WO2006002791A1 - Kurbelgehäuseentlüftungsleitung - Google Patents

Kurbelgehäuseentlüftungsleitung Download PDF

Info

Publication number
WO2006002791A1
WO2006002791A1 PCT/EP2005/006615 EP2005006615W WO2006002791A1 WO 2006002791 A1 WO2006002791 A1 WO 2006002791A1 EP 2005006615 W EP2005006615 W EP 2005006615W WO 2006002791 A1 WO2006002791 A1 WO 2006002791A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankcase ventilation
line
gases
clean air
oil
Prior art date
Application number
PCT/EP2005/006615
Other languages
English (en)
French (fr)
Inventor
Alexander Berndt
Joachim Keil
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2006002791A1 publication Critical patent/WO2006002791A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/0011Breather valves
    • F01M2013/0027Breather valves with a de-icing or defrosting system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0455Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a de-icing or defrosting system

Definitions

  • the invention relates to a crankcase ventilation line of an internal combustion engine for discharging blow-by gases according to the preamble of claim 1.
  • Crankcase breather pipe of internal combustion engines known, with a leading from the crankcase to the intake system vent line, wherein the discharge point of the vent line is electrically heated at the intake system.
  • Piping systems that transport fluid media must be protected against cooling at low temperatures to reliably prevent freezing of the medium.
  • gases so-called blow-by gases
  • the blow-by gases mix in the crankcase with engine oil, which is there in the form of oil mist, among other things.
  • the pumping motion of the pistons pressurizes these oil vapors and gases. To protect the environment, escape of these gases must be prevented.
  • the oil-blended blow-by gases from the crankcase are delivered via one or more passages to the highest point of the engine, usually the cylinder head, passed.
  • the introduction of the gases takes place in the cylinder head at one or more splash-oil protected areas.
  • the oil-cleaned blow-by gases are then fed into one place, eg in front of the throttle, to the intake system of the engine.
  • the blow-by gases contain fuel vapors and water vapor, so there is a risk of icing.
  • a faulty, clogged or iced vent will cause a large pressure in the crankcase that forces the lubricating oil out of the seals (eg, crankshaft, oil sump, or oil dipstick opening). The result is a large loss of oil, which leads to engine damage and environmental pollution.
  • the seals eg, crankshaft, oil sump, or oil dipstick opening.
  • the invention is therefore based on the technical problem of providing a crankcase ventilation line of the type mentioned above, which can be implemented with relatively little technical effort, without burdening the power budget of a motor vehicle, and which effectively prevents the aforementioned risk of icing.
  • the invention solves this problem by providing a crankcase ventilation line with the features of claim 1.
  • the inventive crankcase ventilation line of an internal combustion engine for discharging blow-by gases from the Oil separator and for introduction into the clean air line has according to claim 1 means for warming the discharge points in the clean air line, wherein the warm-up means comprises a connected to the coolant or lubricating oil circuit of the internal combustion engine and within the crankcase ventilation line to the point of introduction extending circulation line.
  • the warm-up means comprises a connected to the coolant or lubricating oil circuit of the internal combustion engine and within the crankcase ventilation line to the point of introduction extending circulation line.
  • the circulation line is firmly connected to the discharge point with the clean air line and / or the crankcase ventilation line.
  • Crankcase ventilation line is the solid connection by means of clamping, soldering, welding or screwing.
  • the created here between circulation pipe and connecting piece heat transfer prevents advantageously targeted icing of the discharge point and thus a pressure increase in the crankcase.
  • the medium in the circulation line by means of a thermostat is adjustable.
  • Advantageous embodiments of the crankcase ventilation line according to the invention are the subject of the dependent claims and the description.
  • Fig. 1 shows a preferred embodiment of the invention
  • FIG. 2 shows a detail of an inventive
  • FIG. 3 shows a cross section through a clean air line
  • Fig. 4 shows a preferred embodiment of a heat-conducting
  • Fig. 5 shows a heat management of a crankcase ventilation.
  • Figure 1 shows a branched off from an oil separator 2 crankcase ventilation line 1, which opens at its end via a connecting piece 3 in a clean air line, not shown.
  • the not shown in the vent line 1 fluid-carrying circulation line is connected via a temperature-controlled bypass 4 with a front end cover 5 ⁇ on a cylinder head cover 5.
  • the connection of the fluid-carrying circulation line is preferably to the already existing coolant or lubricating oil circuit of the internal combustion engine (not shown).
  • the flow through the bypass 4 takes place only at low Aussentemparaturen, wherein the regulation of the flow takes place by means of a thermostat not shown separately.
  • Figure 2 shows a section of a crankcase ventilation line 1 according to the invention with a fluid-carrying Circulation line 6, which extends into the connection piece 3.
  • a fluid-carrying Circulation line 6 which extends into the connection piece 3.
  • metals or metal alloys such as aluminum, stainless steel, copper, brass, etc., find use.
  • the heat conduction can be selectively controlled, for example, by the use of a solid connecting piece 3 made of copper as energy storage.
  • the copper pipe 3 directs the heat directly to the critical point where the vent gases meet the fresh air. There is a risk of freezing at low temperatures here.
  • Fig. 3 shows a cross section through a clean air line 7, in which the located in the crankcase ventilation line 1 fluid-carrying circulation line 6 is guided to be heated or cooled connecting piece 3 in the clean air area 7 of the intake manifold of the engine.
  • the inventive warming or heating of the temperature-critical discharge point 8 for particular crankcase ventilation gases in the clean air area 7 of the intake manifold of the engine freezing of the discharge point 8 is effectively prevented at low outdoor temperatures.
  • a cooling of the discharge point 8 can be realized.
  • FIG. 4 shows a preferred embodiment of a heat-conducting circulation line 6 with connecting piece 3.
  • the design of the connecting piece 3 and the circulation line 6 in size, shape and wall thickness are largely arbitrary.
  • the attachment of the connecting piece 3 and the circulation line 6 in size, shape and wall thickness are largely arbitrary.
  • Circulation line 6 at its end facing the nozzle 3 can be done for example by means of soldering, welding, clamping, screws or other suitable, the heat conduction permitting connection possibilities. By this solid Connection of the circulation line 6 with the connecting piece 3, the heat transfer is ensured and thus prevents advantageously the freezing of the discharge point 8.
  • Fig. 5 schematically simplified, the thermal management of a crankcase ventilation is shown.
  • gases so-called blow-by gases
  • the blow-by gases contain unburned fuel components and the entire spectrum Emissions like the exhaust.
  • the proportion of the hydrocarbon concentration in the blow-by gases may be a multiple of the HC concentration contained in the exhaust gases, depending on the load condition of the engine.
  • the blow-by gases mix in the crank chamber 9 with engine oil, which is there, inter alia, in the form of oil mist. Due to the engine load-dependent amount of blow-by gases and the translational piston movement creates a speed-dependent overpressure in the crank chamber 9 below the piston 11. Since the crank chamber 9 via channels for oil return 23, crankcase ventilation 1 and an optional existing chute 12 with the cylinder head 13 and . Hood is connected, the pressure is also at these points in the engine inside.
  • the mixed with oil blow-by gases are from the crank chamber 9 via one or more channels, indicated by arrows (see legend), to the highest point of the engine, usually the cylinder head 13, passed.
  • the introduction of the gases takes place in the cylinder head 13 at one or more, only schematically illustrated, splash-oil protected points 13 ⁇ .
  • the separation chamber 14 of the oil separator which is preferably arranged outside the engine here, the oil separation takes place, ie the separation of the recorded by the blow-by gases engine oil.
  • the oil drain (represented by Arrows, see legend) to the oil pan 9 ⁇ is done via an oil return line 23, which realizes a back flow of the oil into the crank chamber 9.
  • the largely engine oil-free blow-by gases (represented by arrows, see legend) are guided via the crankcase ventilation line 1 in the direction of the clean air line 7.
  • the gases flowing past the fluid-carrying circulation line 6 located in the ventilation line 1, the circulation line 6 here being preferably connected to an already existing coolant or lubricating oil circuit 15 of the engine, are warmed up by means of convection and / or heat conduction.
  • the coolant or lubricating oil circuit 15 preferably also contains a surge tank 17.
  • the circulation line 6 extends into the connecting piece 3 for the clean air line 7 and is firmly connected thereto; by appropriate heat conduction and the connecting piece 3 is heated. Due to the preheating of the blow-by gases and the connecting piece 3, especially due to the presence of water vapor at not yet engine-warming engine ice formation in particular at the discharge point 8, which is in contact with cold fresh / clean air, prevented. Such heating or cooling is easy to implement and inexpensive because of the available heating / cooling medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung bezieht sich auf eine Kurbelgehäuseentlüftungsleitung (1) einer Brennkraftmaschine zum Ableiten von Blow-By-Gasen aus dem Ölabscheider 2 und zum Einleiten in die Reinluftleitung (7), wobei die Kurbelgehäuseentlüftungsleitung (1) Mittel (6) zum Aufwärmen der Einleitungsstellen (8) in die Reinluftleitung (7) aufweist. Die Aufwärmmittel (6) umfassen eine an den Kühlmittel- oder Schmierölkreislauf der Brennkraftmaschine angeschlossene und innerhalb der Kurbelgehäuseentlüftungsleitung (1) bis zur Einleitungsstelle (8) verlaufende Zirkulationsleitung.

Description

Kurbelgehäuseentlüftungsleitung
Die Erfindung betrifft eine Kurbelgehäuseentlüftungsleitung einer Brennkraftmaschine zum Ableiten von Blow-By-Gasen nach dem Oberbegriff des Anspruchs 1.
Aus der DE 24 32 782 Al ist eine
Kurbelgehäuseentlüftungsleitung von Brennkraftmaschinen bekannt, mit einer vom Kurbelgehäuse zum Ansaugsystem führenden Entlüftungsleitung, wobei die Mündungsstelle der Entlüftungsleitung am Ansaugsystem elektrisch beheizbar ist.
Rohrleitungssysteme, die fluide Medien transportieren, müssen bei tiefen Temperaturen vor Auskühlung geschützt werden, um ein Einfrieren des Mediums zuverlässig zu verhindern. Insbesondere im Bereich der Kurbelgehäuseentlüftung von Hubkolbenmotoren besteht die Gefahr der Vereisung in dort vorhandenen Rohrleitungssystemen. Beim Betrieb von Hubkolbenmotoren treten Gase, sogenannte Blow-By-Gase, aus dem Brennraum über den Bereich zwischen Kolben bzw. Kolbenringen in den Kurbelraum. Die Durchblasegase vermischen sich im Kurbelraum mit Motoröl, das dort u.a. in Form von Ölnebel vorhanden ist. Die Pumpbewegung der Kolben setzt diese Öldämpfe und Gase unter Druck. Zum Schutz der Umwelt muss ein Entweichen dieser Gase verhindert werden. In einem herkömmlichen Kurbelgehäuseentlüftungssystem werden die mit Öl vermischten Blow-By-Gase aus dem Kurbelraum über einen oder mehrere Kanäle an die höchste Stelle des Motors, üblicherweise der Zylinderkopf, geleitet. Die Einleitung der Gase erfolgt im Zylinderkopf an einer oder mehreren spritzölgeschützten Stellen. Es erfolgt die Ölabscheidung, d.h. die Trennung des von den Blow-By-Gasen aufgenommenen Motoröls . Die von Öl gereinigten Blow-By-Gase werden dann an einer Stelle, z.B. vor der Drosselklappe, dem Ansaugsystem des Motors zugeführt. Bei noch nicht betriebswarmem Motor enthalten die Durchblasegase Kraftstoffdämpfe und Wasserdampf, so dass die Gefahr einer Vereisung besteht. Eine defekte, verstopfte oder vereiste Entlüftung führt zu einem großen Druck im Kurbelgehäuse, der das Schmieröl aus den Dichtungen (z.B. an Kurbelwelle, Ölwanne oder aus der Öffnung für den Ölmeßstab) drückt. Es entsteht ein großer Ölverlust, der zu Motorschäden und zu Umweltbelastungen führt.
Nachteilig bei in der Praxis bekannten Systemen, die ein Einfrieren der Kurbelgehäuseentlüftung mittels elektrischer Beheizung verhindern, ist die Verwendung eines zusätzlichen Heizaggregates, welches außerdem den Stromhaushalt des Kraftfahrzeugs belastet.
Der Erfindung liegt daher als technisches Problem die Bereitstellung einer Kurbelgehäuseentlüftungsleitung der eingangs genannten Art zugrunde, welche mit vergleichsweise geringem technischen Aufwand, ohne den Stromhaushalt eines Kraftfahrzeugs zu belasten, realisierbar ist und welche die vorgenannte Vereisungsgefahr wirksam verhindert.
Die Erfindung löst dieses Problem durch die Bereitstellung einer Kurbelgehäuseentlüftungsleitung mit den Merkmalen des Anspruchs 1.
Die erfindungsgemäße Kurbelgehäuseentlüftungsleitung einer Brennkraftmaschine zum Ableiten von Blow-By-Gasen aus dem Ölabscheider und zum Einleiten in die Reinluftleitung weist gemäß Anspruch 1 Mittel zum Aufwärmen der Einleitungsstellen in die Reinluftleitung auf, wobei die Aufwärmmittel eine an den Kühlmittel- oder Schmierölkreislauf der Brennkraftmaschine angeschlossene und innerhalb der Kurbelgehäuseentlüftungsleitung bis zur Einleitungsstelle verlaufende Zirkulationsleitung umfasst. Durch die Verwendung des bereits in der Brennkraftmaschine vorhandenen Kühlmittel¬ oder Schmierölkreislaufs ergeben sich in günstiger Weise Einsparungen. Zum einen entfällt eine aufwendige elektrische Beheizung des Anschlussstutzens, da die vorhandene Wärme der Brennkraftmaschine gezielt zur Erwärmung des Stutzens genutzt wird, zum anderen können daher der Leitungssatz und das Steuergerät der Brennkraftmaschine vereinfacht werden. Ferner wird in der Folge als ein weiterer Vorteil der Stromhaushalt des Kraftfahrzeugs nicht belastet.
In einer Weiterbildung der Erfindung nach Anspruch 2 ist die Zirkulationsleitung an der Einleitungsstelle mit der Reinluftleitung und/oder der Kurbelgehäuseentlüftungsleitung fest verbunden.
Bei einer nach Anspruch 3 weitergebildeten
Kurbelgehäuseentlüftungsleitung erfolgt die feste Verbindung mittels Klemmung, Verlöten, Verschweißen oder Verschrauben. Der hier zwischen Zirkulationsleitung und Anschlußstutzen geschaffene Wärmeübergang verhindert in vorteilhafter Weise gezielt ein Vereisen der Einleitungsstelle und damit einen Druckanstieg im Kurbelraum.
Gemäß einer Weiterbildung nach Anspruch 4 ist das Medium in der Zirkulationsleitung mittels eines Thermostaten regelbar. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Kurbelgehäuseentlüftungsleitung sind Gegenstand der Unteransprüche und der Beschreibung.
Die Erfindung wird anhand der beigefügten Zeichnung weiter beschrieben. In dieser zeigt auf schematische Weise
Fig. 1 eine bevorzugte Ausführungsform der erfindungsgemäßen
Kurbelgehäuseentlüftungsleitung, Fig. 2 einen Ausschnitt einer erfindungsgemäßen
Kurbelgehäuseentlüftungsleitung, Fig. 3 einen Querschnitt durch eine Reinluftleitung mit
Einleitungsstelle, Fig. 4 eine bevorzugte Ausführung einer wärmeleitenden
Zirkulationsleitung mit Mündungsstutzen, Fig. 5 ein Wärmemanagement einer Kurbelgehäuseentlüftung.
Figur 1 zeigt eine von einem Ölabscheider 2 abzweigende Kurbelgehäuseentlüftungsleitung 1, welche an ihrem Ende über einen Anschlußstutzen 3 in eine nicht dargestellte Reinluftleitung einmündet. Die in der Entlüftungsleitung 1 befindliche nicht gezeigte fluidführende Zirkulationsleitung ist über einen temperaturgeregelten Bypass 4 mit einem vorderen Abschlußdeckel 5 Λ an einer Zylinderkopfhaube 5 verbunden. Hierdurch erfolgt der Anschluß der fluidführenen Zirkulationsleitung bevorzugt an den bereits vorhandenen Kühlmittel- oder Schmierölkreislauf des Brennkraftmaschine (nicht dargestellt) . Die Durchströmung des Bypass 4 findet nur bei niedrigen Aussentemparaturen statt, wobei die Regelung des Durchflusses mittels eines nicht gesondert dargestellten Thermostaten erfolgt.
Figur 2 zeigt einen Ausschnitt einer erfindungsgemäßen Kurbelgehäuseentlüftungsleitung 1 mit einer fluidführenden Zirkulationsleitung 6, die bis in den Anschlußstutzen 3 hineinreicht. Als Werkstoffe für den Anschlußstutzen 3 und die Zirkulationsleitung 6 können Metalle oder Metall- Legierungen, wie z.B. Aluminium, Edelstahl, Kupfer, Messing etc., Einsatz finden. Durch geeignete Materialauswahl und Massenverteilung lässt sich die Wärmeleitung gezielt steuern, beispielsweise durch die Verwendung eines massiven Anschlußstutzens 3 aus Kupfer als Energiespeicher. Der Kupferstutzen 3 leitet die Wärme direkt an die kritische Stelle, an der die Entlüftungsgase auf die Frischluft treffen. Hier besteht bei tiefen Temperaturen Einfriergefahr.
Die Fig. 3 zeigt einen Querschnitt durch eine Reinluftleitung 7, in den die in der Kurbelgehäuseentlüftungsleitung 1 befindliche fluidführende Zirkulationsleitung 6 bis an den zu beheizenden oder zu kühlenden Anschlußstutzen 3 in den Reinluftbereich 7 der Ansaugleitung des Motors geführt ist. Durch die erfindungsgemäße Aufwärmung oder Beheizung der temperaturkritischen Einleitungsstelle 8 für insbesondere Kurbelgehäuse-Entlüftungsgase in den Reinluftbereich 7 der Ansaugleitung des Motors wird ein Einfrieren der Einleitstelle 8 bei tiefen Außentemperaturen wirksam verhindert. Darüber hinaus kann auch eine Kühlung der Einleitstelle 8 verwirklicht werden.
Die Fig. 4 zeigt eine bevorzugte Ausführung einer wärmeleitenden Zirkulationsleitung 6 mit Anschlußstutzen 3. Die Ausgestaltung des Anschlußstutzens 3 und der Zirkulationsleitung 6 in Größe, Form und Wandstärke sind weitestgehend beliebig. Die Befestigung der
Zirkulationsleitung 6 an ihrem dem Stutzen 3 zugewandten Ende kann z.B. mittels Löten, Schweißen, Klemmen, Schrauben oder anderen geeigneten, die Wärmeleitung zulassenden Verbindungsmöglichkeiten erfolgen. Durch diese feste Verbindung der Zirkulationsleitung 6 mit dem Anschlußstutzen 3 ist der Wärmeübergang gewährleistet und verhindert somit in vorteilhafter Weise das Zufrieren der Einleitungsstelle 8. In Fig. 5 ist schematisch vereinfacht das Wärmemanagement einer Kurbelgehäuseentlüftung dargestellt. Beim Betrieb von Hubkolbenmotoren treten Gase, sogenannte Blow-By-Gase, aus dem nicht gesondert dargestellten Brennraum über den Bereich zwischen Kolben bzw. Kolbenringen in den Kurbelraum 9 des Zylinderkurbelgehäuses 10. Die Blow-By-Gase enthalten neben unverbrannten Kraftstoffanteilen das ganze Spektrum an Emissionen wie das Abgas. Der Anteil der Kohlenwasserstoff- Konzentration in den Blow-By-Gasen kann, abhängig vom Lastzustand des Motors, ein Vielfaches der in den Abgasen enthaltenen HC-Konzentration betragen. Die Blow-By-Gase vermischen sich im Kurbelraum 9 mit Motoröl, das dort u.a. in Form von Ölnebel vorhanden ist. Durch die motorlastabhängige Menge der Blow-By-Gase und durch die translatorische Kolbenbewegung entsteht ein drehzahlabhängiger Überdruck im Kurbelraum 9 unterhalb der Kolben 11. Da der Kurbelraum 9 über Kanäle für Ölrücklauf 23, Kurbelgehäuseentlüftung 1 und einen optional vorhandenen Kettenschacht 12 mit dem Zylinderkopf 13 bzw. -haube verbunden ist, liegt der Überdruck auch an diesen Stellen im Motorinneren an.
Die mit Öl vermischten Blow-By-Gase werden aus dem Kurbelraum 9 über einen oder mehrere Kanäle, dargestellt durch Pfeile (siehe Legende) , an die höchste Stelle des Motors, üblicherweise der Zylinderkopf 13, geleitet. Die Einleitung der Gase erfolgt im Zylinderkopf 13 an einer oder mehreren, nur schematisch dargestellten, spritzölgeschützten Stellen 13 Λ . Im sogenannten Abscheideraum 14 des Ölabscheiders, der hier bevorzugt außerhalb des Motors angeordnet ist, erfolgt die Ölabscheidung, d.h. die Trennung des von den Blow-By- Gasen aufgenommenen Motoröls. Der Ölabfluß (dargestellt durch Pfeile, siehe Legende) zur Ölwanne 9Λ geschieht über eine Ölrücklaufleitung 23, die ein Rückfließen des Öls in den Kurbelraum 9 realisiert. Die weitgehend motorölfreien Blow- By-Gase (dargestellt durch Pfeile, siehe Legende) werden über die Kurbelgehäuseentlüftungsleitung 1 in Richtung Reinluftleitung 7 geführt. Hierbei werden die an der in der Entlüftungsleitung 1 befindlichen fluidführenden Zirkulationsleitung 6 vorbeiströmenden Gase, wobei die Zirkulationsleitung 6 hier bevorzugt mit einem bereits vorhandenen Kühlmittel- oder Schmierölkreislauf 15 des Motors verbunden ist, mittels Konvektion und/oder Wärmeleitung aufgewärmt.
Der Kühlmittel- oder Schmierölkreislauf 15 enthält vorzugsweise noch einen Ausgleichsbehälter 17. Wie hier schematisch gezeigt, reicht die Zirkulationsleitung 6 bis in den Anschlußstutzen 3 für die Reinluftleitung 7 hinein und ist mit diesem fest verbunden; durch entsprechende Wärmeleitung wird auch der Anschlußstutzen 3 erwärmt. Durch das Vorerwärmen der Blow-By-Gase und des Anschlußstutzens 3 wird vor allem eine durch das Vorhandensein von Wasserdampf bei noch nicht betriebswarmem Motor bedingte Eisbildung insbesondere an der Einleitungsstelle 8, die mit kalter Frisch-/Reinluft in Kontakt steht, verhindert. Eine derartige Heizung bzw. Kühlung ist einfach zu realisieren und wegen des zur Verfügung stehenden Heiz-/Kühlmediums kostengünstig.
Die über einen Luftfilter 17 und einen
Heißfilmluftmassenmesser 18 angesaugte Frisch-/Reinluft wird vermischt mit den Blow-By-Gasen anschließend über einen Verdichter 19 eines Abgasturboladers (ATL) , einen Ladeluftkühler 20 und eine Ladeluftverteilung 21 in die Ansaugleitung 22 einer Brennkraftmaschine geführt. Die Abgase der Brennkraftmaschine werden über eine Turbine 24 des ATL und über eine Abgasnachbehandlungseinheit 25 in die Atmosphäre geleitet.

Claims

Patentansprüche
1. Kurbelgehäuseentlüftungsleitung (1) einer Brennkraftmaschine zum Ableiten von Blow-By-Gasen aus dem Ölabscheider (2) und zum Einleiten in die Reinluftleitung (7), wobei die Kurbelgehäuseentlüftungsleitung (1) Mittel (β) zum Aufwärmen der Einleitungsstellen (8) in die Reinluftleitung (7) aufweist, dadurch gekennzeichnet, dass die Aufwärmmittel (6) eine an den Kühlmittel- oder Schmierölkreislauf der Brennkraftmaschine angeschlossene und innerhalb der Kurbelgehäuseentlüftungsleitung (1) bis zur Einleitungsstelle (8) verlaufende Zirkulationsleitung umfasst.
2. Kurbelgehäuseentlüftungsleitung nach Anspruch 1, dadurch gekennzeichnet, dass die Zirkulationsleitung (6) an der Einleitungsstelle (8) mit der Reinluftleitung (7) und/oder der Kurbelgehäuseentlüftungsleitung (1) fest verbunden ist.
3. Kurbelgehäuseentlüftungsleitung nach Anspruch 2, dadurch gekennzeichnet, dass die feste Verbindung mittels Klemmung, Verlöten, Verschweißen oder Verschrauben erfolgt.
4. Kurbelgehäuseentlüftungsleitung nach Anspruch 2, dadurch gekennzeichnet, dass das Medium in der Zirkulationsleitung (6) mittels eines Thermostaten regelbar ist.
PCT/EP2005/006615 2004-06-30 2005-06-18 Kurbelgehäuseentlüftungsleitung WO2006002791A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031499.3 2004-06-30
DE200410031499 DE102004031499B4 (de) 2004-06-30 2004-06-30 Kurbelgehäuseentlüftungsleitung

Publications (1)

Publication Number Publication Date
WO2006002791A1 true WO2006002791A1 (de) 2006-01-12

Family

ID=34972284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006615 WO2006002791A1 (de) 2004-06-30 2005-06-18 Kurbelgehäuseentlüftungsleitung

Country Status (2)

Country Link
DE (1) DE102004031499B4 (de)
WO (1) WO2006002791A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043768A1 (de) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Mediumleitung
DE102008018328A1 (de) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Intern aufgewärmte Mediumleitung
CN114198180A (zh) * 2021-12-06 2022-03-18 潍柴动力股份有限公司 一种闭式呼吸系统、发动机及车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060942A1 (it) * 2006-05-12 2007-11-13 Iveco Spa Sistema di riscaldamento dei vapori di olio in circolazione esterna ad un motore di veicolo
FR2913249B1 (fr) * 2007-03-01 2012-03-16 Peugeot Citroen Automobiles Sa Procede et dispositif de rechauffage de gaz de carter et chambre de decantation destinee aux gaz de carter
DE102010034153A1 (de) 2010-08-11 2012-02-16 Voith Patent Gmbh Dampfenergieanlage und Verfahren für deren Betrieb
DE102011121852A1 (de) 2011-12-21 2012-06-21 Daimler Ag Leitungssystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158153A (en) * 1984-04-27 1985-11-06 Honda Motor Co Ltd Heating i.c. engine crankcase blow-by gases
GB2158152A (en) * 1984-04-27 1985-11-06 Honda Motor Co Ltd Heating i.c. engine PCV valves
EP0709565A1 (de) * 1994-10-25 1996-05-01 Continental Aktiengesellschaft Be- und Entlüftungsschlauch für Teile von Kraftfahrzeugmotoren
JPH10331621A (ja) * 1997-05-30 1998-12-15 Suzuki Motor Corp 内燃機関のブリーザ通路構造
US6044829A (en) * 1995-07-13 2000-04-04 Filterwerk Mann & Hummel Gmbh Heating arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432782B2 (de) * 1974-07-08 1976-11-18 Adam Opel AG, 6090 Rüsselsheim Kurbelgehaeuseentlueftung von brennkraftmaschinen, insbesondere fuer kraftfahrzeuge
DE3726332C1 (de) * 1987-08-07 1988-06-23 Bayerische Motoren Werke Ag Ansaugleitungsteil einer Brennkraftmaschine
DE19717040C1 (de) * 1997-04-23 1998-11-26 Mannesmann Vdo Ag Entlüftungsvorrichtung in einer zu einer Saugrohranordnung einer Brennkraftmaschine hinführenden Entlüftungsleitung
DE10163780B4 (de) * 2001-12-22 2009-03-12 Mahle Filtersysteme Gmbh Entgasungseinrichtung für ein Kurbelgehäuse
DE10326881A1 (de) * 2003-06-14 2004-12-30 Daimlerchrysler Ag Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158153A (en) * 1984-04-27 1985-11-06 Honda Motor Co Ltd Heating i.c. engine crankcase blow-by gases
GB2158152A (en) * 1984-04-27 1985-11-06 Honda Motor Co Ltd Heating i.c. engine PCV valves
EP0709565A1 (de) * 1994-10-25 1996-05-01 Continental Aktiengesellschaft Be- und Entlüftungsschlauch für Teile von Kraftfahrzeugmotoren
US6044829A (en) * 1995-07-13 2000-04-04 Filterwerk Mann & Hummel Gmbh Heating arrangement
JPH10331621A (ja) * 1997-05-30 1998-12-15 Suzuki Motor Corp 内燃機関のブリーザ通路構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03 31 March 1999 (1999-03-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043768A1 (de) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Mediumleitung
DE102008018328A1 (de) 2008-04-11 2009-10-15 Ford Global Technologies, LLC, Dearborn Intern aufgewärmte Mediumleitung
DE102008018328B4 (de) * 2008-04-11 2015-12-03 Ford Global Technologies, Llc Intern aufgewärmte Mediumleitung
CN114198180A (zh) * 2021-12-06 2022-03-18 潍柴动力股份有限公司 一种闭式呼吸系统、发动机及车辆

Also Published As

Publication number Publication date
DE102004031499A1 (de) 2006-01-26
DE102004031499B4 (de) 2009-08-13

Similar Documents

Publication Publication Date Title
DE102010002082B4 (de) Separat gekühlter Abgassammler zur Aufrechterhaltung einer No-Flow Strategie des Zylinderblockkühlmittelmantels
WO2006002791A1 (de) Kurbelgehäuseentlüftungsleitung
EP2959123B1 (de) Wärmeisoliertes system zur schmierung von rotierenden und oszillierenden bauteilen eines kraftfahrzeugs
DE102015109137A1 (de) Ölkühlungssystem für aufgeladenen Verbrenner
EP2409005A1 (de) Verfahren und vorrichtung zur ölschmierung von rotierenden oder oszillierenden bauteilen
DE202017007617U1 (de) Wärmemanagementsystem eines Verbrennungsmotors
DE102007053126B4 (de) Brennkraftmaschine mit gekühlter Abgasrückführung sowie Abgaskrümmer
DE102010005824A1 (de) Flüssigkeitskühlsystem eines durch einen Turbolader aufgeladenen Verbrennungsmotors und Verfahren zur Kühlung eines Turbinengehäuses eines Turboladers
DE102010027816A1 (de) Brennkraftmaschine mit Ölkreislauf und Verfahren zur Erwärmung des Motoröls einer derartigen Brennkraftmaschine
DE2753716A1 (de) Warmluft abgebende heizvorrichtung fuer durch eine brennkraftmaschine angetriebene kraftfahrzeuge
DE10224964A1 (de) Wärmeverteilungsanordnung zur Kurbelgehäuse-Zwangsventilation
WO2009019153A2 (de) Turbolader mit einer kühlungseinrichtung und einer ölzuführung
DE102008042660A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkühler und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011053176A1 (de) Verfahren und Vorrichtung zur Leckagedetektion eines Fahrzeug-Schmiersystems
DE102009030556B4 (de) Turboladersystem für einen Verbrennungsmotor mit einem Turbolader- Befestigungssockel mit verringerter Grundfläche
DE102008025953A1 (de) Motorsystem mit dafür vorgesehenem Wärmemanagementsystem
DE102011002562B4 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102010023063B4 (de) Ölversorgungssystem für eine Brennkraftmaschine
DE102017003726B4 (de) Fahrzeug mit Turbomotor, Turbomotor und Verfahren zum Kühlen eines Turboladers
DE102018131689B4 (de) Mit einem wasserhaltigen Schmierstoff geschmierte Brennkraftmaschine
DE102017209484A1 (de) Kühlvorrichtung, Kraftfahrzeug und Verfahren zum Betreiben einer Kühlvorrichtung
EP1079080B1 (de) Ölgekühlte Brennkraftmaschine
DE102017208034B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Entlüftung
DE3509095A1 (de) Anordnung zur kuehlung und schmierung einer hubkolben-brennkraftmaschine
DE60012315T2 (de) Flüssiggasverdampfungsvorrichtung für schiffsmotoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase