WO2006016639A1 - (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法 - Google Patents

(メタ)アクリル酸エステル重合体または共重合体の連続的製造方法 Download PDF

Info

Publication number
WO2006016639A1
WO2006016639A1 PCT/JP2005/014721 JP2005014721W WO2006016639A1 WO 2006016639 A1 WO2006016639 A1 WO 2006016639A1 JP 2005014721 W JP2005014721 W JP 2005014721W WO 2006016639 A1 WO2006016639 A1 WO 2006016639A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
polymerization
acid ester
polymerization reaction
ester
Prior art date
Application number
PCT/JP2005/014721
Other languages
English (en)
French (fr)
Inventor
Kenichi Hamada
Yoshihiro Morishita
Tatsufumi Watanabe
Kazushige Ishiura
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to US11/659,964 priority Critical patent/US7973117B2/en
Priority to EP05770786A priority patent/EP1780222B1/en
Priority to DE602005011303T priority patent/DE602005011303D1/de
Priority to JP2006531715A priority patent/JP4884968B2/ja
Publication of WO2006016639A1 publication Critical patent/WO2006016639A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof

Definitions

  • the living anion polymerization method is a polymerization method suitable for conducting molecular design of the primary structure of a block copolymer, controlling the molecular weight of a polymer with few side reactions such as chain transfer and deactivation. is there. Therefore, in recent years, block copolymers or graft copolymers useful for thermoplastic elastomers and polymer compatibilizers, telechelic polymers having reactive functional groups, and rosins for coatings as hot-melt adhesive materials It has been attracting attention as a method for producing a polymer that requires molecular design, such as a star-type polymer useful for such purposes, which has been difficult with ordinary radical polymerization methods.
  • Examples of monomers capable of cation polymerization include nonpolar cation polymerizable monomers such as styrene, butadiene, isoprene, and derivatives thereof; methacrylate esters, acrylate esters, methacrylamides, acrylamides, and methacrylates.
  • Polar-on polymerizable monomers such as mouth-tolyl, acrylonitrile and their derivatives.
  • Nonpolar key-polymerizable monomers can be ion-polymerized while maintaining high living properties, and have already been applied to industrial polymerization.
  • the polar monomer polymerizable monomer usually undergoes side reaction with the polar functional group (ester group, amide group, nitrile group, etc.) in the monomer during the polymerization of the monomer. I will. Therefore, in order to suppress the side reaction and to carry out living-on polymerization of a polar 'polar-on polymerization' monomer, it is generally necessary to polymerize under a cryogenic condition such as 78 ° C. However, there were problems such as requiring a large amount of cooling equipment and increasing the equipment cost during the industrial process.
  • a polymerization reaction method raw materials to be used are collectively supplied to a polymerization reaction tank, and after completion of the reaction, the reaction mixture is extracted and led to a polymer isolation step, and if necessary, the polymerization reaction tank A batch system in which the next polymerization reaction is performed after washing; the raw material is continuously supplied to the polymerization reaction tank, and the reaction mixture is continuously taken out from the reaction system to lead to the polymer isolation step.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-56910
  • Patent Document 2 US Pat. No. 5,886,112 Specification
  • Patent Document 3 US Patent No. 6013735
  • Example 1 of (1) above the force to obtain polymethyl methacrylate (PMMA) with a molecular weight distribution of 1.09, which is very narrow.
  • the reaction temperature is an extremely low temperature of 78 ° C. It is difficult.
  • a polar monomer such as metatalylate or attalylate is preferably 40 ° C. or less” as a suitable reaction temperature, but it is also adopted industrially at 40 ° C. It is difficult.
  • a polar monomer such as metatalylate or attalylate is preferably 40 ° C. or less
  • the molecular weight distribution of the obtained star polymer is 1.3 to 1.8, and the molecular weight distribution of the polymer obtained by ordinary living-on polymerization
  • the polymerization method (3) which is more powerful than that of 1.01 to 1.20, is also insufficient in living properties. Disclosure of the invention
  • the ratio of the molar amount of methacrylic acid ester or acrylic acid ester to be fed to the reactor and ((molar amount of organoaluminum compound) [molar amount of polymerization initiator]) ⁇ Molar amount of methacrylic acid ester or acrylic acid ester] z ([Mole amount of organoaluminum compound] [Mole amount of polymerization initiator]) ⁇ is controlled within a specific range and supplied to the reactor.
  • the content of methacrylic acid ester or acrylic acid ester in the total supply amount of polymerization initiator solution and methacrylic acid ester or acrylic acid ester supplied to the reactor is controlled to 5% by mass or less.
  • Two or more reactors are connected in series, and a polymerization initiator solution containing an organoaluminum compound and at least one methacrylic acid ester or acrylate ester are continuously supplied to the first reactor to produce organoaluminum.
  • a polymerization reaction liquid containing a compound and a living polymer of methacrylic acid ester and Z or acrylic acid ester and then the same as the polymerization reaction liquid and the methacrylic acid ester or acrylic acid ester supplied to the first reactor or At least one different methacrylic acid ester or acrylic acid ester is continuously fed to the (n + 1) th reactor (n represents a natural number), and the organoaluminum compound, the methacrylic acid ester and the Z or acrylate ester are supplied.
  • methacrylate methacrylate fed to the reactor Ratio of molar amount of tellurium or acrylic ester to ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) ⁇ [molar amount of methacrylic ester or acrylic ester
  • the content of methacrylic acid ester or acrylic acid ester in the total supply amount of polymerization initiator solution or polymerization reaction liquid and methacrylic acid ester or acrylic acid ester supplied to the reactor is controlled to 5% by mass or less.
  • the molecular weight distribution is narrow V, while maintaining a high polymerization rate and high living property under mild conditions, without using extremely low temperature conditions as in the conventional method.
  • a (meth) acrylic acid ester polymer or copolymer can be produced with high yield and high productivity.
  • polymerization initiator used in the present invention a well-known key-on polymerization initiator can be used. Examples thereof include organic lithium compounds, organic sodium compounds, organic potassium compounds, and organic magnesium compounds.
  • Examples of the organic lithium compound include methyllithium, ethyllithium, n-propynolethium, isopropyllithium, n-butynolethium, sbutynolethium, isobutyllithium, t-butyllithium, n-pentyllithium, n-hexyl.
  • Examples of the organic sodium compound include methyl sodium, ethyl sodium, n-propyl sodium, isopropyl sodium, n-butinole sodium, s butinole sodium, isobutyl sodium, t-butyl sodium, n-pentyl sodium, n-hexyl sodium, tetramethylene disodium, pentamethylene disodium, hexamethylene dinatryl sodium, p-tolyl sodium, xylyl sodium, sodium naphthalene, etc.
  • organomagnesium compound examples include dimethylmagnesium, jetylmagnesium, dibutylmagnesium, ethylbutylmagnesium, methylmagnesium chloride, ethylmagnesium chloride, ethylmagnesium bromide, phenolmagnesium chloride, and phenolmagnesium.
  • organomagnesium compound examples include dimethylmagnesium, jetylmagnesium, dibutylmagnesium, ethylbutylmagnesium, methylmagnesium chloride, ethylmagnesium chloride, ethylmagnesium bromide, phenolmagnesium chloride, and phenolmagnesium.
  • a part of the polymerization initiator is also used as a living-on polymerization initiator such as a linear or cyclic conjugation compound, a vinyl aromatic compound, and (meth) acrylic acid amide.
  • a living polymer having a metal active terminal thus formed may be used as the polymerization initiator of the present invention.
  • an arbitrary polymer having an anion capable site may be used as a polymerization initiator of the present invention after being turned on with a vinyl polymerization initiator such as an organolithium compound.
  • poly ( ⁇ -methylstyrene) dissolved in cyclohexane in an inert gas atmosphere is reacted with s-butyllithium in the presence of ⁇ , ⁇ , ⁇ ', ⁇ , monotetramethylethylenediamine
  • poly ( ⁇ -methylstyrene) having an appropriate amount of the methyl group at the para position can be obtained, and a graft copolymer can be obtained by using this as a polymerization initiator. it can.
  • the amount of the polymerization initiator used is not particularly limited, but usually the concentration in the polymerization reaction solution is in the range of 0.1 to 100 mmolZl, preferably in the range of 1 to 10 mmolZl. It is preferable that the target polymer or copolymer can be produced smoothly.
  • the organoaluminum compound used in the present invention has the following general formula (I):
  • R 1 R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl group which may have a substituent.
  • R 1 represents any one of the groups described above, and R 2 and R 3 together have a substituent and may represent a mono-dioxy group.
  • organoaluminum compound (I) an organoaluminum compound represented by the formula (hereinafter referred to as organoaluminum compound (I)).
  • the alkyl groups represented by R ⁇ R 2 and R 3 are, for example, methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group, s butyl group, t butyl group. Group, 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group and the like.
  • the cycloalkyl group include cyclopentyl group, cyclohexyl group and the like.
  • alkyl groups and cycloalkyl groups may have a substituent, for example, as an alkoxy group such as methoxy group, ethoxy group, isopropoxy group, t-butoxy group; chlorine atom, bromine atom And halogen atoms.
  • Examples of the aryl group represented by R 2 and R 3 include a phenyl group and a naphthyl group, and examples of the aralkyl group include a benzyl group and a 1 phenyl group. These aryl groups and aralkyl groups may have a substituent. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n butyl group, an isobutyl group, or an s butyl group may be used.
  • T-butyl group 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group and other alkyl groups; methoxy group, ethoxy group, isopropoxy group, t-butoxy group and other alkoxyl groups; chlorine And halogen atoms such as atoms and bromine atoms.
  • substituents include a methyl group, an ethyl group, an npropyl group, an isopropyl group, and an nbutyl group.
  • Examples include alkoxyl groups such as butoxy groups; halogen atoms such as chlorine and bromine.
  • the arylenedioxy group represented by R 2 and R 3 together includes, for example, 2, 2, Phenol, 2, 2, 1-methylene bisphenol, 2, 2, 1-methylene bis (4-methyl 6-t butyl phenol), (R) — (+) —l, 1, —b 2-naphthol, (S) — Examples include (—)-1, 1, 1 and 1 2-naphthol.
  • These arylenedioxy groups which may have one or more substituents include, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • Alkyl groups such as butyl group, t-butyl group, 2-methylbutyl group, 3-methylbutyl group, n-octyl group, 2-ethylhexyl group; alkoxyl groups such as methoxy group, ethoxy group, isopropoxy group, t-butoxy group Group; halogen atoms such as chlorine atom, bromine atom and the like.
  • the organoaluminum compound (I) is used from the viewpoint of improving the living property during the polymerization reaction of the (meth) acrylic acid ester. It is preferable that at least one of R 2 and R 3 is an aryloxy group which may have a substituent. It is more preferable that two of R 2 and R 3 have a substituent but are aryloxy groups. You may have a powerful substituent!
  • organoaluminum compound (I) include jetyl (2,6 di-t-butyl-4-methylphenoxy) aluminum and jetyl (2,6 di-t-butylphenoxy).
  • Examples of the methacrylic acid ester used as a raw material in the method of the present invention include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, allylic methacrylate, n-butyl methacrylate, and t-butyl methacrylate.
  • acrylic ester used as a raw material in the method of the present invention examples include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, aryl acrylate, n-butyl acrylate, and t-butyl acrylate.
  • Cyclohexyl acrylate atari Benzyl sulfate, 2-ethylhexyl acrylate, lauryl acrylate, glycidyl acrylate, trimethoxysilylpropyl acrylate, methoxyethyl acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, acrylic acid and N dimethylamino Examples include ethyl, acrylic acid and N-ethylaminoethyl.
  • a polyfunctional compound having two or more carbon-carbon double bonds in the molecule can also be used as the (meth) acrylic acid ester.
  • a macromonomer having a carbon-carbon double bond of (meth) acrylic acid ester at the terminal can also be used as the (meth) acrylate ester.
  • (Meth) acrylic acid ester may be used alone or in combination of two or more.
  • (meth) acrylic acid esters may be used after diluting at an arbitrary ratio using a solvent used for polymerization.
  • the (meth) acrylic acid ester used in the method of the present invention should be sufficiently dried in advance under an inert gas atmosphere such as nitrogen, argon, helium, or the like. A point force for smoothly proceeding is also preferable.
  • a dehydrating agent or a drying agent such as calcium hydride, molecular sieves or activated alumina is preferably used.
  • the method of the present invention is carried out in the presence of a solvent.
  • the solvent to be used is not particularly limited as long as it does not adversely influence the reaction.
  • aliphatic hydrocarbons such as pentane, n-xane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane
  • alicyclic hydrocarbons such as: aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; ethers such as jetyl ether, tetrahydrofuran, 1,4 dioxane, ether, and diphenyl ether.
  • the method of the present invention is preferably carried out in an atmosphere of an inert gas such as nitrogen, argon or helium.
  • the additives include ethers such as dimethyl ether, dimethoxyethane, diethoxyethane, 12-crown-4; triethylamine, N, N, N,, N, tetramethylethylenediamine, N, N, N ′, N Organic nitrogen-containing compounds such as ", N" -pentamethylethylethylenetriamine, 1, 1, 4, 7, 10, 10-hexamethyltriethylenetetramine, pyridine, 2, 2, -dipyridyl; triethylphosphine, triphenyl- Organic phosphorus compounds such as ruphosphine and 1,2-bis (diphenylphosphino) ethane; inorganic salts such as lithium chloride, sodium chloride and potassium salt; lithium (2-methoxy
  • ethers and organic nitrogen-containing compounds are preferred, and with a small amount of addition, while maintaining high rebirability, the polymerization can proceed rapidly, simplifying the solvent recovery process and reducing the wastewater treatment load. From this point of view, organic nitrogen-containing compounds are more preferred.
  • These additives may be used alone or in combination of two or more.
  • the amount used is not particularly limited, but the concentration in the polymerization reaction solution is usually preferably in the range of 0.1 to 100 mmol Zl, and in the range of l to 10 mmol Zl. It is preferable.
  • the polymerization rate in the char-on polymerization depends on the monomer concentration in the polymerization reaction solution, and when the monomer concentration is high, the polymerization rate is large, and when the monomer concentration is low, the polymerization rate tends to be low. Indicates. Therefore, in normal batch-type key-on polymerization, the polymerization rate is generally lower in the late polymerization period where the monomer concentration is lower than in the early polymerization period where the monomer concentration is high. In order to increase the conversion rate. Is that it takes time to drive in the late stage of polymerization. Has a subject.
  • the organoaluminum compound (I) is more strongly coordinated with the polymerization initiator or the active terminal species of the living polymer than the (meth) acrylic acid ester, so that the unreacted (meth) acrylic acid ester
  • the molar amount of the organoaluminum compound (I) involved in the activity of the polymer is a value obtained by subtracting the molar amount of the polymerization initiator from the molar amount of the organoaluminum compound (I) present in the polymerization reaction solution (hereinafter referred to as the This is called “[molar amount of organoaluminum compound] [molar amount of polymerization initiator]”).
  • the deactivation reaction tends to increase, the living property decreases, and the control of the molecular weight and molecular weight distribution becomes difficult.
  • the block copolymer when the block copolymer is produced, the polymer deactivated in the course of the polymerization reaction is mixed in the final product without subsequent growth, and the content of the target block copolymer in the final product is determined. Is unfavorable because of lowering.
  • the molar ratio is less than 15, the cost of the organoaluminum compound (I) increases, and the removal of the organoaluminum compound (I) from the reaction mixture after termination of the polymerization becomes complicated.
  • the deactivation rate depends on the monomer concentration, and when the monomer concentration is high, the deactivation rate increases. Thus, it was found that the deactivation rate becomes small when the monomer concentration is low. Therefore, in the method of the present invention, in order to suppress such deactivation, the methacrylate or acrylic acid in the total supply amount of the polymerization initiator solution and methacrylic acid ester or acrylic acid ester supplied to the reactor is reduced. It has been found that the deactivation reaction can be reduced by controlling the content of the acid ester to 5% by mass or less.
  • three reactors can be connected in series to produce an A-B-A type or A-B-C type triblock copolymer. It is also possible to produce a high molecular weight homopolymer by connecting two or more reactors in series and supplying the same monomer in each reactor. And a graft copolymer can also be manufactured by supplying a macromonomer as a monomer to each reactor. In this way, by selecting the type of monomer and combining the reactor, various types of copolymers having a molecular design such as a random copolymer, a block copolymer, and a graft copolymer according to the intended use of the polymer. Coalescence can be produced.
  • the residence time of the polymerization reaction solution in the reactor varies depending on the type of (meth) acrylic acid ester used for the polymerization and the polymerization temperature. On the other hand, it is preferably 1 to: LOO times.
  • the residence time is less than 1 time with respect to the time required for polymerization, the polymerization reaction solution is discharged from the reactor without completing the polymerization reaction in the reactor.
  • the (meth) acrylate ester of the reaction causes polymerization such as formation of high molecular weight in the piping after leaving the reactor, or it has not reacted with the polymer or copolymer as a product.
  • (Meth) acrylic acid ester may remain.
  • the residence time is greater than 100 times the time required for polymerization, the rate of spontaneous deactivation of the polymerization active terminal tends to increase.
  • the time required for polymerization varies depending on the type of (meth) acrylic acid ester. For example, when an acrylic acid ester is used as the (meth) acrylic acid ester, the polymerization time is less than 10 seconds. It is also possible to complete the polymerization within seconds.
  • the polymerization temperature may be selected according to the type of (meth) acrylic acid ester used and the concentration in the polymerization reaction solution, but the polymerization time can be shortened. Also, from the viewpoint of low deactivation reaction during polymerization, the temperature is usually in the range of -20 to 80 ° C. Degree is preferred. This is an extremely mild temperature condition as compared to the conventional (one) polymerization conditions for (meth) acrylic acid esters. Therefore, when the method of the present invention is industrially performed, it is compared with the conventional method. The cost of the cooling facility can be greatly reduced.
  • a polymerization reactor that is usually used in a continuous production method can be used without particular limitation, and examples thereof include a tubular reactor, a tank reactor, and the like. .
  • the tubular reactor is preferred, and the static mixer type reactor having a static stirring function is particularly preferred.
  • the continuous production method of a (meth) acrylic acid ester polymer or copolymer according to the present invention preferably comprising two or more reactors connected in series and containing an organoaluminum compound.
  • a polymerization initiator solution and at least one methacrylic acid ester or allylic acid ester are continuously fed to the first reactor to contain a living polymer of an organoaluminum compound and a methacrylic acid ester and Z or an acrylate ester.
  • a polymerization reaction liquid is obtained, and subsequently, a strong polymerization reaction liquid and at least one methacrylic acid ester or acrylic acid ester which is the same as or different from the methacrylic acid ester or acrylic acid ester supplied to the first reactor n + 1) continuously fed to the reactor (n represents a natural number), and the organoaluminum compound and methacrylic acid ester And a polymerization reaction solution containing a Z or acrylate ester living polymer in a continuous manner, and the methacrylic acid ester or acrylate ester fed to at least one of the reactors is supplied to the reactor.
  • the polymer or copolymer It is preferable to remove the aluminum derived from the organoaluminum compound after completion of the polymerization because the physical properties of the material using it may be lowered.
  • the polymerization reaction liquid after the addition of the polymerization terminator is subjected to a washing treatment using an acidic aqueous solution, an adsorption treatment using an adsorbent such as an ion exchange resin, and the like. It is effective to do.
  • the residue is continuously supplied to the melt extruder, It is also possible to recover the polymer or copolymer as strands, pellets or cage blocks by distilling off the solvent under reduced pressure.
  • the first reactor is a tank reactor 1 with a stirrer to which a (meth) acrylic ester stock tank 2 is connected.
  • the second reactor consists of a jacketed static mixer reactor 8 followed by the reactor. It consists of a total of two tubular reactors in which a jacketed static mixer reactor 9 with a pipe diameter larger than 8 is connected in series. A refrigerant is circulated in the jacket of these jacketed static mixer reactors to control the temperature of each reactor.
  • a first reactor and a second (meth) acrylic ester stock tank 5 are connected to the introduction portion of the second reactor via feed pumps 4 and 6, respectively.
  • the first tank reactor 1 intermittently or continuously polymerize the first (meth) acrylic acid ester V, and the polymer solution obtained by vigorous reaction in the second tube type.
  • the feed pump 4 continuously feeds the introduction part of the reactor 8.
  • the second (meth) acrylic acid ester is continuously supplied from the stock tank 5 by the feed pump 6 at the same time, and the second (meth) acrylic ester is fed in the second reactor, that is, the connected tubular reactor.
  • a polymerization reaction is performed.
  • a polymerization reaction liquid extraction port 10 is provided at the outlet of the second reactor section.
  • the polymerization reaction liquid is extracted when the second polymerization is completed, and the polymerization stopping operation force is taken out.
  • the extracted polymerization reaction liquid can be temporarily stored in the tank reactor 11 with a stirrer as a stock tank for a short time, and then passed through the first reactor 1 again.
  • the polymerization can be repeated by continuously introducing the second (meth) acrylic acid ester into the second reactor (8 and 9). Further, without removing the polymerization reaction solution, the tank reactor 11 with a stirrer was continuously used as the third reactor, and the third (meth) acrylic ester was fed from the stock tank 12 through the feed pump 13.
  • a triblock copolymer When supplied and polymerized, a triblock copolymer can be produced if the type of the third (meth) acrylic acid ester is different from that of the second (meth) acrylic acid ester. Thereafter, the polymer or copolymer can be taken out by passing through a series of steps until the polymer is taken out.
  • the first reactor is a tank reactor 18 with a stirrer to which a (meth) acrylic ester stock tank 16 is connected.
  • the second reactor consists of 15 reactors consisting of two jacketed static mixer reactors (51, 53) and jacketed static mixer reducer 52 as shown in Fig. 3.
  • a tubular reactor and a third reaction The vessel consists of a column reactor 44 connected in series therewith.
  • the jackets of the jacketed static mixer type reactors (51, 53) and the jacketed static mixer type reducer 52 are circulated to control the temperature of each reactor.
  • the first (meth) acrylic acid ester polymerization reaction is carried out intermittently or continuously in the first reactor 18.
  • the polymerization reaction liquid obtained by vigorous reaction is continuously fed to the second reactor by the feed pump 19. At that time, if necessary, simultaneously supply the solvent from the solvent stock tank 20 with the feed pump 21 and dilute the polymer solution and the solvent with the mixing static mixer 24 to adjust the concentration of the polymerization reaction solution. To do.
  • the polymerization reaction liquid is continuously supplied to the introduction part of the second reactor part, that is, the first jacketed static mixer type 1 reactor 27.
  • the second (meth) acrylic ester is simultaneously supplied from the stock tank 22 by the feed pump 23, and the polymerization reaction is carried out in the first static mixer type reactor 27 with a jacket.
  • the polymerization reaction solution is continuously introduced into a second jacketed static mixer reactor 28.
  • the second (meth) acrylic ester is also supplied from the stock tank 22 to the second static mixer type reactor 28 with a jacket by the feed pump 23, and the second static mixer type reactor 28 is supplied. Among them, the polymerization reaction is simultaneously performed.
  • the polymerization reaction is successively carried out successively in all 15 static mixer reactors (27 to 41). Fine adjustment of the flow rate of each of the second (meth) acrylate esters continuously fed to each static mixer reactor (27 to 41) was provided in front of the feed port of each reactor. Use a flow meter 55 and a flow control valve 54.
  • the polymerization reaction solution obtained from the 15th jacketed static mixer reactor 41 is then supplied from a stock tank 16 by a feed pump 17 and continuously supplied from a third (meth) acrylic acid.
  • a third (meth) acrylic acid After mixing with the ester in the static mixer 42 for mixing, the mixture is introduced into the lower part of the third reactor, that is, the column reactor 44.
  • the polymerization reaction liquid flows from the lower part to the upper part of the tower reactor 44, and the polymerization reaction proceeds during that time to obtain the polymerization reaction liquid from the upper part.
  • the polymerization reaction liquid was introduced into a static mixer 47 for stopping the polymerization, and at the same time, the feed tank 46 was fed from the stock tank 45 for the polymerization stopper.
  • the polymerization stopper is continuously supplied to the static mixer 47 for stopping the polymerization to stop the polymerization. Thereafter, the whole or a part of the reaction solution is received in the stock tank 48. If the types of the first to third (meth) acrylic esters are changed in the steps so far, a triblock copolymer can be produced.
  • the outlets for the polymerization reaction liquid (49, 50) are provided at the outlets of the static mixer-type reactor 41 and the tower-type reactor 44 (after the static mixer 47 for stopping the polymerization in the figure).
  • the polymer or copolymer can be continuously taken out by flowing the reaction liquid after stopping the polymerization reaction in the stock tank 48 through a series of steps until the polymer is taken out continuously.
  • a tank reactor with a stirrer having a capacity of lm 3 is used as the first reactor in FIG.
  • the reactor is connected in series with a jacketed static mixer reactor with an inner diameter of 1 lmm x length of 1620 mm, followed by a jacketed static mixer reactor with an inner diameter of 23 mm x length of 2700 mm that is larger than the reactor. and the total of two groups of tubular reactor, using a third reactor and the polymerization reaction was equipped with a stirrer tank reactor volume lm 3 as stock tank.
  • Example 3 and Comparative Example 3 in FIG. 2, a tank reactor with a stirrer having a capacity of lm 3 is used as the first reactor, and a jacket with the jacket in FIG. 3 is used as the second tubular reactor unit.
  • Static mixer type reaction tube inner diameter 1 lmm x length 300 mm
  • static mixer type reducer with jacket inner diameter 1 lmm to inner diameter 28 mm x length 140 mm
  • static mixer type reaction tube with jacket inner diameter 28 mm x length
  • a tubular reactor having 15 reactor tubes connected in series (3470 mm) was connected in series, and a column reactor having a capacity of 0.95 m 3 (inner diameter: 400 mm ⁇ length: 7600 mm) was used as the third reactor.
  • the temperature of the polymerization reaction solution at the outlet of the reactor 9 was 9 ° C.
  • the polymerization reaction solution collected from the extraction port 10 provided at the outlet of the reactor 9 was collected in a container containing a small amount of methanol and the polymerization reaction was stopped, and GC measurement was performed, The conversion rate of n-butyl acrylate was 100%.
  • the molar amount of n-butyl acrylate supplied to the first tubular reactor 8 of the second reactor and that contained in the living PMMA solution 1 ([molar amount of organoaluminum compound] [molar amount of polymerization initiator] Amount]) ratio ⁇ [molar amount of n-butyl acrylate] Z ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) ⁇ was 34.
  • the residence time of the mixture of living PMMA solution 1 and n-butyl acrylate in the second reactor was 20 seconds.
  • the molar amount of n-butyl] Z ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) ⁇ was 34.
  • the residence time of the mixed solution of living PMMA solution 1 and n-butyl acrylate in the second reactor was 20 seconds.
  • a small amount of the obtained polymerization reaction solution was collected from a sampling port 10 provided at the outlet of the reactor 9 into a container containing a small amount of methanol to stop the polymerization reaction.
  • this reaction solution was measured by GC, the n-butyl acrylate conversion rate was 100%.
  • Ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the amount of ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) contained in the polymerization reaction solution 1 was 34.
  • the residence time of the mixed liquid of polymerization reaction liquid 1 and n-butyl acrylate in the second reactor section was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from a sampling port 10 into a container containing a small amount of methanol to stop the polymerization reaction. This reaction solution was subjected to GC measurement.
  • the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the content of ([molar amount of organoaluminum compound]-[molar amount of polymerization initiator]) contained in the polymerization reaction solution 2 is 34. there were.
  • the residence time of the mixed liquid of polymerization reaction liquid 2 and n-butyl acrylate in the second reactor part was 20 seconds.
  • a small amount of the obtained polymerization reaction solution was collected from a sampling port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the content of ([molar amount of organoaluminum compound] — [molar amount of polymerization initiator]) contained in the polymerization reaction solution 3 is 34. there were.
  • the residence time of the mixed liquid of polymerization reaction liquid 3 and n-butyl acrylate in the second reactor part was 20 seconds.
  • a small amount of the obtained polymerization reaction solution was collected from a sampling port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the content of ([molar amount of organoaluminum compound] — [molar amount of polymerization initiator]) contained in the polymerization reaction solution 4 is 34. there were. Further, the residence time of the mixed liquid of polymerization reaction liquid 4 and n-butyl acrylate in the second reactor part was 20 seconds. A small amount of the obtained polymerization reaction solution was collected from a sampling port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the content of ([molar amount of organoaluminum compound] — [molar amount of polymerization initiator]) contained in the polymerization reaction solution 5 is 34. there were.
  • the residence time of the mixed solution of the polymerization reaction solution 5 and n-butyl acrylate in the second reactor part was 20 seconds.
  • a small amount of the obtained polymerization reaction solution was collected from a sampling port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the resulting polymer is poly (methyl methacrylate) -b-poly (n-butyl acrylate) diblock copolymer (PMMA-b-PnBA).
  • PMMA-b-PnBA poly (methyl methacrylate) -b-poly (n-butyl acrylate) diblock copolymer
  • the polymerization reaction liquid 6 obtained in the stock tank 11 with a stirrer having a capacity of lm 3 was 15 to 13.
  • the temperature was kept at C, and 9.1 kg of MMA per 200 kg was added for 5 minutes, and then heated to 25 ° C. for 6 hours for polymerization.
  • the polymerization reaction was stopped by adding 1 kg of methanol to the obtained polymerization reaction solution.
  • the MMA conversion rate confirmed by GC was 100%.
  • the content of n-butyl acrylate in the total feed solution in each tubular reactor (27 to 41) was 1.5 to 1.2% by mass.
  • the molar amount of n-butyl acrylate in the solution supplied to each tubular reactor (27 to 41) and the amount contained in living PMMA solution 2 ([molar amount of organoaluminum compound] [mol of polymerization initiator] Amount]) ratio ⁇ [molar amount of n-butyl acrylate] Z ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) ⁇ was 20.
  • the residence time of the mixed solution of living PMMA solution 2 and n-butyl acrylate in each tubular reactor was 30 to 25 seconds.
  • a polymerization reaction solution was continuously obtained from the outlet of the final (15th) tubular reactor 41, and immediately subjected to the step [3] described later.
  • a small amount of the obtained polymerization reaction liquid was immediately collected into a container containing a small amount of methanol from the extraction port 49 provided at the outlet of the final reactor 41 to stop the polymerization reaction.
  • the n-butyl acrylate conversion rate was 100%.
  • the polymer obtained from the reaction solution was a poly (methyl methacrylate) b poly (n-butyl acrylate) diblock copolymer (PMMA—b—PnBA), and the diblock copolymer was determined by GPC measurement.
  • a polymerization reaction solution was continuously obtained in the stock tank 48 from the outlet of the tower reactor 44. A small amount of the resulting polymerization reaction solution was collected from the extraction port 50. When this reaction solution was measured by GC, The MMA conversion rate was 100%.
  • Figure 5 shows the GPC curve of the resulting triblock copolymer.
  • the ratio of the molar amount of n-butyl acrylate supplied to the reactor 8 and the amount of ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) contained in the living PMMA solution ⁇ Mole amount] Z ([Mole amount of organoaluminum compound] [Mole amount of polymerization initiator]) ⁇ was 34.
  • the residence time of the mixed solution of living PMMA solution and n-butyl acrylate in the second reactor was 20 seconds.
  • a small amount of the polymerization reaction solution obtained from the extraction port 10 provided at the outlet of the reactor 9 was collected in a container containing a small amount of methanol to stop the polymerization reaction.
  • the GC measurement of this reaction solution showed that the n-butyl acrylate conversion was 100%.
  • Toluene solution containing 2 liters 7.9 kg was charged at 25 ° C. Next, after adding 1.2 kg of cyclohexane solution containing 3.7 mol of sec butyllithium, add 27 kg of methyl methacrylate (MMA) over 30 minutes.
  • Living PMMA solution 3 The conversion rate of methyl methacrylate confirmed by GC was 100%.
  • Ratio of molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and ((molar amount of organoaluminum compound) [molar amount of polymerization initiator]) contained in the living PMMA solution 3 ⁇ [acrylic acid n Mole amount of butyl] Z ([Mole amount of organic aluminum compound] [Mole amount of polymerization initiator]) ⁇ was 84.
  • the residence time of the mixed solution of living PMMA solution 3 and n-butyl acrylate in the second reactor was 20 seconds.
  • a small amount of the obtained polymerization reaction solution was collected from a sampling port 10 provided at the outlet of the reactor 9 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was measured by GC, the n-butyl acrylate conversion was 100 %Met.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the polymerization reaction solution 1, 1 is 84.
  • the residence time of the mixed solution of the polymerization reaction solution 1 ′ and the n-butyl acrylate in the second reactor portion was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from the extraction port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the amount contained in the polymerization reaction solution 2 ′ is 84.
  • the residence time of the mixed liquid of the polymerization reaction liquid 2 ′ and n-butyl acrylate in the second reactor part was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from the extraction port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution supplied to the reactor 8 and the amount contained in the polymerization reaction solution 3 ′ is 84.
  • the residence time of the mixed reaction solution 3 ′ and n-butyl acrylate in the second reactor was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from the extraction port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the ratio of the molar amount of n-butyl acrylate in the solution fed to the reactor 8 to the polymerization reaction solution 4 ((molar amount of organoaluminum compound) — [molar amount of polymerization initiator]) is 84.
  • the residence time of the mixed liquid of the polymerization reaction liquid 4 ′ and n-butyl acrylate in the second reactor part was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from the extraction port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the molar amount of n-butyl acrylate in the solution fed to the reactor 8 and contained in the polymerization reaction solution 5 ′ ([mol of organoaluminum compound Amount] — [molar amount of polymerization initiator])) was 84.
  • the residence time of the mixed reaction solution 5 ′ and n-butyl acrylate in the second reactor was 20 seconds.
  • a small amount of the resulting polymerization reaction solution was collected from the extraction port 10 into a container containing a small amount of methanol to stop the polymerization reaction. When this reaction solution was subjected to GC measurement, the n-butyl acrylate conversion rate was 100%.
  • the polymerization reaction liquid 6 ′ obtained in the stock tank 11 with a stirrer having a capacity of lm 3 was 15 to 13.
  • the temperature was kept at C, and 9.1 kg of MMA per 200 kg was added for 5 minutes, and then heated to 25 ° C. for 6 hours for polymerization.
  • the polymerization reaction was stopped by adding 1 kg of methanol to the obtained polymerization reaction solution.
  • the MMA conversion rate confirmed by GC was 100%.
  • Example 2 Compared to Example 2, the molecular weight distribution was wide. From the iH-NMR measurement, the PMMA block content in the triblock copolymer was 35% by mass, and the PnBA block content was 65% by mass. In addition, the triblock copolymer content (blocking efficiency) in the polymer obtained by the HPLC method is as low as 67%, and the polymerization terminal deactivation during nBA polymerization by the above 6 repeated operations The amount was 33%, which was large compared to Example 2. The GPC curve of the resulting triblock copolymer is also shown in FIG.
  • Reactor 18 with stirrer with a capacity of lm 3 with nitrogen substitution inside 614 kg of toluene, 1, 1, 4, 7, 10, 10 hexamethyltriethylenetetramine 2.20 kg, 'BuAKBHT) 21
  • Toluene solution containing 30.9 kg of toluene was charged at 25 ° C.
  • methyl methacrylate (MMA) was heated for 30 minutes, and the reaction liquid temperature during that period was Polymerization reaction solution containing poly (methyl methacrylate) (hereinafter referred to as living PMMA4) in a state where the temperature was kept at 20 to 40 ° C. and the polymerization was continued for 10 minutes after completion of the addition of MMA and the polymerization terminal kept living.
  • living PMMA solution 4 Polymerization reaction solution containing poly (methyl methacrylate)
  • the content of n-butyl attalinoleate in the total feed solution was 3.3 to 2.7% by mass.
  • the molar amount of n-butyl acrylate in the solution fed to each tubular reactor and contained in the living PMMA solution 4 [molar amount of organic aluminum compound] [molar amount of polymerization initiator] ]
  • the ratio ⁇ [molar amount of n-butyl acrylate] / ([molar amount of organoaluminum compound] [molar amount of polymerization initiator]) ⁇ was 83.
  • the residence time of the mixture of living PMMA solution 4 and n-propyl acrylate in each tubular reactor was 33 to 28 seconds.
  • a polymerization reaction solution was continuously obtained from the outlet of the final (15th) tubular reactor 41 and immediately subjected to the step [3] described later.
  • a small amount of the obtained polymerization reaction solution was immediately collected into a container containing a small amount of methanol from the extraction port 49 provided at the outlet of the final reactor 41 to stop the polymerization reaction.
  • this reaction solution was measured by GC, the n-butyl acrylate conversion rate was 100%.
  • the polymer obtained from the reaction solution was poly (methyl methacrylate) -b-poly (acrylic acid n-butyl).
  • the obtained polymer is a triblock copolymer of PMMA—b—PnBA—b—P MMA.
  • the PMMA block content in the triblock copolymer was 32% by mass, and the PnBA block content was 68% by mass.
  • the content (blocking efficiency) of the triblock copolymer in the obtained polymer obtained by HPLC method was 47%.
  • the GPC curve of the obtained triblock copolymer is also shown in FIG.
  • the triblock copolymer having low blocking efficiency obtained in Comparative Example 2 and Comparative Example 3 is inferior in mechanical properties such as tensile strength and compression set, and is preferable when used as a thermoplastic elastomer. Absent.
  • the polymerization proceeds at a polymerization temperature milder than that of the conventional method while maintaining high living property at a high polymerization rate, resulting in a narrow molecular weight distribution! (Meth) acrylate
  • a polymer or copolymer can be produced with high yield and high productivity.
  • the (meth) acrylic acid ester polymer or copolymer having a molecular weight distribution of 1.5 or less obtained by the continuous production method of the present invention is a thermoplastic elastomer, a polymer compatibilizer. It can be suitably used for applications such as an agent, a resin modifier, a reactive polymer, a resin resin, a base polymer for an adhesive, a viscosity index improver, and a pour point depressant.
  • FIG. 1 is a schematic diagram of an example of a reaction apparatus. 1: Reactor with stirrer [First polymerization reactor]
  • FIG. 2 is a schematic diagram of an example of a reaction apparatus.
  • 16 First and third (meth) acrylic acid ester (methyl methacrylate) stock tanks 17, 19, 21, 23, 46: Feed pump 18: Reactor with stirrer [First polymerization reactor] 20 : Solvent (toluene) stock tank 21: Second (meth) acrylic acid ester (n-butyl acrylate) stock tank 24, 49: Mixing static mixer 25, 26: Cooling heat exchange ⁇ 27-41 : Jacketed static mixer reactor [second polymerization reactor] 43: Heat exchanger for heating 4 4: Tower reactor [third polymerization reactor] 45: Stock stopper (methanol) stock tank 47 : Static mixer for stopping polymerization 48: Stock tank with stirrer 49, 50: Extraction PI
  • FIG. 3 is a detailed view of a jacketed static mixer reactor shown by 27 to 41 in FIG. 51, 53: Static mixer type reaction tube with jacket 52: Static mixer type reducer with jacket 54: Flow control valve 55: Flow meter
  • FIG. 4 is a GPC curve diagram of the triblock copolymer (PMMA—b—PnBA—b—PMMA) obtained in Example 2 and Comparative Example 2.
  • FIG. 5 is a GPC curve diagram of the triblock copolymer (PMMA—b—PnBA —b—PMMA) obtained in Example 3 and Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

【課題】 従来方法よりも温和な重合温度で、高い重合速度でリビング性を高く保ちながら重合を進行させ、分子量分布の狭い(メタ)アクリル酸エステル(共)重合体を高収率で生産性良く製造するための連続的製造方法の提供。 【解決手段】 有機アルミニウム化合物を含む重合開始剤溶液と(メタ)アクリル酸エステルとを反応器に連続的に供給してリビング重合体を含む重合反応液を連続的に得る工程を含み、該反応器に供給する{[メタクリル酸エステルまたはアクリル酸エステルのモル量]/([有機アルミニウム化合物のモル量]-[重合開始剤のモル量])}が15~80となるように制御し、かつ該反応器に供給する重合開始剤溶液と(メタ)アクリル酸エステルとの総供給量中の(メタ)アクリル酸エステルの含有量を5質量%以下に制御する(メタ)アクリル酸エステル(共)重合体の連続的製造方法。

Description

明 細 書
(メタ)アクリル酸エステル重合体または共重合体の連続的製造方法 技術分野
[0001] 本発明は、使用目的に応じて分子量や分子量分布などが最適に設計された (メタ) アクリル酸エステル重合体または共重合体を、温和な条件で、高収率かつ生産性良 く工業的に有利に製造する連続的製造方法に関する。
背景技術
[0002] リビングァニオン重合方法は失活ゃ連鎖移動などの副反応が少なぐ重合体の分 子量制御、ブロック共重合体の一次構造の分子設計などを行なうのに適した重合方 法である。このことから、近年、熱可塑性エラストマ一や高分子相容化剤などに有用 なブロック共重合体あるいはグラフト共重合体、反応性官能基を有するテレケリックポ リマー、塗料用榭脂ゃホットメルト粘着材用途などに有用な星型重合体などの、通常 のラジカル重合方法では困難であった分子設計を必要とする重合体の製造方法とし て注目されている。
[0003] ァ-オン重合が可能なモノマーとしては、例えばスチレン、ブタジエン、イソプレン、 およびそれらの誘導体などの非極性ァ-オン重合性モノマー;メタクリル酸エステル、 アクリル酸エステル、メタクリルアミド、アクリルアミド、メタタリ口-トリル、アクリロニトリル およびそれらの誘導体などの極性ァ-オン重合性モノマーなどが挙げられる。非極 性ァ-オン重合性モノマーは高いリビング性を保ちつつァ-オン重合することが可能 であり、すでに工業的な重合にも適用されている。一方、極性ァ-オン重合性モノマ 一は、通常、ァ-オン重合中に重合末端のァ-オン種が該モノマー中の極性官能基 (エステル基、アミド基、二トリル基など)と副反応をおこす。そのため、該副反応を抑 制して、極'性ァ-オン重合'性モノマーのリビングァ-オン重合を行なわせるためには 、一般に 78°Cのような極低温条件下で重合する必要があり、工業ィ匕に際して多大 な冷却設備を必要とし、設備費が増大するなどの問題を有して 、た。
[0004] 重合反応方法としては、用いる原料を一括して重合反応槽に供給して、反応終了 後に反応混合液を抜き出して重合体の単離工程へ導き、必要に応じて重合反応槽 を洗浄して次の重合反応を行なうというバッチ式;重合反応槽に連続的に原料を供 給し、該反応系より連続的に反応混合液を取り出して、重合体の単離工程へ導く連 続式;に二分される。一般に、これらの方法のうち、連続式の方が、設備費やランニン グコストを削減する効果が大きぐ生産性の向上にも有効な方法である。
極性ァ-オン重合性モノマーのリビングァ-オン重合を行なうための方法として、メ タクリル酸エステルおよびアクリル酸エステルのリビングァ-オン重合に連続式製造 方法を適用した例としては、
(1)スタティックミキサー型反応器を用いたァ-オン重合による連続式製造方法 (特 許文献 1参照);
(2)マイクロミキサーを用いた (メタ)アクリルモノマーの連続ァ-オン重合方法 (特許 文献 2参照);
(3)星型に分岐したアクリル系重合体の製造方法 (特許文献 3参照);
などが挙げられる。
[0005] 特許文献 1 :特開平 6— 56910号公報
特許文献 2:米国特許第 5886112号明細書
特許文献 3 :米国特許第 6013735号明細書
[0006] 上記(1)の実施例 1では、分子量分布が 1. 09と非常に狭いポリメタクリル酸メチル ( PMMA)が得られる力 反応温度が 78°Cの極低温であり、工業的な実施は困難 である。上記(1)の明細書中には好適な反応温度として「メタタリレートやアタリレート などの極性モノマーは、 40°C以下が好ましい」と記載されているが、 40°Cでもェ 業的に採用するには困難である。また、実施例ではメタクリル酸メチルの連続的重合 につ 、てのみ記載されており、アクリル酸エステルを用いた例やブロック共重合体を 連続的に製造した例は記載されて 、な 、。
[0007] また、上記(2)の実施例では、得られたポリメタクリル酸メチルの分子量分布が 1. 4 8〜2. 44であり、通常のリビングァ-オン重合で得られる重合体の分子量分布が 1. 01〜1. 20であることと比べ広ぐ力かる(2)の重合法はリビング性が不十分であり、 ブロック共重合体ゃグラフト共重合体などの共重合体を分子設計して該方法で製造 することは困難である。事実、実施例 14ではポリ t—ブチルアタリレート一 b ポリメチ ルメタタリレートが製造されている力 S、得られたジブロック共重合体の分子量分布は 2 . 05と広ぐ分子量分布を十分に狭く制御できていない。
[0008] さらに、上記(3)の実施例においては、得られた星型重合体の分子量分布は 1. 3 〜1. 8であり、通常のリビングァ-オン重合で得られる重合体の分子量分布が 1. 01 〜1. 20であることと比べ広ぐ力かる(3)の重合法もリビング性が不十分である。 発明の開示
発明が解決しょうとする課題
[0009] しかして、本発明の目的は、従来方法のような極低温条件ではなぐより温和な温 度条件で、高い重合速度および高いリビング性を保ちつつ、分子量と分子量分布を 用途に応じて最適に設計可能な (メタ)アクリル酸エステル重合体または共重合体の 高収率かつ生産性の高い連続的製造方法を提供することにある。
[0010] 本発明の他の目的は、上記連続的製造方法によって得られる、分子量分布が 1. 5 以下の (メタ)アクリル酸エステル重合体または共重合体を提供することである。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決するために鋭意検討を重ねてきた。その結果、有 機アルミニウム化合物を含む重合開始剤溶液と、少なくとも 1種のメタクリル酸エステ ルまたはアクリル酸エステルを反応器に連続的に供給して有機アルミニウム化合物と リビング重合体を含む重合反応液を連続的に得る工程を含み、かつ、該反応器に供 給するメタクリル酸エステルまたはアクリル酸エステルのモル量と( [有機アルミニウム 化合物のモル量] [重合開始剤のモル量] )の比 { [メタクリル酸エステルまたはァク リル酸エステルのモル量] z ( [有機アルミニウム化合物のモル量] [重合開始剤の モル量] ) }を特定範囲に制御し、かつ該反応器に供給する重合開始剤溶液とメタタリ ル酸エステルまたはアクリル酸エステルの総供給量中の、メタクリル酸エステルまたは アクリル酸エステルの含有量を特定量以下に制御することにより、分子量と分子量分 布を用途に応じて最適に設計した (メタ)アクリル酸エステル重合体または共重合体 を温和な条件にて高収率でかつ生産性良く連続的に製造できることを見出し、本発 明を完成した。
[0012] すなわち、本発明は、 (1) ァ-オン重合による (メタ)アクリル系エステル重合体または共重合体の連続的 製造方法であって、
有機アルミニウム化合物を含む重合開始剤溶液と、少なくとも 1種のメタクリル酸ェ ステルまたはアクリル酸エステルを反応器に連続的に供給して、有機アルミニウム化 合物とメタクリル酸エステルおよび Zまたはアクリル酸エステルのリビング重合体を含 む重合反応液を連続的に得る工程を含み、かつ、
該反応器に供給するメタクリル酸エステルまたはアクリル酸エステルのモル量と( [ 有機アルミニウム化合物のモル量] [重合開始剤のモル量] )の比 { [メタクリル酸ェ ステルまたはアクリル酸エステルのモル量] / ( [有機アルミニウム化合物のモル量]
- [重合開始剤のモル量] ) }が 15〜80となるように制御し、かつ
該反応器に供給する重合開始剤溶液とメタクリル酸エステルまたはアクリル酸エス テルの総供給量中の、メタクリル酸エステルまたはアクリル酸エステルの含有量を 5質 量%以下に制御する
ことを特徴とする、(メタ)アクリル酸エステル重合体または共重合体の連続的製造方 法である。
また、本発明は、
(2) ァ-オン重合による (メタ)アクリル酸エステル重合体または共重合体の連続的 製造方法であって、
2つ以上の反応器を直列に連結し、有機アルミニウム化合物を含む重合開始剤溶 液と、少なくとも 1種のメタクリル酸エステルまたはアクリル酸エステルを第 1反応器に 連続的に供給して、有機アルミニウム化合物とメタクリル酸エステルおよび Zまたはァ クリル酸エステルのリビング重合体を含む重合反応液を得、そして引き続き、かかる 重合反応液と、第 1反応器に供給したメタクリル酸エステルまたはアクリル酸エステル と同一または異なる少なくとも 1種のメタクリル酸エステルまたはアクリル酸エステルを 、第 (n+ 1)反応器 (nは自然数を表す)に連続的に供給して、有機アルミニウム化合 物とメタクリル酸エステルおよび Zまたはアクリル酸エステルのリビング重合体を含む 重合反応液を連続的に得、かつ、
そのうちの少なくとも一つの反応器において、該反応器に供給するメタクリル酸エス テルまたはアクリル酸エステルのモル量と([有機アルミニウム化合物のモル量] [重 合開始剤のモル量] )の比 { [メタクリル酸エステルまたはアクリル酸エステルのモル量
] / ( [有機アルミニウム化合物のモル量] [重合開始剤のモル量] ) }が 15〜80とな るように制御し、かつ、
該反応器に供給する重合開始剤溶液または重合反応液とメタクリル酸エステルま たはアクリル酸エステルの総供給量中の、メタクリル酸エステルまたはアクリル酸エス テルの含有量を 5質量%以下に制御する
ことを特徴とする、(メタ)アクリル酸エステル重合体または共重合体の連続的製造方 法である。
[0014] さらに、本発明は、
(3) (メタ)アクリル酸エステルがアクリル酸エステルである(1)または(2)に記載の重 合体または共重合体の連続的製造方法である。
そして、本発明は、
(4) (1)または(2)に記載の製造方法により得られる分子量分布が 1. 5以下の (メタ )アクリル酸エステル重合体または共重合体である。
発明の効果
[0015] 本発明の連続的製造方法により、従来方法のような極低温条件を採用しなくても、 温和な条件で、高い重合速度および高いリビング性を保ちながら、分子量分布の狭 V、 (メタ)アクリル酸エステル重合体または共重合体を高収率で生産性良く製造する ことができる。
そして、本発明の方法によって得られる分子量分布が 1. 5以下の (メタ)アクリル酸 エステル重合体または共重合体は、熱可塑性エラストマ一、高分子相容化剤、榭脂 改質剤、反応性ポリマー、塗料用樹脂、粘着剤、粘度指数向上剤、流動点降下剤な どの用途に好適に用いることができる。
発明を実施するための最良の形態
[0016] 以下に本発明について詳細に説明する。なお、本明細書では、メタクリル酸エステ ルとアクリル酸エステルを総称して「 (メタ)アクリル酸エステル」と記載することがある。
[0017] 本発明で用いる重合開始剤としては、周知のァ-オン重合開始剤を用いることがで き、例えば有機リチウム化合物、有機ナトリウム化合物、有機カリウム化合物および有 機マグネシウム化合物などが挙げられる。
[0018] 上記有機リチウム化合物としては、例えばメチルリチウム、ェチルリチウム、 n—プロ ピノレリチウム、イソプロピルリチウム、 n—ブチノレリチウム、 s ブチノレリチウム、イソブチ ルリチウム、 tーブチルリチウム、 n—ペンチルリチウム、 n—へキシルリチウム、テトラメ チレンジリチウム、ペンタメチレンジリチウム、へキサメチレンジリチウムなどのアルキ ルリチウムおよびアルキルジリチウム;フエ-ルリチウム、 m トリルリチウム、 p トリル リチウム、キシリルリチウム、リチウムナフタレンなどのァリールリチウムおよびァリール ジリチウム;ベンジルリチウム、ジフヱ-ルメチルリチウム、トリチルリチウム、 1, 1ージフ ェ-ルー 3—メチルペンチルリチウム、 α—メチルスチリルリチウム、ジイソプロべ-ル ベンゼンとブチルリチウムの反応により生成するジリチウムなどのァラルキルリチウム およびァラルキルジリチウム;リチウムジメチルアミド、リチウムジェチルアミド、リチウム ジイソプロピルアミドなどのリチウムアミド;リチウムメトキシド、リチウムエトキシド、リチウ ム η プロポキシド、リチウムイソプロポキシド、リチウム η—ブトキシド、リチウム s ブト キシド、リチウム tーブトキシド、リチウムペンチルォキシド、リチウムへキシルォキシド、 リチウムへプチルォキシド、リチウムォクチルォキシドなどのリチウムアルコキシド;リチ ゥムフエノキシド、リチウム 4 メチルフエノキシド、リチウムベンジルォキシド、リチウム 4 メチルベンジルォキシドなどが挙げられる。
[0019] 上記有機ナトリウム化合物としては、例えばメチルナトリウム、ェチルナトリウム、 n- プロピルナトリウム、イソプロピルナトリウム、 n—ブチノレナトリウム、 s ブチノレナトリウム 、イソブチルナトリウム、 t—ブチルナトリウム、 n—ペンチルナトリウム、 n—へキシルナ トリウム、テトラメチレンジナトリウム、ペンタメチレンジナトリウム、へキサメチレンジナト リルナトリウム、 p—トリルナトリウム、キシリルナトリウム、ナトリウムナフタレンなどのァリ 一ルナトリウムおよびァリールジナトリウム;ベンジルナトリウム、ジフエ-ルメチルナトリ ゥム、トリチルナトリウム、ジイソプロべ-ルベンゼンおよびブチルナトリウムとの反応に トリウムジメチルアミド、ナトリウムジェチルアミド、ナトリウムジイソプロピルアミドなどの ナトリウムアミド;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム n—プロポキシド、 ナトリウムイソプロポキシド、ナトリウム n—ブトキシド、ナトリウム s ブトキシド、ナトリウ ム tーブトキシド、ナトリウムペンチルォキシド、ナトリウムへキシルォキシド、ナトリウム へプチルォキシド、ナトリウムォクチルォキシドなどのナトリウムアルコキシド;ナトリウム フエノキシド、ナトリウム 4—メチルフエノキシド、ナトリウムベンジルォキシド、ナトリウム 4 メチルベンジルォキシドなどが挙げられる。
[0020] 上記有機カリウム化合物としては、例えばメチルカリウム、ェチルカリウム、 n—プロ ピルカリウム、イソプロピルカリウム、 n ブチルカリウム、 s ブチルカリウム、イソプチ ルカリウム、 t—ブチルカリウム、 n—ペンチルカリウム、 n キシルカリウム、テトラメ チレンジカリウム、ペンタメチレンジカリウム、へキサメチレンジカリウムなどのアルキル カリウムおよびアルキルジカリウム;フエ-ルカリウム、 m—トリルカリウム、 p—トリルカリ ゥム、キシリルカリウム、カリウムナフタレンなどのァリールカリウムおよびァリールジカリ ゥム;ベンジルカリウム、ジフエ-ルメチルカリウム、トリチルカリウム、ジイソプロべ-ル ベンゼンおよびブチルカリウムとの反応により生成するジカリウムなどのァラルキル力 リウムおよびァラルキルジカリウム;カリウムジメチルアミド、カリウムジェチルアミド、カリ ゥムジイソプロピルアミドなどのカリウムアミド;カリウムメトキシド、カリウムエトキシド、力 リウム n プロポキシド、カリウムイソプロポキシド、カリウム n—ブトキシド、カリウム s— ブトキシド、カリウム tーブトキシド、カリウムペンチルォキシド、カリウムへキシルォキシ ド、カリウムへプチルォキシド、カリウムォクチルォキシドなどのカリウムアルコキシド; カリウムフエノキシド、カリウム 4 メチルフエノキシド、カリウムベンジルォキシド、力リウ ム 4 メチルベンジルォキシドなどが挙げられる。
[0021] 上記有機マグネシウム化合物としては、例えばジメチルマグネシウム、ジェチルマグ ネシゥム、ジブチルマグネシウム、ェチルブチルマグネシウム、メチルマグネシウムブ 口ミド、ェチルマグネシウムクロリド、ェチルマグネシウムブロミド、フエ-ルマグネシゥ ムクロリド、フエ-ルマグネシウムブロミド、 t—ブチルマグネシウムクロリド、 t—ブチル マグネシウムブロミドなどが挙げられる。
[0022] 上記のうち、重合開始効率が高ぐまた重合反応が円滑に進行する観点から、有機 リチウム化合物が好ましぐ中でも n—ブチルリチウム、 s ブチルリチウム、 t—ブチル リチウム、ジフエ-ルメチルリチウム、 1, 1ージフエ-ルー 3—メチルペンチルリチウム 、 α—メチルスチリルリチウムが特に好ましい。
[0023] また、上記重合開始剤の一部は直鎖状または環状の共役ジェン化合物、ビニル芳 香族化合物、(メタ)アクリル酸アミドなどのリビングァ-オン重合開始剤としても用いら れるが、これにより生成する金属の活性末端を有するリビング重合体を本発明の重合 開始剤として使用してもよい。さらに、ァニオンィ匕可能な部位を有する任意の重合体 を有機リチウム化合物などのァ-オン重合開始剤によりァ-オンィ匕し、それを本発明 の重合開始剤として使用してもよい。例えば、不活性ガス雰囲気下でシクロへキサン に溶解させたポリ(Ρ—メチルスチレン)を Ν, Ν, Ν' , Ν,一テトラメチルエチレンジアミ ンの存在下に s—ブチルリチウムと反応させることで、パラ位のメチル基を適宜の量だ けァ-オンィ匕したポリ(ρ—メチルスチレン)を得ることができ、これを重合開始剤として 用いることで、グラフト共重合体を得ることができる。
本発明では、重合開始剤として、上記重合開始剤中の 1種を単独で使用してもよく 、また、 2種以上を併用してもよい。
[0024] 本発明において、重合開始剤の使用量は特に限定されないが、通常、重合反応液 中の濃度として 0. l〜100mmolZlの範囲であり、好ましくは l〜10mmolZlの範 囲とすることが、 目的とする重合体または共重合体を円滑に製造できる点力 好まし い。
[0025] 本発明で使用する有機アルミニウム化合物は、下記一般式 (I):
AIR'R^3 (I)
(式中、 R1 R2および R3はそれぞれ独立して置換基を有してもよいアルキル基、置換 基を有していてもよいシクロアルキル基、置換基を有してもよいァリール基、置換基を 有していてもよいァラルキル基、置換基を有してもよいアルコキシル基、置換基を有し てもよぃァリールォキシ基もしくは N, N—二置換アミノ基を表すか、または R1が前記 した 、ずれかの基を表し、 R2および R3は一緒になつて置換基を有して 、てもよ ヽァリ 一レンジォキシ基を表す。 )
で表される有機アルミニウム化合物(以下、有機アルミニウム化合物 (I)と称する)を使 用することが好ましい。 [0026] 上記一般式中、 R\ R2、 R3がそれぞれ表すアルキル基としては、例えばメチル基、 ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル 基、 t ブチル基、 2 メチルブチル基、 3 メチルブチル基、 n—ォクチル基、 2 ェ チルへキシル基などが挙げられ、シクロアルキル基としては、例えばシクロペンチル 基、シクロへキシル基などが挙げられる。これらのアルキル基およびシクロアルキル基 は置換基を有していてもよぐ力かる置換基としては、例えばメトキシ基、エトキシ基、 イソプロポキシ基、 t ブトキシ基などのアルコキシル基;塩素原子、臭素原子などの ハロゲン原子などが挙げられる。
[0027] R2、 R3がそれぞれ表すァリール基としては、例えばフエ-ル基、ナフチル基な どが挙げられ、ァラルキル基としては、例えばべンジル基、 1 フエニルェチル基など が挙げられる。これらのァリール基およびァラルキル基は置換基を有していてもよぐ 力かる置換基としては、例えばメチル基、ェチル基、 n—プロピル基、イソプロピル基 、 n ブチル基、イソブチル基、 s ブチル基、 t ブチル基、 2 メチルブチル基、 3 メチルブチル基、 n—ォクチル基、 2—ェチルへキシル基などのアルキル基;メトキ シ基、エトキシ基、イソプロポキシ基、 t—ブトキシ基などのアルコキシル基;塩素原子 、臭素原子などのハロゲン原子などが挙げられる。
[0028] R2、 R3がそれぞれ表すアルコキシル基としては、例えばメトキシ基、エトキシ基 、イソプロポキシ基、 t ブトキシ基などが挙げられ、ァリールォキシ基としては、例え ばフエノキシ基、 1 ナフトキシ基、 2 ナフトキシ基、 9 フエナントリルォキシ基、 1 —ピレ-ルォキシ基などが挙げられ、 N, N 二置換アミノ基としては、例えばジメチ ルァミノ基、ジェチルァミノ基、ジイソプロピルアミノ基、ビス(トリメチルシリル)アミノ基 などが挙げられる。これらのアルコキシル基、ァリールォキシ基、 N, N 二置換アミノ 基は置換基を有していてもよぐカゝかる置換基としては、例えばメチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル基、 tーブ チル基、 2 メチルブチル基、 3 メチルブチル基、 n—ォクチル基、 2 ェチルへキ シル基などのアルキル基;メトキシ基、エトキシ基、イソプロポキシ基、 t ブトキシ基な どのアルコキシル基;塩素、臭素などのハロゲン原子などが挙げられる。
[0029] R2および R3が一緒になつて表すァリーレンジォキシ基としては、例えば 2, 2,ービ フエノール、 2, 2,一メチレンビスフエノール、 2, 2,一メチレンビス(4—メチル 6— t ブチルフエノール)、(R)—( + )—l, 1,—ビー 2—ナフトール、(S)—(—)ー1, 1,一 ビ一 2—ナフトールなど力 誘導される基が挙げられる。これらのァリーレンジォキシ 基は 1個以上の置換基を有していてもよぐ力かる置換基としては、例えばメチル基、 ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル 基、 t ブチル基、 2 メチルブチル基、 3 メチルブチル基、 n—ォクチル基、 2 ェ チルへキシル基などのアルキル基;メトキシ基、エトキシ基、イソプロポキシ基、 t ブト キシ基などのアルコキシル基;塩素原子、臭素原子などのハロゲン原子などが挙げら れる。
[0030] 有機アルミニウム化合物 (I)は、(メタ)アクリル酸エステルの重合反応時のリビング 性を高める観点から、
Figure imgf000012_0001
R2および R3のうち少なくとも 1つが置換基を有してもよいァ リールォキシ基であることが好ましぐ
Figure imgf000012_0002
R2および R3のうち 2つが置換基を有しても ょ ヽァリールォキシ基であることがより好まし 、。力かる置換基を有してもよ!、ァリール ォキシ基としては、例えばフエノキシ基、 2 メチルフエノキシ基、 4 メチルフエノキシ 基、 2, 6 ジメチルフエノキシ基、 2, 4 ジー t—ブチルフエノキシ基、 2, 6 ジ t ブチルフエノキシ基、 2, 6 ジ tーブチルー 4 メチルフエノキシ基、 2, 6 ジー tーブチルー 4 ェチルフエノキシ基、 2, 6 ジフエ-ルフエノキシ基、 7—メトキシー 2—ナフトキシ基などが挙げられる。また、 R2および R3が一緒になつてァリーレンジォ キシ基であってもよい。
[0031] リビングァ-オン重合性の観点力も好ま 、有機アルミニウム化合物 (I)としては、 ジェチル(2, 6 ジ— t—ブチル—4—メチルフエノキシ)アルミニウム、ジェチル(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム、ジイソブチル(2, 6 ジ一 t—ブチル 4 —メチルフエノキシ)アルミニウム、ジイソブチル(2, 6 ジ一 t—ブチルフエノキシ)ァ ルミ二ゥム、ジ n—ォクチル(2, 6 ジ—tーブチルー 4ーメチルフエノキシ)アルミ-ゥ ム、ジ n—ォクチル(2, 6 ジ tーブチルフエノキシ)アルミニウム、ェチルビス(2, 6 —ジ— t—ブチル—4—メチルフエノキシ)アルミニウム、ェチルビス(2, 6 ジ— t— ブチルフエノキシ)アルミニウム、ェチル〔2, 2,一メチレンビス(4—メチル 6— t—ブ チルフエノキシ)〕アルミニウム、イソブチルビス(2, 6 ジ—tーブチルー 4ーメチルフ エノキシ)アルミニウム、イソブチルビス(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム 、イソブチル〔2, 2'ーメチレンビス(4ーメチルー 6 t—ブチルフエノキシ)〕アルミ- ゥム、 n—ォクチルビス(2, 6 ジ tーブチルー 4ーメチルフエノキシ)アルミニウム、 n—ォクチルビス(2, 6 ジ tーブチルフエノキシ)アルミニウム、 n—ォクチル〔2, 2 ,一メチレンビス(4—メチル 6— t—ブチルフエノキシ)〕アルミニウム、メトキシビス(2 , 6 ジ一 t—ブチル 4—メチルフエノキシ)アルミニウム、メトキシビス(2, 6 ジ一 t ーブチルフエノキシ)アルミニウム、メトキシ〔2, 2'ーメチレンビス(4ーメチルー 6—t ブチルフエノキシ)〕アルミニウム、エトキシビス(2, 6 ジ—tーブチルー 4 メチル フエノキシ)アルミニウム、エトキシビス(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム 、エトキシ〔2, 2,一メチレンビス(4—メチル 6—t—ブチルフエノキシ)〕アルミニウム 、イソプロポキシビス(2, 6 ジ— t—ブチル—4—メチルフエノキシ)アルミニウム、ィ ソプロポキシビス(2, 6 ジ一 t—ブチルフエノキシ)アルミニウム、イソプロポキシ〔2, 2'—メチレンビス(4—メチル 6—t—ブチルフエノキシ)〕アルミニウム、 t ブトキシ ビス(2, 6 ジ— t ブチル—4—メチルフエノキシ)アルミニウム、 t—ブトキシビス(2 , 6 ジ一 t—ブチルフエノキシ)アルミニウム、 t—ブトキシ〔2, 2,一メチレンビス(4— メチル 6—t—ブチルフエノキシ)〕アルミニウム、トリス(2, 6 ジ一 t—ブチル 4— メチルフエノキシ)アルミニウム、トリス(2, 6 ジフエ-ルフエノキシ)アルミニウムなど が挙げられる。これらは、 1種を単独で用いても、 2種以上を併用してもよい。
[0032] 本発明の方法で原料として使用するメタクリル酸エステルとしては、例えばメタクリル 酸メチル、メタクリル酸ェチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタク リル酸ァリル、メタクリル酸 n—ブチル、メタクリル酸 tーブチル、メタクリル酸シクロへキ シル、メタクリル酸ベンジル、メタクリル酸 2—ェチルへキシル、メタクリル酸ラウリル、メ タクリル酸グリシジル、メタクリル酸トリメトキシシリルプロピル、メタクリル酸メトキシェチ ル、メタクリル酸 2— (2—エトキシエトキシ)ェチル、メタクリル酸 N, N ジメチルァミノ ェチル、メタクリル酸 N, N ジェチルアミノエチルなどが挙げられる。
[0033] 本発明の方法で原料として使用するアクリル酸エステルとしては、例えばアクリル酸 メチル、アクリル酸ェチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ァ リル、アクリル酸 n—ブチル、アクリル酸 tーブチル、アクリル酸シクロへキシル、アタリ ル酸ベンジル、アクリル酸 2—ェチルへキシル、アクリル酸ラウリル、アクリル酸グリシ ジル、アクリル酸トリメトキシシリルプロピル、アクリル酸メトキシェチル、アクリル酸 2— ( 2—エトキシエトキシ)ェチル、アクリル酸お N ジメチルアミノエチル、アクリル酸お N ジェチルアミノエチルなどが挙げられる。
[0034] 上記のメタクリル酸エステルまたはアクリル酸エステルの中でも、本発明の方法は、 アクリル酸エステル、特にアクリル酸と一級アルコールからなるアクリル酸エステルを 用いる場合に、従来の製造方法では困難であった温和な温度条件下で、分子量分 布の狭 ヽ重合体を製造可能である点で優れる。
[0035] 本発明の方法においては、(メタ)アクリル酸エステルとして、炭素 炭素二重結合 を分子中に 2個以上有する多官能化合物を使用することもできる。また、(メタ)アタリ ル酸エステルとして、末端に (メタ)アクリル酸エステルの炭素—炭素二重結合を有す るマクロモノマーを使用することもできる。(メタ)アクリル酸エステルは 1種を単独で使 用しても、 2種以上を併用してもよい。また、(メタ)アクリル酸エステルは、重合に使用 する溶媒を用いて、任意の比率で希釈して使用してもょ 、。
[0036] なお、本発明の方法にぉ 、て使用する (メタ)アクリル酸エステルは、窒素、ァルゴ ン、ヘリウムなどの不活性ガス雰囲気下で予め十分に乾燥処理しておくことが、重合 反応を円滑に進行させる点力も好ましい。乾燥処理に際しては、水素化カルシウム、 モレキュラーシーブス、活性アルミナなどの脱水剤や乾燥剤が好ましく用いられる。
[0037] 本発明の方法は溶媒の存在下に行なう。使用する溶媒としては、反応に悪影響を 及ぼさない限り特に限定されず、例えばペンタン、 n キサン、オクタンなどの脂肪 族炭化水素;シクロペンタン、メチルシクロペンタン、シクロへキサン、メチルシクロへ キサン、ェチルシクロへキサンなどの脂環式炭化水素;ベンゼン、トルエン、ェチルベ ンゼン、キシレンなどの芳香族炭化水素;ジェチルェ—テル、テトラヒドロフラン、 1, 4 ジォキサン、ァ-ソール、ジフエ-ルエーテルなどのエーテルなどが挙げられる。こ れらの中でも、生成する重合体または共重合体の溶解度が高いこと、廃水への混入 が生じにくいこと、溶媒の回収精製が容易であることなどの観点から、芳香族炭化水 素を用いるのが好ましぐトルエン、キシレンを用いるのが特に好ましい。これらの溶 媒は単独で用いてもよぐ 2種類以上を組み合わせて使用してもよい。なお、使用す る溶媒は、予め脱気および脱水処理して精製しておくことが、重合反応を円滑に進 行させる点から好ましい。
[0038] また、本発明の方法は、窒素、アルゴン、ヘリウムなどの不活性ガスの雰囲気下で 行なうことが好ましい。
[0039] 本発明の方法においては、必要により、反応系内に、通常のァ-オン重合で必要 に応じて用いる添加剤を添加することで、高いリビング性を保って、かつ重合を速く進 行させることが可能である。添加剤としては、例えばジメチルエーテル、ジメトキシエタ ン、ジエトキシェタン、 12—クラウン一 4などのエーテル;トリェチルァミン、 N, N, N, , N,ーテトラメチルエチレンジァミン、 N, N, N' , N" , N"—ペンタメチルジェチレ ントリアミン、 1, 1, 4, 7, 10, 10—へキサメチルトリエチレンテトラミン、ピリジン、 2, 2 ,—ジピリジルなどの有機含窒素化合物;トリェチルホスフィン、トリフエ-ルホスフィン 、 1, 2—ビス(ジフエ-ルホスフイノ)ェタンなどの有機リンィ匕合物;塩化リチウム、塩ィ匕 ナトリウム、塩ィ匕カリウムなどの無機塩;リチウム(2—メトキシエトキシ)エトキシド、カリ ゥム t—ブトキシドなどのアルカリ金属アルコキシド;テトラエチルアンモ -ゥムクロリド、 テトラエチルアンモ-ゥムブロミド、テトラエチルホスホ-ゥムクロリド、テトラエチルホス ホ-ゥムブロミドなどの四級アンモ-ゥム塩、四級ホスホ-ゥム塩などが挙げられる。こ れらの中でもエーテル、有機含窒素化合物が好ましぐそして少量の添加で高いリビ ング性を保ちながらかつ重合を速く進行させることが可能で、溶媒回収工程の簡略 化や排水処理の負荷低減の観点からは有機含窒素化合物がより好ま ヽ。これらの 添加剤は、 1種を単独で使用してもよぐ 2種以上を併用してもよい。また、添加剤を 添加する場合、その使用量は特に限定されないが、通常は重合反応液中の濃度とし て 0. l〜100mmolZlの範囲であるのが好ましぐ l〜10mmolZlの範囲であるの 力 り好ましい。
[0040] 一般に、ァ-オン重合での重合速度は、重合反応液中のモノマー濃度に依存し、 モノマー濃度が高 、と重合速度は大きく、モノマー濃度が低 、と重合速度は小さくな る傾向を示す。よって、通常のバッチ式でのァ-オン重合では、重合速度はモノマー 濃度の高い重合初期に比べモノマー濃度の低い重合後期のほうが小さくなるのがー 般的であり、転ィ匕率を高めるためには、重合後期の追い込みに時間を要するという問 題点を有する。また、重合に伴う発熱を除熱して重合反応液の温度制御を行なう観 点からは、モノマー濃度は低い条件が好ましいが、その場合、重合速度も低下して生 産性が低下してしまうという問題点を有する。本発明の方法では、有機アルミニウム 化合物 (I)の存在下に、後述する特定の条件下で (メタ)アクリル酸エステルのァ-ォ ン重合を行なうことにより、重合初期力 後期に至るまで重合速度を高めてかつほぼ 一定にすることができ、重合時間を短縮して生産性の高 、連続的な製造方法を確立 することができた。
[0041] 本発明の方法においては、重合挙動の詳細な観測により、重合速度は重合反応液 中の有機アルミニウム化合物 (I)の濃度に関係し、有機アルミニウム化合物 (I)の濃 度が高!、と重合速度は大きくなり、有機アルミニウム化合物 (I)の濃度が低 、と重合 速度は小さくなることが判明した。これは、系内に存在する有機アルミニウム化合物 (I )が重合反応液中の (メタ)アクリル酸エステルに配位し、カゝかる有機アルミニウム化合 物 (I)が配位した (メタ)アクリル酸エステルが優先的に重合反応に消費されることに 起因する。
[0042] 該有機アルミニウム化合物 (I)は、(メタ)アクリル酸エステルと比べ、重合開始剤ま たはリビングポリマーの活性末端種とより強く配位するので、未反応の (メタ)アクリル 酸エステルの活性ィ匕に関与する有機アルミニウム化合物 (I)のモル量は、重合反応 液内に存在する有機アルミニウム化合物 (I)のモル量カゝら重合開始剤のモル量を引 いた値 (以後、これを「[有機アルミニウム化合物のモル量] [重合開始剤のモル量] 」と称する)と言える。本発明の方法では、反応器に供給するメタクリル酸エステルま たはアクリル酸エステルのモル量と([有機アルミニウム化合物のモル量] [重合開 始剤のモル量] )の比 { [メタクリル酸エステルまたはアクリル酸エステルのモル量] Z ( [有機アルミニウム化合物のモル量]― [重合開始剤のモル量] ) }が 15〜80となるよ うに制御することで、重合速度を高め、反応時間を短縮でき、また、重合中の重合活 性末端種の失活反応が抑制され、用途に応じて分子量と分子量分布などを最適に 設計した重合体の製造が可能となる。
[0043] 本発明の方法において、反応器に連続的に供給するメタクリル酸エステルまたはァ クリル酸エステルの量は、上記のモル比の値を満たすように制御する。該モル比は、 重合速度、リビング重合性および生成する (メタ)アクリル酸エステル重合体または共 重合体に対する有機アルミニウム化合物 (I)の使用量の観点から、 15〜70の範囲が 好ましぐ 20〜50の範囲がより好ましい。該モル比が 80より大きくなると、未反応の( メタ)アクリル酸エステルの存在量が多い状態となり、反応系内に存在するリビングポ リマーの活性末端種自体が (メタ)アクリル酸エステルへ反応して重合が停止してしま ぅ失活反応が増大する傾向となり、リビング性が低下し、分子量や分子量分布の制御 が困難となる。また、ブロック共重合体を製造する際には、重合反応の過程で失活し たポリマーがその後生長しないまま最終生成物に混在し、最終生成物中における目 的のブロック共重合体の含有率が低下するため好ましくない。該モル比が 15未満で あると、有機アルミニウム化合物 (I)のコストが増大し、さらに重合停止後の反応混合 物からの有機アルミニウム化合物 (I)の除去が煩雑となる。
[0044] 一方、本発明の方法において、ァ-オン重合中におこる失活反応に関して詳細な 解析を行なった結果、失活速度はモノマー濃度に依存し、モノマー濃度が高いと失 活速度が大きくなり、モノマー濃度が低いと失活速度は小さくなることが判明した。し たがって、本発明の方法では、かかる失活を抑制するために、反応器に供給する重 合開始剤溶液とメタクリル酸エステルまたはアクリル酸エステルの総供給量中の、メタ クリル酸エステルまたはアクリル酸エステルの含有量を 5質量%以下に制御すること で、失活反応を低下させることができることを見出した。この値を上記したように制御 することは、本発明の方法のァ-オン重合を高いリビング性を保って行なう観点から 極めて重要である。力かる含有量が 5質量%より高い条件では、失活反応が顕著とな つてリビング性が低下し、分子量および分子量分布の制御が困難となり好ましくな!/、 。また、重合時の発熱量が大きくなり、用いる反応器の除熱能力が不足している場合 には、重合反応液の温度が高くなり失活反応を生じやすくなる原因となる。
[0045] 本発明においては、モノマーの種類の選択と重合反応器の組み合わせ方により、 単独重合体はもちろんのこと、テーパード共重合体、ランダム共重合体、ブロック共 重合体、グラフト共重合体などの各種の共重合体を製造することができる。例えば、 あら力じめ異なる 2種類のモノマーを混合したものを用いた場合、テーパード共重合 体やランダム共重合体を製造することができる。また、 2つの反応器を直列に連結し、 1つ目の反応器でモノマー Aを供給して重合して得たリビングポリマーに対し、 2つ目 の反応器でモノマー Bを供給して重合を行なうことにより、 A— B型ジブロック共重合 体を製造することができる。さらに、同様に 3つの反応器を直列に連結して、 A—B— A型あるいは A—B— C型トリブロック共重合体を製造することができる。なお、 2っ以 上の反応器を直列に連結して、各反応器で同じモノマーを供給することにより、高分 子量の単独重合体を製造することもできる。そして、各反応器にモノマーとしてマクロ モノマーを供給することにより、グラフト共重合体も製造することができる。このように、 モノマーの種類の選択と反応器の組み合わせにより、重合体の使用目的に応じてラ ンダム共重合体、ブロック共重合体、グラフト共重合体等の分子設計がなされた各種 の共重合体を製造することができる。
[0046] 本発明の方法により製造可能な重合体または共重合体の分子量は広範囲にわた る力 一般には、数平均分子量が 1000〜1000000の範囲内であること力 得られる 重合体または共重合体の取り扱い性、流動性、力学特性などの点力 好ましい。
[0047] 本発明の方法において、重合反応液の反応器中での滞留時間は、重合に使用す る (メタ)アクリル酸エステルの種類や重合温度などによっても異なる力 通常、重合 に要する時間に対して 1〜: LOO倍とすることが好ましい。滞留時間が重合に要する時 間に対して 1倍未満の場合には、反応器内で重合反応が完結しないまま重合反応液 が反応器から排出されてしまうため、重合反応液中に残存する未反応の (メタ)アタリ ル酸エステルが、反応器を出たあとの配管中で高分子量体の生成などの原因となる 重合を起こしたり、生成物としての重合体または共重合体に未反応の (メタ)アクリル 酸エステルが残存する恐れがある。また、滞留時間が重合に要する時間に対して 10 0倍より大きい場合、重合活性末端の自然失活の割合が多くなる傾向となる。なお、 重合に要する時間は (メタ)アクリル酸エステルの種類によって異なる力 例えば、(メ タ)アクリル酸エステルとしてアクリル酸エステルを使用する場合、重合時間は 10秒未 満であり、条件によっては 1秒以内に重合を完結させることも可能である。
[0048] 本発明の方法においては、重合温度は、使用する (メタ)アクリル酸エステルの種類 や重合反応液中の濃度などに応じて温度条件を選択すればよいが、重合時間が短 縮でき、また、重合中の失活反応が少ない観点より、通常、— 20〜80°Cの範囲の温 度が好ましい。これは、従来の (メタ)アクリル酸エステルのァ-オン重合条件と比較し て極めて温和な温度条件であるので、本発明の方法を工業的に実施するに際して は、従来の方法と比較して冷却設備のコストを大幅に削減することができる。
[0049] 本発明の方法において使用できる反応器としては、連続的製造方法で通常用いら れる重合反応器を特に制限なく用いることができ、例えば管型反応器、槽型反応器 などが挙げられる。これらの中でも、管型反応器が好ましぐ特に静止型攪拌機能を 有するスタティックミキサー型反応器が好ま 、。
[0050] 本発明の、ァ-オン重合による (メタ)アクリル酸エステル重合体または共重合体の 連続的製造方法は、好ましくは 2つ以上の反応器を直列に連結し、有機アルミニウム 化合物を含む重合開始剤溶液と、少なくとも 1種のメタクリル酸エステルまたはアタリ ル酸エステルを第 1反応器に連続的に供給して、有機アルミニウム化合物とメタクリル 酸エステルおよび Zまたはアクリル酸エステルのリビング重合体を含む重合反応液を 得、そして引き続き、力かる重合反応液と、第 1反応器に供給したメタクリル酸エステ ルまたはアクリル酸エステルと同一または異なる少なくとも 1種のメタクリル酸エステル またはアクリル酸エステルを、第 (n+ 1)反応器 (nは自然数を表す)に連続的に供給 して、有機アルミニウム化合物とメタクリル酸エステルおよび Zまたはアクリル酸エステ ルのリビング重合体を含む重合反応液を連続的に得、かつ、そのうちの少なくとも一 つの反応器にぉ 、て、該反応器に供給するメタクリル酸エステルまたはアクリル酸ェ ステルのモル量と([有機アルミニウム化合物のモル量] [重合開始剤のモル量]) の比 { [メタクリル酸エステルまたはアクリル酸エステルのモル量] / ( [有機アルミ-ゥ ム化合物のモル量]― [重合開始剤のモル量] ) }が 80以下となるように制御し、かつ 、該反応器に供給する重合開始剤溶液または重合反応液とメタクリル酸エステルま たはアクリル酸エステルの総供給量中の、メタクリル酸エステルまたはアクリル酸エス テルの含有量を 5質量%以下に制御することにより、(メタ)アクリル酸エステル重合体 または共重合体を連続的に製造することができる。
[0051] 本発明においては、最終の反応器より連続的に流出する重合反応液に、重合停止 剤を添加することによって重合反応を停止させる。重合停止剤としては、例えば水、メ タノール、酢酸、塩酸などのプロトン性ィ匕合物を使用できる。重合停止剤の使用量は 特に限定されないが、通常、使用する重合開始剤に対して 1〜100倍モルの範囲で あり、かつ、それに加えて、使用する有機アルミニウム化合物 (I)に対して 1〜: LOO倍 モルの範囲の重合停止剤を過剰に添加することが好ましい。
[0052] 重合停止後の反応混合物から分離取得した重合体または共重合体中に、使用し た有機アルミニウム化合物 (I)に由来するアルミニウムが残存していると、重合体また は共重合体や、それを用いた材料の物性低下を生じる場合があるので、有機アルミ ニゥム化合物に由来するアルミニウムを重合終了後に除去することが好まし 、。該ァ ルミ-ゥムの除去方法としては、重合停止剤を添加した後の重合反応液を、酸性水 溶液を用いた洗浄処理、イオン交換榭脂などの吸着剤を用いた吸着処理などに付 することが有効である。
[0053] 重合を停止させ、アルミニウムの除去処理操作を行なった後の重合反応液力 重 合体または共重合体を分離取得するための方法は特に制限されず、公知の方法を 適宜採用できる。例えば、重合反応液を、重合体または共重合体の貧溶媒に注いで 該重合体または共重合体を析出させる方法;重合反応液から溶媒を減圧下に留去し て重合体または共重合体を取得する方法などが挙げられる。また、重合反応液を、ま ず薄膜蒸発装置などを用いて含有する溶媒および低沸点成分の大部分を除去した 後、残留物を連続的に溶融押出器に供給し、力かる溶融押出器中において減圧下 に溶媒を留去して、重合体または共重合体をストランド、ペレットまたは餅状ブロックと して回収することも可能である。
実施例
[0054] 以下に本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実 施例に限定されるものではない。なお、以下の実施例および比較例において使用し た薬品は常法により乾燥精製し、移送および供給は窒素雰囲気下で行なった。
[0055] また、以下の実施例および比較例にお 、て使用した測定機器を記す。
(1)ゲルパーミエーシヨンクロマトグラフィー(GPC)による数平均分子量(Mn)、重量 平均分子量(Mw)、分子量分布 (Mw/Mn)の測定
東ソ一社製ゲルパーミエーシヨンクロマトグラフ(HLC - 8020)
カラム:東ソ一社製 TSKgel GMHXL、 G4000HXLおよび G5000HXLを直列に 連結
溶離液:テトラヒドロフラン、流量 1. OmlZ分、
カラム温度: 40°C
検量線:標準ポリスチレンを用いて作成
検出方法:示差屈折率 (RI)
(2)共重合体における各重合体ブロックの含有量の測定
'H-NMR:日本電子社製核磁気共鳴装置 (JNM— LA400)、溶媒:重クロ口ホル ム
(3)高速液体クロマトグラフィー (HPLC)による、共重合体中のトリブロック共重合体 含有率の測定
島津製作所製高速液体クロマトグラフ (HPLClOAvp)
検出器: Polymer Laboratories社製エバポレイティブ光散乱検出器(PL— EM D960)
カラム: SUPELCO社製 SUPELCOSIL LC— 3— Si
溶離液:酢酸ェチル Zシクロへキサン = 50Z50 (容量比)で 2分保持後、 18分間か けて酢酸ェチル Zシクロへキサン = 100/0 (容量比)まで酢酸ェチルの容量比を直 線的に上げた後、酢酸ェチル Zシクロへキサン = 100Z0で 10分保持。流量 1. 0ml Z分
カラム温度: 40°C
(4)ガスクロマトグラフィー(GC)による仕込みモノマーの転ィ匕率の測定
機器:島津製作所製ガスクロマトグラフ GC— 14A
カラム: GL Sciences Inc.製 INERT CAP 1 (df =0. 4 m、 0. 25mmL D. X 60m)
分析条件: injection 300°C、 detect 300°C、昇温: 60°C (0分保持)→5°CZ分 →100°C (0分保持)→30°CZ分→300°C (2分保持)
本発明の方法に使用できる反応装置の一例を図 1に示す。第一の反応器は、(メタ )アクリル酸エステルのストックタンク 2が連結されて ヽる攪拌機付き槽型反応器 1であ る。第二の反応器は、ジャケット付スタティックミキサー型反応器 8と、続けて該反応器 8よりも管径が大きいジャケット付スタティックミキサー型反応器 9を直列に連結させた 、計 2基の管型反応器からなる。これらのジャケット付スタティックミキサー型反応器の ジャケット中には冷媒を流通させて、それぞれの反応器の温度を制御する。第二の 反応器の導入部分には、第一の反応器および第二の (メタ)アクリル酸エステルのスト ックタンク 5が、それぞれフィードポンプ 4、 6を介して接続されている。第一の槽型反 応器 1で間欠的または連続的に第一の (メタ)アクリル酸エステルの重合反応を行な V、、力かる反応によって得られた重合体溶液を第二の管型反応器 8の導入部分へフ イードポンプ 4により連続的に供給する。この際に、第二の (メタ)アクリル酸エステルを ストックタンク 5からフィードポンプ 6により同時に連続的に供給し、第二の反応器、す なわち連結された管型反応器中で第二の重合反応を行なわせる。ここで、第一の (メ タ)アクリル酸エステルと第二の(メタ)アクリル酸エステルの種類を変えれば、ブロック 共重合体を製造することができる。第二の反応器部の出口には重合反応液の抜取り 口 10が設けてあり、必要に応じて、第二の重合を終了した時点で重合反応液を抜取 り、重合停止操作力 重合体取り出しまでの一連の工程に流すこともできるし、抜取 つた重合反応液を一旦攪拌機付き槽型反応器 11をストックタンクとして用いて短時 間貯蔵して、再び第一の反応器 1を経由して、第二の (メタ)アクリル酸エステルと共 に連続的に第二の反応器 (8および 9)へ導入して重合を繰り返すこともできる。さらに 、重合反応液を抜取らずに、引き続き攪拌機付き槽型反応器 11を第三の反応器とし て用いて、第三の(メタ)アクリル酸エステルをストックタンク 12よりフィードポンプ 13を 介して供給して重合させると、第三の (メタ)アクリル酸エステルの種類が第二の (メタ) アクリル酸エステルと異なる場合にはトリブロック共重合体を製造することができる。そ の後、重合停止操作力 重合体取り出しまでの一連の工程に流すことにより、重合体 または共重合体を取り出すことができる。
また、本発明の方法に使用できる反応装置の他の例を図 2に示す。第一の反応器 は、(メタ)アクリル酸エステルのストックタンク 16が連結されて ヽる攪拌機付き槽型反 応器 18である。第二の反応器は、図 3に示すような 2通りのジャケット付スタティックミ キサー型反応器(51、 53)およびジャケット付スタティックミキサー型レジューサー 52 からなる反応器を 15基直列に連結させてなる管型反応器であり、さらに第三の反応 器はそれと直列に連結された塔型反応器 44からなる。図 3におけるこれらのジャケッ ト付スタティックミキサー型反応器(51、 53)およびジャケット付スタティックミキサー型 レジューサー 52のジャケット中には冷媒を流通させて、それぞれの反応器の温度を 制御する。まず、第一の反応器 18で間欠的または連続的に第一の (メタ)アクリル酸 エステルの重合反応を行なう。力かる反応によって得られた重合反応液は、フィード ポンプ 19により連続的に第二の反応器へ供給される。その際、必要に応じて、同時 に溶媒のストックタンク 20からフィードポンプ 21によって連続的に溶媒を供給し、重 合体溶液と溶媒を混合用スタティックミキサー 24により希釈して重合反応液の濃度を 調整する。
[0058] 次に、第二の反応器部の導入部、すなわち 1基目のジャケット付スタティックミキサ 一型反応器 27へ重合反応液を連続的に供給する。この際、第二の (メタ)アクリル酸 エステルをストックタンク 22からフィードポンプ 23により同時に供給し、 1基目のジャケ ット付スタティックミキサー型反応器 27中で重合反応を行なわせる。続いて、該重合 反応液は、 2基目のジャケット付スタティックミキサー型反応器 28に連続的に導入さ れる。この際、該 2基目のジャケット付スタティックミキサー型反応器 28にも第二の (メ タ)アクリル酸エステルをストックタンク 22からフィードポンプ 23により供給し、 2基目の スタティックミキサー型反応器 28中でも同時に重合反応を行なわせる。以下同様に、 15基すベてのスタティックミキサー型反応器(27〜41)内で順次連続的に重合反応 を行なわせる。なお、各スタティックミキサー型反応器(27〜41)へ連続的に供給す る第二の (メタ)アクリル酸エステルのそれぞれの流量の微調整は、各反応器のフィー ド口手前に設けられた流量計 55と流量制御用バルブ 54により行なう。
[0059] 15基目のジャケット付スタティックミキサー型反応器 41から得られた重合反応液は 、続いて、ストックタンク 16からフィードポンプ 17により連続的に供給される第三の (メ タ)アクリル酸エステルと、混合用スタティックミキサー 42で混合した後、第三の反応 器、すなわち塔型反応器 44の下部に導入される。塔型反応器 44内では、重合反応 液が塔型反応器 44の下部から上部へ向けて流れ、その間に重合反応が進行して、 上部より重合反応液を得る。引き続き、該重合反応液を重合停止用スタティックミキサ 一 47に導入し、同時に、重合停止剤のストックタンク 45からフィードポンプ 46により 連続的に重合停止剤を重合停止用スタティックミキサー 47に供給して、重合を停止 させる。その後、ストックタンク 48に反応液の全量または一部を受け入れる。ここまで の工程で、第一〜第三の (メタ)アクリル酸エステルの種類を変えれば、トリブロック共 重合体を製造することができる。また、スタティックミキサー型反応器 41および塔型反 応器 44の出口(図では重合停止用スタティックミキサー 47の後)には重合反応液の 抜取り口(49、 50)が設けてあり、必要に応じて、重合反応液を少量抜取り、分析に 供することができる。さらに、ストックタンク 48中の重合反応停止後の反応液を、連続 的に重合体取り出しまでの一連の工程に流すことにより、重合体または共重合体を 連続的に取り出すことができる。
[0060] なお、以下の実施例 1〜2および比較例 1〜2においては、図 1において、第一の反 応器として容量 lm3の攪拌機付き槽型反応器を、第二の管型反応器部として内径 1 lmm X長さ 1620mmのジャケット付スタティックミキサー型反応器と、続けて該反応 器よりも管径が大きい内径 23mm X長さ 2700mmのジャケット付スタティックミキサー 型反応器を直列に連結させた計 2基の管型反応器を、第三の反応器兼重合反応液 ストックタンクとして容量 lm3の攪拌機付き槽型反応器を用いた。
また、実施例 3および比較例 3においては、図 2において、第一の反応器として容量 lm3の攪拌機付き槽型反応器を、第二の管型反応器部として、図 3におけるジャケッ ト付スタティックミキサー型反応管(内径 1 lmm X長さ 300mm)、ジャケット付スタティ ックミキサー型レジューサー(内径 1 lmm〜内径 28mm X長さ 140mm)、およびジャ ケット付スタティックミキサー型反応管(内径 28mm X長さ 3470mm)が連結した反応 管を 15基直列に連結させた管型反応器を、第三の反応器として容量 0. 95m3 (内径 400mm X長さ 7600mm)の塔型反応器を用いた。
[0061] 実施例 1
図 1に示す反応装置にて、以下のとおり実施した。
〔1〕内部を窒素置換した容量 lm3の攪拌機付き反応器 1に、トルエン 562kg、 1, 1, 4, 7, 10, 10—へキサメチルトリエチレンテトラミン 1. 11kg、イソブチルビス(2, 6- ジ— t—ブチル— 4—メチルフエノキシ)アルミニウム(iBuAl (BHT) ) 8. 2モルを含
2
むトルエン溶液 13. 2kgを 25°Cで仕込んだ。次に、 s—ブチルリチウム 4. 1モルを含 むシクロへキサン溶液 2. 4kgをカ卩えた後、メタクリル酸メチル(MMA) 33. 7kgを 30 分かけて加え、その間の反応液温度は 20〜40°Cに保ち、 MMAの添加終了後 10 分間重合を追 、込み、重合末端がリビング性を保った状態のポリメタクリル酸メチル( 以下、これをリビング PMMA1と称する)を含む重合反応液 (以下、これをリビング P MMA溶液 1と称する)を調製した。なお、 GCにより確認したメタクリル酸メチルの転 化率は 100%であった。また、得られたリビング PMMA溶液 1の少量を、少量のメタ ノールの入った容器に採取して重合反応を停止させた反応液の GPC測定から、該 P MMAは Mn=8330、 Mw/Mn= l. 13であった。
〔2〕続!、て、以下のようにして、上記で得たリビング PMMA溶液 1を、アクリル酸 n— ブチル (nBA)と共に連続的に供給して、第二の重合反応を行なった。
まず、予め— 15°Cに冷却したリビング PMMA溶液 1を 200kg/hrで、一方、—6 °Cに冷却したアクリル酸 n -ブチルを 6. 8kg/hrで (全供給溶液中のアクリル酸 n - ブチルの含有量: 3. 3質量%)、同時に第二反応器の入り口、すなわち第一の管型 反応器 8の入り口に連続的に供給し、容量 lm3の攪拌機付きストック槽 11に連続的 に重合反応液を取り出す操作を 2時間連続的に行なった。該ストック槽 11に得られた 重合反応液に、メタノールを 2kg添加することにより、重合反応を停止させた。該連続 重合操作中、反応器 9の出口での重合反応液の温度は 9°Cであった。また、反応 器 9の出口に設けられた抜取り口 10より採取した重合反応液を、少量のメタノールの 入った容器に採取して重合反応を停止させた反応液にっ 、て GC測定したところ、ァ クリル酸 n—プチル転ィ匕率は 100%であった。なお、第二反応器の第一の管型反応 器 8に供給するアクリル酸 n—ブチルのモル量とリビング PMMA溶液 1中に含まれる ( [有機アルミニウム化合物のモル量] [重合開始剤のモル量] )の比 { [アクリル酸 n ブチルのモル量] Z ( [有機アルミニウム化合物のモル量] [重合開始剤のモル 量] ) }は 34であった。第二反応器部におけるリビング PMMA溶液 1とアクリル酸 n— ブチルの混合液の滞留時間は 20秒であった。得られた重合体は、ポリ(メタクリル酸 メチル) b ポリ(アクリル酸 n—ブチル)ジブロック共重合体(PMMA— b— PnBA) であり、 GPC測定より、該ジブロック共重合体の Mn= 14920、 Mw/Mn= l . 08で あった。また、 NMR測定より、該ジブロック共重合体中の PMMAブロック含有 量は 62質量%、 PnBAブロック含有量は 38質量%であった。
実施例 2
図 1に示す反応装置にて、以下のとおり実施した。
(a)実施例 1の〔1〕と同様の方法で調製したリビング PMMA溶液 1を— 15〜― 13 °Cに冷却し、これを 200kgZhrで、一方、—6〜― 4°Cに冷却したアクリル酸 n—ブチ ルを 6. 8kg/hrで (全供給溶液中のアクリル酸 n—ブチルの含有量: 3. 3質量0 /0)、 同時に第二反応器入り口、すなわち第一の管型反応器 8に連続的に供給し、反応器 9の出口より連続的に重合反応液を、予め—15〜一 13°Cに冷却した容量 lm3の攪 拌機付きストック槽 11に取り出した。これを重合反応液 1と称する。該反応器 8に供給 する溶液中のアクリル酸 n ブチルのモル量とリビング PMMA溶液 1中に含まれる( [ 有機アルミニウム化合物のモル量] [重合開始剤のモル量] )の比 { [アクリル酸 n— ブチルのモル量] Z ( [有機アルミニウム化合物のモル量] [重合開始剤のモル量] ) }は 34であった。また、第二反応器部におけるリビング PMMA溶液 1とアクリル酸 n ブチルの混合液の滞留時間は 20秒であった。なお、反応器 9の出口に設けられた 抜取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採 取して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n —ブチル転ィ匕率は 100%であった。
(b)続いて、力かる重合反応液 1の全量を、直ちに空の容量 lm3の攪拌機付き反応 器 1に移送した後、 200kgZhrで第二反応器入り口、すなわち第一の管型反応器 8 の入り口へ再び供給し、それと同時にー6〜一 4°Cに冷却したアクリル酸 n—ブチル を 6. 6kg/hrで (全供給溶液中のアクリル酸 n—ブチルの含有量: 3. 2質量%)連続 的に供給して、反応器 9の出口より連続的に重合反応液を予め― 15〜― 13°Cに冷 却したストック槽 11に取り出した。これを重合反応液 2と称する。該反応器 8に供給す る溶液中のアクリル酸 n ブチルのモル量と重合反応液 1中に含まれる ( [有機アルミ -ゥム化合物のモル量] [重合開始剤のモル量] )の比は 34であった。また、第二 反応器部における重合反応液 1とアクリル酸 n—ブチルの混合液の滞留時間は 20秒 であった。なお、抜取り口 10より、得られた重合反応液の少量を、少量のメタノールの 入った容器に採取して重合反応を停止させた。この反応液にっ 、て GC測定したとこ ろ、アクリル酸 n—ブチル転ィ匕率は 100%であった。
(c)次いで、力かる重合反応液 2の全量を、直ちに空の反応器 1に移送した後、 20 OkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給し 、それと同時にー6〜一 4°Cに冷却したアクリル酸 n—ブチルを 6. 4kgZhrで(全供 給溶液中のアクリル酸 n—ブチルの含有量: 3. 1質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 3と称する。該反応器 8に供給する溶液中のアクリル酸 n ブチルのモル量と重合反応液 2中に含まれる( [有機アルミニウム化合物のモル量 ]—[重合開始剤のモル量] )の比は 34であった。また、第二反応器部における重合 反応液 2とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜取り 口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取して 重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n—プチ ル転ィ匕率は 100%であった。
(d)次いで、力かる重合反応液 3の全量を、直ちに空の反応器 1に移送した後、 20 OkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給し 、それと同時にー6〜一 4°Cに冷却したアクリル酸 n—ブチルを 6. 2kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 3. 0質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 4と称する。該反応器 8に供給する溶液中のアクリル酸 n ブチルのモル量と重合反応液 3中に含まれる( [有機アルミニウム化合物のモル量 ]—[重合開始剤のモル量] )の比は 34であった。また、第二反応器部における重合 反応液 3とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜取り 口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取して 重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n—プチ ル転ィ匕率は 100%であった。
(e)次いで、力かる重合反応液 4の全量を、直ちに空の反応器 1に移送した後、 20 OkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給し 、それと同時にー6〜一 4°Cに冷却したアクリル酸 n—ブチルを 6. OkgZhrで(全供 給溶液中のアクリル酸 n—ブチルの含有量: 2. 9質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 5と称する。該反応器 8に供給する溶液中のアクリル酸 n ブチルのモル量と重合反応液 4中に含まれる( [有機アルミニウム化合物のモル量 ]—[重合開始剤のモル量] )の比は 34であった。また、第二反応器部における重合 反応液 4とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜取り 口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取して 重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n—プチ ル転ィ匕率は 100%であった。
(f)最後に、力かる重合反応液 5の全量を、直ちに空の反応器 1に移送した後、 20 OkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給し 、それと同時にー6〜一 4°Cに冷却したアクリル酸 n—ブチルを 5. 8kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 2. 8質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 6と称する。該反応器 8に供給する溶液中のアクリル酸 n ブチルのモル量と重合反応液 5中に含まれる( [有機アルミニウム化合物のモル量 ]—[重合開始剤のモル量] )の比は 34であった。また、第二反応器部における重合 反応液 5とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜取り 口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取して 重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n—プチ ル転ィ匕率は 100%であった。
得られた重合反応液 6の一部(約 10kg)をストック槽 11より取り出し、メタノール 50g を添加することにより重合反応を停止した。なお、 GCにより確認したアクリル酸 n—ブ チルの転ィ匕率は 100%であった。得られた重合体は、ポリ (メタクリル酸メチル)― b— ポリ(アクリル酸 n—ブチル)ジブロック共重合体(PMMA— b— PnBA)であり、 GPC 測定より、該ジブロック共重合体の Mn= 39890、 Mw/Mn= l. 19であった。また 、ェ!! NMR測定より、該ジブロック共重合体中の PMMAブロック含有量は 21質量 %、 PnBAブロック含有量は 79質量%であった。 [0065] (g)—方、引き続き、容量 lm3の攪拌機付きストック槽 11に得られた重合反応液 6を 15〜一 13。Cに保ち、 200kgあたり MMA9. 1kgを 5分力、けて添カロした後、 25°C に昇温して 6時間重合を行なった。得られた重合反応液にメタノール lkgを添加する ことにより、重合反応を停止させた。なお、 GCにより確認した MMAの転ィ匕率は 100 %であった。得られた重合体は、 PMMA—b— PnBA—b— PMMAのトリブロック共 重合体であり、 GPC測定より、該トリブロック共重合体の Mn=43340、 Mw/Mn= 1. 25であった。また、 H— NMR測定より、該トリブロック共重合体中の ΡΜΜΑブロ ックの含量は 35質量%であり、 ΡηΒΑブロックの含量は 65質量%であった。さらに、 HPLC法によって求めた、得られた重合体中のトリブロック共重合体の含有率 (ブロッ ク化効率)は 92%であり、上記の 6回の繰り返し操作による ηΒΑ重合中の重合末端 失活量は 8%であることがわ力つた。得られたトリブロック共重合体の GPC曲線を図 4 に示す。
[0066] 実施例 3
図 2に示す反応装置にて、以下のとおり実施した。
〔1〕内部を窒素置換した容量 lm3の攪拌機付き反応器 18に、トルエン 604kg、 1, 1 , 4, 7, 10, 10 へキサメチルトリエチレンテトラミン 2. 15kg, 'BuAKBHT) 27モ
2 ルを含むトルエン溶液 40. 3kgを 25°Cで仕込んだ。次に、 s ブチルリチウム 4. 55 モルを含むシクロへキサン溶液 7. 75kgをカ卩えた後、メタクリル酸メチル(MMA) 16 9. lkgを 30分力けてカロえ、その間の反応液温度は 20〜40°Cに保ち、 MMAの添 加終了後 10分間重合を追い込み、重合末端がリビング性を保った状態のポリメタタリ ル酸メチル(以下、これをリビング PMMA2と称する)を含む重合反応液 (以下、これ をリビング PMMA溶液 2と称する)を調製した。なお、 GCにより確認したメタクリル酸 メチルの転化率は 100%であった。また、得られたリビング PMMA溶液 2の少量を、 少量のメタノールの入った容器に採取して重合反応を停止させた反応液の GPC測 定から、該 PMMAは Mn= 22200、 Mw/Mn= l. 08であった。
〔2〕上記で得られたリビング PMMA溶液 2を 57kgZhr、およびトルエンを 175kgZ hrの流量でスタティックミキサー 24へ供給して混合し、続けて熱交換器 25を通して - 10°Cに冷却したのち、図 3に示したジャケット付スタティックミキサー型反応器 15基 を直列に連結した管型反応器部の第 1反応器 27の導入部に連続的に供給し、一方 、—10°Cに冷却したアクリル酸 n—ブチルを各 3. 5kgZhrで、図 2に示すように、そ れぞれ第 1〜15の各管型反応器 (ジャケット付スタティックミキサー型反応器 27〜41 )の導入部に供給した。各管型反応器(27〜41)における全供給液中のアクリル酸 n ブチルの含有量は、 1. 5〜1. 2質量%であった。また、各管型反応器(27〜41) に供給する溶液中のアクリル酸 n ブチルのモル量とリビング PMMA溶液 2中に含 まれる([有機アルミニウム化合物のモル量] [重合開始剤のモル量])の比 { [アタリ ル酸 n ブチルのモル量] Z ( [有機アルミニウム化合物のモル量] [重合開始剤の モル量] ) }は 20であった。また、各管型反応器におけるリビング PMMA溶液 2とァク リル酸 n—ブチルの混合液の滞留時間は 30〜25秒であった。最終の(15番目の)管 型反応器 41の出口より連続的に重合反応液を得、直ちに後述する第〔3〕工程に付 した。なお、最終の反応器 41の出口に設けられた抜取り口 49より、得られた重合反 応液の少量を、直ちに少量のメタノールの入った容器に採取して重合反応を停止さ せた。この反応液について、 GC測定したところ、アクリル酸 n—ブチル転ィ匕率は 100 %であった。該反応液より得られた重合体は、ポリ (メタクリル酸メチル) b ポリ(ァ クリル酸 n ブチル)ジブロック共重合体(PMMA— b— PnBA)であり、 GPC測定よ り、該ジブロック共重合体の Mn= 137000、 Mw/Mn= l. 14であった。また、ェ!! NMR測定より、該ジブロック共重合体中の PMMAブロック含有量は 18質量%、 P nBAブロック含有量は 82質量%であった。
〔3〕力かる重合反応液を 285kgZhr、および MMAを 9kgZhrで連続的にスタティッ クミキサー 42で混合し、続けて熱交 43にて 60°Cまで加熱し塔型反応器 44へ連 続的に導入した (全供給溶液中の MMAの含有量: 3質量%)。該塔型反応器 44〖こ 供給する溶液中の MMAのモル量と重合反応液中に含まれる ( [有機アルミニウム化 合物のモル量] [重合開始剤のモル量] )の比 { [MMAのモル量] / ( [有機アルミ ニゥム化合物のモル量]― [重合開始剤のモル量] ) }は 67であった。該塔型反応器 4 4における重合反応液と MMAの混合液の滞留時間は約 2. 5時間であった。塔型反 応器 44の出口より重合反応液をストック槽 48に連続的に得た。なお、抜取り口 50より 、得られた重合反応液の少量を採取した。この反応液について、 GC測定したところ、 MMA転化率は 100%であった。得られた重合体は、 PMMA— b— PnBA— b— P MMAのトリブロック共重合体であり、 GPC測定より、該トリブロック共重合体の Mn= 142000、 Mw/Mn= l. 13であった。また、 H— NMR測定より、該トリブロック共 重合体中の ΡΜΜΑブロック含有量は 28質量%、 PnBAブロック含有量は 72質量% であった。また、 HPLC法によって求めた、得られた重合体中のトリブロック共重合体 の含有率 (ブロック化効率)は 95%であった。得られたトリブロック共重合体の GPC曲 線を図 5に示す。
比較例 1
図 1に示す反応装置にて、以下のとおり実施した。
〔1〕実施例 1の〔1〕において、 ¾uAl(BHT) の仕込み量を、 ¾uAl (BHT) を I3. 8
2 2 モル含むトルエン溶液 20. 5kgに変更した以外は実施例 1の〔1〕と同様に重合反応 を行なって、重合末端がリビング性を保った状態のポリメタクリル酸メチルを含む重合 体溶液を調製した。 GCにより確認したメタクリル酸メチルの転ィ匕率は 100%であった 。また、得られたリビング PMMA溶液の少量を、少量のメタノールの入った容器に採 取して重合反応を停止させた反応液の GPC測定から、該リビング PMMAは Mn= 8 330、 Mw/Mn= l. 13であった。
〔2〕続いて、該重合体溶液と共に、連続的に供給するアクリル酸 n ブチルの量を 1 3. 6kg/hr (全供給溶液中のアクリル酸 n—ブチルの含有量: 6. 4質量%)に変更し た以外は実施例 1の〔2〕と同様にして第二の重合反応を行ない、 PMMA-b-PnB Aを得た。該反応器 8に供給するアクリル酸 n ブチルのモル量とリビング PMMA溶 液中に含まれる([有機アルミニウム化合物のモル量] [重合開始剤のモル量] )の 比 { [アクリル酸 n ブチルのモル量] Z ( [有機アルミニウム化合物のモル量] [重 合開始剤のモル量] ) }は 34であった。また、第二反応器部におけるリビング PMMA 溶液とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、反応器 9の 出口に設けられた抜取り口 10より得られた重合反応液の少量を、少量のメタノール の入った容器に採取して重合反応を停止させた。この反応液にっ 、て GC測定した ところ、アクリル酸 n—ブチル転ィ匕率は 100%であり、 GPC測定より、該ジブロック共 重合体の Mn= 17300、 Mw/Mn= l. 59であった。また、 H—NMR測定より、該 ジブロック共重合体中の PMMAブロック含有量は 45質量%、 PnBAブロック含有量 は 55質量%であった。
比較例 2
図 1に示す反応装置にて、以下のとおり実施した。
〔1〕内部を窒素置換した容量 lm3の攪拌機付き反応器 1に、トルエン 450kg、 1, 1, 4, 7, 10, 10 へキサメチルトリエチレンテトラミン 0. 88kg, 'BuAKBHT) 5. 3モ
2 ルを含むトルエン溶液 7. 9kgを 25°Cで仕込んだ。次に sec ブチルリチウム 3. 7モ ルを含むシクロへキサン溶液 1. 2kgをカ卩えた後、メタクリル酸メチル(MMA) 27kgを 30分かけてカ卩え、その間の反応液温度は 20〜40°Cに保ち、 MMAの添加終了後 1 0分間重合を追 、込み、重合末端がリビング性を保った状態のポリメタクリル酸メチル (以下、これをリビング PMMAと称する)を含む重合反応液 (以下、これをリビング PM MA溶液 3と称する)を調製した。なお、 GCにより確認したメタクリル酸メチルの転ィ匕 率は 100%であった。また、得られたリビング PMMA溶液 3の少量を、少量のメタノ ールの入った容器に採取して重合反応を停止させた反応液の GPC測定から、該 P MMAは Mn=6680、 Mw/Mn= l. 13であった。
〔2〕(a)得られたリビング PMMA溶液 3を— 15〜― 13°Cに冷却し、これを 200kgZ hrで、一方、—9〜― 7°Cに冷却したアクリル酸 n—ブチルを 6. 8kgZhrで(全供給 溶液中のアクリル酸 n—ブチルの含有量: 3. 3質量%)、同時に第二反応器入り口、 すなわち第一の管型反応器 8に連続的に供給し、反応器 9の出口より連続的に重合 反応液を、予め 15〜一 13°Cに冷却した容量 lm3の攪拌機付きストック槽 11に取り 出した。これを重合反応液 1 'と称する。該反応器 8に供給する溶液中のアクリル酸 n ブチルのモル量とリビング PMMA溶液 3中に含まれる( [有機アルミニウム化合物 のモル量] [重合開始剤のモル量] )の比 { [アクリル酸 n ブチルのモル量] Z ( [有 機アルミニウム化合物のモル量] [重合開始剤のモル量] ) }は 84であった。また、 第二反応器部におけるリビング PMMA溶液 3とアクリル酸 n—ブチルの混合液の滞 留時間は 20秒であった。なお、反応器 9の出口に設けられた抜取り口 10より、得られ た重合反応液の少量を、少量のメタノールの入った容器に採取して重合反応を停止 させた。この反応液について GC測定したところ、アクリル酸 n—ブチル転ィ匕率は 100 %であった。
(b)続いて、力かる重合反応液 1 'の全量を、直ちに空の反応器 1に移送した後、 2 OOkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給 し、それと同時にー9〜一 7°Cに冷却したアクリル酸 n—ブチルを 6. 6kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 3. 2質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め— 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 2'と称する。該反応器 8に供給する溶液中のアクリル酸 n—ブチルのモル量と重合反応液 1,中に含まれる ( [有機アルミニウム化合物のモル 量]— [重合開始剤のモル量] )の比は 84であった。また、第二反応器部における重 合反応液 1 'とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜 取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取 して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n— ブチル転ィ匕率は 100%であった。
(c)次いで、力かる重合反応液 2'の全量を、直ちに空の反応器 1に移送した後、 2 OOkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給 し、それと同時にー9〜一 7°Cに冷却したアクリル酸 n—ブチルを 6. 4kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 3. 1質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め— 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 3'と称する。該反応器 8に供給する溶液中のアクリル酸 n—ブチルのモル量と重合反応液 2'中に含まれる([有機アルミニウム化合物のモル 量]— [重合開始剤のモル量] )の比は 84であった。また、第二反応器部における重 合反応液 2'とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜 取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取 して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n— ブチル転ィ匕率は 100%であった。
(d)次いで、力かる重合反応液 3'の全量を、直ちに空の反応器 1に移送した後、 2 OOkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給 し、それと同時にー9〜一 7°Cに冷却したアクリル酸 n—ブチルを 6. 2kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 3. 0質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め— 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 4'と称する。該反応器 8に供給する溶液中のアクリル酸 n—ブチルのモル量と重合反応液 3'中に含まれる([有機アルミニウム化合物のモル 量]— [重合開始剤のモル量] )の比は 84であった。また、第二反応器部における重 合反応液 3'とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜 取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取 して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n— ブチル転ィ匕率は 100%であった。
(e)次いで、力かる重合反応液 4'の全量を、直ちに空の反応器 1に移送した後、 2 OOkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給 し、それと同時にー9〜一 7°Cに冷却したアクリル酸 n—ブチルを 6. OkgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 2. 9質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め— 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 5'と称する。該反応器 8に供給する溶液中のアクリル酸 n—ブチルのモル量と重合反応液 4,中に含まれる([有機アルミニウム化合物のモル 量]— [重合開始剤のモル量] )の比は 84であった。また、第二反応器部における重 合反応液 4'とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜 取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取 して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n— ブチル転ィ匕率は 100%であった。
(f)最後に、力かる重合反応液 5'の全量を、直ちに空の反応器 1に移送した後、 20 OkgZhrで第二反応器入り口、すなわち第一の管型反応器 8の入り口へ再び供給し 、それと同時にー9〜一 7°Cに冷却したアクリル酸 n—ブチルを 5. 8kgZhrで (全供 給溶液中のアクリル酸 n—ブチルの含有量: 2. 8質量%)連続的に供給して、反応器 9の出口より連続的に重合反応液を予め― 15〜― 13°Cに冷却したストック槽 11に取 り出した。これを重合反応液 6'と称する。該反応器 8に供給する溶液中のアクリル酸 n—ブチルのモル量と重合反応液 5'中に含まれる([有機アルミニウム化合物のモル 量]— [重合開始剤のモル量] )の比は 84であった。また、第二反応器部における重 合反応液 5'とアクリル酸 n—ブチルの混合液の滞留時間は 20秒であった。なお、抜 取り口 10より、得られた重合反応液の少量を、少量のメタノールの入った容器に採取 して重合反応を停止させた。この反応液について GC測定したところ、アクリル酸 n— ブチル転ィ匕率は 100%であった。
得られた重合反応液 6 'の一部(約 10kg)をストック槽 11より取り出し、メタノール 50 gを添加することにより重合反応を停止させた。なお、 GCにより確認したアクリル酸 n —プチルの転ィ匕率は 100%であった。得られた重合体は、ポリ(メタクリル酸メチル) b—ポリ(アクリル酸 n ブチル)ジブロック共重合体(PMMA— b— PnBA)であり、 GPC測定より、該ジブロック共重合体の Mn= 32470、 Mw/Mn= l. 50であった。 また、 NMR測定より、該ジブロック共重合体中の PMMAブロック含有量は 21 質量%、 PnBAブロック含有量は 79質量%であった。
[0071] (g)—方、引き続き、容量 lm3の攪拌機付きストック槽 11に得られた重合反応液 6' を 15〜一 13。Cに保ち、 200kgあたり MMA9. 1kgを 5分力、けて添カロした後、 25°C に昇温して 6時間重合を行なった。得られた重合反応液にメタノール lkgを添加する ことにより、重合反応を停止させた。なお、 GCにより確認した MMAの転ィ匕率は 100 %であった。得られた重合体は、 PMMA—b— PnBA—b— PMMAのトリブロック共 重合体であり、 GPC測定より、該トリブロック共重合体の Mn= 34110、 Mw/Mn= 1. 59であり、実施例 2に比べて分子量分布が広いことがわ力つた。なお、 iH—NM R測定より、該トリブロック共重合体中の PMMAブロックの含量は 35質量%であり、 P nBAブロックの含量は 65質量%であった。また、 HPLC法によって求めた、得られた 重合体中のトリブロック共重合体の含有率 (ブロック化効率)は 67%と低く、上記の 6 回の繰り返し操作による nBA重合中の重合末端失活量は 33%と実施例 2に比べて 多いことがわ力つた。得られたトリブロック共重合体の GPC曲線を図 4に併せて示す。
[0072] 比較例 3
図 2に示す反応装置にて、以下のとおり実施した。
〔1〕内部を窒素置換した容量 lm3の攪拌機付き反応器 18に、トルエン 614kg、 1, 1 , 4, 7, 10, 10 へキサメチルトリエチレンテトラミン 2. 20kg, 'BuAKBHT) 21モ ルを含むトルエン溶液 30. 9kgを 25°Cで仕込んだ。次に、 s ブチルリチウム 8. 1モ ルを含むシクロへキサン溶液 4. 75kgをカ卩えた後、メタクリル酸メチル(MMA) 179. lkgを 30分力けてカロえ、その間の反応液温度は 20〜40°Cに保ち、 MMAの添加終 了後 10分間重合を追い込み、重合末端がリビング性を保った状態のポリメタクリル酸 メチル (以下、これをリビング PMMA4と称する)を含む重合反応液 (以下、これをリビ ング PMMA溶液 4と称する)を調製した。なお、 GCにより確認したメタクリル酸メチル の転化率は 100%であった。また、得られたリビング PMMA溶液 4の少量を、少量の メタノールの入った容器に採取して重合反応を停止させた反応液の GPC測定から、 該 PMMAは Mn= 21300、 Mw/Mn= l. 09であった。
〔2〕上記で得られたリビング PMMA溶液 4を 49kgZhr、およびトルエンを 183kgZ hrの流量でスタティックミキサー 24へ供給して混合し、続けて熱交換器 25を通して - 10°Cに冷却したのち、図 3に示したジャケット付スタティックミキサー型反応器 15基 を直列に連結した管型反応器部の第 1反応器 27の導入部に連続的に供給し、一方 、—10°Cに冷却したアクリル酸 n—ブチルを各 7. 9kgZhrで、図 2に示すように、そ れぞれ第 1、 3、 5、 7、 9、 11および 13の各管型反応器 (ジャケット付スタティックミキ サー型反応器 27、 29、 31、 33、 35、 37および 39)の導入部に供給した。各管型反 応器(27、 29、 31、 33、 35、 37および 39)における全供給液中のアタリノレ酸 n—ブ チルの含有量は、 3. 3〜2. 7質量%であった。また、各管型反応器に供給する溶液 中のアクリル酸 n—ブチルのモル量とリビング PMMA溶液 4中に含まれる( [有機ァ ルミ-ゥム化合物のモル量] [重合開始剤のモル量] )の比 { [アクリル酸 n ブチル のモル量] / ( [有機アルミニウム化合物のモル量] [重合開始剤のモル量] ) }は 83 であった。また、各管型反応器におけるリビング PMMA溶液 4とアクリル酸 n—プチ ルの混合液の滞留時間は 33〜28秒であった。最終の(15番目の)管型反応器 41の 出口より連続的に重合反応液を得、直ちに後述する第〔3〕工程に付した。なお、最 終の反応器 41の出口に設けられた抜取り口 49より、得られた重合反応液の少量を、 直ちに少量のメタノールの入った容器に採取して重合反応を停止させた。この反応 液について、 GC測定したところ、アクリル酸 n—ブチル転ィ匕率は 100%であった。該 反応液より得られた重合体は、ポリ(メタクリル酸メチル)—b—ポリ(アクリル酸 n—ブ チル)ジブロック共重合体(PMMA— b— PnBA)であり、 GPC測定より、該ジブロッ ク共重合体の Mn= 167000、 Mw/Mn= l. 67であった。また、丄!!ー NMR測定よ り、該ジブロック共重合体中の PMMAブロック含有量は 16質量%、 PnBAブロック含 有量は 84質量%であった。
[0073] 〔3〕力かる重合反応液を 287kgZhr、および MMAを 15kgZhrで連続的にスタティ ックミキサー 42で混合し、続けて熱交 43にて 60°Cまで加熱し塔型反応器 44へ 連続的に導入した (全供給溶液中の MMAの含有量: 5質量%)。該塔型反応器 44 に供給する溶液中の MMAのモル量と重合反応液中に含まれる ( [有機アルミニウム 化合物のモル量]― [重合開始剤のモル量] )の比は 202であった。該塔型反応器 4 4における重合反応液と MMAの混合液の滞留時間は約 2. 5時間であった。塔型反 応器 44の出口より重合反応液をストック槽 48に連続的に得た。なお、抜取り口 50より 、得られた重合反応液の少量を採取した。この反応液について GC測定したところ、 MMA転化率は 100%であった。得られた重合体は、 PMMA— b— PnBA— b— P MMAのトリブロック共重合体であり、 GPC測定より、該トリブロック共重合体の Mn= 284000、 Mw/Mn= 2. 65であり、分子量分布の狭い重合体を得ることができな かった。また、 H— NMR測定より、該トリブロック共重合体中の PMMAブロック含有 量は 32質量%、 PnBAブロック含有量は 68質量%であった。また、 HPLC法によつ て求めた、得られた重合体中のトリブロック共重合体の含有率 (ブロック化効率)は 47 %であった。得られたトリブロック共重合体の GPC曲線を図 5に併せて示す。
[0074] 比較例 2および比較例 3で得られたブロック化効率の低いトリブロック共重合体は、 引っ張り強さや圧縮永久歪みなどの力学的特性に劣り、熱可塑性エラストマ一として 使用する際に好ましくない。
産業上の利用可能性
[0075] 本発明の連続的製造方法により、従来方法よりも温和な重合温度で、高い重合速 度でリビング性を高く保ちながら重合を進行させ、分子量分布の狭!ヽ (メタ)アクリル 酸エステル重合体または共重合体を高収率で生産性良く製造することができる。 また、本発明の連続的製造方法によって得られる分子量分布が 1. 5以下の (メタ) アクリル酸エステル重合体または共重合体は、熱可塑性エラストマ一、高分子相容化 剤、榭脂改質剤、反応性ポリマー、塗料用榭脂、粘着剤用ベースポリマー、粘度指 数向上剤、流動点降下剤などの用途に好適に用いることができる。
図面の簡単な説明
[0076] [図 1]反応装置の一例の模式図である。 1 :攪拌機付き反応器 [第一の重合反応器]
2, 12 :第一および第三の (メタ)アクリル酸エステル (メタクリル酸メチル)のストックタ ンク 3、 4、 6、 13 :フィードポンプ 5 :第二の(メタ)アクリル酸エステル(アクリル酸 n—プチル)のストックタンク 7 :冷却用熱交 8、 9 :反応用二重管式スタティ ックミキサー [第二の重合反応器] 10 :抜取り口 11:ストック槽兼攪拌機付き反 応器 [第三の重合反応器] 14、 15 :バルブ
[図 2]反応装置の一例の模式図である。 16 :第一および第三の (メタ)アクリル酸エス テル (メタクリル酸メチル)のストックタンク 17、 19、 21、 23、 46 :フィードポンプ 18:攪拌機付き反応器 [第一の重合反応器] 20:溶媒 (トルエン)のストックタンク 21:第二の(メタ)アクリル酸エステル(アクリル酸 n—ブチル)のストックタンク 24、 49 :混合用スタティックミキサー 25、 26 :冷却用熱交^^ 27〜41:ジャケット 付きスタティックミキサー型反応器 [第二の重合反応器] 43:加熱用熱交換器 4 4:塔型反応器 [第三の重合反応器] 45:重合停止剤 (メタノール)のストックタンク 47 :重合停止用スタティックミキサー 48 :攪拌機付きストック槽 49、 50 :抜取 り PI
[図 3]図 2の 27〜41で示されるジャケット付きスタティックミキサー型反応器の詳細図 である。 51、 53:ジャケット付スタティックミキサー型反応管 52:ジャケット付スタテ イツクミキサー型レジューサー 54 :流量制御用バルブ 55 :流量計
[0077] [図 4]実施例 2および比較例 2で得られたトリブロック共重合体 (PMMA—b— PnBA — b— PMMA)の GPC曲線図である。
[図 5]実施例 3および比較例 3で得られたトリブロック共重合体 (PMMA—b— PnBA — b— PMMA)の GPC曲線図である。

Claims

請求の範囲
[1] ァ-オン重合による (メタ)アクリル酸エステル重合体または共重合体の連続的製造 方法であって、
有機アルミニウム化合物を含む重合開始剤溶液と、少なくとも 1種のメタクリル酸ェ ステルまたはアクリル酸エステルを反応器に連続的に供給して、有機アルミニウム化 合物とメタクリル酸エステルおよび Zまたはアクリル酸エステルのリビング重合体を含 む重合反応液を連続的に得る工程を含み、かつ、
該反応器に供給するメタクリル酸エステルまたはアクリル酸エステルのモル量と( [ 有機アルミニウム化合物のモル量] [重合開始剤のモル量] )の比 { [メタクリル酸ェ ステルまたはアクリル酸エステルのモル量] / ( [有機アルミニウム化合物のモル量]
- [重合開始剤のモル量] ) }が 15〜80となるように制御し、かつ
該反応器に供給する重合開始剤溶液とメタクリル酸エステルまたはアクリル酸エス テルの総供給量中の、メタクリル酸エステルまたはアクリル酸エステルの含有量を 5質 量%以下に制御する
ことを特徴とする、(メタ)アクリル酸エステル重合体または共重合体の連続的製造方 法。
[2] ァ-オン重合による (メタ)アクリル酸エステル重合体または共重合体の連続的製造 方法であって、
2つ以上の反応器を直列に連結し、有機アルミニウム化合物を含む重合開始剤溶 液と、少なくとも 1種のメタクリル酸エステルまたはアクリル酸エステルを第 1反応器に 連続的に供給して、有機アルミニウム化合物とメタクリル酸エステルおよび Zまたはァ クリル酸エステルのリビング重合体を含む重合反応液を得、そして引き続き、かかる 重合反応液と、第 1反応器に供給したメタクリル酸エステルまたはアクリル酸エステル と同一または異なる少なくとも 1種のメタクリル酸エステルまたはアクリル酸エステルを 、第 (n+ 1)反応器 (nは自然数を表す)に連続的に供給して、有機アルミニウム化合 物とメタクリル酸エステルおよび Zまたはアクリル酸エステルのリビング重合体を含む 重合反応液を連続的に得、かつ、
そのうちの少なくとも一つの反応器において、該反応器に供給するメタクリル酸エス テルまたはアクリル酸エステルのモル量と([有機アルミニウム化合物のモル量] [重 合開始剤のモル量] )の比 { [メタクリル酸エステルまたはアクリル酸エステルのモル量
] / ( [有機アルミニウム化合物のモル量] [重合開始剤のモル量] ) }が 15〜80とな るように制御し、かつ、
該反応器に供給する重合開始剤溶液または重合反応液とメタクリル酸エステルま たはアクリル酸エステルの総供給量中の、メタクリル酸エステルまたはアクリル酸エス テルの含有量を 5質量%以下に制御する
ことを特徴とする、(メタ)アクリル酸エステル重合体または共重合体の連続的製造方 法。
[3] (メタ)アクリル酸エステルがアクリル酸エステルである請求項 1または 2に記載の重 合体または共重合体の連続的製造方法。
[4] 請求項 1または 2に記載の製造方法により得られる分子量分布が 1. 5以下の (メタ) アクリル酸エステル重合体または共重合体。
PCT/JP2005/014721 2004-08-13 2005-08-11 (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法 WO2006016639A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/659,964 US7973117B2 (en) 2004-08-13 2005-08-11 Process for continuously producing (meth)acrylic ester polymer or copolymer
EP05770786A EP1780222B1 (en) 2004-08-13 2005-08-11 Process for continuously producing (meth)acrylic ester polymer or copolymer
DE602005011303T DE602005011303D1 (de) 2004-08-13 2005-08-11 Verfahren zur kontinuierlichen herstellung von (meth)acrylsäureesterpolymer oder copolymer
JP2006531715A JP4884968B2 (ja) 2004-08-13 2005-08-11 (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004236111 2004-08-13
JP2004-236111 2004-08-13

Publications (1)

Publication Number Publication Date
WO2006016639A1 true WO2006016639A1 (ja) 2006-02-16

Family

ID=35839399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014721 WO2006016639A1 (ja) 2004-08-13 2005-08-11 (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法

Country Status (7)

Country Link
US (1) US7973117B2 (ja)
EP (1) EP1780222B1 (ja)
JP (1) JP4884968B2 (ja)
CN (1) CN100482691C (ja)
AT (1) ATE415425T1 (ja)
DE (1) DE602005011303D1 (ja)
WO (1) WO2006016639A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207155A (ja) * 2011-03-30 2012-10-25 Kuraray Co Ltd アクリル系ジブロック共重合体ペレット及びそれを含有する粘着剤組成物
WO2013146253A1 (ja) * 2012-03-27 2013-10-03 株式会社クラレ ビニル系重合体の製造方法
WO2015093611A1 (ja) * 2013-12-20 2015-06-25 株式会社堀場エステック 連続反応装置及びこれを用いる連続重合方法
JP2015127425A (ja) * 2007-08-21 2015-07-09 国立大学法人京都大学 Mw/Mnが1.25以下であるポリマーの製造方法
JPWO2016103714A1 (ja) * 2014-12-26 2017-10-05 株式会社クラレ 加飾用複層シートおよび立体成型体
WO2019031435A1 (ja) * 2017-08-08 2019-02-14 日産化学株式会社 ブロックポリマーの製造方法
JP2019519656A (ja) * 2016-07-06 2019-07-11 イネオス ユーロープ アクチェンゲゼルシャフト 重合プロセス及び重合設備

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135398A1 (ja) 2016-02-04 2017-08-10 日産化学工業株式会社 ポリマーの製造方法
JP6254239B2 (ja) 2016-02-29 2017-12-27 大日精化工業株式会社 ポリマーの製造方法
JP6245719B1 (ja) * 2017-03-24 2017-12-13 大日精化工業株式会社 ポリマーの製造方法
WO2018225685A1 (ja) * 2017-06-06 2018-12-13 日産化学株式会社 ブロックポリマーの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309903A (ja) * 1994-05-19 1995-11-28 Mitsubishi Rayon Co Ltd メタクリル酸エステル系重合体の製造方法
JPH08169913A (ja) * 1994-12-19 1996-07-02 Daicel Chem Ind Ltd メタクリル酸アルキルエステルの重合方法
JPH10306112A (ja) * 1997-04-10 1998-11-17 Elf Atochem Sa (メタ)アクリル系モノマーのアニオン(共)重合のためのアミノアルコラート配位子含有開始系およびその使用方法
JP2000044631A (ja) * 1998-05-25 2000-02-15 Kuraray Co Ltd アクリル酸エステル重合体の製造方法
JP2003522256A (ja) * 2000-02-08 2003-07-22 スリーエム イノベイティブ プロパティズ カンパニー 制御された構成の材料を製造する連続法
JP2003268029A (ja) * 2002-03-19 2003-09-25 Mitsubishi Rayon Co Ltd アクリル酸エステル重合体およびブロック共重合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064161A (en) * 1971-04-23 1977-12-20 Rohm And Haas Company Polymers having pendant acrylate and methacrylate functionality
DE4337482A1 (de) * 1993-11-03 1995-05-04 Basf Ag Verfahren zur Herstellung von radikalisch vernetzbaren Copolymerisaten
FR2723952B1 (fr) * 1994-08-25 1996-10-04 Atochem Elf Sa Nouveau systeme d'amorcage pour la polymerisation anionique de methacrylate d'alkyle
CA2265310C (en) 1998-03-23 2007-12-18 Kuraray Co., Ltd. Preparation process of acrylic acid ester polymer
US6555637B1 (en) 1999-08-24 2003-04-29 Kuraray Co., Ltd. Anionic polymerization process, and process for producing a polymer by the anionic polymerization process
CA2318720C (en) 1999-09-20 2008-10-14 Kuraray Co., Ltd. Process for polymerizing a methacrylic ester or an acrylic ester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309903A (ja) * 1994-05-19 1995-11-28 Mitsubishi Rayon Co Ltd メタクリル酸エステル系重合体の製造方法
JPH08169913A (ja) * 1994-12-19 1996-07-02 Daicel Chem Ind Ltd メタクリル酸アルキルエステルの重合方法
JPH10306112A (ja) * 1997-04-10 1998-11-17 Elf Atochem Sa (メタ)アクリル系モノマーのアニオン(共)重合のためのアミノアルコラート配位子含有開始系およびその使用方法
JP2000044631A (ja) * 1998-05-25 2000-02-15 Kuraray Co Ltd アクリル酸エステル重合体の製造方法
JP2003522256A (ja) * 2000-02-08 2003-07-22 スリーエム イノベイティブ プロパティズ カンパニー 制御された構成の材料を製造する連続法
JP2003268029A (ja) * 2002-03-19 2003-09-25 Mitsubishi Rayon Co Ltd アクリル酸エステル重合体およびブロック共重合体の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127425A (ja) * 2007-08-21 2015-07-09 国立大学法人京都大学 Mw/Mnが1.25以下であるポリマーの製造方法
JP2012207155A (ja) * 2011-03-30 2012-10-25 Kuraray Co Ltd アクリル系ジブロック共重合体ペレット及びそれを含有する粘着剤組成物
WO2013146253A1 (ja) * 2012-03-27 2013-10-03 株式会社クラレ ビニル系重合体の製造方法
JPWO2013146253A1 (ja) * 2012-03-27 2015-12-10 株式会社クラレ ビニル系重合体の製造方法
WO2015093611A1 (ja) * 2013-12-20 2015-06-25 株式会社堀場エステック 連続反応装置及びこれを用いる連続重合方法
JPWO2015093611A1 (ja) * 2013-12-20 2017-03-23 株式会社堀場エステック 連続反応装置及びこれを用いる連続重合方法
JPWO2016103714A1 (ja) * 2014-12-26 2017-10-05 株式会社クラレ 加飾用複層シートおよび立体成型体
JP2019519656A (ja) * 2016-07-06 2019-07-11 イネオス ユーロープ アクチェンゲゼルシャフト 重合プロセス及び重合設備
JP7082579B2 (ja) 2016-07-06 2022-06-08 イネオス ユーロープ アクチェンゲゼルシャフト 重合プロセス及び重合設備
WO2019031435A1 (ja) * 2017-08-08 2019-02-14 日産化学株式会社 ブロックポリマーの製造方法
JPWO2019031435A1 (ja) * 2017-08-08 2020-07-09 日産化学株式会社 ブロックポリマーの製造方法
JP7173013B2 (ja) 2017-08-08 2022-11-16 日産化学株式会社 ブロックポリマーの製造方法

Also Published As

Publication number Publication date
US20080139759A1 (en) 2008-06-12
JPWO2006016639A1 (ja) 2008-05-01
EP1780222B1 (en) 2008-11-26
US7973117B2 (en) 2011-07-05
ATE415425T1 (de) 2008-12-15
CN101001884A (zh) 2007-07-18
EP1780222A1 (en) 2007-05-02
DE602005011303D1 (de) 2009-01-08
EP1780222A4 (en) 2007-10-03
CN100482691C (zh) 2009-04-29
JP4884968B2 (ja) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2006016639A1 (ja) (メタ)アクリル酸エステル重合体または共重合体の連続的製造方法
JP3113205B2 (ja) (メタ)アクリルモノマーの連続アニオン重合方法
JP2604344B2 (ja) (メタ)アクリルモノマーのアニオン重合開始系
JPH0725859B2 (ja) アクリル系三元共重合体と、その製造方法と、そのエラストマー製品製造への応用
CA2659287A1 (en) Method for the production of (meth)acrylate-based aba triblock copolymers
JP5661600B2 (ja) ニトリルオキシド化合物、変性高分子材料並びにその製造方法及び成形体
US9181374B2 (en) Process for preparing branched polymer
Tunca et al. Synthesis of asymmetric difunctional initiators and their use in the preparation of block copolymers via ATRP and SFRP
US8119749B2 (en) Method of taking (meth)acrylic ester polymer out of liquid reaction mixture
Elladiou et al. 2-(Pyridin-2-yl) ethanol as a protecting group for carboxylic acids: chemical and thermal cleavage, and conversion of poly [2-(pyridin-2-yl) ethyl methacrylate] to poly (methacrylic acid)
KR20120115275A (ko) (메트)아크릴레이트 중합의 신규 개시 방법
JP6975169B2 (ja) メタクリル系共重合体溶液の製造方法
JP5097990B2 (ja) N−アクリロイルアゼチジン系重合体およびその製造方法
JP4549507B2 (ja) メタクリル酸エステル又はアクリル酸エステルの重合方法
JPH07278219A (ja) 1,5−ジビニルナフタレンの誘導体と、その製造方法と、アニオン重合の二官能性開始剤の前駆体としてのその応用
US20030166804A1 (en) Trivalent organic lanthanoid complex, catalyst for production of (meth) acrylic polymer, and (meth) acrylic polymer
JP2009256290A (ja) 単量体及びその重合体、制御ラジカル用触媒及びそれを用いた制御ラジカル重合方法
JP2862868B2 (ja) (メタ)アクリル系モノマーのアニオン(共)重合のためのアミノアルコラート配位子含有開始系およびその使用方法
JP2001158805A (ja) メタクリル酸エステル又はアクリル酸エステルの重合方法
JP2862867B2 (ja) (メタ)アクリル系単量体のアニオン重合用複素環リガンド含有開始系及びそれを使用する重合方法
JP2001131216A (ja) アニオン重合方法および該重合方法による重合体の製造方法
JP4753490B2 (ja) アニオン重合性モノマーの重合方法
JP2003268029A (ja) アクリル酸エステル重合体およびブロック共重合体の製造方法
JP3809804B2 (ja) N−置換(メタ)アクリルアミド重合体の製造方法
JP5114283B2 (ja) 2−シアノプロプ−2−イルジチオベンゾアートの製造方法及びそれを用いる重合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006531715

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580027143.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005770786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005770786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11659964

Country of ref document: US