WO2006027866A1 - プロジェクタ - Google Patents

プロジェクタ Download PDF

Info

Publication number
WO2006027866A1
WO2006027866A1 PCT/JP2005/005184 JP2005005184W WO2006027866A1 WO 2006027866 A1 WO2006027866 A1 WO 2006027866A1 JP 2005005184 W JP2005005184 W JP 2005005184W WO 2006027866 A1 WO2006027866 A1 WO 2006027866A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
amount
emitted
filter
Prior art date
Application number
PCT/JP2005/005184
Other languages
English (en)
French (fr)
Inventor
Takefumi Watanabe
Yoshio Sasanuma
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2006535026A priority Critical patent/JP4633057B2/ja
Priority to EP05721284.7A priority patent/EP1811333B1/en
Priority to CN2005800293779A priority patent/CN101010628B/zh
Priority to US11/661,887 priority patent/US20090002577A1/en
Publication of WO2006027866A1 publication Critical patent/WO2006027866A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/26Projecting separately subsidiary matter simultaneously with main image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source

Definitions

  • the present invention separates light emitted from a light source into each color by a rotating color filter having translucent filter segments of a plurality of colors, and projects it to a spatial light modulation means such as a DMD (Digital Micromirror Device)
  • a spatial light modulation means such as a DMD (Digital Micromirror Device)
  • the present invention also relates to a projector that projects a color image by performing spatial light modulation based on image data for each color given to a DMD.
  • a projector that projects an image based on image data input from a computer or various video playback devices onto an external screen or the like is used.
  • a projector represents an image obtained by modulating light from an internal light source based on image data by providing image data to a spatial light modulation means, specifically a liquid crystal panel or a DMD (Digital Micromirror Device). It is configured to generate modulated light and project the generated modulated light to an external screen or the like.
  • a spatial light modulation means specifically a liquid crystal panel or a DMD (Digital Micromirror Device). It is configured to generate modulated light and project the generated modulated light to an external screen or the like.
  • R (red), G (green), and B (blue) light and possibly white light are time-divided into one plate-like spatial light modulation means.
  • the former method is generally referred to as a single plate method.
  • this single-plate method uses a rotating color filter that rotates a transparent filter segment that transmits each chromatic color (R, G, B) and possibly white light.
  • R, G, B chromatic color
  • Each chromatic color and, in some cases, white are separated and given to the spatial light modulation means in a time-sharing manner.
  • the rotating color filter has three colors or
  • IJ is arranged with translucent filter segments that transmit light of each of the four colors, and rotates in synchronization with the modulation period of the spatial light modulation means (the period in which each color component of the image data is given to the spatial light modulation means) It is necessary to let Therefore, for example, when using four colors including white In this case, the filter for each color of the rotating color filter is simply divided into four equal parts, that is, 90 degrees for each color. For this reason, when correcting the color reproducibility, color temperature, etc. of each color on the image projected by being modulated by the spatial light modulation means, the rotation color filter assigned to each color is within the range of 90 degrees. The reality is that it depends only on the length of the image display signal.
  • the brightness of the projected image is given priority.
  • the rotating color filter With a filter segment that transmits white light having a relatively large angle, the image projected from the spatial light modulator is brightened.
  • the filter segments that transmit light of each color other than white are relatively small. As a result, the amount of light of each color other than white decreases, and good color reproducibility cannot be obtained.
  • Patent Document 1 discloses that the rotating color filter is concentrically divided into a plurality of annular portions, and the angles assigned to the filter segments that transmit light of each color through each annular portion.
  • the invention has been disclosed in which the rotational center of such a rotating color filter is translated in the direction intersecting the emitted light of the light source force.
  • the angles assigned to the filter segments that transmit light of each color differ, in other words, For example, a configuration in which a plurality of types of rotating color filters having different color reproducibility, color temperature, and the like are used depending on the purpose of use of the projector can be substantially realized.
  • a color image is displayed.
  • a pulse current is superimposed on an applied direct current, in other words, by increasing a direct current value to be applied to a lamp.
  • a direct-current drive type lamp that can increase the amount of light emitted from the direct current
  • the phase of the direct current value is reversed at specific intervals as described in Patent Documents 3 and 4.
  • An AC drive type lamp can also be used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-307705
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-212890
  • Patent Document 3 Japanese Translation of Special Publication 2002-533884
  • Patent Document 4 Japanese Translation of Special Publication 2002-534766
  • one type is selected from the number of types of rotary color filters set in advance as a concentric ring-shaped portion in one rotary filter. It is only possible to adjust the color reproducibility and color temperature, and the diameter of the rotating color filter inevitably increases, which may increase the overall size of the device. Furthermore, although it may not be possible to switch between continuous image projections, there is a problem that a time lag is inevitable during that time.
  • the lamps described in Patent Documents 2, 3 and 4 as described above are all high-pressure mercury lamps, and the spectrum characteristics of the emitted light are stable from the start of lighting until the stable state is reached. Compared to the state, the balance is unbalanced, and the amount of emitted light gradually increases to a stable state, so that the projected image during that time has a problem that the reproducibility of a specific color is poor and dark.
  • the present invention has been made in view of the circumstances as described above, and the main purpose thereof is a spatial light modulation means that has existed in a projector that uses a rotating color filter in a conventional single-plate system. The main purpose is to provide a projector that can eliminate the trade-off relationship between the brightness, color reproducibility, and color temperature of the projected image.
  • Another object of the present invention is to provide a projector capable of arbitrarily adjusting the brightness for each color and further for each color.
  • Another object of the present invention is to set brightness in advance to a predetermined value in addition to each color or each color according to the type of image to be projected, and to select any one of those powers.
  • An object of the present invention is to provide a projector capable of performing the above.
  • Still another object of the present invention is to provide a projector capable of solving the conventional problem that the reproducibility of a specific color is poor or dark during the period from the start of lighting of the light source to the stable state.
  • the purpose is to provide.
  • the projector according to the present invention superimposes a pulse current on an applied DC current as disclosed in Patent Document 2, in other words, increases the applied DC current value.
  • a direct-current drive type lamp that can increase the amount of light emitted from the lamp as a light source, and projecting by increasing the amount of light emitted from the lamp, which is the light source, corresponding to a specific color
  • the brightness of a specific color in the image can be increased.
  • an AC drive type lamp as described in Patent Documents 3 and 4 can also be used.
  • a projector transmits a light source that emits white light, spatial light modulation means that converts the emitted light from the light source into modulated light representing an image, and a plurality of chromatic light beams, respectively.
  • a rotation region in which filter segments are arranged has a rotation region, and the rotation region is interposed between the light source and the spatial light modulator, and the light emitted from the light source is separated into the plurality of chromatic colors.
  • light source driving means having a function of changing the amount of light emitted from the light source, and the light emitted from the light source emits the plurality of chromatic light of the rotating color filter.
  • Each of the filter segments that transmit light passes through a filter segment that transmits at least two colors of light.
  • a control means for controlling the light source driving means so that the amount of light emitted from the light source increases during each period.
  • the amount of light emitted from the light source increases in a period during which the light passes through the filter segment that transmits at least two of the chromatic colors of the rotating color filter. As a result, the amount of light of those colors increases.
  • the projector includes a light source that emits white light, a spatial light modulation unit that converts the emitted light from the light source into modulated light representing an image, white light and a plurality of chromatic color lights, respectively.
  • a light source driving means having a function of changing the amount of light emitted from the light source, and the light emitted from the light source is the plurality of chromatic colors of the rotary color filter. The amount of light emitted from the light source increases during the period of transmission through the filter segment that transmits at least one color of the filter segments that transmit the respective light.
  • a control means for controlling the light source driving unit is characterized in that a control means for controlling the light source driving unit.
  • the amount of light emitted from the light source increases in a period during which it passes through a filter segment that transmits at least one of a plurality of colors including white of the rotating color filter. If the amount of light increases during the period in which the light emitted from the light source passes through the filter segment that transmits white light, the light amount of the entire image increases, that is, the brightness of the entire image increases, and the light emitted from the light source increases. If the amount of light increases during a period of transmission through a filter segment that transmits light of any other color, the amount of light of that color increases, that is, the brightness of that color increases.
  • the projector according to the present invention is characterized in that in either of the above-described inventions, the control means is configured to be able to change the amount of increase in the amount of light emitted from the light source.
  • the amount of increase in the amount of light emitted from the light source can be arbitrarily changed in either of the above-described inventions.
  • a projector according to the present invention provides the projector according to any one of the above-described inventions.
  • the stage is configured to be able to change a period during which the amount of emitted light of the light source power is increased.
  • the period during which the amount of light emitted from the light source increases can be arbitrarily changed in either of the above-described inventions.
  • the projector according to the present invention is characterized in that the chromatic colors are red, green, and blue.
  • the projector according to the present invention is characterized in that the chromatic colors are cyan, magenta, and yellow.
  • any one of the above-described inventions in a configuration having a filter segment that transmits white light, light emitted from the light source transmits through the filter segment that transmits white light. If the amount of light increases during the period, the brightness of the entire image increases, and the amount of light emitted from the light source during the period when the light emitted from the light source transmits light of any other color passes through the filter segment. If increases, the light intensity of at least one of cyan, magenta or yellow increases.
  • the projector according to the present invention is characterized in that, in any one of the above inventions, the chromatic colors are red, green, blue, cyan, magenta, and yellow.
  • the projector according to the present invention in any one of the above-described inventions, in a configuration having a filter segment that transmits white light, light emitted from the light source transmits through the filter segment that transmits white light.
  • the amount of light increases during the period, the brightness of the entire image increases, and when the amount of light increases during the period of transmission through the filter segment that transmits light of any other color, red, green, blue, The amount of light of at least one of cyan, magenta or yellow increases.
  • the projector according to the present invention is characterized in that, in any one of the above-described inventions, the chromatic colors are red, green, blue, cyan, and / or magenta and / or yellow.
  • any one of the above-described inventions in a configuration having a filter segment that transmits white light, light emitted from the light source transmits through the filter segment that transmits white light.
  • the amount of light increases during the period, the brightness of the entire image increases, and when the amount of light increases during the period of transmission through the filter segment that transmits light of any other color, red, green, and blue , Cyan, Magenta and Yellow will increase the amount of light in one, two or three colors.
  • the projector includes a light source that emits white light, spatial light modulation means that converts the emitted light from the light source into modulated light representing an image, white light and a plurality of chromatic color lights.
  • Each of the filter segments that transmit light has a rotation region, and the rotation region is interposed between the light source and the spatial light modulation means to rotate the light emitted from the light source in white, red, and green.
  • the light source driving means having a function of changing the amount of light emitted from the light source, and the filter segment that transmits white light.
  • a first mode in which the amount of increase in the amount of light emitted from the light source that passes through the filter segment that transmits red and green light is a first ratio as compared to the amount of light emitted from the light source.
  • Bei and control means for selectively setting a second mode which is a second percentage of made larger than the percentage of the first When, characterized in that example Bei and control means for selectively setting a second mode which is a second percentage of made larger than the percentage of the first.
  • the rate of increase in the amount of light emitted from the light source is increased.
  • the filter segment that transmits red and green light is compared to the period during which the filter segment transmits white light. It is possible to selectively set the first mode in which the transmission period is the first ratio and the second mode that is the second ratio that is larger than the first ratio.
  • the projector according to the present invention is characterized in that, in the above invention, the first ratio is 20% or less and the second ratio is 40 to 50%.
  • the light emitted from the light source The ratio of the increase in the amount of light in the first mode in which the period during which the filter segments that transmit red and green light are transmitted is 20% or less compared to the period during which the filter segments that transmit white light are transmitted.
  • the second mode both 40% to 50%, can be selectively set.
  • the projector includes a light source that emits white light, spatial light modulation means that converts the emitted light from the light source into modulated light representing an image, white light and a plurality of chromatic light.
  • Each of the filter segments that transmit light has a rotation region, and the rotation region is interposed between the light source and the spatial light modulation means to rotate the light emitted from the light source in white, red, and green.
  • the light source driving means having a function of changing the amount of light emitted from the light source, and the filter segment that transmits white light.
  • Control means for arbitrarily setting the amount of increase in the amount of light emitted from the light source that transmits the filter segments that transmit light of each of the other colors, compared to the amount of light emitted from the light source; Characterized by comprising.
  • the rate of increase in the amount of light emitted from the light source is force.
  • Filter segments that transmit light of other colors compared to the period during which the filter segments transmit white light are transmitted. It can be arbitrarily set for each period of transmission.
  • the projector according to the present invention may be configured such that the control means transmits the filter segment that transmits white light and light of each of the other colors.
  • the amount of light is increased by increasing the amount of light emitted from the light source or by changing both the amount of increase in the amount of light emitted from the light source and the period during which the amount of light emitted from the light source is increased. It is comprised so that it may be made.
  • the amount of increase in the amount of light emitted from the light source or the amount of increase in the amount of light emitted from the light source By changing both of the periods in which the amount of emitted light is increased, the amount of light emitted from the light source that passes through the filter segment that transmits white and other colors of light is increased.
  • the control means has a spectrum of the light source that is unbalanced from a lighting time point of the light source to a stable state. The light source driving means is controlled so that the characteristics are compensated.
  • the light source of the light source is also in a period from when the light source is in an unbalanced state to when it is in a stable state. Spectral characteristics are compensated.
  • the projector according to the present invention is characterized in that the control means emits light from the light source that gradually increases during a period from when the light source is turned on to when it becomes stable.
  • the light source driving means is controlled so that the amount of light is compensated.
  • the brightness of the light source is also maintained during a period from when the light source is gradually turned on until the light source becomes stable. Compensated.
  • the light is projected from the spatial light modulation means that existed in the projector that uses the rotating color filter in the conventional single-plate method, regardless of the restriction by the rotating color filter. Since the trade-off relationship between image brightness, color reproducibility, and color temperature is eliminated, not only the color reproducibility of the projected image but also the brightness can be adjusted arbitrarily.
  • the amount of light of a specific color of the projection image is increased by changing the amount of increase in the amount of light emitted from the light source. Reproducibility can be improved.
  • the amount of light of a specific color of the projected image is increased by changing the period during which the amount of light emitted from the light source is increased. Color reproducibility can be improved.
  • the brightness of the entire image is increased, and the light quantity of at least one of red, green, and blue is increased. Color reproducibility can be improved.
  • the brightness of the entire image is increased, and the light amount of at least one of cyan, magenta, and yellow is increased. Color reproducibility can be improved.
  • the brightness of the entire image is increased, and red, green, blue, cyan, magenta, or yellow It is possible to increase the amount of light of at least one of the colors and improve the color reproducibility.
  • the brightness of the entire image is increased, and red, green, blue, cyan, magenta, and yellow are increased. It is possible to increase the amount of light of one, two, or three of them, and improve color reproducibility.
  • the first mode in which the first ratio is 20% or less for example, the first mode suitable for watching a movie or the like, and the ratio of 40 to 50%.
  • the first mode suitable for watching a movie or the like for example, it is possible to selectively set one of the second modes suitable for projecting a computer monitor screen, so that the user can watch a movie without adjusting each color individually. It is possible to obtain a projection image having an image quality in the second mode suitable for projecting a suitable first mode or computer monitor screen.
  • the brightness of the entire image and the amount of light of each color are adjusted according to an increase in the amount of light emitted from the light source, or from the light source.
  • the amount of light emitted from the light source that passes through the filter segment that transmits light of each of the white and other colors according to both the amount of increase in the amount of light emitted from the light source and the period during which the amount of light emitted from the light source is increased. Therefore, the range of light intensity adjustment is widened, and more dynamic image quality adjustment is possible.
  • color reproduction is also performed during a period in which the spectrum characteristic of the light source is unbalanced from when the light source is turned on until it becomes stable. Can be improved.
  • the brightness is improved even during a period in which the amount of light emitted from the light source is small from when the light source is turned on until the light source becomes stable. Can be made.
  • FIG. 1 is a schematic block diagram showing a configuration example of Example 1 of a projector according to the present invention.
  • FIG. 2 is a schematic diagram showing a configuration example of a lamp driving circuit of Embodiment 1 of the projector according to the present invention.
  • FIG. 3 is a schematic plan view showing a configuration example of a rotating color filter of Example 1 of the projector according to the present invention.
  • FIG. 4 is a schematic diagram showing a function of a rotating color filter of Example 1 of the projector according to the present invention.
  • FIG. 5 is a flowchart showing an overall processing procedure of the first embodiment of the projector according to the present invention.
  • FIG. 6 is a flowchart of a subroutine for “mode setting” in the flowchart of FIG. 5.
  • FIG. 7 is a schematic diagram of a display screen for “mode setting” in the flowchart of FIG. 5.
  • FIG. 8 is a flowchart of a subroutine for “individual setting” in the flowchart of FIG. 5.
  • FIG. 9 is a schematic diagram of a display screen for “individual setting” in the flowchart of FIG. 5.
  • FIG. 10 is a schematic block diagram showing a configuration example of Example 2 of the projector according to the present invention.
  • FIG. 11 is a schematic diagram showing a configuration example of a lamp drive circuit of a projector according to a second embodiment of the invention.
  • FIG. 1 is a schematic block diagram showing a configuration example of Example 1 of the projector according to the present invention.
  • the projector according to the first embodiment has a lamp 1 as a light source and four colors in the illustrated example, specifically white (W), blue (B), red (R), and green (G).
  • DMD (Digital Micromirror Device) 3 as a spatial light modulation means to modulate, and a plurality of records for projecting modulated light modulated by this DMD 3 onto an external screen or the like. It is composed of a projection optical system 4 composed of a lens and a control system described later.
  • the projector according to the present invention can be applied to both a so-called front projection system that projects an image onto an external screen or the like, and a rear projection system that projects from the back of the screen.
  • the DMD is provided as the spatial light modulation means, but other spatial light modulation means such as a liquid crystal panel can be used as a matter of course.
  • an appropriate optical system is also interposed between the lamp 1 and the rotating color filter 2 and between the rotating color filter 2 and the DMD 3, but this is omitted because it is not directly related to the present invention.
  • the control system includes a control circuit 10 using a microcomputer, a microprocessor, etc., a lamp driving circuit 11 that controls the driving of the lamp 1 in response to the setting from the control circuit 10, and a rotating color filter 2
  • the filter drive circuit 12 controls the rotation of the DMD 3
  • the DMD drive circuit 13 controls the DMD 3
  • the operation unit 14 that the control circuit 10 accepts operation instructions from the user, and the like.
  • Various guidances and instructions to the user by the control circuit 10 may be displayed on a display device such as an LCD provided in the operation unit 14, or so-called on-screen display (OSD) by the control of the control circuit 10. ) Or of course both can be used together.
  • OSD on-screen display
  • the lamp 1 has a pulse current superimposed on the applied DC current, as disclosed in Patent Document 2, for example, by increasing the value of the applied DC current.
  • This is a direct current drive lamp that can increase the amount of light emitted from the lamp.
  • the lamp 1 emits light when a direct current is applied from the lamp driving circuit 11 connected to the commercial AC power supply 20 according to the setting of the control circuit 10.
  • the amount of light emitted from the lamp 1 can be set by superimposing a pulse current on the current value applied to the lamp 1 from the lamp driving circuit 11 by the setting of the control circuit 10.
  • FIG. 2 is a schematic diagram showing a configuration example of the lamp driving circuit 11 of the first embodiment of the projector according to the present invention.
  • the power supply circuit 21 inputs commercial AC power, converts it to DC current of a predetermined current value, and applies it to the lamp 1.
  • the applied current value from the power supply circuit 21 to the lamp 1 is fed back to the lamp control circuit 22 as a signal SV and is normally maintained at a constant value.
  • the lamp control circuit 22 is supplied with the lamp 1 from the power circuit 21 by the control signal S1 from the control circuit 10.
  • the lamp control circuit 22 includes information indicating the rotation state of the rotating color filter 2 from the filter driving circuit 12, specifically, the position of the filter segment through which light of which color is transmitted as the signal S2. Given. This signal S2 is also given to the control circuit 10 as signal S3 shown in FIG. The signal S3 given to the control circuit 10 is used for timing control of the control signal S1 given from the control circuit 10 to the lamp driving circuit 11.
  • the lamp control circuit 22 is known to have a timing at which the emitted light from itself passes through each finole segment of the rotating color filter 2, and is set by this timing and the control signal S1 provided from the control circuit 10. The timing to actually apply the pulse current is determined based on the relationship with the current timing.
  • the lamp control circuit 22 sends the control signal SC to the power supply circuit 21 according to the information set by the control signal S1 from the control circuit 10 and the timing given as the signal S2 from the filter drive circuit 12. Give to. While this control signal SC is applied, the pulse of the current value specified by the control signal SC is superimposed on the current applied to the lamp 1 from the power supply circuit 21 for the period specified by the control signal SC. As a result, the current value applied to the lamp 1 increases, and as a result, the amount of light emitted from the lamp 1 increases.
  • the rotating color filter 2 is rotated at a constant speed in the direction of the arrow by the filter drive circuit 12 including an actuator (not shown) according to the control of the control circuit 10 when the projector according to the first embodiment of the present invention is in operation.
  • the details of the rotating color filter 2 will be described later.
  • the filter drive circuit 12 includes means for detecting the rotational position of the rotary color filter 2. Therefore, the lamp control circuit 22 can know which color of the filter segment that transmits light transmits light emitted from the lamp 1 to the DMD 3 at each time point.
  • the DMD 3 is an image data supply means (not shown), specifically, according to the control of the control circuit 10. Specifically, for example, in accordance with digital image data given from a computer, a DVD player, a TV tuner, or the like, the light transmitted through the rotating color filter 2 is modulated and projected in the four directions of the projection optical system.
  • the projection optical system 4 is an optical system for the front projection system in the illustrated example, but may be that for the rear projection system. Needless to say, the projection optical system 4 can also be adjusted in zoom and keystone according to the control of the control circuit 10.
  • FIG. 3 is a schematic plan view showing a configuration example of the rotating color filter 2 of the projector according to the first embodiment of the invention
  • FIG. 4 is a schematic diagram showing its function.
  • FIG. 3 illustrates a rotating color filter 2 having filter segments that transmit light of four colors of white (W), red (R), green (G), and blue (B). Is just an example when brightness (white) is emphasized. Therefore, the angles of the filter segments that transmit the light of each color may be set to angles different from the illustrated example, or only three colors for red (R), green (G), and blue (B). However, instead of these, three colors for cyan, magenta, and yellow may be used. Furthermore, red (R), green (G), blue (B), cyan, magenta, and yellow. 6 colors may be used, and in each case, white may also be included.
  • the rotating color filter 2 is specifically shown in Fig. 3, and the filter segment for each color is in the range of 90-100 degrees for white (W) and green (G). Within the range of 86-96 degrees for red (R), within the range of 82-92 degrees for red (R), and within the range of 82-92 degrees for blue (B). Each is assigned to be a degree. And the spot size of the same angle is set within the range of 8-18 degrees between each filter segment (equal angle of 4-19 degrees on both sides across the boundary line of adjacent filter segments). The portion excluding the spot size is the range (effective angle) that can be used to transmit the light emitted from lamp 1.
  • the effective angle of the filter segment for each color is within the range of 77-87 degrees for white (W), within the range of 73-83 degrees for green (G), and 69 for red (R). Within 79 degrees, blue (B) is within 69 79 degrees.
  • W white
  • G green
  • R red
  • B blue
  • the total of the effective angles for each color and the total of the four spot sizes, which are the same angle is 360 degrees.
  • the current applied to the lamp 1 from the power supply circuit 21 has a predetermined current value so that the light quantity of the lamp 1 increases in a period corresponding to, for example, a range of 47 to 57 degrees in the central portion of the rotating color filter 2. A pulse is superimposed.
  • a signal of white image data is supplied from the control circuit 10 to the DMD drive circuit 13 so that the DMD 3 displays a white image during this period.
  • the amount of white light is increased only during one rotation of the rotating color filter 2, that is, a period corresponding to the range of 47 to 57 degrees out of 360 degrees (approximately 13 to 16%). 4 is projected onto the screen, and the amount of light of other color components is not increased. As a result, the amount of white light in the image projected onto the screen increases, so that the overall brightness of the image increases.
  • the filter segment that allows the emitted light from lamp 1 to transmit red light is used.
  • the light amount of the lamp 1 can be obtained by superimposing the pulse current on the current applied to the lamp 1 in the same manner as described above. Increase.
  • the amount of red light in the image projected onto the screen increases, so that the brightness of the red component of the image as a whole increases.
  • the panoramic power applied to the current applied to the lamp 1 from the power circuit 21 Increase the current value.
  • the entire period corresponding to the entire effective angle of the rotating color filter 2 is a period in which the light emitted from the lamp 1 is transmitted through the filter segment that transmits red light. It is also possible to increase the light quantity of the lamp 1 in the same manner as described above. As a result, the amount of red light in the image projected onto the screen further increases, so that the brightness of the red component of the image as a whole further increases. In this case, the image display signal is also lengthened corresponding to the period of the pulse current superimposed on the current applied to the lamp 1.
  • the duration of the run within the effective angle of the filter segment that transmits red light can be arbitrarily set by the setting of the lamp driving circuit 11 of the lamp driving circuit 11 by the control circuit 10, and It is possible to increase the brightness of a specific color component by using either one or both.
  • a component of an arbitrary color (also white in some cases) in image data is used as a light source for lamp 1 during a period in which light of that color is projected from DMD 3.
  • the projector of the present invention When the projector of the present invention is used as a so-called data projector, it is preferable to increase the brightness of white light because a bright image and a projected image are required as much as possible. At that time, if the light quantity of a specific color component is insufficient and the color reproducibility is poor, the above-described processing is performed on the color with insufficient light quantity, specifically, the light of the color with insufficient light quantity.
  • the light quantity of the lamp 1 may be increased within a period in which the filter segment that transmits the light transmits the light emitted from the lamp 1.
  • the amount of increase in the amount of light of each color is specified in accordance with the type of image to be projected, for example, whether it is a movie or a computer monitor screen (ie, the power used as a data projector) It is also possible to prepare various modes set in advance for the value of and to select and set one of the modes by operating the operation unit 14 by the user. If the movie mode is selected and set, the control circuit 1 0 is set in the lamp control circuit 22 of the lamp drive circuit 11 so that the light amounts of red and green are increased by 20%, for example.
  • the control circuit 10 increases the light amounts of red and green, for example, by 40 to 50%, respectively. Set to the lamp control circuit 22 of the lamp drive circuit 1 1.
  • the brightness of each color and the brightness of the entire image can be individually and arbitrarily adjusted according to the environment in which the image is projected or the user's preference.
  • a slider-type handle bar for adjusting the brightness of each color is provided on the display unit provided in the operation unit 14 or the control circuit 10. Displayed on-screen by control. Therefore, the user can set the adjustment value of the light amount increase / decrease for each color and the brightness of the entire image (specifically, the amount of white light) on these displays.
  • FIG. 5 is a flowchart showing the overall processing procedure of the first embodiment of the projector according to the present invention
  • FIG. 6 is a flowchart of a subroutine for “mode setting” in the flowchart of FIG. 5
  • FIG. Fig. 8 shows a flowchart of the subroutine for "Individual setting”
  • Fig. 9 shows a schematic diagram of the display screen for "Individual setting”. Yes.
  • the processing shown in these flowcharts is executed by the control circuit 10 in accordance with a control program installed in advance in the control circuit 10 itself.
  • control circuit 10 monitors whether or not an operation has been received by operating the operation unit 14 (NO in step S11). If an operation is accepted (YES in step SI 1), control circuit 10 determines whether it is an instruction for “image quality adjustment” (YES in step S12) or an instruction for “image projection” (step SI 2) NO, SI 3: YES), or other instruction (NO in step S13). If any other instruction is accepted, neither “image quality adjustment” nor “image projection”, the control circuit 10 executes another process corresponding to the accepted instruction (step S 14), and proceeds to step S 11. To return. When an image quality adjustment instruction is received (YES in step S12), control circuit 10 determines whether or not the image quality adjustment is based on mode designation (step S21).
  • control circuit 10 when the user gives an instruction for “image quality adjustment”, the control circuit 10 performs “mode setting” or “individual setting” on the display device provided in the operation unit 14. A display that allows the user to select is displayed. In response to this, when the user selects “mode setting” (YES in step S21), the control circuit 10 performs mode setting processing (step S22). However, this mode setting process is prepared as a subroutine shown in FIG.
  • control circuit 10 performs individual setting processing (step S23).
  • this individual setting process is prepared as a subroutine shown in FIG.
  • FIG. 6 is a flowchart of a subroutine of “mode setting” processing in step S22 of FIG.
  • the control circuit 10 displays a mode setting screen on a display device provided in the operation unit 14 (step S221).
  • This mode setting screen is a screen as schematically shown in FIG. 7.
  • it is possible to select and specify either “movie mode” or “data mode”. It is also possible to reset.
  • various modes other than these two modes can be prepared.
  • the control circuit 10 sets the light quantity of the lamp 1 to 20% at the timing of the filter segment that transmits red and green light. It is set in the lamp control circuit 22 of the lamp driving circuit 11 so as to increase (step S225).
  • the control circuit 10 controls the light amount of lamp 1 at the timing of the filter segment that transmits red and green light. Both are set in the lamp control circuit 22 of the lamp drive circuit 11 so as to increase by 50% (step S226).
  • control circuit 10 When the user selects "End” on the mode setting screen (NO in step S222, NO in S223, YES in S224), control circuit 10 returns to the main routine shown in FIG. . If “NO” in any of steps S222, S223, and S224, control circuit 10 returns the process to step S221 and waits for an instruction from the user. Also, although not shown in the chart, when the user selects “reset”, each setting is returned to the initial state in which the amount of light emitted from the lamp 1 is maintained at a normal value.
  • FIG. 8 is a flowchart of a subroutine of the “individual setting” process in step S23 of FIG.
  • the control circuit 10 displays an individual setting screen on the display device provided in the operation unit 14 (step S231).
  • This individual setting screen is a screen as shown in the schematic diagram of FIG. 9.
  • any one of “red”, “green”, “blue” and “brightness” selected by the user can be selected. You will be able to specify.
  • FIG. 9 shows a default state in which all adjustment values are “ ⁇ 0”.
  • the control circuit 10 When the user selects “red” on this individual setting screen and sets it to any value (YES in step S232), the control circuit 10 temporarily stores the red setting value (step S232). S237). When the user selects “green” and sets it to any value (NO in step S232, YES in S233), the control circuit 10 temporarily stores the green setting value (step S238). In addition, when user power S “blue” is selected and set to any value (NO in steps S232 and S233, YES in S234), control circuit 10 temporarily stores the blue setting value (step S23 9 ). Further, when the user selects “brightness” and sets the value to the difference (NO in steps S232, S233, S234, YES in S235), the control circuit 10 temporarily stores the white setting value ( Step S 240).
  • step S241 The setting values of the respective colors temporarily stored as described above are set from the control circuit 10 to the lamp control circuit 22 of the lamp drive circuit 11 (step S241), and then the process returns to step S23.
  • step S13 After the image quality adjustment is set by the user as described above, when the user gives an image projection instruction to the operation unit 14 (YES in step S13), the control circuit 10 performs image projection. Start (step S31). Accordingly, an image projected by the projector thereafter becomes an image in which the light amount of the color is increased by increasing the light amount of the lamp 1 when at least one of the color elements is projected.
  • FIG. 10 is a schematic block diagram showing a configuration example of the second embodiment of the projector according to the present invention.
  • the projector according to the second embodiment includes a lamp 101 as a light source and four colors in the illustrated example, specifically, white (W), blue (B), red (R), and green (G).
  • the rotating color filter 2 in which translucent filter segments that transmit light are arranged in the rotation region, and the light emitted from the lamp 101 that has passed through any of the filter segments of the rotating color filter 2 DMD (Digital Micromirror Device) 3 as a spatial light modulation means for spatial light modulation, a projection optical system 4 composed of a plurality of lenses for projecting modulated light modulated by the DMD 3 to an external screen, etc.
  • the control system is configured by the control system.
  • the AC drive system in which the phase of the DC current value is inverted every specific period as described in Patent Documents 3 and 4 as the lamp 101 is used.
  • a lamp is used.
  • the projector of the second embodiment also adopts a rear projection method for projecting from the back of the screen to a so-called front projection system that projects an image onto an external screen or the like.
  • the DMD is provided as the spatial light modulation means, but other spatial light modulation means such as a liquid crystal panel can be used as a matter of course.
  • the lamp 101 and the rotating color filter 2 and rotating The force S in which an appropriate optical system is interposed between the color filter 2 and the DMD 3 is omitted because it is not directly related to the present invention.
  • the control system includes a control circuit 100 using a microcomputer, a microprocessor, etc., a lamp driving circuit 111 that controls the driving of the lamp 101 in response to the setting from the control circuit 100, and a rotating color filter 2 A filter drive circuit 12 that controls rotation, a DMD drive circuit 13 that also controls DMD3, an operation unit 14 that receives an operation instruction from a user, and the like.
  • Various guidance and instructions to the user by the control circuit 100 may be displayed on a display device such as an LCD provided in the operation unit 14, or so-called on-screen display (OSD) under the control of the control circuit 100. It is also possible to use both in combination.
  • OSD on-screen display
  • the lamp 101 uses, for example, an AC drive type lamp that inverts the phase of the direct current value every specific period, as disclosed in Patent Documents 3 and 4, for example.
  • Such an AC drive type lamp 101 can increase the amount of emitted light by increasing the DC current value.
  • This lamp 101 is printed by an AC current whose phase of the DC current value is inverted every specific period according to the setting of the control circuit 100 from the lamp driving circuit 111 connected to the commercial AC power source 20. Emits light.
  • the amount of light emitted from the lamp 101 is controlled by applying a control signal S1 from the control circuit 100 to the lamp driving circuit 111, thereby setting the amplitude and timing of the current value applied to the lamp 101 to the lamp driving circuit 111. Is possible by controlling.
  • FIG. 11 is a schematic diagram showing a configuration example of the lamp drive circuit 111 of the projector according to the second embodiment of the present invention.
  • the power supply circuit 121 receives a commercial AC power supply, converts it into a DC current having a predetermined current value, and applies a current to the lamp 101 while inverting the phase every specific period.
  • the applied current value from the power circuit 121 to the lamp 101 is fed back as the signal SV to the lamp control circuit 122 and is normally maintained at a constant value until the phase is reversed.
  • information for controlling the value and phase of the direct current applied from the power supply circuit 121 to the lamp 101 is given to the lamp control circuit 122 by the control signal S 1 from the control circuit 100. This information is used to set both the current value to be changed and the timing of phase inversion.
  • the lamp control circuit 122 has information indicating the rotation state of the rotary color filter 2 from the filter drive circuit 12, specifically, the position of the filter segment that transmits light of which color is the signal S2. As given.
  • the signal S2 is also given to the control circuit 100 as the signal S3 shown in FIG.
  • the signal S3 given to the control circuit 100 is used for timing control of the control signal S1 given from the control circuit 100 to the lamp driving circuit 111.
  • the lamp control circuit 122 knows the timing at which the light emitted from itself passes through each filter segment of the rotating color filter 2, and is set by this timing and the control signal S1 given from the control circuit 100.
  • the timing for actually changing the current applied to the lamp 101 is determined based on the relationship with the current timing.
  • the lamp control circuit 122 controls the control signal SC according to the information set by the control signal S1 from the control circuit 100 and the timing given as the signal S2 from the filter drive circuit 12. Is supplied to the power supply circuit 121.
  • the control signal SC By applying this control signal SC, the change in the current value specified by the control signal SC is superimposed on the current applied to the lamp 101 from the power supply circuit 121 for the period specified by the control signal SC.
  • the current value applied to the lamp 101 increases, and as a result, the amount of light emitted from the lamp 101 increases.
  • the rotating color filter 2 is rotated at a constant speed in the direction of the arrow by the filter driving circuit 12 including an actuator (not shown) according to the control of the control circuit 100 when the projector according to the second embodiment of the present invention is in operation.
  • the details of the rotating color filter 2 are the same as those of the first embodiment described above, and the light emitted from the lamp 101 is separated into four colors in time series and provided to the DMD 3.
  • the filter drive circuit 12 has a means for detecting the rotational position of the rotary color filter 2 as in the first embodiment, and therefore, any filter segment is output from the lamp 101 at each time point.
  • the lamp control circuit 122 can know whether the incident light is transmitted to the DMD 3.
  • the DMD 3 transmits the rotating color filter 2 in accordance with image data supply means (not shown), specifically, digital image data given from, for example, a computer, a DVD player, a TV tuner, or the like.
  • image data supply means not shown
  • digital image data given from, for example, a computer, a DVD player, a TV tuner, or the like.
  • the light is modulated and projected in four directions.
  • the projection optical system 4 is an optical system for a front projection system in the illustrated example. As in the first embodiment, it may be that for the rear projection system. Needless to say, the projection optical system 4 can perform zoom adjustment, keystone adjustment, and the like in accordance with the control of the control circuit 100 as in the case of the first embodiment.
  • the brightness of individual color components in the image projected on the screen is basically increased by increasing the light amount of the lamp 1 (101).
  • the period during which the light quantity of lamp 1 (101) is increased is increased and given to DMD3 correspondingly.
  • the total amount of light transmitted from the lamp 1 (101) through the filter segment that transmits light of a specific color of the rotary color filter 2 (the product of the increase in the amount of light and its duration)
  • the brightness of each color component in the image projected on the screen can be adjusted.
  • the lamp 1 (1 01) used as the light source is a high-pressure mercury lamp, and the spectrum characteristics are from the start of lighting until the stable state is reached. Is more unbalanced than in a stable state, and the amount of emitted light gradually increases to a stable state, so the projected image during that time has poor color reproducibility and darkness corresponding to the unbalanced spectrum characteristics. There was a problem.
  • the control circuit 10 (100) performs the following control during the period from the start of lighting of the lamp 1 (101) until it becomes stable.
  • the lamp control circuit 22 (122) controls the control signal S for controlling the current value applied to the lamp 1 (101).
  • control circuit 10 (100) causes the lamp 1 (10) until the lamp 1 (101) is in a stable state.
  • a control signal S1 is supplied to the lamp control circuit 22 (122) of the lamp drive circuit 11 (111) so as to increase the white brightness in accordance with the brightness of 1).
  • the lamp control circuit 2 In response to this, the lamp control circuit 2
  • the brightness of the lamp 1 (101) from the time when the lamp 1 (101) is lit until it becomes stable is higher than that in the stable state.
  • the darkness of the projected image due to darkness is improved.
  • the control circuit 10 (100) is in the normal control state as described above after the time when the stable state has elapsed from the lighting time of the lamp 1 (101).
  • the projector according to the present invention can increase the amount of light emitted from the lamp by superimposing a pulse current on the applied DC current, in other words, by increasing the applied DC current value. It can be applied to a direct current drive type lamp and an alternating current drive type lamp in which the phase of the direct current value is inverted every specific period.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

 ランプ1からの出射光を画像を表す変調光に変換するDMD3と、複数色の光それぞれを透過させる透光性のフィルタセグメントが配列された回転領域をランプ1とDMD3との間に介在させて回転することによりランプ1からの出射光を複数色に分離する回転カラーフィルタ2とを備えた単板方式のプロジェクタでは、各色の光量、画像全体の明るさが回転カラーフィルタにより制約を受けていたため、画像全体の明るさと色再現性との間にはトレードオフの関係があった。ランプ1からの出射光が回転カラーフィルタ2の複数のフィルタセグメントの内の少なくとも一つを透過する期間において光量が増加するように、ランプ1の出射光の光量を制御する。これにより、ランプ1の出射光量の調整によって画像全体の明るさ、色再現性を任意に調整することが可能になる。                                                                                 

Description

明 細 書
プロジェクタ
技術分野
[0001] 本発明は、光源から出射される光を複数色の透光性のフィルタセグメントを有する 回転カラーフィルタにより各色に分離して DMD (Digital Micromirror Device)等のよ うな空間光変調手段へ投射し、 DMDに与えられる各色別の画像データに基づいて 空間光変調することによりカラー画像を投射するプロジェクタに関する。
背景技術
[0002] プレゼンテーション又は映像の映写の分野では、コンピュータ又は種々の映像再生 装置から入力された画像データに基づいた画像を外部のスクリーン等へ投射するプ ロジェクタが用いられている。このようなプロジェクタは、空間光変調手段、具体的に は液晶パネル又は DMD (Digital Micromirror Device)等に画像データを与えること により、内部の光源からの光を画像データに基づいて変調した画像を表す変調光を 生成し、生成された変調光を外部のスクリーン等へ投射するように構成されている。
[0003] ところで、上述のようなプロジェクタでは、 1枚の板状の空間光変調手段に R (赤), G (緑), B (青)各色の光と場合によっては白色光とを時分割で投射することにより力 ラー画像を投射する方式と、一般的には 3枚の空間光変調手段それぞれに R (赤), G (緑), B (青)各色の光を投射して各色別の変調光を発生させ、それらを合成するこ とによりカラー画像を投射する方式とが存在する。
[0004] 前者の方式を一般的に単板方式と称する。この単板方式では従来は各有彩色 (R , G, B)と場合によっては白色光を透過させる透光性のフィルタセグメントを回転させ る回転カラーフィルタを利用して、光源からの出射光を各有彩色と場合によっては白 色とに分離して空間光変調手段へ時分割で与えるようにしている。
[0005] ところで、上述のような単板方式のプロジェクタでは、回転カラーフィルタに 3色又は
4色の光をそれぞれ透過させる透光性のフィルタセグメントを配歹 IJして空間光変調手 段による変調周期(画像データの各色の成分が空間光変調手段に与えられる周期) に同期させて回転させる必要がある。従って、たとえば白色を含む 4色を利用する場 合には回転カラーフィルタの各色用のフィルタは単純に考えても四等分、即ち各色 について 90度が割り当てられることになる。このため、空間光変調手段により変調さ れて投射される画像上での各色の色再現性、色温度等を補正する場合には各色に 割り当てられた回転カラーフィルタの 90度の範囲内での画像表示信号の長短による しかないのが実情である。
[0006] し力、し、データプロジェクタと称される主にコンピュータのモニタ画面をそのまま表示 する用途に使用されるプロジェクタでは投射画像の明るさが優先されるので、他の色 のそれに比して相対的に角度が大きい白色光を透過させるフィルタセグメントを回転 カラーフィルタに備えることにより、空間光変調手段から投射される画像が明るくなる ようにしている。しかしこの場合、白色以外の各色の光を透過させるフィルタセグメント が相対的に小さくなることはいうまでもなぐこの結果として白色以外の各色の光量が 少なくなつて良好な色再現性が得られなくなる。
[0007] 従来はこのような事態に対しては前述した如ぐ回転カラーフィルタ上で各色に割り 当てられた角度の範囲内での画像表示信号の期間を長くすることにより対処してい た。しかし、各色の光をそれぞれ透過させるフィルタセグメントに割り当てられている 角度に対応する期間以上に各色の画像表示信号を長くすることは原理的に不可能 である。また逆に、色再現性、色温度を重視して回転カラーフィルタ上で白色に割り 当てられた角度の範囲内での画像表示信号の期間を短くすると空間光変調手段か ら投射される画像の明るさが当然のことながら低下することはいうまでもない。
[0008] このような事情に鑑み、特許文献 1には、回転カラーフィルタを同心円状に複数の 環状の部分に区分し、各環状の部分で各色の光をそれぞれ透過させるフィルタセグ メントに割り当てる角度を異ならせ、このような回転カラーフィルタの回転中心を光源 力 の出射光に対して交差する方向へ平行移動させる構成の発明が開示されている 。このような特許文献 1に開示された発明では、一つの回転カラーフィルタの回転中 心を移動させることにより、各色の光をそれぞれ透過させるフィルタセグメントに割り当 てられている角度が異なる、換言すれば色再現性、色温度等が異なる複数種類の回 転カラーフィルタをプロジェクタの利用目的に応じて取り換えて使用するという構成が 実質的に実現可能になる。またこの特許文献 1に開示されている発明では、カラー画 像を投射する場合はカラー用の回転カラーフィルタを、コンピュータで作成したデー タである文書等の白黒の画像を投射する場合は白黒用の高輝度の回転カラーフィル タをそれぞれ使用することも容易に可能になる。
[0009] なお、プロジェクタの光源としては特許文献 2に開示されているような、印加される直 流電流にパルス電流を重畳する、換言すれば印加される直流電流値を増加させるこ とによりランプからの出射光の光量を増加させることが可能な直流駆動方式のランプ が使用可能である他、特許文献 3及び 4に記載されているような、直流電流値の位相 を特定期間毎に反転させる交流駆動方式のランプも使用可能である。
特許文献 1:特開 2003 - 307705号公報
特許文献 2:特開 2004 - 212890号公報
特許文献 3:特表 2002 - 533884号公報
特許文献 4:特表 2002 - 534766号公報
発明の開示
発明が解決しょうとする課題
[0010] しかし、上述の特許文献 1に記載の発明では、 1枚の回転フィルタに同心円状の環 状部分として予め設定された数だけの種類の回転カラーフィルタの内から 1種類を選 択することが可能であるのみであり、任意の色再現性、色温度に調整することはでき ず、また回転カラーフィルタの径が必然的に大形化して装置全体も大形化する虞が あり、更に連続的に画像を投射している間に切り換えを行なうことは可能である力もし れないが、その間にタイムラグが生じることは避けられないという問題を抱えている。
[0011] 以上のように、従来の単板方式で回転カラーフィルタを使用するプロジェクタでは、 空間光変調手段から投射される画像の明るさと色再現性、色温度との間にはトレード オフの関係があり、ある程度の状態で妥協せざるを得なかった。
[0012] 更に上述したような特許文献 2、 3及び 4に記載されているランプはいずれも高圧水 銀ランプであり、点灯開始時点から安定状態になるまでの間は出射光のスペクトラム 特性が安定状態時に比してアンバランスであり、また出射光量も漸増して安定状態 になるので、その間の投射画像は特定の色の再現性が悪ぐまた暗いという問題があ つた。 [0013] 本発明は、以上のような事情に鑑みてなされたものであり、その主たる目的は、従 来の単板方式で回転カラーフィルタを使用するプロジェクタに存在していた空間光変 調手段から投射される画像の明るさと色再現性、色温度との間のトレードオフの関係 を解消し得るプロジヱクタの提供を主たる目的とする。
[0014] また本発明の他の目的は、各色別に、更には各色別に加えて明るさを任意に調整 し得るプロジェクタの提供を目的とする。
[0015] 更に本発明の他の目的は、投射される画像の種類に応じて各色別又は各色別に 加えて明るさを予めそれぞれ所定値に設定しておき、それらのいずれ力、を選択する ことが可能なプロジェクタの提供を目的とする。
[0016] また更に本発明の他の目的は、光源の点灯開始時点から安定状態になるまでの間 に、特定の色の再現性が悪ぐまた暗いという従来の問題点を解消し得るプロジェク タの提供を目的とする。
課題を解決するための手段
[0017] 本発明に係るプロジェクタは、端的には、特許文献 2に開示されているような、印加 される直流電流にパルス電流を重畳する、換言すれば印加される直流電流値を増加 させることによりランプからの出射光の光量を増加させることが可能な直流駆動方式 のランプを光源として使用し、特定の色に対応して光源であるランプの出射光量を増 カロさせることにより、投射される画像中の特定の色の明るさを増大させ得るように構成 されている。但し、特許文献 3及び 4に記載されているような交流駆動方式のランプも 使用可能である。
[0018] 本発明に係るプロジェクタは、白色光を出射する光源と、該光源からの出射光を画 像を表す変調光に変換する空間光変調手段と、複数の有彩色光をそれぞれ透過さ せるフィルタセグメントが配列された回転領域を有し、前記光源と空間光変調手段と の間に前記回転領域が介在して回転することにより前記光源からの出射光を前記複 数の有彩色に分離する回転カラーフィルタとを備えたプロジェクタにおいて、前記光 源からの出射光の光量を変更する機能を有する光源駆動手段と、前記光源からの出 射光が前記回転カラーフィルタの前記複数の有彩色の光をそれぞれ透過させるフィ ルタセグメントの内の少なくとも 2色の光を透過させるフィルタセグメントを透過するそ れぞれの期間に、前記光源からの出射光の光量が増加するように、前記光源駆動手 段を制御する制御手段とを備えたことを特徴とする。
[0019] このような本発明に係るプロジェクタでは、光源からの出射光の光量が回転カラー フィルタの複数の有彩色の内の少なくとも 2色を透過させるフィルタセグメントを透過 する期間におレ、て増加するので、それらの色の光量が増加する。
[0020] また本発明に係るプロジェクタは、白色光を出射する光源と、該光源からの出射光 を画像を表す変調光に変換する空間光変調手段と、白色光及び複数の有彩色光を それぞれ透過させるフィルタセグメントが配列された回転領域を有し、前記光源と空 間光変調手段との間に前記回転領域が介在して回転することにより前記光源力 の 出射光を白色及び複数の有彩色に分離する回転カラーフィルタとを備えたプロジェ クタにおいて、前記光源からの出射光の光量を変更する機能を有する光源駆動手段 と、前記光源からの出射光が前記回転カラーフィルタの前記複数の有彩色の光をそ れぞれ透過させるフィルタセグメントの内の少なくとも 1色の光を透過させるフィルタセ グメントを透過する期間に、前記光源からの出射光の光量が増加するように、前記光 源駆動手段を制御する制御手段とを備えたことを特徴とする。
[0021] このような本発明に係るプロジェクタでは、光源からの出射光の光量が回転カラー フィルタの白色を含む複数色の内の少なくとも 1色を透過させるフィルタセグメントを 透過する期間において増加するので、光源からの出射光が白色光を透過させるフィ ルタセグメントを透過する期間において光量が増加した場合には画像全体の光量が 増加し、即ち画像全体の明るさが増大し、光源からの出射光が他のいずれかの色の 光を透過させるフィルタセグメントを透過する期間において光量が増加した場合には その色の光量が増加、即ちその色の明るさが増大する。
[0022] 更に本発明に係るプロジェクタは上記の両発明のいずれかにおいて、前記制御手 段は、前記光源からの出射光の光量の増加量を変更することを可能に構成してある ことを特徴とする。
[0023] このような本発明に係るプロジェクタは上記の両発明のいずれかにおいて、光源か らの出射光の光量の増加量を任意に変更することができる。
[0024] また本発明に係るプロジェクタは前記の両発明のいずれかにおいて、前記制御手 段は、前記光源力 の出射光の光量を増加させる期間を変更することを可能に構成 してあることを特徴とする。
[0025] このような本発明に係るプロジェクタは前記の両発明のいずれかにおいて、光源か らの出射光の光量が増加する期間を任意に変更することができる。
[0026] また本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記有 彩色は赤,緑,青であることを特徴とする。
[0027] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 白色光を透過させるフィルタセグメントを有する構成では光源からの出射光が白色光 を透過させるフィルタセグメントを透過する期間において光量が増加した場合には画 像全体の明るさが増大し、光源からの出射光が他のいずれかの色の光を透過させる フィルタセグメントを透過する期間において光量が増加した場合には赤,緑又は青の 内の少なくとも 1色の光量が増加してその色の明るさが増大する。
[0028] また本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記有 彩色はシアン,マゼンタ,イェローであることを特徴とする。
[0029] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 白色光を透過させるフィルタセグメントを有する構成では光源からの出射光が白色光 を透過させるフィルタセグメントを透過する期間において光量が増加した場合には画 像全体の明るさが増大し、光源からの出射光が他のいずれかの色の光を透過させる フィルタセグメントを透過する期間において光源からの出射光の光量が増加した場合 にはシアン,マゼンタ又はイェローの内の少なくとも 1色の光量が増加する。
[0030] 更に本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記有 彩色は赤,緑,青,シアン,マゼンタ,イェローであることを特徴とする。
[0031] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 白色光を透過させるフィルタセグメントを有する構成では光源からの出射光が白色光 を透過させるフィルタセグメントを透過する期間において光量が増加した場合には画 像全体の明るさが増大し、他のいずれかの色の光を透過させるフィルタセグメントを 透過する期間において光量が増加した場合には赤,緑,青,シアン,マゼンタ又はィ エローの内の少なくとも 1色の光量が増加する。 [0032] 更に、本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記 有彩色は赤,緑,青と、シアン及び/又はマゼンタ及び/又はイェローであることを 特徴とする。
[0033] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 白色光を透過させるフィルタセグメントを有する構成では光源からの出射光が白色光 を透過させるフィルタセグメントを透過する期間において光量が増加した場合には画 像全体の明るさが増大し、他のいずれかの色の光を透過させるフィルタセグメントを 透過する期間において光量が増加した場合には赤,緑,青と、シアン,マゼンタ及び イェローの内の 1色、又は 2色、あるいは 3色の光量が増加する。
[0034] また更に本発明に係るプロジェクタは、白色光を出射する光源と、該光源からの出 射光を画像を表す変調光に変換する空間光変調手段と、白色光及び複数の有彩色 光をそれぞれ透過させるフィルタセグメントが配列された回転領域を有し、前記光源 と空間光変調手段との間に前記回転領域が介在して回転することにより前記光源か らの出射光を白色及び赤,緑,青の 3色に分離する回転カラーフィルタとを備えたプ ロジェクタにおいて、前記光源からの出射光の光量を変更する機能を有する光源駆 動手段と、白色光を透過させるフィルタセグメントを透過する前記光源からの出射光 の光量に比して、赤色及び緑色光を透過させるフィルタセグメントを透過する前記光 源からの出射光の光量の増加量が共に第 1の割合である第 1のモードと、該第 1の割 合よりも大なる第 2の割合である第 2のモードとを選択的に設定する制御手段とを備 えたことを特徴とする。
[0035] このような本発明に係るプロジェクタでは、光源からの出射光の光量の増加の割合 力 白色光を透過させるフィルタセグメントを透過する期間に比して赤色及び緑色光 を透過させるフィルタセグメントを透過する期間が共に第 1の割合である第 1のモード と、この第 1の割合よりも大なる第 2の割合である第 2のモードとが選択的に設定可能 になる。
[0036] 更に本発明に係るプロジェクタは上記の発明において、前記第 1の割合が 20%以 下であり、前記第 2の割合が 40乃至 50%であることを特徴とする。
[0037] このような本発明に係るプロジェクタでは上記の発明において、光源からの出射光 の光量の増加の割合力 白色光を透過させるフィルタセグメントを透過する期間に比 して赤色及び緑色光を透過させるフィルタセグメントを透過する期間が共に 20%以 下の割合である第 1のモードと、共に 40乃至 50%の割合である第 2のモードとが選 択的に設定可能になる。
[0038] 更にまた本発明に係るプロジェクタは、白色光を出射する光源と、該光源からの出 射光を画像を表す変調光に変換する空間光変調手段と、白色光及び複数の有彩色 光をそれぞれ透過させるフィルタセグメントが配列された回転領域を有し、前記光源 と空間光変調手段との間に前記回転領域が介在して回転することにより前記光源か らの出射光を白色及び赤,緑,青の 3色に分離する回転カラーフィルタとを備えたプ ロジェクタにおいて、前記光源からの出射光の光量を変更する機能を有する光源駆 動手段と、白色光を透過させるフィルタセグメントを透過する前記光源からの出射光 の光量に比して、他の各色の光を透過させるフィルタセグメントを透過する前記光源 力 の出射光の光量の増加量をそれぞれ任意に設定する制御手段とを備えたことを 特徴とする。
[0039] このような本発明に係るプロジェクタでは、光源からの出射光の光量の増加の割合 力 白色光を透過させるフィルタセグメントを透過する期間に比して他の各色の光を 透過させるフィルタセグメントを透過する期間それぞれについて任意に設定可能にな る。
[0040] なお更に本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前 記制御手段は、白色光及び他の各色の光を透過させるフィルタセグメントを透過する 前記光源からの出射光の光量を、前記光源からの出射光の光量の増加により、又は 前記光源からの出射光の光量の増加量及び前記光源からの出射光の光量を増加さ せる期間の双方を変更することにより増加させるように構成してあることを特徴とする。
[0041] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 光源からの出射光の光量の増加量により、又は光源からの出射光の光量の増加量 及び光源からの出射光の光量を増加させる期間の双方を変更することにより、白色 及び他の各色の光を透過させるフィルタセグメントを透過する光源からの出射光の光 量が増加する。 [0042] また本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記制 御手段は、前記光源の点灯時点から安定状態になるまでの期間にアンバランスであ る前記光源のスペクトラム特性が補償されるように前記光源駆動手段を制御すること を特徴とする。
[0043] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 光源のスペクトラム特性がアンバランスである光源の点灯時点から安定状態になるま での期間にも、光源のスペクトラム特性が補償される。
[0044] 更に本発明に係るプロジェクタは上記の各発明のいずれか一つにおいて、前記制 御手段は、前記光源の点灯時点から安定状態になるまでの期間に漸増する前記光 源からの出射光の光量が補償されるように前記光源駆動手段を制御することを特徴 とする。
[0045] このような本発明に係るプロジェクタでは上記の各発明のいずれか一つにおいて、 光源の出射光量が漸増する光源の点灯時点から安定状態になるまでの期間にも、 光源の明るさが補償される。
発明の効果
[0046] 上述のような本発明に係るプロジェクタによれば、回転カラーフィルタによる制約に は拘わらずに、従来の単板方式で回転カラーフィルタを使用するプロジェクタに存在 していた空間光変調手段から投射される画像の明るさと色再現性、色温度との間のト レードオフの関係が解消されるので、投射画像の色再現性を任意に調整することが できる。
[0047] また本発明に係るプロジェクタによれば、回転カラーフィルタによる制約には拘わら ずに、従来の単板方式で回転カラーフィルタを使用するプロジェクタに存在していた 空間光変調手段から投射される画像の明るさと色再現性、色温度との間のトレードォ フの関係が解消されるので、投射画像の色再現性のみならず、明るさに関しても任 意に調整することができる。
[0048] また本発明に係るプロジェクタによれば上記の両発明のいずれかにおいて、光源 からの出射光の光量の増加量を変更することにより、投射画像の特定の色の光量が 増加するので色再現性を向上させることができる。 [0049] 更に本発明に係るプロジェクタによれば前記の両発明のいずれかにおいて、光源 力 の出射光の光量を増加する期間を変更することにより、投射画像の特定の色の 光量が増加するので色再現性を向上させることができる。
[0050] また本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおいて、 画像全体の明るさを増大させること、及び赤,緑又は青の内の少なくとも 1色の光量 を増加させることが可能になり、色再現性を向上させることができる。
[0051] 更に本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおいて、 画像全体の明るさを増大させること、及びシアン,マゼンタ又はイェローの内の少なく とも 1色の光量を増加させることが可能になり、色再現性を向上させることができる。
[0052] また更に本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおい て、画像全体の明るさを増大させること、及び赤,緑,青,シアン,マゼンタ又はイエロ 一の内の少なくとも 1色の光量を増加させることが可能になり、色再現性を向上させる こと力 Sできる。
[0053] 更にまた本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおい て、画像全体の明るさを増大させること、及び赤,緑,青と、シアン,マゼンタ及びイエ ローの内の 1色、又は 2色、あるいは 3色の光量を増加させることが可能になり、色再 現性を向上させることができる。
[0054] 更に本発明に係るプロジェクタによれば、予め赤色及び緑色の光量を共に第 1の 割合に増加させた第 1のモードと、この第 1の割合よりも大なる第 2の割合に増加させ た第 2のモードとのいずれかを選択的に設定することができるので、ユーザは各色に ついての個別の調整を行なわずとも第 1のモード又は第 2のモードを選択するのみで 投射画像に所望の画質を得ることができる。
[0055] また本発明に係るプロジェクタによれば前記の発明において、第 1の割合が 20% 以下の割合であるたとえば映画等の鑑賞に適した第 1のモードと、共に 40乃至 50% の割合であるたとえばコンピュータのモニタ画面を投射する際に適した第 2のモードと のいずれかを選択的に設定することができるので、ユーザは各色についての個別の 調整を行なわずとも映画等の鑑賞に適した第 1のモード又はコンピュータのモニタ画 面を投射する際に適した第 2のモードの画質の投射画像を得ることができる。 [0056] また更に本発明に係るプロジェクタによれば上記の発明において、画像全体の明る さ及び各色の光量を周囲環境に応じて、またはユーザの好みに応じて任意に設定 すること力 Sできる。
[0057] 更に本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおいて、 画像全体の明るさ及び各色の光量を光源からの出射光の光量の増加に応じて、又 は光源からの出射光の光量の増加量及び光源からの出射光の光量を増加させる期 間の双方に応じて、白色及び他の各色の光を透過させるフィルタセグメントを透過す る光源からの出射光の光量を増加させることができるので、光量調整の幅が大きくな り、よりダイナミックな画質の調整が可能になる。
[0058] また本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおいて、 光源が点灯された時点から安定状態になるまでの光源のスペクトラム特性がアンバラ ンスな期間にも、色再現性を向上させることができる。
[0059] 更に本発明に係るプロジェクタによれば上記の各発明のいずれか一つにおいて、 光源が点灯された時点から安定状態になるまでの光源の出射光量が少ない期間に も、明るさを向上させることができる。
図面の簡単な説明
[0060] [図 1]本発明に係るプロジェクタの実施例 1の構成例を示す模式的ブロック図である。
[図 2]本発明に係るプロジェクタの実施例 1のランプ駆動回路の構成例を示す模式図 である。
[図 3]本発明に係るプロジェクタの実施例 1の回転カラーフィルタの一構成例を示す 模式的平面図である。
[図 4]本発明に係るプロジェクタの実施例 1の回転カラーフィルタの機能を示す模式 図である。
[図 5]本発明に係るプロジェクタの実施例 1の全体の処理手順を示すフローチャート である。
[図 6]図 5のフローチャート中の「モード設定」のためのサブルーチンのフローチャート である。
[図 7]図 5のフローチャート中の「モード設定」のための表示画面の模式図である。 [図 8]図 5のフローチャート中の「個別設定」のためのサブルーチンのフローチャート である。
[図 9]図 5のフローチャート中の「個別設定」のための表示画面の模式図である。
[図 10]本発明に係るプロジェクタの実施例 2の構成例を示す模式的ブロック図である
[図 11]本発明に係るプロジェクタの実施例 2のランプ駆動回路の構成例を示す模式 図である。
符号の説明
[0061] 1 (101) ランプ
2 回転カラーフィルタ
3 DMD
10 (100) 制御回路
11 (111) ランプ駆動回路
12 フィルタ駆動回路
13 DMD駆動回路
14 操作部
21 (121) 電源回路
22 (122) ランプ制御回路
発明を実施するための最良の形態
[0062] 以下、本発明をその実施例を示す図面を参照して具体的に説明する。
実施例 1
[0063] 図 1は本発明に係るプロジェクタの実施例 1の構成例を示す模式的ブロック図であ る。この実施例 1のプロジェクタは、光源であるランプ 1と、図示例では 4色、具体的に は白(W) ,青(B) ,赤 (R),緑 (G)の各色の光をそれぞれ透過させる透光性のフィル タセグメントを回転領域に配列した回転カラーフィルタ 2と、この回転カラーフィルタ 2 のいずれかのフィルタセグメントを透過したランプ 1からの出射光を画像データに基 づいて空間光変調する空間光変調手段としての DMD (Digital Micromirror Device) 3と、この DMD3が変調した変調光を外部のスクリーン等へ投射するための複数のレ ンズで構成される投射光学系 4と、後述する制御系等で構成されてレ、る。
[0064] なお、本発明に係るプロジェクタは外部のスクリーン等へ画像を投射するいわゆる フロント投射方式にも、スクリーンの背面から投射するリア投射方式にも適用可能で ある。また、本実施例 1では空間光変調手段として DMDを備えているが、他の空間 光変調手段、たとえば液晶パネル等を使用することも勿論可能である。更に、ランプ 1と回転カラーフィルタ 2との間、及び回転カラーフィルタ 2と DMD3との間にも適宜 の光学系が介装されているが、本発明とは直接の関係はないので省略する。
[0065] 制御系は、マイクロコンピュータ,マイクロプロセッサ等を利用した制御回路 10と、こ の制御回路 10からの設定を受けてランプ 1の駆動を制御するランプ駆動回路 11と、 同じく回転カラーフィルタ 2の回転を制御するフィルタ駆動回路 12と、同じく DMD3 を制御する DMD駆動回路 13と、ユーザによる操作指示を制御回路 10が受け付け る操作部 14と等で構成されている。なお、制御回路 10によるユーザへの種々の案内 、指示等は操作部 14に併設されている LCD等の表示装置に表示してもよいし、制 御回路 10の制御によるいわゆるオンスクリーン表示(OSD)であってもよいし、両者を 併用することも勿論可能である。
[0066] ランプ 1は本実施例 1ではたとえば特許文献 2に開示されているような、印加される 直流電流にパルス電流を重畳する、換言すれば印加される直流電流値を増加させる ことによりランプからの出射光の光量を増加させることが可能な直流駆動方式のラン プである。
[0067] このランプ 1は商用交流電源 20に接続されたランプ駆動回路 11から、制御回路 10 の設定に従って直流電流が印加されることにより、光を出射する。なお、このランプ 1 力 の出射光の光量は制御回路 10の設定によりランプ駆動回路 11からランプ 1に印 カロされる電流値にパルス電流を重畳することにより可能である。
[0068] 図 2は本発明に係るプロジェクタの実施例 1のランプ駆動回路 11の構成例を示す 模式図である。電源回路 21は商用交流電源を入力して所定電流値の直流電流に変 換してランプ 1に印加する。電源回路 21からランプ 1への印加電流値は信号 SVとし てランプ制御回路 22へフィードバックされて通常は一定値に維持される。一方、ラン プ制御回路 22へは制御回路 10からの制御信号 S1により、電源回路 21からランプ 1 に印加される直流電流にパルス電流を重畳するための情報が与えられる。この情報 は、パルス電流の大きさ(電流値)及び持続期間の双方を設定すると共に、重畳され るべきタイミングをも設定する。
[0069] 更に、ランプ制御回路 22にはフィルタ駆動回路 12から回転カラーフィルタ 2の回転 状態、具体的にはどの色の光を透過させるフィルタセグメントがどの位置にあるかを 示す情報が信号 S2として与えられる。またこの信号 S2は図 1に示す信号 S3として制 御回路 10にも与えられている。なお、制御回路 10に与えられた信号 S3は、制御回 路 10からランプ駆動回路 11へ与えられる制御信号 S1のタイミング制御に利用される 。なお、ランプ制御回路 22には自身からの出射光が回転カラーフィルタ 2の各フィノレ タセグメントを透過するタイミングが判明しているので、このタイミングと制御回路 10か ら与えられる制御信号 S1で設定されているタイミングとの関係から実際にパルス電流 を印加するタイミングを決定する。
[0070] 以上のことから、ランプ制御回路 22は、制御回路 10からの制御信号 S1により設定 される情報と、フィルタ駆動回路 12から信号 S2として与えられるタイミングとに従って 、制御信号 SCを電源回路 21へ与える。この制御信号 SCが与えられている間、制御 信号 SCにより指定される電流値のパルスが制御信号 SCにより指定される期間、電 源回路 21からランプ 1に印加される電流に重畳されるので、その分だけランプ 1に与 えられる電流値が増加し、結果的にランプ 1の出射光量が増加する。
[0071] 回転カラーフィルタ 2は、本発明に係るプロジェクタの実施例 1の稼働時には制御 回路 10の制御に従って、図示しないァクチユエータを含むフィルタ駆動回路 12によ り矢符方向に一定速度で回転する。この回転カラーフィルタ 2は詳細は後述するが、 本実施例 1では白色 (W)を含む R (赤), G (緑), B (青)の 4色の光をそれぞれ透過さ せるフィルタセグメントがほぼ 90度ずつに割り当てられており、ランプ 1からの出射光 を上記の 4色に時系列的に分離して DMD3へ与える。なお、フィルタ駆動回路 12は 回転カラーフィルタ 2の回転位置を検知する手段を備えている。従って、いずれの色 の光を透過させるフィルタセグメントが各時点でランプ 1からの出射光を DMD3へ透 過させているかをランプ制御回路 22が知ることができる。
[0072] DMD3は、制御回路 10の制御に従って、図示しない画像データ供給手段、具体 的にはたとえばコンピュータ、 DVDプレーヤ、 TVチューナ等から与えられるデジタル 画像データに応じて、回転カラーフィルタ 2を透過してきた光を変調して投射光学系 4方向へ投射する。なお、投射光学系 4は図示例ではフロント投射方式用の光学系 を示しているが、リア投射方式用のそれであってもよい。また、この投射光学系 4も制 御回路 10の制御に従って、ズーム調整,キーストン調整等が可能であることはいうま でもない。
[0073] 次に、回転カラーフィルタ 2の詳細な構成及びその機能について説明する。図 3は 本発明に係るプロジェクタの実施例 1の回転カラーフィルタ 2の一構成例を示す模式 的平面図、図 4はその機能を示す模式図である。なお、図 3には白(W)、赤 (R)、緑( G)、青(B)の 4色の光をそれぞれ透過させるフィルタセグメントを有する回転カラーフ ィルタ 2が例示されているが、これはあくまでも明るさ(白)を重視した場合の一例であ る。従って、それぞれの色の光を透過させるフィルタセグメントの角度は図示例とは異 なる角度に設定されていてもよいし、赤(R)、緑 (G)、青(B)用の 3色のみであっても ょレヽし、これらに代えてシアン,マゼンタ,イェロー用の 3色であってもよいし、更には 赤(R)、緑(G)、青(B)、シアン、マゼンタ、イェロー用の 6色であってもよいし、なお 更にはいずれの場合にも白用をも含んでいてもよい。
[0074] 回転カラーフィルタ 2は本実施例 1では一例として図 3に具体的に示すように、各色 用のフィルタセグメントは白(W)用に 90— 100度の範囲内で、緑(G)用に 86— 96度 の範囲内で、赤 (R)用に 82— 92度の範囲内で、青(B)用に 82— 92度の範囲内で 、レ、うまでもないが全体で 360度になるようにそれぞれ割り当てられている。そして、 各フィルタセグメント間に 8— 18度(隣接するフィルタセグメントの境界線を挟んで両 側に等角度で 4一 9度ずつ)の範囲内で同一角度のスポットサイズが設定されており 、これらのスポットサイズを除く部分がランプ 1からの出射光を透過するために利用可 能な範囲(有効角度)である。従って、各色用のフィルタセグメントの有効角度は、白( W)用が 77— 87度の範囲内に、緑 (G)用が 73— 83度の範囲内に、赤 (R)用が 69 一 79度の範囲内に、青(B)用が 69 79度の範囲内になる。勿論この場合も、各色 用別の有効角度の総計と、いずれも同一角度である 4ケ所のスポットサイズの総計と を合わせた角度が 360度になることはいうまでもない。 [0075] このようなフィルタセグメントの構成において、単純な白色の画面を投射する場合は 図 4 (a)に示すように、ランプ 1からの出射光が白色光を透過させるフィルタセグメント を透過する期間である回転カラーフィルタ 2の中央部分のたとえば 47— 57度の範囲 に対応する期間にランプ 1の光量が増加するように、電源回路 21からランプ 1に印加 されている電流に所定の電流値のパルスが重畳される。
[0076] また同時にこの期間において DMD3が白色の画像を表示する状態となるように白 色の画像データの信号が制御回路 10から DMD駆動回路 13へ与えられる。これに より、回転カラーフィルタ 2の 1回転、即ち 360度の内の 47— 57度の範囲に相当する 期間(約 13— 16%)にのみ白色光の光量が増加されて DMD3から投射光学系 4を 介してスクリーンへ投射され、他の色成分の光量は増加されない。これにより、スクリ ーンへ投射される画像中の白色の光量が増加するので、全体として画像の明るさが 増大する。
[0077] そしてこのような明るさを重視した状態において赤色の光量が不足している場合に は、図 4 (b)に示すように、ランプ 1からの出射光が赤色光を透過させるフィルタセグメ ントを透過する期間である回転カラーフィルタ 2の内のたとえば 47— 57度の範囲に 対応する期間にも、上述同様にしてランプ 1への印加電流にパルス電流を重畳する ことによりランプ 1の光量を増加させる。これにより、スクリーンへ投射される画像中の 赤色の光量が増加するので、全体として画像の赤色の成分の明るさが増大する。
[0078] し力しそれでもなお、スクリーンへ投射される画像中の赤色の成分の明るさが不足 している場合には、電源回路 21からランプ 1に印加されている電流に印加するパノレ スの電流値をより高くする。またこれとは別に図 4 (c)に示すように、ランプ 1からの出 射光が赤色光を透過させるフィルタセグメントを透過する期間である回転カラーフィル タ 2の有効角度全体に対応する期間全体で上述同様にしてランプ 1の光量を増加さ せることも可能である。これにより、スクリーンへ投射される画像中の赤色の光量が更 に増加するので、全体として画像の赤色の成分の明るさが更に増大する。なおこの 場合には、画像表示信号もランプ 1に印加される電流に重畳されるパルス電流の期 間に対応させて長くする。
[0079] 即ち、赤色光を透過させるフィルタセグメントの有効角度内でどの程度の期間ラン プ 1にパルスを印加する力 \及びその期間内でどの程度ランプ 1の光量を増加させる かは、制御回路 10によるランプ駆動回路 11のランプ制御回路 22への設定により任 意に可能であり、いずれか一方、又は両者を併用することにより特定の色成分の明る さを増大させること力 Sできる。
[0080] また上述の図 4 (b)及び図 4 (c)に示した例では、有彩色の中では赤色のみの光量 を増加させる例について説明したが、他の青色、緑色に関してもそれぞれ同様にラン プ 1に電源回路 21から印加されている電流にパルスを重畳させてランプ 1の光量を 増加させることにより、そしてその期間及び印カロパルスの電流値を変化させることによ り、 DMD3からのそれぞれの色の投射光の光量を増加させること、即ちそれぞれの 色成分の明るさを増大させることが可能である。また、個別の色のみならず 3色の内 のいずれか 2色、または 3色の全てに関して DMD3からの投射光の光量を任意に増 カロさせることが可能であることはいうまでもない。
[0081] 本発明は基本的には上述のように、画像データ中の任意の色(場合によっては白 色も)の成分をその色の光が DMD3から投射される期間にランプ 1の光量を増加さ せると共に、その増加の程度及び持続期間を変化させることによりスクリーン等へ投 射される画像中のその色の光量を増加させる、換言すれば明るさを増大させる構成 を採っている力 画質調整のために種々の応用が可能である。
[0082] 本発明のプロジェクタをいわゆるデータプロジェクタとして利用する場合には、可能 な限り明るレ、投射画像が要求されるので白色光の明るさを大きくすることが好ましレ、。 その際に、特定の色成分の光量が不足して色再現性が悪い場合には、光量が不足 している色に関して上述のような処理、具体的には光量が不足している色の光を透 過させるフィルタセグメントがランプ 1からの出射光を透過させる期間内にランプ 1の 光量を増加させればよい。
[0083] またたとえば、投射される画像の種類、たとえば映画であるのカ コンピュータのモ ユタ画面であるのか(即ち、データプロジェクタとして利用されるの力 等に応じて各色 の光量の増加量を特定の値に予め設定した種々のモードを用意しておき、操作部 1 4をユーザが操作することによりいずれかのモードを選択設定するようにもできる。た とえば、ユーザが操作部 14を操作して映画モードを選択設定した場合、制御回路 1 0は赤色と緑色の光量がたとえばそれぞれ 20%増加するように、ランプ駆動回路 11 のランプ制御回路 22に設定する。またユーザが操作部 14を操作してデータモード( コンピュータのモニタ画面を表示するモード)を選択設定した場合、制御回路 10は赤 色と緑色の光量がたとえばそれぞれ 40乃至 50%増加するように、ランプ駆動回路 1 1のランプ制御回路 22に設定する。
[0084] また、画像が投射される環境又はユーザの好み等に応じて各色の明るさ及び画像 全体の明るさを個別に且つ任意に調整することも可能である。この場合には、ユーザ が操作部 14を操作することにより、各色の明るさを調整するためのスライダ方式のッ 一ルバ一が操作部 14に併設されている表示装置に、または制御回路 10の制御によ りオンスクリーン表示される。従って、ユーザはこれらの表示上で各色についての光 量の増減、及び画像全体の明るさ(具体的には、白色の光量)の調整値を設定する こと力 Sできる。
[0085] 以下、本発明に係るプロジェクタの実施例 1による画質調整の方法について、その 手順を示すフローチャートを参照して説明する。なお、図 5は本発明に係るプロジェク タの実施例 1の全体の処理手順を示すフローチャートを、図 6は図 5のフローチャート 中の「モード設定」のためのサブルーチンのフローチャートを、図 7は「モード設定」の ための表示画面の模式図を、図 8は同じく「個別設定」のためのサブルーチンのフロ 一チャートを、図 9は「個別設定」のための表示画面の模式図をそれぞれ示している。 なお、レ、うまでもないが、これらのフローチャートに示されている処理は制御回路 10 により、制御回路 10自身に予めインストールされている制御プログラムに従って実行 される。
[0086] まず、制御回路 10は操作部 14が操作されることによる操作の受付があつたか否か を監視している(ステップ S 11で NO)。操作の受付があった場合 (ステップ SI 1で YE S)、制御回路 10はそれが「画質調整」の指示であるのか (ステップ S12で YES)、「 画像投射」の指示であるのか(ステップ SI 2で NO, SI 3で YES)、あるいは他の指示 であるのか (ステップ S13で N〇)を判断する。「画質調整」でも「画像投射」でもなレ、 他の指示を受け付けた場合には制御回路 10は受け付けた指示に対応した他の処 理を実行し (ステップ S 14)、ステップ S 11へ処理を戻す。 [0087] 画質調整の指示を受け付けた場合 (ステップ S12で YES)、制御回路 10は画質調 整がモード指定によるか否かを判断する(ステップ S21)。具体的には、ユーザが「画 質調整」の指示を行なった場合、制御回路 10は操作部 14に併設されている表示装 置上に「モード設定」を行なうか「個別設定」を行なうかをユーザに選択させる表示を 行なう。これに応じてユーザが「モード設定」を選択すると (ステップ S21で YES)、制 御回路 10はモード設定の処理を行なう(ステップ S22)。但し、このモード設定の処理 は後述する図 6に示すサブルーチンとして用意されている。
[0088] 一方、ユーザが「個別設定」を選択すると (ステップ S21で N〇)、制御回路 10は個 別設定の処理を行なう(ステップ S23)。但し、この個別設定の処理は後述する図 8に 示すサブルーチンとして用意されている。
[0089] 図 6は図 5のステップ S22の「モード設定」の処理のサブルーチンのフローチャート である。まず制御回路 10は操作部 14に併設されている表示装置上にモード設定画 面を表示する (ステップ S221)。このモード設定画面は図 7にその模式図を示すよう な画面であり、一例として「映画モード」と「データモード」とのいずれかを選択して指 定することができるようになつている他、リセットすることも可能である。勿論、これらの 二つのモード以外にも種々のモードを用意しておくことが可能であることはいうまでも ない。
[0090] このモード設定画面上でユーザが「映画モード」を選択した場合(ステップ S222で YES)、制御回路 10は赤色及び緑色光を透過させるフィルタセグメントのタイミング でランプ 1の光量を共に 20%増加するようにランプ駆動回路 11のランプ制御回路 22 に設定する(ステップ S225)。また、モード設定画面上でユーザが「データモード」を 選択した場合 (ステップ S222で N〇、 S223で YES)、制御回路 10は赤色及び緑色 光を透過させるフィルタセグメントのタイミングでランプ 1の光量を共に 50%増加する ようにランプ駆動回路 11のランプ制御回路 22に設定する(ステップ S226)。
[0091] なお、モード設定画面上でユーザが「終了」を選択した場合 (ステップ S222で N〇、 S223で NO、 S224で YES)、制御回路 10は図 5に示すメインルーチンへ処理を戻 す。またステップ S222、 S223、 S224のいずれにおいても" N〇"であった場合には 制御回路 10は処理をステップ S221へ戻してユーザからの指示を待機する。また、フ ローチャートには示さないが、ユーザが「リセット」を選択した場合には、ランプ 1の出 射光量を通常の値に維持する初期状態に各設定が戻される。
[0092] 図 8は図 5のステップ S23の「個別設定」の処理のサブルーチンのフローチャートで ある。まず制御回路 10は操作部 14に併設されている表示装置上に個別設定画面を 表示する(ステップ S231)。この個別設定画面は図 9にその模式図を示すような画面 であり、一例として「赤」、「緑」、「青」及び「明るさ」の内のユーザが希望するいずれを も選択して指定することができるようになってレ、る。なお図 9には全ての調整値が「 ± 0 」であるデフォルトの状態が示されてレ、る。
[0093] この個別設定画面上でユーザが「赤」を選択してレ、ずれかの値に設定した場合 (ス テツプ S232で YES)、制御回路 10は赤色の設定値を一時記憶する(ステップ S237 )。また、ユーザが「緑」を選択していずれかの値に設定した場合 (ステップ S232で N 0、 S233で YES)、制御回路 10は緑色の設定値を一時記憶する(ステップ S238)。 また、ユーザ力 S「青」を選択していずれかの値に設定した場合 (ステップ S232、 S233 で N〇、 S234で YES)、制御回路 10は青色の設定値を一時記憶する(ステップ S23 9)。更にユーザが「明るさ」を選択してレ、ずれかの値に設定した場合 (ステップ S232 、 S233、 S234で NO、 S235で YES)、制御回路 10は白色の設定値を一時記憶す る(ステップ S 240)。
[0094] 以上のようにして一時記憶された各色の設定値は制御回路 10からランプ駆動回路 11のランプ制御回路 22に設定され (ステップ S241)、その後ステップ S23へ処理が 戻される。
[0095] なお、モード設定画面上でユーザが「終了」を選択した場合 (ステップ S232、 S233 、 S234、 S235で NO、 S236で YES)、制 ί卸回路 10は図 5に示すメインノレ一チンへ 処理を戻す。またステップ S232乃至 S236のいずれにおいても" Ν〇"であった場合 には制御回路 10は処理をステップ S231へ戻してユーザからの指示を待機する。ま た、フローチャートには示さないが、ユーザが「リセット」を選択した場合には、ランプ 1 の各色の明るさが通常の値に維持される初期状態に各設定が戻される。
[0096] 以上のようにしてユーザによる画質調整の設定が行なわれた後、ユーザが画像投 射の指示を操作部 14に与えると(ステップ S13で YES)、制御回路 10は画像投射を 開始する(ステップ S31)。従って、これ以降にプロジェクタが投射する画像はその色 要素の内の少なくとも一つが投射される際にランプ 1の光量が増加することによりその 色の光量が増加した画像になる。
[0097] なお画像投射開始中(ステップ S31、 S32で NO、 S33で NO)においても、ユーザ は操作部 14の操作により任意に時点で画質の調整を行なうことが可能である (ステツ プ S32で YES)。そして、ユーザが操作部 14の操作により終了を指示した場合 (ステ ップ S32で NO、 S33で YES)には、画像投射の途中であるか否かには拘わらずにこ の処理は終了する。
実施例 2
[0098] 次に、ランプとして特許文献 3及び 4に記載されているような、直流電流値の位相を 特定期間毎に反転させる交流駆動方式のランプを使用した場合について実施例 2と して説明する。図 10は本発明に係るプロジェクタの実施例 2の構成例を示す模式的 ブロック図である。
[0099] 本実施例 2のプロジェクタは、光源であるランプ 101と、図示例では 4色、具体的に は白(W) ,青(B) ,赤 (R) ,緑 (G)の各色の光をそれぞれ透過させる透光性のフィル タセグメントを回転領域に配列した回転カラーフィルタ 2と、この回転カラーフィルタ 2 のいずれかのフィルタセグメントを透過したランプ 101からの出射光を画像データに 基づいて空間光変調する空間光変調手段としての DMD (Digital Micromirror Device) 3と、この DMD3が変調した変調光を外部のスクリーン等へ投射するための 複数のレンズで構成される投射光学系 4と、後述する制御系等で構成されてレ、ること は前述した実施例 1と同様である。但し、図 10にその構成例を示した本実施例 2では 、ランプ 101として特許文献 3及び 4に記載されているような、直流電流値の位相を特 定期間毎に反転させる交流駆動方式のランプを使用している。
[0100] なお、本実施例 2のプロジェクタも前述した実施例 1のプロジェクタと同様に、外部 のスクリーン等へ画像を投射するいわゆるフロント投射方式にも、スクリーンの背面か ら投射するリア投射方式にも適用可能である。また、本実施例 2では空間光変調手 段として DMDを備えているが、他の空間光変調手段、たとえば液晶パネル等を使用 することも勿論可能である。更に、ランプ 101と回転カラーフィルタ 2との間、及び回転 カラーフィルタ 2と DMD3との間にも適宜の光学系が介装されている力 S、本発明とは 直接の関係はないので省略する。
[0101] 制御系は、マイクロコンピュータ,マイクロプロセッサ等を利用した制御回路 100と、 この制御回路 100からの設定を受けてランプ 101の駆動を制御するランプ駆動回路 111と、同じく回転カラーフィルタ 2の回転を制御するフィルタ駆動回路 12と、同じく D MD3を制御する DMD駆動回路 13と、ユーザによる操作指示を制御回路 100が受 け付ける操作部 14と等で構成されている。なお、制御回路 100によるユーザへの種 々の案内、指示等は操作部 14に併設されている LCD等の表示装置に表示してもよ いし、制御回路 100の制御によるいわゆるオンスクリーン表示(OSD)であってもよい し、両者を併用することも勿論可能である。
[0102] ランプ 101は前述した如ぐたとえば特許文献 3及び 4に開示されているような、直 流電流値の位相を特定期間毎に反転させる交流駆動方式のランプを使用している。 このような交流駆動方式のランプ 101は直流電流値を増加させることによって出射光 の光量を増加させることが可能である。
[0103] このランプ 101は商用交流電源 20に接続されたランプ駆動回路 111から、制御回 路 100の設定に従って特定期間毎に直流電流値の位相が反転される交流電流が印 カロされることにより光を出射する。なお、このランプ 101からの出射光の光量の制御は 、制御回路 100から制御信号 S1をランプ駆動回路 111に与えることにより、ランプ 10 1に印加される電流値の振幅及びタイミングをランプ駆動回路 111が制御することに よって可能である。
[0104] 図 11は本発明に係るプロジェクタの実施例 2のランプ駆動回路 111の構成例を示 す模式図である。電源回路 121は商用交流電源を入力して所定電流値の直流電流 に変換し、特定期間毎に位相を反転させつつランプ 101に電流を印加する。電源回 路 121からランプ 101への印加電流値は信号 SVとしてランプ制御回路 122へフィー ドバックされて通常は位相反転するまでの間は一定値に維持される。一方、ランプ制 御回路 122へは制御回路 100からの制御信号 S1により、電源回路 121からランプ 1 01に印加される直流電流の値と位相とを制御するための情報が与えられる。この情 報は、変動させる電流値と位相反転のタイミングとの双方を設定するための情報であ る。
[0105] 更に、ランプ制御回路 122にはフィルタ駆動回路 12から回転カラーフィルタ 2の回 転状態、具体的にはどの色の光を透過させるフィルタセグメントがどの位置にあるか を示す情報が信号 S2として与えられる。またこの信号 S2は図 10に示す信号 S3とし て制御回路 100にも与えられている。なお、制御回路 100に与えられた信号 S3は、 制御回路 100からランプ駆動回路 111へ与えられる制御信号 S1のタイミング制御に 利用される。なお、ランプ制御回路 122には自身からの出射光が回転カラーフィルタ 2の各フィルタセグメントを透過するタイミングが判明しているので、このタイミングと制 御回路 100から与えられる制御信号 S1で設定されているタイミングとの関係から、ラ ンプ 101に与えている電流を実際に変動させるタイミングを決定する。
[0106] 以上のことから、ランプ制御回路 122は、制御回路 100からの制御信号 S1により設 定される情報と、フィルタ駆動回路 12から信号 S2として与えられるタイミングとに従つ て、制御信号 SCを電源回路 121へ与える。この制御信号 SCが与えられることにより 、制御信号 SCにより指定される電流値の変化が制御信号 SCにより指定される期間、 電源回路 121からランプ 101に印加される電流に重畳されるので、その分だけランプ 101に与えられる電流値が増加し、結果的にランプ 101の出射光量が増加する。
[0107] 回転カラーフィルタ 2は、本発明に係るプロジェクタの実施例 2の稼働時には制御 回路 100の制御に従って、図示しないァクチユエータを含むフィルタ駆動回路 12に より矢符方向に一定速度で回転する。この回転カラーフィルタ 2は詳細は前述した実 施例 1と同様であり、ランプ 101からの出射光を 4色に時系列的に分離して DMD3へ 与える。なお、フィルタ駆動回路 12は回転カラーフィルタ 2の回転位置を検知する手 段を備えていることは実施例 1の場合と同様であり、従っていずれのフィルタセグメン トが各時点でランプ 101からの出射光を DMD3へ透過させているかをランプ制御回 路 122が知ることができる。
[0108] DMD3は、制御回路 100の制御に従って、図示しない画像データ供給手段、具体 的にはたとえばコンピュータ、 DVDプレーヤ、 TVチューナ等から与えられるデジタル 画像データに応じて、回転カラーフィルタ 2を透過してきた光を変調して投射光学系 4方向へ投射する。なお、投射光学系 4は図示例ではフロント投射方式用の光学系 を示している力 実施例 1と同様にリア投射方式用のそれであってもよい。また、この 投射光学系 4も、実施例 1の場合と同様に、制御回路 100の制御に従って、ズーム調 整,キーストン調整等が可能であることはいうまでもない。
[0109] なお、上述した実施例 1及び実施例 2ではいずれも基本的には、ランプ 1 (101)の 光量を増加させることにより、スクリーンへ投射される画像中の個々の色成分の明るさ を調整するようにしている。しかし、明るさを調整する対象の色成分の画像データが D MD3に与えられている期間内においてランプ 1 (101)の光量を増加させる期間を増 大させると共に、これに対応させて DMD3に与えられる画像データの信号の期間を 増大することによつても、スクリーンへ投射される画像中の特定の色成分の明るさを 増大させることが可能になる。換言すれば、ランプ 1 (101)からの出射光が回転カラ 一フィルタ 2の特定の色の光を透過させるフィルタセグメントを透過するトータルの光 量 (光量の増加量とその持続期間との積で定まる)により、スクリーンへ投射される画 像中の各色成分の明るさを調整することが可能である。
[0110] ところで、上述のいずれの実施例においても、光源として使用されているランプ 1 (1 01)は高圧水銀ランプであり、点灯開始時点から安定状態になるまでの間はスぺタト ラム特性が安定状態時に比してアンバランスであり、また出射光量も漸増して安定状 態になるので、その間の投射画像はスペクトラム特性のアンバランスさに対応して色 の再現性が悪ぐまた暗いという問題があった。このような問題点を解決するために、 本発明のプロジェクタではランプ 1 (101)の点灯開始時点から安定状態になるまでの 間に制御回路 10 (100)は以下のような制御を行なう。
[0111] なお、ランプ 1 (101)が点灯開始時点から安定状態になるまでの時間、及びその間 のスペクトラム特性の状態、更には出射光量の増加の割合等は予め判明しており、 制御回路 10 (100)にはそれらの情報が予め与えられている。
[0112] ランプ 1 (101)の点灯時にフィルタ駆動回路 12から回転カラーフィルタ 2の回転状 態、具体的にはいずれのフィルタセグメントがいずれの位置にあるかを示す情報が信 号 S2としてランプ駆動回路 11 (111)のランプ制御回路 22 (122)に与えられる。また この信号 S2は信号 S3として制御回路 10 (100)へも与えられているので、制御回路 10 (100)はランプ 1 (101)が安定状態になるまでの間のスペクトラム特性に対応させ てホワイトバランスが維持されるように特定の色の明るさが増大するような制御信号 s
1をランプ駆動回路 11 (111)のランプ制御回路 22 (122)に与える。これに応じてラ ンプ制御回路 22 (122)はランプ 1 (101)に与えられる電流値を制御する制御信号 S
Cを電源回路 21 (121)へ与える。
[0113] このような制御回路 10 (100)の制御により、ランプ 1 (101)が点灯した時点力も安 定状態になるまでの間のランプ 1 (101)のスペクトラム特性のアンバランスに起因す る色再現性の悪さが改善される。
[0114] また制御回路 10 (100)はランプ 1 (101)が安定状態になるまでの間のランプ 1 (10
1)の明るさに対応させて白色の明るさを増大させるように制御信号 S1をランプ駆動 回路 11 (111)のランプ制御回路 22 (122)に与える。これに応じてランプ制御回路 2
2 (122)はランプ 1 (101)に与えられる電流値を制御する制御信号 SCを電源回路 2
1 (121)へ与え、白色光の光量を増大させる。
[0115] このような制御回路 10 (100)の制御により、ランプ 1 (101)が点灯した時点から安 定状態になるまでの間のランプ 1 (101)の明るさが安定状態時に比して暗いことに起 因する投射画像の暗さが改善される。
[0116] なお、制御回路 10 (100)はランプ 1 (101)の点灯時点から安定状態になるべき時 間が経過した時点以降は前述したような通常の制御状態になる。
[0117] 以上に詳述したように、本発明に係るプロジェクタによれば、回転カラーフィルタに よる制約には拘わらずに、従来の単板方式で回転カラーフィルタを使用するプロジェ クタに存在していた空間光変調手段から投射される画像の明るさと色再現性、色温 度との間のトレードオフの関係が解消されるので、投射画像の色再現性のみならず、 明るさに関しても任意に調整することができる。
産業上の利用可能性
[0118] また本発明に係るプロジェクタは、印加される直流電流にパルス電流を重畳する、 換言すれば印加される直流電流値を増加させることによりランプからの出射光の光量 を増加させることが可能な直流駆動方式のランプにも、また直流電流値の位相を特 定期間毎に反転させる交流駆動方式のランプにも適用可能である。

Claims

請求の範囲
[1] 白色光を出射する光源と、該光源からの出射光を画像を表す変調光に変換する空 間光変調手段と、複数の有彩色光をそれぞれ透過させるフィルタセグメントが配列さ れた回転領域を有し、前記光源と空間光変調手段との間に前記回転領域が介在し て回転することにより前記光源からの出射光を前記複数の有彩色に分離する回転力 ラーフィルタとを備えたプロジェクタにおいて、
前記光源からの出射光の光量を変更する機能を有する光源駆動手段と、 前記光源からの出射光が前記回転カラーフィルタの前記複数の有彩色の光をそれ ぞれ透過させるフィルタセグメントの内の少なくとも 2色の光を透過させるフィルタセグ メントを透過するそれぞれの期間に、前記光源からの出射光の光量が増加するように 、前記光源駆動手段を制御する制御手段と
を備えたことを特徴とするプロジェクタ。
[2] 白色光を出射する光源と、該光源からの出射光を画像を表す変調光に変換する空 間光変調手段と、白色光及び複数の有彩色光をそれぞれ透過させるフィルタセグメ ントが配列された回転領域を有し、前記光源と空間光変調手段との間に前記回転領 域が介在して回転することにより前記光源からの出射光を白色及び複数の有彩色に 分離する回転カラーフィルタとを備えたプロジェクタにおいて、
前記光源からの出射光の光量を変更する機能を有する光源駆動手段と、 前記光源からの出射光が前記回転カラーフィルタの前記複数の有彩色の光をそれ ぞれ透過させるフィルタセグメントの内の少なくとも 1色の光を透過させるフィルタセグ メントを透過する期間に、前記光源からの出射光の光量が増加するように、前記光源 駆動手段を制御する制御手段と
を備えたことを特徴とするプロジェクタ。
[3] 前記制御手段は、前記光源からの出射光の光量の増加量を変更することを可能に 構成してあることを特徴とする請求項 1又は 2に記載のプロジェクタ。
[4] 前記制御手段は、前記光源からの出射光の光量を増加させる期間を変更すること を可能に構成してあることを特徴とする請求項 1又は 2に記載のプロジェクタ。
[5] 前記有彩色は赤,緑,青であることを特徴とする請求項 1乃至 4のいずれか一つに 記載のプロジェクタ。
[6] 前記有彩色はシアン,マゼンタ,イェローであることを特徴とする請求項 1乃至 4の いずれか一つに記載のプロジェクタ。
[7] 前記有彩色は赤,緑,青,シアン,マゼンタ,イェローであることを特徴とする請求 項 1乃至 4のいずれか一つに記載のプロジェクタ。
[8] 前記有彩色は赤,緑,青と、シアン及び/又はマゼンタ及び Z又はイェローである ことを特徴とする請求項 1乃至 4のいずれか一つに記載のプロジェクタ。
[9] 白色光を出射する光源と、該光源からの出射光を画像を表す変調光に変換する空 間光変調手段と、白色光及び複数の有彩色光をそれぞれ透過させるフィルタセグメ ントが配列された回転領域を有し、前記光源と空間光変調手段との間に前記回転領 域が介在して回転することにより前記光源からの出射光を白色及び赤,緑,青の 3色 に分離する回転カラーフィルタとを備えたプロジェクタにおいて、
前記光源からの出射光の光量を変更する機能を有する光源駆動手段と、 白色光を透過させるフィルタセグメントを透過する前記光源からの出射光の光量に 比して、赤色及び緑色光を透過させるフィルタセグメントを透過する前記光源からの 出射光の光量の増加量が共に第 1の割合である第 1のモードと、該第 1の割合よりも 大なる第 2の割合である第 2のモードとを選択的に設定する制御手段と
を備えたことを特徴とするプロジェクタ。
[10] 前記第 1の割合が 20%以下であり、前記第 2の割合が 40乃至 50%であることを特 徴とする請求項 9に記載のプロジェクタ。
[11] 白色光を出射する光源と、該光源からの出射光を画像を表す変調光に変換する空 間光変調手段と、白色光及び複数の有彩色光をそれぞれ透過させるフィルタセグメ ントが配列された回転領域を有し、前記光源と空間光変調手段との間に前記回転領 域が介在して回転することにより前記光源からの出射光を白色及び赤,緑,青の 3色 に分離する回転カラーフィルタとを備えたプロジェクタにおいて、
前記光源からの出射光の光量を変更する機能を有する光源駆動手段と、 白色光を透過させるフィルタセグメントを透過する前記光源からの出射光の光量に 比して、他の各色の光を透過させるフィルタセグメントを透過する前記光源からの出 射光の光量の増加量をそれぞれ任意に設定する制御手段と
を備えたことを特徴とするプロジェクタ。
[12] 前記制御手段は、白色光及び他の各色の光を透過させるフィルタセグメントを透過 する前記光源からの出射光の光量を、前記光源からの出射光の光量の増加により、 又は前記光源からの出射光の光量の増加量及び前記光源からの出射光の光量を 増加させる期間の双方を変更することにより増加させるように構成してあることを特徴 とする請求項 9乃至 11のいずれか一つに記載のプロジェクタ。
[13] 前記制御手段は、前記光源の点灯時点から安定状態になるまでの期間にアンバラ ンスである前記光源のスペクトラム特性が補償されるように前記光源駆動手段を制御 することを特徴とする請求項 1乃至 12のいずれか一つに記載のプロジェクタ。
[14] 前記制御手段は、前記光源の点灯時点から安定状態になるまでの期間に漸増す る前記光源力 の出射光の光量が補償されるように前記光源駆動手段を制御するこ とを特徴とする請求項 1乃至 12のいずれか一つに記載のプロジェクタ。
PCT/JP2005/005184 2004-09-03 2005-03-23 プロジェクタ WO2006027866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006535026A JP4633057B2 (ja) 2004-09-03 2005-03-23 プロジェクタ
EP05721284.7A EP1811333B1 (en) 2004-09-03 2005-03-23 Projector
CN2005800293779A CN101010628B (zh) 2004-09-03 2005-03-23 投影仪
US11/661,887 US20090002577A1 (en) 2004-09-03 2005-03-23 Projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-257638 2004-09-03
JP2004257638 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006027866A1 true WO2006027866A1 (ja) 2006-03-16

Family

ID=36036160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005184 WO2006027866A1 (ja) 2004-09-03 2005-03-23 プロジェクタ

Country Status (7)

Country Link
US (1) US20090002577A1 (ja)
EP (1) EP1811333B1 (ja)
JP (1) JP4633057B2 (ja)
KR (1) KR100844235B1 (ja)
CN (1) CN101010628B (ja)
TW (1) TWI277821B (ja)
WO (1) WO2006027866A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279366A (ja) * 2006-04-06 2007-10-25 Sharp Corp プロジェクタ
WO2008157469A1 (en) * 2007-06-20 2008-12-24 Texas Instruments Incorporated Illumination source and method
JP2009031492A (ja) * 2007-07-26 2009-02-12 Sanyo Electric Co Ltd 投写型映像表示装置
JP2010164848A (ja) * 2009-01-16 2010-07-29 Casio Computer Co Ltd 投影装置、投影方法及びプログラム
JP2011217310A (ja) * 2010-04-02 2011-10-27 Seiko Epson Corp プロジェクター及び画像表示方法
JP2014041359A (ja) * 2013-09-20 2014-03-06 Casio Comput Co Ltd 投影装置、投影方法及びプログラム
JP2014157348A (ja) * 2013-01-17 2014-08-28 Panasonic Corp 映像投写装置および映像投写方法
WO2015136616A1 (ja) * 2014-03-11 2015-09-17 Necディスプレイソリューションズ株式会社 画像表示装置および画像表示方法
JP2017134407A (ja) * 2012-12-26 2017-08-03 株式会社リコー 光源装置及びこれを用いたプロジェクタ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155571A1 (ja) * 2013-03-27 2014-10-02 Necディスプレイソリューションズ株式会社 投写型表示装置および投写型表示装置の制御方法
JP6371158B2 (ja) * 2013-11-14 2018-08-08 ルネサスエレクトロニクス株式会社 Ledランプ、プロジェクタ、データ処理方法、及び衝突防止装置
CN105785700B (zh) * 2016-01-14 2018-05-04 四川长虹电器股份有限公司 激光显示系统
CN108710256B (zh) * 2018-03-30 2020-09-08 苏州佳世达光电有限公司 分光模块及应用其的投影装置
CN116546689A (zh) * 2022-01-25 2023-08-04 苏州佳世达光电有限公司 显示装置及相关驱动电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003263902A (ja) * 2002-03-08 2003-09-19 Seiko Epson Corp 照明装置
JP2004101722A (ja) * 2002-09-06 2004-04-02 Matsushita Electric Ind Co Ltd 照明光学装置、投写型表示装置、及びこれを用いた背面投写型表示装置
JP2004526992A (ja) * 2001-02-06 2004-09-02 インフォーカス コーポレイション カラー順次投影ディスプレイのランプ電力パルス変調

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591274A (en) * 1969-05-27 1971-07-06 Rca Corp Projection of color-coded b and w transparencies
JPH05232428A (ja) * 1992-02-19 1993-09-10 Sanyo Electric Co Ltd 投写型液晶表示装置
US5706061A (en) * 1995-03-31 1998-01-06 Texas Instruments Incorporated Spatial light image display system with synchronized and modulated light source
JPH11264953A (ja) * 1998-03-17 1999-09-28 Minolta Co Ltd カラー投影装置
JP4250799B2 (ja) * 1999-03-24 2009-04-08 三菱電機株式会社 ディスプレイ装置
JP3983950B2 (ja) * 1999-12-28 2007-09-26 株式会社東芝 投射型表示装置
JP2002006395A (ja) * 2000-06-26 2002-01-09 Canon Inc 画像表示装置
JP2003102030A (ja) * 2001-09-19 2003-04-04 Matsushita Electric Ind Co Ltd 色順次表示装置とこれに用いる光源駆動制御装置
JP2003307705A (ja) * 2002-02-18 2003-10-31 Plus Vision Corp 照明光学系およびそれを用いたプロジェクタ
JP2004012876A (ja) * 2002-06-07 2004-01-15 Toshiba Corp 投射型表示装置
JP2004207018A (ja) * 2002-12-25 2004-07-22 Seiko Epson Corp 光源駆動回路、プロジェクタ、光源の点灯制御方法、及びこの方法を実行させるコンピュータ読み取り可能なプログラム
JP2004212890A (ja) * 2003-01-08 2004-07-29 Phoenix Denki Kk 投射型システムとその作動方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526992A (ja) * 2001-02-06 2004-09-02 インフォーカス コーポレイション カラー順次投影ディスプレイのランプ電力パルス変調
JP2003263902A (ja) * 2002-03-08 2003-09-19 Seiko Epson Corp 照明装置
JP2004101722A (ja) * 2002-09-06 2004-04-02 Matsushita Electric Ind Co Ltd 照明光学装置、投写型表示装置、及びこれを用いた背面投写型表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811333A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279366A (ja) * 2006-04-06 2007-10-25 Sharp Corp プロジェクタ
US8472102B2 (en) 2007-06-20 2013-06-25 Texas Instruments Incorporated Illumination source and method therefor
WO2008157469A1 (en) * 2007-06-20 2008-12-24 Texas Instruments Incorporated Illumination source and method
US7719766B2 (en) 2007-06-20 2010-05-18 Texas Instruments Incorporated Illumination source and method therefor
US8031390B2 (en) 2007-06-20 2011-10-04 Texas Instruments Incorporated Illumination source and method therefor
JP2009031492A (ja) * 2007-07-26 2009-02-12 Sanyo Electric Co Ltd 投写型映像表示装置
JP2010164848A (ja) * 2009-01-16 2010-07-29 Casio Computer Co Ltd 投影装置、投影方法及びプログラム
JP2011217310A (ja) * 2010-04-02 2011-10-27 Seiko Epson Corp プロジェクター及び画像表示方法
US8902243B2 (en) 2010-04-02 2014-12-02 Seiko Epson Corporation Projector and image display method
JP2017134407A (ja) * 2012-12-26 2017-08-03 株式会社リコー 光源装置及びこれを用いたプロジェクタ
JP2014157348A (ja) * 2013-01-17 2014-08-28 Panasonic Corp 映像投写装置および映像投写方法
JP2014041359A (ja) * 2013-09-20 2014-03-06 Casio Comput Co Ltd 投影装置、投影方法及びプログラム
WO2015136616A1 (ja) * 2014-03-11 2015-09-17 Necディスプレイソリューションズ株式会社 画像表示装置および画像表示方法

Also Published As

Publication number Publication date
JP4633057B2 (ja) 2011-02-16
TW200609649A (en) 2006-03-16
KR20070046954A (ko) 2007-05-03
EP1811333A1 (en) 2007-07-25
CN101010628B (zh) 2013-03-20
KR100844235B1 (ko) 2008-07-07
EP1811333A4 (en) 2011-06-01
TWI277821B (en) 2007-04-01
EP1811333B1 (en) 2017-12-27
CN101010628A (zh) 2007-08-01
US20090002577A1 (en) 2009-01-01
JPWO2006027866A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4633057B2 (ja) プロジェクタ
US7283181B2 (en) Selectable color adjustment for image display
JP3781743B2 (ja) 映像表示装置
JP4552986B2 (ja) 画像表示装置
JP2005266324A (ja) 投射光学装置および投射型画像表示装置
EP1460855A1 (en) Display image generation with differential illumination
EP2460358B1 (en) Display method with expanded color gamut
JP2007194950A (ja) 投射型画像表示システム、投射型画像表示装置、およびランプ点灯制御方法
JP2004045989A (ja) 投影型表示装置及びその表示駆動方法
JP4540499B2 (ja) 点灯装置
JP2004531756A (ja) 投写形ディスプレイシステム
JP2002207192A (ja) 映像表示装置及び駆動回路
JP4552985B2 (ja) 画像表示装置
JP4487091B2 (ja) 表示装置
JP4707646B2 (ja) プロジェクタ
JP2007529026A5 (ja)
JP4186905B2 (ja) カラーホイールとそれを用いた投写型表示装置
JP2006220752A (ja) プロジェクタ
JP2006220751A (ja) プロジェクタ
US20050062941A1 (en) Projection-type display apparatus and method for enhancing image quality
JP2007072241A (ja) カラープロジェクタ
JP2004205798A (ja) カラー画像表示装置の画像調整方法、カラー画像表示装置の画像調整装置およびカラー画像表示装置
JP2010164848A (ja) 投影装置、投影方法及びプログラム
JP2006011084A (ja) 画像表示装置のカラーホイール制御装置
JP2004138733A (ja) 映像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535026

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580029377.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11661887

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005721284

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077006887

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005721284

Country of ref document: EP