WO2006005606A2 - Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht - Google Patents

Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht Download PDF

Info

Publication number
WO2006005606A2
WO2006005606A2 PCT/EP2005/007623 EP2005007623W WO2006005606A2 WO 2006005606 A2 WO2006005606 A2 WO 2006005606A2 EP 2005007623 W EP2005007623 W EP 2005007623W WO 2006005606 A2 WO2006005606 A2 WO 2006005606A2
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
metal
adhesive surface
adhesion promoter
hydroxide layer
Prior art date
Application number
PCT/EP2005/007623
Other languages
English (en)
French (fr)
Other versions
WO2006005606A3 (de
Inventor
Dennis Pahl
Norman Blank
Uwe Hartmann
Michael Stege
Original Assignee
Sika Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Technology Ag filed Critical Sika Technology Ag
Priority to BRPI0513105-7A priority Critical patent/BRPI0513105A/pt
Priority to DE200550005274 priority patent/DE502005005274D1/de
Priority to CN2005800288658A priority patent/CN101068897B/zh
Priority to US11/632,463 priority patent/US20110111236A1/en
Priority to EP20050762086 priority patent/EP1769041B1/de
Priority to JP2007520748A priority patent/JP2008506796A/ja
Publication of WO2006005606A2 publication Critical patent/WO2006005606A2/de
Publication of WO2006005606A3 publication Critical patent/WO2006005606A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/20Macromolecular compounds having nitrogen in the main chain according to C08L75/00 - C08L79/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for processing an adhesive surface of a workpiece made of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer and a method for bonding two workpieces, wherein at least one workpiece made of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer and the workpieces each have at least one adhesive surface.
  • metals and metal alloys Apart from the precious metals, most metals and metal alloys have a hydrated oxide and / or hydroxide layer. Metals or metal alloys having a hydrated oxide and / or hydroxide layer are widely used in the art, particularly in industrial manufacturing.
  • connection method is understood to mean a non-metallic material that connects workpieces by surface adhesion and internal strength (cohesion).
  • Bonding offers numerous advantages over other joining methods such as riveting, welding and screwing. This results in a uniform distribution of stress over the entire adhesive surface, which has a positive effect on both static and dynamic strength. Furthermore, there is no violation of the surface and microstructure. In addition, adhesives can take on a sealing function. Another advantage is particularly useful in lightweight construction, since a considerable weight saving can be achieved by the use of adhesives. Last but not least, adhesives can also be used to bond different materials together. Bonding typically takes place flat, in particular over the entire surface.
  • the adhesive surface is pretreated so that the adhesive can form a firm connection with the adhesive surface.
  • the hydrated oxide and / or hydroxide layer formed on ambient air presents a problem. This, of course Grown layers arise in an irregularly occurring and not precisely defined process and have oxides, hydroxides and sometimes also oxyhydroxides, often present mixed.
  • the adhesive surfaces must also be free of corrosion, so that the adhesive bond is not deteriorated due to a reaction of the metal or the metal alloy occurring between the adhesive and the adhesive surface with moisture from the environment and fails under continuous load.
  • a further problem of these surfaces even if a defined oxide layer is applied by additional treatment methods, as is the case, for example, in the case of anodising (electrically oxidized aluminum), is that the oxide layer can only be wetted with an adhesive over the entire surface because of the low surface energy , The adhesive surfaces are thus not sufficiently connected.
  • the present invention is therefore based on the technical problem of improving the bonding of workpieces made of metals or metal alloys with a hydrated oxide and / or hydroxide layer.
  • the method according to the invention for processing an adhesive surface of a workpiece made of a metal or metal alloy with a hydrated oxide and / or hydroxide layer comprises the following method steps:
  • the metal or a metal alloy with a hydrated oxide and / or hydroxide layer is in particular the metals titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, tin, magnesium, aluminum and their alloys with one another or their alloys with other alloying constituents such as silicon or carbon.
  • various steels and aluminum alloys are particularly preferred.
  • Particularly preferred are light metal materials such as aluminum, magnesium or titanium materials.
  • a preferred material having a hydrated oxide and / or hydroxide layer is aluminum.
  • materials such as silicon and silicon oxide (glass) may also have an oxide and / or hydroxide layer and thus also fall within the scope of the present invention.
  • the invention relates to metals or metal alloys having a hydrated oxide and / or hydroxide layer.
  • Aluminum materials are versatile materials that are becoming increasingly important in vehicle manufacturing, for example. In addition to vehicle construction, aluminum materials are also used, for example, in the construction of aircraft, for building parts, in particular for facade parts or window frames, or for the production of furniture or household appliances. The reason for the rising share compared to other metals lies mainly in the low weight.
  • Aluminum materials are manufactured in various ways adapted for later use.
  • the aluminum material consists in particular of an aluminum sheet, an aluminum extruded profile or an aluminum die cast alloy.
  • a preferred alloy in vehicle construction consists of an aluminum-magnesium-silicon Connection (AlMgSi). This is painted after processing by means of a Lackiervons, in particular a Kathodischen Tauchla ⁇ k réelle after a pickling passivation and permanently protected against environmental influences.
  • the aluminum material is exposed to the environment without further painting.
  • the aluminum material is specifically provided by an electrolytic oxidation with a protective oxide layer.
  • Such a material is also known as anodized (electrically oxidized aluminum).
  • the adhesive surface is pretreated before the application of the primer, so cleaned and activated. As a result, the adhesive surface is in a largely defined state.
  • the aim here is that the surface of the adhesive surface predominantly, preferably almost completely, has no surface layer with an undefined structure.
  • the cleaning and activation of the adhesive surface can be done either in one step by means of a plasma treatment or an abrasive mechanical treatment.
  • a plasma treatment the oxide layer of the metal or metal alloy, in particular the aluminum oxide layer, remains, while the abrasive technique largely removes them.
  • cleaning and activation can be done in two consecutive steps.
  • the adhesion promoter is then applied to the cleaned and activated Klebeflä ⁇ he - with or without oxide layer - which is then in a post-treatment under Energy influence is chemically converted.
  • the adhesive is subsequently applied to the bonding agent, good adhesion properties and a permanent adhesive bond result.
  • the adhesive surface is cleaned of superficial dirt. These contaminants are mainly hydrocarbons such as fats and oils.
  • the pretreatment of the adhesive surface can cause the oxide and / or hydroxide layer already formed on the surface after fabrication of the workpiece either at least partially removed or converted into a permanent and firmly connected to the surface state.
  • the energy supply for the pretreatment is preferably generated with a plasma source or plasma nozzle, in which a plasma jet is generated by means of a high-frequency high voltage in a nozzle tube between two electrodes by means of a non-thermal discharge from a working gas.
  • the working gas is preferably under atmospheric pressure, it is also called an atmospheric plasma.
  • the described method is not limited to the use of atmospheric plasmas.
  • the plasma jet emerges from the nozzle opening, wherein one of the two electrodes is arranged in the region of the nozzle opening.
  • the non-thermal plasma jet preferably has no electrical streamer outside the plasma nozzle at a suitably set flow rate, ie discharge channels of the electrical discharge, so that only the high-energy but low-tempered plasma jet is directed onto the adhesion promoter.
  • the characterization of the plasma jet is also referred to as a high electron temperature and a low ion temperature.
  • Such plasma sources are known per se from the prior art of EP 0 761 415 A1 and EP 1 335 641 A1.
  • the plasma jet is generated by means of an atmospheric discharge in an oxygen-containing working gas.
  • an oxygen-containing working gas Preferably used as working gas air.
  • working gas Preferably used as working gas air.
  • a working gas from a Mixture of hydrogen and nitrogen are used, a so-called forming gas.
  • the non-thermal plasma discharge takes place in particular by using a high-frequency high voltage, wherein a series of discharges between two electrodes of the plasma nozzle is generated and the working gas is excited to a plasma emerging from the plasma nozzle.
  • a high-frequency sequence of the discharges ensures that no thermal equilibrium arises in the discharge space.
  • the imbalance between electron temperature and ion temperature can be maintained even in continuous operation.
  • the atmospheric plasma treatment is particularly well suited for cleaning when it comes to a large extent. to get fat-free surfaces.
  • the effectiveness of the plasma treatment depends on the choice of process gas, performance, duration of treatment and plant design, and adjustments can be made as required.
  • the method described above is less suitable for the removal of particle contaminants, such as chips or metal flakes and of inorganic impurities as salts or fingerprints, which can not be converted into gaseous products. Furthermore, the method is less suitable for very thick contamination layers, ie contamination by an oiling (corrosion protection oils and cutting / pressing oils) or by a dry lubricant, in the order of about 4 g / m 2 suitable. Since the removal of the contamination layers can be iterative, even thicker layers can be removed, however, arise doing economic problems. Therefore, in these cases of pollution, further pretreatment processes can be used either alternatively or in addition to plasma jet pretreatment.
  • the purification within the method according to the invention is therefore not limited to the preferred application of the plasma treatment.
  • Further examples of pretreatment are the following:
  • Plasma corona discharge
  • UV treatment UV treatment
  • laser or
  • blasting When sand blasting and CO 2 blasting, a blasting agent of solid particles at high speed on the surface to be treated directed. On the surface, the surface material, in particular the aluminum oxide layer, is deformed, compacted, compressed and / or removed by the impinging particles. The result is a rough aluminum material surface with a characteristic appearance. In contrast to most chemical surface treatment processes, blasting is comparatively environmentally friendly and, with the avoidance of dust pollution, also less risk in terms of occupational safety.
  • the parts to be treated are placed in a container which is first evacuated, and at an internal pressure of 10 to 500 Pa (fine vacuum), some process gas, which is preferably oxygen and rare gas, is ionized.
  • process gas which is preferably oxygen and rare gas.
  • the improvement in the adhesive strength depends on the plasma gas and the duration of treatment.
  • the adhesive surface is activated with an atmospheric plasma jet, so that a better wettability and a better reactivity of the adhesive surface for the bonding agent is achieved. It is of course preferred that the pretreatment and the activation of the surface in one step by means of an application of the plasma jet is performed. In the listed alternative preparation methods, the step of activation by the plasma jet is optionally downstream.
  • the activation of the adhesive surface which is furthermore afflicted with an oxide and / or hydroxide layer, by means of a plasma jet effects a modification of the oxide and / or hydroxide layer on the surface of the workpiece.
  • the oxide and / or hydroxide layer is in a hydrated form before activation, in particular superficially. This applies in particular when the oxide and / or hydroxide layer of the metal or the metal alloy has formed uncontrollably in ambient air.
  • the oxide and / or hydroxide layer is dehydrated, whereby a conversion into an oxide layer and optionally a modification of the crystal structure of the oxide takes place.
  • the water or OH groups present in the oxide and / or hydroxide layer are removed.
  • the use of plasma activation is suitable for this purpose.
  • the superficial, previously relatively soft hydrated oxide and / or hydroxide layer is thus consolidated and cured.
  • activation is mainly about high energy input, both oxidizing and non-oxidizing working gases can be used in plasma generation.
  • activation of the metal or metal alloy surface, particularly the aluminum material surface is independent of whether or not discharge channels (streamer) skip to the surface during the plasma treatment.
  • the deciding factor is the transfer of a high power density to the surface.
  • the thus modified oxide surface is chemically active, so that the attachment of the adhesion promoter is greatly simplified.
  • the hydrated oxide and / or hydroxide layer of the metal or the metal alloy solidifies into a solidified form and can be glued reliably, in particular without creating a "weak boundary layer".
  • abrasive processes in particular CO 2 irradiation.
  • the hydrated oxide and / or hydroxide layer is largely completely removed so that the metallic surface is exposed.
  • This metallic surface is chemically active per se, so that - preferably with a short time interval - the bonding agent on the free Material surface is applied.
  • a direct bond is then produced between the primer and the metal or metal alloy surface.
  • an unhydrated, controlled oxide layer immediately forms immediately after exposure of the free metallic surface.
  • the purpose of the primer is to allow good adhesion between the metal or metal alloy surface and the adhesive. Bonding agents therefore consist in most cases of dilute solutions of the adhesive base materials which are also to be used for the subsequent bonding.
  • the adhesive agents are usually applied by rolling, spraying or dipping method on the workpieces and ventilated at temperatures below the later required curing temperature of the adhesive.
  • the preferably present solvent of the adhesion promoter volatilizes largely and under the influence of atmospheric moisture, the crosslinking reaction of the adhesion promoter substance can take place at least partially with itself and with the adhesive surface.
  • This procedure ensures that the adhesion promoter substance is distributed as homogeneously as possible on the adhesion surface treated with adhesion promoter, so that a good bond to the metal or metal alloy surface and to the later applied adhesive is ensured after the subsequent aftertreatment.
  • the adhesive surface is coated with an at least partially silane-containing adhesion promoter.
  • an adhesion promoter which contains a composition or consists of at least one adhesion promoter substance which is selected from the group comprising organosilicon compounds, organotitanium compounds and organozirconium compounds. These compounds have been found to be particularly advantageous. However, the invention is not limited to these compounds.
  • the primer composition may also comprise mixtures of at least one organosilicon compound with at least one organotitanium compound and / or with at least one organozirconium compound. It may also contain mixtures of at least one organotitanium compound with at least one organozirconium compound.
  • the adhesion promoter composition preferably comprises mixtures of at least one organosilicon compound with at least one organotitanium compound.
  • the adhesion promoter preferably has a solvent, in particular a volatile solvent.
  • the primer can be applied well and evenly and, on the other hand, the post-treatment can be carried out shortly after application of the primer. aftercare
  • the post-treatment of the adhesion promoter is preferably carried out by a plasma treatment and optionally an additional heat treatment.
  • the energy from the plasma jet is transferred to the material of the adhesion promoter.
  • the energy of the plasma gas which has a high electron excitation, is at least partially transferred to the adhesion promoter when the plasma impinges on the surface of the adhesion promoter.
  • the aftertreatment of the adhesion promoter is preferably carried out with a plasma source or plasma nozzle, in which by means of a high-frequency high voltage in a nozzle tube between two electrodes by means of a non-thermal discharge of a preferably under atmospheric pressure working gas. Plasma beam is generated. See the above-described operation of the plasma source.
  • the adhesive surface is thus treated with an atmospheric plasma jet, wherein in particular a same plasma jet as in the pretreatment of the adhesive surface is used. Therefore, it is possible in principle to use the same plasma nozzle for both the pretreatment and the aftertreatment.
  • the primer may be subjected to a heat treatment to complete the curing reaction.
  • the coupling agent is at least 5 min, preferably at least 10 minutes, preferably heated at least 140 0 C, at least 155 ° C, in particular at least 170 0 C.
  • the adhesion promoter substance is largely decomposed by the aftertreatment and its semimetal or metal atoms, in particular Si and / or Ti and or Zr, interact with the free metallic surface or oxide surface of the metal or metal alloy. It is assumed that, in this case, incorporation compounds, if appropriate, form alloys.
  • This chemical reaction during the aftertreatment chemically modifies the surface. After finishing the Reaction is no separate layer detectable.
  • the chemical reaction in the course of the aftertreatment in contrast to the formation of an adhesion promoter film with organic constituents, which takes place by hydrolysis and crosslinking of the adhesion promoter substances under the influence of moisture, no deposition of a layer on the adhesive surface, but a chemical modification of the metallic or metal oxide surface of the material.
  • the activated aluminum oxide layer has a hexagonal honeycomb-shaped structure in which the silicon, titanium or zirconium atoms are incorporated by the aftertreatment of the adhesion promoter. This is then a nanoscale structure.
  • the above-indicated technical problem is also solved by a method for bonding two workpieces, wherein at least one workpiece made of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer and wherein the workpieces each have at least one adhesive surface.
  • the adhesive surface of the at least one workpiece made of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer processed with a method according to the invention for processing an adhesive surface and prepared for bonding.
  • an adhesive is applied to at least one adhesive surface and the workpieces are brought together with their adhesive surfaces in abutment with each other. Finally, the adhesive is cured.
  • a workpiece consists of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer.
  • the second workpiece may consist of the same metal or metal alloy as the first workpiece, or of another metal or other metal alloy having a hydrated oxide and / or hydroxide layer or of another material such as plastic or a natural substance.
  • a good adhesion of the adhesive to the metal or the metal alloy is achieved due to the pre-processing of the adhesive surface.
  • adhesives suitable for bonding workpieces consisting of a metal or metal alloy with a hydrated oxide and / or hydroxide layer.
  • one-component and multi-component adhesives can be used.
  • One-component adhesives have the great advantage that they do not have to be mixed and that errors that result from incorrect mixing ratios or lack of mixing can be ruled out.
  • one-component adhesives are used which build up adhesion through physical effects.
  • These are, for example, solvent-based adhesives, containing non-reactive polymers, as solutions or dispersions and solidifying by drying, such as
  • Acrylic resin dispersion adhesives In principle, these adhesives can be used, but are only suitable for bonding in which only small forces must be transmitted and in which they are applied over a large area. For structural bonding, however, such adhesives are not suitable.
  • adhesives represent the non-reactive hot melt adhesives.
  • a thermoplastic polymer is melted, hot applied to a Fügeeteiloberflache and immediately added. By cooling to room temperature, the polymer melt is solid and thus bonds the joining partners together.
  • a wide range of thermoplastic polymers is available, whereby the melting temperature, mechanics and adhesion of the hot melt adhesive can be varied within a wide range.
  • a disadvantage of these non-reactive hotmelt adhesives is that the melting is a reversible process and consequently the risk of liquefaction of the adhesive at high temperatures, whereby the adhesive bond can be solved again.
  • reactive one-component adhesives are suitable for use. These are either systems that are networked by using an energy source.
  • the energy source may be particulate or electromagnetic radiation, such as UV, visible light, IR, microwave, electron or ion radiation, or heat.
  • the energy source may be particulate or electromagnetic radiation, such as UV, visible light, IR, microwave, electron or ion radiation, or heat.
  • UV, visible light, IR, microwave, electron or ion radiation, or heat such as UV, visible light, IR, microwave, electron or ion radiation, or heat.
  • such adhesives are used which contain a substance which react under the influence of radiation or heat or release a substance which reacts with the reactive constituents of the adhesive or trigger or catalyze the polymerization thereof.
  • adhesives examples include epoxy or hitzhärtende Polyure thanklebs' toffe with ingredients such as carboxylic acids, anhydrides, dicyandiamide (dicy), amine adducts with Lewis acids such as boron compounds or acids, or amine-metal complexes.
  • ingredients such as carboxylic acids, anhydrides, dicyandiamide (dicy), amine adducts with Lewis acids such as boron compounds or acids, or amine-metal complexes.
  • one-component adhesives which contain a substance which react with ingredients of the air, in particular atmospheric moisture. This reaction already takes place at room temperature.
  • polyurethane adhesives which polyisocyanates, in particular in the form of isocyanate group-containing polyurethane prepolymers, which react with the humidity and cure.
  • a particular subclass of these are the reactive hot melt adhesives, in particular the reactive polyurethane hot melt adhesives, which either contain a combination of isocyanate-containing prepolymers with thermoplastics or reactive thermoplastics.
  • Such hot melt adhesives are preferable to the non-reactive hot melt adhesives, as they are due to the Crosslinking by the isocyanate groups have no reversible Aufschmelz .
  • Another class of moisture-curing one-part adhesives contain as reactive compounds silane group-containing polymers.
  • Such adhesives are known to the person skilled in the art as silicone adhesives, MS polymer adhesives or silane-terminated polyurethane adhesives.
  • the cyanoacrylate adhesives which are known for example under the term “superglue” in the public, to mention.
  • the two-component adhesives have the great advantage that with them the properties of the adhesive are easily adapted to the needs of the adhesive application, for example by using a different hardener component, and that very fast, extremely rigid or extremely elastic bonds can be achieved.
  • the division of the adhesives typically takes place via their resin component.
  • Epoxy resin adhesives contain compounds having oxirane groups, commonly present as glycidyl ethers.
  • the vast majority of Epoxydharzklebstoffe- contains glycidyl ethers of bisphenols, in particular of bisphenol-A and / or bisphenol-F, as a basic building block.
  • As a hardener of two-component epoxy resin adhesives in particular polyamines and / or polymercaptans are used. Preference is given to polyamines.
  • Two-component polyurethane adhesives contain polyisocyanates, in particular in the form of prepolymers having isocyanate groups. Hardeners used are polyamines and / or polyols and / or polymercaptans. The two-part adhesives are usually much faster in reacting than two-part epoxy adhesives.
  • Adhesives that crosslink by a free radical polymerization are another important class of suitable two-part adhesives.
  • a component is crosslinked by admixing an initiator which liberates free radicals.
  • compounds to be crosslinked which form part of the first component usually compounds containing double bonds are used. Examples of these are used in particular styrenes, vinyl acetates, acrylonitrile, acrylates and methacrylates. Particularly suitable are the acids and esters of acrylic acid and / or methacrylic acid.
  • Radical initiator which is the second component or a component thereof, are commonly used peroxides, especially organic peroxides.
  • One of the most important initiators is benzoyl peroxide.
  • thermosetting Epoxydharzklebstoffe for the present invention are preferably one-component thermosetting Epoxydharzklebstoffe, in particular with increased impact strength, as disclosed for example in EP 1 359 202 Al.
  • These adhesives are preferably used as structural adhesives in vehicle construction.
  • Component polyurethane adhesives such as are available under the product line Sikaflex ® commercially available from Sika Switzerland AG are still preferred. In particular, these adhesives are used for bonding at room temperature.
  • two-component adhesives especially two-component polyurethane adhesives and (meth) acrylate adhesives are, as are available under the product lines SikaPower ® respectively SikaFast ® commercially by Sika Switzerland AG preferred.
  • These adhesives are preferably used in applications where high cycle times and / or rapid strength buildup is desired.
  • the bonded Workpieces should be painted with a cathodic dip coating.
  • components of the body can be produced, which can be painted uniformly and virtually without striking seams after bonding of the individual components.
  • An advantage of the described method for bonding workpieces made of metals or metal alloys with a hydrated oxide and / or hydroxide layer is that a corrosion-protected surface results from the pretreatment, the application of the adhesion promoter and the bonding of the workpieces.
  • a further advantage, in particular in the case of the use of plasma technology, is the short process time for the pretreatment, for the application and aftertreatment of the adhesion promoter and for the bonding.
  • the short process time results from the rapid pre- and post-treatment with the plasma jet and, secondly, from the low contact time of the adhesion promoter.
  • the surfaces are suitable to be used in further painting processes.
  • the workpieces are driven through the entire pre-treatment process as well as the electrocoating, which consist of the following work steps:
  • Electrocoating is a coating process that uses electrochemical processes to deposit anticorrosive paint.
  • An electro-diving system applies a DC voltage to a workpiece, which is immersed in a paint bath with oppositely charged paint particles. The paint particles are thus attracted to the workpiece, deposited on it and form there a uniform film over the entire surface. Every column and corner, even hidden surfaces, is coated until the given attraction is suppressed and the KTL coating is finished.
  • the workpiece passes through rinsing zones that work with fully desalted (VE) water. After leaving the rinsing zones the coated parts in the baking oven. There, the paint film crosslinks and hardens to achieve maximum resistance of the coatings.
  • VE fully desalted
  • the adhesive-coated adhesive surface can also be painted by the conventional method. It is not only important that the bonded adhesive surface, so the adhesive itself is dip-coatable, but that also has the adhesion promoter adhesive surfaces have this property. Because the area occupied by the adhesive usually does not completely cover the surface of the bonding agent, but there are areas beyond the adhesive sections, whose outer surface is occupied even after bonding with the bonding agent. These areas should also be dipcoatable as possible, since then the KTL coating reaches as far as the adhesive layer and thus is itself protected against corrosion. In the area of the adhesive, the adhesive takes over the task of passive corrosion protection, for which a good and preferably full-surface adhesion of the adhesive to the surface is essential. Under passive corrosion protection is understood that the adhesive has a barrier effect against the materials leading to corrosion, but not actively prevents corrosion of the surface. Ideally, the adhesive property of the adhesive is as good as that of the lacquer layer deposited by KTL or, preferably, better.
  • the dip coating or dip coating at least two layers are applied, wherein the layer thickness difference less than 25% based on the the thinnest layer is. This achieves a uniform and stable construction.
  • a workpiece having an adhesive surface, wherein at least the adhesive surface consists of a metal or a metal alloy with a hydrated oxide and / or hydroxide layer. According to the adhesive surface is bonded by a method according to any one of claims 15 to 23.
  • the workpiece is a vehicle body, in particular an automobile body. It is also preferable that the workpiece is a part of a vehicle, in particular an automobile.
  • Fig. 1 shows a plasma nozzle for generating a plasma jet in a schematic representation.
  • the plasma nozzle 10 shown in Fig. 1 has a nozzle tube 12 made of metal, which tapers conically to an outlet opening 14. At the outlet end 14 opposite end, the nozzle tube 12 has an inlet 16 for a working gas on, for example, for compressed air. An intermediate wall 18 of the
  • Nozzle tube 12 has a rim of obliquely in
  • Circumferentially employed holes 20 forms a swirl device for the working gas.
  • the downstream, conically tapered part of the nozzle tube is therefore traversed by the working gas in the form of a vortex 22, whose core extends on the longitudinal axis of the nozzle tube.
  • an electrode 24 is arranged centrally, which protrudes coaxially into the tapered portion of the nozzle tube.
  • the electrode 24 is formed by a rotationally symmetric, rounded at the tip pin, for example made of copper, which is electrically isolated by an insulator 26 against the intermediate wall 18 and the other parts of the nozzle tube.
  • a high-frequency alternating voltage is applied to the electrode 24, which is generated by a high-frequency transformer 30.
  • the voltage is variably adjustable and is for example 500 V or more, preferably 2-5 kV, in particular more than 5 kV.
  • the frequency is for example in the order of 1 to 30 kHz, preferably in the range of 20 kHz, and is preferably also adjustable.
  • the shaft 28 is connected to the high frequency transformer 30 via a flexible high voltage cable 32.
  • the inlet 16 is connected via a hose, not shown, to a variable flow compressed air source, which is preferably combined with the high frequency generator 30 to form a supply unit.
  • the plasma nozzle 10 can be easily moved by hand or with the help of a robot arm.
  • the nozzle tube 12 and the intermediate wall 18 are grounded. The applied voltage becomes a
  • the illustrated embodiment shows an example of a number of different embodiments of plasma sources. Therefore, the embodiment described is not intended to be limiting of the scope of protection of the article.
  • the adhesion promoter used in the described process contains a composition or consists of at least one adhesion promoter substance which is selected from the group comprising organosilicon compounds, organotitanium compounds and organozirconium compounds. These compounds have been found to be particularly advantageous. However, the invention is not limited to these compounds. In principle, all organosilicon compounds known to the person skilled in the art and suitable as organosilicon compounds which are used as adhesion promoters are suitable.
  • the organosilicon compound preferably carries at least one group which hydrolyzes under the influence of water and leads to the formation of a silanol group.
  • Such an organosilicon compound preferably carries at least one, in particular at least two, alkoxy group which is or are bonded directly to a silicon atom via an oxygen-silicon bond. Furthermore, the organosilicon compound carries at least one substituent which is bonded via a silicon-carbon bond to the silicon atom, and which optionally has a functional group which is selected from the group comprising oxirane, hydroxy, (meth) acryloxy, amino , Mercapto and vinyl groups. Such amino, mercapto or oxirane group-containing organosilicon compounds are also referred to as "aminosilanes", “mercaptosilanes” or “epoxysilanes". In particular, the organosilicon compound is a compound of the formula (D
  • the substituent R 1 in this case represents a linear or branched, optionally cyclic, alkylene group having 1 to 20 C atoms, optionally with aromatic moieties, and optionally with one or more heteroatoms, in particular nitrogen atoms.
  • the substituent R 2 is an alkyl group having 1 to 5 C atoms, in particular methyl or ethyl.
  • the substituent R 3 is an alkyl group having 1 to 8 C atoms, in particular methyl and the substituent X is an H, or a functional group which is selected from the group comprising oxirane, OH, (meth) acryloxy, amine , SH and vinyl.
  • a stands for one of the values 0.1 or 2.
  • a 0.
  • R 1 are methylene, propylene, methylpropylene, butylene or dimethylbutylene.
  • R 1 is a propylene group.
  • Suitable organosilicon compounds are readily available commercially and are particularly preferably selected from the group comprising 3-methacryloxypropyltrialkoxysilanes, 3-aminopropyltrimethoxysilane, bis [3- (trimethoxysilyl) -propyl] -amine, tris [3- (trimethoxysilyl) -propyl] amine, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-amino-2-methylpropyltrimethoxysilane , 4-aminobutyltrimethoxysilane, 4-aminobutyl-dimethoxymethylsilane, 4-amino-3-methylbutyltrimeth
  • Preferred adducts of epoxysilanes with aminosilanes or mercaptosilanes are those as described as reaction product D in EP 1 382 625 A1.
  • organotitanium compounds which are known to the person skilled in the art and are used as adhesion promoters are suitable as the organotitanium compound.
  • the organotitanium compound preferably carries at least one group which hydrolyzes under the influence of water and leads to the formation of a Ti-OH group.
  • such an organotitanium compound carries at least one functional group which is selected from the group comprising alkoxy group, sulfonate group, carboxylate group acetylacetonate, or carries mixtures thereof, and which is bound directly to a titanium atom via an " oxygen-titanium bond.
  • alkoxy groups are so-called neoalkoxy substituents, in particular the following formula
  • Particularly suitable sulfonic acids are aromatic sulfonic acids whose aromatic groups have been substituted by an alkyl group.
  • Preferred sulfonic acids are radicals of the following formula
  • the dashed bond indicates the connection to the titanium atom.
  • Organo-titanium compounds are commercially available, for example from Kenrich Petrochemicals or DuPont.
  • suitable organotitanium compounds are, for example, Ken React ® KR TTS, KR 7, KR 9S, KR 12 KR 26S, KR 33DS, KR 38S, KR 39DS 7 KR44, KR 134S, KR 138S, KR 158FS, KR212, KR 238S, KR 262ES, KR 138D, KR 158D, KR238T, KR 238M, KR238A, KR238J, KR262A, LICA 38J, KR 55, LICAl, LICA 09, LIGA 12, LICA 38, LIGA 44, LIGA 97, LIGA 99, KR OPPR, KR0PP2 from Kenrich Petrochemicals or Tyzor ® ET, TPT, NPT, BTM AA, AA-75, AA-95, AA-105, TE, ET
  • organozirconium compounds known to the person skilled in the art and suitable as adhesion promoters are suitable as organozirconium compounds.
  • the organozirconium compound preferably carries at least one group which hydrolyzes under the influence of water and leads to the formation of a Zr-OH group.
  • such an organozirconium compound carries at least one functional group which is selected from the group comprising alkoxy group, sulfonate group, carboxylate group, phosphate or mixtures thereof, and which is bonded via an oxygen-zirconium bond directly to a zirconium atom.
  • alkoxy groups are isopropoxy and so-called neoalkoxy substituents, in particular the following formula
  • sulfonic acids are in particular aromatic sulfonic acids, their aromatics with an alkyl group Substituted are particularly suitable.
  • Preferred sulfonic acids are radicals of the following formula
  • carboxylates of fatty acids have proved particularly suitable as carboxylate groups.
  • Preferred carboxylates are stearate.
  • the dashed bond indicates the connection to the zirconium atom.
  • Organozirconium compounds are commercially available, for example NZ 38J, NZ TPPJ, KZ OPPR, KZ TPP, NZ 01, NZ 09, NZ 12, NZ38, NZ 44, NZ 97 from Kenrich Petrochemicals. Preferred is Ken-React® NZ44 .
  • the primer composition may comprise mixtures of at least one organosilicon compound with at least one organotitanium compound and / or with at least one organozirconium compound. It may also contain mixtures of at least one organotitanium compound with at least one organozirconium compound.
  • the adhesion promoter composition preferably comprises mixtures of at least one organosilicon compound with at least one organotitanium compound.
  • mixtures of several organosilicon compounds or mixtures of an organosilicon compound with an organotitanium compound are particularly preferred.
  • mixtures of organo-silicon compounds have become especially good mixtures of adhesion promoter substances of the formulas (I) proved, wherein at least one of these substituents carries H as substituents X and at least one of these substances a functional group which is selected from the group comprising oxirane, (meth) acryloxy, amine, SH and vinyl , as substituent X carries.
  • These mixtures are preferably at least one alkyltrialkoxysilane with an aminoalkyltrialkoxysilane and / or mercaptoalkyltrialkoxysilane.
  • Volatile solvents such as water, alcohols, in particular ethanol, isopropanol, butanol, aldehydes or ketones, in particular acetone, methyl ethyl ketone, hydrocarbons, in particular hexane, heptane, cyclohexane, xylene, toluene, white spirit and mixtures thereof, are preferred. Particularly preferred are ethanol, methanol, isopropanol or hexane, and mixtures thereof.
  • the content of solvent is usually between 0 and 99 wt .-%, in particular between 50 and 99 wt .-%, preferably between 90 and 99 wt .-%, based on the weight of the adhesion promoter composition.
  • the adhesion promoter composition can also comprise customary additives, in particular leveling agents, defoamers, surfactants, biocides, anti-settling agents, stabilizers, inhibitors, pigments, dyes or odorous substances.
  • the adhesion promoter composition contains a filler.
  • Preferred fillers are carbon blacks, fumed silicas and chalks whose surfaces have been modified as needed.
  • the preparation of the adhesion promoter composition is carried out in a manner known per se to the person skilled in the art, typically in the absence of moisture.
  • the adhesion promoter composition after preparation is stored in suitable containers which prevent contact with moisture during storage.
  • Preference containers are plastics, glass and metals.
  • Particularly preferred are aluminum containers, in particular aluminum bottles with tight lids.
  • the adhesion promoter composition is applied by spraying, in particular as a film, or by application by means of a cloth, felt or brush.
  • a textile fabric such as a paper towel (TeIa- or Kleenex ®) is typically soaked with the adhesive composition and applied to the surface to be treated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Bearbeitung einer Klebefläche eines Werkstückes aus einem Aluminiumwerkstoff, wobei die Klebefläche eine Aluminiumoxidschicht aufweist, bei dem die Klebefläche gereinigt wird, bei dem die Klebefläche aktiviert wird, bei dem die Klebefläche zumindest teilweise mit einem Haftvermittler beschichtet wird und bei dem der Haftvermittler durch eine Nachbehandlung verfestigt wird. Ebenso betrifft die Erfindung ein Verfahren zum Verkleben von Bauteilen aus einem Aluminiumwerkstoff. Für das Reinigen und Aktivieren der Klebefläche und für das Nachbehandeln des Haftvermittlers wird bevorzugt ein atmosphärisches Plasma eingesetzt.

Description

Verfahren! zum Bearbeiten und Verkleben von Werkstücken aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht
Die Erfindung betrifft ein Verfahren zur Bearbeitung einer Klebefläche eines Werkstückes aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht sowie ein Verfahren zum Verkleben von zwei Werkstücken, wobei mindestens ein Werkstück aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht und die Werkstücke jeweils eine mindestens eine Klebefläche aufweisen.
Abgesehen von den Edelmetallen weisen die meisten Metalle und Metalllegierungen eine hydratisierte Oxid- und/oder Hydroxidschicht auf. Metalle oder Metalllegierungen mit einer hydratisierten Oxid- und/oder Hydroxidschicht werden breit eingesetzt in der Technik, insbesondere in der industriellen Fertigung.
Diese Werkstoffe wurden bisher durch traditionelle Verbindungsverfahren wie beispielsweise Nieten, Schweißen oder Schrauben verbunden. Es zeigte sich jedoch, dass diese traditionellen Verbindungsmethoden mit diversen Nachteilen verbunden sind. Es treten beispielsweise an den Verbundstellen bei Belastung des Verbundes sehr hohe Spannungsspitzen auf. Weiterhin sind solche traditionellen Verbünde vielfach undicht und beim Verbinden von unterschiedlichen Materialien entsteht vielfach Kontaktkorrosion. Schließlich eignen sich insbesondere Leichtmetallwerkstoffe, vor allem Aluminium, schlecht für ein Verschweißen mit anderen Werkstoffen.
Das Verbinden von Werkstoffen durch Kleben mittels Klebstoffen ist ebenfalls ein bekanntes
Verbindungsverfahren. Unter dem Begriff Klebstoff versteht man hierbei einen nichtmetallischen Werkstoff, der Werkstücke durch Oberflächenhaftung (Adhäsion) und innere Festigkeit (Kohäsion) miteinander verbindet.
Das Verkleben bringt im Vergleich zu anderen Verbindungsverfahren wie Nieten, Schweißen und Schrauben zahlreiche Vorteile mit sich. So erhält man eine gleichmäßige Spannungsverteilung über die gesamte Klebefläche, die sich sowohl auf die statische als auch auf die dynamische Festigkeit positiv auswirkt. Des Weiteren kommt es zu keiner Verletzung der Oberfläche und Gefügestruktur. Zusätzlich können Klebstoffe eine abdichtende Funktion einnehmen. Ein weiterer Vorteil kommt besonders beim Leichtbau zum Tragen, da durch den Einsatz von Klebstoffen eine erhebliche Gewichtsersparnis erreicht werden kann. Nicht zuletzt können durch Klebstoffe auch unterschiedliche Werkstoffe miteinander verbunden werden. Verklebungen erfolgen typischerweise flächig, insbesondere vollflächig.
Für ein zuverlässiges und belastbares Verkleben von Werkstoffen ist es jedoch wichtig, dass die Klebefläche so vorbehandelt wird, dass der Klebstoff eine feste Verbindung mit der Klebefläche eingehen kann. Dabei stellt insbesondere die sich bei Metallen oder Metalllegierungen mit einer hydratisierten Oxid- und/oder Hydroxidschicht die an Umgebungsluft ausbildete hydratisierte Oxid- und/oder Hydroxidschicht ein Problem dar. Diese natürlich gewachsenen-Schichten entstehen in einem unregelmäßig ablaufenden und nicht genau definierten Prozess und weisen Oxide, Hydroxide und zuweilen auch Oxyhydroxide, vielfach auch gemischt vorliegend, auf.
Aufgrund der unterschiedlichen Strukturen der gebildeten Produkte weisen solch natürlich'gewachsene Oberflächen Poren auf, in denen sich leicht Wasser einlagert. Zumindest in der obersten Schicht tritt eine Hydratisierung auf. Diese oberflächige Schicht hat eine schlechte Anbindung und Haftung mit der WerkstoffOberfläche und kann bei einer Belastung zu unvorhersehbaren Ablöseerscheinungen oder Brüchen innerhalb dieser Oxid- und/oder Hydroxidschicht führen. Weiterhin führt die Oberflächenstruktur und Hydratisierung beim Verkleben zu einer sogenannten „Weak Boundary Layer" und damit zum vorzeitigen Versagen einer Verklebung dieser Werkstücke.
Die Klebeflächen müssen auch frei von Korrosion bleiben, damit die Klebeverbindung nicht aufgrund einer zwischen dem Klebstoff und der Klebefläche auftretenden Reaktion des Metalls oder der Metalllegierung mit Feuchtigkeit aus der Umgebung verschlechtert wird und bei Dauerbelastung versagt.
Ein weiteres Problem dieser Oberflächen, auch wenn durch zusätzliche Behandlungsverfahren eine definierte Oxidschicht aufgebracht wird, wie dies beispielsweise beim Eloxal (Elektrisch oxidiertes Aluminium) der Fall ist, besteht darin, dass die Oxidschicht wegen der geringen Oberflächenenergie nur schlecht mit einem Klebstoff vollflächig benetzt werden kann. Die Klebeflächen werden dadurch nicht ausreichend miteinander verbunden. Technisches Problem
Der vorliegenden Erfindung liegt daher das technische Problem zugrunde, das Verkleben von Werkstücken aus Metallen oder Metalllegierungen mit einer hydratisierten Oxid- und/oder Hydroxidschicht zu verbessern.
Beschreibung der Erfindung
Das zuvor aufgezeigte technische Problem wird gemäß einer ersten Lehre der Erfindung durch ein Verfahren zur Bearbeitung einer Klebefläche eines Werkstückes aus einem Metall oder Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht mit den Merkmalen des Anspruches 1 gelöst.
Das erfindungsgemäße Verfahren zur Bearbeitung einer Klebefläche eines Werkstückes aus einem Metall oder Metalllegierung mit hydratisierte Oxid- und/oder Hydroxidschicht weist die folgenden Verfahrensschritte auf:
Reinigen der Klebefläche,
Aktivieren der Klebefläche,
Beschichten der Klebefläche zumindest teilweise mit einem Haftvermittler und
Nachbehandeln des Haftvermittlers.
Beim Metall oder bei einer Metalllegierung mit hydratisierter Oxid- und/oder Hydroxidschicht handelt es sich hierbei insbesondere um die Metalle Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Zinn, Magnesium, Aluminium sowie deren Legierungen untereinander oder deren Legierungen mit anderen Legierungsbestandteilen wie Silizium oder Kohlenstoff. Unter den Legierungen sind insbesondere diverse Stähle und Aluminiumlegierungen bevorzugt . Besonders bevorzugt sind Leichtmetallwerkstoffe wie Aluminium-, Magnesium- oder Titanwerkstoffe. Ein bevorzugter Werkstoff mit einer hydratisierten Oxid- und/oder Hydroxidschicht ist Aluminium. Schließlich können auch Werkstoffe wie Silizium und Siliziumoxid (Glas) eine Oxid- und/oder Hydroxidschicht aufweisen und fallen also ebenfalls in den Anwendungsbereich der vorliegenden Erfindung.
Im Folgenden wird die Erfindung anhand des Werkstoffes Aluminium beschrieben. Jedoch ist die Erfindung nicht auf Aluminiumwerkstoffe beschränkt. Allgemein betrifft die Erfindung Metalle oder Metalllegierungen mit einer hydratisierten Oxid- und/oder Hydroxidschicht .
Aluminiumwerkstoffe sind vielseitig verwendbare Werkstoffe, die beispielsweise in der Fahrzeugherstellung einen immer größeren Anteil erhalten. Neben dem Fahrzeugbau werden Aluminiumwerkstoffe beispielsweise auch beim Bau von Flugzeugen, für Gebäudeteile, insbesondere für Fassadenteile oder Fensterrahmen, oder für die Herstellung von Möbeln oder Haushaltsgeräten verwendet. Der Grund für den steigenden Anteil gegenüber anderen Metallen liegt dabei vor allem im geringen Gewicht.
Aluminiumwerkstoffe werden in verschiedener Weise angepasst für die spätere Verwendung hergestellt. Im Fahrzeugbau besteht der Aluminiumwerkstoff insbesondere aus einem Aluminiumblech, einem Aluminiumstrangpressprofil oder einer Aluminiumdruckgusslegierung. Eine bevorzugte Legierung im Fahrzeugbau besteht aus einer Aluminium-Magnesium-Silizium- Verbindung (AlMgSi) . Diese wird nach einer Verarbeitung mittels eines Lackierverfahrens, insbesondere einer Kathodischen Tauchlaσkierung nach einer Beizpassivierung lackiert und dauerhaft gegenüber Umwelteinflüssen geschützt.
In anderen Anwendungsbereichen wird der Aluminiumwerkstoff ohne eine weitere Lackierung den Umwelteinflüssen ausgesetzt. In diesen Fällen wird der Aluminiumwerkstoff gezielt durch eine elektrolytische Oxidation mit einer schützenden Oxidschicht versehen. Ein derartiger Werkstoff ist auch als Eloxal (Elektrisch Oxidiertes Aluminium) bekannt.
Die Klebefläche wird vor dem Auftrag des Haftvermittlers vorbehandelt, also gereinigt und aktiviert. Dadurch befindet sich die Klebefläche in einem weitgehend definierten Zustand. Ziel ist dabei, dass die Oberfläche der Klebefläche überwiegend, vorzugsweise nahezu vollständig keine Oberflächenschicht mit Undefinierter Struktur aufweist.
Das Reinigen und Aktivieren der Klebefläche kann entweder in einem Schritt mittels einer Plasmabehandlung oder einer abrasiven mechanischen Behandlung erfolgen. Bei der Plasmabehandlung bleibt die Oxidschicht des Metalls oder der Metalllegierung, insbesondere die Aluminiumoxidschicht, bestehen, während die abrasive Technik diese weitgehend entfernt. Ebenso können das Reinigen und das Aktivieren in zwei aufeinander folgenden Schritten erfolgen.
Der Haftvermittler wird dann auf die gereinigte und aktivierte Klebefläσhe - mit oder ohne Oxidschicht - aufgebracht, der dann in einer Nachbehandlung unter Energieeinfluss chemisch umgewandelt wird. Wenn danach der Klebstoff auf den Haftvermittler aufgebracht wird, ergeben sich gute Haftungseigenschaften und eine dauerhafte Klebeverbindung.
Durch die zuvor beschriebene Vorbehandlung, also Reinigen und Aktivieren der Klebefläche des Werkstückes werden Oberflächenzustände erzeugt, die die Voraussetzungen für gute Haftungseigenschaften der Klebeschichten bieten. Aus diesem Grund ist es vorteilhaft, das Verkleben der vorbehandelten Werkstücke entweder direkt, anschließend oder in einem möglichst kurzen, zeitlichen Abstand durchzuführen, um eine erneute Deaktivierung der Oberfläche zu vermeiden.
Reinigen
Um die Klebbarkeit der Metall- oder
Metalllegierungsoberfläche mit hydratisierten Oxid- und/oder Hydroxidschicht zu verbessern, ist es vorteilhaft, den Oberflächenzustand der Oxid- und/oder Hydroxidschicht und den Grad der Verschmutzung zu ändern. Hierzu existieren eine Reihe von mechanischen, chemischen und physikalischen Verfahren, die nachfolgend beschrieben werden.
Bei der Reinigung wird die Klebefläche von oberflächlich vorhandenen Verschmutzungen gereinigt. Diese Verschmutzungen sind hauptsächlich Kohlenwasserstoffe wie Fette und Öle.
Die Vorbehandlung der Klebefläche kann bewirken, dass die nach der Herstellung des Werkstückes bereits entstandene Oxid- und/oder Hydroxidschicht auf der Oberfläche entweder zumindest teilweise entfernt oder in einen dauerhaften und fest mit der Oberfläche verbundenen Zustand überführt wird.
Die Energiezufuhr für die Vorbehandlung wird bevorzugt mit einer Plasmaquelle bzw. Plasmadüse erzeugt, bei der mittels einer unter Anlegen einer hochfrequenten Hochspannung in einem Düsenrohr zwischen zwei Elektroden mittels einer nicht-thermischen Entladung aus einem Arbeitsgas ein Plasmastrahl erzeugt wird. Dabei steht das Arbeitsgas vorzugsweise unter Atmosphärendruck, man spricht auch von einem atmosphärischen Plasma. Das beschriebene Verfahren ist aber nicht auf die Anwendung von atmosphärischen Plasmen beschränkt.
Der Plasmastrahl tritt aus der Düsenöffnung aus, wobei eine der beiden Elektroden im Bereich der Düsenöffnung angeordnet ist. Der nicht-thermische Plasmastrahl weist bevorzugt außerhalb der Plasmadüse bei einer geeignet eingestellten Strömungsrate keine elektrischen Streamer auf, also Entladungskanäle der elektrischen Entladung, so dass nur der energiereiche, aber niedrig temperierte Plasmastrahl auf den Haftvermittler gerichtet wird. Zur Charakterisierung des Plasmastrahls wird auch von einer hohen Elektronentemperatur und einer niedrigen Ionentemperatur gesprochen. Aus dem Stand der Technik der EP 0 761 415 Al und der EP 1 335 641 Al sind derartige Plasmaquellen an sich bekannt.
In bevorzugter Weise wird der Plasmastrahl mit Hilfe einer atmosphärischen Entladung in einem Sauerstoff enthaltenden Arbeitsgas erzeugt. Dadurch wird die Reaktivität des Plasmastrahls erhöht. In bevorzugter Weise als Arbeitsgas Luft verwendet. Ebenso kann ein Arbeitsgas aus einer Mischung aus Wasserstoff und Stickstoff eingesetzt werden, ein sogenanntes Formiergas.
Die nicht-thermische Plasmaentladung erfolgt insbesondere unter Anwendung einer hochfrequenten Hochspannung, wobei eine Folge von Entladungen zwischen zwei Elektroden der Plasmadüse erzeugt wird und das Arbeitsgas zu einem aus der Plasmadüse austretenden Plasma angeregt wird. Gerade die hochfrequente Folge der Entladungen gewährleistet, dass kein thermisches Gleichgewicht im Entladungsraum entsteht. Somit kann auch im Dauerbetrieb das Ungleichgewicht zwischen Elektronentemperatur und Ionentemperatur aufrecht gehalten werden.
Die atmosphärische Plasmabehandlung ist zur Reinigung besonders gut geeignet, wenn es darum geht, weitgehend . fettfreie Oberflächen zu erhalten. Die Effektivität der Plasmabehandlung hängt natürlich von der Wahl des Prozessgases, der Leistung, der Behandlungsdauer und des Anlagenkonzeptes ab und es können je nach Anforderung Anpassungen vorgenommen werden.
Das zuvor beschriebene Verfahren ist weniger gut geeignet für die Beseitigung von Partikelverunreinigungen, z.B. Späne oder Metallflitter sowie von anorganischen Verunreinigungen als Salze oder Fingerabdrücke, die sich nicht in gasförmige Produkte überführen lassen. Weiterhin ist das Verfahren weniger gut bei sehr dicken Kontaminationsschichten, d.h. Kontamination durch eine Beölung (Korrosionsschutzöle und Schneid-/Pressöle) oder durch einen Trockenschmierstoff, in der Größenordnung von etwa über 4 g/m2 geeignet. Da das Entfernen der Kontaminationsschichten iterativ erfolgen kann, können auch dickere Schichten abgetragen werden, jedoch stellen sich dabei wirtschaftliche Probleme. Daher können in diesen Verschmutzungsfällen weitere Vorbehandlungsverfahren entweder alternativ oder zusätzlich zur Plasmastrahlvorbehandlung eingesetzt werden.
Neben der Vorbehandlung der Klebefläche mittels eines atmosphärischen Plasmastrahls ist es auch möglich, die Klebefläche mechanisch, chemisch und/oder elektrochemisch oder mittels eines StrahlVerfahrens (Laser, UV-Licht, Elektronenstrahl) vorzubehandeln. Auch wenn die Gründlichkeit der Vorbehandlung nicht so weitgehend wie bei der Plasmavorbehandlung ist, können diese Verfahren ebenfalls eingesetzt werden.
Die Reinigung innerhalb des erfindungsgemäßen Verfahrens ist also nicht auf die bevorzugte Anwendung der Plasmabehandlung beschränkt. Weitere Beispiele der Vorbehandlung sind die Folgenden:
Reinigen durch Waschen der Klebefläche mit
Lösemitteln;
Mechanische Vorbehandlung durch Schleifen, Schmirgeln,
Bürsten, Sandstrahlen oder CO2-Strahlen;
Chemische Vorbehandlung durch Beizen mit sauren oder alkalischen Lösungen;
Thermische Verfahren durch Beflammung;
Elektrochemische Vorbehandlung durch Phosphatieren,
Chromatieren, Entlackung oder Strippen;
Physikalische Vorbehandlung durch atmosphärisches
Plasma, Corona-Entladung, UV-Behandlung, Laser, oder
Normaldruck- oder Niederdruckplasma.
Beim Sandstrahlen und beim CO2-Strahlen wird ein Strahlmittel aus Festkörperpartikeln mit hoher Geschwindigkeit auf die zu behandelnde Oberfläche gerichtet. An der Oberfläche wird durch die auftreffenden Partikel das Oberflächenmaterial, insbesondere die Aluminiumoxidschicht verformt, verdichtet, komprimiert und/oder abgetragen. Es entsteht eine rauhe Aluminiumwerkstoffoberfläche mit einem charakteristischen Erscheinungsbild. Im Gegensatz zu den meisten chemischen Oberflächenbehandlungsverfahren ist das Strahlen vergleichsweise umweltfreundlich und bei Vermeidung von Staubbelastungen auch hinsichtlich des Arbeitsschutzes risikoärmer.
Beim Niederdruckplasmaverfahren werden die zu behandelnden Teile in einen Behälter eingebracht, der zunächst evakuiert wird, und bei einem Innendruck von 10 bis 500 Pa (Feinvakuum) wird etwas Prozessgas, welches vorzugsweise Sauerstoff und Edelgas ist, ionisiert. Die Verbesserung der Klebfestigkeit hängt vom Plasmagas und von der Behandlungsdauer ab.
Es hat sich gezeigt, dass die Plasmavorbehandlung und Plasmareinigung Vorteile gegenüber den alternativen Verfahren hat. Die wichtigsten Vorteile sind hierbei:
- hoher Entfettungsgrad
- keine Trocknung nötig
- geeignet für alle Materialien
- umweltfreundlich
- geringe Betriebskosten
- leicht steuerbarer Prozess
- Änderung der Oberflächenenergie.
- gute Klebfestigkeit.
- die Klebungen sind alterungsbeständig.
- anwendbar bei Lackierprozessen.
- sehr lange Lagerfähigkeit.
- schnelle Integrierbarkeit in Fertigungsabläufe. Aktivieren
Erfindungsgemäß wird die Klebefläche mit einem atmosphärischen Plasmastrahl aktiviert, damit eine bessere Benetzbarkeit und eine bessere Reaktionsfähigkeit der Klebefläche für den Haftvermittler erreicht wird. Dabei ist es natürlich bevorzugt, dass die Vorbehandlung und die Aktivierung der Oberfläche in einem Arbeitsschritt mittels einer Anwendung des Plasmastrahls durchgeführt wird. Bei den aufgeführten alternativen Vorbereitungsmethoden ist der Schritt der Aktivierung durch den Plasmastrahl gegebenenfalls nachgeschaltet.
Das Aktivieren der weiterhin mit einer Oxid- und/oder Hydroxidschicht behafteten Klebefläche mittels eines Plasmastrahls bewirkt eine Modifikation der Oxid- und/oder Hydroxidschicht an der Oberfläche des Werkstückes. In der Regel liegt die Oxid- und/oder Hydroxidschicht vor der Aktivierung, insbesondere oberflächlich, in einer hydratisierten Form vor. Dieses gilt insbesondere dann, wenn die Oxid- und/oder Hydroxidschicht des Metalls oder der Metalllegierung an Umgebungsluft unkontrolliert entstanden ist.
Während der Energiezufuhr durch den Plasmastrahl wird die Oxid- und/oder Hydroxidschicht dehydratisiert, wodurch eine Umwandlung in eine Oxidschicht und gegebenenfalls eine Modifikation der Kristallstruktur des Oxides erfolgt. Mit anderen Worten, es werden die in der Oxid- und/oder Hydroxidschiσht vorhandenen Wasser beziehungsweise OH- Gruppen entfernt. Dazu ist insbesondere der Einsatz der Plasmaaktivierung geeignet. Die oberflächige, zuvor relativ weiche hydratisierte Oxid- und/oder Hydroxidschicht wird somit konsolidiert und gehärtet.
Da es bei der Aktivierung hauptsächlich um eine hohe Energiezufuhr geht, können sowohl oxidierende als- auch nicht oxidierende Arbeitsgase bei der Plasmaerzeugung eingesetzt werden. Ebenso ist die Aktivierung der Metall- oder Metalllegierungsoberfläche, insbesondere der AluminiumwerkstoffOberfläche, unabhängig davon, ob während der Plasmabehandlung Entladungskanäle (Streamer) auf die Oberfläche überspringen oder nicht. Entscheidender Faktor ist die Übertragung einer hohen Leistungsdichte auf die Oberfläche.
Die so modifizierte Oxidoberfläche ist chemisch aktiv, so dass die Anlagerung des Haftvermittlers stark vereinfacht wird.
Überraschenderweise hat sich also gezeigt, dass bei der Aktivierung mit einem Plasmastrahl die hydratisierte Oxid- und/oder Hydroxidschicht des Metalls oder der Metalllegierung sich in eine verfestigte Form verfestigt und verlässlich verklebt werden kann, insbesondere ohne dass hierbei eine „weak boundary layer" entsteht.
Eine andere Art der Oberflächenaktivierung wird bei den oben beschriebenen abrasiven Verfahren, insbesondere beim CO2-Strahlen erreicht. Beim abrasiven Verfahren wird die hydratisierte Oxid- und/oder Hydroxidschicht weitgehend vollständig abgetragen, so dass die metallische Oberfläche, frei liegt. Diese metallische Oberfläche ist an sich chemisch aktiv, so dass - vorzugsweise mit kurzem zeitlichen Abstand - der Haftvermittler auf die freie WerkstoffOberfläche aufgetragen wird. Während der Nachbehandlung wird dann eine direkte Verbindung zwischen dem Haftvermittler und der Metall- oder Metalllegierungsoberfläche erzeugt. Je nach Werkstoff bildet sich unmittelbar nach dem Freilegen der freien metallischen Oberfläche sofort eine nicht-hydratisierte, kontrollierte Oxidschicht.
Haftvermittler
Die Aufgabe des Haftvermittlers besteht darin, eine gute Haftung zwischen der Metall- oder Metalllegierungsoberfläche und dem Klebstoff zu ermöglichen. Haftvermittler bestehen daher in den meisten Fällen aus verdünnten Lösungen der Klebstoffgrundstoffe, die auch für das nachfolgende Verkleben verwendet werden sollen.
Die HaftVermittler werden in der Regel im Walz-, Sprüh¬ oder Tauchverfahren auf die Werkstücke aufgebracht und bei Temperaturen unterhalb der später erforderlichen Aushärtetemperatur des Klebstoffs abgelüftet. Während der Ablüftezeit von typischerweise einigen Minuten verflüchtigt sich das bevorzugt vorhandene Lösungsmittel des Haftvermittlers weitgehend und unter dem Einfluss von Luftfeuchtigkeit kann die Vernetzungsreaktion der Haftvermittlersubstanz mit sich und mit der Kleboberfläche zumindest partiell erfolgen. Durch diese Vorgehensweise wird gewährleistet, dass die Haftvermittlersubstanz möglichst homogen auf der mit Haftvermittler behandelten Klebefläche verteilt wird, so dass nach der anschließend daran erfolgten Nachbehandlung ein guter Verbund zur Metall- oder Metalllegierungsoberfläche und zu dem später aufgebrachten Klebstoff sichergestellt wird. In bevorzugter Weise wird die Klebefläche mit einem zumindest teilweise ein Silan aufweisenden Haftvermittler beschichtet .
Insbesondere wird ein Haftvermittler verwendet, der eine Zusammensetzung enthält oder aus mindestens einer Haftvermittlersubstanz besteht, welche ausgewählt ist aus der Gruppe umfassend Organo-Siliziumverbindungen, Organo- Titanverbindungen und Organo-Zirkoniumverbindungen. Diese Verbindungen haben sich als besonders vorteilhaft herausgestellt. Jedoch ist die Erfindung nicht auf diese Verbindungen beschränkt.
Die Haftvermittlerzusammensetzung kann auch Mischungen von mindestens einer Organo-Siliziumverbindung mit mindestens einer Organo-Titanverbindung und/oder mit mindestens einer Organo-Zirkoniumverbindung umfassen. Ebenso kann sie Mischungen von mindestens einer Organo-Titanverbindung mit mindestens einer Organo-Zirkoniumverbindung enthalten. Bevorzugt enthält die Haftvermittlerzusammensetzung Mischungen von mindestens einer Organo-Siliziumverbindung mit mindestens einer Organo-Titanverbindung.
Bevorzugter Weise weist der Haftvermittler ein Lösungsmittel, insbesondere ein leichtflüchtiges Lösungsmittel auf. Somit lässt sich der Haftvermittler einerseits gut und gleichmäßig auftragen und andererseits kann die Nachbehandlung bereits kurz nach dem Auftragen des Haftvermittlers durchgeführt werden. Nachbehandlung
Die Nachbehandlung des Haftvermittlers erfolgt in bevorzugter Weise durch eine Plasmabehandlung und gegebenenfalls eine zusätzliche Wärmebehandlung.
Bei der Plasma-Nachbehandlung wird die Energie aus dem Plasmastrahl auf das Material des Haftvermittlers übertragen. Hierbei wird die Energie des Plasmagases, das eine hohe Elektronenanregung aufweist, bei Auftreffen des Plasmas auf die Oberfläche des Haftvermittlers zumindest • teilweise auf den Haftvermittler übertragen.
Die Nachbehandlung des Haftvermittlers wird bevorzugt mit einer Plasmaquelle bzw. Plasmadüse durchgeführt, bei der mittels einer unter Anlegen einer hochfrequenten Hochspannung in einem Düsenrohr zwischen zwei Elektroden mittels einer nicht-thermischen Entladung aus einem vorzugsweise unter Atmosphärendruck stehenden Arbeitsgas ein. Plasmastrahl erzeugt wird. Siehe dazu die oben bereits beschriebene Arbeitsweise der Plasmaquelle.
Aufgrund der hohen Elektronentemperatur erfolgt ein hoher Energieübertrag auf den Haftvermittler, ohne dass es zu einem starken Aufheizen des Materials kommt. Dafür ist wiederum die niedrige Ionentemperatur verantwortlich. Die chemische Energie der Elektronenanregung kann direkt in die Reaktion des Materials des Haftvermittlers umgesetzt werden. Dadurch wird eine chemische Reaktion des Haftvermittlers mit der Klebefläche, die eine freigelegte metallische Oberfläche oder, bevorzugt, eine Oxidschicht eines Metalls oder einer Metalllegierung aufweist, erreicht. Dies stellt eine Voraussetzung für eine starke Bindung der späteren Klebeverbindung dar. In bevorzugter Weise wird die Klebefläche also mit einem atmosphärischen Plasmastrahl nachbehandelt, wobei insbesondere ein gleicher Plasmastrahl wie bei der Vorbehandlung der Klebefläche eingesetzt wird. Daher ist es prinzipiell möglich, die gleiche Plasmadüse sowohl für die Vorbehandlung als auch die Nachbehandlung einzusetzen.
Weiterhin kann der Haftvermittler zusätzlich zur Plasma- Nachbehandlung noch einer Wärmebehandlung unterzogen werden, um die Aushärtereaktion zu vervollständigen. Für die Wärmenachbehandlung wird der Haftvermittler mindestens 5 min, vorzugsweise mindestens 10 min, bei mindestens 1400C, vorzugsweise bei mindestens 155°C, insbesondere bei mindestens 1700C erhitzt.
Durch die Energiezufuhr durch den Plasmastrahl und gegebenenfalls durch eine Wärmezufuhr wird im Haftvermittler eine chemische Reaktion hervorgerufen und dieser chemisch umgewandelt. Da keinerlei Bestandteile der organische Reste des Haftvermittlers mit oberflächenanalytischen Methoden, wie beispielsweise ESCA, in messbaren Mengen nachgewiesen werden können, ist davon auszugehen, dass die Haftvermittlersubstanz durch die Nachbehandlung weitgehend zersetzt wird und dessen Halbmetall- oder Metallatome, insbesondere Si und/oder Ti und/oder Zr, mit der freien metallischen Oberfläche bzw. der Oxidoberfläche des Metalls oder der Metalllegierung in Wechselwirkung treten. Es wird angenommen, dass sich hierbei Einlagerungsverbindungen gegebenenfalls Legierungen, bilden.
Durch diese chemische Reaktion im Rahmen der Nachbehandlung wird die Oberfläche chemisch modifiziert. Nach Beenden der Reaktion ist keine separate Schicht erfassbar. Es tritt also durch die chemische Reaktion im Rahmen der Nachbehandlung im Gegensatz zur Bildung eines Haftvermittlerfilms mit organischen Bestandteilen, welcher durch Hydrolyse und Vernetzung der Haftvermittlersubstanzen unter dem Einfluss von Feuchtigkeit erfolgt, kein Abscheiden einer Schicht auf der Klebefläche, sondern eine chemische Modifikation der metallischen oder metalloxidischen Oberfläche des Werkstoffes auf.
Zumindest für den bevorzugten Werkstoff Aluminium besteht die Vermutung, dass die aktivierte Aluminiumoxidschicht eine sechseckige wabenförmige Struktur aufweist, in die durch die Nachbehandlung des Haftvermittlers die Silizium-, Titan- oder Zirkoniumatome eingelagert werden. Dabei handelt es sich dann um eine nanoskalige Struktur.
Schließlich sei erwähnt, dass eine Nachbehandlung des Haftvermittlers unter besondere Umständen auch durch eine alleinige Wärmebehandlung erfolgen kann.
Kleben
Das oben aufgezeigte technische Problem wird erfindungsgemäß auch durch ein Verfahren zum Verkleben von zwei Werkstücken gelöst, wobei mindestens ein Werkstück aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht und wobei die Werkstücke jeweils mindestens eine Klebefläche aufweisen. Die Klebefläche des mindestens einen Werkstückes aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht mit einem erfindungsgemäßen Verfahren zur Bearbeitung einer Klebefläche bearbeitet und für das Kleben vorbereitet. Anschließend wird auf mindestens eine Klebefläche ein Klebstoff aufgebracht und die Werkstücke werden mit ihren Klebeflächen in Anlage aneinander gebracht. Abschließend wird der Klebstoff ausgehärtet.
Somit ist es erfindungsgemäß möglich, ein stabiles und dauerhaftes Verkleben zweier Werkstücke zu erreichen, von denen ein Werkstück aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht. Das zweite Werkstück kann aus demselben Metall oder derselben Metalllegierung wie das erste Werkstück bestehen, oder aus einem anderen Metall oder einer anderen Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht oder aus einem anderen Material, wie Kunststoff oder einem natürlichen Stoff, bestehen. In jedem Fall wird aufgrund der Vorbearbeitung der Klebefläche eine gute Haftung des Klebstoffes mit dem Metall oder der Metalllegierung erreicht.
Es gibt eine große Auswahl an Klebstoffen, die für das Verkleben von Werkstücken bestehend aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht geeignet sind. Dabei können einkomponentige und mehrkomponentige Klebstoffe verwendet werden.
Einkomponentige Klebstoffe haben den großen Vorteil, dass sie nicht gemischt werden müssen und dass dadurch Fehler, welche durch falsche Mischungsverhältnisse oder mangelnde Vermischung erfolgen, ausgeschlossen werden können.
Einerseits kommen einkomponentige Klebstoffe zum Einsatz, die durch physikalische Effekte eine Haftung aufbauen. Dies sind beispielsweise Lösungsmittel basierende Klebstoffe, die nicht-reaktive Polymere enthalten, als Lösungen oder Dispersionen vorliegen und sich durch Abtrocknen verfestigen, wie beispielsweise
Acrylharzdispersionsklebstoffe. Grundsätzlich können diese Klebstoffe verwendet werden, sind aber lediglich für Verklebungen geeignet, bei denen nur geringe Kräfte übertragen werden müssen und bei denen sie großflächig appliziert werden. Für strukturelle Verklebungen hingegen sind solche Klebstoffe nicht geeignet.
Ebenfalls auf einem physikalischen Festigkeitsaufbau basierende Klebstoffe stellen die nicht-reaktiven Schmelzklebstoffe dar. Hierbei wird ein thermoplastisches Polymer aufgeschmolzen, heiß auf eine Fügeteiloberflache appliziert und sofort gefügt. Durch das Abkühlen auf Raumtemperatur wird die Polymerschmelze fest und verklebt so die Fügepartner miteinander. Als Basis für solche Klebstoffe steht eine breite Palette an thermoplastischen Polymeren zur Verfügung, wodurch die Schmelztemperatur, Mechanik und Haftung des Schmelzklebstoffes in einem breiten Rahmen variiert werden kann. Nachteilig an diesen nicht-reaktiven Schmelzklebstoffen ist, dass das Aufschmelzen ein reversibler Prozess ist und demzufolge die Gefahr einer Verflüssigung der Klebstoffs bei hohen Temperaturen besteht, wodurch sich die Klebverbindung wieder lösen kann.
Weiterhin sind reaktive einkomponentige Klebstoffe zum Einsatz geeignet. Es handelt sich hierbei entweder um Systeme, die durch Einsatz einer Energiequelle vernetzt werden. Die Energiequelle kann Teilchen- oder elektromagnetische Strahlung, beispielsweise UV-, sichtbares Licht-, IR-, Mikrowellen-, Elektronen- oder Ionen-Strahlung, oder Wärme darstellen. Beispielsweise handelt es sich hierbei um einkomponentige Acrylat-, Epoxidharz, oder Polyurethan-Klebstoffe.
Typischerweise kommen hierbei solche Klebstoffe zum Einsatz, welche eine Substanz enthalten, die unter Einfluss von Strahlung oder Wärme reagieren oder eine Substanz freisetzen, die mit den reaktiven Bestandteilen des Klebstoffs reagieren oder deren Polymerisation auslösen oder katalysieren.
Beispiele für solche Klebstoffe sind hitzhärtende Epoxidharz- oder Polyurethanklebs'toffe mit Inhaltstoffen wie Carbonsäuren, Anhydride, Dicyandiamid (dicy) , Amin- Addukte mit Lewissäuren, wie Borverbindungen oder Säuren, oder Amin-Metallkomplexe.
Weiterhin zum Einsatz geeignet sind einkomponentige Klebstoffe, welche eine Substanz enthalten, die mit Inhaltsstoffen der Luft, insbesondere Luftfeuchtigkeit, reagieren. Diese Reaktion erfolgt bereits bei Raumtemperatur. Hierbei handelt es sich insbesondere um einkomponentige Polyurethanklebstoffe, welche Polyisocyanate, insbesondere in Form von Isocyanat-Gruppen aufweisende Polyurethanprepolymere, die mit der Luftfeuchtigkeit reagieren und aushärten.
Als besondere Unterklasse hiervon sind die reaktiven Schmelzklebstoffe zu nennen, insbesondere der reaktiven Polyurethanschmelzklebstoffe, welche entweder eine Kombination von Isocyanat-Gruppen aufweisenden Prepolymeren mit Thermoplasten oder reaktive Thermoplasten beinhalten. Solche Schmelzklebstoffe sind den nicht-reaktiven Schmelzklebstoffen vorzuziehen, da sie infolge der Vernetzung durch die Isocyanat-Gruppen kein reversibles Aufschmelzverhalten aufweisen.
Eine weitere Klasse von feuchtigkeitshärtenden einkomponentigen Klebstoffen enthalten als reaktive Verbindungen Silangruppen-enthaltende Polymere . Solche Klebstoffe sind dem Fachmann als Silikon-Klebstoffe, MS- Polymer-Klebstoffe oder Silan-terminierte Polyurethanklebstoffe bekannt .
Weiterhin sind als feuchtigkeitshärtende einkomponentige Klebstoffe die Cyanacrylat-Klebstoffe, welche beispielsweise unter dem Begriff „Superglue" in der Öffentlichkeit bekannt sind, zu erwähnen.
Die zweikomponentigen Klebstoffe besitzen den großen Vorteil, dass mit ihnen die Eigenschaften des Klebstoffes einfach, beispielsweise durch eine Verwendung einer anderen Härterkomponente, den Bedürfnissen der Klebeanwendung angepasst werden, und dass hiermit sehr schnelle, äußerst starre oder äußerst elastische Verklebungen erreicht werden können.
Als zweikomponentige Klebstoffe geeignet sind grundsätzlich alle bekannten Klebstoffe, welche durch eine Polyaddition oder durch ein radikalische Polymerisation vernetzen. Hierbei werden die miteinander reaktiven Komponenten separat gelagert und während oder unmittelbar vor Anwendung gemischt.
Bei der Polyaddition reagieren zwei Typen von Verbindungen miteinander, welche getrennt voneinander aufbewahrt werden und wesentlicher Bestandteil der jeweiligen Komponenten sind. Diese werden üblicherweise als Harz und die andere als Härter bezeichnet.
Die Einteilung der Klebstoffe erfolgt typischerweise über deren Harzkomponente.
Epoxydharzklebstoffe enthalten Verbindungen mit Oxirangruppen, üblicherweise als Glycidylether vorliegend. Der weitgehend größte Anteil der Epoxydharzklebstoffe- enthält Glycidylether von Bisphenolen, insbesondere von Bisphenol-A und/oder Bisphenol-F, als Grundbaustein. Als Härter von zweikomponentigen Epoxydharzklebstoffen werden insbesondere Polyamine und/oder Polymerkaptane eingesetzt. Bevorzugt werden Polyamine.
Zweikomponentige Polyurethanklebstoffe enthalten Polyisocyanate, insbesondere in Form von Isocyanat-Gruppen aufweisenden Prepolymeren. Als Härter kommen Polyamine und/oder Polyole und/oder Polymerkaptane zum Einsatz. Die zweikomponentigen Klebstoffe sind üblicherweise reagieren bedeutend schneller als zweikomponentige Epoxidharzklebstoffe.
Klebstoffe, welche durch eine radikalische Polymerisation vernetzen sind eine weitere wichtige Klasse von geeigneten zweikomponentigen Klebstoffen. Hierbei wird eine Komponente durch das Zumischen eines Initiators, welche freie Radikale freisetzt, vernetzt. Als zu vernetzende Verbindungen, welche Bestandteil der ersten Komponente bilden, werden üblicherweise Verbindungen, die Doppelbindungen enthalten, verwendet. Beispiele hierfür sind insbesondere Styrole, Vinylacetate, Acrylonitril, Acrylate und Methacrylate eingesetzt. Besonders geeignet sind die Säuren und Ester der Acrylsäure und/oder Methacrylsäure. Als Radikalinitiator, welcher die zweite Komponente oder einen Bestandteil davon darstellt, werden üblicherweise Peroxide, insbesondere organische Peroxide, verwendet. Einer der wichtigsten Initiatoren ist Benzoylperoxid.
Diese Klebstoffe verfügen über- den großen Vorteil einer schnellen Vernetzung und einer relativ geringen Empfindlichkeit gegenüber Mischfehlern.
Für die vorliegende Erfindung sind bevorzugt einkomponentige hitzehärtende Epoxydharzklebstoffe, insbesondere mit erhöhter Schlagzähigkeit, wie sie beispielsweise in EP 1 359 202 Al offenbart sind. Bevorzugt werden diese Klebstoffe als Rohbauklebstoffe im Fahrzeugbau eingesetzt.
Weiterhin bevorzugt sind einkomponentige Polyurethanklebstoffe, wie sie unter der Produktelinie Sikaflex®, kommerziell von Sika Schweiz AG erhältlich sind. Insbesondere werden diese Klebstoffe zum Verkleben bei Raumtemperatur verwendet.
Als zweikomponentige Klebstoffe sind insbesondere zweikomponentige Polyurethanklebstoffe und (Meth) acrylatklebstoffe, wie sie unter den Produktelinien SikaPower® respektive SikaFast® kommerziell von Sika Schweiz AG erhältlich sind, bevorzugt.
Diese Klebstoffe werden bevorzugt dort eingesetzt in den Anwendungen, wo hohe Taktzeiten und/oder schneller Festigkeitsaufbau erwünscht ist.
Insbesondere für den Fahrzeugbau ist es vorteilhaft, dass nach dem Aushärten des Klebstoffes die verklebten Werkstücke mit einer kathodischen Tauchlackierung lackiert werden. Dadurch können Komponenten der Karosserie hergestellt werden, die nach dem Verkleben der Einzelkomponenten einheitlich und nahezu ohne auffallende Nahtstellen lackiert werden können.
Ein Vorteil des beschriebenen Verfahrens zum Verkleben von Werkstücken aus Metallen oder Metalllegierungen mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht darin, dass durch das Vorbehandeln, das Aufbringen des Haftvermittlers und das Verkleben der Werkstücke eine korrosionsgeschützte Fläche entsteht.
Ein weiterer Vorteil, insbesondere im Falle der Anwendung von Plasmatechnik, ist die geringe Prozesszeit für das Vorbehandeln, für das Aufbringen und Nachbehandeln des Haftvermittlers und für das Verkleben. Zum einen ergibt sich die geringe Prozesszeit durch die schnelle Vor- und Nachbehandlung mit dem Plasmastrahl und zum anderen durch die geringe Einwirkzeit des Haftvermittlers.
Zudem ergibt sich eine KTL - Verträglichkeit der behandelten Flächen. Somit sind die Flächen geeignet, bei weiteren Lackierprozessen verwendet zu werden.
Kathodische Tauchlackierung - KTL
Bei einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung wird die Klebefläche mittels einer kathodische TauchbeSchichtung bzw. Tauchlackierung beschichtet . Diese Fähigkeit ist insbesondere bei- der Anwendung der vorliegenden Erfindung beim Fahrzeugbau von Interesse. Denn die verklebten Werkstücke aus den beschriebenen Metalle oder Metalllegierungen sind in der Regel auch Teile der Karosserie, die vor und/oder nach dem Verkleben einem Lackierprozess unterworfen werden. Dazu wird überwiegend die zuvor genannte kathodische Tauchlackierung (KTL) eingesetzt.
Die Werkstücke werden dazu durch den gesamten Vorbehandlungsprozess sowie die Elektrotauchlackierung gefahren, die aus folgenden Arbeitsschritten bestehen:
Als erstes kommt die Vorbehandlung.
- Entfettung (Tauchen bei +600C)
- Spülen (Tauchen in Betriebswasser)
- Aktivierung (Tauchen)
- Phosphatierung (Tauchen bei +450C)
- Spülen (Tauchen in Betriebswasser)
- Passivierung (Tauchen)
- Spülen (Tauchen in VE Wasser)
Nach diesem Vorgang erfolgt der eigentliche Lackierprozess, das Elektrotauchlackieren. Das Elektrotauchlackieren ist ein Beschichtungsverfahren, welches elektrochemische Vorgänge nutzt, um Korrosionsschutzlack abzuscheiden. Ein Elektrotauchsystem legt dazu eine Gleichspannung an ein Werkstück an, welches in ein Lackbad mit gegensätzlich geladenen Lackpartikeln getaucht ist. Die Lackpartikel werden somit von dem Werkstück angezogen, auf ihm abgeschieden und bilden dort einen gleichmäßigen Film über die gesamte Oberfläche. Beschichtet wird so jede Spalte und Ecke, auch verdeckte Flächen, solange bis die vorgegebene Anziehung unterbunden wird und die KTL - Beschichtung beendet ist. Nachdem dieses geschehen ist, fährt das Werkstück durch Spülzonen, die mit voll entsalztem (VE) Wasser arbeiten. Nach dem Verlassen der Spülzonen gelangen die beschichteten Teile in den Einbrennofen-. Dort vernetzt der Lackfilm und härtet aus, um maximale Beständigkeiten der Beschichtungen zu erreichen.
Daher ist es wünschenswert, dass die mit dem Haftvermittler beschichtete Klebefläche auch mit dem herkömmlichen Verfahren lackiert werden kann. Dabei kommt es nicht nur darauf an, dass die verklebte Klebefläche, also der Klebstoff selber tauchlackierbar ist, sondern dass auch die Haftvermittler aufweisenden Klebeflächen diese Eigenschaft aufweisen. Denn der vom Klebstoff eingenommene Bereich deckt in der Regel nicht vollständig die Fläche des Haftvermittlers ab, sondern es treten über die Klebstoffabschnitte hinaus Bereiche auf, deren äußere Fläche auch nach dem Verkleben mit dem Haftvermittler belegt ist. Auch diese Bereiche sollen möglichst tauchlackierbar sein, da dann die KTL-Beschichtung bis an die Klebeschicht heranreicht und somit selbst korrosionsgeschützt ist. Im Bereich der Klebestelle übernimmt der Klebstoff die Aufgabe eines passiven Korrosionsschutzes, wobei dafür eine gute und möglichst vollflächige Haftung des Klebstoffes mit der Oberfläche wesentlich ist. Unter passivem Korrosionsschutz wird dabei verstanden, dass der Klebstoff eine Barrierewirkung gegenüber den zur Korrosion führenden Stoffen hat, selbst aber nicht aktiv eine Korrosion der Oberfläche verhindert. Im Idealfall ist die Haftungseigenschaft des Klebers so gut wie die der durch KTL abgeschiedenen Lackschicht oder bevorzugter Weise besser.
Während der Tauchbeschichtung bzw. Tauchlackierung werden mindestens zwei Schichten aufgebracht, wobei die Schichtdickendifferenz kleiner als 25 % bezogen auf die dünnste Schicht beträgt. Dadurch wird ein gleichmäßiger und stabiler Aufbau erreicht.
Das oben aufgezeigte technische Problem wird erfindungsgemäß auch durch ein Werkstück gelöst, das eine Klebefläche aufweist, wobei zumindest die Klebefläche aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht. Erfindungsgemäß ist die Klebefläche nach einem Verfahren nach einem der Ansprüche 15 bis 23 verklebt.
Insbesondere ist das Werkstück eine Fahrzeugkarosse, insbesondere eine Automobilkarosse. Bevorzugt ist es ebenso, dass das Werkstück ein Teil eines Fahrzeuges, insbesondere eines Automobils ist.
Spezielle Beschreibung von Ausführungsbeispielen
Nachfolgend werden ein Ausführungsbeispiel einer Plasmaquelle, die zur Durchführung des Verfahrens geeignet ist, und chemische Zusammensetzungen von Haftvermittlern, die im Rahmen der Erfindung eingesetzt werden können, näher erläutert . Dazu wird auf die beigefügte Zeichnung Bezug genommen wird. In der Zeichnung zeigt die einzige Fig. 1 eine Plasmadüse zum Erzeugen eines Plasmastrahls in einer schematischen Darstellung.
Plasmaquelle
Die in Fig. 1 gezeigte Plasmadüse 10 weist ein Düsenrohr 12 aus Metall auf, das sich konisch zu einer Auslassöffnung 14 verjüngt. Am der Auslassδffnung 14 entgegengesetzten Ende weist das Düsenrohr 12 einen Einlass 16 für ein Arbeitsgas auf, beispielsweise für Druckluft. Eine Zwischenwand 18 des
Düsenrohres 12 weist einen Kranz von schräg in
Umfangsrichtung angestellten Bohrungen 20 auf und bildet so eine Dralleinrichtung für das Arbeitsgas. Der stromabwärtige, konisch verjüngte Teil des Düsenrohres wird deshalb von dem Arbeitsgas in der Form eines Wirbels 22 durchströmt, dessen Kern auf der Längsachse des Düsenrohres verläuft.
An der Unterseite der Zwischenwand 18 ist mittig eine Elektrode 24 angeordnet, die koaxial in den verjüngten Abschnitt des Düsenrohres hineinragt. Die Elektrode 24 wird durch einen rotationssymmetrischen, an der Spitze abgerundeten Stift gebildet, beispielsweise aus Kupfer, der durch einen Isolator 26 elektrisch gegenüber der Zwischenwand 18 und den übrigen Teilen des Düsenrohres isoliert ist. Über einen isolierten Schaft 28 wird an die Elektrode 24 eine hochfrequente WechselSpannung angelegt, die von einem Hochfrequenztransformator 30 erzeugt wird. Die Spannung ist variabel regelbar und beträgt beispielsweise 500 V oder mehr, vorzugweise 2 - 5 kV, insbesondere mehr als 5 kV. Die Frequenz liegt beispielsweise in der Größenordnung von 1 bis 30 kHz, vorzugsweise im Bereich von 20 kHz, und ist vorzugsweise ebenfalls regelbar. Der Schaft 28 ist mit dem Hochfrequenztransformator 30 über ein flexibles Hochspannungskabel 32 verbunden. Der Einlass 16 ist über einen nicht gezeigten Schlauch mit einer Druckluftquelle mit variablem Durchsatz verbunden, die vorzugsweise mit dem Hochfrequenzgenerator 30 zu einer Versorgungseinheit kombiniert ist. Die Plasmadüse 10 lässt sich so mühelos mit der Hand oder mit Hilfe eines Roboterarms bewegen. Das Düsenrohr 12 und die Zwischenwand 18 sind geerdet. Durch die angelegte Spannung wird eine
Hochfrequenzentladung in der Form einer Bogenentladung 34 zwischen der Elektrode 24 und dem Düsenrohr 12 erzeugt. Aufgrund der drallförmigen Strömung des Arbeitsgases wird dieser Lichtbogen jedoch im Wirbelkern auf der Achse des Düsenrohres 12 kanalisiert, so dass er sich erst im Bereich der Auslassöffnung 14 zur Wand des Düsenrohres 12 verzweigt. Das Arbeitsgas, das im Bereich des Wirbelkerns und damit in unmittelbarer Nähe des Lichtbogens 34 mit hoher Strömungsgeschwindigkeit rotiert, kommt mit dem Lichtbogen in innige Berührung und wird dadurch zum Teil in den Plasmazustand überführt, so dass ein Strahl 36 eines verhältnismäßig kühlen atmosphärischen Plasmas, etwa in der Gestalt einer Kerzenflamme, aus der Auslassöffnung 14 der Plasmadüse 10 austritt.
Die dargestellte Ausführungsform zeigt ein Beispiel einer Reihe von verschiedenen Ausführungsformen von Plasmaquellen. Daher ist das beschriebene Ausführungsbeispiel nicht beschränkend für den Schutzbereich des Gegenstandes zu verstehen.
Haftvermittler
Der im beschriebenen Verfahren verwendete Haftvermittler enthält eine Zusammensetzung oder besteht aus mindestens einer Haftvermittlersubstanz, die ausgewählt ist aus der Gruppe umfassend Organo-Siliziumverbindungen, Organo- Titanverbindungen und Organo-Zirkoniumverbindungen. Diese Verbindungen haben sich als besonders vorteilhaft herausgestellt. Jedoch ist die Erfindung nicht auf diese Verbindungen beschränkt. Grundsätzlich sind als Organo-Siliziumverbindungen alle dem Fachmann bekannte Organo-Siliziumverbindungen, welche als Haftvermittler eingesetzt werden, geeignet. Bevorzugt trägt die Organo-Siliziumverbindung mindestens eine Gruppe, welche unter dem Einfluss von Wasser hydrolysiert und zur Bildung einer Silanolgruppe führt. Bevorzugt trägt eine solche Organo-Siliziumverbindung mindestens eine, insbesondere mindestens zwei, Alkoxygruppe, welche über eine Sauerstoff-Silizium-Bindung direkt an ein Siliziumatom gebunden ist oder sind. Weiterhin trägt die Organo- Siliziumverbindung mindestens einen Substituenten, welcher über eine Silizium-Kohlenstoffbindung an das Siliziumatom gebunden ist, und welcher gegebenenfalls eine funktionelle Gruppe aufweist, welche ausgewählt ist aus der Gruppe umfassend Oxiran-, Hydroxy-, (Meth) acryloxy-, Amino-, Mercapto- und Vinylgruppe. Solche Amino-, Mercapto- oder Oxiran-Gruppen aufweisenden Organo-Siliziumverbindungen werden auch als "Aminosilane" , "Mercaptosilane" oder "Epoxysilane" bezeichnet. Insbesondere handelt es sich bei der Organo-Siliziumverbindung um eine Verbindung der Formel (D
Figure imgf000033_0001
Der Substituent R1 steht hierbei für eine lineare oder verzweigte, gegebenenfalls cyclische, Alkylengruppe mit 1 bis 20 C-Atomen, gegebenenfalls mit aromatischen Anteilen, und gegebenenfalls mit einem oder mehreren Heteroatomen, insbesondere Stickstoffatomen. Der Substituent R2 steht für eine Alkylgruppe mit 1 bis 5 C-Atomen, insbesondere für Methyl oder Ethyl . Weiterhin steht der Substituent R3 für eine Alkylgruppe mit 1 bis 8 C-Atomen, insbesondere Methyl und der Substituent X steht für ein H, oder eine funktionelle Gruppe, welche ausgewählt ist aus der Gruppe umfassend Oxiran, OH, (Meth) acryloxy, Amin, SH und Vinyl .
Schließlich steht a für einen der Werte 0,1 oder 2. Bevorzugt ist a = 0.
Als Substituenten R1 bevorzugt ist Methylen-, Propylen-, Methylpropylen-, Butylen- oder Dimethylbutylengruppe. Bevorzugt ist R1 eine Propylengruppe.
Geeignete Organo-Siliziumverbindungen sind kommerziell gut erhältlich und sind insbesondere bevorzugt ausgewählt aus der Gruppe umfassend 3-Methacryloxypropyltrialkoxysilane, 3-Aminopropyltrimethoxysilan, Bis- [3- (trimethoxysilyl) - propyl] -amin, Tris- [3- (trimethoxysilyl) -propyl] -amin, 3- Aminopropyltriethoxysilan, N- (2-Aminoethyl) -3-aminopropyl- trimethoxysilan, N- (2-Aminoethyl) -3-aminopropyl- triethoxysilan, 3-Aminopropyl-dimethoxymethylsilan, 3- Amino-2-methylpropyl-trimethoxysilan, 4-Aminobutyl- trimethoxysilan, 4-Aminobutyl-dimethoxymethylsilan, 4- Amino-3-methylbutyl-trimethoxysilan, 4-Amino-3, 3- dimethylbutyl-trimethoxysilan, 4-Amino-3, 3-dimethylbutyl- dimethoxymethylsilan, 2-Aminoethyl-trimethoxysilan, 2- Aminoethyl-dimethoxymethylsilan, Aminomethyl- trimethoxysilan, Aminomethyl-dimethoxymethylsilan, Aminomethylmethoxydimethylsilan, N- (2-Aminoethyl) -3- aminopropyl-dimethoxymethylsilan, 7-Amino-4- oxaheptyldimethoxymethylsilan, (3- (trimethoxysilyl)propyl]harnstoff, 1,3, 5-tris [3- (trimethoxysilyl)propyl] -1,3, 5-triazine-2,4, 6 (IH, 3H, 5H) - trion-harnstoff (=Isocyanurat von 3- isocyanatopropyltrimethoxy-silane) , 3-Methacryloxypropyltriethoxysilan, 3-Methacryloxypropyltrimethoxysilan, 3-Glycidyloxypropyltrimethoxysilan, 3-Glycidyloxypropyltriethoxysilan, 3-Mercaptopropyltriethoxysilan,
3-Mercaptopropyltrimethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan, Methyltrimethoxysilan, Octyltrimethoxysilan, Dodecyltrimethoxysilan und Hexadecyltrimethoxysilan sowie Addukte von Epoxysilanen mit Mercaptosilanen oder mit Aminosilanen.
Bevorzugte Addukte von Epoxysilanen mit Aminosilanen oder Mercaptosilanen sind solche, wie sie als Reaktionsprodukt D in der EP 1 382 625 Al beschrieben sind.
Als Organo-Siliziumverbindungen meist bevorzugt sind Aminosilane, insbesondere solche mit primären Aminogruppen, bevorzugt 3-Aminopropyltrimethoxysilan, 3-
Aminopropyltriethoxysilan, N- (2-Aminoethyl) -3-aminopropyl- trimethoxysilan, N- (2-Aminoethyl) -3-aminopropyl- triethoxysilan sowie Mischungen davon.
Grundsätzlich sind als Organo-Titanverbindung alle dem Fachmann bekannte Organo-Titanverbindungen, welche als Haftvermittler eingesetzt werden, geeignet. Bevorzugt trägt die Organo-Titanverbindung mindestens eine Gruppe, welche unter dem Einfluss von Wasser hydrolysiert und zur Bildung einer Ti-OH Gruppe führt. Bevorzugt trägt eine solche Organo-Titanverbindung mindestens eine funktionelle Gruppe trägt, welche ausgewählt ist aus der Gruppe umfassend Alkoxygruppe, Sulfonatgruppe, Carboxylatgruppe Acetylacetonat, oder Mischungen davon trägt, und welche über ein" Sauerstoff-Titan-Bindung direkt an ein Titanatom gebunden ist.
Als Alkoxygruppen haben sich insbesondere sogenannte Neoalkoxy-Substituenten, insbesondere der folgenden Formel besonders geeignet erwiesen
Figure imgf000036_0001
Als Sulfonsäuren haben sich insbesondere aromatische SuIfonsäuren, deren Aromaten mit einer Alkylgruppe substituiert sind, besonders geeignet erwiesen. Als bevorzugte Sulfonsäuren gelten Reste der folgenden Formel
Figure imgf000036_0002
Als Carboxylatgruppen haben sich insbesondere Carboxylate von Fettsäuren besonders geeignet erwiesen. Als bevorzugte Carboxylate gilt Decanoat.
In allen den obigen Formel zeigt die gestrichelte Bindung hierbei die Verbindung zum Titanatom an.
Organo-Titanverbindungen sind kommerziell erhältlich, beispielsweise bei der Firma Kenrich Petrochemicals oder DuPont. Beispiele für geeignete Organo- Titanverbindungenverbindungen sind beispielsweise Ken- React® KR TTS, KR 7, KR 9S, KR 12, KR 26S, KR 33DS, KR 38S, KR 39DS7 KR44, KR 134S, KR 138S, KR 158FS, KR212, KR 238S, KR 262ES, KR 138D, KR 158D, KR238T, KR 238M, KR238A, KR238J, KR262A, LICA 38J, KR 55, LICAl, LICA 09, LIGA 12, LICA 38, LIGA 44, LIGA 97, LIGA 99, KR OPPR, KR0PP2 von Kenrich Petrochemicals oder Tyzor ® ET, TPT, NPT, BTM AA, AA-75, AA-95, AA-105, TE, ETAM von DuPont. Bevorzugt gelten Ken-React® KR 7, KR 9S, KR 12, KR 26S, KR 38S, KR44, LICA 09, LICA 44, NZ 44, sowie Tyzor® ET, TPT, NPT, BTM, AA, AA- 75, AA-95, AA-105, TE, ETAM von DuPont.
Grundsätzlich sind als Organo-Zirkoniumverbindung alle dem Fachmann bekannte Organo-Zirkoniumverbindungen, welche als Haftvermittler eingesetzt werden, geeignet. Bevorzugt trägt die Organo-Zirkoniumverbindung mindestens eine Gruppe, welche unter dem Einfluss von Wasser hydrolysiert und zur Bildung einer Zr-OH Gruppe führt. Bevorzugt trägt eine solche Organo-Zirkoniumverbindung mindestens eine funktionelle Gruppe trägt, welche ausgewählt ist aus der Gruppe umfassend Alkoxygruppe, SuIfonatgruppe, Carboxylatgruppe, Phosphat oder Mischungen davon trägt, und welche über ein Sauerstoff-Zirkonium-Bindung direkt an ein Zirkoniumatom gebunden ist.
Als Alkoxygruppen haben sich insbesondere Isopropoxy- und sogenannte Neoalkoxy-Substituenten, insbesondere der folgenden Formel besonders geeignet erwiesen
Figure imgf000037_0001
Als Sulfonsäuren haben sich insbesondere aromatische SuIfonsäuren, deren Aromaten mit einer Alkylgruppe substituiert sind, besonders geeignet erwiesen. Als bevorzugte Sulfonsäuren gelten Reste der folgenden Formel
Figure imgf000038_0001
Als Carboxylatgruppen haben sich insbesondere Carboxylate von Fettsäuren besonders geeignet erwiesen. Als bevorzugte Carboxylate gilt Stearat.
In allen den obigen Formel zeigt die gestrichelte Bindung hierbei die Verbindung zum Zirkoniumatom an.
Organo-Zirkoniumverbindungen sind kommerziell erhältlich, beispielsweise NZ 38J, NZ TPPJ, KZ OPPR, KZ TPP, NZ 01, NZ 09, NZ 12, NZ38, NZ 44, NZ 97 von Kenrich Petrochemicals . Bevorzugt ist Ken-React® NZ 44.
Die Haftvermittlerzusammensetzung kann Mischungen von mindestens einer Organo-Siliziumverbindung mit mindestens einer Organo-Titanverbindung und/oder mit mindestens einer Organo-Zirkoniumverbindung umfassen. Ebenso kann sie Mischungen von mindestens einer Organo-Titanverbindung mit mindestens einer Organo-Zirkoniumverbindung enthalten. Bevorzugt enthält die Haftvermittlerzusammensetzung Mischungen von mindestens einer Organo-Siliziumverbindung mit mindestens einer Organo-Titanverbindung.
Besonders bevorzugt sind Mischungen von mehreren Organo- Siliziumverbindungen oder Mischungen von einer Organo- Siliziumverbindung mit einer Organo-Titanverbindung. Als Mischungen von Organo-Siliziumverbindungen haben sich besonders gut Mischungen von Haftvermittlersubstanzen der Formeln (I) erwiesen, wobei mindestens eine dieser Substituenten H als Substituenten X trägt und mindestens eine dieser Substanzen eine funktionelle Gruppe, welche ausgewählt ist aus der Gruppe umfassend Oxiran, (Meth) acryloxy, Amin, SH und Vinyl, als Substituenten X trägt. Bevorzugt handelt es sich bei diesen Mischungen um mindestens einem Alkyl-Trialkoxysilan mit einem Aminoalkyl- Trialkoxysilan und/oder Mercaptoalkyl-Trialkoxysilan.
Bevorzugt sind leichtflüchtige Lösungsmittel wie Wasser, Alkohole, insbesondere Ethanol, Isopropanol, Butanol, Aldehyde oder Ketone, insbesondere Aceton, Methylethylketon, Kohlenwasserstoffe, insbesondere Hexan, Heptan, Cyclohexan, Xylol, Toluol, White Spirit sowie deren Mischungen. Als besonders bevorzugt gelten Ethanol, Methanol, Isopropanol oder Hexan, sowie Mischungen davon. Der Gehalt an Lösungsmittel beträgt üblicherweise zwischen 0 und 99 Gew.-%, insbesondere zwischen 50 und 99 Gew.-%, bevorzugt zwischen 90 und 99 Gew.-%, bezogen auf das Gewicht der Haftvermittlerzusammensetzung. Weiterhin kann die Haftvermittlerzusammensetzung bei Bedarf übliche Additive, insbesondere Verlaufsmittel, Entschäumer, Tenside, Biozide, Antiabsetzmittel, Stabilisatoren, Inhibitoren, Pigmente, Farbstoffe oder Geruchsstoffe, enthalten.
Weiterhin kann es von Vorteil sein, insbesondere bei Verwendung eines Lackbindemittels, wenn die Haftvermittlerzusammensetzung einen Füllstoff enthält. Bevorzugte Füllstoffe sind Ruße, pyrogene Kieselsäuren und Kreiden, deren Oberflächen bei Bedarf modifiziert worden ist. Die Herstellung der Haftvermittlerzusammensetzung erfolgt auf dem Fachmann an sich bekannten Art und Weise, typischerweise unter Ausschluss von Feuchtigkeit. Die Haf.tvermittlerzusammensetzung werden nach der- Herstellung in geeigneten Behältern gelagert, welche den Kontakt mit Feuchtigkeit während der Lagerung verhindern. Bevorzugt sind Behältnisse Kunststoffen, Glas und Metallen. Besonders bevorzugt sind Aluminiumbehältnisse, insbesondere Aluminiumflaschen mit dichten Deckeln.
Die Haftvermittlerzusammensetzung wird durch Aufsprühen, insbesondere als Film, oder durch Auftragen mittels Tuch, Filz oder Pinsel aufgetragen. Bei der Anwendung eines Tuches wird typischerweise ein Textil, wie ein Papiertuch (TeIa- oder Kleenex®) mit der Haftvermittlerzusammensetzung getränkt und auf die zu behandelnde Oberfläche appliziert.

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Bearbeitung einer Klebefläche eines Werkstückes, wobei zumindest die Klebefläche aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht, bei dem die Klebefläche gereinigt wird, bei dem die Klebefläche aktiviert wird, bei dem die Klebefläche zumindest teilweise mit einem
Haftvermittler beschichtet wird und bei dem der Haftvermittler durch eine Nachbehandlung chemisch umgewandelt wird.
2. Verfahren nach Anspruch 1, bei dem die Klebefläche mit einem atmosphärischen Plasmastrahl gereinigt wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Klebefläche mechanisch, chemisch und/oder elektrochemisch oder mittels eines Strahlverfahrens, insbesondere mittels Laser, UV-Licht oder Elektronenstrahl, gereinigt wird.
4. Verfahren nach Anspruch 3 , bei dem die hydratisierte Oxid- und/oder Hydroxidschicht zumindest teilweise vom Werkstück abgelöst wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Klebefläche mit einem atmosphärischen Plasmastrahl aktiviert wird.
6. Verfahren nach Anspruch 5, bei dem die hydratisierte Oxid- und/oder Hydroxidschicht dehydratisiert und verfestigt wird.
7. Verfahren nach Anspruch 6, bei das Metall oder die Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht ein Leichtmetallwerkstoff, insbesondere Aluminium oder eine Aluminiumlegierung, ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem ein Haftvermittler verwendet wird, der eine Zusammensetzung enthält oder aus mindestens einer Haftvermittlersubstanz besteht, welche ausgewählt ist aus der Gruppe umfassend Organo-Siliziumverbindungen, Organo-Titanverbindungen und Organo- Zirkoniumverbindungen.
9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem der Haftvermittler ein Lösungsmittel, insbesondere ein leichtflüchtiges Lösungsmittel aufweist.
10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem der Haftvermittler ein Lackbindemittel aufweist .
11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem der Haftvermittler einen Füllstoff aufweist.
12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem der Haftvermittler mittels eines atmosphärischen Plasmastrahls nachbehandelt wird.
13. Verfahren nach Anspruch 12, bei dem der Haftvermittler mittels einer Wärmebehandlung weiter nachbehandelt wird.
14. Verfahren nach Anspruch 13 , bei dem der Haftvermittler mindestens 5 min, vorzugsweise mindestens 10 min, bei mindestens 1400C, vorzugsweise bei mindestens 155°C, insbesondere bei mindestens 1700C wärmebehandelt wird.
15. Verfahren zum Verkleben von zwei Werkstücken, wobei mindestens ein Werkstück aus einem Metall oder einer Metalllegierung mit einer hydratisierte Oxid- und/oder Hydroxidschicht besteht und wobei die Werkstücke jeweils mindestens eine Klebefläche aufweisen, bei dem die Klebefläche des mindestens einen
Werkstückes aus einem Metall oder einer
Metalllegierung mit einer hydratisierte Oxid- und/oder
Hydroxidschicht mit einem Verfahren nach einem der
Ansprüche 1 bis 14 bearbeitet wird, bei dem auf mindestens eine Klebefläche ein Klebstoff aufgebracht wird, bei dem die Werkstücke mit ihren Klebeflächen in
Anlage aneinander gebracht werden und bei dem der Klebstoff ausgehärtet wird.
16. Verfahren nach Anspruch 15, bei dem beide Werkstücke aus einem Metall oder einer Metalllegierung mit einer hydratisierte Oxid- und/oder Hydroxidschicht bestehen.
17. Verfahren nach Anspruch 15 oder 16, bei das Metall oder die Metalllegierung mit einer hydratisierte Oxid- und/oder Hydroxidschicht ein Leichtmetallwerkstoff, insbesondere Aluminium oder eine Aluminiumlegierung, ist.
18. Verfahren nach einem der Ansprüche 15 bis 17, bei dem als Klebstoff ein einkomponentiger Klebstoff verwendet wird.
19. Verfahren nach Anspruch 18, bei dem als Klebstoff ein Epoxydharz und/oder ein Polyurethan verwendet wird.
20. Verfahren nach einem der Ansprüche 15 bis 17, bei dem als Klebstoff ein zweikomponentiger Klebstoff, insbesondere Epoxydklebstoff und/oder ein Polyurethanklebstoff verwendet wird.
21. Verfahren nach Anspruch 20, bei dem eine Härterkomponente, vorzugsweise bestehend aus Polyaminen, Polycarbonsäuren, Isocyanaten oder hydroxyhaltigen Harzen, verwendet wird.
22. Verfahren nach einem der Ansprüche 15 bis 21, bei dem nach dem Aushärten des Klebstoffes die verklebten Werkstücke mit einer kathodischen Tauchlackierung lackiert werden.
23. Verfahren nach Anspruch 22, bei dem in der Tauchlackierung mindestens zwei Schichten aufgebracht werden und bei dem die Schichtdickendifferenz kleiner als 25 % bezogen auf die dünnste Schicht beträgt.
24 . Werkstück, mit einer Klebefläche, wobei zumindest die Klebefläche aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht besteht, dadurch gekennzeichnet, dass die Klebefläche nach einem Verfahren nach einem der Ansprüche 15 bis 23 verklebt ist.
25. Werkstück nach Anspruch 24, wobei das Werkstück eine Fahrzeugkarosse, insbesondere eine Automobilkarosse ist.
26. Werkstück nach Anspruch 24, wobei das Werkstück ein Teil eines Fahrzeuges, insbesondere eines Automobils ist.
PCT/EP2005/007623 2004-07-13 2005-07-13 Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht WO2006005606A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0513105-7A BRPI0513105A (pt) 2004-07-13 2005-07-13 método para o tratamento de uma superfìcie adesiva de uma peça de trabalho e peça de trabalho
DE200550005274 DE502005005274D1 (de) 2004-07-13 2005-07-13 Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht
CN2005800288658A CN101068897B (zh) 2004-07-13 2005-07-13 由含有水合氧化物和/或氢氧化物层的金属或金属合金制成的工件的处理和粘合方法
US11/632,463 US20110111236A1 (en) 2004-07-13 2005-07-13 Method for Treating and Sticking Work Pieces Made of Metal or a Metal Alloy Comprising a Hydrated Oxide and/or Hydroxide Layer
EP20050762086 EP1769041B1 (de) 2004-07-13 2005-07-13 Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht
JP2007520748A JP2008506796A (ja) 2004-07-13 2005-07-13 水和した酸化物及び/又は水酸化物層を含む金属又は合金から作られた加工部材を処理及び固着させる方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004033728A DE102004033728B4 (de) 2004-07-13 2004-07-13 Verfahren zum Bearbeiten und Verkleben von Werkstücken aus einem Metall oder einer Metalllegierung mit einer hydratisierten Oxid- und/oder Hydroxidschicht
DE102004033728.4 2004-07-13

Publications (2)

Publication Number Publication Date
WO2006005606A2 true WO2006005606A2 (de) 2006-01-19
WO2006005606A3 WO2006005606A3 (de) 2006-03-16

Family

ID=35159966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007623 WO2006005606A2 (de) 2004-07-13 2005-07-13 Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht

Country Status (8)

Country Link
US (1) US20110111236A1 (de)
EP (1) EP1769041B1 (de)
JP (1) JP2008506796A (de)
CN (1) CN101068897B (de)
AT (1) ATE407185T1 (de)
BR (1) BRPI0513105A (de)
DE (2) DE102004033728B4 (de)
WO (1) WO2006005606A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110420A1 (de) 2008-04-11 2009-10-21 Sika Technology AG Verfahren zum Aufbringen einer Haftvermittler-Zusammensetzung auf ein Substrat
US20100209618A1 (en) * 2009-02-13 2010-08-19 Airbus Operations Gmbh Method for plasma treatment and painting of a surface

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003940A1 (de) * 2006-01-26 2007-08-02 Volkswagen Ag Verfahren und Vorrichtung zum Aufkleben einer Dichtung
DE102007037406A1 (de) * 2007-08-08 2009-06-04 Neoplas Gmbh Verfahren und Vorrichtung zur plasmagestützten Oberflächenbehandlung
DE102009052085A1 (de) 2009-11-05 2011-05-12 Daimler Ag Verbundbauteil aus einem Metallbauteil und einem Kunststoff und Verfahren zu seiner Herstellung
DE102009052086A1 (de) 2009-11-05 2011-05-12 Daimler Ag Verbundbauteil aus einem Metallbauteil und einem Kunststoff und Herstellungsverfahren zur Herstellung desselben
DE102009052088A1 (de) 2009-11-05 2011-05-12 Daimler Ag Verbundbauteil aus einem Metallbauteil und einem Kunststoff und Herstellungsverfahren zur Herstellung desselben
US8673999B2 (en) * 2010-03-08 2014-03-18 Dow Global Technologies Llc Water based primer composition for isocyante and silane functional adhesives
DE102010011914A1 (de) 2010-03-18 2010-10-21 Daimler Ag Verfahren zur Herstellung eines Metall-Kunststoffhybridbauteils
DE102010032744A1 (de) * 2010-07-29 2012-02-02 Kiekert Ag Verfahren und Vorrichtung zum Aufbringen einer Dichtung auf eine Oberfläche eines Gerätegehäuses für ein Kraftfahrzeug
EP2495292B1 (de) * 2011-03-04 2013-07-24 FFT EDAG Produktionssysteme GmbH & Co. KG Fügeflächenvorbehandlungsvorrichtung und Fügeflächenvorbehandlungsverfahren
DE102011116045A1 (de) 2011-10-17 2013-04-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kraftfahrzeugkarosserie mit plasmabehandelter Klebefläche
DE102012008214B4 (de) 2011-10-18 2022-03-03 Leibniz-Institut Für Polymerforschung Dresden E.V. Verfahren zur stoffschlüssigen Verbindung von Bauteilen, eine mit dem Verfahren hergestellte stoffschlüssige Verbindung sowie eine Verwendung des Verfahrens
DE102012203249A1 (de) * 2012-03-01 2013-09-05 Tesa Se Verwendung eines latentreaktiven Klebefilms zur Verklebung von eloxiertem Aluminium mit Kunststoff
US20140170419A1 (en) * 2012-12-17 2014-06-19 GM Global Technology Operations LLC Method of coating a chrome plated part
CN103205208B (zh) * 2013-04-11 2015-01-21 四川长虹电器股份有限公司 金属与金属的高强度粘结方法
DE102013017107A1 (de) * 2013-10-15 2015-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Vorbehandlung einer Substratoberfläche, Verfahren zur Beschichtung der Substratoberfläche und Verfahren zum Verbinden eines Substrats mit einem Element
US9486957B2 (en) 2014-03-21 2016-11-08 Ford Global Technologies, Llc Assembly and method of pretreating localized areas of parts for joining
TWI535653B (zh) * 2014-04-30 2016-06-01 國立臺灣大學 利用電漿處理石墨烯之裝置與方法、及其應用
DE102014106419B4 (de) * 2014-05-08 2017-06-29 Kalwar Civ Innoserv Gmbh & Co. Kg Verfahren und Vorrichtung zum flächigen Verbinden von zwei Substraten
EP2962846B1 (de) 2014-07-02 2019-08-28 Schmitz Cargobull AG Verfahren zum aktivieren einer oberfläche, verfahren zum herstellen einer klebverbindung und bauteilverbund
DE102014222259A1 (de) * 2014-10-31 2016-05-04 Tesa Se Verklebung zweier Substrate mittels latentreaktiver Klebefilme
JP6497674B2 (ja) * 2014-12-12 2019-04-10 国立研究開発法人理化学研究所 プラズマガス利用加工装置と方法
DE102015219429A1 (de) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Reinigen mithilfe von festem Kohlenstoffdioxid
DE102015219430A1 (de) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Reinigen von Klebeflächen
JP6644884B2 (ja) 2016-06-10 2020-02-12 信越化学工業株式会社 太陽電池、太陽電池の製造システムおよび太陽電池の製造方法
DE102016212622B4 (de) 2016-07-12 2022-02-10 Volkswagen Aktiengesellschaft Verfahren zum Fügen von Bauteilen
DE102016214107A1 (de) * 2016-08-01 2018-02-01 Volkswagen Aktiengesellschaft Plasmareinigung von Druckguss-Strukturbauteilen für Kraftfahrzeuge und Herstellung eines Karosserie-Bauteilverbunds mit einem plasmagereinigten Druckguss-Strukturbauteil
TW201816909A (zh) * 2016-10-27 2018-05-01 矽品精密工業股份有限公司 安裝設備及安裝方法
WO2018115335A1 (de) * 2016-12-23 2018-06-28 Plasmatreat Gmbh Düsenanordnung und vorrichtung zur erzeugung eines atmosphärischen plasmastrahls
DE102017116433A1 (de) 2017-07-20 2019-01-24 Lohmann Gmbh & Co. Kg Verfahren zur Herstellung eines feuchtvernetzenden Haftklebstoffs, feuchtvernetzender Haftklebstoff und Klebeband
US20210276054A1 (en) * 2018-08-02 2021-09-09 Fuji Corporation Oil removal method, bonding method, assembly device, and atmospheric-pressure plasma device
DE102019108877A1 (de) * 2019-04-04 2020-10-08 Valeo Schalter Und Sensoren Gmbh Verfahren zum Herstellen eines Fahrzeugkamerasystems mit spezifisch laserbearbeiteten Oberflächen, sowie Fahrzeugkamerasystem
DE102019206004B4 (de) * 2019-04-26 2023-08-24 Tesa Se Verfahren zur Herstellung einer Verklebung auf einer lackierten Aluminium-Oberfläche
DE102019116459A1 (de) * 2019-06-18 2020-12-24 Plasmatreat Gmbh Verfahren zum verbinden eines bauteils mit einem kunststoffteil
DE102019217135A1 (de) * 2019-11-06 2021-05-20 Robert Bosch Gmbh Gasphasen-Beschichtungsverfahren mit funktionalisiertem Organosiloxan als Präkursor
DE102019217138A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Gasphasen-Beschichtungsverfahren mit Organosiliciumverbindung mit Acyloxy-Gruppe als Präkursor
DE102019217137A1 (de) * 2019-11-06 2021-05-20 Robert Bosch Gmbh Gasphasen-Beschichtungsverfahren mit Silazanen als Präkursor
DE102019217139A1 (de) * 2019-11-06 2021-05-06 Robert Bosch Gmbh Gasphasen-Beschichtungsverfahren mit einem mindestens zweifach funktionalisierten Organosilan als Präkursor
CN113102389B (zh) * 2021-04-26 2023-01-24 广东电网有限责任公司江门供电局 一种绝缘子激光清扫用弧形运动平台
CN114712898B (zh) * 2022-04-11 2023-05-26 湖南继兴科技有限公司 一种单组分环氧树脂胶粘剂生产消泡装置
DE102023200886A1 (de) 2023-02-03 2024-08-08 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Kleben eines mittels einer kathodischen Tauchlackbeschichtung beschichteten Bauteils
DE102023202414A1 (de) * 2023-03-16 2024-09-19 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer strukturellen Klebverbindung und Verfahren zur Trennung einer strukturellen Klebverbindung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829675A1 (de) * 1988-09-01 1990-03-15 Rehau Ag & Co Verfahren zur vorbereitung einer klebeverbindung
DE19523498A1 (de) * 1994-06-30 1996-01-04 Vaw Ver Aluminium Werke Ag Karosserieverbundteil und Verfahren zu seiner Herstellung
EP1359202A1 (de) * 2002-05-03 2003-11-05 Sika Schweiz AG Hitze-härtbare Epoxydharzzusammensetzung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024147B2 (ja) * 1977-07-06 1985-06-11 トヨタ自動車株式会社 被着体の接着方法
EP0267868B1 (de) * 1986-11-12 1992-08-05 United Technologies Corporation Vorbehandlungsverfahren eines amorphen hydratierten Metalloxydgrundiermittels für organische Klebverbindungsfugen
JPH0645768B2 (ja) * 1987-05-20 1994-06-15 サンスタ−技研株式会社 プライマ−組成物
US5190795A (en) * 1989-09-14 1993-03-02 Minnesota Mining And Manufacturing Company Method for improving adhesion to metal
US5938854A (en) * 1993-05-28 1999-08-17 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
JPH07145350A (ja) * 1993-11-22 1995-06-06 Asahi Glass Co Ltd 接着性組成物
GB9501287D0 (en) * 1995-01-24 1995-03-15 Ciba Geigy Ag Surface treatment
JPH08259900A (ja) * 1995-03-28 1996-10-08 Sekisui Chem Co Ltd 金属材料の接着方法
JP3610991B2 (ja) * 1995-04-24 2005-01-19 株式会社ブリヂストン ゴム系複合材の製造方法
JP4007626B2 (ja) * 1996-03-06 2007-11-14 日本パーカライジング株式会社 接着耐久性増進用水性金属表面前処理剤組成物
RU2181134C2 (ru) * 1996-07-23 2002-04-10 Вантико Аг Обработка поверхности металла
JPH11158671A (ja) * 1997-11-28 1999-06-15 Mitsubishi Shindoh Co Ltd コロナ放電脱脂処理金属基材
DE19922516A1 (de) * 1999-05-15 2000-11-16 Emil Schmid Verfahren zum Vorbehandeln zu klebender Teile, insbesondere aus Kunststoff oder Metall
DE10011275A1 (de) * 2000-03-08 2001-09-13 Wolff Walsrode Ag Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe
CA2424891A1 (fr) * 2000-11-10 2002-05-16 Apit Corp. S.A. Procede de traitement par plasma atmospherique de materiaux conducteurs d'electricite et dispositif pour sa mise en oeuvre
RU2305079C2 (ru) * 2001-11-29 2007-08-27 Дау Глобал Текнолоджиз Инк. Способ соединения стекла с субстратом без использования грунтовки
FR2840826B1 (fr) * 2002-06-17 2005-04-15 Rhodia Chimie Sa Procede de traitement de surface d'un article comportant du silicone reticule par polyaddition
DE10236111A1 (de) * 2002-08-07 2004-02-26 Robert Bosch Gmbh Verfahren zum Verbinden von Bauteilen, insbesondere von Scheibenwischeranlagen, mit Karosserieteilen eines Kraftfahrzeuges
AU2003289959A1 (en) * 2002-12-04 2004-06-23 Suss Mircro Tec Lithography Gmbh Method and device for pre-treating surfaces of substrates to be bonded

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829675A1 (de) * 1988-09-01 1990-03-15 Rehau Ag & Co Verfahren zur vorbereitung einer klebeverbindung
DE19523498A1 (de) * 1994-06-30 1996-01-04 Vaw Ver Aluminium Werke Ag Karosserieverbundteil und Verfahren zu seiner Herstellung
EP1359202A1 (de) * 2002-05-03 2003-11-05 Sika Schweiz AG Hitze-härtbare Epoxydharzzusammensetzung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110420A1 (de) 2008-04-11 2009-10-21 Sika Technology AG Verfahren zum Aufbringen einer Haftvermittler-Zusammensetzung auf ein Substrat
US20100209618A1 (en) * 2009-02-13 2010-08-19 Airbus Operations Gmbh Method for plasma treatment and painting of a surface
US8361565B2 (en) * 2009-02-13 2013-01-29 Airbus Operations Gmbh Method for plasma treatment and painting of a surface

Also Published As

Publication number Publication date
BRPI0513105A (pt) 2008-04-29
US20110111236A1 (en) 2011-05-12
ATE407185T1 (de) 2008-09-15
DE102004033728A1 (de) 2006-02-09
CN101068897B (zh) 2010-09-01
CN101068897A (zh) 2007-11-07
EP1769041A2 (de) 2007-04-04
DE102004033728B4 (de) 2009-07-23
WO2006005606A3 (de) 2006-03-16
DE502005005274D1 (de) 2008-10-16
EP1769041B1 (de) 2008-09-03
JP2008506796A (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
EP1769041B1 (de) Verfahren zum bearbeiten und verkleben von werkstücken aus einem metall oder einer metalllegierung mit einer hydratisierten oxid- und/oder hydroxidschicht
CN104395004B (zh) 涂覆基材的金属表面的方法和根据所述方法涂覆的物体
EP2367638B1 (de) Verfahren zur beschichtung von oberflächen mit partikeln und verwendung der nach diesem verfahren hergestellten beschichtungen
EP3019563B1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichtete gegenstände
EP3022330B1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
WO2012034976A1 (de) Verfahren zur beschichtung von oberflächen und verwendung der nach diesem verfahren beschichteten gegenstände
DE10308237A1 (de) Verfahren zur Beschichtung von metallischen Oberflächen
EP2922982A1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
EP3142800A1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
WO2007132013A1 (de) Verfahren zum auftragen einer haftvermittlerzusammensetzung mit einem ultraschallzerstäuber
EP1570109B1 (de) Verfahren zur beschichtung von metallsubstraten mit einem radikalisch polymerisierbaren berzugsmittel und beschichtete subst rate
JP6640638B2 (ja) 化成処理金属板
DE10248085A1 (de) Plasmapolymere Haftschichten
EP2598311B9 (de) Verfahren zur herstellung einer stoffschlüssigen verbindung zwischen einem werkstück mit einer metalloberfläche und einem werkstück mit einer kunststoffoberfläche, und bauteil aus einem metallischen werkstück und einem thermoplastischen werkstück
DE19922516A1 (de) Verfahren zum Vorbehandeln zu klebender Teile, insbesondere aus Kunststoff oder Metall
WO2013174491A1 (de) Beschichtungsmittel
DE102012008214A1 (de) Verfahren zur Oberflächenmodifizierung von Bauteilen sowie Verfahren zur stoffschlüssigen Verbindung von Bauteilen
WO2003052005A1 (de) Mittel zur erzeugung einer haftgrundierung auf metalloberflächen sowie behandlungsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007520748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005762086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 580/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007105213

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200580028865.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005762086

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0513105

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2005762086

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632463

Country of ref document: US