WO2005122414A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2005122414A1
WO2005122414A1 PCT/JP2005/010793 JP2005010793W WO2005122414A1 WO 2005122414 A1 WO2005122414 A1 WO 2005122414A1 JP 2005010793 W JP2005010793 W JP 2005010793W WO 2005122414 A1 WO2005122414 A1 WO 2005122414A1
Authority
WO
WIPO (PCT)
Prior art keywords
reconfigurable
communication
processing
transmission
wireless
Prior art date
Application number
PCT/JP2005/010793
Other languages
English (en)
French (fr)
Inventor
Katsuaki Abe
Michiaki Matsuo
Noriaki Saito
Takenori Sakamoto
Akihiko Matsuoka
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05748830.6A priority Critical patent/EP1750376B1/en
Priority to US11/629,387 priority patent/US8346293B2/en
Priority to JP2006519599A priority patent/JP4276677B2/ja
Publication of WO2005122414A1 publication Critical patent/WO2005122414A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain

Definitions

  • the present invention relates to a wireless communication apparatus capable of coping with a plurality of wireless communication methods.
  • FIG. 1 shows the same configuration as the conventional wireless communication device described in Patent Document 1. As shown in FIG.
  • a scheme 1 compatible wireless unit 902 is connected to an antenna 901 corresponding to the first communication scheme, and performs predetermined wireless signal processing corresponding to the first communication scheme.
  • the scheme 2 compatible wireless unit 904 is connected to the antenna 903 corresponding to the second communication scheme, and performs predetermined wireless signal processing corresponding to the second communication scheme.
  • the upper layer processing unit 905 is formed of, for example, a CPU (central processing unit), and determines which of the first communication method 1 and the second communication method is used for communication, and the upper layer in each communication. It performs processing etc. in the layer. That is, the wireless communication device shown in FIG. 1 prepares modules corresponding to a plurality of communication methods in advance, and selects one of the methods as needed to perform communication. It is.
  • FIG. 2 shows the same configuration as the digital signal processing unit of the wireless communication apparatus configured by the conventional software wireless device described in Patent Document 2. As shown in FIG.
  • the digital signal processing unit 910 receives an analog reception signal such as an RF signal, an IF signal, or a baseband signal from the wireless unit when receiving an analog signal. Perform so-called AZD conversion processing to convert into digital signals and output.
  • the obtained digital signal is stored in IZO buffer 912 as required. Temporarily stored, read out as necessary, and supplied to the bus 913.
  • the supplied digital signal is subjected to digital signal processing for reception based on a predetermined program in an FPGA (Field Programmable Gate Array) unit 914 and a DSP (Digital Signal Processor) unit 915, and a received data string obtained.
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • transmission data supplied from the application processing unit via the bus 913 is subjected to digital signal processing for transmission based on a predetermined program in the FPGA unit 914 and the DSP unit 915. .
  • the obtained transmission signal is temporarily stored in the IZO buffer 912 as necessary, read as necessary, and the baseband signal for transmission, the IF signal, the RF signal, etc. in the analog / digital converter 91 1 Converted to an analog signal and supplied to the radio unit.
  • Patent Document 2 such a digital signal processing unit 910 and a wireless unit are connected to constitute a software wireless device.
  • the predetermined program executed in the FPGA unit 914 and the DSP unit 915 is, for example, a software program for DSP, or a program in which the circuit configuration in the FPGA is described. These programs are stored in a rewritable memory, and can be read out at device startup or as needed.
  • the digital signal processing unit 910 can cope with different communication methods by causing the FPGA unit 914 and the DSP unit 915 to read and execute different programs as necessary.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-216698 (Page 6, Fig. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-189675 (page 7, FIG. 1)
  • An object of the present invention is to provide a wireless communication apparatus capable of simultaneously communicating with a plurality of communication methods, or capable of communicating through a plurality of wireless processing systems in one communication method. It is. Furthermore, by selecting the appropriate communication method and form, performing switching control and performing communication according to the conditions of the communication link and the user's requirements, a more efficient and highly reliable communication environment can be realized. It is providing a communication apparatus.
  • a wireless communication apparatus comprises a plurality of antennas, a plurality of reconfigurable wireless processing units provided corresponding to each antenna, and a plurality of reconfigurable wireless processors.
  • a control unit is provided which controls the processing units independently and changes the processing contents of each reconfigurable wireless processing unit independently.
  • a mode in which diversity transmission / reception is performed only with a single communication system for example, a mode in which spatial multiplexing transmission in a MIMO channel is performed, or a plurality of communication systems according to communication link quality or user request Communication can be performed by appropriately selecting a desired transmission mode from among a plurality of transmission modes such as a mode of performing diversity transmission among the modes or a mode of performing transmission only with a single communication scheme. .
  • a desired transmission mode such as a mode of performing diversity transmission among the modes or a mode of performing transmission only with a single communication scheme.
  • communication is performed by selecting an appropriate communication method and transmission mode each time according to the quality of the communication link that changes with each communication method from time to time. It is possible to improve communication reliability and overall transmission capacity.
  • FIG. 1 A block diagram showing an example of the configuration of a conventional multi-mode radio
  • FIG. 2 A block diagram showing a configuration example of a conventional software defined radio
  • FIG. 3 A block diagram showing a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention
  • FIG. 4 A block diagram showing an example of the configuration of the reconfigurable RF unit
  • FIG. 5 A block diagram showing a configuration example of a reconfigurable digital signal processing unit
  • FIG. 6 A diagram showing an example of a transmission mode selection table in the first embodiment.
  • FIG. 7 A flowchart showing an example of an operation procedure at start-up and communication standby time of the wireless communication apparatus according to the first embodiment.
  • FIG. 8 A flow chart showing an example of an operation procedure at the time of communication standby of the wireless communication apparatus of the embodiment 1.
  • FIG. 9 A flowchart showing an example of a communication control procedure in the communication operation state of the wireless communication apparatus according to the first embodiment.
  • FIG. 10 A diagram showing an example of a communication quality information conversion table in the first embodiment.
  • FIG. 11 A block diagram showing a configuration of a wireless communication apparatus according to Embodiment 2.
  • FIG. 12 A diagram showing an example of a transmission mode selection table in Embodiment 2.
  • FIG. 13 A block diagram showing the configuration of a wireless communication apparatus according to a third embodiment
  • FIG. 14 A block diagram showing a configuration example of a reconfigurable digital signal processing unit according to a third embodiment.
  • FIG. 15 A block diagram showing an example of another configuration of the reconfigurable digital signal processing unit in the third embodiment.
  • FIG. 16 A block diagram showing an example of another configuration of the reconfigurable digital signal processing unit in the third embodiment.
  • FIG. 17 A block diagram showing an example of another configuration of the reconfigurable digital signal processing unit in the third embodiment.
  • FIG. 18 A block diagram showing another configuration example of the wireless communication device in the third embodiment.
  • FIG. 19 A block diagram showing the configuration of a wireless communication apparatus according to another embodiment
  • FIG. 20 A block diagram showing the configuration of a wireless communication apparatus according to another embodiment
  • FIG. 3 is a diagram showing an example of a configuration of a wireless communication apparatus according to Embodiment 1 of the present invention.
  • the wireless communication device 100 is compatible with a plurality of communication methods, and in the present embodiment, as an example, it is a wireless communication device compatible with the communication method A of the cellular system and the communication method B of the wireless LAN system. .
  • the transmission rate in each communication mode it is assumed that the transmission rate in communication mode B of the wireless LAN system is higher than that in communication mode A of the cellular system.
  • an antenna 101 receives a radio signal transmitted through a radio propagation path, outputs the obtained high frequency signal, and transmits a high frequency signal supplied for transmission. It radiates to the radio propagation channel, and is particularly characterized in that it corresponds to an RF frequency band used by a plurality of communication methods.
  • an antenna having a wide band characteristic including all of the frequency bands used by a plurality of target communication systems and a frequency band used by a plurality of target communication systems will be described. It is preferable to use a multi-resonance antenna configured to increase the radiation efficiency by lowering the voltage standing wave ratio.
  • the electrical length or resonance mode of the antenna element is changed to control the resonance frequency using a switch or a variable capacitance element that can be electrically controlled, or a plurality of antenna elements with different frequencies are provided. It is preferable to use a frequency control type antenna or the like that can be adapted to a plurality of frequency bands, which is configured by switching or the like.
  • a control signal 113 for changing a corresponding communication method to be described later is also supplied to the antenna.
  • Reconfigurable wireless processing section 102 receives a high frequency signal supplied from antenna 101, selectively amplifies a signal of a desired frequency band, and performs desired demodulation processing or decoding processing. And output the obtained received data to upper layer processing section 103, and after performing desired encoding processing and modulation processing on data for transmission, frequency conversion to a desired frequency band and amplification.
  • the radio communication apparatus of the present invention is configured to have a plurality of radio processing systems by the antenna 101 and the reconfigurable radio processing unit 102. That is, the wireless communication apparatus 100 has a plurality of antennas and a plurality of reconfigurable wireless processing units. In the present embodiment, the case where two wireless processing systems are provided will be described as an example.
  • a is attached to the end of the number attached to the elements constituting the first system
  • b is attached to the end of the number attached to the elements constituting the second system.
  • the reconfigurable wireless processing unit 102 (102a, 102b) is configured of a reconfigurable RF unit 1021 and a reconfigurable digital signal processing unit 1022.
  • the reconfigurable RF unit 1021 receives a high frequency signal supplied from the antenna 101, selectively amplifies and frequency converts a signal of a desired frequency band, and outputs the obtained signal. . Further, as a transmission process, the reconfigurable RF unit 1021 performs processing such as frequency conversion to a desired frequency band, amplification, filtering, etc. on the modulated signal supplied from the reconfigurable digital signal processing unit 1022. , The obtained transmission signal is supplied to the antenna 101. Furthermore, the reconfigurable RF unit 1021 is configured to be able to change its function and characteristic in accordance with the control signal 113 for function change. In this embodiment, as an example of the changeable function, control is possible according to the carrier frequency and the conversion gain control signal.
  • FIG. 4 shows a configuration example of the reconfigurable RF unit 1021.
  • the reconfigurable RF unit 1021 includes a reconfigurable transmitter 1021, a reconfigurable receiver 10212, and a reconfigurable local oscillator 10213! .
  • the reconfigurable transmission unit 10211 has a role of converting the modulation signal supplied from the reconfigurable digital signal processing unit 1022 into a high frequency signal radiated from the antenna 101, and the modulation signal power of the baseband is It has functions such as frequency conversion to a high frequency signal and amplification to a transmission signal level. Furthermore, the reconfigurable transmission unit 10211 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change. Generally, in radio systems such as cellular and wireless LAN, radio law and standards Items such as the communication method, frequency band, and transmission power used by the standard are limited.
  • the reconfigurable transmission section 10211 can control the frequency band and transmission power of the high frequency signal by the control signal 113, and can be changed to a processing system corresponding to the communication method A or the communication method B. This makes it possible to form transmission signals conforming to various radio wave regulations and standards. In addition, although the allowable values of characteristics such as modulation accuracy, spurious radiation amount, and adjacent channel leakage power amount differ depending on the communication method, the operation of the component circuit is optimally adjusted by control signal 113 for these characteristic values as well. Adaptation is assumed to be possible.
  • the constituent elements in the reconfigurable transmission unit 10211 include circuits such as a power amplifier, an up converter, a filter, and a modulator. By adjusting the operating point by changing the impedance of the element, the bias of the active device, etc., or by arranging and switching a plurality of circuits optimized for each communication method in parallel, or by combining these. It is possible to optimize the characteristics.
  • the Reconfigurable Receiver 10212 is responsible for converting the high frequency signal supplied from the antenna 101 into a lower frequency analog signal that can be processed by the Reconfigurable Digital Signal Processor 1022. It has functions such as frequency conversion to a band analog signal, tuning selection of the carrier frequency, and amplification of a weak received signal. Further, the reconfigurable receiver 10212 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change. In general, it is assumed that the level of the signal to be received always changes greatly depending on factors such as the receiving place and the distance to the communication target and the presence or absence of movement, and this change differs depending on the wireless system to be used.
  • Reconfigurable receiver 10212 controls the control signal 113 to control the conversion frequency and conversion gain when converting the received high frequency signal into a frequency and signal level that can be processed by reconfigurable digital signal processor 1022. It is possible to change to a processing system corresponding to communication method A or communication method B. This makes it possible to perform processing adapted to a plurality of wireless systems. Also, in wireless systems such as cellular and wireless LAN in general, reception is mainly performed according to the standard. The dynamic range of the signal, the level of disturbance that can be dealt with, and the specifications are made.
  • the components in the reconfigurable receiver 10212 include circuits such as a low noise amplifier, a down converter, a filter, and a demodulator. However, the reconfigurable receiver 10212 is configured according to the control signal 113. Adjust the operating point by changing the impedance of the elements in these circuits, the tuning frequency of the filter, the bias of the active device, etc., or arrange multiple circuits optimized for each communication method in parallel. The characteristics can be optimized by switching or by combining these.
  • the reconfigurable local oscillation unit 10213 has a function of generating a local oscillation signal of a frequency and a signal level necessary for frequency conversion in the reconfigurable transmission unit 10211 and the reconfigurable reception unit 10212. Furthermore, the reconfigurable local oscillation unit 10213 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change.
  • the components of the reconfigurable local oscillation unit 10213 are circuits such as a reference oscillator such as a highly stable crystal oscillator, an oscillator having a variable frequency, a phase synchronization circuit, and an amplifier.
  • up-converters and down-converters that perform frequency conversion are generally configured by mixer circuits, and the frequency components of the sum or difference of the signals before and after conversion are mainly used. It requires a local oscillator signal. In cellular and wireless LAN wireless systems, the available carrier frequencies are different, and the UHF band power also extends widely to the microwave band.
  • the reconfigurable local oscillation unit 10213 has a configuration in which the frequency of the local oscillation signal can be widely set by the control signal 113, and is configured to be adaptable to a processing system corresponding to the communication system A or the communication system B. Thus, local oscillation signals corresponding to a plurality of communication methods can be formed.
  • the reconfigurable local oscillation unit 10213 responds to the control signal 113 and generates the element value of the resonant element constituting the oscillator, the bias of the active device, etc. Adjust the operating point by changing the frequency, or use a multiplier circuit or divider circuit, or divide the desired oscillation frequency band into a plurality of oscillation circuits optimized for each frequency band.
  • These local oscillation signals can be formed by arranging a plurality of switches in parallel and switching them, or by combining these.
  • the characteristic of the phase noise is also optimized by controlling the loop filter constant of the phase locked circuit, etc. It is possible to
  • Reconfigurable digital signal processing section 1022 (1022a, 1022b) quantizes the input modulation signal and converts it into a digital signal as reception processing, and then performs demodulation corresponding to a predetermined system. Digital signal processing such as processing and decoding processing is performed, and the obtained reception data is output to upper layer processing section 103, and reception signal 110 necessary for collecting reception quality is output to control section 104. Also, the reconfigurable digital signal processing unit 1022 performs, as a transmission process, a coding process and a modulation process corresponding to a predetermined system on the input transmission data, and then obtains a digital modulation signal obtained. Is converted to an analog signal, and output to the reconfigurable RF unit 1021.
  • the reconfigurable digital signal processing unit 1022 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change.
  • a changeable function a modulation method or encoding method in transmission / reception processing, interleaving or scrambling processing accompanying it, and a sampling rate in analog / digital conversion are used as control signals. It is assumed that the configuration can be changed accordingly.
  • FIG. 5 shows an example of the configuration of the reconfigurable digital signal processing unit 1022.
  • the reconfigurable digital signal processing unit 1022 is an analog 'digital conversion unit 10221' It comprises a configurable transmission processing unit 10222 and a reconfigurable reception processing unit 10223.
  • the analog-to-digital converter 10221 quantizes the received analog signal supplied from the reconfigurable RF unit 1021 at the time of reception with a predetermined number of quantization bits and a sampling rate, and obtains a digital signal obtained thereby Is output to the reconfigurable reception processing unit 10223.
  • the analog-to-digital conversion unit 10221 converts the digital modulation signal supplied from the reconfigurable transmission processing unit 10222 into an analog signal with a predetermined number of bits and a sampling rate, and reconfigures the transmission analog signal. Output to the RF unit 1021.
  • Reconfigurable transmission processing unit 10222 performs encoding processing and modulation processing corresponding to a predetermined system on input transmission data, and obtains a digital signal obtained by this processing.
  • the reconfigurable transmission processing unit 10222 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change.
  • a changeable function a modulation scheme during transmission processing, a coding scheme and an accompanying interleaving or scrambling scheme are selected according to the content of control signal 113 or communication scheme A or communication. It is assumed that the configuration can be changed to the processing system corresponding to method B.
  • Reconfigurable reception processing unit 10223 performs digital signal processing such as demodulation processing and decoding processing corresponding to a predetermined system on the input digital signal, and receives received data obtained by this processing. While outputting to the upper layer processing unit 103, the reception signal 110 necessary for collecting reception quality is output to the control unit 104. Furthermore, the reconfigurable reception processing unit 10223 is configured to be able to change its function and characteristics in accordance with the control signal 113 for function change. In this embodiment, as an example of the changeable function, the modulation scheme and coding scheme corresponding to the reception process, and the interleaving and scrambling scheme accompanying it are communicated according to the contents of control signal 113. It is assumed that the configuration can be changed to the processing system corresponding to method A or communication method B.
  • each of the reconfigurable transmission processing unit 10222 and the reconfigurable reception processing unit 10223 is composed of, for example, an FPGA device.
  • the configuration and operation contents can be changed by rewriting setting data in which the configuration of the part circuit is described.
  • upper layer processing section 103 At the time of transmission, upper layer processing section 103 generates data to be transmitted to the other station to communicate with, and supplies this to a plurality of reconfigurable wireless processing sections 102. Also, the upper layer processing unit 103 receives the reception data output from the plurality of reconfigurable wireless processing units 102 and performs processing in the upper layer such as processing in the corresponding application.
  • the upper layer processing unit 103 is configured of, for example, a general purpose processor such as a CPU.
  • the control unit 104 performs each reconfiguration based on the information 110 (110a, 110b) on the communication link quality which can be obtained from each of the plurality of reconfigurable wireless processing units 102 (102a, 102b).
  • Control signal 113 (113a, 113b) is used to determine the communication method and transmission mode to be supported in the system by the configurable wireless processing unit 102, and to change the function to each reconfigurable wireless processing unit 102. Output).
  • the control unit 104 in the present embodiment includes a communication quality information collection unit 1041, a communication operation control unit 1042, and a function change control unit 1043.
  • Communication quality information collection unit 1041 uses communication signals 110 (110a, 110b) obtained at the time of reception demodulation processing in each of the plurality of reconfigurable wireless processing units 102 to obtain communication link quality in each system. Information related to the communication quality control unit 1042 and the collected communication quality information 111 is output to the communication operation control unit 1042.
  • the communication quality information collecting unit 1041 uses the quadrature demodulation signal obtained in each reconfigurable radio processing unit 102 (102a, 102b) as the reception signal 110, and a target communication system exists. In addition to detecting whether or not there is a system, estimate the received CNR (Carrier Power to Noise Power Ratio) value as communication quality information.
  • CNR Carrier Power to Noise Power Ratio
  • the method of estimating the reception CNR value is not particularly limited in the present invention, but, for example, the power value of the average signal point vector of the signal point vector obtained as the reception result and the average signal point vector In the method of calculating by the ratio to the variance value of each vector, and in the method of performing maximum likelihood sequence estimation and maximum likelihood decoding, the method of estimating the equivalent received CNR value, etc. is applied. It is possible.
  • Communication operation control unit 1042 selects a communication method to be supported by each reconfigurable wireless processing unit 102 and a transmission mode in that method based on communication quality information 111, Output the selection result 112. Examples of specific selection conditions and procedures will be described later.
  • the function change control unit 1043 changes the function of each component in the reconfigurable wireless processing unit 102 based on the communication method and transmission mode selection result 112 output from the communication operation control unit 1042.
  • Control signal 113 (113a, 113b) for outputting the
  • reconfigurable wireless processing unit 102 is configured to be compatible with cellular communication method A and wireless LAN communication method B
  • function change control unit 1043 is configured to be reconfigured.
  • a control signal 113 indicating that the wireless wireless processing unit 102 should be switched to any one of these communication methods is output.
  • wireless communication apparatus 100 has a plurality of transmission modes as shown in FIG. 6 in accordance with which communication scheme each Reconfigurable Wireless processing unit 102 is to be changed to.
  • the transmission mode of! / ⁇ is set to be selectively set.
  • it is possible to select an optimal transmission mode from among a plurality of transmission modes in accordance with the radio wave propagation environment and the like. The details of each transmission mode shown in FIG. 6 will be described later.
  • FIG. 7 is a flow chart showing an example of an operation procedure at the time of activation and at the time of communication standby, when the wireless communication apparatus 100 is powered on.
  • the reconfigurable wireless processing unit 102a is set to correspond to the communication method A based on the control signal 113a from the control unit 104, and the reconfigurable wireless processing unit is also configured.
  • the function is set to correspond to the communication system B (step 101).
  • the wireless processing system of each of the reconfigurable wireless processing units 102a and 102b it is detected whether or not the service environment of each communication method is present (step 102).
  • the operation content at the time of communication standby is determined as follows. If a service of both communication methods is detected (step 103), the communication method shifts to the communication standby state for each of the communication methods (step 104). If only the service of one of the communication methods is detected (steps 105 and 107), the detected communication is The communication mode is shifted to the communication standby state, and for the other communication modes, the detection of the communication mode is periodically performed (steps 106 and 108). If neither of the two can detect the presence of the communication method, the two communication methods are continuously detected periodically (step 107). In this case, in order to reduce the power consumption of the device, only one Reconfigurable Wireless processing unit is operated and the function is switched to communication method A and communication method B periodically. The communication system detection operation may be performed.
  • FIG. 8 is a flowchart showing an example of an operation procedure at the time of communication standby, and each operation will be sequentially described below.
  • the communication target is a standby target.
  • there is a communication request from another station, or a communication request to the other station is performed in the upper layer processing unit in the own station.
  • the presence or absence of a communication request is detected by detecting whether or not there is a force generated, and if a communication request is detected, the state shifts to the communication operation state (step 115), otherwise it is /! Go to step 112 (step 111).
  • transmission / reception of system control information and collection of communication quality information 111 are performed periodically by a predetermined method in the communication system to be awaited. Note that the steps 111 and 112 may be performed in parallel, or in different cycles, which are not necessarily performed in tandem.
  • the reconfiguration is performed.
  • the function of the configurable wireless processing unit 102a may be periodically changed to be compatible with the communication method B, and the communication link quality for the communication method B may be monitored.
  • it is judged whether the communication link quality between the corresponding communication methods is reversed (step 113), If there is a situation, each reconfigurable radio processing unit 102a, 102b changes the communication scheme to be supported in reverse.
  • the communication standby operation for the communication method B is performed, and in the other Reconfigurable Wireless processing unit 102b, the communication standby operation for the communication method A is performed. Operation to maintain the communication link quality while waiting for communication (step 114). Further, based on the communication quality information 111 in the communication system for which the standby target is periodically collected, it is determined whether the communication quality is sufficient for maintaining the communication link for transmission and reception of system control information. If it is judged that the quality is deteriorated and the link can not be maintained, the communication standby state in the communication system is released (step 117), and the service detection state is reached (step 118). Transition.
  • the operation of the service detection state (step 118) corresponds to the processing after (step 102) in FIG.
  • the wireless communication apparatus 100 when the wireless communication apparatus 100 is in the service area of communication method A only and performs communication standby operation! If the system of the Reconfigurable Wireless processing unit 102 a of the function setting is set to, periodically perform a series of communication standby operations (Step 111) to (Step 117) for communication method A, as required Periodically send and receive system control information. Moreover, in the system of the reconfigurable wireless processing unit 102b whose function is set to the communication method B which is not the communication standby target, the operation of detecting whether the service of the communication method B exists regularly is performed. Do.
  • the reconfigurable wireless processing unit 102b When the quality of the communication link with the communication method A in the reconfigurable wireless processing unit 102a is deteriorated, the reconfigurable wireless processing unit 102b performs the wireless processing unit only at the timing when the communication method A and the communication standby operation are performed. The function is changed to be compatible with the communication method A, and the reconfigurable wireless processing unit 102b receives a signal for communication standby operation of the communication method A, and the reconfigurable wireless processing units 102a and 102b. And receive diversity operation between the two and improve communication quality.
  • the direction of communication link quality with the communication method A in the reconfigurable wireless processing unit 102b When communication with the communication method A becomes better than in the reconfigurable wireless processing unit 102a The standby operation is assumed to be borne by the reconfigurable wireless processing unit 102b, and the reconfigurable wireless processing unit 102a periodically performs an operation of detecting whether or not the communication scheme B is present. Let's make it work.
  • FIG. 9 is a flow chart showing an example of the communication control procedure in the communication operation state, and using this figure, the reconfigurable wireless processing unit 102a establishes a communication link with the communication method A, and performs reconfiguration.
  • each reconfigurable wireless processing unit 102a, 102b is based on the quality of both of the communication links.
  • the operation to control the communication method and transmission mode that should be dealt with will be described.
  • a transmission mode in which diversity transmission operation is performed between communication methods according to the quality of each communication link a transmission mode in which diversity transmission operation is performed according to one communication method, and MIMO channel transmission operation
  • the operation of adaptively controlling such a transmission mode in accordance with the status of the communication link will be described.
  • the MIMO channel transmission described here is a so-called space multiplexing or space-time multiplexing in which a plurality of communication data sequences are multiplexed and transmitted using a plurality of radio processing systems on both the transmitting side and the receiving side.
  • a transmission method that performs transmission, estimates channel conditions multiplexed on the receiving side, and separates the plurality of multiplexed data sequences based on the obtained channel characteristics to obtain received data. is there.
  • Reconfigurable wireless processing section 102 a performs predetermined signal processing on a signal transmitted to the local station according to a predetermined method of communication method A, and obtains a reception demodulation result. Also, the reconfigurable radio processing unit 102b performs predetermined signal processing on the signal transmitted to the own station according to the predetermined method of the communication method B, and obtains a reception demodulation result.
  • Communication quality information collection unit 1041 receives signals in each system using received signals 110 a and 110 b of the communication system supported by both Reconfigurable Wireless processing units 102 a and 102 b.
  • the CNR value is estimated, and the communication quality is determined based on the estimation result (step 121).
  • communication quality is determined using a determination table as shown in FIG. That is, the received signal quality is classified into four types of “good”>“good”>“bad”> “not good” in good order, and any one of them is output as a parameter of communication quality information.
  • the received CNR value for scheme A sensitivity point in scheme A
  • the communication quality is set to "OK".
  • Communication quality information 111 for each communication method obtained in this manner is supplied to the communication operation control unit 1042.
  • the communication operation control unit 1042 selects the communication method and transmission mode to be supported by each of the reconfigurable wireless processing units 102 a and 102 b at predetermined time intervals based on the input communication quality information 111. , And notifies the function change control unit 1043 of the selection result 112 (step 122).
  • an example of the communication method and the transmission mode selected in the communication operation control unit 1042 is shown in FIG.
  • both reconfigurable radio units 102a and 102b are compatible with communication system B, thereby achieving communication system B.
  • select the transmission mode to perform multiplex transmission by MIMO channel in the case of the configuration of the wireless communication apparatus as in this embodiment having two wireless processing systems on both the transmitting side and the receiving side, compared to the case where transmission is performed by one system alone. It is possible to obtain a transmission rate of up to about 2 times.
  • the present invention is not particularly limited! /, For example, in “Induction to 3 ⁇ 4 Pace-Time Wireless omnunications" by Arogyaswami Paulraj et al.
  • the configuration of the processing unit 102 a may be controlled to correspond to the communication method A, and may be controlled to monitor the communication quality of the communication method A.
  • a transmission method based on inter-system diversity data to be transmitted is configured in bucket units in the IP layer and upper layers, and the number of packets to be transmitted is distributed according to the transmission speed in each communication link.
  • transmission which makes it possible to increase the transmission rate up to the sum of the transmission rates of both communication links. Also, if there is a difference in the data to be transmitted in terms of importance or the like in the upper layer (for example, application layer) of transmission, the communication link to be transmitted may be selected and transmitted according to the importance.
  • both reconfigurable wireless processing units 102 a and 102 b are made compatible with communication method A. Select the mode to perform multiplex transmission using the! /, MIMO channel for communication method A.
  • the communication quality in communication method A is “good” and the communication quality in communication method B is “not good” or less, only reconfigurable wireless processing unit 102 a is used, and only in communication method A. Select the communication mode. Conversely, when the communication quality in communication method A is "bad” or less and the communication quality in communication method B is "OK”, only reconfigurable radio processing unit 102b is used, and communication method B is used only. Select the mode to communicate.
  • the transmission mode in only one of the communication methods is selected (for example, in the case where communication is performed only by the communication method A by the reconfigurable wireless processing unit 102a), the communication operation is performed, The communication quality of the method (the communication method B) of the one who is not communicating regularly is regularly measured using the system of the (reconfigurable wireless processing unit 102b), and based on this information, After the time, the transmission mode is determined again. In this case, the communication quality measurement in the communication mode of the communication system is not necessarily performed by the reconfigurable wireless processing unit 102b.
  • the reconfigurable wireless processing unit 102a intermittently performs the communication scheme A by the reconfigurable wireless processing unit 102a.
  • both reconfigurable wireless processing units 102 a and 102 b may be made to correspond to the communication method A. It controls and selects the transmission mode to transmit and receive by so-called diversity. That is, at the time of reception, after receiving the signal transmitted to the own station by communication system A by both systems, select the reception result of the system with the better reception quality, or by both systems. The reception results are combined to obtain reception results. At the time of transmission, the same transmission data is transmitted using both systems.
  • both wireless processing units 102 a and 102 b are compatible with communication method B.
  • the transmission mode is selected to transmit and receive the signal transmitted to the own station by communication method B by diversity.
  • Selection of the communication method and the transmission mode based on such selection conditions is performed at predetermined time intervals, and the selection result 112 is notified to the function change control unit 1043.
  • Function change control section 1043 outputs control signal 113 (113a, 113b) for changing the function of the communication processing in reconfigurable wireless processing sections 102a, 102b based on transmission mode selection result 112. (Step 123). Specifically, a control signal corresponding to one of communication system A and communication system B is output, and for example, reconfigurable RF sections 1021 a and 1021 b transmit and receive carrier waves. The settings of the frequency and the transmission power are changed, and in the reconfigurable digital signal processing units 1022a and 1022b, the modulation scheme and the coding scheme, the accompanying interleaving and scramble processing, and the analog to digital conversion are further performed. Settings such as sampling rate are changed.
  • the reconfigurable radio processing units 102a and 102b are subjected to a function change for communication in the selected communication method and transmission mode.
  • the information on the selected communication method and transmission mode is changed in the function Reconfigurable Wireless processing It is notified to the transmitting station side of each communication method by the sections 102a and 102b (step 124), and the transmitting station side also corresponds to the selected transmission mode, and transmits / receives between the communicating party station and the wireless communication apparatus 100.
  • Processing is performed (step 125). For example, in the case of a mode in which diversity transmission / reception among a plurality of communication systems is performed as a transmission mode, both communication systems cooperate to transmit data on a network.
  • transmission and reception according to both communication methods in the communication partner station may be performed by different wireless communication devices via a network or the like which is not necessarily performed by the same wireless communication device.
  • transmission / reception in a predetermined transmission mode is performed with the communication partner station, and a case where there is no section is detected (step 126), and the reconfigurable wireless processing unit 102a.
  • the function of 102b may be changed to a communication method not used in the current transmission mode to obtain information on communication quality.
  • the plurality of antennas, the plurality of reconfigurable wireless processing units, and the plurality of reconfigurable wireless processing units are controlled independently, and each of the plurality of reconfigurable devices is controlled.
  • a control unit for independently switching the processing contents of the configurable wireless processing unit reconfiguration information is obtained based on communication quality information obtained by each reconfigurable wireless processing unit.
  • the desired transmission mode is selected from a plurality of transmission modes such as a mode for performing diversity transmission between equations or a mode for performing transmission only with a single communication system. Yibin selected and it becomes possible to perform communication.
  • communication is performed by the appropriate transmission mode out of a wider selection of transmission mode options than in the prior art. Communication reliability and overall transmission capacity can be improved.
  • communication quality information collection section 1041 estimates the reception CNR value in each system as information on communication link quality in each radio processing system to be collected. Although it was set as what used what was divided into 4 steps based on the determination table as shown in FIG. 10 based on a value, this invention is not necessarily limited to this structure. For example, for the received CNR value in the determination table as shown in FIG. 10, since the specific value of the value differs depending on the target communication method, it depends on the communication method to be applied.
  • the quality classification should always be in four stages, but in some cases it may be classified in three or less stages or five or more stages.
  • another parameter instead of estimating the received CNR value, another parameter may be used, and in this case, a determination table corresponding to FIG. 10 for the parameter to be used may be prepared.
  • a bit error rate of received data or a frame erasure rate may be measured or estimated and used as a configuration including interference, and CIR (IR) Parameters such as carrier power to interference wave component power ratio) may be used.
  • the transmission mode candidates selected in communication operation control section 1042 forces representing the modes as shown in the table of FIG. 6 are not necessarily targets corresponding to all the transmission modes listed here.
  • the contents of the applied transmission mode may be changed according to the communication method to be used and the required conditions. For example, even if some transmission modes are omitted from the options, the effects of the present invention can be expected.
  • control may be performed using a table in which the transmission mode selected in part is changed to another transmission mode. For example, in the table of FIG. 6, the mode of the MIMO transmission by the selected communication method A is selected in a situation where the quality in the communication method A is "good" and the quality in the communication method B is "impossible".
  • the communication mode A may be controlled to select a transmission mode for communication alone.
  • a new transmission mode a transmission mode in which antenna directivity control is performed using a plurality of wireless processing systems is provided, and in both communication methods A and B, communication quality is poor or impossible.
  • the gain improvement effect and the interference component suppression effect Communication control may be performed to improve the reliability.
  • a mode in which only one communication scheme is transmitted in FIG. 6 is used.
  • a wireless communication apparatus transmits and receives using a plurality of radio processing systems, so-called space diversity
  • space diversity The present invention is not necessarily limited to space diversity.
  • a transmission method in combination with time diversity and site diversity may be applied.
  • the reception signal received by each wireless processing system is used to perform separation processing of the signal multiplexed by MIMO or transmission by diversity.
  • Post-processing such as synthesis processing of received signals for each branch is required.
  • some pre-processing is required. The place to perform these processes is not an essential part of the present invention, but may be performed, for example, in the upper layer processing unit 103.
  • reconfigurable wireless processing unit 102 a performs preprocessing
  • the reconfigurable wireless processing unit 102 b performs a post processing using a result of the preprocessing and a result of its own preprocessing.
  • the sampling rate, the modulation scheme at transmission and reception, and the coding scheme have been exemplified as an example of the function that can be changed according to the control signal.
  • the present invention is not limited to these.
  • the number of quantization bits in the analog-to-digital converter may be changed, or when digital filter processing is performed, parameters related to filter characteristics such as the tap coefficient may be changed.
  • the reconfigurable transmission processing unit 10222 and the reconfigurable transmission processing unit 10 are not limited to this configuration.
  • DSP devices or CPU devices capable of arithmetic processing by software instructions may be used instead of FPGA devices.
  • the configuration may be such that multiple communication methods can be supported by reloading the software program or changing the readout destination of the subroutine.
  • a device such as a so-called reconfigurable processor or the like capable of dynamically changing the internal configuration and operation contents faster than the FPGA device.
  • an arithmetic operation unit capable of changing functions individually
  • a plurality of (ALUs) are arranged, and the connection relationship between each arithmetic operation unit can be changed, and the operation functions in each arithmetic operation unit and the connection relationship between them are dynamically changed.
  • a configuration capable of supporting a plurality of communication methods may be applied.
  • a dedicated circuit whose processing specification can be changed by changing parameters is provided for each functional block such as filter, FFT, and decoding processing, and the processing specification in each functional block (for example, the number of taps and tap coefficients in the filter, Apply a CPU device etc.
  • the transmission processing unit and the reception processing unit may be configured with one device.
  • the control unit 104 is configured as an independent functional unit
  • the present invention is not limited to this.
  • the upper layer processing unit 103 is configured by a processor such as a CPU.
  • one of the control software modules in the processing unit may include the function of the control unit 104.
  • the control signal 113 for changing the function to each reconfigurable wireless processing unit 102a and 102b is supplied from the upper layer processing unit 103, and each reconfigurable wireless processing unit 102a and 102b is also supplied.
  • the reception signal 110 output from the control unit 110 is supplied to the upper layer processing unit 103 together with the reception data.
  • communication system A and communication system B have been exemplified as a combination of communication system A and communication system B as a form of communication operation, the present invention is not limited to any other form. Theory I have not said. As the other form, for example, there is a use form in which communication is independently performed using only one communication method as in the prior art, but V, such a use form is possible within the scope of the present invention. You can also do motion control including that!
  • a system by Reconfigurable Wireless processing section 102 a (hereinafter referred to as “radio processing system a”) and a system by Reconfigurable Wireless processing section 102 b (hereinafter “wireless processing system b”
  • radio processing system a a system by Reconfigurable Wireless processing section 102 a
  • wireless processing system b The same structure and function as in the above-mentioned), and a force that assumes a structure and an operation in which processing is performed concurrently.
  • the present invention is not necessarily limited to this.
  • the wireless processing system b is limited in performance and functions as compared to the wireless processing system a, and periodically monitors the communication link quality of the communication method on the side different from the method in which communication is performed in the wireless processing system a. It may be configured to perform only the operation.
  • the selectable transmission modes in communication control are limited compared to those shown in FIG.
  • the selectable transmission modes in communication control are limited compared to those shown in FIG.
  • the transmission mode by MIMO or the transmission mode by diversity it is also possible to select a plurality of radio processing systems or communication system power depending on the quality of the communication link It is possible to realize a wireless communication apparatus that can flexibly cope with the situation according to the quality status of the communication link than before.
  • the transmission mode selection operation in communication operation control section 1042 is performed every predetermined time, the present invention is not necessarily limited to this.
  • the interval at which the selection operation is performed is irregular.
  • the selection operation may be performed when the information on the communication link quality of each communication method to be input changes.
  • a configuration that supports digital TV broadcasting and digital audio broadcasting in a broadcasting system it is also possible to have a configuration that is compatible with a picocell communication system (a communication system conforming to the IEEE 802.15 standard). Good.
  • it may be configured to use a unique communication method by weak power transmission.
  • the number of reconfigurable wireless processing systems is limited to two, as an example showing that two reconfigurable wireless processing units are provided and two wireless processing systems are operated at the same time. Needless to say that there is no need to configure three or more wireless processing systems.
  • application is possible by collecting information on communication quality in each wireless processing system and redefining a judgment table for determining a corresponding operation mode based on such information.
  • the number of radio processing systems is three or more, transmission by diversity or MIMO is performed by some of the plurality of radio processing systems, and inter-communication system diversity is performed with another radio processing system. It is also possible to set the transmission mode to perform transmission.
  • the configuration, connection, and transmission method of control signal 113 connected from control unit 104 to each reconfigurable radio processing unit 102 are as follows. Therefore, the present invention is not particularly limited because it is not particularly limited. In the meantime, to cite an example of its configuration, it controls a set of bit data indicating whether the corresponding method is communication method A or communication method B, and an enable signal which permits change of setting. It is assumed that the signal 113 is supplied, and in each reconfigurable RF unit and reconfigurable digital signal processing unit, the setting of each function change portion is changed based on the supplied bit data and enable signal. It can be configured. Alternatively, a direct control line to each setting change unit is provided, and control signal 113 output from function change control unit 1043 is directly supplied to each setting change unit using each control line. You may configure it to be supplied via a common bus.
  • FIG. 11 is a diagram showing an example of a configuration of a wireless communication apparatus according to Embodiment 2 of the present invention.
  • Radio communication apparatus 200 of the present embodiment differs from the configuration of radio communication apparatus 100 (FIG. 3) of Embodiment 1 in that upper layer processing section 201 is provided instead of upper layer processing section 103, and control section 104. Instead of the control unit 202, a control unit 202 is provided.
  • the upper layer processing unit 201 basically operates in the same manner as the upper layer processing unit 103, but further obtains communication request conditions from the user as one of the processes in the upper layer. And processing for outputting the obtained information.
  • the request condition the user selects a request condition from the user regarding the charge that may occur during communication on the application software, and the upper layer processing unit 201 requests the user if necessary. Output information about the condition
  • the control unit 202 is processed in the information 110a and 110b related to the communication link quality of the signal received by each system of the plurality of reconfigurable wireless processing units 102a and 102b, and in the upper layer at the time of communication. Application, etc., and the request condition 210 set by the user is input, and based on these two pieces of information, the communication method and transmission mode to be supported by each wireless processing system are determined, and the respective reconfigurable circuits are determined. Control signals 113a and 113b for changing the function are output to the wireless processing units 102a and 102b.
  • the control unit 202 in the present embodiment is configured of a request condition collection unit 2021, a communication operation control unit 2022, a communication quality information collection unit 1041, and a function change control unit 1043. Among them, the communication quality information collection unit 1041 and the function change control unit 1043 have the same configuration and operation as the components with the same numbers in FIG. 3, and the description will be omitted here.
  • the request condition collection unit 2021 collects the information 210 on the user's request condition supplied from the upper layer processing unit 201, and supplies the collection result 211 to the communication operation control unit 2022. Details of the operation will be described later.
  • the communication operation control unit 2022 receives the communication quality information 111 supplied from the communication quality information collecting unit 1041 and the collection result 211 supplied from the request condition collecting unit 2021 as input, and based on these information, Each wireless processing system selects a communication method system to be supported and a transmission mode of the system, and outputs a selection result 212. An example of the specific decision procedure will be described later.
  • the communication service form according to the present embodiment in the service according to communication method A corresponding to cellular, it is assumed that a fee is generated according to the capacity of data to be communicated, and In the case of performing multiplex transmission by MIMO in communication method A, additional charges are to be incurred.
  • the communication charge does not depend on the data capacity, and no additional charge is generated even if multiplex transmission by MIMO is performed. Also, communication method In the case of performing transmission by inter-system diversity by A and communication method B, an additional charge shall be incurred for both communication methods.
  • wireless communication apparatus 200 having the above-described configuration will be described below for the part that operates differently from wireless communication apparatus 100 of the first embodiment.
  • the upper layer processing unit 201 has the user set the requirement regarding the charge generated in the communication as one of the processes in the upper layer of the communication. More specifically, the upper layer processing unit 201! /, And the application software that is executed is a mode that saves the communication charge (hereinafter referred to as the charge priority mode) and the charge is more expensive. Also, the user is asked to select which mode is better between the mode for maintaining the communication link or securing the transmission rate (hereinafter referred to as communication priority mode), and the user stores the information on the selected mode. Keep it.
  • the request condition collection unit 2021 reads the information 210 related to the mode selected by the user from the upper layer processing unit 201, and outputs it as the collection condition 211 of the request conditions.
  • communication quality information collection unit 1041 operates in the same manner as described in the first embodiment, and communication quality information on each communication method obtained from a plurality of reconfigurable wireless processing units 102a and 102b. Output
  • the communication operation control unit 2022 is based on the collection result 211 of the request condition and the communication quality information 111, and at each predetermined time, a communication method and each communication method that the reconfigurable wireless processing units 102a and 102b should support.
  • the transmission mode is selected, and the selection result 212 is supplied to the function change control unit 1043.
  • FIG. 1043 an example of the communication method and transmission mode selected in the communication operation control unit 2022 is shown in FIG.
  • Two transmission mode selections are made. First, when the user sets the communication priority mode to secure the transmission speed of the communication link, communication with the communication method A is performed to secure the communication speed. A transmission mode to perform inter-system diversity communication according to each communication link quality with communication system B is selected. On the other hand, when the user sets the so-called charge priority mode in which the communication charge is saved, the transmission mode for inter-system diversity in which the additional charge is generated is not selected, and the transmission mode based on communication method B alone in which no communication charge is generated is selected. It is selected. In each of the selected transmission modes, the communication mode with the same name in the first embodiment is used to determine which communication method Reconfigurable Wireless processing units 102a and 102b correspond to. Is the same as when.
  • the following conditions are set according to the requirements set by the user: Two types of transmission mode selection are performed.
  • the communication priority mode is set, even if the communication quality in communication method B is poor, a higher transmission rate may be obtained than in the case of communication method A alone.
  • a transmission mode to perform inter-system diversity communication according to each communication link quality with communication system B is selected.
  • the charge priority mode is set, the transmission mode by communication method A alone is selected.
  • communication quality A in communication method A Ensure high communication speed by performing multiplex transmission with MIMO channel.
  • the charge priority mode in order to avoid the additional charge for multiplex transmission by the MIMO channel, only the data transmission method A alone can be used for normal data transmission using only the reconfigurable radio processing unit 102a. Transmission mode is selected.
  • the same transmission mode as in the case of the first embodiment is selected.
  • the processing contents of the plurality of reconfigurable wireless processing units are added to the quality information obtained by each reconfigurable wireless processing unit, based on the requirements from the user.
  • the processing contents of the plurality of reconfigurable wireless processing units are added to the quality information obtained by each reconfigurable wireless processing unit, based on the requirements from the user.
  • the transmission mode selection table as an example of the transmission mode selection table, a table as shown in FIG. 12 is shown.
  • the present invention is not necessarily limited to the contents of this table.
  • Information on quality and mode options selected according to user requirements may be further subdivided or conversely multiple options may be integrated.
  • the selection table is further subdivided, and the communication quality in communication method A is "good” and the communication quality in communication method B is "defective", depending on the inter-system diversity.
  • both the wireless radio processing units 102a and 102b are set to support communication scheme A, and communication scheme A is set to! /, MIMO,
  • a selection table may be provided to perform multiplex transmission by channel.
  • the present invention is not necessarily limited to mode selection based on the selection table.
  • a parameter to be used as a determination material may be determined in advance according to the user's request condition, a quantitative evaluation value regarding this parameter may be calculated, and the transmission mode may be determined based on the calculation result.
  • the estimated value of the transmission speed obtained when transmitting in each transmission mode is calculated based on the communication quality in each current communication system. And select the transmission mode that maximizes this value.
  • the communication charges generated when data of a predetermined size is transmitted in each transmission mode based on the communication quality in each current communication method. It is sufficient to calculate the estimated value of and select the transmission mode that minimizes this value.
  • the present embodiment shows a form in the case of collecting a request for communication reliability or fee of a user, as a request condition other than the information on communication quality, the present invention is limited to this. It can also be implemented in other forms than those described. Because the essence of the present invention is that the plurality of reconfigurable radio processing unit and the control unit Control to change the functions of the plurality of reconfigurable wireless processing units by selecting an appropriate communication method and transmission mode based on communication quality information and other required conditions in each wireless processing system. Since it is to communicate, it can be implemented in various forms within its scope.
  • the wireless communication apparatus 200 if there is a requirement on the transmission delay amount, prepare a transmission mode selection table that also takes this condition into account, and communicate based on this. Control of the scheme and the transmission mode may be performed.
  • FIG. 13 is a diagram showing an example of a configuration of a wireless communication apparatus according to Embodiment 3 of the present invention.
  • components having the same configuration and operation as the components in the wireless communication apparatus 100 shown in FIG. 3 of the first embodiment are assigned the same reference numerals as in FIG.
  • Radio communication apparatus 300 of the present embodiment differs from the configuration of radio communication apparatus 100 (FIG. 3) of Embodiment 1 in the reconfigurable digital signal processing section in reconfigurable radio processing sections 102 a and 102 b.
  • a reconfigurable digital signal processing unit 301 is provided instead of 1022 a and 1022 b
  • an upper layer processing unit 302 is provided instead of the upper layer processing unit 103
  • a control unit 303 is provided instead of the control unit 104.
  • reconfigurable digital signal processing unit 301 has an input / output connection interface for inputting / outputting analog signals to / from a plurality of reconfigurable RF units 1021 a and 1021 b, and It has an interface for input / output connection to transmit / receive data to / from a layer, and performs the same processing as the plurality of reconfigurable digital signal processing units 1022 a and 1022 b in FIG. 3.
  • Reconfigurable digital signal processing unit 301 includes analog 'digital conversion 11 3011a, 301 lb, I / O flops 3012a, 3012b, nos 3013, manoretic red digital signal processing unit 3014, memory 3015, Have.
  • the analog-to-digital converter 3011 has the same configuration and operation as the analog-to-digital converter 1021 in FIG.
  • the IZO buffer 3012 is output from the analog-to-digital converter 3011 during reception. After temporarily storing the sampled digital signal sequence, it is read according to the predetermined rule and supplied to the bus 3013, and at the time of transmission, the digital signal sequence supplied via the bus is temporarily stored, Reads out and supplies to analog 'digital conversion unit 3011.
  • the buffer There are no particular limitations on the configuration of the buffer, and it is possible to apply various known buffers such as, for example, a FIFO buffer and a ring buffer.
  • Nos. 3013 is a common data transmission bus for transmitting digital data between a plurality of processing blocks, and here, a plurality of I / O buffers 3012 a and 3012 b, a multi-threaded digital signal processing unit 3014, A bus connection is made between the memory 3015 and the interface with the external upper layer processing unit 302.
  • the detailed configuration of the bus and the details of the data transmission type are not particularly limited.
  • Multi-thread digital signal processing unit 3014 performs time-division in one processing system of digital signal processing of reception signals input from a plurality of systems and digital signal processing of transmission signals to be output to a plurality of systems. Alternatively, processing is performed in parallel, and the function and the characteristic can be changed according to the control signal 315 for function change. In addition, the multi-thread digital signal processing unit 3014 sends the received signal 313 obtained in each wireless processing system to the control unit 303.
  • the multi-thread digital signal processing unit 3014 is configured of a reconfigurable device 30141 (CPU) and a timer 30142.
  • the Reconfigurable Device 30141 performs desired digital signal processing on the input digital signal, and the contents of the desired digital signal processing are changed according to the control signal 315 for function change. It can be changed.
  • the reconfigurable device 30141 is configured by a CPU (central processing unit) which can be changed to the contents of desired digital signal processing by changing the software program.
  • the software program is read from, for example, the memory 3015 as needed.
  • the software program is configured for each of the transmission modes exemplified in FIG. 6 and FIG. 12 in the first embodiment, for example, and stored in the memory 3015, and the corresponding software program is determined when the change of the transmission mode is determined. Are read from the memory 3015.
  • Timer 30142 provides interrupt timing to CPU 30141 based on a predetermined timing clock.
  • the memory 3015 temporarily stores data to be transmitted via the bus 3013, reads out the data as necessary, and stores digital data to be subjected to digital signal processing.
  • a software program in which the processing content of the CPU 30141 is described may also be stored.
  • the upper layer processing unit 302 basically performs the same processing as the upper layer processing unit 103 in FIG. 3, but it does not perform input / output interfacing with the reconfigurable digital signal processing unit.
  • the upper layer processing unit 302 are integrated into one system instead of two systems, and transmission / reception data for two systems of wireless processing systems are transmitted between the reconfigurable digital signal processing unit 301 via the integrated one data bus 312. It differs in that it was changed to transmit in.
  • the control unit 303 basically has the same configuration and operation as the control unit 104 in FIG. 3, but the difference is that the plurality of reconfigurable wireless processing units 102 in FIG. Instead of the control signal 113 for function change, control signals 314 (314a, 314b) for function change to the plurality of reconfigurable RF units 1021 and for function change to the reconfigurable digital signal processing unit 301 And the control signal 315 of FIG.
  • wireless communication apparatus 300 having the above configuration will be described below for the part that operates differently from wireless communication apparatus 100 of the first embodiment.
  • each of the plurality of reconfigurable RF units 1021a and 1021b receives the signal-processed signal 31 la, 31 lb force and is supplied to the reconfigurable digital signal processing unit 301, and each of them is It is quantized into a digital signal by the analog-to-digital converter 301 la, 301 lb and stored in the memory 3015 via the I / O buffer 3012 a, 3012 b.
  • the multi-thread digital signal processing unit 3014 sequentially reads a digital signal to be processed in the CPU 30141 from the memory 3015 temporarily stored on the basis of the periodic interrupt signal supplied from the timer 30142, and performs desired signal processing. Then, the processing result obtained thereby is supplied to the upper layer processing unit 302 via the bus 3013.
  • the transmission data supplied from upper layer processing section 302 passes through bus 3013.
  • the signal processing for a plurality of wireless processing systems is performed by time division in the CPU 30141 in the same way as the processing at the time of reception, and the generated transmission signals are sent to the respective reconfigurable RF units 1021a and 1021b. It is supplied through the O buffer 3012 and the analog'digital converter 3011.
  • wireless communication apparatus 300 based on the communication link quality information in the plurality of communication methods received in each wireless processing system and the requirements given by the user equality as necessary. After selecting the system to be communicated and the transmission mode, change the configuration of the plurality of reconfigurable RF units 1021 a and 1021 b and the single-system reconfigurable digital signal processing unit 301 to obtain the desired transmission mode. connect.
  • the reconfigurable RF units 1021 a and 1021 b have a plurality of desired ones.
  • a system is provided, and the reconfigurable digital signal processing unit 301 is configured as one system, and the reconfigurable digital signal processing unit 301 is connected for time division or in parallel for a plurality of wireless processing systems.
  • the software program processed by CPU 30141 is configured for each transmission mode, and is configured and operated to be read from memory 3015 each time the transmission mode is changed, but the present invention is not limited to this. If, for example, the CPU 3 0141 has an internal memory, all signal processing programs for a plurality of communication methods reside in the internal memory, and only the necessary processing modules are selectively executed. It should be a good configuration.
  • the multi-thread digital signal processing unit 3014 is not limited to the configuration by the CPU 3041 and the timer 30142 as shown in FIG. 14, for example, as shown in FIG. May be configured by a reconfigurable device 30161 and a reconfiguration control unit 30162.
  • the reconfigurable device 30161 for example, a plurality of arithmetic units capable of changing the processing content may be arranged in an array, and the wiring between them may be arbitrarily changed. You can apply the In addition, a combination of specific processing blocks that can be changed to a plurality of processing specifications is also applicable by changing the parameters.
  • a filter processing unit capable of changing the attenuation characteristics by using a nolometer a modulation / demodulation processing unit capable of changing the corresponding modulation / demodulation processing method using a nolometer, or an error correction codec processing It consists of a combination of a plurality of specific processing blocks such as a generator polynomial and an error correction codec processing unit capable of changing the error correction capability.
  • the reconfiguration control unit 30162 controls reconfiguration of each of the functional blocks of the reconfigurable device 30161 whose function can be changed based on the control signal 315 for function change.
  • the series of digital signal processing related to communication can be divided into fine steps and processing blocks, and the contents of processing can be individually adapted to different communication methods and transmission modes for each processing block. It may be time-divisionally processed in a pipelined manner.
  • the CPU and the reconfigurable device may not necessarily be configured as one but may be configured with a plurality or plural types of cores or devices. In this case, each of the plurality of wireless processing systems may be configured. The processing can be performed in parallel for each core or each device, not only for time division processing. Also, signal processing in the reconfigurable digital signal processing unit 301 is not necessarily shown in FIG. 14 and FIG.
  • a dedicated digital reconfigurable front end is used for a digital front end processing unit that requires a large number of processed samples and high-speed arithmetic processing.
  • the end processing unit 3017 may be provided, and furthermore, as shown in FIG. 17, the reconfigurable digital front end processing units 3018 a and 3018 b may be provided exclusively for each wireless processing system.
  • the input / output of the reconfigurable digital front end processing units 3017, 3018a, and 3018b can be directly applied as multi-threaded digital signals without being limited to the configuration in which input / output of target data for digital signal processing is performed via the bus 3013. It may be connected to the processing unit 3016.
  • the memory 3015 may be configured in the device of the multi-threaded digital signal processing unit 3014 which is not necessarily configured as an independent device.
  • control unit 303 is not required to be an independent component.
  • the processing in the CPU 30141 or the reconfigurable device 30161 in the reconfigurable digital signal processing unit 301 is performed. Even as a configuration that operates as part of the content, it goes without saying.
  • the present invention can also be implemented by a configuration as shown in FIG. 19 instead of the configurations shown in FIG. 3, FIG. 11 and FIG. That is, when processing each transmission mode, if there is a processing portion that performs signal processing for each wireless processing system in a complex manner, this portion is cut out as an independent processing unit, and each reconfigurable radio is processed. It is also possible to connect to the processing unit. In the MIMO or diversity transmission mode, a processing part to be performed individually for each branch (radio processing system) and a part for processing the digital signals supplied (or supplied) for each branch are combined. It is possible to divide.
  • this processing group is called digital front end processing.
  • division (or combining) for diversity, MIMO multiplexing (or separation of multiplexed signals), and in some cases, codec processing etc. combine processing from each branch (or to branches).
  • this processing group is called a digital back-end processing unit here.
  • the digital front-end processing unit has reconfigurable configurations 1051a and 1051b whose functions can be changed according to the selected communication method, and the communication method corresponding to digital back-end processing is compatible.
  • Dedicated circuits 106a and 106b are provided for each, and the functions of the reconfigurable digital front end processing unit are switched as necessary to perform digital front end processing, and digital processing is performed using the corresponding digital back end processing unit.
  • a configuration to perform back end processing is feasible.
  • the digital back-end processing units 106a and 106b provided exclusively for each corresponding communication method in FIG. 19 are integrated into a multi-thread signal processing unit capable of supporting both types of processing, as shown in FIG. Show It is also possible to implement by such a configuration.
  • the configuration of FIG. 17 is described in the third embodiment.
  • the present invention can also be implemented by the configuration as shown in FIG. In FIG. 20, components having the same configurations and operations as the components in the wireless communication apparatus 100 shown in FIG. 3 are assigned the same reference numerals.
  • the wireless communication apparatus 400 shown in FIG. 20 differs from the wireless communication apparatus 100 in that antennas 101a and 101b, reconfigurable RF units 1021a and 1021b, and reconfigurable digital signal processing units 1022a and 1022b.
  • Antennas 401a and 401b, reconfigurable RF units 4021a and 4021b, and reconfigurable digital signal processing units 4022a and 4022b are provided.
  • each component in the wireless processing system a with an a at the end of the numbering and each component in the wireless processing system b with an b at the end are the same. It is a point that is not necessary.
  • the antenna 401a, the reconfigurable RF unit 4021a, and the reconfigurable digital signal processing unit 4022a, which constitute the wireless processing system a are optimized in terms of function and performance with respect to the communication method A. By making it possible to change the function and performance of each component on a small scale while having the above configuration, the minimum requirement specification is also satisfied for the wireless communication standard adopting communication method B.
  • the antenna 401b, the reconfigurable RF unit 4021b, and the reconfigurable digital signal processing unit 4022b which constitute the wireless processing system b are optimized in terms of function and performance with respect to the communication system B.
  • the system will meet the minimum requirements for wireless communication standards that adopt communication method A.
  • the present invention can be implemented, and it is characterized in that communication control can be performed so that communication can be efficiently performed while selecting an appropriate communication method and transmission mode and changing functions. is there.
  • each of the wireless processing systems a and b having the above-described features will be described below.
  • Ante It is possible to realize the performance to cover both RF frequency bands used in communication methods A and B by designing so as to have wide band pass characteristics or multi band pass characteristics. At this time, if the performance is optimized for the frequency band used in one of the methods, a performance difference may naturally occur.
  • the reconfigurable RF units 4021a and 4021b change switching elements to correspond to the respective communication systems by adjusting the operating point by changing the impedance of the element in the circuit or the bias of the active device. If this is the case, optimizing the performance when using one of the methods may naturally lead to performance.
  • the reconfigurable digital signal processing units 4022a and 4022b are designed to be fixed with a tap length suitable for one communication method at the time of digital filter processing and correlation calculation processing, and correspond to the other communication method. In this case, even if the tap length is not changed, by changing the tap coefficient to a coefficient suitable for the other communication method, even when the optimum performance can not be obtained when supporting the other communication method, It may be possible to achieve performance that can withstand the required specifications.
  • the bit arithmetic accuracy when performing arithmetic processing if it is designed to be fixed with the arithmetic accuracy suitable for one communication method, the arithmetic accuracy may not be sufficient for supporting the other communication method. .
  • the configuration as described above can reduce the components that should be redesigned in each wireless processing system.
  • the circuit redundancy can be reduced. As a result, the circuit size and power consumption can be reduced.
  • estimation of quality estimation as illustrated in FIG. 10 is performed when collecting information on communication quality of a communication method supported by each wireless processing system. You may use it by slightly correcting the standard.
  • the wireless communication apparatus has an effect that one communication apparatus can cope with various operations such as diversity transmission, MIMO transmission, handover between systems, diversity, etc. It is useful as a configuration of a communication device for realizing wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Transmission System (AREA)

Abstract

 機能および性能の変更が可能なリコンフィギュラブル無線処理部(102)を複数系統設け、制御部(104)において各々の無線処理系統(102a、102b)において受信した複数の通信方式における通信リンクの品質情報を収集し、これに基づいて複数の通信方式および伝送モード(例えば、複数システム間でのダイバーシチ伝送や一つの通信方式によるダイバーシチ伝送やMIMOチャネル多重伝送)の中から最適な通信方式および伝送モードを選択する。そして選択した通信方式および伝送モードに応じて、複数のリコンフィギュラブル無線処理部(102)の各々の構成を変更することにより、所望の伝送モードにて通信するようにする。これにより、通信リンクに品質の状況や他の要求条件に応じて最適な伝送を行うことができる。  

Description

明 細 書
無線通信装置
技術分野
[0001] 本発明は複数の無線通信方式に対応可能な無線通信装置に関するものである。
背景技術
[0002] 従来の無線通信装置において、一つの装置で複数の通信方式に対応可能とする 構成としては、複数の通信方式の各々において通信可能な無線部を各々用意して おき、必要に応じて使用する無線部を切り換える構成を用いるものがあった (例えば 、特許文献 1参照)。図 1は、特許文献 1に記載された従来の無線通信装置と同様の 構成を示すものである。
[0003] 図 1において、方式 1対応無線部 902は、第 1の通信方式に対応するアンテナ 901 と接続され、第 1の通信方式に対応した所定の無線信号処理を行うものである。方式 2対応無線部 904は、第 2の通信方式に対応するアンテナ 903と接続され、第 2の通 信方式に対応した所定の無線信号処理を行うものである。上位レイヤ処理部 905は 、例えば CPU (中央演算ユニット)により構成され、第 1の通信方式 1と第 2の通信方 式のうちどちらの方式により通信を行うかの判断や、各々の通信における上位レイヤ での処理等を行うものである。すなわち、図 1に示す無線通信装置は、あら力じめ複 数の通信方式に対応するモジュールをそれぞれ用意しておき、必要に応じて、どちら かの方式を選択して通信を行うようになって 、る。
[0004] また、複数の通信方式に一つの無線装置で対応が可能な、 、わゆるソフトウェア無 線機の構成をとるものもある(例えば特許文献 2参照)。図 2は、特許文献 2に記載さ れた従来のソフトウェア無線機により構成された無線通信装置のディジタル信号処理 部と同様の構成を示すものである。
[0005] 図 2の装置構成において、ディジタル信号処理部 910は、受信時には、アナログ' ディジタル変換部 911が、 RF信号、 IF信号、ベースバンド信号等のアナログ受信信 号を無線部から受け取り、量子化してディジタル信号に変換し出力する、いわゆる A ZD変換処理を行う。得られたディジタル信号は必要に応じて IZOバッファ 912にお いて一時的に蓄積され、必要に応じて読み出されバス 913へ供給される。供給され たディジタル信号は、 FPGA (Field Programmable Gate Array)部 914と DSP (Digital Signal Processor)部 915において、所定のプログラムに基づいて受信用のディジタ ル信号処理が施され、得られた受信データ列がアプリケーション処理を行うブロック( 例えば CPU部)等へ供給される。
[0006] また送信時には、アプリケーション処理部からバス 913を介して供給された送信デ ータが、 FPGA部 914と DSP部 915において、所定のプログラムに基づいて送信用 のディジタル信号処理が施される。得られた送信信号は、必要に応じて IZOバッファ 912に一時的に蓄積され、必要に応じて読み出され、アナログ ·ディジタル変換部 91 1において送信用のベースバンド信号、 IF信号、 RF信号等のアナログ信号に変換さ れ、無線部へ供給される。なお、特許文献 2では、このようなディジタル信号処理部 9 10と、無線部とが接続されてソフトウェア無線機が構成されて!、る。
[0007] ここで、 FPGA部 914と DSP部 915において実行される所定のプログラムとは、例 えば DSP用のソフトウェアプログラムであったり、 FPGAにおける回路構成を記述し たプログラムであったりする。これらのプログラムは、内容の書き換えが可能なメモリに 蓄積されており、装置の起動時や必要に応じて読み出しが可能なものである。デイジ タル信号処理部 910は、 FPGA部 914や DSP部 915に対し、必要に応じて異なるプ ログラムを読み込んで実行させることにより、異なる通信方式に対応させることが可能 となる。
特許文献 1 :特開 2000— 216698号公報 (第 6頁、図 1)
特許文献 2:特開 2001— 189675号公報 (第 7頁、図 1)
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、前記従来の図 1に示すような構成では、複数の通信方式に対応して 通信を行うために、あらかじめ複数種類の通信方式のそれぞれに対応した無線部を 用意しておく必要があり、装置サイズや製造コストの面でデメリットを有するという課題 を有していた。特に、対応すべき通信方式の種類が多い場合にこの課題は顕著とな る。 [0009] この課題を解決するための一手法として、図 2に示すようなソフトウェア無線機の構 成が開示されている力 図 2で示した構成では、同時に通信を行えるのはあくまでも 一つの通信方式における一無線処理系統のみである。特に、複数の無線処理系統 を用いたダイバーシチ通信や MIMO(Multi- Input Multi- Output)チャネル伝送、アン テナアレイ構成によるビームフォーミングを用 V、た通信や、複数の通信方式と同時に 通信をすることについては配慮がされていな力つた。さらには、上記の様々な通信形 態を、状況に応じて切り換え制御することについても配慮がされていな力つた。
[0010] 本発明の目的は、複数の通信方式に対して同時に通信可能、あるいは一つの通 信方式にお!、て、複数の無線処理系統を介して通信可能な無線通信装置を提供す ることである。さらには、通信リンクの状況やユーザの要求条件に応じて、適切な通信 方式及び形態を選択して切り換え制御し通信を行うことにより、より高効率かつ信頼 性の高い通信環境を実現可能な無線通信装置を提供することである。
課題を解決するための手段
[0011] 力かる課題を解決するため、本発明の無線通信装置は、複数のアンテナと、各アン テナに対応して設けられた複数のリコンフィギユラブル無線処理部と、複数のリコンフ ィギユラブル無線処理部をそれぞれ独立に制御して、各リコンフィギユラブル無線処 理部の処理内容を独立に変更する制御部とを具備する構成を採る。
[0012] この構成によれば、例えば通信リンクの品質やユーザの要求に応じて、単独の通信 方式のみでのダイバーシチ送受信を行うモード、 MIMOチャネルにおける空間多重 伝送を行うモード、複数の通信方式の間でのダイバーシチ伝送を行うモード、又は、 単独の通信方式のみで伝送を行うモード等の複数の伝送モードの中から、所望の伝 送モードを適宜選択して通信を行うことができるようになる。この結果、各々の通信方 式との間で時々刻々変化する通信リンクの品質やユーザの要求に応じて、適切な通 信方式及び伝送モードにより通信を行うことが可能となり、通信の信頼性及び全体で の伝送容量を向上させることができる。
発明の効果
[0013] 本発明の無線通信装置によれば、各々の通信方式との間で時々刻々変化する通 信リンクの品質に応じて、適切な通信方式及び伝送モードを都度選択して通信を行 うことが可能となり、通信の信頼性及び全体での伝送容量を向上することができる。 図面の簡単な説明
[図 1]従来のマルチモード無線機の構成例を示すブロック図
[図 2]従来のソフトウェア無線機の構成例を示すブロック図
[図 3]本発明の実施の形態 1に係る無線通信装置の構成を示すブロック図
[図 4]リコンフィギユラブル RF部の構成例を示すブロック図
[図 5]リコンフィギユラブルディジタル信号処理部の構成例を示すブロック図
[図 6]実施の形態 1における伝送モード選択用テーブルの一例を示した図
[図 7]実施の形態 1の無線通信装置の起動時および通信待機時の動作手順の一例 を示すフローチャート
[図 8]実施の形態 1の無線通信装置の通信待機時の動作手順の一例を示すフロー チャート
[図 9]実施の形態 1の無線通信装置の通信動作状態における通信制御手順の一例 を示すフローチャート
[図 10]実施の形態 1における通信品質情報の変換テーブルの一例を示した図
[図 11]実施の形態 2の無線通信装置の構成を示すブロック図
[図 12]実施の形態 2における伝送モード選択用テーブルの一例を示した図
[図 13]実施の形態 3の無線通信装置の構成を示すブロック図
[図 14]実施の形態 3におけるリコンフィギユラブルディジタル信号処理部の構成例を 示すブロック図
[図 15]実施の形態 3におけるリコンフィギユラブルディジタル信号処理部の別の構成 例を示すブロック図
[図 16]実施の形態 3におけるリコンフィギユラブルディジタル信号処理部の別の構成 例を示すブロック図
[図 17]実施の形態 3におけるリコンフィギユラブルディジタル信号処理部の別の構成 例を示すブロック図
[図 18]実施の形態 3における無線通信装置の別の構成例を示すブロック図
[図 19]他の実施の形態の無線通信装置の構成を示すブロック図 [図 20]他の実施の形態の無線通信装置の構成を示すブロック図
発明を実施するための最良の形態
[0015] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[0016] (実施の形態 1)
図 3は、本発明の実施の形態 1における無線通信装置の構成例を示した図である。 無線通信装置 100は、複数の通信方式に対応可能とされており、本実施の形態では 一例として、セルラ系の通信方式 Aと無線 LAN系の通信方式 Bとに対応可能な無線 通信装置である。また、各々の通信方式における伝送速度として、無線 LAN系の通 信方式 Bの方が、セルラ系の通信方式 Aよりも、伝送速度が高速である場合を仮定 する。
[0017] 図 3において、アンテナ 101 (101a, 101b)は無線伝搬路を介して伝送された無線 信号を受信し、得られた高周波信号を出力するとともに、送信用に供給された高周 波信号を無線伝搬路へ放射するものであり、特に複数の通信方式が用いる RF周波 数帯に対応することを特徴とする。このようなアンテナの構成としては、例えば対象と する複数の通信方式が用いる周波数帯の全てを包含する広帯域特性を有するアン テナや、対象とする複数の通信方式が用いる周波数帯の各々に対して、電圧定在波 比を低くして、放射効率を高めるように構成した複共振型のアンテナを用いるとよい。 また、電気的制御が可能なスィッチや可変容量素子などを用いて、アンテナ素子の 電気長や共振モードを変化させて共振周波数を制御する、あるいは周波数の異なる 複数のアンテナ素子を備えておきスィッチで切替えるなどして構成した、複数の周波 数帯に適応可能な周波数制御型のアンテナ等を用いるとよい。なお、アンテナとして 前記周波数制御型のアンテナを用いる場合には、後述する対応する通信方式を変 更するための制御信号 113を、前記アンテナにも供給する構成とする。
[0018] リコンフィギユラブル無線処理部 102 (102a、 102b)は、アンテナ 101から供給され た高周波信号を入力とし、所望の周波数帯の信号を選択増幅した上で、所望の復調 処理ゃ復号処理を行い、得られた受信データを上位レイヤ処理部 103へ出力すると ともに、送信用のデータに対し所望の符号化処理や変調処理を行った上で、所望の 周波数帯への周波数変換、および増幅を行!ゝ得られた送信高周波信号をアンテナ 101へ供給する。力!]えて、リコンフィギユラブル無線処理部 102は、機能変更用の制 御信号 113 (113a、 113b)に応じて、その機能及び特性が変更可能なものである。
[0019] 本発明の無線通信装置は、前記アンテナ 101及びリコンフィギユラブル無線処理部 102による無線処理系統を複数もつ構成とされている。すなわち、無線通信装置 10 0は、複数のアンテナと複数のリコンフィギユラブル無線処理部を有する。本実施の形 態では、一例として 2つの無線処理系統を設けた場合について説明する。図 3では、 第 1の系統を構成する要素に付した番号の末尾に aを付し、第 2の系統を構成する要 素に付した番号の末尾に bを付して 、る。リコンフィギユラブル無線処理部 102 (102 a、 102b)は、リコンフィギユラブル RF部 1021とリコンフィギユラブルディジタル信号 処理部 1022により構成される。
[0020] リコンフィギユラブル RF部 1021は、受信処理として、アンテナ 101から供給された 高周波信号を入力とし、所望の周波数帯の信号を選択増幅及び周波数変換処理し 、得られた信号を出力する。またリコンフィギユラブル RF部 1021は、送信処理として 、リコンフィギユラブルディジタル信号処理部 1022から供給される変調信号に対して 、所望の周波数帯への周波数変換、増幅やフィルタリング等の処理を行い、得られた 送信信号をアンテナ 101へ供給する。さらに、リコンフィギユラブル RF部 1021は、機 能変更用の制御信号 113に応じて、その機能及び特性が変更可能な構成となって いる。本実施の形態では、変更可能な機能の一例として、搬送波周波数や変換利得 力 制御信号に応じて制御可能であるとする。
[0021] 図 4に、リコンフィギユラブル RF部 1021の構成例を示す。リコンフィギユラブル RF 部 1021は、リコンフィギユラブル送信部 10211、リコンフィギユラブル受信部 10212 及びリコンフィギユラブル局部発振部 10213により構成されて!、る。
[0022] リコンフィギユラブル送信部 10211は、リコンフィギユラブルディジタル信号処理部 1 022より供給される変調信号を、アンテナ 101から放射する高周波信号に変換する 役割があり、ベースバンドの変調信号力 高周波信号への周波数変換及び送信信 号レベルへの増幅といった機能を有する。さらにリコンフィギユラブル送信部 10211 は、機能変更用の制御信号 113に応じて、その機能及び特性が変更可能な構成と なっている。一般にセルラゃ無線 LANといった無線システムでは、電波法令や標準 規格によって使用する通信方式、周波数帯域、送信電力などの項目が制限されてい る。リコンフィギユラブル送信部 10211は、高周波信号の周波数帯域や送信電力が 制御信号 113によって制御可能であり、通信方式 Aもしくは通信方式 Bに対応する処 理系へ変更可能な構成となっている。これにより、種々の電波法令や標準規格に準 じた送信信号を形成することができる。また、通信方式によって変調精度、スプリアス 輻射量、隣接チャネル漏洩電力量などの特性の許容値も異なるが、これらの特性値 についても、制御信号 113によって構成要素である回路の動作を最適に調整するこ とで、適応可能となっているものとする。リコンフィギユラブル送信部 10211における 構成要素には電力増幅器、アップコンバータ、フィルタ、変調器などの回路があるが 、リコンフィギユラブル送信部 10211は、制御信号 113に応じて、これらの回路中の 素子のインピーダンスや能動デバイスのバイアスなどを変化させるなどして動作点を 調整する、もしくは各々の通信方式について最適化した回路を複数並列に配置して 切り替える、もしくはこれらを組み合わせた構成を採ることによって特性の最適化が可 能となっている。
リコンフィギユラブル受信部 10212は、アンテナ 101から供給された高周波信号を、 リコンフィギユラブルディジタル信号処理部 1022が処理可能なより低い周波数のァ ナログ信号に変換する役割があり、高周波信号力 ベースバンドのアナログ信号へ の周波数変換及び搬送波周波数の同調選択、微弱な受信信号の増幅といった機能 を有する。さらにリコンフィギユラブル受信部 10212は、機能変更用の制御信号 113 に応じて、その機能及び特性が変更可能な構成となっている。一般に受信する信号 のレベルは常に一定ではなぐ受信場所と通信対象の遠近や移動の有無などの要 因によって大きく変化することが想定され、この変化は利用する無線システムによつ ても異なる。リコンフィギユラブル受信部 10212は、受信した高周波信号を、リコンフィ ギユラブルディジタル信号処理部 1022が処理可能な周波数及び信号レベルに変換 する際の変換周波数や変換利得などが、制御信号 113によって制御可能であり、通 信方式 Aもしくは通信方式 Bに対応する処理系へ変更可能な構成とされて 、る。これ により、複数の無線システムに適応した処理を行うことができるようになつている。また 、一般にセルラゃ無線 LANといった無線システムでは、主に標準規格によって受信 信号のダイナミックレンジや対処可能な妨害波レベルと 、つた規定がなされて 、るが
、これらの特性値についても、制御信号 113によって構成要素である回路の動作を 最適に調整することで適応可能となっているものとする。リコンフィギユラブル受信部 1 0212における構成要素には、低雑音増幅器、ダウンコンバータ、フィルタ、復調器な どの回路があるが、リコンフィギユラブル受信部 10212は、制御信号 113に応じて、こ れらの回路中の素子のインピーダンスやフィルタの同調周波数、能動デバイスのバイ ァスなどを変化させるなどして動作点を調整する、もしくは各々の通信方式について 最適化した回路を複数並列に配置して切り替える、もしくはこれらを組み合わせた構 成を採ることによって特性の最適化が可能となっている。
リコンフィギユラブル局部発振部 10213は、リコンフィギユラブル送信部 10211及び リコンフィギユラブル受信部 10212における周波数変換に必要な周波数及び信号レ ベルの局部発振信号を発生する機能を有する。さらにリコンフィギユラブル局部発振 部 10213は、機能変更用の制御信号 113に応じて、その機能及び特性が変更可能 な構成となっている。リコンフィギユラブル局部発振部 10213の構成要素は、高安定 な水晶発振器などの基準発振器や周波数が可変な発振器、位相同期回路、増幅器 などの回路である。リコンフィギユラブル送信部 10211及びリコンフィギユラブル受信 部 10212において、周波数変換を行うアップコンバータやダウンコンバータは、一般 にミキサ回路によって構成され、変換前後の信号の和又は差の周波数成分を主とす る局部発振信号を必要とする。セルラ系ゃ無線 LAN系の無線システムでは、利用可 能な搬送波周波数が異なり、 UHF帯力もマイクロ波帯にかけて広範に亘る。リコンフ ィギユラブル局部発振部 10213は、制御信号 113によって局部発振信号の周波数 が広範に設定可能で、通信方式 Aもしくは通信方式 Bに対応する処理系に適応可能 な構成とされている。これにより、複数の通信方式に対応した局部発振信号を形成す ることができる。リコンフィギユラブル送信部 10211及びリコンフィギユラブル受信部 1 0212において、アンテナ 101から放射する高周波信号とリコンフィギユラブルディジ タル信号処理部 1022で処理するアナログ信号との間の周波数変換方法には、代表 的なものに直接変換するダイレクトコンバージョン方式と中間周波数を介して数回に 分けて変換するスーパへテロダイン方式があり、前者では搬送波周波数と同じ周波 数成分を有する局部発振信号が、後者の場合には異なる複数の局部発振信号が必 要となる。また、直交ミキサを利用する構成では、 90度の位相差を有する信号を得る ために、直交ミキサの周波数変換に必要な周波数の 2倍乃至 4倍の周波数成分を有 する局部発振信号が必要となる場合もある。以上のように、広帯域な局部発振信号を 生成する必要があるが、リコンフィギユラブル局部発振部 10213は、制御信号 113に 応じて、発振器を構成する共振素子の素子値や能動デバイスのバイアスなどを変化 させるなどして動作点を調整する、もしくは遁倍回路や分周回路を利用する、もしくは 所望の発振周波数帯域を複数に分割して、各周波数帯域につ!ヽて最適化した発振 回路を複数並列に配置して切り替える、もしくはこれらを組み合わせた構成を採ること によって、これらの局部発振信号を形成することが可能となっている。また、リコンフィ ギユラブル局部発振部 10213においては、通信方式によって異なる位相雑音などの 特性の要求に対しても、発振器の調整に加えて位相同期回路のループフィルタ定数 を制御するなどして、特性の最適化が可能となって 、る。
[0025] リコンフィギユラブルディジタル信号処理部 1022 (1022a、 1022b)は、受信処理と して、入力された変調信号を量子化してディジタル信号に変換した上で、所定の方 式に対応した復調処理及び復号処理等のディジタル信号処理を行!ヽ、得られた受 信データを上位レイヤ処理部 103へ出力すると共に、受信品質の収集に必要となる 受信信号 110を制御部 104へ出力する。またリコンフィギユラブルディジタル信号処 理部 1022は、送信処理として、入力された送信データに対して所定の方式に対応し た符号化処理や変調処理を施した上で、得られたディジタル変調信号をアナログ信 号に変換し、リコンフィギユラブル RF部 1021へ出力する。さらにリコンフィギユラブル ディジタル信号処理部 1022は、機能変更用の制御信号 113に応じて、その機能及 び特性が変更可能な構成となっている。本実施の形態では、変更可能な機能の一 例として、送受信処理の際の変調方式や符号化方式と、それに付随するインタリーブ やスクランブル処理、さらにはアナログ.ディジタル変換におけるサンプリングレートが 、制御信号に応じて変更可能な構成であることとする。
[0026] 図 5に、リコンフィギユラブルディジタル信号処理部 1022の構成例を示す。リコンフ ィギユラブルディジタル信号処理部 1022は、アナログ 'ディジタル変換部 10221、リ コンフィギユラブル送信処理部 10222及びリコンフィギユラブル受信処理部 10223に より構成されている。
[0027] アナログ 'ディジタル変換部 10221は、受信時には、リコンフィギユラブル RF部 102 1から供給される受信アナログ信号を、所定の量子化ビット数及びサンプリングレート で量子化し、これにより得たディジタル信号をリコンフィギユラブル受信処理部 10223 に出力する。一方、アナログ 'ディジタル変換部 10221は、送信時にはリコンフィギュ ラブル送信処理部 10222から供給されるディジタル変調信号を、所定のビット数及 びサンプリングレートでアナログ信号に変換し、送信アナログ信号をリコンフィギュラブ ル RF部 1021へ出力する。
[0028] リコンフィギユラブル送信処理部 10222は、入力された送信データに対して所定の 方式に対応した符号化処理や変調処理を施し、これにより得たディジタル信号をァ ナログ.ディジタル変換部 10221に供給する。さらにリコンフィギユラブル送信処理部 10222は、機能変更用の制御信号 113に応じて、その機能及び特性が変更可能な 構成となっている。本実施の形態では、変更可能な機能の一例として、送信処理の 際の変調方式や符号ィ匕方式と付随するインタリーブやスクランブル処理の方式を、 制御信号 113の内容に応じて通信方式 Aもしくは通信方式 Bに対応する処理系へ変 更可能な構成であることとする。
[0029] リコンフィギユラブル受信処理部 10223は、入力されたディジタル信号に対し、所定 の方式に対応した復調処理及び復号処理等のディジタル信号処理を行 ヽ、これによ り得た受信データを上位レイヤ処理部 103へ出力すると共に、受信品質の収集に必 要となる受信信号 110を制御部 104へ出力する。さらにリコンフィギユラブル受信処 理部 10223は、機能変更用の制御信号 113に応じて、その機能及び特性が変更可 能な構成となっている。本実施の形態では、変更可能な機能の一例として、受信処 理の際に対応する変調方式や符号化方式と付随するインタリーブやスクランブル処 理の方式を、制御信号 113の内容に応じて、通信方式 Aもしくは通信方式 Bに対応 する処理系へ変更可能な構成であることとする。
[0030] この実施の形態の場合、リコンフィギユラブル送信処理部 10222とリコンフィギユラ ブル受信処理部 10223の各々は、例えば FPGAデバイスにより構成されており、内 部回路の構成を記述した設定データを書き換えることにより、その構成及び動作内 容が変更可能とされている。
[0031] 上位レイヤ処理部 103は、送信時には、通信する相手局へ送信するデータを生成 し、これを複数のリコンフィギユラブル無線処理部 102に供給する。また上位レイヤ処 理部 103は、複数のリコンフィギユラブル無線処理部 102から出力される受信データ を入力し、対応するアプリケーションでの処理等の上位層における処理を行う。上位 レイヤ処理部 103は、例えば CPU等の汎用プロセッサにより構成されている。
[0032] 制御部 104は、複数のリコンフィギユラブル無線処理部 102 (102a、 102b)のそれ ぞれカも得られる通信リンク品質に関する情報 110 (110a、 110b)に基づいて、各リ コンフィギユラブル無線処理部 102による系統で対応すべき通信方式及び伝送モー ドを決定し、各々のリコンフィギユラブル無線処理部 102に対して、機能を変更するた めの制御信号 113 (113a、 113b)を出力する。本実施の形態における制御部 104 は、通信品質情報収集部 1041と、通信動作制御部 1042と、機能変更制御部 1043 とを有する。
[0033] 通信品質情報収集部 1041は、複数のリコンフィギユラブル無線処理部 102の各々 で受信復調処理の際に得られた信号 110 (110a、 110b)を用いて、各系統における 通信リンク品質に関する情報を収集し、収集した通信品質情報 111を通信動作制御 部 1042に出力する。本実施の形態の場合、通信品質情報収集部 1041は、各リコン フィギユラブル無線処理部 102 (102a、 102b)において得られた直交復調信号を受 信信号 110として用い、対象となる通信方式が存在するか否かの検出を行うとともに 、システムが存在する場合には、通信品質情報として受信 CNR (搬送波電力対雑音 電力比)値を推定する。受信 CNR値の推定方法については、本発明で特に限定さ れるものではな 、が、例えば受信結果として得られた信号点ベクトルの平均信号点 ベクトルの電力値と、平均信号点ベクトルを基準とした各ベクトルの分散値との比によ り算出する方法や、最尤系列推定や最尤復号が行われる方式では、その際のメトリツ ク値力 等価的な受信 CNR値を推定する方法等が適用可能である。
[0034] 通信動作制御部 1042は、通信品質情報 111に基づき、各リコンフィギユラブル無 線処理部 102が対応すべき通信方式及びその方式における伝送モードを選択し、 選択結果 112を出力する。その具体的な選択条件と手順の例については後述する。
[0035] 機能変更制御部 1043は、通信動作制御部 1042から出力される通信方式及び伝 送モードの選択結果 112に基づいて、リコンフィギユラブル無線処理部 102における 各構成要素の機能を変更するための制御信号 113 (113a、 113b)を出力する。本 実施の形態では、リコンフィギユラブル無線処理部 102がセルラ系の通信方式 Aと無 線 LAN系の通信方式 Bとに対応可能な構成としているので、機能変更制御部 1043 力 は、リコンフィギユラブル無線処理部 102を、これらの通信方式のうち、いずれか の通信方式へ切り換えることを示す制御信号 113が出力される。
[0036] この結果、無線通信装置 100は、各リコンフィギユラブル無線処理部 102が、どの通 信方式に対応する機能に変更されるかに応じて、図 6に示すような複数の伝送モード のうちの!/ヽずれかの伝送モードが選択的に設定されるようになされて ヽる。これにより 、無線通信装置 100においては、複数の伝送モードの中から、電波伝搬環境等に応 じて、最適な伝送モードを選択できるようになる。なお図 6に示す各伝送モードの詳 細については後述する。
[0037] 以上のような構成による無線通信装置 100により、通信方式 Aと通信方式 Bとを用 いて、所望のアプリケーションデータの通信を行う動作の一例として、装置の起動時 、通信待機時、通信時の 3通りに分け、以下で説明する。
[0038] 図 7は、無線通信装置 100の電源投入による、起動時および通信待機時の動作手 順の一例を示すフローチャートである。装置の電源が投入されると、リコンフィギユラ ブル無線処理部 102aは、制御部 104からの制御信号 113aに基づいて、通信方式 Aに対応するように機能が設定され、またリコンフィギユラブル無線処理部 102bは、 制御部 104からの制御信号 113bに基づ 、て、通信方式 Bに対応するように機能が 設定される(ステップ 101)。各リコンフィギユラブル無線処理部 102a、 102bの無線 処理系統では、それぞれの通信方式のサービス環境下にある力否かの検出が行わ れる (ステップ 102)。前記検出結果に基づき、通信待機時の動作内容が以下のよう に判定される。双方の通信方式のサービスが検出された場合 (ステップ 103)、それ ぞれの通信方式ともに通信待機の状態へ移行する (ステップ 104)。どちらか一方の 通信方式のサービスのみ検出された場合 (ステップ 105、 107)には、検出された通 信方式については通信待機状態へ移行し、そうでない通信方式については、引き続 き通信方式の検出を定期的に実施する (ステップ 106、 108)。双方ともに通信方式 の存在が検出できなかった場合には、引き続き定期的に双方の通信方式の検出を 実施する (ステップ 107)。なお、この場合には、装置の消費電力を低減するため、一 方のリコンフィギユラブル無線処理部のみを動作させ、定期的に通信方式 Aと通信方 式 Bとに機能を切り換えた上で、通信方式の検出動作を行ってもよい。
[0039] 図 8は、通信待機時の動作手順の一例を示すフローチャートであり、以下で各々の 動作について順を追って説明する。
[0040] 通信待機時には、待機対象となって 、る通信方式にぉ 、て、他局からの通信要求 がある力否力、もしくは自局における上位レイヤ処理部において、他局への通信要求 が発生している力否かを検出することにより、通信要求の有無を検出し、通信要求が 検出された場合には通信動作状態 (ステップ 115)へ移行し、そうでな!/ヽ場合にはス テツプ 112へ移行する (ステップ 111)。ステップ 112では、待機対象となっている通 信方式における所定の方法により、定期的にシステム制御情報の送受信や通信品 質情報 111の収集を行う。なお、ステップ 111とステップ 112は縦列に表現されてい る力 必ずしも双方が、縦列的に実施される必要はなぐそれぞれ並列的に、もしくは 異なる周期で実施するようにしてもよい。ここで、例えばリコンフィギユラブル無線処理 部 102aにおいて、通信方式 Aとの間のシステム制御情報の送受信が、間欠動作に より、一部の時間しか行われていないような状況下では、リコンフィギユラブル無線処 理部 102aの機能を、定期的に通信方式 Bに対応するように変更し、通信方式 Bに対 する通信リンク品質を監視しておいてもよい。そして、リコンフィギユラブル無線処理 部 102aと 102bの各々において、対応している通信方式との間の通信リンク品質が 逆転するような状況であるかの判定を行 ヽ (ステップ 113)、逆転して 、る状況であれ ば、各々のリコンフィギユラブル無線処理部 102a、 bにおいて、対応すべき通信方式 を逆に変更する。すなわち一方のリコンフィギユラブル無線処理部 102aにおいて、 通信方式 Bに対する通信待機動作を行 ヽ、もう一方のリコンフィギユラブル無線処理 部 102bにおいて、通信方式 Aに対する通信待機動作を行うように変更することにより 、通信待機時の通信リンク品質を維持するように動作させる (ステップ 114)。 [0041] また、定期的に収集された待機対象としている通信方式における通信品質情報 11 1に基づき、前記通信品質が、システム制御情報の送受信のための通信リンク維持 に十分な状態であるかを判断し (ステップ 116)、品質が劣化してリンクの維持が不可 能な状態である場合には、その通信方式における通信待機状態を解除し (ステップ 1 17)、サービス検出状態 (ステップ 118)へ移行する。ここで、サービス検出状態 (ステ ップ 118)の動作は、図 7における(ステップ 102)以降の処理に相当する。
[0042] また、例えば無線通信装置 100が通信方式 Aのみのサービスエリア内にあって、通 信待機動作をして!/ヽる場合、前記通信待機対象となって!/ヽる通信方式 Aに機能設定 されている方のリコンフィギユラブル無線処理部 102aの系統は、定期的に通信方式 Aに対する(ステップ 111)〜(ステップ 117)の一連の通信待機動作を行!、、必要に 応じて定期的なシステム制御情報の送受信を行う。また、通信待機対象となっていな い通信方式 Bに機能設定されているリコンフィギユラブル無線処理部 102bの系統で は、定期的に通信方式 Bのサービスが存在する力否かの検出動作を行う。リコンフィ ギユラブル無線処理部 102aにおける通信方式 Aとの通信リンクの品質が劣化した場 合には、リコンフィギユラブル無線処理部 102bは、通信方式 Aと通信待機動作をす るタイミングにのみ無線処理部の機能を通信方式 Aに対応すべく機能変更し、リコン フィギユラブル無線処理部 102bにお 、ても、通信方式 Aの通信待機動作用の信号 を受信し、リコンフィギユラブル無線処理部 102aと 102bとの間で受信ダイバーシチ 動作を行い、通信品質を改善させる。もしくは、リコンフィギユラブル無線処理部 102b における通信方式 Aとの通信リンク品質の方力 リコンフィギユラブル無線処理部 102 aにおけるものより、良い状況になった場合、通信方式 Aとの間の通信待機動作は、リ コンフィギユラブル無線処理部 102bが担うこととし、リコンフィギユラブル無線処理部 1 02aでは、逆に通信方式 Bが存在する力否かの検出動作を定期的に行うように動作 させてちょい。
[0043] 通信方式 Bのみのサービスエリア内にあって通信待機の動作をしている場合には、 上述した動作説明における通信方式 Aと B、リコンフィギユラブル無線処理部 102aと 102bとを入れ替えた説明が成り立つ。
[0044] 次に、前記通信待機状態において通信要求が検出され、通信動作制御状態に移 つた場合の動作手順の一例について説明する。本実施の形態では、他局と自局との 間でデータ通信を行うにあたっての動作形態として、複数の通信方式による複数の 通信リンクを、並列に用いることも含めて通信制御する場合について説明する。図 9 は、通信動作状態における通信制御手順の一例を示すフローチャートであり、この図 を用いながら、リコンフィギユラブル無線処理部 102aが通信方式 Aとの間で通信リン クを確立し、かつリコンフィギユラブル無線処理部 102bが通信方式 Bとの間で通信リ ンクを確立している状況下において、双方の通信リンクの品質に基づいて、各々のリ コンフィギユラブル無線処理部 102a、 102bで対応すべき、通信方式と伝送モードを 制御する動作について説明する。具体例として、各々の通信リンクの品質に応じて通 信方式間でダイバーシチ伝送動作をする伝送モードと、一方の通信方式にぉ 、てダ ィバーシチ伝送動作する伝送モード、さらには、 MIMOチャネル伝送動作をするよう な伝送モードを通信リンクの状況に応じて適応的に制御する動作について説明する 。ここで述べている MIMOチャネル伝送とは、送信側と受信側とで共に、複数の無線 処理系統を用いて複数の通信データ系列を多重して伝送する、いわゆる空間多重あ るいは時空間多重による伝送を行い、受信側で多重された伝搬路状況を推定し、得 られた伝搬路特性に基づ 、て、前記多重された複数のデータ系列を分離して受信 データを得る伝送方式のことである。
[0045] リコンフィギユラブル無線処理部 102aでは、通信方式 Aの所定の方式で自局宛に 送信された信号に対して、所定の信号処理を施し、受信復調結果を得る。また、リコ ンフィギユラブル無線処理部 102bでは、通信方式 Bの所定の方式で自局宛に送信 された信号に対して、所定の信号処理を施し、受信復調結果を得る。
[0046] 通信品質情報収集部 1041では、各リコンフィギユラブル無線処理部 102a、 102b によって得られた、双方が対応している通信方式の受信信号 110a、 110bを用いて 、各々の系統における受信 CNR値を推定し、推定結果に基づいて通信品質が判定 される (ステップ 121)。本実施の形態では、図 10に示すような判定テーブルを用い て通信品質を判定する。すなわち、受信信号の品質を良い順に「良」 >「可」 >「不良 」 >「不可」という 4種類に分類し、通信品質情報のパラメータとして、これらのうちいず れかを出力する。例えば、方式 Aについての受信 CNR値力 方式 Aにおける感度点 レベル (SL_A)よりも lOdB高い場合、通信品質を「可」とする。このようにして得られた 各々の通信方式についての通信品質情報 111が、通信動作制御部 1042に供給さ れる。
[0047] 通信動作制御部 1042では、入力された通信品質情報 111に基づき、所定の時間 間隔毎に、各リコンフィギユラブル無線処理部 102a、 102bが対応すべき通信方式と 伝送モードを選択し、選択結果 112を機能変更制御部 1043に通知する (ステップ 1 22)。ここで、通信動作制御部 1042において選択される通信方式と伝送モードの一 例を図 6に示す。
[0048] 以下、図 6の選択テーブルを用いて、各伝送モードにおける動作を説明する。
[0049] 通信方式 Aよりも伝送速度の高い、通信方式 Bにおける通信品質力 ^良」の場合に は、リコンフィギユラブル無線部 102a、 102bともに通信方式 Bに対応させることにより 、通信方式 Bにおいて、 MIMOチャネルによる多重伝送を行う伝送モードを選択す る。これにより、送信側及び受信側双方において、無線処理系統を 2系統有している 本実施の形態のような無線通信装置の構成の場合には、 1系統単独で伝送をした場 合に比べて、最大で約 2倍の伝送速度を得ることが可能となる。すなわち、各々の系 統で同一の通信方式を用いながら、別々の送信データを伝送路上に多重して並列 伝送し、受信側において各送信系統から各受信系統への伝送路特性を各々推定し 、得られた伝送路推定結果に基づいて、送信信号の分離を行うことが可能となり、も ともと一系統のみでデータ伝送して 、た場合に比べて、最大で 2倍程度の伝送速度 を得ることが可能となる。 MIMOチャネルによる伝送方法の詳細については、本発明 にお 、て特に限定されるものではな!/、が、例えば Arogyaswami Paulraj他著による" Int reduction to ¾pace— Time Wirelessし ommunications において ¾ されてい よつな、 MIMOチャネルにおける空間多重や時空間多重による伝送方法を用いることが可 能である。なお、上記のように MIMOチャネル伝送を行っている間においても、例え ば定期的にリコンフィギユラブル無線処理部 102aの構成を通信方式 Aに対応するよ うに制御し、通信方式 Aの通信品質を監視するよう制御してもよ 、。
[0050] 通信方式 Aにおける通信品質力 ^良」もしくは「可」の状態で、かつ通信方式 Bにお ける通信品質が「可」もしくは「不良」の状態の場合、通信方式 Aと通信方式 Bの双方 で通信リンクを構成し、これらを用いて方式間ダイバーシチにより通信を行うモードが 選択され、リコンフィギユラブル無線処理部 102aは通信方式 Aに対応させ、リコンフィ ギユラブル無線処理部 102bは通信方式 Bに対応させる。方式間ダイバーシチによる 伝送方式の具体例としては、伝送するデータを IPレイヤや上位レイヤにおけるバケツ ト単位で構成し、各々の通信リンクでの伝送速度に応じて送信するパケットの数を配 分して伝送する例があり、このようにすると伝送速度を最大で双方の通信リンクの伝 送速度の合計まで増やすことが可能となる。また、伝送するデータが伝送の上位レイ ャ(例えばアプリケーションレイヤ)において重要度等の面で差がある場合には、この 重要度に応じて伝送する通信リンクを選択して伝送してもよい。
[0051] 通信方式 Aにおける通信品質力 ^良」で、かつ通信方式 Bにおける通信品質が「不 可」の場合、リコンフィギユラブル無線処理部 102a、 102bをともに、通信方式 Aに対 応させ、通信方式 Aにお!/、て MIMOチャネルによる多重伝送を行うモードを選択す る。
[0052] 通信方式 Aにおける通信品質が「可」で、かつ通信方式 Bにおける通信品質が「不 良」以下の場合、リコンフィギユラブル無線処理部 102aのみを使用し、通信方式 Aの みにて通信を行うモードを選択する。逆に、通信方式 Aにおける通信品質が「不良」 以下で、かつ通信方式 Bにおける通信品質が「可」である場合、リコンフィギユラブル 無線処理部 102bのみを使用し、通信方式 Bのみにて通信を行うモードを選択する。 なお、一方の通信方式のみでの伝送モードが選択されている場合 (例えば、リコンフ ィギユラブル無線処理部 102aにより通信方式 Aのみにて通信を行っているような場 合)、通信動作をして 、な 、方(リコンフィギユラブル無線処理部 102b)の系統を用い 、定期的に通信していない方の方式 (通信方式 B)の方の通信品質を測定しておき、 この情報に基づいて所定時間後に改めて伝送モードの判定が行われる。ここで、通 信して 、な 、方の通信方式における通信品質測定は、必ずしもリコンフィギユラブル 無線処理部 102bで行う必要は無ぐリコンフィギユラブル無線処理部 102aにより通 信方式 Aにおいて間欠的に通信が行われている場合には、この通信がアクティブで ない状態の間に、リコンフィギユラブル無線処理部 102aの構成を通信方式 B用に再 構成した上で、通信方式 Bの通信品質を測定する構成としてもょ ヽ。 [0053] 通信方式 Aにおける通信品質が「不良」で、かつ通信方式 Bにおける通信品質が「 不可」である場合、双方のリコンフィギユラブル無線処理部 102a、 102bを通信方式 Aに対応させるよう制御し、いわゆるダイバーシチにより送受信する伝送モードを選 択する。すなわち、受信時には、通信方式 Aで自局宛に送信された信号を双方の系 統で受信した上で、受信品質の良い方の系統の受信結果を選択する、もしくは、双 方の系統での受信結果を合成し、受信結果を得る。また、送信時には、同じ送信デ ータを双方の系統を用いて送信処理を行う。
[0054] 逆に、通信方式 Aにおける通信品質が「不良」以下で、かつ通信方式 Bにおける通 信品質が「不良」である場合、双方の無線処理部 102a、 102bを通信方式 Bに対応さ せるよう制御し、通信方式 Bで自局宛に送信された信号をダイバーシチにより送受信 する伝送モードを選択する。
[0055] 最後に、通信方式 Aと通信方式 Bともに通信品質力 ^不可」な状態にある場合には 、いずれかの通信方式の品質が改善するまで、データ伝送動作を待機するモードを 選択する。
[0056] このような選択条件に基づいた、通信方式と伝送モードの選択が、所定の時間間 隔毎に行われ、選択結果 112が機能変更制御部 1043に通知される。
[0057] 機能変更制御部 1043では、伝送モードの選択結果 112に基づき、リコンフィギユラ ブル無線処理部 102a、 102bにおける、通信処理の機能を変更するための制御信 号 113 (113a、 113b)を出力する(ステップ 123)。具体的には、通信方式 Aか通信 方式 Bのいずれかの方式への対応をするような制御信号が出力され、これにより例え ば、リコンフィギユラブル RF部 1021a、 1021bにおいては、送受信する搬送波周波 数や送信電力などの設定が変更され、リコンフィギユラブルディジタル信号処理部 10 22a, 1022bにおいては、変調方式や符号化方式と、それに付随するインタリーブや スクランブル処理、さらにはアナログ.ディジタル変換におけるサンプリングレート等の 設定が変更される。
[0058] このようにして、リコンフィギユラブル無線処理部 102a、 102bは、選択された通信 方式及び伝送モードで通信するための機能変更が施される。また、選択された通信 方式及び伝送モードに関する情報は、機能変更されたリコンフィギユラブル無線処理 部 102a、 102bにより、各通信方式の送信局側へ通知され (ステップ 124)、通信相 手局側においても選択された伝送モードに対応し、通信相手局と無線通信装置 100 との間で送受信処理が行われる (ステップ 125)。例えば、伝送モードとして複数の通 信方式間でのダイバーシチ送受信を行うモードの場合、双方の通信方式がネットヮ ーク上で連携しデータ送信を行う。ここで、通信相手局における双方の通信方式によ る送受信は、必ずしも同一の無線通信装置によりなされる必要はなぐネットワーク等 を介して別々の無線通信装置により通信されてもよい。
[0059] また、通信相手局との間で所定の伝送モードによる送受信が行われて!/、ない区間 が存在する場合が検出される (ステップ 126)と、リコンフィギユラブル無線処理部 102 aもしくは 102bを、現在の伝送モードでは使用していない通信方式へ機能変更し、 通信品質に関する情報を取得してもよい。
[0060] 以上のように本実施の形態によれば、複数のアンテナと、複数のリコンフィギュラブ ル無線処理部と、複数のリコンフィギユラブル無線処理部をそれぞれ独立に制御して 、各リコンフィギユラブル無線処理部の処理内容を独立に切り換える制御部とを設け た構成とすることにより、各リコンフィギユラブル無線処理部にぉ 、て得られた通信品 質情報に基づいて、リコンフィギユラブル無線処理部の処理内容を適宜変更すること で、一台の無線通信装置において、単独の通信方式のみでのダイバーシチ送受信 を行うモード、 MIMOチャネルにおける空間多重伝送を行うモード、複数の通信方 式の間でのダイバーシチ伝送を行うモード、又は、単独の通信方式のみで伝送を行 うモード等の複数の伝送モードの中から、所望の伝送モードを適宜選択して通信を 行うことができるようになる。この結果、各々の通信方式との間で、時々刻々変化する 通信リンクの品質に応じて、従来に比べて、より広範囲な伝送モードの選択ォプショ ンの中から適切な伝送モードにより通信を行うことが可能となり、通信の信頼性及び 全体での伝送容量を向上させることができる。
[0061] これにより例えば、複数の伝送モードのうち、ダイバーシチダイバーシチ伝送により 複数の系統で得られた受信信号を、最大比合成法のように物理レイヤにおける信号 データの段階で合成処理するような処理が容易に実行可能となると!/ヽつた効果も得 られる。 [0062] なお、本実施の形態では、通信品質情報収集部 1041にお 、て収集する各無線処 理系統における通信リンク品質に関する情報として、各系統における受信 CNR値を 推定し得られた受信 CNR値に基づいて、図 10に示すような判定テーブルに基づい て 4段階に分けたものを用いる構成としたが、本発明は必ずしもこの構成に限定され るものではない。例えば、図 10に示したような判定テーブルにおける受信 CNR値に 対するしき 、値の具体的な値は、対象とする通信方式に応じて適切な値が異なるの で、適用する通信方式に応じて異なる値を用いてもよい。また、品質の分類は必ずし も 4段階である必要はなぐ場合によっては 3段階以下や 5段階以上に分類してもよく 、この場合これに対応して伝送モード選択用のテーブルを改めて用意すればょ 、。 また、受信 CNR値を推定する代わりに別のパラメータを用いてもよぐこの場合、使 用されるパラメータについての図 10に相当する判定テーブルが用意されればよい。 例えば、別のパラメータとして、受信データのビット誤り率 (Bit Error Rate)やフレーム 消失率 (Frame Erasure Rate)を、測定もしくは推定して用いる構成としてもよいし、干 渉も含めたパラメータとして CIR (搬送波電力対干渉波成分電力比)等のパラメータ を用いる構成としてもよい。
[0063] また、通信動作制御部 1042において選択される伝送モードの候補として、図 6の テーブルに示したようなモードを示した力 必ずしもここに挙げた全ての伝送モードに 対応する必要はなぐ対象とする通信方式及び要求される条件に応じて、適用される 伝送モードの内容を変更してもよ 、。例えば一部の伝送モードを選択肢から省略し た動作としても、本発明による効果は期待できる。また、一部選択される伝送モードを 、別の伝送モードに替えたテーブルを用いた制御としてもよい。例えば、図 6のテー ブルにおいて、通信方式 Aにおける品質が「良」で、通信方式 Bにおける品質が「不 可」である状況にぉ 、て、選択される通信方式 Aによる MIMO伝送のモードを省略し 、代わりに通信方式 A単独で通信する伝送モードが選択されるよう制御してもよい。さ らには、図 6で例示していない伝送モードを新たに適用することも可能である。例えば 、新たな伝送モードとして、複数の無線処理系統を用いてアンテナの指向性制御を 行う伝送モードを設け、通信方式 A、 Bともに通信品質が不良もしくは不可な状況下 においては、指向性制御による利得向上効果や干渉成分の抑圧効果により、通信の 信頼度向上を図るよう通信制御することとしてもよい。また、対象とする通信方式にお いて、変調方式を適応的に制御する、いわゆる適応変調方式が採用されているよう なシステムの場合、図 6にお 、て一方の通信方式単独で伝送するモードで通信して V、る際に、使用して 、な 、ほうの無線処理系統も用いて指向性制御を行うことにより 前記効果を得、より高効率な変調方式を選択して伝送速度を向上されるよう制御して ちょい。
[0064] また、図 6に示した伝送モードのうち、ダイバーシチでの伝送モードの際の具体的な 動作例として、無線通信装置において複数の無線処理系統を用いて送受信する、い わゆる空間ダイバーシチによる伝送を一例として説明した力 本発明は必ずしも空間 ダイバーシチに限定されるものではない。例えば、時間ダイバーシチゃサイトダイバ ーシチとの組み合わせによる伝送方法を適用してもよい。
[0065] また、 MIMOによる伝送モードやダイバーシチによる伝送モードが選択された場合 、各々の無線処理系統において受信された受信信号を用いて、 MIMOにより多重さ れた信号の分離処理や、ダイバーシチにより送信されたブランチ毎の受信信号の合 成処理といった後処理が必要となる。また、 MIMO伝送モードによる送信時には、送 信データを複数の無線処理系統に対して分割するといつた前処理が必要となる。こ れらの処理をどこで行うかについては本発明の本質的な部分ではないが、例えば上 位レイヤ処理部 103において行うこととしてもよい。また例えば、一方のリコンフィギュ ラブル無線処理部 102aで前処理を行 、、リコンフィギユラブル無線処理部 102bが、 前記前処理の結果と自らの前処理の結果を用いて後処理を行う構成としてもょ 、。
[0066] また、リコンフィギユラブルディジタル信号処理部 1022a、 1022bにおいて、制御信 号に応じて変更可能な機能の一例として、サンプリングレート、送受信時の変調方式 及び符号ィ匕方式をあげたが、本発明はこれらに限定されるものではない。例えば、ァ ナログ'ディジタル変換部における量子化ビット数を変更する構成としてもよいし、ディ ジタルフィルタ処理を行う場合にはそのタップ係数等のフィルタ特性に関わるパラメ ータを変更可能としてもよい。また、等化処理や再送等による誤り制御方式を変更可 能としてもよい。
[0067] また、リコンフィギユラブル送信処理部 10222とリコンフィギユラブル受信処理部 10 223とは、それぞれ FPGAデバイスにより構成されるものとした力 本発明はこの構成 に限定されるものではなぐ例えば FPGAデバイスの代わりにソフトウェア命令による 演算処理が可能な DSPデバイスや CPUデバイスを使用し、ソフトウェアプログラムの 再読み込み、もしくはサブルーチンの読み出し先の変更により複数の通信方式に対 応可能とする構成としてもよい。もしくは、これらのデバイスの代わりに、 FPGAデバイ スよりも高速に、その内部構成及び演算内容を動的に変更可能な、いわゆるリコンフ ィギユラブルプロセッサ等のデバイスを用いる構成としてもよい。ここで、リコンフィギュ ラブルプロセッサの構成としては、例えば機能を個別に変更可能な算術演算ユニット
(ALU)が複数配置され、さらに各々の算術演算ユニットの間の接続関係を変更可 能な構成とし、前記各々の算術演算ユニットにおける演算機能と、それらの間の接続 関係を動的に変更することにより、複数の通信方式に対応可能とした構成のものを適 用してもよい。もしくは、フィルタ、 FFT、復号処理といった機能ブロック毎にパラメ一 タ変更により処理仕様の変更が可能な専用回路を設け、各々の機能ブロックにおけ る処理仕様 (例えば、フィルタにおけるタップ数やタップ係数、 FFT処理における要 素ポイント数、復号処理における処理ビット数、符号化率や生成多項式等)を変更可 能な、 、わゆる特定信号処理エンジン (コプロセッサ)を併設した CPUデバイス等を 適用してもよい。また、送信処理部と受信処理部とで別々のデバイスを用いることとし た力 これに限定されるものではなぐ一つのデバイスで送信処理部と受信処理部を 構成してちょい。
[0068] また、制御部 104を、独立した機能部として構成した場合にっ 、て述べたが、これ に限定されるものではなぐ例えば上位レイヤ処理部 103が CPU等のプロセッサによ り構成される場合、この処理部内における制御ソフトウェアモジュールの一つとして、 制御部 104の機能を含めてもよい。この場合、各リコンフィギユラブル無線処理部 10 2a、 102bへの機能変更用の制御信号 113は、上位レイヤ処理部 103から供給され る形態となり、また各リコンフィギユラブル無線処理部 102a、 102bから出力される受 信信号 110は、受信データと共に上位レイヤ処理部 103へ供給される形態となる。
[0069] また、本実施の形態では、通信動作として通信方式 Aと通信方式 Bを、複合的に用 V、てデータ伝送を行う形態につ!、てのみ例示したため、その他の形態にっ 、ては説 明していない。その他の形態として、例えば従来のように一方の通信方式のみを用い て、独立に通信を行う使用形態が考えられるが、本発明の本質を変えない範囲にお V、て、このような使用形態も含めた動作制御を行ってもよ!、ことは言うまでもな!/、。
[0070] また、本実施の形態では、リコンフィギユラブル無線処理部 102aによる系統(以下、 無線処理系統 aと呼ぶ)とリコンフィギユラブル無線処理部 102bによる系統(以下、無 線処理系統 bと呼ぶ)とは同様の構成及び機能をもち、同時並行的に処理が行われ る構成及び動作を仮定している力 本発明は必ずしもこれに限定されるものではない 。例えば、無線処理系統 bは無線処理系統 aに比べてその性能や機能が限定され、 無線処理系統 aで通信を行っている方式とは異なる側の通信方式の通信リンク品質 を定期的に監視する動作のみ行う構成としてもよい。この場合、通信制御において選 択可能な伝送モードは図 6で示したものに比べて限られたものとなる。例えば MIMO による伝送モードやダイバーシチによる伝送モードは選択できな 、が、通信リンクの 品質に応じて複数の無線処理系統や通信方式力 最適な系統および方式を選択し て、通信を行うような構成も可能であり、従来よりも通信リンクの品質状況に応じて、柔 軟に対応可能な無線通信装置を実現することが可能となる。
[0071] また、通信動作制御部 1042における伝送モードの選択動作は、所定の時間毎に 行うものとしたが、本発明は必ずしもこれに限定されるものではなぐ例えば選択動作 を行う間隔は不定期に行うこととしてもよいし、入力される各通信方式の通信リンク品 質に関する情報が変化した場合に前記選択動作を行う構成としてもよい。
[0072] また、本実施の形態では、通信方式 Aの一例としてセルラシステムを、通信方式 B の一例として無線 LANシステムを想定した形態を示した力 これはあくまでも一例で あり、その他の通信方式による構成としてもよい。例えば、放送系のディジタル TV放 送やディジタルオーディオ放送に対応する構成としてもょ 、し、ピコセル系の通信方 式 (IEEE802.15系の標準規格に準じた通信方式)に対応可能な構成としてもよい。さ らには、微弱電力送信により独自な通信方式を用いる構成としてもよい。
[0073] また、本実施の形態では、リコンフィギユラブル無線処理部を 2系統設け、同時に 2 つの無線処理系統を動作させることを一例として示した力 無線処理系統数が 2に限 定される必要が無いことは言うまでもなぐ 3系統以上の無線処理系統を用いた構成 でも、各々の無線処理系統における通信品質に関する情報を収集し、これらの情報 に基づいて対応する動作モードを決定するための判断テーブルを改めて定義しなお すことにより適用可能であることは明らかである。特に、無線処理系統数が 3以上であ る場合には、一部の複数の無線処理系統によりダイバーシチゃ MIMO伝送による伝 送を行い、さらに別の無線処理系統との間で通信方式間ダイバーシチによる伝送を 行うような伝送モードの設定も可能となる。
[0074] また、本実施の形態における無線通信装置 100の構成において、制御部 104から 各リコンフィギユラブル無線処理部 102へ接続される制御信号 113の構成、接続形 態と伝送方法にっ 、ては、本発明にお 、て特に限定されるものではな 、ので明示し ていない。し力しながら、その構成例を挙げるとすれば、対応する方式を通信方式 A にするのか通信方式 Bにするのかを示すビットデータと設定の変更を許可するイネ一 ブル信号とのセットを制御信号 113として供給することとし、各々のリコンフィギュラブ ル RF部やリコンフィギユラブルディジタル信号処理部では、供給されたビットデータと ィネーブル信号とに基づいて、各機能変更部分の設定を変更するよう構成すること ができる。もしくは、各設定変更部への直接制御線を各々設けることとし、機能変更 制御部 1043から出力される制御信号 113は、各々制御線を用いて各々の設定変更 部へ直接供給されるよう構成してもよいし、さらには共通バス経由で供給されるよう構 成してちょい。
[0075] (実施の形態 2)
図 11は、本発明の実施の形態 2における無線通信装置の構成例を示した図である 。図 11において、実施の形態 1の図 3で示した無線通信装置 100における構成要素 と同様の構成及び動作をするものについては、図 3と同じ番号を付している。本実施 の形態の無線通信装置 200が、実施の形態 1の無線通信装置 100 (図 3)の構成と 異なるのは、上位レイヤ処理部 103の代わりに上位レイヤ処理部 201を設け、制御 部 104の代わりに制御部 202を設けた点である。
[0076] 上位レイヤ処理部 201は、基本的には上位レイヤ処理部 103と同様の動作をする ものであるが、さらに、上位レイヤでの処理の一つとして、通信に関する要求条件を ユーザから得、得られた情報を出力する処理を行うものである。本実施の形態では、 要求条件の一例として、通信の際に発生し得る料金に関するユーザからの要求条件 を、アプリケーションソフト上でユーザが選択するものとし、上位レイヤ処理部 201が 必要に応じて、前記ユーザが選択した要求条件に関する情報を出力するものとする
[0077] 制御部 202は、複数のリコンフィギユラブル無線処理部 102a、 102bの各系統で受 信した信号の通信リンク品質に関する情報 110a、 110bと、通信の際の上位レイヤに おいて処理されるアプリケーション等において、ユーザにより設定された要求条件 21 0とを入力とし、これら二つの情報に基づいて、各無線処理系統の対応すべき通信 方式及び伝送モードを決定し、各々のリコンフィギユラブル無線処理部 102a、 102b に対して、機能を変更するための制御信号 113a、 113bを出力する。本実施の形態 における制御部 202は、要求条件収集部 2021と、通信動作制御部 2022と、通信品 質情報収集部 1041と、機能変更制御部 1043とにより構成されている。このうち通信 品質情報収集部 1041と機能変更制御部 1043とは、図 3における同一番号の構成 要素と同様の構成及び動作をするものであり、ここでは説明を省略する。
[0078] 要求条件収集部 2021は、上位レイヤ処理部 201から供給されるユーザの要求条 件に関する情報 210を収集し、収集結果 211を通信動作制御部 2022へ供給する。 その動作の詳細については後述する。
[0079] 通信動作制御部 2022は、通信品質情報収集部 1041から供給される通信品質情 報 111と要求条件収集部 2021から供給される収集結果 211とを入力とし、これらの 情報に基づいて、各無線処理系統が、対応すべき通信方式システム及びそのシステ ムでの伝送モードを選択し、選択結果 212を出力する。その具体的な決定手順の一 例については後述する。
[0080] ここで、本実施の形態における通信サービス形態の一例として、セルラに相当する 通信方式 Aによるサービスにおいては、通信するデータの容量に応じて重量的に料 金が発生するものとし、さらに通信方式 Aにおいて MIMOによる多重伝送を行う場合 には、さらに追加料金が発生するものとする。一方、無線 LANに相当する通信方式 Bによるサービスにおいては、通信料金はデータ容量には依存しないものとし、さらに MIMOによる多重伝送を行っても追加料金は発生しないものとする。また、通信方式 Aと通信方式 Bとによるシステム間ダイバーシチによる伝送を行う場合には、双方の 通信方式に対して追加料金が発生するものとする。
[0081] 以上のような構成による無線通信装置 200の動作について、実施の形態 1の無線 通信装置 100とは異なる動作をする部分について、以下で説明する。
[0082] 上位レイヤ処理部 201は、通信の上位レイヤにおける処理の一つとして、通信の際 に発生する料金に関する要求条件をユーザに設定してもらう。具体的には、上位レイ ャ処理部 201にお!/、て実行されて 、るアプリケーションソフトウェアにお 、て、通信料 金を節約するモード (以下、料金優先モード)と、料金がよりかかっても、通信リンクの 維持もしくは伝送速度の確保を図るモード (以下、通信優先モード)との、いずれのモ ードがよいかについての選択をユーザに求め、選択されたモードに関する情報を記 憶しておく。
[0083] 要求条件収集部 2021は、上位レイヤ処理部 201から前記ユーザが選択したモー ドに関する情報 210を読み出し、要求条件の収集結果 211として出力する。一方、通 信品質情報収集部 1041は、実施の形態 1での説明と同様の動作をし、複数のリコン フィギユラブル無線処理部 102a、 102bから得られた各々の通信方式についての通 信品質情報 111を出力する。
[0084] 通信動作制御部 2022は、前記要求条件の収集結果 211と通信品質情報 111とに 基づき、所定の時間毎に、各リコンフィギユラブル無線処理部 102a、 102bが対応す べき通信方式及び伝送モードを選択し、選択結果 212を機能変更制御部 1043へ供 給する。ここで、通信動作制御部 2022において選択される通信方式及び伝送モー ドの一例を図 12に示す。
[0085] 以下、図 12の選択テーブルを用いて、各伝送モードにおける動作を説明するが、 実施の形態 1における選択テーブル(図 6)と同名の伝送モードについては、実施の 形態 1で説明したものと同様の動作であるため、ここでは説明を省略する。
[0086] 通信方式 Aにおける通信品質力 ^良」もしくは「可」の状態で、かつ通信方式 Bにお ける通信品質が「可」である場合、ユーザが設定した要求条件に応じて、以下の二通 りの伝送モード選択が行われる。まず、ユーザが通信リンクの伝送速度確保を図る、 通信優先モードを設定していた場合、通信速度を確保するために、通信方式 Aと通 信方式 Bとの間で各々の通信リンク品質に応じた方式間ダイバーシチ通信を行う伝 送モードが選択される。一方でユーザが通信料金を節約する、いわゆる料金優先モ ードを設定した場合、追加料金の発生する方式間ダイバーシチの伝送モードは選択 せず、通信料金が発生しない通信方式 B単独による伝送モードが選択される。それ ぞれ、選択された伝送モードにおいて、リコンフィギユラブル無線処理部 102a、 102 bが、どちらの通信方式に対応するよう設定されるかについては、実施の形態 1にお いて同名の伝送モードが選択された場合と同様である。
[0087] 通信方式 Aにおける通信品質力 ^良」もしくは「可」の状態で、かつ通信方式 Bにお ける通信品質力 ^不良」である場合、ユーザが設定した要求条件に応じて、以下の二 通りの伝送モード選択が行われる。通信優先モードが設定されている場合、通信方 式 Bにおける通信品質が不良な状態であっても、通信方式 A単独の場合よりも高い 伝送速度が得られる可能性があるため、通信方式 Aと通信方式 Bとの間で、各々の 通信リンク品質に応じた方式間ダイバーシチ通信を行う伝送モードが選択される。一 方で、料金優先モードが設定されている場合、通信方式 A単独による伝送モードが 選択される。
[0088] 通信方式 Aにおける通信品質力 ^良」の状態で、かつ通信方式 Bにおける通信品質 力 S「不可」な状態である場合で、通信優先モードが設定されている場合、通信方式 A において、 MIMOチャネルによる多重伝送を行うことにより、高い通信速度を確保す る。一方で、料金優先モードが設定されている場合、 MIMOチャネルによる多重伝 送での追加料金を避けるため、リコンフィギユラブル無線処理部 102aのみを用いて、 通信方式 A単独で、通常のデータ伝送を行う伝送モードが選択される。
[0089] その他の通信リンク品質の組み合わせの場合には、実施の形態 1の場合と同様の 伝送モードが選択される。
[0090] 以上のような構成によれば、複数のリコンフィギユラブル無線処理部の処理内容を、 各リコンフィギユラブル無線処理部によって得られる品質情報に加えて、ユーザから の要求条件に基づいて選択するようにしたことにより、ユーザからの要求条件を満た しつつ、各々の通信方式との間で、時々刻々変化する通信リンクの品質に応じて、適 切な通信方式及び伝送モードにより通信を行うことが可能となる。この結果、ユーザ 力もの要求条件を満たしつつ、通信の信頼性及び全体での伝送容量を向上させるこ とがでさる。
[0091] なお、本実施の形態では、伝送モード選択用のテーブルの一例として、図 12に示 すようなテーブルを示した力 本発明は必ずしもこのテーブルの内容に限定されるも のではなぐ通信品質に関する情報及びユーザの要求条件に応じて選択されるモー ドの選択肢を、さらに細分ィ匕してもよいし、逆に複数の選択肢を統合してもよい。例え ば、通信優先モードの場合には、選択テーブルをさらに細分ィ匕し、通信方式 Aにお ける通信品質が「良」で通信方式 Bにおける通信品質が「不良」で、方式間ダイバー シチによる伝送を行っても、十分な伝送速度ができないような状況の場合には、リコ ンフィギユラブル無線処理部 102a、 102bともに通信方式 Aに対応するよう設定し、 通信方式 Aにお!/、て、 MIMOチャネルによる多重伝送を行うような選択テーブルを 設けてもよい。
[0092] また、図 12に示したような選択テーブルに基づいて伝送モードを決定する形態に ついて述べたが、本発明は必ずしも選択テーブルに基づいたモード選択に限定され るものではない。例えば、判定材料とするパラメータを、ユーザの要求条件に応じて あらかじめ定めておき、このパラメータに関する定量評価値を算出し、算出結果に基 づいて伝送モードを決定する構成としてもよい。具体的には例えば、ユーザが通信 速度を優先するモードを要求して 、る場合、現状の各通信方式における通信品質に 基づき、各伝送モードで伝送した場合に得られる伝送速度の推定値を算出し、この 値が最大となる伝送モードを選択するよう構成すればよい。また、ユーザが通信料金 の節約を優先するモードを要求して 、る場合、現状の各通信方式における通信品質 に基づき、各伝送モードで所定のサイズのデータを伝送した場合に発生する通信料 金の推定値を算出し、この値が最小となる伝送モードを選択するよう構成すればよい
[0093] また、本実施の形態では、通信品質に関する情報以外の要求条件として、ユーザ 力ゝらの通信信頼性もしくは料金に関する要求を収集する場合の形態を示したが、本 発明はこれに限定されるものではなぐ他の形態によっても実施することが可能であ る。なぜなら本発明の本質は、複数のリコンフィギユラブル無線処理部と制御部とを 設け、各々の無線処理系統における通信品質情報とその他の要求条件に基づいて 、適切な通信方式および伝送モードを選択して、前記複数のリコンフィギユラブル無 線処理部の機能を変更するよう制御し通信することであるので、その本質を変えな ヽ 範囲において、様々な形態での実施が可能である。例えば、無線通信装置 200によ り伝送される上位レイヤにおけるアプリケーションにおいて、伝送遅延量に関する要 求条件がある場合には、この条件も加味した伝送モード選択用テーブルを用意し、こ れに基づき通信方式と伝送モードの制御を行う構成としてもよい。
[0094] (実施の形態 3)
図 13は、本発明の実施の形態 3における無線通信装置の構成例を示した図である 。図 13において、実施の形態 1の図 3で示した無線通信装置 100における構成要素 と同様の構成及び動作をするものについては、図 3と同じ番号を付している。本実施 の形態の無線通信装置 300が、実施の形態 1の無線通信装置 100 (図 3)の構成と 異なるのは、リコンフィギユラブル無線処理部 102a、 102bにおけるリコンフィギュラブ ルディジタル信号処理部 1022a、 1022bの代わりにリコンフィギユラブルディジタル 信号処理部 301を設け、上位レイヤ処理部 103の代わりに上位レイヤ処理部 302を 設け、制御部 104の代わりに制御部 303を設けた点である。
[0095] リコンフィギユラブルディジタル信号処理部 301は、図 14に示すように、複数のリコ ンフィギユラブル RF部 1021a、 1021bとの間でアナログ信号を入出力する入出力接 続インタフェースを有すると共に、上位レイヤとの間で送受信データを入出力する入 出力接続を行うインタフェースを有し、図 3における複数のリコンフィギユラブルディジ タル信号処理部 1022a、 1022bと同様の処理を行うものである。
[0096] この実施の形態では、実施の形態 1と同様に 2系統の無線処理系統に対応する例 を示す。リコンフィギユラブルディジタル信号処理部 301は、アナログ 'ディジタル変換 咅 3011a、 301 lbと、 I/Oノ ッファ 3012a、 3012bと、ノ ス 3013と、マノレチスレッド ディジタル信号処理部 3014と、メモリ 3015とを有する。
[0097] アナログ ·ディジタル変換部 3011は、図 3におけるアナログ ·ディジタル変換部 102 21と同様の構成及び動作をするものである。
[0098] IZOバッファ 3012は、受信時にはアナログ ·ディジタル変換部 3011から出力され るサンプリングされたディジタル信号列を一時記憶した後、所定の規則に応じて読み 出してバス 3013へ供給し、送信時にはバスを介して供給されたディジタル信号列を 一時記憶した後、所定の規則で読み出しアナログ 'ディジタル変換部 3011へ供給す る。ノ ッファの構成については特に限定されるものではなぐ例えば FIFOバッファや リングバッファ等の既知である種々のバッファを適用することが可能である。
[0099] ノ ス 3013は、複数の処理ブロック間でディジタルデータの伝送を行うための共通 のデータ伝送バスであり、ここでは複数の I/Oバッファ 3012a、 3012b,マルチスレ ッドディジタル信号処理部 3014、メモリ 3015、外部の上位レイヤ処理部 302とのイン タフエース部との間をバス接続する。本発明では、バスの詳細な構成とデータ伝送形 態の詳細にっ 、ては特に限定されるものではな 、。
[0100] マルチスレッドディジタル信号処理部 3014は、複数の系統から入力された受信信 号のディジタル信号処理及び複数の系統へ出力する送信信号のディジタル信号処 理を、一つの処理系統において、時分割もしくは並列的に処理するものであり、さら に、機能変更用の制御信号 315に応じて、その機能及び特性が変更可能な構成と なっている。また、マルチスレッドディジタル信号処理部 3014は、各無線処理系統に おいて得られた受信信号 313を制御部 303に送出する。本実施の形態では、マルチ スレッドディジタル信号処理部 3014の構成例として、マルチスレッドディジタル信号 処理部 3014をリコンフィギユラブルデバイス 30141 (CPU)と、タイマ 30142とにより 構成する。
[0101] リコンフィギユラブルデバイス 30141は、入力されたディジタル信号に対して所望の ディジタル信号処理を行うものであり、機能変更用の制御信号 315に応じて前記所 望のディジタル信号処理の内容を変更可能なものである。本実施の形態では、リコン フィギユラブルデバイス 30141を、ソフトウェアプログラムの変更により所望のディジタ ル信号処理の内容に変更可能な CPU (中央演算処理ユニット)により構成する。そし て、ソフトウェアプログラムを、例えばメモリ 3015から必要に応じて読み込む構成とな つている。ここで、ソフトウェアプログラムは、例えば実施の形態 1で図 6や図 12で例 示した伝送モード毎に構成されてメモリ 3015に蓄積されており、伝送モードの変更 が決定されると該当するソフトウェアプログラムが前記メモリ 3015から読み出される。 [0102] タイマ 30142は、所定のタイミングクロックに基づいて CPU30141へ割り込みタイミ ングを与える。
[0103] メモリ 3015は、バス 3013を介して伝送されるデータを一時記憶し、必要に応じて 読み出し処理するものであり、ディジタル信号処理を行う対象となるディジタルデータ を記憶する。また、 CPU30141の処理内容を記述したソフトウェアプログラムも記憶 する構成としてちよい。
[0104] 上位レイヤ処理部 302は、基本的には図 3における上位レイヤ処理部 103と同様の 処理をするものであるが、リコンフィギユラブルディジタル信号処理部との入出力のィ ンタフ ースが 2系統ではなく 1系統に統合されており、 2系統の無線処理系統向け の送受信データを、前記統合された 1系統のデータバス 312を介して、リコンフィギュ ラブルディジタル信号処理部 301との間で伝送するよう変更した点が異なる。
[0105] 制御部 303は、基本的には図 3における制御部 104と同様の構成及び動作をする ものであるが、異なるのは、図 3における複数のリコンフィギユラブル無線処理部 102 への機能変更用の制御信号 113の代わりに、複数のリコンフィギユラブル RF部 1021 への機能変更用の制御信号 314 (314a, 314b)とリコンフィギユラブルディジタル信 号処理部 301への機能変更用の制御信号 315とを個別に出力するよう構成した点で ある。
[0106] 以上のような構成による無線通信装置 300の動作について、実施の形態 1の無線 通信装置 100とは異なる動作をする部分について、以下で説明する。
[0107] 受信時には、複数のリコンフィギユラブル RF部 1021aと 1021bの各々で受信し、信 号処理された信号 31 la、 31 lb力 リコンフィギユラブルディジタル信号処理部 301 へ供給され、各々がアナログ 'ディジタル変換部 301 la、 301 lbによりディジタル信 号へと量子化され、 I/Oバッファ 3012a、 3012bを介して、メモリ 3015に蓄積される 。マルチスレッドディジタル信号処理部 3014は、タイマ 30142から供給される定期的 な割り込み信号に基づき、 CPU30141にお 、て処理するディジタル信号を一時蓄 積されているメモリ 3015から逐次読み込み、所望の信号処理を行い、これにより得た 処理結果を、バス 3013を介して、上位レイヤ処理部 302へ供給する。
[0108] 送信時には、上位レイヤ処理部 302から供給された送信データが、バス 3013を介 して入力され、受信時の処理と同様に CPU30141において時分割により複数の無 線処理系統向けの信号処理が行われ、生成された送信信号が各々のリコンフィギュ ラブル RF部 1021a、 1021bへ I/Oバッファ 3012及びアナログ 'ディジタル変換部 3 011とを介して供給される。
[0109] このように無線通信装置 300においては、各々の無線処理系統において受信した 複数の通信方式における通信リンクの品質情報と必要に応じてユーザ等力 与えら れた要求条件とに基づ 、て、通信すべきシステム及び伝送モードを選択した上で、 複数のリコンフィギユラブル RF部 1021a、 1021b及び一系統のリコンフィギユラブル ディジタル信号処理部 301の構成を変更し、所望の伝送モードで通信する。
[0110] 以上のような構成によれば、機能及び性能の変更が可能なリコンフィギユラブル無 線処理部を複数系統設ける際に、リコンフィギユラブルな RF部 1021a、 1021bは所 望の複数系統設け、リコンフィギユラブルディジタル信号処理部 301については一つ の系統で構成し、リコンフィギユラブルディジタル信号処理部 301にお ヽて時分割も しくは並列的に複数の無線処理系統用の信号処理を行うようにしたことにより、実施 の形態 1の効果に加えて、ディジタル信号処理部の構成を複数系統設ける必要が無 くなるため、通信装置を小型化'低コストィ匕することが可能となる。
[0111] なお、本実施の形態では、 CPU30141で処理されるソフトウェアプログラムは伝送 モード毎に構成され、伝送モードの変更の都度、メモリ 3015から読み込まれる構成 及び動作としたが、本発明は必ずしもこれに限定されるものではなぐ例えば CPU3 0141が内部メモリを有するような場合には、内部メモリに複数の通信方式用の信号 処理プログラムを全て常駐しておき、必要な処理モジュールのみを選択的に実行す る構成としてちよい。
[0112] また、マルチスレッドディジタル信号処理部 3014は、図 14に示したような CPU301 41とタイマ 30142による構成に限定されるものではなぐ例えば図 15に示すように、 マルチスレッドディジタル信号処理部 3016を、リコンフィギユラブルデバイス 30161と リコンフィギュレーション制御部 30162とにより構成してもよい。この場合、リコンフィギ ユラブルデバイス 30161としては、例えば、処理内容の変更が可能な複数の演算用 ユニットをアレイ状に構成し、その各々の間の配線を任意に変更可能な構成としたも のを適用すればよい。また、パラメータを変更することによって、複数の処理仕様に変 更可能な特定処理ブロックを組み合わせたものも適用可能である。この場合、具体的 には、ノ ラメータにより減衰特性の変更が可能なフィルタ処理部や、ノ ラメータにより 対応する変復調処理の方式が変更可能な変復調処理部や、パラメータ変更により誤 り訂正コーデック処理の生成多項式や誤り訂正能力の変更が可能な誤り訂正コーデ ック処理部等の複数の特定処理ブロックの組み合わせにより構成されることになる。リ コンフィギュレーション制御部 30162は、機能変更用の制御信号 315に基づいて、リ コンフィギユラブルデバイス 30161において機能の変更が可能な機能ブロックの各 々に対してリコンフィギュレーションの制御を行う。このような構成を用いて、通信に関 する一連のディジタル信号処理を細力 、処理ブロック毎に分け、細か!/、処理ブロック 毎に処理の内容を個別に異なる通信方式および伝送モードに対応させ、パイプライ ン的に時分割処理するようにしてもよい。また、前記 CPUやリコンフィギユラブルデバ イスは必ずしも一つで構成される必要はなぐ複数もしくは複数種のコアもしくはデバ イスにより構成してもよぐこの場合、複数の無線処理系統のための各処理は、時分 割処理だけではなぐコア毎もしくはデバイス毎に並列的に処理することも可能となる また、リコンフィギユラブルディジタル信号処理部 301での信号処理を、必ずしも図 14や図 15に示したように、マルチスレッドディジタル信号処理部のみで実行するよう に構成した場合に限定されるものではなぐ本発明の本質を逸脱しない範囲におい て、他の構成をとることも可能である。例えば、図 16に示すように、無線通信処理に おけるディジタル信号処理のうち、処理サンプル数が多くかつ高速な演算処理が要 求されるディジタルフロントエンド処理部について専用のリコンフィギユラブルディジタ ルフロントエンド処理部 3017を設けた構成としてもよいし、さらには図 17に示すよう に、前記リコンフィギユラブルディジタルフロントエンド処理部 3018a、 3018bを無線 処理系統毎に専用に設ける構成としてもよい。さらにバス 3013経由でディジタル信 号処理する対象データの入出力が行われる構成に限定されるものでもなぐリコンフ ィギユラブルディジタルフロントエンド処理部 3017、 3018a, 3018bの入出力を直接 マルチスレッドディジタル信号処理部 3016へ接続する構成としてもよい。 [0114] また、メモリ 3015は必ずしも独立したデバイスとして構成する必要はなぐマルチス レッドディジタル信号処理部 3014のデバイス内に構成するようにしてもよい。
[0115] また、制御部 303についても、独立した構成要素とする必要はなぐ例えば図 18に 示すように、リコンフィギユラブルディジタル信号処理部 301における CPU30141もし くはリコンフィギユラブルデバイス 30161における処理内容の一部として動作させる 構成としてもよ 、ことは言うまでもな 、。
[0116] (他の実施の形態)
本発明は、図 3、図 11や図 13で示した構成の代わりに、図 19に示すような構成に よっても実施することが可能である。すなわち、各伝送モードの処理をするにあたり、 無線処理系統毎の信号処理を複合的に行う処理部分が存在する場合には、この部 分を独立な処理部として切り出して、各リコンフィギユラブル無線処理部と接続する構 成とすることも可能である。 MIMOやダイバーシチによる伝送モードでは、ブランチ( 無線処理系統)毎に個別に行うべき処理部分と、各々のブランチ力 供給された (も しくは供給する)ディジタル信号を複合的に処理する部分と、に分けることが可能であ る。例えば、受信チャネル選択用(もしくは送信帯域制限用のフィルタ処理)ゃ変復 調処理等は、各ブランチで個別に処理を行う必要があり、ここではこの処理群をディ ジタルフロントエンド処理と呼ぶ。また、ダイバーシチのための分割 (もしくは合成)や MIMO多重 (もしくは多重された信号の分離処理)、さらに場合によってコーデック処 理等は、各ブランチから (もしくはブランチへ)の処理を複合的に処理する部分が必 要であり、ここではこの処理群をディジタルバックエンド処理部と呼ぶ。このような場合 、ディジタルフロントエンド処理部は、選択される通信方式に応じて、機能の変更が可 能なリコンフィギユラブルな構成 1051a、 1051bとし、ディジタルバックエンド処理に ついては、対応する通信方式毎に専用の回路 106a、 106bを設け、必要に応じてリ コンフィギユラブルディジタルフロントエンド処理部の機能を切り替えてディジタルフロ ントエンド処理を行うとともに、対応するディジタルバックエンド処理部を用いてデイジ タルバックエンド処理を行う構成が実施可能である。さらには、図 19において対応す る通信方式毎に専用に設けたディジタルバックエンド処理部 106a、 106bを、機能変 更により双方の処理に対応可能なマルチスレッド信号処理部に統合し、図 17に示す ような構成により実現することも可能である。なお、図 17の構成については、実施の 形態 3にお 、て説明して 、る。
[0117] また、本発明は図 20に示すような構成によっても実施することが可能である。図 20 において、図 3で示した無線通信装置 100における構成要素と同様の構成及び動作 をするものについては同じ番号を付している。図 20で示した無線通信装置 400にお いて無線通信装置 100と異なるのは、アンテナ 101a、 101b,リコンフィギユラブル R F部 1021a、 1021b,リコンフィギユラブルディジタル信号処理部 1022a、 1022bの 代わりに、それぞれアンテナ 401a、 401b,リコンフィギユラブル RF部 4021a、 4021 b、リコンフィギユラブルディジタル信号処理部 4022a、 4022bを設けた点である。こ れらの構成要素において特徴とする点は、付番の末尾に aを付した無線処理系統 a における各構成要素と、末尾に bを付した無線処理系統 bにおける各構成要素が同 一でなくてもよい点である。具体的には、無線処理系統 aを構成するアンテナ 401a、 リコンフィギユラブル RF部 4021aとリコンフィギユラブルディジタル信号処理部 4022a を、通信方式 Aに対して機能および性能面での最適化が計られた構成としながら、 各々の構成要素において機能及び性能を小規模に変更可能とすることにより、通信 方式 Bを採用する無線通信規格に対しても最低限の要求仕様を満たす構成とする。 また、無線処理系統 bを構成するアンテナ 401b、リコンフィギユラブル RF部 4021bと リコンフィギユラブルディジタル信号処理部 4022bを、通信方式 Bに対して機能およ び性能面での最適化が計られた構成としながら、各々の構成要素において機能およ び性能を小規模に変更可能とすることにより、通信方式 Aを採用する無線通信規格 に対しても最低限の要求仕様を満たす構成とする。このような構成とすることにより、 例えば通信方式 Aに対する受信感度特性として、無線処理系統 bの性能が無線処 理系統 aの性能に比べて相対的に劣化するような場合が生じ得る。また同様に、通信 方式 Bに対する受信感度特性として、無線処理系統 aの性能が無線処理系統 bの性 能に比べて相対的に劣化するような場合が生じ得る。このような構成をとつた場合に おいても、本発明は実施可能であり、適切な通信方式および伝送モードを選択し、 機能変更しながら効率よく通信が行えるように通信制御する点に特徴がある。
[0118] 前記のような特徴をもつ各無線処理系統 aと bの構成例を以下で説明する。アンテ ナ 401a、 401bは、広帯域通過特性あるいはマルチバンド通過特性をもつように設 計することにより、通信方式 Aおよび Bで使用する RF周波数帯をともにカバーする性 能を実現することが可能であるが、このとき、一方の方式で使用する周波数帯の方に 対して性能を最適化すると、自ずと性能差が生じる可能性がある。リコンフィギュラブ ル RF部 4021a、 4021bは、回路中の素子のインピーダンスや能動デバイスのバイァ スを変化させるなどして、動作点を調整することにより、それぞれの通信方式に対応 するよう切り替える切り替え要素を含む場合、一方の方式で使用する場合の性能を 最適化すると、自ずと性能さが生じる可能性がある。また、リコンフィギユラブルディジ タル信号処理部 4022a、 4022bは、ディジタルフィルタ処理や相関演算処理の際に 、一方の通信方式に適したタップ長で固定に設計して、他方の通信方式に対応する 際には、タップ長は変更しないまでも、タップ係数を他方の通信方式に適した係数に 変更することにより、他方の通信方式に対応する際には最適な性能までは得られな いまでも、要求仕様に耐え得る性能を実現することは可能となる場合がある。また、演 算処理を行う際のビット演算精度についても、一方の通信方式に適した演算精度で 固定に設計した場合、他方の通信方式に対応する際には、演算精度が足りなくなる ことちある。
[0119] このようにして、各無線処理系統において、主に対応する通信方式に対して性能を 最適化した状態で構成すると、 MIMOやダイバーシチのように、これらの無線処理系 統に対して同一の通信方式に機能設定する必要のある伝送モードで通信する場合 、無線処理系統間で得られる性能が異なることになることになり、通信性能面での性 能劣化が予想される。し力しながら、性能劣化量が許容範囲内であるようなサービス 形態の場合には、前記のような構成にすることにより、各無線処理系統においてリコ ンフィギユラブルにすべき構成要素を減らすことができ、回路の冗長度を削減するこ とができるようになる。この結果、回路規模や消費電力を低減することが可能となる。
[0120] なお、このような構成で通信を行うにあたっては、各無線処理系統において対応し ている通信方式の通信品質に関する情報を収集する際に、図 10で例示したような品 質推定の推定基準を若干補正して用いるようにしてもよ!、。
[0121] 本明細書は、 2004年 6月 14日出願の欄 2004— 176223に基づくものである。 その内容はすべてここに含めておく。
産業上の利用可能性
本発明に力かる無線通信装置は、ダイバーシチ伝送や MIMO伝送、さらにはシス テム間でのハンドオーバやダイバーシチ等の様々な動作に一つの通信装置で対応 可能となる、という効果を有し、高効率無線通信を実現するための通信装置の構成と して有用である。

Claims

請求の範囲
[1] 複数のアンテナと、
前記各アンテナに対応して設けられた複数のリコンフィギユラブル無線処理部と、 前記複数のリコンフィギユラブル無線処理部をそれぞれ独立に制御して各リコンフィ ギユラブル無線処理部の処理内容を独立に変更する制御部と
を具備する無線通信装置。
[2] 前記制御部は、
前記各リコンフィギユラブル無線処理部による処理後の信号の品質を収集する品質 情報収集部と、
前記品質情報収集部によって収集された品質情報に基づいて、前記各リコンフィギ ユラブル無線処理部の処理内容を選択する処理選択部と、
前記各リコンフィギユラブル無線処理部の処理内容を、前記処理選択部によって選 択した処理内容に変更する処理変更制御部と
を具備する請求項 1に記載の無線通信装置。
[3] 前記処理選択部及び前記処理変更制御部は、前記各リコンフィギユラブル無線処 理部の処理内容を選択及び変更することにより、前記無線通信装置の伝送モードを 、単独の通信方式のみでのダイバーシチ送受信を行うモード、 MIMOチャネルにお ける空間多重伝送を行うモード、複数の通信方式の間でのダイバーシチ伝送を行う モード、単独の通信方式のみでアンテナ指向性制御により通信を行うモード、又は、 単独の通信方式のみで伝送を行うモードのいずれかの伝送モードに選択的に設定 する
請求項 2に記載の無線通信装置。
[4] 前記処理選択部は、前記品質情報に加えて他の要求条件を入力し、前記品質情 報と前記要求条件とに基づいて、前記各リコンフィギユラブル無線処理部の処理内 容を選択する
請求項 1に記載の無線通信装置。
[5] 前記他の要求条件には、ユーザからの利用料金に基づく要求条件を含む
請求項 4に記載の無線通信装置。
[6] 前記他の要求条件には、上位レイヤにおいて使用されるアプリケーションから要求 される条件を含む
請求項 4に記載の無線通信装置。
[7] 前記リコンフィギユラブル無線処理部は、
前記アンテナで受信された無線受信信号に対して所望の増幅、周波数変換、フィ ルタ処理を施すことによりベースバンドアナログ受信信号を得るとともに、ベースバン ドアナログ送信信号に対して所望の増幅、周波数変換、フィルタ処理を施すことによ り無線送信信号を得て前記アンテナに供給し、かつ制御信号に応じてその高周波信 号処理の機能及び又は性能を変更可能なリコンフィギユラブル RF部と、
前記リコンフィギユラブル RF部によって得られた前記ベースバンドアナログ受信信 号に対してアナログ 'ディジタル変換及び所定のディジタル信号処理を施すことにより 受信データを得るとともに、送信データに対して所定のディジタル信号処理及びディ ジタルアナログ変換を施すことにより前記ベースバンドアナログ送信信号を得て前記 リコンフィギユラブル RF部に供給し、かつ前記制御信号に応じて前記ディジタル信号 処理の内容及び機能を変更可能なリコンフィギユラブルディジタル信号処理部と を具備する請求項 1に記載の無線通信装置。
[8] 前記リコンフィギユラブルディジタル信号処理部の数は、前記リコンフィギユラブル R F部の数よりも少なくされており、前記リコンフィギユラブルディジタル信号処理部は、 接続された複数のリコンフィギユラブル RF部に対応する処理を時分割もしくは並列的 に行う
請求項 7に記載の無線通信装置。
[9] 前記リコンフィギユラブルディジタル信号処理部は、 CPUと、タイマとを有し、 CPU において、タイマで発生されるタイミングに応じて、前記複数のリコンフィギユラブル R F部に対応した処理を時分割で行う
請求項 8に記載の無線通信装置。
[10] 前記リコンフィギユラブルディジタル信号処理部は、ディジタル信号処理内容の動 的な再構成が可能なリコンフィギユラブルデバイスと、タイマとを有し、リコンフィギユラ ブルデバイスにおいて、タイマで発生されるタイミングに応じて、前記複数のリコンフィ ギユラブル RF部に対応した処理を時分割で行う
請求項 8に記載の無線通信装置。
[11] 前記複数のリコンフィギユラブルディジタル信号処理部で実行される処理内容を、 ディジタルフロントエンド処理とディジタルバックエンド処理に分け、前記ディジタルフ ロントエンド処理を前記制御信号に応じて処理内容及び機能を変更可能なリコンフィ ギユラブルディジタルフロントエンド処理部により行うとともに、前記ディジタルバックェ ンド処理を機能の異なる複数のディジタルバックエンド処理部により行う
請求項 7に記載の無線通信装置。
[12] 前記リコンフィギユラブルディジタルフロントエンド処理部を複数の無線処理系統毎 に設けた
請求項 11に記載の無線通信装置。
[13] 前記リコンフィギユラブルディジタルフロントエンド処理部の数は、前記リコンフィギュ ラブル RF部の数よりも少なくされており、前記リコンフィギユラブルディジタルフロント エンド処理部は、接続された複数のリコンフィギユラブル RF部に対応するディジタル フロントエンド処理を時分割もしくは並列的に行う
請求項 12に記載の無線通信装置。
PCT/JP2005/010793 2004-06-14 2005-06-13 無線通信装置 WO2005122414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05748830.6A EP1750376B1 (en) 2004-06-14 2005-06-13 Radio communication device
US11/629,387 US8346293B2 (en) 2004-06-14 2005-06-13 Radio communication device supporting a plurality of communication schemes
JP2006519599A JP4276677B2 (ja) 2004-06-14 2005-06-13 無線通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-176223 2004-06-14
JP2004176223 2004-06-14

Publications (1)

Publication Number Publication Date
WO2005122414A1 true WO2005122414A1 (ja) 2005-12-22

Family

ID=35503437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010793 WO2005122414A1 (ja) 2004-06-14 2005-06-13 無線通信装置

Country Status (5)

Country Link
US (1) US8346293B2 (ja)
EP (1) EP1750376B1 (ja)
JP (2) JP4276677B2 (ja)
CN (1) CN100574122C (ja)
WO (1) WO2005122414A1 (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034937A1 (ja) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. マルチモード無線通信装置および無線通信方法
JP2007208312A (ja) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp マルチモード無線通信端末
JP2007228484A (ja) * 2006-02-27 2007-09-06 Kyocera Corp 無線端末装置及びその制御方法
JP2007243403A (ja) * 2006-03-07 2007-09-20 Kddi Corp 中継サーバおよび通信端末
EP1914900A1 (en) * 2006-10-18 2008-04-23 Interuniversitair Microelektronica Centrum ( Imec) Digital receiver for software-defined radio implementation
JP2008103985A (ja) * 2006-10-19 2008-05-01 Kddi Corp 移動局における無線インタフェースの再構成方法、サーバ及びプログラム
WO2008068803A1 (ja) * 2006-11-30 2008-06-12 Fujitsu Limited 基地局装置及び移動端末
JP2008236721A (ja) * 2006-12-05 2008-10-02 Provigent Ltd 保護された可変レートリンクにおけるデータレート調整
JPWO2007091317A1 (ja) * 2006-02-08 2009-06-25 富士通株式会社 マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
JP2009171504A (ja) * 2008-01-21 2009-07-30 Kddi Corp 無線通信装置及びソフトウェア無線制御方法
JP2009206934A (ja) * 2008-02-28 2009-09-10 National Institute Of Information & Communication Technology コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
JP2009206933A (ja) * 2008-02-28 2009-09-10 National Institute Of Information & Communication Technology コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
US20090296846A1 (en) * 2006-11-17 2009-12-03 Tsuguo Maru Mimo communication system having deterministic channels and method
JP2010507947A (ja) * 2006-10-24 2010-03-11 インターナショナル・ビジネス・マシーンズ・コーポレーション マルチモード通信端末
JP2010268484A (ja) * 2010-06-22 2010-11-25 Kddi Corp 通信端末
JP2011517180A (ja) * 2008-03-17 2011-05-26 クゥアルコム・インコーポレイテッド 再構成可能なマルチプルインプット・マルチプルアウトプットのシステム及び方法
JP2011147001A (ja) * 2010-01-15 2011-07-28 Kyocera Corp 通信装置および通信方法
JP2011147002A (ja) * 2010-01-15 2011-07-28 Kyocera Corp 通信装置および通信方法
US8001445B2 (en) 2007-08-13 2011-08-16 Provigent Ltd. Protected communication link with improved protection indication
US8040985B2 (en) 2007-10-09 2011-10-18 Provigent Ltd Decoding of forward error correction codes in the presence of phase noise
JPWO2009147735A1 (ja) * 2008-06-04 2011-10-20 富士通株式会社 情報処理装置、データ送信装置およびデータ送信装置のデータ転送方法
JP2012028916A (ja) * 2010-07-21 2012-02-09 Toyota Infotechnology Center Co Ltd ソフトウェア無線機およびソフトウェア更新方法
JP2012527848A (ja) * 2009-05-22 2012-11-08 クアルコム,インコーポレイテッド 無線通信システム内で通信セッション中のアクセス端末におけるアンテナ割り当ての維持
US8315574B2 (en) 2007-04-13 2012-11-20 Broadcom Corporation Management of variable-rate communication links
US8611465B2 (en) 2006-05-16 2013-12-17 Imec Digital receiver for reactive radio
JP2014112871A (ja) * 2014-01-06 2014-06-19 Kyocera Corp 端末装置
US8874114B2 (en) 2006-11-10 2014-10-28 Mitsubishi Electric Corporation Mobile communications system, mobile station and base station
US8983533B2 (en) 2006-10-24 2015-03-17 International Business Machines Corporation Multimode communication terminal and multimode communication implementation
WO2022054179A1 (ja) * 2020-09-09 2022-03-17 日本電信電話株式会社 回線制御システム、ソフトウェア無線機、回線制御方法、および回線制御用プログラム
JPWO2022064717A1 (ja) * 2020-09-28 2022-03-31
JPWO2022064718A1 (ja) * 2020-09-28 2022-03-31

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
US7515929B2 (en) * 2005-04-27 2009-04-07 Skyworks Solutions, Inc. Receiver for a multimode radio
US8095173B2 (en) * 2005-08-22 2012-01-10 Intel Corporation Wireless communication device with physical-layer reconfigurable processing engines
FR2898224A1 (fr) * 2006-03-03 2007-09-07 Commissariat Energie Atomique Dispositif et procede de reception ultra-large bande utilisant un detecteur a super-regeneration
US7937052B2 (en) * 2006-06-27 2011-05-03 Cisco Technology, Inc. Multiple input multiple output signal receiving apparatus with optimized performance
JP2008017096A (ja) * 2006-07-05 2008-01-24 Fujitsu Ltd 複数アンテナによる送信/受信を行う通信システム、その送信装置及び受信装置
US20090323833A1 (en) * 2006-08-02 2009-12-31 Manoj Karayil Thekkoott Narayanan Versatile platform for broadband wireless system design and prototyping using software defined radio methodology
JP4806024B2 (ja) * 2006-08-09 2011-11-02 富士通株式会社 無線端末
US7899410B2 (en) * 2006-12-19 2011-03-01 Broadcom Corporation Adjustable antenna interface and applications thereof
US20080151871A1 (en) * 2006-12-22 2008-06-26 Nokia Corporation Power-Efficient Multi-Branch Reception
CN102017553B (zh) 2006-12-26 2014-10-15 大力系统有限公司 用于多信道宽带通信系统中的基带预失真线性化的方法和系统
US8040843B2 (en) * 2007-01-21 2011-10-18 Broadcom Corporation Transmit scheme adaptation for wireless data transmissions
US20080207258A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Multimode transmitter with digital up conversion and methods for use therewith
KR20080083753A (ko) * 2007-03-13 2008-09-19 삼성전자주식회사 휴대용 단말기의 송수신 장치 및 방법
DE102007022970A1 (de) * 2007-05-16 2008-11-20 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zur dynamischen Rekonfiguration eines Funkkommunikationssystems
CN101359951B (zh) * 2007-08-02 2012-05-23 联想(北京)有限公司 基于信道质量指示的分集、复用传输确定方法与装置
CN101772904B (zh) * 2007-08-02 2014-11-19 日本电气株式会社 具有确定性信道的mimo通信系统及其天线布置方法
JP5170533B2 (ja) * 2008-01-24 2013-03-27 日本電気株式会社 無線伝送装置、変調方式決定方法及びそのプログラム
US20090213946A1 (en) * 2008-02-25 2009-08-27 Xilinx, Inc. Partial reconfiguration for a mimo-ofdm communication system
GB2457987A (en) * 2008-03-06 2009-09-09 Nokia Corp Configuring a modular radio frequency communications device
CN102362439B (zh) 2009-01-26 2015-06-10 德雷塞尔大学 用于在mimo系统中选择可重新配置天线的系统和方法
EP2410775B1 (en) * 2009-03-17 2014-08-06 Huawei Technologies Co., Ltd. Method, device and terminal for determining transmission mode
JP4882119B2 (ja) * 2009-05-18 2012-02-22 Necアクセステクニカ株式会社 無線lanシステム、無線親機、通信モード選択方法および通信モード選択プログラム
ATE539491T1 (de) * 2009-05-28 2012-01-15 Univ Duisburg Essen Digitaler empfänger, digitaler sender, verfahren zur bedienung eines digitalen empfängers oder eines digitalen senders und computerprogramm
EP2320327A1 (en) * 2009-11-09 2011-05-11 Imec A data transferring device
PL2517495T3 (pl) * 2009-12-21 2014-11-28 Koninklijke Kpn Nv Sposób i system dla automatycznej oceny zasięgu współpracujących bezprzewodowych sieci dostępu
US8885750B2 (en) 2010-01-27 2014-11-11 Zte Corporation Method and system for transmitting data using collaborative multiple input multiple output beamforming
EP2362550B1 (en) * 2010-02-18 2012-08-29 Imec Digital front-end circuit and method for using the same
US9344306B2 (en) * 2010-08-09 2016-05-17 Mediatek Inc. Method for dynamically adjusting signal processing parameters for processing wanted signal and communications apparatus utilizing the same
EP2606576B1 (en) * 2010-08-17 2024-01-17 Dali Systems Co. Ltd. Daisy-chained ring of remote units for a distributed antenna system
KR101662879B1 (ko) * 2010-08-17 2016-10-05 달리 시스템즈 씨오. 엘티디. 분산 안테나 시스템을 위한 뉴트럴 호스트 아키텍처
KR101835254B1 (ko) * 2010-08-17 2018-03-06 달리 시스템즈 씨오. 엘티디. 분산 안테나 시스템을 위한 뉴트럴 호스트 아키텍처
CN103597807B (zh) 2010-09-14 2015-09-30 大理系统有限公司 远程可重新配置的分布式天线系统和方法
JP5572527B2 (ja) * 2010-11-09 2014-08-13 パナソニック株式会社 通信処理装置及び通信処理方法
US20140016502A1 (en) * 2011-03-24 2014-01-16 Nec Corporation Communication system and communication control method
EP2761773B1 (en) * 2011-09-27 2019-07-10 Skyriver Spectrum & Technology, LLC Point-to-multipoint microwave communication
JP5375925B2 (ja) * 2011-11-01 2013-12-25 株式会社デンソー 無線通信機
JP5800026B2 (ja) 2011-11-09 2015-10-28 富士通株式会社 通信方法および通信装置
JP6314971B2 (ja) * 2012-08-03 2018-04-25 日本電気株式会社 移動端末、通信方法、通信システム、プログラム、情報処理装置、サービス提供方法および配信サーバ
WO2014026005A1 (en) 2012-08-09 2014-02-13 Axell Wireless Ltd. A digital capactiy centric distributed antenna system
JP6102386B2 (ja) * 2013-03-19 2017-03-29 富士通株式会社 通信制御装置、移動通信端末、及び、無線基地局
DE102013215728A1 (de) * 2013-03-26 2014-10-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Auswahl eines Funkübertragungskanals in einem Funksystem
CN104185206B (zh) * 2013-05-23 2019-02-12 中兴通讯股份有限公司 一种传输模式的切换方法及装置
CN104283620A (zh) * 2013-07-10 2015-01-14 中兴通讯股份有限公司 利用可重构天线的通信方法和终端
EP3096465B1 (en) * 2014-01-21 2020-03-04 Huawei Technologies Co., Ltd. Multi-input multi-output (mimo) transmission methods, system and device
WO2016049002A1 (en) 2014-09-23 2016-03-31 Axell Wireless Ltd. Automatic mapping and handling pim and other uplink interferences in digital distributed antenna systems
US9930725B2 (en) * 2014-12-16 2018-03-27 Apple Inc. Wireless electronic device with multiradio controller integrated circuit
EP3238352A4 (en) 2014-12-23 2018-08-22 Axell Wireless Ltd. Harmonizing noise aggregation and noise management in distributed antenna system
DE102015114489A1 (de) * 2015-08-31 2017-03-02 Intel IP Corporation Ein Verfahren und ein System zum Steuern einer Mehrzahl von elektronischen Komponenten, die einer Mehrzahl von integrierten Schaltungen eines mobilen Kommunikationsgeräts arbiträr zuweisbar sind
JP6481600B2 (ja) * 2015-12-11 2019-03-13 トヨタ自動車株式会社 無線通信方法および無線通信装置
TW202119260A (zh) * 2019-11-06 2021-05-16 財團法人資訊工業策進會 資料解讀裝置、方法及其電腦程式產品
CN111478799B (zh) * 2020-03-19 2022-11-29 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种基于动态重构的异构工业网络互联方法及无线模块
JP7529032B2 (ja) 2020-09-08 2024-08-06 日本電信電話株式会社 ソフトウェア無線機、回線品質劣化回避方法、および回線品質劣化回避用プログラム
CN113038433A (zh) * 2021-02-26 2021-06-25 广东以诺通讯有限公司 无线资源共享和工作模式控制管理的方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936755A2 (en) 1998-02-13 1999-08-18 Nec Corporation Adaptive receiving device with antenna array
JP2000216698A (ja) 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 携帯端末装置
JP2001189675A (ja) 2000-01-04 2001-07-10 Communications Research Laboratory Mphpt 無線装置
JP2003244045A (ja) * 2002-02-20 2003-08-29 Sanyo Electric Co Ltd 無線装置、無線通信システム、空間パス制御方法および空間パス制御プログラム
JP2004153800A (ja) * 2002-10-07 2004-05-27 Matsushita Electric Ind Co Ltd 通信装置及び通信装置再構築方法
EP1551107A1 (en) 2002-10-07 2005-07-06 Matsushita Electric Industrial Co., Ltd. Communication apparatus and method for reconfiguring communication apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795A (en) * 1844-10-12 Stay for
US5999990A (en) * 1998-05-18 1999-12-07 Motorola, Inc. Communicator having reconfigurable resources
FR2805119B1 (fr) * 2000-02-16 2003-02-07 Mitsubishi Electric Inf Tech Procede de repartition des communications au sein d'une cellule d'un reseau de radiocommunication, dispositif et station de base correspondants
US6421005B1 (en) * 2000-08-09 2002-07-16 Lucent Technologies Inc. Adaptive antenna system and method
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
JP4403653B2 (ja) * 2000-10-24 2010-01-27 ソニー株式会社 多用途ソフトウエア規定型無線通信装置
JP4187940B2 (ja) * 2001-03-06 2008-11-26 株式会社エヌ・ティ・ティ・ドコモ パケット伝送方法及びシステム、並びにパケット送信装置、受信装置、及び送受信装置
US7483411B2 (en) * 2001-06-04 2009-01-27 Nec Corporation Apparatus for public access mobility LAN and method of operation thereof
CA2415170C (en) * 2001-12-28 2008-07-15 Ntt Docomo, Inc. Receiver, transmitter, communication system, and method of communication
US7224704B2 (en) * 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
JP4215193B2 (ja) * 2002-10-31 2009-01-28 独立行政法人情報通信研究機構 ソフトウェア無線機とそのソフトウェア情報処理方法
US7929921B2 (en) * 2003-06-10 2011-04-19 Motorola Mobility, Inc. Diversity control in wireless communications devices and methods
US7245917B2 (en) * 2003-09-08 2007-07-17 Research Foundation Of The State University Of New York System and method for IP handoff
US8284752B2 (en) * 2003-10-15 2012-10-09 Qualcomm Incorporated Method, apparatus, and system for medium access control
US9473269B2 (en) * 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
JP3774464B2 (ja) * 2004-03-25 2006-05-17 株式会社東芝 無線通信システムとその基地局装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936755A2 (en) 1998-02-13 1999-08-18 Nec Corporation Adaptive receiving device with antenna array
JP2000216698A (ja) 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 携帯端末装置
JP2001189675A (ja) 2000-01-04 2001-07-10 Communications Research Laboratory Mphpt 無線装置
JP2003244045A (ja) * 2002-02-20 2003-08-29 Sanyo Electric Co Ltd 無線装置、無線通信システム、空間パス制御方法および空間パス制御プログラム
EP1487135A1 (en) 2002-02-20 2004-12-15 Sanyo Electric Co., Ltd. Radio apparatus, radio communication system, spatial path control method, and spatial path control program
JP2004153800A (ja) * 2002-10-07 2004-05-27 Matsushita Electric Ind Co Ltd 通信装置及び通信装置再構築方法
EP1551107A1 (en) 2002-10-07 2005-07-06 Matsushita Electric Industrial Co., Ltd. Communication apparatus and method for reconfiguring communication apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1750376A4 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8504101B2 (en) 2005-09-26 2013-08-06 Panasonic Corporation Multimode wireless communication apparatus and wireless communication method
WO2007034937A1 (ja) * 2005-09-26 2007-03-29 Matsushita Electric Industrial Co., Ltd. マルチモード無線通信装置および無線通信方法
JP2007208312A (ja) * 2006-01-30 2007-08-16 Mitsubishi Electric Corp マルチモード無線通信端末
JPWO2007091317A1 (ja) * 2006-02-08 2009-06-25 富士通株式会社 マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
US9191091B2 (en) 2006-02-08 2015-11-17 Fujitsu Limited Radio communication system using multi-antenna transmission technique, and multi-user scheduler therefor
JP4727678B2 (ja) * 2006-02-08 2011-07-20 富士通株式会社 マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
US8345641B2 (en) 2006-02-08 2013-01-01 Fujitsu Limited Radio communication system using multi-antenna transmission technique, and multi-user scheduler therefor
JP4663549B2 (ja) * 2006-02-27 2011-04-06 京セラ株式会社 無線端末装置及びその制御方法
JP2007228484A (ja) * 2006-02-27 2007-09-06 Kyocera Corp 無線端末装置及びその制御方法
JP2007243403A (ja) * 2006-03-07 2007-09-20 Kddi Corp 中継サーバおよび通信端末
JP4633654B2 (ja) * 2006-03-07 2011-02-16 Kddi株式会社 中継サーバ
US8611465B2 (en) 2006-05-16 2013-12-17 Imec Digital receiver for reactive radio
EP1914900A1 (en) * 2006-10-18 2008-04-23 Interuniversitair Microelektronica Centrum ( Imec) Digital receiver for software-defined radio implementation
JP2008103985A (ja) * 2006-10-19 2008-05-01 Kddi Corp 移動局における無線インタフェースの再構成方法、サーバ及びプログラム
JP2010507947A (ja) * 2006-10-24 2010-03-11 インターナショナル・ビジネス・マシーンズ・コーポレーション マルチモード通信端末
US8195225B2 (en) 2006-10-24 2012-06-05 International Business Machines Corporation Multimode communication terminal and multimode communication implementation method
US8983533B2 (en) 2006-10-24 2015-03-17 International Business Machines Corporation Multimode communication terminal and multimode communication implementation
US8874114B2 (en) 2006-11-10 2014-10-28 Mitsubishi Electric Corporation Mobile communications system, mobile station and base station
US20090296846A1 (en) * 2006-11-17 2009-12-03 Tsuguo Maru Mimo communication system having deterministic channels and method
WO2008068803A1 (ja) * 2006-11-30 2008-06-12 Fujitsu Limited 基地局装置及び移動端末
JP4769872B2 (ja) * 2006-11-30 2011-09-07 富士通株式会社 基地局装置及び無線通信方法
US8711813B2 (en) 2006-11-30 2014-04-29 Fujitsu Limited Base station device and wireless communication method
JPWO2008068803A1 (ja) * 2006-11-30 2010-03-11 富士通株式会社 基地局装置及び無線通信方法
JP2008236721A (ja) * 2006-12-05 2008-10-02 Provigent Ltd 保護された可変レートリンクにおけるデータレート調整
US8315574B2 (en) 2007-04-13 2012-11-20 Broadcom Corporation Management of variable-rate communication links
US8385839B2 (en) 2007-04-13 2013-02-26 Provigent Ltd. Message-based management of variable-rate communication links
US8364179B2 (en) 2007-04-13 2013-01-29 Provigent Ltd. Feedback-based management of variable-rate communication links
US8001445B2 (en) 2007-08-13 2011-08-16 Provigent Ltd. Protected communication link with improved protection indication
US8040985B2 (en) 2007-10-09 2011-10-18 Provigent Ltd Decoding of forward error correction codes in the presence of phase noise
JP2009171504A (ja) * 2008-01-21 2009-07-30 Kddi Corp 無線通信装置及びソフトウェア無線制御方法
JP2009206934A (ja) * 2008-02-28 2009-09-10 National Institute Of Information & Communication Technology コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
JP2009206933A (ja) * 2008-02-28 2009-09-10 National Institute Of Information & Communication Technology コグニティブ無線通信ネットワークシステムおよびコグニティブ通信方法
JP2011517180A (ja) * 2008-03-17 2011-05-26 クゥアルコム・インコーポレイテッド 再構成可能なマルチプルインプット・マルチプルアウトプットのシステム及び方法
JP5056947B2 (ja) * 2008-06-04 2012-10-24 富士通株式会社 情報処理装置、データ送信装置およびデータ送信装置のデータ転送方法
JPWO2009147735A1 (ja) * 2008-06-04 2011-10-20 富士通株式会社 情報処理装置、データ送信装置およびデータ送信装置のデータ転送方法
JP2012527848A (ja) * 2009-05-22 2012-11-08 クアルコム,インコーポレイテッド 無線通信システム内で通信セッション中のアクセス端末におけるアンテナ割り当ての維持
US8824314B2 (en) 2009-05-22 2014-09-02 Qualcomm Incorporated Maintaining an allocation of antennas at an access terminal during a communication session within a wireless communications system
US9118438B2 (en) 2010-01-15 2015-08-25 Kyocera Corporation Communication apparatus and communication method
JP2011147001A (ja) * 2010-01-15 2011-07-28 Kyocera Corp 通信装置および通信方法
JP2011147002A (ja) * 2010-01-15 2011-07-28 Kyocera Corp 通信装置および通信方法
US9071979B2 (en) 2010-01-15 2015-06-30 Kyocera Corporation Communication apparatus and communication method
JP2010268484A (ja) * 2010-06-22 2010-11-25 Kddi Corp 通信端末
JP2012028916A (ja) * 2010-07-21 2012-02-09 Toyota Infotechnology Center Co Ltd ソフトウェア無線機およびソフトウェア更新方法
JP2014112871A (ja) * 2014-01-06 2014-06-19 Kyocera Corp 端末装置
WO2022054179A1 (ja) * 2020-09-09 2022-03-17 日本電信電話株式会社 回線制御システム、ソフトウェア無線機、回線制御方法、および回線制御用プログラム
JPWO2022054179A1 (ja) * 2020-09-09 2022-03-17
JPWO2022064717A1 (ja) * 2020-09-28 2022-03-31
JPWO2022064718A1 (ja) * 2020-09-28 2022-03-31
WO2022064717A1 (ja) * 2020-09-28 2022-03-31 日本電信電話株式会社 無線通信システム、送信電力制御方法、ソフトウェア無線機、および送信電力制御用プログラム
WO2022064718A1 (ja) * 2020-09-28 2022-03-31 日本電信電話株式会社 無線通信システム、電界強度制御方法、ソフトウェア無線機、および電界強度制御用プログラム
JP7380899B2 (ja) 2020-09-28 2023-11-15 日本電信電話株式会社 無線通信システム、電界強度制御方法、ソフトウェア無線機、および電界強度制御用プログラム
JP7396510B2 (ja) 2020-09-28 2023-12-12 日本電信電話株式会社 無線通信システム、送信電力制御方法、ソフトウェア無線機、および送信電力制御用プログラム

Also Published As

Publication number Publication date
CN1969463A (zh) 2007-05-23
EP1750376A1 (en) 2007-02-07
US20080051129A1 (en) 2008-02-28
CN100574122C (zh) 2009-12-23
JP2009147956A (ja) 2009-07-02
EP1750376A4 (en) 2011-10-26
EP1750376B1 (en) 2015-10-21
JP4719281B2 (ja) 2011-07-06
JP4276677B2 (ja) 2009-06-10
JPWO2005122414A1 (ja) 2008-04-10
US8346293B2 (en) 2013-01-01

Similar Documents

Publication Publication Date Title
WO2005122414A1 (ja) 無線通信装置
US9980250B2 (en) Method and system for WiFi access point utilizing full spectrum capture (FSC)
US9252863B2 (en) Method and apparatus for adaptive antenna sharing
KR101285027B1 (ko) 멀티모드 통신 단말기 및 멀티모드 통신 구현 방법
US8605661B2 (en) Method and system for implementing a single weight spatial multiplexing (SM) MIMO system
JP2010507935A (ja) 複雑度の低いダイバーシティレシーバ
US20200153476A1 (en) Dynamically adjustable radio-frequency (rf) front-end
JP2004343559A (ja) 再構成可能な集積回路ユニットを有するデータ処理装置
EP2362550B1 (en) Digital front-end circuit and method for using the same
US7158583B2 (en) Multiple communication protocols with common sampling rate
JP2005260720A (ja) 無線受信装置
JP2008512921A (ja) マルチアンテナを具備する無線通信装置及びその方法
JP4091580B2 (ja) Ofdm受信装置及びofdm受信方法
KR101180110B1 (ko) 듀얼 신호처리 기능이 구비된 이동 통신 단말기 및 그 신호처리 방법
JP4189134B2 (ja) ダイバシティ受信機
JPH09247121A (ja) ディジタル無線通信用受信装置
JP2008219784A (ja) 信号処理装置及び信号処理方法
JP2010245598A (ja) 無線機
JPH0993171A (ja) 受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519599

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005748830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629387

Country of ref document: US

Ref document number: 200580019368.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005748830

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11629387

Country of ref document: US