WO2006001226A1 - 超電導限流素子及びその作製方法 - Google Patents

超電導限流素子及びその作製方法 Download PDF

Info

Publication number
WO2006001226A1
WO2006001226A1 PCT/JP2005/011117 JP2005011117W WO2006001226A1 WO 2006001226 A1 WO2006001226 A1 WO 2006001226A1 JP 2005011117 W JP2005011117 W JP 2005011117W WO 2006001226 A1 WO2006001226 A1 WO 2006001226A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
superconducting
current limiting
limiting element
alloy layer
Prior art date
Application number
PCT/JP2005/011117
Other languages
English (en)
French (fr)
Inventor
Hirofumi Yamasaki
Mitsuho Furuse
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to DE112005001495T priority Critical patent/DE112005001495B4/de
Priority to JP2006528493A priority patent/JP4644779B2/ja
Priority to US11/630,478 priority patent/US8088713B2/en
Publication of WO2006001226A1 publication Critical patent/WO2006001226A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/901Superconductive

Definitions

  • the present invention relates to a superconducting current limiting element that limits an excessive current such as a short-circuit current flowing in an electric circuit, and a method for manufacturing the same.
  • a superconductor can flow a large current with zero electric resistance in a superconducting state, but an electric resistance is generated when a current larger than a predetermined current value (critical current) flows.
  • a predetermined current value critical current
  • the temperature of the superconductor rises due to the generated heat, and becomes a normal conducting state, generating a larger electric resistance.
  • a major issue in promoting the liberalization of electric power is the increase in short-circuit fault current associated with the distributed power supply interconnection.
  • the most promising force as a countermeasure is the introduction of a current limiter that suppresses the fault current with low impedance during normal conditions and high impedance during system faults.
  • the introduction of a current limiter also has the advantage of reducing the fault current specifications of the distributed power supply, contributing to lowering the cost of the distributed power supply and improving facility security. From the standpoint of promoting the liberalization of electric power, there is a very high social demand for the realization of a low-cost, high-reliability current limiter.
  • the superconducting thin film current limiter using a large area superconducting thin film is compact, responds instantly to overcurrent, and has little AC loss that is always generated.
  • reliability it is considered to be the most excellent from the viewpoint of reliability, performance and physique, and expandability to large capacity.
  • a superconducting thin film current limiter has a thin film current limiting element that operates at liquid nitrogen temperature (66-77.3 K) connected in series to the power system.
  • the system current is transferred to the normal conduction state (N) and the system current is suppressed by the normal conduction resistance.
  • This is also called the SN transition resistance type current limiter.
  • YBCO High-area superconducting oxide thin films such as YBa Cu 2 O (hereinafter referred to as YBCO)
  • Superconducting thin-film current limiting elements are limited by generating a resistive voltage V in the event of an accident, but the voltage that can be generated per unit length of thin-film current limiting elements (indicator) (shared electric field) ) Is high, the element length can be shortened accordingly, and the required area of the superconducting thin film can be reduced.
  • the improvement of the shared electric field results in an increase in the amount of generated heat.
  • a thin-film current limiting element is usually designed so that the temperature of the superconducting thin film does not exceed room temperature within a specified current-limiting time (for example, 0.1 seconds).
  • the area of the superconducting thin film formed on the sapphire substrate required for a 6.6 kV / 2 kA class current limiting device can be reduced to about 1/30 of the previous device, greatly reducing costs. It is assumed. However, in this method, it is necessary to use a large amount of high thermal conductive ceramic substrate such as aluminum nitride or indium plate, and these are expensive, so there is a limit to cost reduction.
  • Non-Patent Document 1 A. Heinrich, R. Semerad, H. Kinder, H. Mosebach and M. Lindmayer, "Fault current limiting properties o! YBCO- films on sapphire substrates", IEEE Tran s. Appl. Supercond 9 (1999) 660-663
  • Non-Patent Document 2 B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer, B. Seebacher, B. Ut z, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer and B. Heismann, "Resistive fa ult current limiters with YBCO films- lOOkVA functional model", IEEE Trans. Appl. Supercond. 9 (1999) 656-659
  • Non-Patent Document 3 H. Kubota, YK Arai, M. Yamazaki, H. Yoshino and H. Nagamura, "A new model of fault current limiter using YBCOthin film, IEEE Trans. Appl. Super cond. 9 (1999) 1365- 1368
  • Non-Patent Document 4 Kubota, Kudo, Yoshino, Kazutomo: “Conceptual design of YBCO thin film current limiter (6.6kVZ 2 kA class)”, 64th Spring 2001 Low Temperature Engineering 'Superconductivity Society Proceedings, p. 166 Patent Reference 1: Patent No. 2954124 Disclosure of the invention
  • a pure metal such as gold or silver is vapor-deposited on the superconducting thin film, and the current is shunted during the normal conducting transition. Used as a protective layer.
  • the resistivity of pure metal is about two orders of magnitude lower than the resistivity of superconducting oxides, so the resistance of the superconducting line is greatly reduced, and the amount of heat generated at the time of current limiting increases, so the superconducting thin film current limiting element shares The electric field was greatly reduced, and as a result, the required amount of expensive superconducting thin film was increased, which was very disadvantageous in terms of cost.
  • the object of the present invention is to solve the hot spot problem of a superconducting thin film without significantly reducing the resistance of the superconducting line by depositing an alloy layer having a resistivity much higher than that of pure metal on the superconducting thin film. At the same time, by connecting an external non-inductive shunt resistor made of pure metal or alloy wire in parallel with the superconducting thin film on which the alloy layer is formed, the resistance of the superconducting wire is made higher and higher sharing is achieved. It is an object of the present invention to provide a superconducting current limiting element that can achieve an electric field and a method of manufacturing the same.
  • the present invention employs the following means in order to solve the above problems.
  • the first means is composed of a superconducting thin film formed on an insulating substrate and an alloy layer formed on the superconducting thin film and having a room temperature resistivity that is at least twice as high as that of pure metal.
  • the superconducting current limiting element is characterized in that, when the superconducting thin film undergoes normal conducting transition due to overcurrent, the overcurrent flowing through the superconducting thin film is commutated only to the alloy layer.
  • a second means is characterized in that, in the first means, the alloy layer is composed of a binary alloy layer of gold and silver or a multi-element alloy layer in which other elements are added to gold and silver. It is a superconducting current limiting element.
  • a third means includes a superconducting thin film formed on an insulating substrate and an alloy layer formed on the superconducting thin film and having a room temperature resistivity that is at least twice as high as that of a pure metal.
  • a superconducting current limiting element comprising: a shunt resistor formed of a wire made of a pure metal or an alloy is connected in parallel with the superconducting thin film.
  • a fourth means is the superconducting current limiting element according to the third means, wherein the shunt resistor is constituted by a non-inductive winding so that the inductance becomes small.
  • a fifth means is a method for producing a superconducting current limiting element as described in the first means or the third means, wherein the superconducting thin film formed on the insulator substrate is sputtered by the sputtering method.
  • a superconducting current limiting element is produced by depositing an alloy layer.
  • the resistance of the alloy layer can be further increased, and as a result, a superconducting current limiting element having a higher shared electric field can be realized.
  • an alloy layer having almost the same composition as the target can be easily formed, and the adhesion with the superconducting thin film is good without performing post-heat treatment. And the contact resistance between the superconducting thin film can be lowered.
  • FIG. 1 is a diagram showing a configuration of a superconducting thin film current limiting element according to the invention of the present embodiment.
  • FIG. 2 is a diagram showing a configuration of a superconducting thin film current limiting element in which an external non-inductive shunt resistor made of pure metal or an alloy wire is connected in parallel with the superconducting oxide thin film according to the invention of the present embodiment. .
  • FIG. 3 is a diagram showing a current limiting test result of the superconducting thin film current limiting element according to the invention of the present embodiment.
  • FIG. 4 is a diagram showing a current-limiting test result of a superconducting thin-film current limiting element connected with an external non-inductive shunt resistor according to the invention of this embodiment.
  • FIG. 5 is a diagram showing a configuration of a superconducting current limiting element in which a shunt resistor is connected in parallel with a superconducting thin film according to the prior art.
  • FIG. 1 is a diagram showing the configuration of a superconducting thin film current limiting element.
  • 1 is an insulating substrate with sapphire isotropic force
  • 2 is a buffer layer with ceria isotropic force
  • 3 is a superconducting oxide thin film with a large area
  • 4 is a superconducting oxide thin film 3 with a predetermined film thickness by vapor deposition. It is the formed alloy layer.
  • the alloy layer 4 is made of a binary alloy that is stable in air and also has gold and silver strength that does not react with the superconducting oxide thin film 3. Alloy layer 4 as gold?
  • Use of a composition containing ⁇ 82 wt% silver is preferable in terms of the structure of the superconducting thin film current limiting element because the resistivity at room temperature is more than twice that of pure gold.
  • an alloy with a composition in which 23 wt% silver is mixed with gold has a maximum room temperature resistivity of about five times that of pure gold, and is considered optimal. In the vicinity of 100K, the resistivity of pure gold drops to about 1Z3 at room temperature. The resistivity of a power alloy hardly decreases, so there is a difference of about 15 times.
  • Various methods such as vacuum deposition and sputtering can be considered as methods for depositing the alloy layer 4 on the superconducting oxide thin film 3.
  • the sputtering method is employed.
  • the most common vacuum deposition method requires a precise deposition control of the constituent metals in order to deposit an alloy composed of metals with different melting points with the desired composition. Therefore, there are disadvantages such as requiring post-heat treatment.
  • the sputtering method easily forms an alloy film with almost the same composition as the target. Even if post-heat treatment is not performed, the adhesiveness with the superconducting oxide thin film is good, so that the contact resistance can be lowered and it can be used as it is as a current limiting element.
  • the present invention is not limited to this.
  • commercially available 18 gold gold 75, silver
  • Similar effects can be obtained by using multi-element alloys with other elements in gold and silver, such as 12.5 and 12.5 wt%.
  • FIG. 2 shows a pure metal or alloy having a resistance value sufficiently smaller than the combined resistance of the superconducting oxide thin film 3 and the alloy layer 4 after the normal conduction transition in order to achieve a higher shared electric field.
  • FIG. 2 is a diagram showing the configuration of a superconducting thin film current limiting element in which an external non-inductive shunt resistor 6 made of wires is connected in parallel with a superconducting oxide thin film 3;
  • 5 is a gold electrode deposited on both ends of the superconducting oxide thin film 3, and the other symbols correspond to the configurations of the same symbols shown in FIG.
  • the role of the non-inductive shunt resistance 6 is superconductivity by transferring the overcurrent commutation at the normal conduction transition (initial stage of current limiting) only to the alloy layer 4 to the non-inductive shunt resistance 6 as well. This is to further alleviate the hot spot problem of the oxide thin film 3 and thereby to increase the resistance of the superconducting thin film current limiting element. In order to facilitate overcurrent commutation, it is desirable to reduce the inductance of the external non-inductive shunt resistor 6 as much as possible, so a low-cost alloy wire was used to make the non-inductive cage.
  • the shared electric field of the superconducting thin film current limiting element must be determined so that the element does not exceed room temperature at the time of current limiting, and an external non-inductive current dividing resistor having a small resistance value 6
  • the temperature rise can be suppressed by sufficiently increasing the heat capacity of the non-inductive shunt resistor 6, the heat generated in the non-inductive shunt resistor 6 is generated by the superconducting thin film.
  • the shared electric field of the current limiting element body is not reduced.
  • the superconducting oxide thin film used for the superconducting thin film current limiting element in this current limiting test is a YBCO thin film with a thickness of 300 nm and a critical current density of 3 MA / cm 2 on a 5 mm x 60 mm x 1 mm sapphire substrate ( A target of an alloy with a composition in which gold is deposited on each 10 mm at both ends to form an electrode, and gold is mixed with 23 wt% silver in the central 40 mm portion. A gold-silver alloy layer with a thickness of about 100 nm was sputter-deposited using a slab. By depositing the gold-silver alloy layer, the resistance at room temperature of the superconducting thin-film current limiting element was reduced to about 1Z7 compared to the YBCO layer alone (about 60 ohms).
  • FIG. 3 is a diagram showing a current limiting test result when the above superconducting current limiting element is used.
  • Conductive oxide thin film 3 can be energized for 5 cycles (0.1 seconds) without burning, and 25 V /
  • a gold-silver alloy layer having a film thickness of about 50 is sputter-deposited on the superconducting oxide thin film 3 similar to the YBCO thin film used in the superconducting thin film current limiting element in the current limiting test to obtain a higher room temperature resistance.
  • a superconducting thin film with a shunt layer with an alloy shunt layer (approx. 15 ohms) was prepared, and an external non-inductive shunt resistance 6 (approx. Ohm) connected.
  • FIG. 4 is a diagram showing the results of a current limiting test in the case of using the superconducting current limiting element.
  • the AC energizing current was increased instantaneously to about 30 A force and about 80 A.
  • the superconducting oxide thin film 3 transitioned to the normal conducting state without burning, and the overcurrent flowing through the superconducting oxide thin film 3 was commutated to the alloy layer 4 and the non-inductive shunt resistor 6.
  • an AC voltage of approximately 176 V is applied across the superconducting thin film current limiting element.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】高い分担電界を有する超電導限流素子を低コストで製作すること。 【解決手段】絶縁体基板上に形成された超電導薄膜3と、超電導薄膜3上に形成された、純金属の室温抵抗率より2倍以上高い室温抵抗率を有する合金薄膜層4とから構成され、過電流により超電導薄膜3が常電導転移した時に、超電導薄膜3を流れていた過電流を合金薄膜層4のみに転流するようにしたことを特徴とする超電導限流素子である。  

Description

明 細 書
超電導限流素子及びその作製方法
技術分野
[0001] 本発明は、電路に流れる短絡電流等の過大な電流を限流する超電導限流素子及 びその作製方法に関する。
背景技術
[0002] 超電導体は、超電導状態においては電気抵抗ゼロで大きな電流を流すことができ るが、ある決まった電流値(臨界電流)より大きな電流を流すと電気抵抗が発生する。 さらに電流を大きくして行くと、発生する熱のため超電導体の温度が上昇し、常電導 状態になって、より大きな電気抵抗を生じる。このような超電導体の特徴を生かして、 通常時は抵抗ゼロで、電力系統の短絡事故時には大きな抵抗を発生して事故電流 の増大を抑制する超電導限流器が用いられて 、る。
[0003] 電力自由化を推進して行く上で大きな課題となっているのが、分散電源連系に伴う 短絡事故電流の増大である。その対策として最も有望視されているの力 通常時は 低インピーダンス、系統事故時は高インピーダンスとなって事故電流を抑制する限流 器の導入である。限流器の導入には、分散電源の事故電流仕様の低減というメリット も有り、分散電源の低コスト化、設備保安向上にも寄与する。電力の自由化を推進す る立場から、低コストかつ高信頼性の限流器の実現に対する社会的要請は非常に高 い。また、配電系統に導入することを想定すると、大面積超電導薄膜を用いた超電導 薄膜限流器が、コンパクトで、過電流に対して瞬時に応答し、常時発生する交流損 失が小さい等、多くの点で優れており、信頼性'性能 ·体格 '大容量ィ匕への拡張性の 観点から最も優れて 、ると考えられて 、る。
[0004] 超電導薄膜限流器は、液体窒素温度 (66〜77.3 K)で動作する薄膜限流素子を電 力系統に直列接続し、短絡事故時の電流の増大とともに薄膜を超電導状態 (S)から 常電導状態 (N)に転移させ、その常電導抵抗によって系統電流を抑制するものであ り、 SN転移抵抗型限流器とも呼ばれている。従来、サファイア基板 (アルミナ単結晶 基板)等の絶縁体基板上に YBa Cu O (以下 YBCOと言う。)等の高温超電導酸化物の薄膜を作製した大面積超
2 3 7
電導薄膜が用いられているが、超電導薄膜は高価であるため、限流素子に用いる超 電導薄膜の面積を出来るだけ低減して低コストィ匕することが課題となっていた。
[0005] 超電導薄膜限流素子は、事故時に抵抗性の電圧 Vを発生することによって限流す るわけであるが、薄膜限流素子の単位長さ当りに発生 (印カロ)できる電圧 (分担電界) が高ければ、それだけ素子長を短くすることができるので、超電導薄膜の必要面積を 低減することができる。しかし、限流時の薄膜限流素子の発熱量は P = V2/Rと表せる ため、分担電界の向上は発熱量の増大をもたらす。薄膜限流素子は、通常、規定の 限流時間(例えば 0.1秒)内に超電導薄膜の温度が室温以上にならないように設計 するため、分担電界の向上を図るためには、それに伴う限流時の超電導薄膜の発熱 量の増大を抑制するか、超電導薄膜の熱容量を大きくして温度上昇を抑制する必要 力 Sある。しかし、後者は、高価な絶縁体基板の体積を増大させるため、コストアップ要 因となる。従って、分担電界を向上させるためには、超電導線路の常電導転移時の 抵抗 Rを高くして、発熱量の増大を抑制することが望ましい。
[0006] 超電導線路の抵抗を高くするためには、超電導薄膜だけを直列及び並列に接続 すれば良い。限流素子に用いる大面積の超電導薄膜が非常に均一であり、全面積 にわたつてほぼ同時に常電導転移するならば、このような構成も可能であり、臨界電 流密度の低い薄膜を用いた研究室レベルの実験での報告がある (非特許文献 1参 照)。しかし、実用化を想定した場合には、臨界電流密度の高い薄膜を用いるため、 次節で説明するようなホットスポットの問題があり、この問題を回避するためには、図 5 に示すように、超電導薄膜と並列に分流抵抗を接続する必要がある。
[0007] 超電導薄膜は、局所的な臨界電流密度のばらつきがあるため、事故直後の限流初 期時に臨界電流密度の小さい部分がまず常電導転移し、全体が常電導転移しない ため、大きな電流が流れ続ける。常電導転移した部分で発生する熱の拡散が遅い場 合には、局所的に温度が急上昇して薄膜が焼損してしまう。このようなホットスポット現 象を防止するためには、金や銀等の常電導金属を超電導薄膜の上に蒸着して常電 導転移時の分流層 (焼損防止のための保護層)として用いるのが一般的な解決策で ある (非特許文献 2参照)。しかし、このような金属分流層を付加すると超電導線路の 電気抵抗を大きく低下させ、限流時の発熱を増大させるため、分担電界を下げざるを 得ない。その結果、要求される限流容量を達成するために素子長が増大し、高価な 超電導薄膜を大量に使用しなければならず、これは実用化を阻む大きな障害となつ ている。
[0008] 使用する超電導薄膜の面積をできるだけ低減するために、超電導薄膜には金属分 流層は蒸着せず、別の熱伝導率の高いセラミックス基板上に金属薄膜分流層を設け て、超電導薄膜とインジウム板で接続する方式がある (特許文献 1、非特許文献 3、お よび非特許文献 4参照)。この方法は、限流時の発熱を超電導薄膜とは別のセラミツ タス基板に吸収させるため、その熱容量を大きくすることによって素子の温度上昇を 抑制し、結果として素子の分担電界を高くすることができる。例えば、 6.6 kV/2 kA 級限流素子に必要なサファイア基板上に形成される超電導薄膜の面積をそれまで の素子と比較して約 30分の 1に低減することができ、大きくコスト低減できると想定さ れている。しかし、この方式では窒化アルミニウム等の高熱伝導性セラミックス基板や インジウム板を大量に用いる必要が有り、これらは高価であるため、低コスト化に限界 かあつた。
[0009] 非特許文献 1: A. Heinrich, R. Semerad, H. Kinder, H.Mosebach and M. Lindmayer, "Fault current limiting properties o!YBCO- films on sapphire substrates", IEEE Tran s. Appl. Supercond. 9 (1999)660-663
非特許文献 2 : B. Gromoll, G. Ries, W. Schmidt, H.-P.Kraemer, B. Seebacher, B. Ut z, R. Nies, H.-W. Neumueller, E. Baltzer, S.Fischer and B. Heismann, "Resistive fa ult current limiters with YBCO films- lOOkVA functional model", IEEE Trans. Appl. Supercond. 9 (1999) 656-659
非特許文献 3 : H. Kubota, Y. K. Arai, M. Yamazaki, H.Yoshino and H. Nagamura, " A new model of fault current limiter using YBCOthin film , IEEE Trans. Appl. Super cond. 9 (1999) 1365-1368
非特許文献 4 :久保田、工藤、芳野、和智:「YBCO薄膜限流器の概念設計 (6.6kVZ 2 kA級)」、第 64回 2001年度春季低温工学 '超電導学会予稿集、 p. 166 特許文献 1:特許第 2954124号 発明の開示
発明が解決しょうとする課題
[0010] 従来型の超電導薄膜限流素子では、限流初期時のホットスポット現象を防止するた めに、金や銀等の純金属を超電導薄膜の上に蒸着して常電導転移時の分流保護層 として用いている。しかし、純金属の抵抗率は超電導酸化物の抵抗率よりも約 2桁低 V、ため超電導線路の抵抗を大きく低下させ、限流時に発熱量が増大するため超電 導薄膜限流素子の分担電界を大きく低下させ、結果として、高価な超電導薄膜の必 要量が大きくなり、コスト面で大変不利であった。純金属を非常に薄く(ナノメーター オーダーの膜厚で)、かつ均一に、超電導薄膜の上に蒸着することができれば、電気 抵抗の低下の問題を解決することができるが、そのような蒸着技術が実現可能かどう かは不明であり、仮にそれが可能であったとしても、それがホットスポットの問題の解 決につながるかどうかは明らかでない。
[0011] 本発明の目的は、純金属よりもはるかに高い抵抗率を有する合金層を超電導薄膜 に蒸着することにより、超電導線路の抵抗を大きく低下することなく超電導薄膜のホッ トスポット問題を解決するとともに、合金層が形成された超電導薄膜と並列に純金属 又は合金線で作製した外付けの無誘導卷分流抵抗を接続することにより、超電導線 路の抵抗をより高くして、より高い分担電界を達成することを可能にした超電導限流 素子及びその製作方法を提供することにある。
課題を解決するための手段
[0012] 本発明は上記の課題を解決するために、次のような手段を採用した。
第 1の手段は、絶縁体基板上に形成された超電導薄膜と、該超電導薄膜上に形成 された、純金属の室温抵抗率より 2倍以上高い室温抵抗率を有する合金層とから構 成され、過電流により上記超電導薄膜が常電導転移した時に、前記超電導薄膜を流 れて ヽた過電流を前記合金層のみに転流するようにしたことを特徴とする超電導限 流素子である。
[0013] 第 2の手段は、第 1の手段において、前記合金層は、金と銀の 2元合金層又は金と 銀に他の元素を加えた多元合金層で構成されたことを特徴とする超電導限流素子で ある。 [0014] 第 3の手段は、絶縁体基板上に形成された超電導薄膜と、該超電導薄膜上に形成 された、純金属の室温抵抗率より 2倍以上高い室温抵抗率を有する合金層とから構 成され、前記超電導薄膜と並列に純金属又は合金からなる線材で作製された分流 抵抗を接続したことを特徴とする超電導限流素子である。
[0015] 第 4の手段は、第 3の手段において、前記分流抵抗は、インダクタンスが小さくなる ように無誘導巻きで構成されることを特徴とする超電導限流素子である。
[0016] 第 5の手段は、第 1の手段又は第 3の手段に記載の超電導限流素子の作製方法で あって、前記絶縁体基板上に形成された超電導薄膜上に、スパッタリング法によって 前記合金層を蒸着したことを特徴とする超電導限流素子の作製方法である。
発明の効果
[0017] 請求項 1及び請求項 2に記載の発明によれば、高い分担電界を有する超電導限流 素子を低コストで製作することが可能となる。
請求項 3に記載の発明によれば、合金層の抵抗をより高くすることができ、結果とし て、より高い分担電界を有する超電導限流素子を実現できる。
請求項 4に記載の発明によれば、外付けの分流抵抗のインダクタンスを小さくできる ので、過電流の分流抵抗への転流を容易にすることができる。
請求項 5に記載の発明によれば、ターゲットとほぼ同一の組成の合金層を容易に形 成することが可能となり、後熱処理を行わなくても超電導薄膜との密着性がよいため 、合金層と超電導薄膜との接触抵抗を低くすることが可能となる。
図面の簡単な説明
[0018] [図 1]本実施形態の発明に係る超電導薄膜限流素子の構成を示す図である。
[図 2]本実施形態の発明に係る超電導酸化物薄膜と並列に純金属又は合金線で作 製した外付けの無誘導卷分流抵抗を接続した超電導薄膜限流素子の構成を示す図 である。
[図 3]本実施形態の発明に係る超電導薄膜限流素子の限流試験結果を示す図であ る。
[図 4]本実施形態の発明に係る外付けの無誘導卷分流抵抗を接続した超電導薄膜 限流素子の限流試験結果を示す図である。 [図 5]従来技術に係る超電導薄膜と並列に分流抵抗を接続した超電導限流素子の 構成を示す図である。
符号の説明
[0019] 1 絶縁体基板
2 バッファ層
3 超電導酸化物薄膜
4 合金層
5 金電極
6 無誘導卷分流抵抗
発明を実施するための最良の形態
[0020] 本発明の一実施形態を図 1乃至図 4を用いて説明する。
図 1は超電導薄膜限流素子の構成を示す図である。
同図において、 1はサファイア等力もなる絶縁体基板、 2はセリア等力もなるバッファ 層、 3は大面積の超電導酸化物薄膜、 4は超電導酸化物薄膜 3上に蒸着によって所 定の膜厚に形成された合金層である。
合金層 4は、空気中で安定であり、かつ、超電導酸化物薄膜 3と反応しない金と銀 力もなる 2元合金を用いる。合金層 4として、金に?〜 82 wt%の銀を混ぜた組成を用い ると、室温の抵抗率が純金と比較して 2倍以上になるため、超電導薄膜限流素子の 構成上好ましい。特に、金に 23wt%の銀を混ぜた組成の合金は、室温の抵抗率が純 金と比較して約 5倍と最大となり、最適と考えられる。なお、 100K付近では純金の抵 抗率は室温の約 1Z3に低下する力 合金の抵抗率はほとんど低下しないため、約 1 5倍の違いが有る。
[0021] 超電導酸化物薄膜 3に合金層 4を蒸着する方法としては、真空蒸着法、スパッタリ ング法等色々な方法が考えられるが、本発明ではスパッタリング法を採用した。最も 一般的な真空蒸着法は、融点の異なる金属から構成される合金を希望の組成で蒸 着するために、構成金属の精密な蒸着のコントロールが必要である、蒸着された合金 膜と超電導薄膜との密着性が悪 、ため後熱処理を必要とする等の欠点がある。それ に対して、スパッタリング法は、ターゲットとほぼ同一の組成の合金膜を容易に形成 することができ、後熱処理を行わなくても、超電導酸ィ匕物薄膜との密着性がよいため 、接触抵抗を低くすることができ、そのまま限流素子として使用することができる。
[0022] なお、上記実施形態においては、合金層 4として金と銀とからなる 2元合金を用いる 場合について説明したが、これに限定されることなぐ例えば、市販の 18金 (金 75、銀 12. 5、銅 12. 5 wt%)のように金と銀に他の元素をカ卩えた多元合金を用いた場合も 同様の効果が得られる。
[0023] 図 2は、より一層高い分担電界を達成するため、常電導転移後の超電導酸化物薄 膜 3と合金層 4との合成抵抗よりも充分小さ ヽ抵抗値を有する、純金属または合金線 で作製された外付けの無誘導卷分流抵抗 6を、超電導酸化物薄膜 3と並列に接続し た超電導薄膜限流素子の構成を示す図である。
同図において、 5は超電導酸化物薄膜 3の両端上に蒸着された金電極であり、その 他の符号は図 1に示した同符号の構成に対応する。
無誘導卷分流抵抗 6の役割は、常電導転移時 (限流初期)の過電流の転流を合金 層 4のみに負わせるのでなぐ無誘導卷分流抵抗 6にも転流させることにより、超電導 酸ィ匕物薄膜 3のホットスポット問題をさらに緩和させることであり、これにより、超電導 薄膜限流素子の抵抗をより高くすることにある。過電流の転流を容易にするためには 、外付けの無誘導卷分流抵抗 6のインダクタンスを出来るだけ小さくすることが望まし いので、低コストの合金線を用いて無誘導卷とした。
[0024] また、通常、超電導薄膜限流素子の分担電界は、限流時に素子が室温以上になら な ヽように決める必要があり、小さ ヽ抵抗値を有する外付けの無誘導卷分流抵抗 6を 設けることにより、この部分で大きな発熱が生じるが、無誘導卷分流抵抗 6の熱容量 を充分大きくすることにより温度上昇を抑制することが出来るため、無誘導卷分流抵 抗 6における発熱が超電導薄膜限流素子本体の分担電界を低下させることは無い。
[0025] 次に、本実施形態の発明に係る超電導薄膜限流素子の限流試験の結果を示す。
はじめに、本限流試験の超電導薄膜限流素子に用いた超電導酸化物薄膜は、 5 m m X 60 mm X 1 mmのサファイア基板上に膜厚 300 nm、臨界電流密度 3MA/cm2 の YBCO薄膜 (直流臨界電流 45 A)を形成し、両端の 10 mmずつに金を蒸着して 電極とし、中央部の 40 mmの部分に金に 23wt%の銀を混ぜた組成の合金のターゲ ットを用いて、約 100 nmの膜厚で金銀合金層をスパッタ蒸着した。金銀合金層を蒸 着することにより、超電導薄膜限流素子の室温の抵抗値が、 YBCO層のみの場合( 約 60オーム)と比較して、約 1Z7に低下した。
[0026] 図 3は、上記の超電導限流素子を用いた場合の限流試験結果を示す図である。
同図に示すように、電力系統の短絡事故を模擬するため、合金層 4を蒸着した超電 導薄膜限流素子に約 40 A の電流が流れて 、る状態から、瞬時に高電圧を印加し
peak
た。瞬間的に超電導薄膜限流素子に約 80 A の過電流が流れたが、超電導酸ィ匕
peak
物薄膜 3は焼損することなく常電導状態に転移し、超電導酸化物薄膜 3に流れてい た過電流は合金層 4に転流して、過電流は瞬時に限流された。このように、限流初期 に、 YBCO薄膜の半分程度の抵抗値を有する金銀合金からなる分流保護層を付カロ することによって、超電導酸ィ匕物薄膜 3のホットスポットの問題が解決できることが明ら 力になった。本超電導薄膜限流素子に約 100 V の電圧が印加された状態で、超電
peak
導酸ィ匕物薄膜 3が焼損することなく 5サイクル (0.1秒)の通電が可能であり、 25 V /
peak cm以上の高 、分担電界を有する超電導薄膜限流素子を製作できることが実証され た。
[0027] 次に、本限流試験の超電導薄膜限流素子に用いた YBCO薄膜と同様の超電導酸 化物薄膜 3に約 50 應の膜厚の金銀合金層をスパッタ蒸着して、より高い室温抵抗 (約 15オーム)を有する、合金分流層付き超電導薄膜を作製し、さらにその両端に マンガニン (銅とマンガンの合金)線の無誘導巻で作製した外付けの無誘導卷分流 抵抗 6 (約 2.8オーム)を接続した。
[0028] 図 4は、上記の超電導限流素子を用いた場合の限流試験結果に示す図である。
同図に示すように、交流通電電流を約 30 A 力 約 80 A に瞬時に増加させ
peak peak
ると、超電導酸化物薄膜 3は焼損することなく常電導状態に転移し、超電導酸化物薄 膜 3に流れていた過電流は合金層 4と無誘導卷分流抵抗 6に転流した。限流動作中 は超電導薄膜限流素子の両端に約 176 V の交流電圧が印加されているが、薄膜
peak
が焼損することなく 5サイクル (0.1秒)の通電が可能であった。この結果から、 44 V
peak
/cm以上の高 ヽ分担電界を有する超電導限流素子を製作できることが実証された。
[0029] 比較のため、合金層のような分流保護層のない YBCO薄膜を用いた超電導限流 素子を製作し、外付けの分流抵抗を並列接続して同様の限流試験を行ったが、交流 通電電流を約 30 A 力 約 60 A に瞬時に増加させたとき、 1サイクルの通電中
peak peak
に薄膜の一部が焼損し、絶縁状態になった。このような高臨界電流密度の薄膜では 、ホットスポット対策無しに限流動作をさせることが不可能であることが確認された。

Claims

請求の範囲
[1] 絶縁体基板上に形成された超電導薄膜と、該超電導薄膜上に形成された、純金属 の室温抵抗率より 2倍以上高い室温抵抗率を有する合金層とから構成され、過電流 により上記超電導薄膜が常電導転移した時に、前記超電導薄膜を流れていた過電 流を前記合金層のみに転流するようにしたことを特徴とする超電導限流素子。
[2] 前記合金層は、金と銀の 2元合金層又は金と銀に他の元素を加えた多元合金層で 構成されたことを特徴とする請求項 1に記載した超電導限流素子。
[3] 絶縁体基板上に形成された超電導薄膜と、該超電導薄膜上に形成された、純金属 の室温抵抗率より 2倍以上高い室温抵抗率を有する合金層とから構成され、前記超 電導薄膜と並列に純金属又は合金カゝらなる線材で作製された分流抵抗を接続したこ とを特徴とする超電導限流素子。
[4] 前記分流抵抗は、インダクタンスが小さくなるように無誘導巻の線材で構成されたこ とを特徴とする請求項 3に記載した超電導限流素子。
[5] 請求項 1又は請求項 3に記載の超電導限流素子の作製方法であって、前記絶縁 体基板上に形成された超電導薄膜上に、スパッタリング法によって前記合金層を蒸 着したことを特徴とする超電導限流素子の作製方法。
PCT/JP2005/011117 2004-06-24 2005-06-17 超電導限流素子及びその作製方法 WO2006001226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005001495T DE112005001495B4 (de) 2004-06-24 2005-06-17 Supraleitendes Fehlerstrom-Begrenzungs-Element und Verfahren zur Herstellung desselben
JP2006528493A JP4644779B2 (ja) 2004-06-24 2005-06-17 超電導限流素子
US11/630,478 US8088713B2 (en) 2004-06-24 2005-06-17 Superconducting fault-current limiting element and the process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004186966 2004-06-24
JP2004-186966 2004-06-24

Publications (1)

Publication Number Publication Date
WO2006001226A1 true WO2006001226A1 (ja) 2006-01-05

Family

ID=35781714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011117 WO2006001226A1 (ja) 2004-06-24 2005-06-17 超電導限流素子及びその作製方法

Country Status (5)

Country Link
US (1) US8088713B2 (ja)
JP (1) JP4644779B2 (ja)
CN (1) CN1973381A (ja)
DE (1) DE112005001495B4 (ja)
WO (1) WO2006001226A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283106A (ja) * 2007-05-14 2008-11-20 National Institute Of Advanced Industrial & Technology 超電導限流素子
JP2009049257A (ja) * 2007-08-22 2009-03-05 National Institute Of Advanced Industrial & Technology 超電導限流素子
JP2009212522A (ja) * 2008-03-05 2009-09-17 Bruker Hts Gmbh 電流調整用超電導装置
JP2010263036A (ja) * 2009-05-01 2010-11-18 National Institute Of Advanced Industrial Science & Technology 超電導限流素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046036B2 (ja) * 2011-05-24 2016-12-14 古河電気工業株式会社 超電導限流器用の超電導素子、超電導限流器用の超電導素子の製造方法および超電導限流器
SG195218A1 (en) 2011-05-31 2013-12-30 Furukawa Electric Co Ltd Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
KR101880677B1 (ko) * 2016-04-27 2018-07-20 인하공업전문대학산학협력단 무유도 저항의 제조 방법 및 제조 장치
CN105976939A (zh) * 2016-05-05 2016-09-28 成都君禾天成科技有限公司 基于化学溶液法制备铋系超导薄膜的方法
US11441954B2 (en) * 2019-01-30 2022-09-13 King Fahd University Of Petroleum And Minerals Method, system and apparatus for measuring rest time of superconducting nanowire
CN111244921A (zh) * 2020-03-09 2020-06-05 广东电网有限责任公司电力科学研究院 一种混合式直流超导限流器及短路电流限制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251761A (ja) * 1992-03-04 1993-09-28 Mitsubishi Electric Corp 酸化物超電導膜を用いた限流導体
JPH0883932A (ja) * 1994-09-09 1996-03-26 Sumitomo Electric Ind Ltd 限流素子
JP2002198577A (ja) * 2000-12-27 2002-07-12 Mitsubishi Electric Corp 超電導薄膜限流器
JP2003153437A (ja) * 2001-11-13 2003-05-23 Nisshin Denki Seisakusho:Kk 通信線の保安器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2084394C (en) * 1991-12-02 1997-06-24 Takao Nakamura Superconducting multilayer interconnection formed of oxide superconductor material and method for manufacturing the same
CA2083566A1 (en) * 1992-11-23 1994-05-24 Paul Lambert Alloy for htsc composite conductors
US6051846A (en) * 1993-04-01 2000-04-18 The United States Of America As Represented By The Secretary Of The Navy Monolithic integrated high-Tc superconductor-semiconductor structure
US5361055A (en) * 1993-12-17 1994-11-01 General Dynamics Corporation Persistent protective switch for superconductive magnets
DE19634424C2 (de) * 1996-08-26 1998-07-02 Abb Research Ltd Verfahren zur Herstellung eines Strombegrenzers mit einem Hochtemperatursupraleiter
JP3977884B2 (ja) * 1996-10-25 2007-09-19 新日本製鐵株式会社 酸化物超電導体を用いた限流素子、限流器およびその製造方法
JP3806479B2 (ja) * 1997-01-29 2006-08-09 株式会社日立製作所 変流器
US5969928A (en) * 1997-12-03 1999-10-19 Gould Electronics Inc. Shunt for circuit protection device
WO1999033122A1 (de) * 1997-12-19 1999-07-01 Siemens Aktiengesellschaft SUPRALEITERAUFBAU MIT HOCH-Tc-SUPRALEITERMATERIAL, VERFAHREN ZUR HERSTELLUNG DES AUFBAUS SOWIE STROMBEGRENZEREINRICHTUNG MIT EINEM SOLCHEN AUFBAU
JP2954124B2 (ja) * 1998-01-07 1999-09-27 株式会社東芝 超電導限流素子
DE19856607C1 (de) * 1998-12-08 2000-03-02 Siemens Ag Resistive Strombegrenzungseinrichtung mit mindestens einer von einer isolierenden Schicht abgedeckten Leiterbahn unter Verwendung von Hoch-T¶c¶-Supraleitermaterial
DE19963181C2 (de) * 1999-12-27 2002-04-18 Siemens Ag Resistive Strombegrenzereinrichtung für Gleich- oder Wechselstrom mit wenigstens einer Leiterbahn mit Hoch-T¶c¶-Supraleitermaterial
JP3872738B2 (ja) * 2002-09-04 2007-01-24 新日本製鐵株式会社 高耐電圧超電導限流器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251761A (ja) * 1992-03-04 1993-09-28 Mitsubishi Electric Corp 酸化物超電導膜を用いた限流導体
JPH0883932A (ja) * 1994-09-09 1996-03-26 Sumitomo Electric Ind Ltd 限流素子
JP2002198577A (ja) * 2000-12-27 2002-07-12 Mitsubishi Electric Corp 超電導薄膜限流器
JP2003153437A (ja) * 2001-11-13 2003-05-23 Nisshin Denki Seisakusho:Kk 通信線の保安器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283106A (ja) * 2007-05-14 2008-11-20 National Institute Of Advanced Industrial & Technology 超電導限流素子
JP2009049257A (ja) * 2007-08-22 2009-03-05 National Institute Of Advanced Industrial & Technology 超電導限流素子
JP2009212522A (ja) * 2008-03-05 2009-09-17 Bruker Hts Gmbh 電流調整用超電導装置
JP2010263036A (ja) * 2009-05-01 2010-11-18 National Institute Of Advanced Industrial Science & Technology 超電導限流素子

Also Published As

Publication number Publication date
CN1973381A (zh) 2007-05-30
JP4644779B2 (ja) 2011-03-02
JPWO2006001226A1 (ja) 2008-04-17
DE112005001495T5 (de) 2007-05-16
DE112005001495B4 (de) 2011-06-16
US8088713B2 (en) 2012-01-03
US20080026946A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2006001226A1 (ja) 超電導限流素子及びその作製方法
JP4162710B2 (ja) 電流制限装置
JP3073993B2 (ja) 障害電流制限器
Escamez et al. Numerical investigations of ReBCO conductors with high limitation electric field for HVDC SFCL
JP2001217470A (ja) 高温超電導体素子その製造方法
Yamasaki et al. High-power-density fault-current limiting devices using superconducting YBa2Cu3O7 films and high-resistivity alloy shunt layers
JP5152830B2 (ja) 超電導限流素子
JP3977884B2 (ja) 酸化物超電導体を用いた限流素子、限流器およびその製造方法
JP2009049257A (ja) 超電導限流素子
JP2954124B2 (ja) 超電導限流素子
JP2008118121A (ja) 超電導素子
Park et al. Quench behavior of YBaCuO films for fault current limiters under magnetic field
JP4131769B2 (ja) 超電導限流ヒューズおよびこれを用いた過電流制御システム
JPH0883932A (ja) 限流素子
JP5472682B2 (ja) 超電導限流素子
JPH08223790A (ja) 超電導限流器
JPH05251761A (ja) 酸化物超電導膜を用いた限流導体
JPH03156809A (ja) 酸化物超電導導体の使用方法
JP3699884B2 (ja) 超電導限流素子
Furuse et al. Current limiting properties of MOD-YBCO thin films stabilized with high-resistivity alloy shunt layer
CA2177169C (en) Current-limiting device
JPH0140511B2 (ja)
JP3001805B2 (ja) 超電導限流素子
JP3343946B2 (ja) 限流器
JPH05251758A (ja) 酸化物超電導限流導体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528493

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11630478

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580020931.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1120050014959

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112005001495

Country of ref document: DE

Date of ref document: 20070516

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11630478

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607