 B E活性は、 0. 2Mの NaClを含む同緩衝液(すなわち、 0. 2Mの NaClを含む 20mM Tris-HCl (pH7) )で溶出された。
[0185] その BE活性を有する溶出液に、終濃度 0. 3Mになるように硫酸アンモ-ゥムを添 加し、以下のように疎水性クロマトグラフィーにかけて、 BE酵素を精製した。まず、 Ph enyl-Toyopearl 650M (東ソ一)を充填したカラムを調製し、 0. 3M硫酸アンモ- ゥムを含む 20mM Tris— HCl (pH7)で平衡ィ匕した。この樹脂に酵素を吸着させ、 20mM Tris— HCl (pH7)で洗浄した。酵素は、蒸留水をカラムに流すことによって 回収した。このようにして、精製 BEが得られた。
[0186] (グリコーゲン合成能力のテスト)
アミロース A (ナカライテスタ (株)製、 Mn2900)またはアミロース AS 10 ( (株)アジノ キ製、 MwlO, 000、数平均としては 9100)を IN NaOHに溶かし、 HC1で中和し た。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 3 0°Cで 24時間反応させた。反応液組成:大腸菌由来 BE40, OOOUZg基質、基質濃 度 0. 5重量%、リン酸カリウム濃度 20mM、pH 7. 5。反応液中に合成されたダル カンの平均分子量および収率を、 MALLS法により調べた。結果を以下の表 1Bに示 す。
[0187] [表 1B]
Figure imgf000051_0001
この結果、大腸菌由来の BEが MwlOOOkDa以上のグリコーゲンを合成する能力 を有することがわ力つた。
[0188] (製造例 5 :Rhodothermus obamensis由来の BEの組換え生産)
Rhodothermus obamensis JCM9785は、独立行政法人 理化学研究所 ノ ィォリソースセンターより分譲を受けた。この株を Marine Broth 2216 (Difco製) を用いて 70°Cで液体培養し、得られた菌体から染色体 DNAを抽出した。
[0189] 以下のプライマーを用いて、上述の染色体 DNAを铸型として Rhodothermus ob amensis BE遺伝子を増幅した。このプライマーは、非特許文献 11で公開されてい る塩基配列情報を参考にして、 Rhodothermus obamensis BE構造遺伝子全長 が増幅されるようにデザインした。設計したプライマー配列を以下の表 1Cに示す。
[0190] [表 1C] プライマー 1 AATCCAACCTTCGAATTCAGCTGGCTCACGGAAGAA6ACA (配列番号 23)
R0BE -EC0
(N末端側) EcoRIサイ ト
プライマ一 2 AATCMTCMTCMCTGCAGACGGTTACCCGTGCTCCGGC (配列番号 24)
OBEC^PST
(C末端側) Pstlサイ ト 東洋紡製の DN Aポリメラーゼ KOD— Plusを用いて、以下の組成の反応液で、以 下の条件で PCRを行った。
[0191] 染色体 DNA (約 0. 2μL·
プライマー KlOpmolZ L) 3μL·
プライマー 2(10pmolZ L) 3μL·
X10 KOD— Plus Buffer lO^L
2mM dNTP lO^L
25mM MgSO 4μL·
4
KOD -Plus 2μΙ^
蒸留水(DW) 70 L
条件: 94°Cで 2分間の加熱後、 94°Cで 0. 25分間、 55°Cで 0. 5分間、 68°Cで 2. 5 分間のサイクルを 30回。
[0192] 得られた DNA断片を制限酵素 EcoRIおよび Pstlで処理し、同制限酵素(EcoRI およびと Pstl)で処理した pTrc 99 Aと連結し、この連結物を含む溶液で大腸菌 TG 1株を形質転換した。形質転換された大腸菌 TG— 1株カゝらプラスミドを単離し、得 られたプラスミドを pRBE 1と命名した。
[0193] pRBElを含む大腸菌 TG— 1株をアンピシリン 50 μ gZmLを含む培地で 37°Cで 振盪培養し、対数期後期に、終濃度 0. ImMの IPTGを添加し、さらに 37°Cで一晩 口 ^しプ 。
[0194] 菌体を遠心分離で集め、 20mM Tris— HC1緩衝液 (pH7)に懸濁し、超音波処 理によって破砕した。遠心分離によって上清を集め、さらに 70°C30分熱処理し、遠 心分離して上清を回収して粗酵素液とした。
[0195] Q-Sephalose Fast Flow (Amersham— Pharmacia)を充填したカラムを調 製し、榭脂を 20mM Tris— HCl(pH7)で平衡ィ匕した。このカラムに粗酵素液を流 すことによって、この樹脂に粗酵素液を吸着させ、 0. 1Mの NaClを含む同緩衝液を 流して洗浄した。 BE活性は、 0. 5Mの NaClを含む同緩衝液で溶出された。本溶出 液を、 20mM Tris— HCl (pH7)に対して透析することにより精製 BEが得られた。 以下の実施例 8に示されるように、得られた精製 BEは、 MwlOOOkDa以上のグリコ 一ゲンを合成する能力を有する。
[0196] (製造例 6:トラマメ由来の BEの組換え生産および高分子量グルカン合成能力のテ スト)
トラマメ(Kidney bean ; Phaseolus vulugaris L. )由来 BEとしては、下記文献 に記載されている KBE2を用いた: Nozaki, K.ら(2001) Biosci. Biotechnol. Biochem. 65, 1141— 1148。
[0197] (グリコーゲン合成能テスト)
アミロース A (ナカライテスタ (株)製、 Mn2900)またはアミロース AS 10 ( (株)アジノ キ製、 MwlO, 000、数平均としては 9100)を IN NaOHに溶かし、 HC1で中和し た。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 3 0°Cで 24時間反応させた。反応液組成: KBE2量 40, OOOUZg基質、基質濃度 0. 5重量0 /0、リン酸カリウム濃度 20mM、 pH 7. 5。反応液中に合成されたグルカンの 平均分子量および収率を、 MALLS法により調べた。結果を以下の表 1Dに示す。
[0198] [表 1D]
Figure imgf000053_0001
この結果、 KBE2を用いた場合には、 lOOOkDa以上のグリコーゲンを合成できな いことがわかった。
[0199] (製造例 7 : Bacillus caldovelox由来 BEの組換え生産)
Aquifex aeolicus由来の BEをコードする遺伝子の代わりに Bacillus caldovelo x由来の BEをコードする遺伝子 (配列番号 9)を用いたこと、および加熱処理温度を 6 0°Cとしたこと以外は製造例 1と同様の方法で Bacillus caldovelox由来の BEを組 換え生産した。
[0200] (製造例 8: Bacillus caldolvticus由来の BEの糸且換え生産) Aquifex aeolicus由来の BEをコードする遺伝子の代わりに Bacillus caldolyti cus由来の BEをコードする遺伝子(配列番号 13)を用 、たこと、および加熱処理温 度を 60°Cとしたこと以外は製造例 1と同様の方法で Bacillus caldovelox由来の BE を組換え生産した。
[0201] (測定例 1 : Aquifex aeolicus VF5由来 BEのアミロぺクチン低分子化活性の測 定)
まず、 50mgのヮキシ一コーンスターチ (WCS;三和澱粉製)に 100 μ 1 蒸留水を 添加し、充分に攪拌した。次 、で、 900 μ 1 ジメチルスルホキシド(DMSO)を添カロし て、攪拌し、沸騰湯浴中で、 20分間加熱した。 8. 9ml 蒸留水を添加してよく撹拌し 、沸騰湯浴中で、さらに 10分間加熱した。この溶液に、 100 1の 1M リン酸緩衝液 (pH7. 5)を添加して攪拌し、基質液とした。
[0202] 基質液を 800 μ LZチューブで分注した。すなわち、各チューブは、 4mgの WCS を含んでいた。次いで、製造例 1と同様の方法によって生産した、 Aquifex aeolicu s VF5由来の BE溶液(BE活性 2. 4UZmL)をチューブ 1本あたり 66. 7、 83. 3、 1 00、 116. 7、 133. 3、または 150 /z Lと、それぞれ、 133. 3、 116. 7、 100、 83. 3 、 66. 7、または 50 Lの希釈液を添カ卩して反応液の体積を 1000 Lにし、 70°Cで 16時間反応させた。希釈液は 0. 05% Triton X— 100を含む 10mMリン酸力リウ ム緩衝液 (PH7. 5)であった。反応時間が 16時間になった時点で IN HClを添カロし て反応液の ρΗを 3〜4に下げ、さらに 100°Cで 10分加熱することにより、反応を停止 させた。
[0203] 反応停止後、反応液を 0. 45 μ mのフィルターによりろ過し、含まれる生産物の Mw を MALLS法によって測定した。 MALLS法の詳細は、以下の「製造されたグルカン の重量平均分子量 (Mw)の測定法」に記載した。
[0204] 算出された Mw (kDa)を縦軸 (y軸)に対数でとり、用いた酵素量( μ L)を横軸 (χ軸 )にとり、マイクロソフト社のソフト MS— Excelを使用して累乗近似曲線を作成した。こ のグラフを図 12に示す。近似曲線の方程式は、 y= 24, 090χ-1· 340 (R2 = 0. 9896) であらわされた。この方程式から、 4mgの WCSを基質としたときに基質 Mwを 400kD aに低下させるのに必要な酵素量 VI ( L)は、 119 Lと算出された。この酵素量を 基質 lgあたりに換算することにより、 1単位の低分子化活性に必要な酵素量 V2 (mL ) ( = (119 /ζ Ι^ΖΐΟΟΟ) X (1000mg/4mg) = 29. 75 (mL) )力算出される。酵素 液の低分子化活性 Elは、単位低分子化活性量の逆数 (El = lZV2= lZ29. 75 =0. 0336) (UZmL)である。。したがって、 BE活性 Z低分子化活性 = (2. 4 (U/ mL) /0. 0336 (UZmL) ) = 71であった。
[0205] (測定例 2 : Bacillus stearothermophilus由来 BEのアミロぺクチン低分子化活 性の測定)
Aquifex aeolicus VF5由来 BEの代わりに、製造例 2で生産した Bacillus stea rothermophilus由来 BEを用 、、反応温度を 50°Cとしたこと以外は測定例 1と同様 にして、 BE活性 Z低分子化活性を決定した。この結果、 BE活性 Z低分子化活性は 、 270であった。
[0206] (測定例 3 :Rhodothermus obamensis由来 BEのアミロぺクチン低分子化活性 の測定)
Aquifex aeolicus VF5由来 BEの代わりに、製造例 5で生産した Rhodotherm us obamensis由来 BEを用い、反応温度を 65°Cとしたこと以外は測定例 1と同様に して、 BE活性 Z低分子化活性を決定した。この結果、 BE活性 Z低分子化活性は、 35であった。
[0207] (測定例 4:大腸菌由来 BEのアミ口べクチン低分子化活性の測定)
Aquifex aeolicus VF5由来 BEの代わりに、製造例 4で生産した大腸菌由来 B Eを用い、反応温度を 30°Cとしたこと以外は測定例 1と同様にして、 BE活性 Z低分 子化活性を決定した。この結果、 BE活性 Z低分子化活性は、 273であった。
[0208] (測定例 5 : Bacillus cereus由来 BEのアミロぺクチン低分子化活性の測定)
Aquifex aeolicus VF5由来 BEの代わりに、非特許文献 9に記載の方法に従つ て製造した Bacillus cereus由来 BEを用い、反応温度を 30°Cとしたこと以外は測定 例 1と同様にして、 BE活性 Z低分子化活性を決定した。この結果、 BE活性 Z低分 子化活性は、 1086であった。
[0209] (測定例 6:トラマメ由来 BEのアミロぺクチン低分子化活性の測定)
Aquifex aeolicus VF5由来 BEの代わりに、製造例 6にトラマメ由来 BEを用い、 反応温度を 30°Cとしたこと以外は測定例 1と同様にして、 BE活性 Z低分子化活性を 決定した。この結果、 BE活性 Z低分子化活性は、 130069であった。
[0210] (測定例 7 : Bacillus caldovelox由来 BEのアミロぺクチン低分子化活性の測定)
Aquifex aeolicus VF5由来 BEの代わりに、製造例 7で生産した Bacillus cald ovelox由来 BEを用い、反応温度を 50°Cとしたこと以外は測定例 1と同様にして、 BE 活性 Z低分子化活性を決定した。この結果、 BE活性 Z低分子化活性は、 466であ つた o
[0211] (測定例 8 : Bacillus caldolyticus由来 BEのアミロぺクチン低分子化活性の測定 )
Aquifex aeolicus VF5由来 BEの代わりに、製造例 8で生産した Bacillus cald olyticus由来 BEを用い、反応温度を 50°Cとしたこと以外は測定例 1と同様にして、 B E活性 Z低分子化活性を決定した。この結果、 BE活性 Z低分子化活性は、 402で めつに。
[0212] これらの測定例によって測定された BE活性 Z低分子化活性、およびグリコーゲン 合成能を以下の表 1Eにまとめる。
[0213] [表 1E]
Figure imgf000056_0001
(製造されたグルカンの重量平均分子量 (Mw)および収率の測定法)
製造されたグルカンの Mwを MALLS法によって以下の通りに測定した。カラムとし て Shodex OH -Pack SB806MHQ (内径 8mm、長さ 300mm、昭和電工製)を 用い、ガードカラムとして Shodex OH -Pack SB— G (内径 6mm、長さ 50mm、 昭和電工製)を用い、検出器としては多角度光散乱検出器 (DAWN— DSP、 Wyat t Technology社製)および示差屈折計(Shodex RI— 71、昭和電工製)をこの順 序で連結して用いた。カラムを 40°Cに保ち、溶離液としては 0. 1M硝酸ナトリウム溶 液を流速 lmLZ分で用いた。分子量が約 1万以上の α—グルカンは、 Shodex製の プルラン P— 50 (GFC (水系 GPC)用標準試料 STANDARD P— 82に含まれて!/ヽ る)のピーク頂点が、 9. 3分になるように配管を調整した上記 HPLCシステムにおい て、 11分より前に溶出された。具体的には、シグナルの出始めの位置から 11分まで に溶出される示差屈折計と多角度光散乱検出器の両シグナルを含むように、ピーク としてとり、それらのシグナルを、データ解析ソフトウェア(商品名 ASTRA、 Wyatt T echnology社製)を用いて収集し、同ソフトを用いて解析することにより、 Mwを求め た。このような条件下では、分子量約 1万以下のグルカンを除外している。グルカンの dnZdc (固有屈折率増分)として、 0. 145mLZgを用いた。
[0214] 示差屈折計のピーク面積を測定し、このピーク面積を dnZdc値で除算することによ り、溶出した高分子グルカンの量 (g)を計算する。溶出した高分子グルカンの量を、 合成に用いた基質量 (計算式にぉ 、ては、基質濃度と HPLCにロードした容積の積 )で割り、 100倍して百分率にすることにより収率を算出する。すなわち、収率は、以 下の式で求められる:
収率 (%) = { (溶出した高分子グルカンの量 (g) ) ÷ (基質濃度 (gZmL) X HPLCに ロードした容積)(mL) } X 100
分子量 100万以上の高分子グルカンの量を用いることにより、グリコーゲンの収率を 求めることができる。
[0215] (実施例 1:低分子量アミロースからのグリコーゲンの製造)
(1 - 1 :アミロース Aからの製造)
アミロース A (ナカライテスタ(株)製、 Mn2900)を IN NaOHに溶かし、 HC1で中 和した。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加し て、 70°Cで 17時間反応させた。反応液組成: Aquifex aeolicus由来 BE量 1000 0、 20000または 40000UZg基質、基質濃度 2重量%、リン酸カリウム濃度 20m M、 pH7. 50
[0216] 低分子量 aーグルカン力 グリコーゲンの生成の模式図を図 2に示す。反応後、製 造された α—ダルカンの分子量を測定した。結果を、表 1および図 3に示す。表 1に おいて、グルカン収率は、分子量 1万以上のグルカン全体の収率を示し、グリコーゲ ン収率は、分子量 100万以上のグルカン(すなわち、グリコーゲン)の収率を示す。こ の結果、 10, 000〜40, 000U/g基質の BEを用!ヽると、 Mn2900のアミロース A力 ら、 MwlOO万以上のグリコーゲンが製造されることおよび生成されるグルカンのほと んどがグリコーゲンであることが確認された。
[0217] ( 1 2:種々の分子量の基質力 のグリコーゲンの製造)
基質として、アミロース AS— 5、 AS— 10、 AS— 30、 AS— 70、または AS— 1 10 ( いずれも、(株)アジノキ製;それぞれ、 Mw5000, 10000、 30000、 70000、 1100 00)を用いた。 Mw/Mnはおよそ 1. 1であるので、 Mnはそれぞれ 4, 500、 9, 100 、 27, 000、 64, 000、 100, 000である。
[0218] それぞれのアミロースを IN NaOHに溶かし、 HC1で中和した。その後、すぐに水 、酵素液、緩衝液を以下の反応液組成となるように添加して、 70°Cで 16時間反応さ せた。反応液組成: Aquifex aeolicus由来 BE量 lOOOOUZg基質、基質濃度 2 重量0 /0、リン酸カリウム濃度 40mM、 pH7. 5。
[0219] 反応後、製造された aーグルカンの分子量を測定した。結果を、以下の表 1および 図 4に示す。表 1においては、 Aquifex aeolicus由来の BEを Aqと示す。
[0220] この結果、 Mnが 10万のアミロースからでもグリコーゲンが生成することがわかった。
さらに、反応開始前の溶液中の糖の Mnが 9100よりも大きいと、生成物の分子量が 2 つのピークに分かれた。ピークが分かれた場合は、高分子量のピークのみを測定し た。反応開始前の溶液中の糖の Mnが大きくなるほど、生成物の Mwが小さくなり、収 率が大きくなる傾向にあった。
[0221] ( 1 3:種々の濃度の基質力 のグリコーゲンの製造)
基質として、アミロース A (ナカライテスタ (株)製、 Mn2900)を IN NaOHに溶かし 、 HC1で中和した。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるよ うに添加して、 70°Cで 17時間反応させた。反応液組成: Aquifex aeolicus由来 BE 量 10000または 40000UZg基質、基質濃度 24、 8または 12重量%、リン酸カリ ゥム濃度 40mM、 pH7. 5。
[0222] 反応後、製造された α—グルカンの分子量を測定した。結果を、表 1 2に示す。 表 1—2において、グリコーゲン収率(%)は、分子量 100万以上のグルカン (すなわ ち、グリコーゲン)の収率を示す。
[0223] この結果、少なくとも、基質濃度 12%程度までは、グリコーゲンが生成することがわ かった。基質濃度が上昇すると生成物の Mwが低下する傾向が見られた。
[0224] [表 1]
Figure imgf000060_0001
[0225] [表 1-2]
Figure imgf000061_0001
Aq: Aqu ί τβχ aeo l i cus由来ブランチングェンザ ム
Mw:重量平均分子量
Mn :数平均分子量
(実施例 2:澱粉力 のグリコーゲンの製造)
(2—1 :コーンスターチからのグリコーゲンの製造)
コーンスターチ (和光純薬工業 (株)製)(2重量%)を水に懸濁し、 100°Cで 30分間 加熱することにより、コーンスターチを糊化した。それを 40°Cまで冷まし、イソアミラー ゼ (IAMと略; 5000または 50000UZg基質;(株)林原生物化学研究所製)を添カロ して 40°Cで 4時間、 6時間、 8時間、または 20時間反応させ、アミロースを生成させた 。その後、この溶液を 5mM リン酸カリウムバッファーで pH7. 5に調整し、 Aquifex aeolicus由来の BEを添加し、基質濃度 2重量0 /0、 BE10000、 20000、 40000、ま たは 60000UZg基質とした後、 55°C、 65°C、 70°Cまたは 75°Cで 20時間反応させ た。
[0226] 澱粉を枝切り酵素により分解してアミロースを得て、このアミロースに BEを反応させ てグリコーゲンを製造する反応の模式図を図 5に示す。反応後、製造された α—ダル カンの分子量を測定した。結果を、以下の表 2および図 6に示す。図 6は、 ΙΑΜ量が 5000UZg基質であって、 BE量力 OOOO、 20000、 40000または 60000UZg基 質である場合の結果をプロットしたグラフである。表 2において、グリコーゲン収率(% )は、分子量 100万以上のグルカン (すなわち、グリコーゲン)の収率を示す。
[0227] [表 2] 1AM量 1AM反 ΙΑΜ反 BE量 BE反応 BE反応 生成物 生成物 Mw/Mn グリコ
(U/g 応皿度 応時間 (U/g '皿 時間 の Mw の Mn 一ゲン 基質) (°C) (時間) 基質) (¾) (時間) (kDa) (kDa) 収率
(%)
5000 40 20 10000 70 20 4866 3637 1.34 35.4
50000 40 20 10000 70 20 5076 3047 1.67 33.4
5000 40 20 20000 70 20 4078 3298 1.24 40.6
50000 40 20 20000 70 20 5431 3015 1.80 33.6
5000 40 20 40000 70 20 5215 3779 1.38 38.4
50000 40 20 40000 70 20 5481 3407 1.61 33.6
5000 40 20 60000 70 20 4367 2970 1.47 31.9
50000 40 20 60000 70 20 4782 2930 1.63 30.4
5000 40 4 20000 55 20 6579 5787 1.14 42.7
5000 40 4 20000 65 20 4998 4255 1.17 42.5
5000 40 4 20000 75 20 4632 3534 1.31 40.7
5000 40 6 20000 55 20 5710 4947 1.15 46.4
5000 40 6 20000 65 20 7302 5437 1.34 39.5
5000 40 6 20000 75 20 4873 3781 1.29 40.1
5000 40 8 20000 55 20 6583 5587 1.18 42.1
5000 40 8 20000 65 20 6676 5057 1.32 40.7
5000 40 8 20000 75 20 5950 3550 1.68 38.8
5000 40 20 20000 55 20 7044 5979 1.18 36.8
5000 40 20 20000 65 20 6028 4905 1.23 37.2
5000 40 20 20000 75 20 5284 4053 1.30 36.8
BE: Aquifex aeol icus由来ブランチングェンザィム
I AM: Pseudomonas amy loderamosa由来イソアミラ一ゼ
Mw:重量平均分子量
Mn :数平均分子量
この結果、コーンスターチのイソアミラーゼ分解物力 グリコーゲンが生成することが わかった。イソアミラーゼ量および BE量にほとんど関係なぐ Mw500万前後のグリコ 一ゲンが収率約 30%以上で得られた。イソアミラーゼの反応時間は、 4時間以上で あれば、グリコーゲンが生成された。また、 BEの反応温度は 55°C、 65°C、 70°Cまた は 75°Cのいずれでもグリコーゲンが生成された。
(2-2:各種澱粉力 のグリコーゲンの製造)
コーンスターチ(和光純薬工業 (株)製)、ヮキシ一コーンスターチ(Roquette社製) 、小麦澱粉 (和光純薬工業 (株)製)、馬鈴薯澱粉 (和光純薬工業 (株)製)、またはタピ ォカ澱粉 (VEDAN ENTERPRISE Co. , Ltd製)(2重量%)を水に懸濁し、 10 0°Cで 30分間加熱することにより、澱粉を糊化した。それを 40°Cまで冷まし、イソアミ ラーゼ (5000UZg基質;(株)林原生物化学研究所製)を添加して 40°Cで 20時間 反応させ、アミロースを生成させた。その後、この溶液を 5mM リン酸カリウムバッファ 一で pH7. 5に調整し、 Aquifex aeolicus由来の BEを添カ卩し、基質濃度 2重量%、 BE20000UZg基質とした後、 55°C、 65°Cまたは 75°Cで 20時間反応させた。
[0229] 反応後、製造された aーグルカンの分子量を測定した。結果を、以下の表 3に示す
[0230] この結果、種々の澱粉をイソアミラーゼの基質として用いて、グリコーゲンを生成で きることがわかった。
[0231] (2- 3 : Bacillus stearothermophilus由来の BEを用いた、澱粉からのグリコー ゲンの製造)
コーンスターチ (和光純薬工業 (株)製)(2重量%)を水に懸濁し、 100°Cで 30分間 加熱することにより、澱粉を糊化した。それを 40°Cまで冷まし、イソアミラーゼ(5000 UZg基質;(株)林原生物化学研究所製)を添加して 40°Cで 20時間反応させ、アミ ロースを生成させた。その後、この溶液を 40mM リン酸カリウムバッファーで pH7. 5 に調整し、 Bacillus stearothermophilus由来の BEを添カ卩し、基質濃度 2重量0 /0 、 BE20000UZg基質とした後、 55°Cで 20時間反応させた。
[0232] 反応後、製造された aーグルカンの分子量を測定した。結果を、以下の表 3に示す 。表 3において、グルカン収率は、分子量 1万以上のグルカン全体の収率を示し、ダリ コーゲン収率は、分子量 100万以上のグルカン(すなわち、グリコーゲン)の収率を示 す。
[0233] この結果、 Bacillus stearothermophilus由来の BEを用いても、グリコーゲンを 生成できることがわ力つた。
[0234] [表 3]
実施例
ϊ成物
反応条件 平均分子量 各成分 グリコ
基質 反 J心 Μπ グルカ 一ゲン 1万〜 50万 100万
(kDa) (kDa) Mw/ π ン収率 収率 50万 -100 -250
(¾) (%) (%) 万 万
12-2 Aq コーンスターチ枝切り物 20000 55 6378 4769 1.34 35.1 34.5
2-2 Aq コーンスターチ枝切り物 20000 65 6220 4582 1.36 38.5 37.8
2-2 | Aq Iコーンスターチ枝切り物 20000 5 0.50 1.19 1.66
^素基 S
2-2 Aq ヮキシ -コ-ンスタ -チ枝切り物 200量質酵00 55 13470 11910 1.13 30.2 30.1
2-2 Aq ヮキシ -コ-ンスタ -チ枝切り物 20000 65 14910 12840 1.16 25.8 25.8
2-2 Aq ヮキシ -コ-ンスタ -チ枝切り物 20000 75 14460 11370 1.27 25.1 25.1 0.09 0.09 0.14
Ϊ2-2 Aq 小麦澱粉枝切り物 20000 55 9999 9050 1.10 35.1 35.0
2-2 Aq 小麦澱粉枝切り物 20000 65 10270 6984 1.47 35.9 35.8
2-2 Aq 小麦澱粉枝切 y物 20000 75 7532 4815 1.56 37.3 37.1 0.27 0.15 0.22
22 Aq 馬鈴薯澱粉枝切り物 20000 55 Γ 13450 8419 1.60 32.5 32.3
2-2 Aq 馬鈴薯澱粉枝切り物 20000 65 11760 7843 1.50 29.6 29.5
2-2 Aq 馬鈴薯澱粉枝切り物 20000 75 11900 6656 1.79 30.3 30.2 0.14 0.10 1.82
2-2 Aq タピオ力澱粉枝切り物 20000 55 10520 6977 1.51 41.8 41.5
2-2 Aq タピオ力澱粉枝切り物 20000 65 8100 6134 1.32 42.2 41.8
2-2 Aq タピオ力澱粉枝切り物 20000 75 7835 5262 1.49 35.0 34.8 0.02 0.42 1.02
2-3 Bst コーンスターチ枝切り物 20000 55 1126 398.7 2.82 15.2 5.3 1.91 57.08 30.62
Aq: Aquifex aeol icus由来ブランチングェンザィム
Bst:Baci I lus stearot ertnophi lus由来ブランチングェンザィム
Mw:重量平均分子量
Mn:数平均分子量
(2- 3 :イソアミラーゼと BEとを同時に用いる、グリコーゲンの製造) コーンスターチ (和光純薬工業 (株)製)(1重量%)を水に懸濁し、 100°Cで 30分間 加熱することにより、糊化した。それを 65°Cまで冷まし、イソアミラーゼ(500000UZ g基質;(株)林原生物化学研究所製)および Aquifex aeolicus由来の BE (60000 UZg基質)を添カ卩し、この溶液を 40mM リン酸カリウムバッファーで pH7. 5に調整 し、 65°C16時間反応させた。
[0235] 反応後、製造された aーグルカンの分子量を測定した。この結果、澱粉にイソアミラ ーゼと BEとを同時に作用させても、グリコーゲンを生成させることが可能であることが わかった。
[0236] (実施例 3A:糖鎖の短いアミロースに 4 aーグルカノトランスフェラーゼと BEを作 用させること〖こよるダリ =3—ゲンの製造)
(3 - 1: Aquifex aeolicus由来の BEおよび TaqMalQを用いたグリコーゲンの製 造)
基質(マルトペンタオース(G5)、マルトへキサオース(G6)、またはマルトへプタオ ース (G7) )を水に溶かし、水、酵素液、緩衝液を以下の反応液組成となるように添カロ して、 65°Cで 17時間反応させた。反応液組成: Aquifex aeolicus由来 BE量 400 00、 80000、または 160000UZg基質、 TaqMalQ量 lOUZg基質、基質濃度 1 %、リン酸カリウム濃度 10mM、 pH7. 5。
[0237] 4 aーグルカノトランスフェラーゼによってマルトペンタオースからアミロースが生 成され、 BEによってアミロース力 グリコーゲンが生成されることを示す模式図を図 7 に示す。反応後、製造された α グルカンの分子量を測定した。結果を、以下の表 4 および図 8に示す。図 8においては、 BE量が 80000UZg基質を用いた場合につい ての Mwを示す。ピークが分かれた場合は、高分子量のピークのみを測定した。
[0238] この結果、 4 aーグルカノトランスフェラーゼを併用することによって、 G5、 G6、 G 7からグリコーゲンが高い効率で生成されることがわ力つた。
[0239] (3 - 2 : Bacillus stearothermophilus由来の BEおよび TaqMalQを用いたグリ コーゲンの製造)
基質 (マルトへプタオース (G7) )を水に溶かし、水、酵素液、緩衝液を以下の反応 液組成となるように添カ卩して、 50°Cで 17時間反応させた。反応液組成: Bacillus st earothermophilus由来 BE量 160000UZg基質、 TaqMalQ量 2. 3UZg基質 、基質濃度 0. 5%、リン酸カリウム濃度 5mM、 pH7. 5。
[0240] 反応後、製造された aーグルカンの分子量を測定した。結果を、以下の表 4に示す 。表 4において、グルカン収率は、分子量 1万以上のグルカン全体の収率を示し、ダリ コーゲン収率は、分子量 100万以上のグルカン(すなわち、グリコーゲン)の収率を示 す。
[0241] この結果、 Bacillus stearothermophilus由来の BEを用いた場合も、 4— α—グ ルカノトランスフェラーゼを併用することによって、 G7からグリコーゲンが高い効率で 生成されることがわ力つた。
[0242] [表 4]
Figure imgf000067_0001
Aq: Aqu i f ex aeol icus由来ブランチンクェンサイム
Bst: Baci l lus stearothermophi lus由来ブランチング工ンザィム
MalQ: Thermus aquaticus由来の Taq Ma 10
Mw:重量平均分子量
Mn:数平均分子量
(実施例 4:比較的低温条件下でのグリコーゲンの製造)
アミロース A (ナカライテスタ(株)製、 Mn2900)を IN NaOHに溶かし、 HC1で中 和した。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加し て、 30°Cで 16時間反応させた。反応液組成: Aquifex aeolicusまたは Bacillus s tearothermophilus由来 BE量 80, OOOUZg基質、基質濃度 2重量0 /0、リン酸カリ ゥム濃度 20mM、 pH 7. 5。
[0243] 反応後、製造された aーグルカンの分子量を測定した。結果を、表 5に示す。表 5 において、グルカン収率は、分子量 1万以上のグルカン全体の収率を示し、グリコー ゲン収率は、分子量 100万以上のグルカン(すなわち、グリコーゲン)の収率を示す。
[0244] この結果、どちらの耐熱性 BEを用いた場合も、反応温度が 30°Cであっても、アミ口 ース Aから、 MwlOO万以上のグリコーゲンが製造されることが確認された。このこと から、グリコーゲンが生成されるのは、反応を高温条件で行うことに起因するのではな ぐ耐熱性 BEの特性に起因すると考えられる。
[0245] (比較例 1: Bacillus cereus由来 BEを用いた α—グノレカンの製造)
アミロース Αまたは、酵素合成アミロース(AS— 10 (MwlOOOO; Mn9100)または AS— 320 (Mw320000 ; Mn290000) )を、 IN NaOHに溶力し、 HC1で中禾口した 。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 30 °Cで 24時間反応させた。反応液組成: B. cereus由来 BE量 40, OOOUZg基質、基 質濃度 0. 5重量%、リン酸カリウム濃度 20mM、 pH 7. 5。 B. cereus由来 BEは、 非特許文献 9に記載の方法に従って製造した。
[0246] 反応後、沸騰湯浴中で 10分間加熱して反応を停止させ、生じた ocーグルカンを M ALLS法によって分析した。結果を表 6に示す。表 6において、グルカン収率は、分 子量 1万以上のグルカン全体の収率を示し、グリコーゲン収率は、分子量 100万以 上のグルカン(すなわち、グリコーゲン)の収率を示す。
[0247] アミロース Aを基質とした場合は、高分子 a—グルカンを検出できな力つた。また、 どちらの酵素合成アミロースを用いた場合も、分子量 1万〜分子量 50万のダルカン が生成物のほぼ 100%を占めており、分子量 100万以上のグルカンは検出できなか つた。生成物の Mwは、 Mn9100の基質を用いた場合、 86900であり、 Mn290000 の基質を用いた場合、 61900であった。高分子量の基質を用いた場合、低分子化が 生じた。
[0248] さらに、 Mn4500〜290000の各種サイズのアミロースに B. cereus BEを同様に 作用させた後、生成物のゲル濾過分析を行ったが、主成分の分子量は上記実験と ほとんど同じであることが示された。つまり、どの場合にも分子量 100万を超える高分 子 (Xーグルカンは得られなかった。
[0249] (実施例 3B :糖鎖の短いアミロースに BEのみを作用させることによるひ一グルカン の製造)
基質(マルトテトラオース(G4)、マルトペンタオース(G5)、マルトへキサオース(G6 )、またはマルトへプタオース(G7) )を水に溶力し、 Aquifex aeolicus由来の BEを 添加し、反応液を、以下の表 7に示す基質濃度および BE量とし、 10mMリン酸力リウ ムノ ッファーで PH7. 5に調整した後、以下の表 7に示す温度で、 17時間反応させた
[0250] 反応後、製造された aーグルカンの分子量を測定した。この結果を、以下の表 7に 示す。表 7において、グリコーゲン収率(%)は、分子量 100万以上のグルカン (すな わち、グリコーゲン)の収率を示す。
[0251] この結果、 G4〜G7と 、う低分子量の基質を用いた場合、グリコーゲンを合成できる ことがわかった。
[0252] (実施例 5:澱粉に BEおよびプルラナーゼを作用させることによるグリコーゲンの製 造)
コーンスターチ (和光純薬工業 (株)製)(2重量%)を水に懸濁し、 100°Cで 30分間 加熱することにより、コーンスターチを糊化した。それを 60°Cまで冷まし、プルラナ一 ゼ(5UZg基質;大和化成 (株)製クライスターゼ)を添加して 60°Cで 20時間反応さ せ、アミロースを生成させ、その後、 100°Cで 10分間加熱することにより、反応を停止 した。その後、この溶液を 10mM リン酸カリウムバッファーで pH7. 5に調整し、 Aqu ifex aeolicus由来の BEを 20000U/g基質となるように添カ卩し、 BE65°Cで 20時 間反応させた。
[0253] 反応後、製造された aーグルカンの分子量を測定した。この結果を、以下の表 8に 示す。表 8において、グリコーゲン収率(%)は、分子量 100万以上のグルカン (すな わち、グリコーゲン)の収率を示す。この結果、プルラナーゼで枝切りしたコーンスタ ーチもイソアミラーゼで枝切りしたコーンスターチ同様グリコーゲンを製造することが できた。
[表 5]
Figure imgf000071_0001
Aq: Aqu i f ex aeol icus由来ブランチンクェンザィム
Bst: Baci llus stearothermophi lus由来ブランチングェンザィム
Mw:重量平均分子量
Mn:数平均分子量
[0255] [表 6]
Figure imgf000072_0001
[0256] [表 7]
Figure imgf000072_0002
Aq: Aqu if ex aeo l i cus由来ブランチングェンザィム
Mw:重量平均分子量
Mn:数平均分子量
[0257] [表 8]
Figure imgf000072_0003
(評価例 1:プルラナーゼに対する分解耐性)
従来の技術で BEをアミロースに作用させた場合に得られる aーグルカンは、プル ラナーゼにより分解されやすいという点で、天然のグリコーゲンとは異なるということが 報告されて ヽる (非特許文献 10)。
[0258] 本発明の方法によって製造されたグリコーゲンが天然のグリコーゲンと同様にプル ラナーゼによる分解に耐性であるカゝ否かを調べた。
[0259] コーンスターチ (和光純薬工業 (株)製)(1重量%)を水に懸濁し、ジェットタッカーで コーンスターチを糊化した。それを 40°Cまで冷まし、イソアミラーゼ (40000UZg基 質;(株)林原生物化学研究所製)を添加して 40°Cで 6時間反応させ、アミロースを生 成させた。その後、この溶液を 3mM リン酸バッファー (pH7. 0》および 5N NaOH で pH7. 5に調整し、 Aquifex aeolicus由来の BEを 20000UZg基質となるように 添カロした後、 65°Cで 19時間反応させて重量平均分子量 9719kDaのグリコーゲンを 製造した。このグリコーゲン、牡蠣由来の試薬グリコーゲン (和光純薬工業 (株)製)、ヮ キシーコーンスターチ (Roquette社製)またはコーンスターチ (和光純薬工業 (株)製) を IN NaOHに溶かし、 HC1で中和した。その後、すぐに Bacillus brevis由来の プルラナーゼ (大和化成 (株)製)を添加し、反応液を、基質濃度 0. 5重量%、プルラ ナーゼ(0、 2、 4、 16、 64、 256U/g基質)とし、 10mM 醉酸ナトリウムノ ッファー( pH5. 0)で pH5. 0に調整した後、 60°Cで 30分間反応させた。
[0260] 反応後、生成物の分子量を測定した。結果を図 9に示す。
[0261] この結果、澱粉は速やかに分解されたが、牡蠣由来の試薬グリコーゲン (和光純薬 工業 (株)製)および今回の製造方法によるグリコーゲンは、プルラナーゼでほとんど 分解されないことがゎカゝつた。それゆえ、本発明の方法によって製造されるグリコーゲ ンは、天然のグリコーゲンと同様の性質を有し、実際にグリコーゲンであるといってよ いことが確認された。
[0262] (評価例 2: a アミラーゼに対する分解耐性)
グリコーゲンは、プルラナーゼによってほとんど分解を受けないことが知られている
1S 本発明者らの実験により、 α -アミラーゼによっても非常に分解されにくいことがわ かった。たとえば、ヮキシ一コーンスターチ、ノーマルコーンスターチは、 300UZgの ヒト唾液 α アミラーゼによって 30分処理することにより、分子量 1万以下にまで分解 されたが、試薬のカキ由来グリコーゲンは同じ条件でほとんど分解を受けな力つた。
[0263] 本発明の方法によって製造されたグリコーゲンが天然のグリコーゲンと同様に a アミラーゼによる分解に耐性であるカゝ否かを調べた。
[0264] 評価例 1で調製したグリコーゲン、牡蠣由来の試薬グリコーゲン (和光純薬工業 (株) 製)、ヮキシ一コーンスターチ(Roquette社製)またはコーンスターチ(和光純薬工業 (株)製)を IN NaOHに溶かし、 HC1で中和した。その後、すぐにヒト唾液由来 a - アミラーゼ (Sigma社製 Type ΧΙΠ— A)を添加し、反応液を、基質濃度 0. 5重量% 、 a—アミラーゼ(0、 5、 37. 5、 75、 150、 300UZg基質)とし、 20mM リン酸カリ ゥムバッファー(pH7. 0)で pH7. 0に調整した後、 37°Cで 30分間反応させた。
[0265] 反応後、生成物の分子量を測定した。結果を図 10に示す。澱粉の分子量について は、 a アミラーゼ量が 0、 5、 37. 5UZg基質のときは、生成物のろ過ができなかつ たため測定できなかった。
[0266] この結果、澱粉は速やかに分解されたが、牡蠣由来の試薬グリコーゲン (和光純薬 工業 (株)製)および今回の製造方法で製造したグリコーゲンは、 a アミラーゼでほ とんど分解されないことがわ力つた。それゆえ、本発明の方法によって製造されるダリ コーゲンは、天然のグリコーゲンと同様の性質を有し、実際にグリコーゲンであるとい つてよいことが確認された。
[0267] (実施例 6:グリコーゲンの溶解性の確認)
アミロース A (ナカライテスタ (株)製、 Mn2900)またはアミロース AS 10 ( (株)アジノ キ製、 MwlO, 000、 Mnとしては 9100)を IN NaOHに溶かし、 HC1で中和した。 その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 70°C で 24時間反応させた。反応液組成: Aquif ex aeolicus由来 BE量 34, OOOUZg基 質、基質濃度 0. 5重量0 /0、リン酸カリウム濃度 20mM、 pH 7. 5。この反応によって 得られたグリコーゲンの収率(%)は、基質としてアミロース Aを用いた場合、 10. 1% であり、基質としてアミロース AS10を用いた場合、 59. 0%であった。
[0268] 以下の方法により、溶解度を決定した。得られたグリコーゲンをエタノールにより沈 澱させて回収した後、乾燥し、 2mgZmLとなるように室温 (約 20°C)の蒸留水を加え て、室温で 30秒間ボルテックスミキサーにより撹拌し、 0. 45 /z mのフィルターによつ て濾過した。濾液を、溶解したグリコーゲンの量を MALLS法によって算出した。
[0269] さらに、以下の方法により、プルラナーゼ耐性および a アミラーゼ耐性を決定した 。まず、エタノール沈澱により回収したグリコーゲンを、水に懸濁し、 100°Cで加熱す ることにより、完全に溶解させた。プルラナーゼ処理は、 256UZg基質の大和化成( 株)製クライスターゼにより、 60°Cで 30分行った。 a—アミラーゼ処理は、 300UZg 基質の Sigma社製 Type XIII— Aを用いて 37°Cで 30分行った。反応停止後、 MA LLS法によって、グルカンの Mwを算出した。プルラナーゼまたはひ一アミラーゼに よる耐性は以下の式による比を求めて評価した。すなわち、プルラナーゼ耐性(%) = {Mw ÷Mw } X 100であり、
プルラナーゼ処理後 処理前
a アミラーゼ耐性(%) = {Mw ÷Mw } X 100である。
a—アミラーゼ処理後 処理前
[0270] 結果を以下の表 9に示す。
[0271] [表 9]
Figure imgf000075_0001
この結果、本発明の方法により、溶解性が高ぐプルラナーゼ耐性が高ぐかつ a —アミラーゼ耐性が高いグリコーゲンが得られることがわ力つた。
[0272] (実施例 7 :Aquifex aeolicus VF5由来 BEと Thermus aquaticus由来 4 α —ダルカノトランスフェラーゼ (TaqMalQ)との併用による、グリコーゲンの収率向上) (実施例 7— 1:アミロース Aに TaqMalQおよび Aquifex aeolicus由来の BEを作 用させること〖こよるダリ =3—ゲンの製造)
アミロース A (ナカライテスタ(株)製、 Mn2900)を IN NaOHに溶かし、 HC1で中 和した。その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加し て、 65°Cで 20時間反応させた。反応液組成: Aquifex aeolicus由来 BE量 5000ま たは 20000UZg基質、 TaqMalQ量 5、 10、または 20UZg基質、基質濃度 2重 量%、リン酸カリウム濃度 20mM、 pH 7. 5。反応条件および生成物の分析結果を 以下の表 10に示す。
[0273] [表 10]
生成物
反応条件
平均分子量 グリコ— 基 ;辰 Jjt BE量 MalQ量 反応温度 Mw Mn Mw/Mn ゲン収率 実施例
(重量》 (U/g基質) (U/g基質) (°C) (kDa) (kDa)
7-1 2 5000 0 65 10470 1262 8.30 5.1
7-1 2 5000 5 65 24520 23690 1.04 54.6
7-1 2 5000 10 65 27310 26480 1.03 51.2
7-1 2 5000 20 65 28630 27970 1.02 55.3
7-1 2 20000 0 65 21470 17560 1.22 7.5
7-1 2 20000 5 65 21090 20400 1.03 61.6
7-1 2 20000 10 65 23960 23150 1.03 59.3
7-1 2 20000 20 65 25480 24760 1.03 65.2 基質:アミロース A
BE: Aqu i fex aeo I i cus由来 B E
MalQ:Thermusac(uaticus由来 4— 一グレカノ トランスフエラーゼ
このように、 Aquifex aeolicus由来の BEおよび TaqMalQを用いて、 MwlOOOk Da以上のグリコーゲンを製造できることがわかった。また、 TaqMalQの添カ卩により、 グリコーゲンの収率が大幅に向上する事が示された。
[0274] (実施例 7— 2:コーンスターチに TaqMalQと Aquifex aeolicus由来の BEを作用 させること〖こよるダリ 3—ゲンの製造)
コーンスターチ (和光純薬工業 (株)製 )(2重量%)を水に懸濁し、 100°Cで 30分加熱 することにより、コーンスターチを糊化した。それを 40°Cまで冷まし、イソアミラーゼ(( 株)林原生物化学研究所製) 5000UZg基質を添加して 40°Cで 20時間反応させ、 アミロースを生成させた。その後、この溶液を 5mM リン酸カリウムバッファーで pH7 .5に調整し、 Aquifex aeolicus由来の BE (20000UZg基質)および TaqMalQ ( 0.1、 0.5、 1、 2、 3、 4、 5、 10、または 20UZg基質)を添加し、 65。Cで 20時間反 応させた。反応条件および生成物の分析結果を以下の表 11に示す。
[0275] [表 11]
Figure imgf000077_0001
基質:コーンスターチ ―
I AM: Pseudomonasamy I oderamosa由来ィソァミラ一" b
BE:Aquifexaaol icus由来 B E
Ma IQiTharmusaquaticus由来 4— 一クソレ力ノ トランスフエラ一セ
このように、コーンスターチにイソアミラーゼをさせた後、 Aquifex aeolicus由来の BEおよび TaqMalQを用いて、 MwlOOOkDa以上のグリコーゲンを高 、効率で製 造できることがわ力つた。
[0276] (実施例 7— 3 :液化コーンスターチ枝切り物を基質とし、 TaqMalQと Aquifex ae olicus由来の BEを作用させること〖こよるグリコーゲンの製造)
コーンスターチ (和光純薬工業 (株)製)を 6重量%になるように水に懸濁し、 α -アミラ ーゼ(大和化成 (株)製)を用いて 100°Cで DE 12まで液ィ匕させた。反応を停止後、ィ ソアミラーゼ(5000UZg基質;(株)林原生物化学研究所製)を添加して 40°Cで 20 時間反応させ、枝きりした。枝切り物の Mnは、約 600であった。この溶液の pHを 5m M リン酸カリウム緩衝液で 7. 5に調整し、 Aquifex aeolicus由来の BE (5000U Zg基質)および TaqMalQ (lUZg基質)を添加した後、 65°Cで 20時間反応させる ことにより、 Mwl l360kDaのグリコーゲンが得られた。
[0277] (実施例 8 : Rhodothermus obamensis由来の BEを用いたグリコーゲンの製造) アミロース Aおよび AS— 10に Rhodothermus obamensis由来の BEを作用させ てグリコーゲンを製造した。詳細には、アミロース A (ナカライテスタ (株)製、 Mn2900 ;)、 AS— 10 ( (株)アジノキ製、 Mn9100)を IN NaOHに溶かし、 HC1で中和した。 その後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 65°C で 17時間反応させた。反応液組成: Rhodothermus obamensis由来 BE量 40, 0 OOUZg基質、基質濃度 2重量%、酢酸ナトリウム濃度 40mM、 pH 6. 0。反応条 件および生成物の分析結果を以下の表 12に示す。
[0278] [表 12]
Figure imgf000078_0001
BE : hodothermus obamens i s由来 B E
このように、 Rhodothermus obamensis由来の BEを用いて、 MwlOOOkDa以上 のグリコーゲンを高い効率で製造できることがわ力つた。 [0279] (実施例 9 : Bacillus caldovelox由来の BEを用いたグリコーゲンの製造) アミロース Aおよび AS— 10に Bacillus caldovelox由来の BEを作用させてグリコ 一ゲンを製造した。詳細には、アミロース A (ナカライテスタ (株)製、 Mn2900)、 AS — 10 ( (株)アジノキ製、 Mn9100)を IN NaOHに溶かし、 HC1で中和した。その後 、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 55°Cで 16 時間反応させた。反応液組成: Bacillus caldovelox由来 BE量 20, OOOUZg基 質、基質濃度 2重量%、 Tris濃度 20mM、 pH 7. 0。反応条件および生成物の分 析結果を以下の表 13に示す。
[0280] [表 13]
Figure imgf000079_0001
このように、 Bacillus caldovelox由来の BEを用いて、 MwlOOOkDa以上のグリ コーゲンを製造できることがわ力つた。
[0281] (実施例 10 : Bacillus caldolyticus由来の BEを用いたグリコーゲンの製造) アミロース Aおよび AS— 10に Bacillus caldolyticus 由来の BEを作用させてグ リコーゲンを製造した。詳細には、アミロース A (ナカライテスタ (株)製、 Mn2900)、 AS— 10 ( (株)アジノキ製、 Mn9100)を IN NaOHに溶かし、 HC1で中和した。そ の後、すぐに水、酵素液、緩衝液を以下の反応液組成となるように添加して、 45°Cで 16時間反応させた。反応液組成: Bacillus caldolyticus由来 BE量 20, 000U/ g基質、基質濃度 2重量%、 Tris濃度 20mM、 pH 7. 0。反応条件および生成物の 分析結果を以下の表 14に示す。
[0282] [表 14] 生成物
反応条件
平均分子量
グリコー 基負 '辰 '又 BE量 反応温度 Mw Mn Mw/Mn ゲン収率 実施例
(重量 ¾) (。c) (kDa) (kDa) (¾)
1 0 アミ口 -ス A 2 20000 45 6106 4278 1 . 43 7. 6
1 0 AS- 10 2 20000 45 3450 2286 1 . 51 43. 4
BE : Bac i l us ca l do l yt i cus由来 B E
このように、 Bacillus caldolyticus由来の BEを用いて、 MwlOOOkDa以上のグリ コーゲンを製造できることがわ力つた。
[0283] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、請求の範 囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発 明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づ いて等価な範囲を実施することができることが理解される。本明細書において引用し た特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されて いるのと同様にその内容が本明細書に対する参考として援用されるべきであることが 理解される。
産業上の利用可能性
[0284] 本発明により、天然のグリコーゲンと同様の性質を有する高分岐かつ高分子量の (X
ーグルカンを安価に製造する方法が提供される。本発明の方法によって製造される グリコーゲンは、従来の天然由来のグリコーゲンと同様に幅広い分野で利用され得る 。天然のグリコーゲンは、産業上種々の分野で利用されている。本発明の方法によつ て製造されるグリコーゲンは、例えば、免疫賦活剤、健康食品素材などとして用いら れ得る。本発明の方法によって製造されるグリコーゲンはまた、化粧品素材、食品素 材 (調味料)、その他産業用素材としての用途が期待できる。本発明の方法によって 製造されるグリコーゲンの用途としては、例えば、以下が挙げられる:微生物感染症 治療剤、保湿剤 (例えば、皮膚の保湿性向上に有効な化粧料、口唇の荒れを防ぐ口 唇用化粧料)、複合調味料 (例えば、ホタテ貝柱の味を有する複合調味料)、抗腫瘍 剤、発酵乳の生成促進剤、コロイド粒子凝集体、毛髪の櫛通り性および毛髪のツヤ に影響する毛髪表面の耐摩耗性を改善する物質、細胞賦活剤 (表皮細胞賦活剤、 線維芽細胞増殖剤など)、 ATP産生促進剤、しわなどの皮膚の老化症状改善剤、肌 荒れ改善剤、蛍光体粒子表面処理剤、環状四糖 (CTS ; Cyclo {→6) - a— D— glc p - (1→3) -D-glcp - (1→6) —D— glcp— (1→3) —D— glcp— (1→})の合成の際の基質。本発明の方法によって製造されるグリコーゲンは、皮膚 外用剤(例えば、化粧水、乳液、クリーム、美容液、養毛剤、育毛剤、パック、口紅、リ ップクリーム、メイクアップベースローション、メイクアップベースクリーム、ファンデーシ ヨン、アイカラー、チークカラー、シャンプー、リンス、ヘアーリキッド、ヘアートニック、 パーマネントウエーブ剤、ヘアカラー、トリートメント、浴用剤、ハンドクリーム、レツグク リーム、ネッククリーム、ボディローションなど)中、眼用溶液中などで用いられ得る。
[0285] 本発明の方法によれば、溶解性が高ぐプルラナーゼおよび a アミラーゼによる 分解性の低い(天然のグリコーゲンに近い)グリコーゲンが得られる。これは、グリコー ゲンを合成する能力を有する BE (特に、耐熱性 BE)が特殊な性質をもって!/ヽること〖こ 起因すると考えられる。
[0286] 得られるグリコーゲンの酵素消化性が低いことは、例えばグリコーゲンの免疫賦活 活性発現のために重要であるので、本発明は特に有用である。

Claims

請求の範囲
[1] グリコーゲンの製造方法であって、
グリコーゲンを合成する能力を有するブランチングェンザィムを溶液中で基質に作 用させて、グリコーゲンを生産する工程を包含し、該基質が、主に α— 1 , 4—ダルコ シド結合で連結された重合度 4以上の ocーグルカンであり、反応開始前の該溶液中 の糖の数平均分子量が 180より大きく 150, 000以下である、方法。
[2] 前記ブランチングェンザィムのブランチングェンザィム活性 Ζ低分子化活性力 50 0以下である、請求項 1に記載の方法。
[3] 前記ブランチングェンザィム力 耐熱性ブランチングェンザィムである、請求項 1に 記載の方法。
[4] 前記ブランチングェンザィムが、好熱性菌または中温性菌由来である、請求項 1に 記載の方法。
[5] 前記ブランチングェンザィムが、 Aquifex属、 Rhodothermus属、 Bacillus属、 Th ermosynechococcus属および Escherichia属からなる群より選択される属に属す る細菌に由来する、請求項 1に記載の方法。
[6] 目 ij記ブランチンクェンサイムカ Aquifex aeolicus、 Aquifex pyrophilus、 Rho dothermus oDamensis、 Rnoaothermus marmus、 Bacillus stearotnermop hilus、 Bacillus caldovelox、 Bacillus thermocatenulatus、 Bacillus caldoly ticus、 Bacillus flavothermus、 Bacillus acidocaldarius、 Bacillus caldoten ax、 Bacillus smitnu、 Thermosynechococcus elongatusおよび Escherichia coliからなる群より選択される細菌に由来する、請求項 1に記載の方法。
[7] 目 ij ブランチングェンザィムカ Aquifex aeolicusゝ Rhodothermus obamens is、 Bacillus stearotnermophilus、 Bacillus caidovelox、 Bacillus thermoca tenulatus、 Bacillus caldolyticusおよひEscherichia coli力らなる群より選択さ れる細菌に由来する、請求項 1に記載の方法。
[8] 前記ブランチングェンザィムの反応至適温度力 45°C以上 90°C以下である、請求 項 1に記載の方法。
[9] 前記反応開始前の溶液中の糖が、澱粉枝切り物、デキストリン枝切り物または酵素 合成アミロースである、請求項 1に記載の方法。
[10] 前記反応開始前の溶液中の糖の数平均分子量が、 180より大きく 4, 000未満であ る、請求項 1に記載の方法。
[11] 前記反応開始前の溶液中の糖の数平均分子量が、 4, 000以上 8, 000未満であり
、前記ブランチングェンザィムの使用量と反応時間との積が 25, 000U '時間 Zg基 質以上になるように該ブランチングェンザィムの使用量と反応時間とを調整する、請 求項 1に記載の方法。
[12] 前記反応開始前の溶液中の糖の数平均分子量が、 8, 000以上 100, 000未満で あり、前記ブランチングェンザィムの使用量と反応時間との積力 ο, οοου·時間 Zg 基質以上になるように該ブランチングェンザィムの使用量と反応時間とを調整する、 請求項 1に記載の方法。
[13] 前記反応開始前の溶液中の糖の数平均分子量が、 100, 000以上 150, 000以下 であり、前記ブランチングェンザィムの使用量と反応時間との積が 150, 000U'時間
Zg基質以上になるように該ブランチングェンザィムの使用量と反応時間とを調整す る、請求項 1に記載の方法。
[14] 数平均分子量が 180より大きく 1, 500未満の α—グルカンに 4 aーグルカノトラ ンスフエラーゼを作用させることにより、前記基質を生産する工程をさらに包含する、 請求項 1に記載の方法。
[15] 前記 4 α—グルカノトランスフェラーゼが、 Thermus aquaticus由来のアミロマ ルターゼである、請求項 14に記載の方法。
[16] 前記数平均分子量が 180より大きく以上 1, 500未満の aーグルカンが、重合度 4
〜7のマルトオリゴ糖を含む、請求項 1に記載の方法。
[17] 数平均分子量 500以上の低分岐 α ダルカンに枝切り酵素を作用させることにより
、前記基質を生産する工程をさらに包含する、請求項 1に記載の方法。
[18] 4 a—ダルカノトランスフェラーゼが前記ブランチングェンザィムと共存する、請求 項 1に記載の方法。
[19] 前記 4 α—グルカノトランスフェラーゼが、 Thermus aquaticus由来のアミロマ ルターゼである、請求項 18に記載の方法。
PCT/JP2005/017900 2004-09-30 2005-09-28 グリコーゲンの製造方法 WO2006035848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05788229.2A EP1813678B1 (en) 2004-09-30 2005-09-28 Method of producing glycogen
CN200580038018XA CN101198703B (zh) 2004-09-30 2005-09-28 生产糖原的方法
JP2006537787A JP4086312B2 (ja) 2004-09-30 2005-09-28 グリコーゲンの製造方法
US11/575,794 US7670812B2 (en) 2004-09-30 2005-09-28 Method of producing glycogen
DK05788229.2T DK1813678T3 (da) 2004-09-30 2005-09-28 Fremgangsmåde til fremstilling af glycogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-289337 2004-09-30
JP2004289337 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006035848A1 true WO2006035848A1 (ja) 2006-04-06

Family

ID=36118994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017900 WO2006035848A1 (ja) 2004-09-30 2005-09-28 グリコーゲンの製造方法

Country Status (6)

Country Link
US (1) US7670812B2 (ja)
EP (1) EP1813678B1 (ja)
JP (2) JP4086312B2 (ja)
CN (1) CN101198703B (ja)
DK (1) DK1813678T3 (ja)
WO (1) WO2006035848A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081834A1 (ja) * 2006-12-28 2008-07-10 Ezaki Glico Co., Ltd. グリコーゲンを含む食品とその用途
US20100272639A1 (en) * 2007-12-21 2010-10-28 John Robert Dutcher Polysaccharide nanoparticles
WO2012035770A1 (ja) * 2010-09-15 2012-03-22 国立大学法人 新潟大学 グリコーゲンを含有する骨形成促進剤
JP2012120471A (ja) * 2010-12-07 2012-06-28 Ezaki Glico Co Ltd 環状構造を有する分岐状グルカンの製造方法
WO2012111326A1 (ja) * 2011-02-16 2012-08-23 グリコ栄養食品株式会社 老化しにくい澱粉粒及びその製造方法
WO2016111265A1 (ja) * 2015-01-08 2016-07-14 江崎グリコ株式会社 抗酸化剤及び抗酸化/uvケア化粧料
JP2017160199A (ja) * 2016-03-08 2017-09-14 国立大学法人京都大学 カチオン性グルカンナノスフェア、複合体、核酸導入剤及びがん治療剤
CN110099928A (zh) * 2016-12-27 2019-08-06 江崎格力高株式会社 消化速度缓慢的高分子葡聚糖

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2501468A2 (en) 2009-11-17 2012-09-26 Purdue Research Foundation Dendritic emulsifiers and methods for their use and preparation
WO2012060110A1 (ja) * 2010-11-05 2012-05-10 江崎グリコ株式会社 アミノ糖含有グルカン、その製造法および利用
JP2012183000A (ja) * 2011-03-03 2012-09-27 Ezaki Glico Co Ltd 酵素合成グリコーゲンに対する抗体
US9422585B2 (en) 2011-10-14 2016-08-23 Phytoption, Llc Phytoglycogen-based compositions, materials and methods
CN105491994A (zh) 2013-04-26 2016-04-13 奇迹连结生物技术公司 单分散性糖原和植物糖原纳米颗粒及其作为化妆品、药品、和食品产品中的添加剂的用途
JP2016023155A (ja) * 2014-07-18 2016-02-08 江崎グリコ株式会社 セラミド産生促進剤及び皮膚外用剤
CN104293864B (zh) * 2014-10-27 2017-04-05 江南大学 一种淀粉糖原的合成方法
KR20190054187A (ko) * 2015-10-02 2019-05-21 보너모스 엘엘씨 D-타가토스의 효소적 생산
AR108280A1 (es) 2016-05-05 2018-08-08 Acraf Composición oftálmica que comprende una combinación sinérgica de glucógeno y ácido hialurónico o sal del mismo
CN108424942B (zh) * 2018-02-08 2021-09-24 江南大学 一种葡糖基壳核结构的载体材料及其制备与应用
CN108186401A (zh) * 2018-03-08 2018-06-22 华中科技大学同济医学院附属协和医院 一种含糖原的保湿护肤霜及其制备方法
CN108841896B (zh) * 2018-06-29 2021-01-29 江南大学 一种高品质麦芽糊精的生产方法
CN108841895B (zh) * 2018-06-29 2021-01-29 江南大学 一种提高麦芽糊精冻融稳定性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138387A (en) * 1981-02-07 1982-08-26 Hayashibara Biochem Lab Inc Preparation of branching enzyme

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058445A1 (en) 1999-03-29 2000-10-05 Novozymes A/S Polypeptides having branching enzyme activity and nucleic acids encoding same
FR2840612B1 (fr) * 2002-06-06 2005-05-06 Roquette Freres Polymeres solubles de glucose hautement branches et leur procede d'obtention

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138387A (en) * 1981-02-07 1982-08-26 Hayashibara Biochem Lab Inc Preparation of branching enzyme

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BOYER C ET AL: "Biosynthesis of Bacterial Glycogen. Purification and Properties of the Escherichia coli B alpha-1,4,-Glucan: alpha-1,4-Glucan 6-Glycosyltansferase.", BIOCHEMISTRY., vol. 16, no. 16, 1977, pages 3693 - 3699, XP002995361 *
HAWKER J S ET AL: "Interaction of Spinach Leaf Adenosine Diphosphate Glucose alpha-1,4-Glucan alpha-4-Glucosyl Transferase and alpha-1,4-Glucan, alpha-1,4-Glucan-6-Glycosyl Transferase in Synthesis of Branched alpha-Glucan.", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS., vol. 160, 1974, pages 530 - 551, XP002995360 *
LAVINTMAN N ET AL: "The alpha-glucan-branching glycosyltransferase of sweet corn.", BIOCHIM BIOPHYS ACTA., vol. 89, 1964, pages 193 - 196, XP002995362 *
MATSUMOTO A ET AL: "Role of Branching Enzyme in Glycogen Biosynthesis in Neurospora crassa.", J JPAN SOC STARCH SCI., vol. 30, no. 2, 1983, pages 212 - 222, XP008060416 *
RUMBAK E ET AL: "Characterization of the Butyrivibrio fibrisolvens glgB gene, which Encodes a Glycogen-Branching Enzyme with Starch-Clearing Activity.", JOURNAL OF BACTERIOLOGY., vol. 173, no. 21, 1991, pages 6732 - 6741, XP008060413 *
See also references of EP1813678A4 *
TAKATA H ET AL: "Properties and Application of Enzymes for Bacterial Glycogen Biosynthesis and Degradation.", JOURNAL OF APPLIED GLYCOSCIENCE., vol. 51, 2004, pages 55 - 61, XP002995359 *
TAKATA H ET AL: "Properties of Branching Enzyme from Hyperthermophilic BacteriUM, Aquifex aeolicus, and Its Potential for Production of Highly-branched Cyclic Dextrin.", JOURNAL OF APPLIED GLYCOSCIENCE., vol. 50, 2003, pages 15 - 20, XP008060414 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461130B2 (en) 2006-12-28 2013-06-11 Ezaki Glico Co., Ltd. Food containing glycogen and use thereof
JPWO2008081834A1 (ja) * 2006-12-28 2010-04-30 江崎グリコ株式会社 グリコーゲンを含む食品とその用途
WO2008081834A1 (ja) * 2006-12-28 2008-07-10 Ezaki Glico Co., Ltd. グリコーゲンを含む食品とその用途
JP2013075917A (ja) * 2006-12-28 2013-04-25 Ezaki Glico Co Ltd グリコーゲンを含む食品とその用途
US20100272639A1 (en) * 2007-12-21 2010-10-28 John Robert Dutcher Polysaccharide nanoparticles
WO2012035770A1 (ja) * 2010-09-15 2012-03-22 国立大学法人 新潟大学 グリコーゲンを含有する骨形成促進剤
JP5885206B2 (ja) * 2010-09-15 2016-03-15 江崎グリコ株式会社 グリコーゲンを含有する骨形成促進剤
JP2012120471A (ja) * 2010-12-07 2012-06-28 Ezaki Glico Co Ltd 環状構造を有する分岐状グルカンの製造方法
WO2012111326A1 (ja) * 2011-02-16 2012-08-23 グリコ栄養食品株式会社 老化しにくい澱粉粒及びその製造方法
JP5944839B2 (ja) * 2011-02-16 2016-07-05 グリコ栄養食品株式会社 老化しにくい澱粉粒及びその製造方法
WO2016111265A1 (ja) * 2015-01-08 2016-07-14 江崎グリコ株式会社 抗酸化剤及び抗酸化/uvケア化粧料
CN107106464A (zh) * 2015-01-08 2017-08-29 江崎格力高株式会社 抗氧化剂和抗氧化/防uv化妆品
JPWO2016111265A1 (ja) * 2015-01-08 2017-10-19 江崎グリコ株式会社 抗酸化剤及び抗酸化/uvケア化粧料
EP3257497A4 (en) * 2015-01-08 2018-12-26 Ezaki Glico Co., Ltd. Antioxidant agent, and antioxidant cosmetic and uv care cosmetic
US10286005B2 (en) 2015-01-08 2019-05-14 Ezaki Glico Co., Ltd. Antioxidant agent, and antioxidant cosmetic and UV care cosmetic
JP2017160199A (ja) * 2016-03-08 2017-09-14 国立大学法人京都大学 カチオン性グルカンナノスフェア、複合体、核酸導入剤及びがん治療剤
CN110099928A (zh) * 2016-12-27 2019-08-06 江崎格力高株式会社 消化速度缓慢的高分子葡聚糖
JPWO2018123901A1 (ja) * 2016-12-27 2019-11-21 江崎グリコ株式会社 消化速度が遅い高分子グルカン
JP7082066B2 (ja) 2016-12-27 2022-06-07 江崎グリコ株式会社 消化速度が遅い高分子グルカン

Also Published As

Publication number Publication date
JPWO2006035848A1 (ja) 2008-07-31
DK1813678T3 (da) 2014-08-11
EP1813678A4 (en) 2011-09-07
CN101198703B (zh) 2012-08-22
CN101198703A (zh) 2008-06-11
JP4086312B2 (ja) 2008-05-14
EP1813678B1 (en) 2014-05-14
US7670812B2 (en) 2010-03-02
EP1813678A1 (en) 2007-08-01
US20080131941A1 (en) 2008-06-05
JP2013143962A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP4086312B2 (ja) グリコーゲンの製造方法
Van der Maarel et al. A novel thermoreversible gelling product made by enzymatic modification of starch
US20070087426A1 (en) Novel transferase and amylase, process for producing the enzymes, use thereof, and gene coding for the same
JP2010516289A (ja) 高度分枝状アミロースおよびアミロペクチン・クラスターを酵素的に調製する方法
Bai et al. Lactobacillus reuteri strains convert starch and maltodextrins into homoexopolysaccharides using an extracellular and cell-associated 4, 6-α-glucanotransferase
AU2007339488A1 (en) Novel slowly digestible storage carbohydrate
KR20010081985A (ko) 전분 절지 효소
JP2004526463A (ja) グルカンの製造法およびその調製法
Wang et al. Identification of an α-(1, 4)-glucan-synthesizing amylosucrase from Cellulomonas carboniz T26
JP5307387B2 (ja) 高分岐かつ高分子量のグリコーゲン
Van Der Maarel et al. Properties of the glucan branching enzyme of the hyperthermophilic bacterium Aquifex aeolicus
US7723090B2 (en) Method of heat-stabilizing α-glucan phosphorylase (GP)
JP4318315B2 (ja) β−1,4−グルカンをα−グルカンに変換する方法
JP2002533132A (ja) α−1,4−グルカン鎖含有多糖およびその製造方法
Liu et al. Effect of starch primers on the fine structure of enzymatically synthesized glycogen-like glucan
Yang et al. Development of a novel starch-based dietary fiber using glucanotransferase
Jiang et al. Mutations in amino acid residues of Limosilactobacillus reuteri 121 GtfB 4, 6-α-glucanotransferase that affect reaction and product specificity
JP5319270B2 (ja) グルコースをα−1,4−グルカンに変換する方法
Takata et al. Cyclization reaction catalyzed by Bacillus cereus branching enzyme, and the structure of cyclic glucan produced by the enzyme from amylose
JP5726499B2 (ja) 環状構造を有する分岐状グルカンの製造方法
WO2007088676A1 (ja) ブランチングエンザイムを用いた新規糖の製造方法
JP4230498B2 (ja) 新規トランスフェラーゼ及びアミラーゼ、それらの製造法及び利用、並びに該新規酵素類の遺伝子
Chen et al. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications
JP4335272B2 (ja) 新規トランスフェラーゼ及びアミラーゼ、それらの製造法及び利用、並びに該新規酵素類の遺伝子
JP4011102B2 (ja) グルカンの製造法およびその調製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580038018.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005788229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006537787

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005788229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11575794

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11575794

Country of ref document: US