WO2005120141A1 - 半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法 - Google Patents

半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法 Download PDF

Info

Publication number
WO2005120141A1
WO2005120141A1 PCT/JP2005/010177 JP2005010177W WO2005120141A1 WO 2005120141 A1 WO2005120141 A1 WO 2005120141A1 JP 2005010177 W JP2005010177 W JP 2005010177W WO 2005120141 A1 WO2005120141 A1 WO 2005120141A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
nozzle
soldering
tank
jet device
Prior art date
Application number
PCT/JP2005/010177
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Nakaoku
Original Assignee
Andes Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andes Electric Co., Ltd. filed Critical Andes Electric Co., Ltd.
Priority to JP2006514133A priority Critical patent/JPWO2005120141A1/ja
Publication of WO2005120141A1 publication Critical patent/WO2005120141A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0646Solder baths
    • B23K3/0653Solder baths with wave generating means, e.g. nozzles, jets, fountains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits

Definitions

  • Solder jet device method of manufacturing solder jet device, and method of soldering electronic components
  • the present invention relates to a solder jet device, a method of manufacturing a solder jet device, and a method of soldering an electronic component, and more particularly, to a solder jet device suitable for leaded electronic components and compatible with lead-free solder, and a method of manufacturing a solder jet device.
  • the present invention relates to a method and a method for soldering electronic components.
  • a solder jet apparatus includes a solder tank provided with a heating means, a solder supply means, a solder outlet (nozzle), a mounting plate for positioning an electric circuit board, and the like.
  • This solder jet device supplies solder heated and melted in a solder tank to a solder outlet from a solder supply device, and the solder blower also blows molten solder to the lead component position of an electric circuit board. Then, the electronic component with the lead was soldered to the electric circuit board.
  • solder jet device can efficiently solder electronic components with leads, various solder jet devices have been developed and put into practical use.
  • Patent Document 1 discloses a solder jet device including a solder tank, a solder supply device, a solder outlet (nozzle), and a mount (mounting plate) on which an electric circuit board is mounted, which is provided on the mount.
  • a technique of a solder jet device having an opening for blowing molten solder jetted from a solder outlet to a predetermined position and a solder diffusion preventing wall provided near an edge of the opening. I have.
  • solder jet device it is possible to accurately and quickly solder an electronic component with a lead to an electric circuit board.
  • Patent Document 1 Patent No. 3417509 (Claim 2, FIG. 1)
  • solder jet device of Patent Document 1 described above is a technology corresponding to lead-containing solder, and in a basic configuration, it is capable of supporting lead-free solder, and is adapted to the characteristics of lead-free solder. There were some points to be improved.
  • the solder temperature is generally set to about 240 ° C. to 250 ° C. in consideration of the pad strength of the electric circuit board, the cracking of the electrode, and the like.
  • the conventional tin-37 lead eutectic alloy eutectic solder
  • the temperature difference between the solder temperature and the liquidus temperature is about 57 ° C or less. It will be 67 ° C.
  • an alloy of tin-3.0 silver-0.5 copper as lead-free solder has a liquidus temperature of about 217 ° C to 220 ° C, and the solder temperature and liquid phase The temperature difference from the linear temperature is about 20 ° C to 43 ° C, which is about half that of eutectic solder. For this reason, if the amount of solder jet is insufficient or the temperature of the solder cools down before contact with the electric circuit board, the heat required for soldering will be insufficient. There was a problem that a joining defect such as insufficient wetting and spreading to the surface occurred.
  • solder dross solder dross
  • a stainless steel material is usually used as a material.
  • a force required to use a immersion heater inside the solder tank is used. There was a problem when eating occurred.
  • the purpose of the present invention is to provide an efficient solder jet device, a method for manufacturing a solder jet device, and a method for soldering electronic components.
  • a solder jet device of the present invention comprises a solder tank and A heating means for heating the solder, a nozzle for spraying the solder at a predetermined soldering location of the electric circuit board, and a solder blowing means attached to the solder tank so as to be movable up and down; and the solder blowing means.
  • a solder supply means for supplying the solder to the solder bath, when soldering, the nozzle is positioned above the solder liquid level of the solder bath, and when in a standby state, the nozzle is moved to the solder bath of the solder bath.
  • the electric circuit board includes a lifting means for immersion from a surface and a positioning means for positioning the electric circuit board at a predetermined position.
  • the nozzle is submerged in the molten solder in the solder tank during the standby state and is heated to the solder temperature, so when soldering, the nozzle rises above the solder liquid level and is cooled by touching the atmosphere.
  • the temperature drop of the solder can be suppressed to a level that has almost no effect. Therefore, the temperature of the solder blown to the electric circuit board can be accurately controlled, and the soldering quality can be improved.
  • the nozzle diameter becomes smaller, the problem that the temperature of the solder blown to the electric circuit board becomes lower can be prevented, and it is possible to cope with higher density.
  • the solder jet device of the present invention provides a solder bath, a solder blowing unit provided with a nozzle for spraying solder at a predetermined soldering location of the electric circuit board, and supplying the solder to the solder blowing unit.
  • a solder supplying means a heating means for heating the solder in the solder bath, which is provided in the solder blowing means in a tightly closed state, and positioning the electric circuit board at a predetermined position.
  • the solder jet device of the present invention is characterized in that a solder tank and a nozzle for spraying the solder at a predetermined soldering location of the electric circuit board are protruded, and the solder is mounted in the solder tank so as to be movable up and down.
  • a positioning means for positioning the electric circuit board at a predetermined position.
  • the temperature of the solder blown to the electric circuit board can be accurately controlled, and the soldering quality can be improved. Further, even when lead-free solder is used, it is possible to prevent a trouble caused when the heater is eroded.
  • the solder jet device of the present invention is provided with dross removing means for pushing dross floating on the solder liquid level of the solder tank when the nozzle is immersed in the solder liquid level of the solder tank.
  • solder defects due to dross can be reduced, and the solder quality can be improved even when lead-free solder that generates a large amount of dross is used.
  • solder jet device of the present invention is configured such that the solder blowing means is provided with a nozzle plate to which the nozzle is protruded, which is attached in a replaceable manner.
  • solder jet device of the present invention is configured such that an externally heated heater is provided outside the solder bath as the heating means.
  • the solder can be melted by the externally heated heater, so that the sheet heater can be easily replaced. Can be. Further, the start-up time until the solder is melted can be shortened.
  • a method for soldering an electronic component according to the present invention is a method for soldering an electronic component using the solder jet apparatus according to any one of claims 1, 3, 4 and 5.
  • the raising and lowering means immerses the nozzle from the solder liquid level of the solder bath, and when performing soldering, the solder supply means causes the solder to flow from the nozzle, and
  • the lifting means may be a method in which the nozzle is positioned above the solder liquid level of the solder bath.
  • the present invention is also effective as a method of soldering electronic components.
  • the nozzle is raised from the solder liquid level of the solder bath while the nozzle force solder is jetted, the nozzle In addition, a decrease in the temperature of the solder sprayed on the electric circuit board can be effectively suppressed.
  • the solder blowout means is provided for the solder.
  • a heating means provided in a sealed state and an externally-heated heater provided outside the solder bath are a method of heating the solder in the solder bath.
  • the solder can be melted by the externally heated heater, so that the sheet heater can be easily replaced. Can be. Further, the start-up time until the solder is melted can be shortened.
  • a method of manufacturing a solder jet device according to the present invention is the method of manufacturing a solder jet device according to claim 5, wherein the nozzle plate is manufactured by pressurizing. By doing so, a nozzle having a protruding nozzle plate force can be efficiently manufactured by pressurizing.
  • the temperature of the solder sprayed on the electric circuit board can be accurately controlled, and the soldering quality can be improved. be able to.
  • the diameter of the nozzle becomes smaller, it is possible to prevent a problem that the temperature of the solder blown to the electric circuit board becomes lower, and it is possible to cope with a higher density.
  • the heater can be heated efficiently, and even when lead-free solder is used, erosion of the heater can be prevented.
  • FIG. La A schematic side cross-sectional view for explaining an overall structure of a solder jet device according to an embodiment of the present invention in a standby state.
  • FIG. 1b A schematic side cross-sectional view for explaining the overall structure of a solder jet device according to an embodiment of the present invention in a soldered state is shown.
  • FIG. 2 is a schematic side cross-sectional view for explaining the overall structure of a solder jet device according to an embodiment of the present invention in a startup state.
  • FIG. 3 is a schematic flow chart for explaining a method of soldering an electronic component which is effective in an embodiment of the present invention. Explanation of symbols
  • FIG. La shows a schematic side cross-section for explaining the overall structure of the solder jet device according to the embodiment of the present invention in a standby state.
  • FIG. Lb is a schematic sectional side view for explaining the overall structure of the solder jet device according to the embodiment of the present invention in a soldered state.
  • the solder jet device 1 includes a solder bath 2, a sheet heater 3 and a tube heater 4 as heating means for heating the solder 10 stored in the solder bath 2, and a predetermined circuit of the electric circuit board 100.
  • Nozzles 51 and 52 for spraying solder 10 to the soldering point are projected, and solder tank 2
  • the nozzles 51 and 52 are positioned above the solder liquid level 11 of the solder tank 2 when soldering.
  • lifting means 7 for immersing the nozzles 51 and 52 from the solder liquid surface 11 of the solder tank 2, a mounting plate 8 for positioning the electric circuit board 100 at a predetermined position, Dross removing means 9.
  • the housing, legs, control box, heat insulating material, temperature sensor, screws, etc. are omitted in the solder jet device 1 so that the configuration of the main part can be easily understood.
  • solder jet apparatus 1 is configured such that components 101 and 102 with leads are jet-soldered to the electric circuit board 100, and the objects to be jet-soldered are the electric circuit board 100 and the components 101 and 102 with leads. It is not limited to.
  • the solder tank 2 is a rectangular parallelepiped tank made of stainless steel.
  • solder bath 2 has a hardened layer formed on its surface by force knack treatment or the like, and thus, even if lead-free solder is used as the solder 10, the solder bath 2 The durability against erosion can be improved.
  • the solder jet device 1 is provided with a sheet heater 3 and a tube heater 4 as heating means.
  • the sheet heater 3 is a thin plate heater 1 having a shape substantially corresponding to the bottom shape of the solder blowing means 5 (in the present embodiment, The thickness is about lmm), and two lead wires 30 are provided on the upper surface of the end.
  • the planar heater 3 is connected to a flange 31 having a recess 32 for accommodating the thin plate heater, a number of bolts (not shown), and a lead wire pipe (not shown) into which the lead wire 30 is inserted.
  • the solder blowout means 5 is provided so as to be sealed with respect to the solder 10 and to be exchangeable.
  • the sheet heater 3 in a state of being sealed with respect to the solder 10, it is possible to improve the durability against erosion of the lead-free solder. Further, by providing the heater in a replaceable manner, the sheet heater 3 can be easily replaced in the case of disconnection or the like.
  • the mounting structure of the sheet heater 3 is not limited to the above structure. For example, a stainless steel plate or a pipe having a hardened layer formed by a force knack treatment or the like on a thin plate heater and a lead wire 30 may be used. Then, the sheet heater 3 in this state is attached to the solder blowing means 5.
  • the tube heater 4 is a rod-shaped cartridge heater, and has two lead wires 40 provided on an end face. Six tube heaters 4 are inserted into a plate-shaped hot plate 41, and are attached in a state where the hot plate 41 is in contact with the lower surface of the bottom plate of the solder bath 2.
  • the tube heater 4 functions as an outside-cooking heater provided outside the solder tank 2. For example, even if the sheet heater 3 breaks down in a state where the solder 10 is solidified, the solder 10 can be melted by the tube heater 4, so that the sheet heater 3 can be easily replaced. . In addition, the start-up time until the solder 10 is melted can be shortened.
  • the output of the tube heater 4 is weakened or stopped, and the sheet heater 3 is used as one main heater in order to efficiently use thermal energy.
  • the solder blowing means 5 is in the form of an almost rectangular thin box made of stainless steel, and functions as a flow path for guiding the solder 10 supplied from the solder supply means 6 to the nozzles 51 and 52.
  • the solder blowout means 5 has a pump casing 60 attached to the rear end thereof with an upward force, and a suction port 54 formed below the pump casing 60.
  • an insertion hole 53 for inserting the pump casing 60 and the impeller 61 is formed above the pump casing 60, and the pump casing 60 and the impeller 61 are inserted and then closed by the pump cover 55.
  • a nozzle plate 56 provided with nozzles 51 and 52 is screwed onto the front upper surface. With this configuration, the nozzle plate 56 can be exposed from the solder liquid level 11 by the elevating means 7, so that the nozzle plate 56 can be easily replaced according to the electric circuit board 100.
  • the nozzles 51 and 52 have notches 5 la and 52 a formed at a part of the upper end, and the force of the notches 5 la and 52 a is also configured to drop the solder 10, so that the flow of the solder 10 can be stabilized.
  • the nozzles 51 and 52 are heated by the solder 10 during standby, and when the nozzles 51 and 52 are raised and come into contact with the outside air, the solder 10 is sent almost at the same time, and the soldering is performed in a short time. Therefore, the temperature drop of the small-diameter nozzle 52 can be suppressed to a level without adversely affecting the quality. Since the diameter of the nozzle 51 is larger than that of the nozzle 52, the flow rate of the solder 10 is large. When the nozzle 51 comes into contact with the outside air, the nozzle 51 is more advantageous than the nozzle 52 with respect to a temperature decrease.
  • the solder blowing means 5 has a rear end connected to a lifting plate 71 of the lifting means 7 via a connecting plate 57.
  • the solder blowing means 5 is raised and lowered by the lifting means 7, and when in a standby state, the nozzle 51 Since the nozzles 51 and 52 are immersed from the solder liquid level 11, the problem that the nozzles 51 and 52 are cooled by contacting the outside air can be prevented.
  • the nozzles 51 and 52 rise to a height that leaves a predetermined clearance (usually about 0.5 mm to: Lmm) on the lower surface of the electric circuit board 100, and the solder is transferred to the electric circuit board 100. Can be sprayed.
  • solder blowing means 5 has a hardened layer formed on its surface by a force knack treatment or the like, and can improve the durability against erosion of the lead-free solder.
  • the solder supply means 6 includes a pump casing 60, an impeller 61 housed in the pump casing 60 and connected to a shaft 62, a bearing 63 supporting the shaft 62, and a variable speed motor 64 connected to the shaft 62. And power has also become.
  • the variable speed motor 64 the solder 10 can be circulated by rotating at a low speed during standby, so that the solder temperature in the solder bath 2 can be made uniform. .
  • a bearing 63 and a variable speed motor 64 are connected to an elevating plate 71, and move up and down together with the solder blowing means 5.
  • the elevating means 7 includes a gantry 70, an elevating plate 71, four guide shafts 72 fixed to the gantry 70, a ball bush 73 penetrated by the guide shaft 72 and fixed to the elevating plate 71, and an elevating plate 71. It is composed of a driving ball screw 74 and a stepping motor 75, and the elevating plate 71 can be moved up and down to an arbitrary position at an arbitrary speed.
  • the stepping motor 75 is controlled so that the soldering is almost completed and the speed at which the leads of the leaded components 101 and 102 are separated from the blown solder 10 is reduced. By doing so, the excess solder 10 is stably separated from the leads, so that the defective defects can be reduced.
  • elevating means 7 is not limited to the above configuration.
  • the mounting plate 8 is provided with a guide portion 83 on which the electric circuit board 100 is mounted in a positioned state, and the nozzles 51 and 52 are inserted corresponding to the soldered portions of the electric circuit board 100.
  • 81 and 82 are rectangular plates with perforations.
  • the mounting plate 8 is provided with a reciprocating means such as a linear bearing, and reciprocates in the front-rear direction automatically or manually using an air cylinder or the like.
  • a reciprocating means such as a linear bearing
  • the electric circuit board 100 is located on the near side, the electric circuit board 100 is attached and detached, and soldering is carried out at the position located on the inner side and positioned by the stopper 84.
  • the force for reciprocating the mounting plate 8 is not limited to this force.
  • the mounting plate 8 may be attached to a predetermined soldering position.
  • the force positioning means having a configuration using the mounting plate 8 provided with the guide portion 83 as the positioning means is not limited to this configuration.
  • the solder jet device of the present invention when used in an automation line, it has a conveyor capable of transporting and stopping the electric circuit board 100 and a positioning mechanism for positioning by inserting a pin into a reference hole of the electric circuit board 100.
  • Various configurations of positioning means such as positioning means or positioning means having a biaxial robot can be used.
  • the dross removing means 9 is a horizontally long flat plate connected to a lower surface on the inner side of the mounting plate 8 via a rotating means (not shown) such as a rotating cylinder.
  • the dross removing means 9 is rotated downward when the mounting plate 8 is located on the near side, immersed in the tip 1S solder 10, and immersed below the solder liquid level 11 by the elevating means 7,
  • the state is located above 52.
  • the mounting plate 8 moves Accordingly, the dross 12 floating on the solder liquid surface 11 is pushed to the back side, and a clean solder liquid surface 11 free of the dross 12 can be created on the nozzle plate 56.
  • the dross removing means 9 is rotated in the horizontal direction, and the tip is in a state of floating from the solder 10, and the mounting plate 8 is moved toward this side as it is.
  • the dross 12 floating on the solder liquid level 11 can be collected on the back side.
  • solder defects due to dross 12 can be reduced, and even if the amount of dross 12 generated is large and lead-free solder is used, quality defects such as solder residue adhesion and bridges are reduced. Therefore, the solder quality can be improved.
  • the dross removing unit 9 is not limited to the above-described configuration.
  • the dross removing unit 9 may be configured to move the mounting plate 8 to the near side with the tip of the dross removing unit 9 immersed in the solder 10. In this way, the dross 12 can be collected at two locations, the back side and the near side.
  • the dross removing means 9 is connected to the mounting plate 8, but is not limited to this configuration.
  • the dross removing means 9 may be connected to moving means different from the mounting plate 8.
  • the solder jet device 1 first energizes the sheet heater 3 and the tube heater 4 to heat the solidified solder 10 to a predetermined soldering temperature (usually about 240 ° C. to 250 ° C.).
  • a predetermined soldering temperature usually about 240 ° C. to 250 ° C.
  • the solder blowing means 5 may be raised to a level where the planar heater 3 is located above the solder level 11, as shown in FIG. In this way, when the solidified solder 10 is melted, the solder 10 is melted downward from the upper surface by the planar heater 3, so that the surface is solidified and the inside is melted. Solder bumping, which often occurs in such a case, can be prevented. Furthermore, as shown in the figure, when the solder blowing means 5 is raised, the nozzle plate 56 can be easily replaced, and the model switching of the electric circuit board 100 can be performed efficiently.
  • solder jet device 1 is provided with the tube heater 4 and can also melt the solder 10 with a lower surface force, thereby shortening the startup time until the hardened solder 10 is melted.
  • the solder jet device 1 lowers the solder blowing means 5 so that the nozzles 51 and 52 sink into the solder liquid surface 11. In this way, when in the standby state (soldering In the meantime, by sinking the nos and noes 51 and 52 in the solder 10, the nos and nos 51 and 52 can be heated to the solder temperature and the trouble of being cooled by contact with the outside air can be prevented. Further, when the solder jet device 1 is in a standby state, the variable speed motor 64 is rotated at a low speed, and a small amount of solder 10 is blown out from the nozzles 51 and 52. 10 can be appropriately circulated, and the solder temperature can be made uniform.
  • the electric circuit board 100 to which the leaded components 101 and 102 to be soldered are attached and subjected to pretreatment such as flux application is set on the guide portion 83 of the mounting plate 8. Subsequently, the mounting board 8 moves to the back side and comes into contact with the stopper 84, whereby the electric circuit board 100 is positioned at the soldering position corresponding to the nozzles 51 and 52. Further, when the mounting plate 8 moves to the back side, the dross removing means 9 moves the dross 12 on the solder liquid surface 11 to the back side, so that a clean solder liquid surface 11 without an oxide film is formed.
  • the solder supply means 6 supplies the solder 10 to the solder blowing means 5, and the elevating means 7 raises the solder blowing means 5.
  • fresh (not including dross 12) solder 10 continues to be jetted from the lower layers of the solder tank 2 through the suction ports 54 from the nozzles 51, 52, so that the inner surfaces of the nozzles 51, 52 When the oxidized film is generated, any trouble can be prevented.
  • solder blowing means 5 rises to a predetermined position and stops at that position for a predetermined time.
  • This predetermined time is the soldering time (usually several seconds).
  • the solder 10 is sprayed from the nozzles 51 and 52 onto the electric circuit board 100, and the electric circuit board 100 is provided with leads 101 and 102. Are soldered.
  • the stepping motor 75 is controlled so that the sprayed solder 10 is slowly separated from the leads of the components 101 and 102 with leads. Lower the nozzles 51 and 52. By doing so, the excess solder 10 is stably separated from the leads, so that bridge failure can be reduced. At this time, it is preferable to lower the nozzles 51 and 52 while the solder 10 is jetted from the nozzles 51 and 52. In this way, fresh (without dross 12) solder is drawn from the lower layer of solder bath 2 through suction port 54. Since the jets continue to be jetted from the tenth nozzles 51 and 52, it is possible to prevent a trouble that may occur when an oxide film is generated on the inner surfaces of the nozzles 51 and 52.
  • the nozzles 51 and 52 sink below the solder liquid level 11, the mounting plate 8 is moved to the near side, the electric circuit board 100 is removed from the mounting plate 8, and one cycle of soldering is completed.
  • the nozzles 51 and 52 are immersed in the solder 10 and are heated by the solder 10, and when soldering, the solder 10 As the nozzles 51 and 52 rise while jetting, the temperature of the solder sprayed on the electric circuit board 100 can be controlled with high accuracy, and the soldering quality can be improved. Also, for example, even if the diameters of the nozzles 51 and 52 are reduced, the components with leads 101 and 102 can be satisfactorily soldered, and high density can be accommodated.
  • the sheet heater 3 and the tube heater 4 efficient heating can be achieved, and by sealing the sheet heater 3 to the solder 10 with the flange 31, it is possible to use lead-free solder. Even if it does, the erosion of the sheet heater 3 can be prevented.
  • the present invention is also effective as a method for soldering electronic components, and the method for soldering electronic components according to the present embodiment will be described with reference to the drawings.
  • FIG. 3 is a schematic flowchart for explaining a method of soldering an electronic component according to an embodiment of the present invention.
  • Step Sl the method for soldering electronic components according to the present embodiment is described in a state where the nozzles 51 and 52 are immersed in the solder liquid surface 11 of the solder bath 2 by the elevating means 7 when the solder jet device 1 is on standby.
  • the elevating means 7 raises the nozzles 51, 52 above the solder liquid level 11 of the solder tank 2, and the solder supply means 5 transmits the electric circuit board from the nozzles 51, 52.
  • the solder 10 is sprayed on 100 predetermined soldering locations (step S2).
  • the soldering method of the electronic component according to the present embodiment is such that the nozzles 51 and 52 are immersed in the solder liquid surface 11 in the standby state, so that the nozzles 51 and 52 are in the standby state. If the soldering temperature drops due to cooling by the outside air, it will prevent problems and improve the soldering quality. Can be improved.
  • the nozzles 51 and 52 are raised above the solder liquid level 11 of the solder tank 2 while the solder 10 is jetted from the nozzles 51 and 52, the nozzles 51 and 52 exposed to the outside air are jetted. Since the solder 10 is heated by the solder 10, the temperature drop of the solder 10 sprayed on the nozzles 51 and 52 and the electric circuit board 100 can be effectively suppressed.
  • the nozzles 51 and 52 are immersed below the solder liquid level 11 of the solder tank 2 with a force that does not jet the solder 10 from the nozzles 51 and 52, the nozzles 51 and 52 It is possible to effectively prevent the scum from adhering to the inside of 52.
  • the solder blowing means 5 is provided in a state in which the solder 10 is sealed. It is also possible to use a method in which the sheet heater 3 provided and the tube heater 4 provided as an outside-cooking heater provided outside the solder bath 2 heat the solder 10 in the solder bath 2.
  • the solder 10 can be melted by the tube heater 4, so that the sheet heater 3 can be easily formed. Can be replaced.
  • the start-up time until the solder 10 is melted can be shortened.
  • the present invention is also effective as a method for manufacturing a solder jet device, and the method for manufacturing a solder jet device according to the present invention is a method for manufacturing the nozzle plate 56 of the solder jet device 1 by press working. .
  • the nozzles 51 and 52 projecting from the nozzle plate 56 can be efficiently manufactured by press working.
  • the blocks corresponding to the nozzles 51 and 52 are fixed to a metal plate.
  • the blocks can be shared and the manufacturing cost can be reduced.
  • the mold can be prepared by fixing the block to the metal plate, the production delivery time can be shortened.
  • solder jet device the method for manufacturing the solder jet device, and the method for soldering electronic components according to the present invention have been described with reference to the preferred embodiments.
  • the solder jet device, the solder jet device according to the present invention have been described.
  • the method of manufacturing the electronic component and the method of soldering the electronic component are described in the above-described embodiment. It goes without saying that various modifications can be made without departing from the scope of the present invention.
  • the mounting plate 8 is provided with component pressing means for pressing the components 101 and 102 with leads from above, it is possible to prevent the components from floating when soldering.
  • the mounting plate 8 is provided with a rotatable exhaust cover, a flux gas generated at the time of soldering can be efficiently exhausted through the exhaust cover. Work environment can be improved.
  • a component with leads is soldered to an electric circuit board. It is not limited to parts. For example, it can also be suitably used when a metal lid is soldered to a metal case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 半田槽2と、加熱手段として面状ヒーター3及び管ヒーター4と、半田10を吹き付けるノズル51,52が突設され、半田槽2内に昇降自在に取り付けられた半田吹出し手段5と、この半田吹出し手段5に半田10を供給する半田供給手段6と、半田付けするとき、ノズル51,52を半田槽2の半田液面11より上昇させ、かつ、待機するとき、ノズル51,52を半田槽2の半田液面11より降下させる昇降手段7と、電気回路基板100を所定の位置に位置決めする載置板8とを具備した構成としてある。

Description

半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方 法
技術分野
[0001] 本発明は、半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方 法に関し、特に、リード付き電子部品に適し、鉛フリー半田に対応した半田噴流装置 ,半田噴流装置の製造方法及び電子部品の半田付け方法に関する。
背景技術
[0002] 従来、半田噴流装置は、加熱手段が設けられた半田槽,半田供給手段,半田吹出 し口(ノズル),及び電気回路基板を位置決めする載置板等からなる。この半田噴流 装置は、半田槽で加熱,溶融された半田を、半田供給装置から半田吹出し口に供給 し、さらに、この半田吹出しロカも溶融半田を電気回路基板のリード部品位置に吹き 付けることにより、リード付き電子部品を電気回路基板に半田付けしていた。
上記半田噴流装置は、リード付き電子部品を効率よく半田付けできることから、様々 な半田噴流装置が開発され実用化されてきた。
[0003] たとえば、特許文献 1には、半田槽、半田供給装置、半田吹出し口(ノズル)および 電気回路基板を載置する架台 (載置板)を含む半田噴流装置であって、架台に設け られ、半田吹出し口から噴出された溶融半田を、所定位置に吹き付ける開口部と、こ の開口部の縁近傍に設けられた半田拡散防止用壁とを備えた半田噴流装置の技術 が開示されている。
この半田噴流装置によれば、リード付き電子部品等を、精密かつ迅速に電気回路 基板へ半田付けすることができる。
特許文献 1 :特許第 3417509号公報 (請求項 2、図 1)
[0004] ところで、近年、エレクトロニクス機器による環境破壊を防止する観点から、従来使 用して 、た鉛含有半田の代わりに、鉛を含まな 、鉛フリー半田が用いられるようにな つてきた。また、電気回路基板及び電子部品の小型化にともなう高密度化により、電 子部品間の間隔は狭まっており、これら電子部品を、鉛フリー半田を用いて半田付け する必要がある。
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、上記特許文献 1の半田噴流装置は、鉛含有半田に対応した技術で あり、基本的な構成においては、鉛フリー半田に対応することができるもの、鉛フリー 半田の特性に応じて、いくつか改良すべき点があった。
たとえば、噴流半田付けにおいて、半田温度は、電気回路基板のパッド強度ゃ電 極くわれ等を考慮すると、一般的に、約 240°C〜250°Cに設定される。この場合、従 来の錫— 37鉛共晶合金(共晶半田)は、液相線温度力 183°Cであることから、半田 温度と液相線温度との温度差が約 57°C〜67°Cとなる。これに対し、たとえば、鉛フリ 一半田として錫— 3. 0銀— 0. 5銅の合金は、液相線温度が約 217°C〜220°Cであ ること力 、半田温度と液相線温度との温度差が約 20°C〜43°Cとなり、共晶半田の 約半分である。このため、半田噴流量が不足したり、電気回路基板と接触するまでに 半田温度が冷えたりして、半田接合に必要な熱が不足すると、未半田,スルーホー ルへの半田上がり不足,上面ランドへの濡れ広がり不足などの接合不具合が発生す るといった問題があった。
[0006] また、鉛フリー半田は、共晶半田に比べて、ノズル力 吹き付けられた半田が半田 液面に落下する際、大気巻込みによる半田酸ィ匕物(ドロス)の生成量が多い。このた め、半田酸ィ匕物がリードに付着して半田付け不良を起こすといった問題があった。 さらに、共晶半田を用いる半田槽は、材料として通常ステンレス材が用いられ、また 、半田槽内部への投込み式ヒーターが用いられる力 上記ステンレス材及び投込み 式ヒーターに、鉛フリー半田による溶食が発生するといつた問題があった。
[0007] 本発明は、上記問題を解決すベぐ鉛フリー半田を使用しても、リード付き電子部 品等を電気回路基板へ、品質及び生産効率に優れた状態で半田付けすることが可 能な半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法の提 供を目的とする。
課題を解決するための手段
[0008] 上記目的を達成するために、本発明の半田噴流装置は、半田槽と、この半田槽内 の半田を加熱する加熱手段と、電気回路基板の所定の半田付け箇所に前記半田を 吹き付けるノズルが突設され、前記半田槽内に昇降自在に取り付けられた半田吹出 し手段と、この半田吹出し手段に前記半田を供給する半田供給手段と、半田付けす るとき、前記ノズルを前記半田槽の半田液面より上方に位置させ、かつ、待機状態の ときは、前記ノズルを前記半田槽の半田液面より没入させる昇降手段と、前記電気回 路基板を所定の位置に位置決めする位置決め手段とを具備した構成としてある。 このようにすると、ノズルは、待機状態のとき、半田槽の溶融半田に沈んでおり、半 田温度に加熱されているので、半田付けするとき、半田液面より上昇し大気に触れ冷 却される力 半田の温度低下をほぼ影響のないレベルまで抑制することができる。し たがって、電気回路基板に吹き付けられる半田温度を精度よく制御することができ、 半田付け品質を向上させることができる。また、ノズルの口径が小さくなるほど、電気 回路基板に吹き付けられる半田温度が低くなるといった不具合を防止することができ 、高密度化に対応することができる。
[0009] また、本発明の半田噴流装置は、半田槽と、電気回路基板の所定の半田付け箇所 に半田を吹き付けるノズルが突設された半田吹出し手段と、この半田吹出し手段に 前記半田を供給する半田供給手段と、前記半田吹出し手段に、前記半田にして密 閉された状態で設けられ、前記半田槽内の前記半田を加熱する加熱手段と、前記電 気回路基板を所定の位置に位置決めする位置決め手段とを具備した構成としてある このよう〖こすると、鉛フリー半田を使用した場合であっても、ヒーターが溶食されると いった不具合を防止することができる。また、半田に浸漬した状態で、加熱手段を設 けることにより、加熱手段の伝熱効率を向上させることができ、省エネを図ることがで きる。なお、加熱手段として、面状ヒーターを用いるとよぐこのようにすると、半田吹出 し手段の底部に容易に取り付けることができる。
[0010] また、本発明の半田噴流装置は、半田槽と、電気回路基板の所定の半田付け箇所 に前記半田を吹き付けるノズルが突設され、前記半田槽内に昇降自在に取り付けら れた半田吹出し手段と、この半田吹出し手段に前記半田を供給する半田供給手段と 、前記半田吹出し手段に、前記半田に対して密閉された状態で設けられ、前記半田 槽内の前記半田を加熱する加熱手段と、半田付けするとき、前記ノズルを前記半田 槽の半田液面より上方に位置させ、かつ、待機状態のときは、前記ノズルを前記半田 槽の半田液面より没入させる昇降手段と、前記電気回路基板を所定の位置に位置 決めする位置決め手段とを具備した構成としてある。
このよう〖こすると、電気回路基板に吹き付けられる半田温度を精度よく制御すること ができ、半田付け品質を向上させることができる。また、鉛フリー半田を使用した場合 であっても、ヒーターが溶食されると!/、つた不具合を防止することができる。
[0011] また、本発明の半田噴流装置は、前記ノズルが前記半田槽の半田液面より没入し ているとき、前記半田槽の半田液面に浮遊するドロスを押しのけるドロス除去手段を 備えた構成としてある。
このようにすると、ドロスに起因する半田不良を低減でき、ドロスの発生量が多い鉛 フリー半田を使用した場合であっても、半田品質を向上させることができる。
[0012] また、本発明の半田噴流装置は、前記半田吹出し手段が、交換自在に取り付けら れる、前記ノズルが突設されたノズル板を備えた構成としてある。
このよう〖こすると、異なる電気回路基板への機種切り替えを効率よく行うことができ、 生産効率を大幅に向上させることができる。
[0013] また、本発明の半田噴流装置は、前記加熱手段として、前記半田槽の外部に外炊 き式ヒーターを設けた構成としてある。
このようにすると、たとえば、半田が固まった状態で、面状ヒーターが故障した場合 であっても、外炊き式ヒーターによって半田を溶融させることができるので、面状ヒー ターを容易に交換することができる。また、半田を溶融させるまでの立上げ時間を短 縮することができる。
[0014] 上記目的を達成するために、本発明の電子部品の半田付け方法は、上記請求項 1 , 3, 4又は 5のいずれかに記載の半田噴流装置を用いた電子部品の半田付け方法 において、待機状態のときは、前記昇降手段が、前記ノズルを前記半田槽の半田液 面より没入させ、半田付けするとき、前記半田供給手段が、前記ノズルから半田を噴 流させ、かつ、前記昇降手段が、前記ノズルを前記半田槽の半田液面より上方に位 置させる方法としてある。 このように、本発明は、電子部品の半田付け方法としても有効であり、特に、ノズル 力 半田を噴流させながら、ノズルを半田槽の半田液面より上昇させるとよぐこのよう にすると、ノズル及び電気回路基板に吹き付けられる半田の温度低下を効果的に抑 ff¾することができる。
[0015] また、本発明の電子部品の半田付け方法は、上記請求項 2又は 3記載の半田噴流 装置を用いた電子部品の半田付け方法において、前記半田吹出し手段に、前記半 田に対して密閉された状態で設けられた加熱手段と、前記半田槽の外部に設けた外 炊き式ヒーターとが、前記半田槽内の前記半田を加熱する方法としてある。
このようにすると、たとえば、半田が固まった状態で、面状ヒーターが故障した場合 であっても、外炊き式ヒーターによって半田を溶融させることができるので、面状ヒー ターを容易に交換することができる。また、半田を溶融させるまでの立上げ時間を短 縮することができる。
[0016] また、本発明の半田噴流装置の製造方法は、上記請求項 5記載の半田噴流装置 の製造方法において、前記ノズル板を、プレスカ卩ェにより製造する方法としてある。 このよう〖こすると、ノズル板力も突設されるノズルを、プレスカ卩ェによって、効率よく 製造することができる。
発明の効果
[0017] 本発明の半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方 法によれば、電気回路基板に吹き付けられる半田温度を精度よく制御することができ 、半田付け品質を向上させることができる。また、ノズルの口径が小さくなるほど、電 気回路基板に吹き付けられる半田温度が低くなるといった不具合を防止することがで き、高密度化に対応することができる。
さらに、面状ヒーター及び外炊き式ヒーターを設けることにより、効率よく加熱するこ とができるとともに、鉛フリー半田を使用した場合であっても、ヒーターの溶食を防ぐこ とがでさる。
図面の簡単な説明
[0018] [図 la]本発明の実施形態に力かる半田噴流装置の、待機状態における全体的な構 造を説明するための概略側断面を示している。 [図 lb]本発明の実施形態に力かる半田噴流装置の、半田付け状態における全体的 な構造を説明するための概略側断面を示して 、る。
[図 2]本発明の実施形態に力かる半田噴流装置の、立上げ状態における全体的な構 造を説明するための概略側断面を示している。
[図 3]本発明の実施形態に力かる電子部品の半田付け方法を説明するための概略フ ローチャート図を示して 、る。 符号の説明
1 半田噴流装置
2 半田槽
3 面状ヒーター
4 管ヒーター
5 半田吹出し手段
6 半田供給手段
7 昇降手段
8 載置板
9 ドロス除去手段
10 半田
11 半田液面
12 ドロス
30 リード線
31 フランジ
32 凹部
40 リード線
41 ホットプレート
51 , 52 ノズル
51a, 52a 切欠
53 揷入孔
54 吸込み口 55 ポンプカバー
56 ノズル板
57 連結板
60 ポンプケーシング
61 羽根車
62 シャフト
63 軸受
64 可変速モータ
70 架台
71 昇降板
72 ガイド軸
73 ボーノレブッシュ
74 ボーノレねじ
75 ステッピングモータ
81 , 82 切欠
83 ガイド部
84 ストッパ
100 電気回路基板
101, 102 リード付き部品
発明を実施するための最良の形態
[半田噴流装置]
図 laは、本発明の実施形態に力かる半田噴流装置の、待機状態における全体的 な構造を説明するための概略側断面を示して 、る。
また、図 lbは、本発明の実施形態に力かる半田噴流装置の、半田付け状態におけ る全体的な構造を説明するための概略側断面を示している。
図 la, lbにおいて、半田噴流装置 1は、半田槽 2と、半田槽 2に貯留された半田 10 を加熱する加熱手段としての面状ヒーター 3及び管ヒーター 4と、電気回路基板 100 の所定の半田付け箇所に半田 10を吹き付けるノズル 51, 52が突設され、半田槽 2 内に昇降自在に取り付けられた半田吹出し手段 5と、半田吹出し手段 5に半田 10を 供給する半田供給手段 6と、半田付けするとき、ノズル 51, 52を半田槽 2の半田液面 11より上方に位置させ、かつ、待機状態のときは、ノズル 51, 52を半田槽 2の半田液 面 11より没入させる昇降手段 7と、電気回路基板 100を所定の位置に位置決めする 載置板 8と、ドロス除去手段 9とからなっている。
なお、図 la, lbにおいて、半田噴流装置 1は、要部の構成を理解しやすいように、 筐体,脚部,制御ボックス,断熱材,温度センサ,ねじ等を省略してある。
また、半田噴流装置 1は、電気回路基板 100にリード付き部品 101, 102を噴流半 田付けする構成としてあるが、噴流半田付けする対象は、電気回路基板 100及びリ ード付き部品 101, 102に限定されるものではない。
[0021] (半田槽)
半田槽 2は、ステンレス製の直方体状の槽である。
また、半田槽 2は、表面に力ナック処理等により硬化層を形成してあり、このようにす ることにより、半田 10として、鉛フリー半田を使用した場合であっても、鉛フリー半田 の溶食に対する耐久性を向上させることができる。
[0022] (加熱手段)
半田噴流装置 1は、加熱手段として、面状ヒーター 3及び管ヒーター 4を設けてある 面状ヒーター 3は、半田吹出し手段 5の底面形状にほぼ対応した形状の薄板ヒータ 一 (本実施形態では、厚さ約 lmm)であり、二本のリード線 30が端部上面に設けてあ る。この面状ヒーター 3は、薄板ヒーターを収納する凹部 32の形成されたフランジ 31 ,多数のボルト(図示せず),及びリード線 30が挿入されるリード線用配管(図示せず )を介して、半田 10に対して密閉された状態で、かつ、交換自在に、半田吹出し手段 5に設けてある。このように、半田 10に浸漬した状態で、面状ヒーター 3を設けることに より、面状ヒーター 3の伝熱効率を向上させることができ、省エネを図ることができる。
[0023] また、面状ヒーター 3は、半田 10に対して密閉された状態で設けることにより、鉛フリ 一半田の溶食に対する耐久性を向上させることができる。さらに、交換自在に設ける ことにより、断線等の場合に、面状ヒーター 3を容易に交換することができる。 なお、面状ヒーター 3の取付け構造は、上記構造に限定されるものではなぐたとえ ば、あら力じめ、薄板ヒーター及びリード線 30を力ナック処理等により硬化層を形成し たステンレス板やパイプを用いて密閉し、この状態の面状ヒーター 3を半田吹出し手 段 5に取り付ける構成としてもょ 、。
[0024] 管ヒーター 4は、棒状のカートリッジヒーターであり、二本のリード線 40が端面に設け てある。この管ヒーター 4は、板状のホットプレート 41に 6本挿入され、ホットプレート 4 1が半田槽 2の底板の下面に当接した状態で取り付けられる。
この管ヒーター 4は、半田槽 2の外部に設けられた外炊き式ヒーターとして機能する 。たとえば、半田 10が固まった状態で、面状ヒーター 3が故障した場合であっても、管 ヒーター 4によって半田 10を溶融させることができるので、面状ヒーター 3を容易に交 換することができる。また、半田 10を溶融させるまでの立上げ時間を短縮することが できる。
なお、半田槽 2の半田 10が設定温度に達した以降は、熱エネルギーを効率よく利 用するため、管ヒーター 4の出力を弱めあるいは停止し、面状ヒーター 3をメインヒータ 一として使用する。
[0025] (半田吹出し手段)
半田吹出し手段 5は、ステンレス製のほぼ矩形の薄い箱状としてあり、半田供給手 段 6から供給される半田 10をノズル 51, 52まで導く流路として機能する。半田吹出し 手段 5は、奥側端部にポンプケーシング 60が上方力も装着され、ポンプケーシング 6 0の下方に吸込み口 54が形成してある。また、ポンプケーシング 60の上方に、ポンプ ケーシング 60及び羽根車 61を挿入するための揷入孔 53が穿設され、ポンプケーシ ング 60及び羽根車 61を挿入後、ポンプカバー 55にて塞がれる。
[0026] また、半田吹出し手段 5は、手前側上面に、ノズル 51, 52が突設されたノズル板 56 が螺着してある。このようにすると、昇降手段 7により、ノズル板 56を半田液面 11から 露出させることができるので、電気回路基板 100に応じて、ノズル板 56を容易に交換 することができる。
ノズル 51, 52は、上端の一部に切欠 5 la, 52aを形成してあり、この切欠 5 la, 52a 力も半田 10を落下させる構成としてあり、半田 10の流れを安定させることができる。 また、本実施形態では、ノズル 51, 52を待機中に半田 10により加熱しており、かつ 、ノズル 51, 52を上昇させ外気に触れるとほぼ同時に半田 10を送り込んで、短時間 で半田付けするので、小径のノズル 52の温度低下を品質に悪影響を与えな 、レべ ルまで抑制することができる。なお、ノズル 51は、ノズル 52より口径が大きいので、半 田 10の流量も大きぐノズル 51が外気と接触した場合、温度低下に対してノズル 52 より有利である。
[0027] 半田吹出し手段 5は、奥側端部が、連結板 57を介して、昇降手段 7の昇降板 71と 連結してあり、昇降手段 7により昇降され、待機状態のときは、ノズル 51, 52が半田 液面 11より没入するのでノズル 51, 52が外気に触れて冷却されるといった不具合を 防止することができる。
また、半田付けするとき、ノズル 51, 52が、電気回路基板 100の下面に所定のタリ ァランス (通常、約 0. 5mm〜: Lmm)を残す高さまで上昇し、電気回路基板 100に半 田 10を吹き付けることができる。
また、半田吹出し手段 5は、表面に力ナック処理等により硬化層を形成してあり、鉛 フリー半田の溶食に対する耐久性を向上させることができる。
[0028] (半田供給手段)
半田供給手段 6は、ポンプケーシング 60と、このポンプケーシング 60に収納され、 シャフト 62が連結された羽根車 61と、シャフト 62を軸支する軸受 63と、シャフト 62が 連結された可変速モータ 64と力もなつている。ここで、可変速モータ 64を用いること により、待機しているとき、低速で回転させることにより、半田 10を循環させることがで きるので、半田槽 2内の半田温度を均一化することができる。
また、半田供給手段 6は、軸受 63と可変速モータ 64が、昇降板 71と連結されてお り、半田吹出し手段 5とともに昇降する。
[0029] (昇降手段)
昇降手段 7は、架台 70と、昇降板 71と、架台 70に固定された四本のガイド軸 72と、 ガイド軸 72が貫通し昇降板 71に固定されたボールブッシュ 73と、昇降板 71を駆動 するボールねじ 74及びステッピングモータ 75とからなっており、昇降板 71を任意の 位置に任意の速度で昇降させることができる。 ここで、好ましくは、半田付けがほぼ終了し、リード付き部品 101, 102のリードと吹 き付けられている半田 10とが離れる速度を遅くするように、ステッピングモータ 75を制 御するとよぐこのようにすると、リードから余分な半田 10が安定して離れるので、プリ ッジ不良を低減することができる。
なお、昇降手段 7は、上記構成に限定されるものではない。
[0030] (載置板)
載置板 8は、電気回路基板 100が位置決めされた状態で載置されるガイド部 83が 配設され、電気回路基板 100の半田付け部に対応して、ノズル 51, 52が挿入される 切欠 81 , 82が穿設された矩形板である。
また、載置板 8は、図示してないが、リニアベアリング等の往復移動手段が設けられ ており、ェアーシリンダ等を用いて自動又は手動により前後方向に往復移動する。そ して、手前側に位置するとき、電気回路基板 100の取付け及び取外しが行われ、奥 側に位置しストッパ 84により位置決めされる位置で、半田付けが行われる。なお、本 実施形態では、載置板 8を往復移動させる構成としてある力 この構成に限定される ものではなぐたとえば、所定の半田付け位置に、載置板 8を取り付ける構成としても よい。
[0031] なお、本実施形態は、位置決め手段として、ガイド部 83が設けられた載置板 8を用 いた構成としてある力 位置決め手段は、この構成に限定されるものではない。たとえ ば、自動化ラインに本発明の半田噴流装置を使用する場合、電気回路基板 100を 搬送'停止可能なコンベアおよび電気回路基板 100の基準孔にピンを挿入すること により位置決めする位置決め機構などを有する位置決め手段、あるいは、二軸ロボッ トを有する位置決め手段など、様々な構成の位置決め手段を用いることができる。
[0032] (ドロス除去手段)
ドロス除去手段 9は、載置板 8の奥側下面に、回動シリンダ等の回動手段(図示せ ず)を介して連結された横長の平板としてある。
ドロス除去手段 9は、載置板 8が手前側に位置するとき下向きに回動され、先端部 1S 半田 10に没し、かつ、昇降手段 7によって半田液面 11より下方に没入したノズル 51 , 52より、上方に位置する状態となる。このまま、載置板 8が奥側に移動することに より、半田液面 11に浮遊するドロス 12を奥側に押し出し、ドロス 12の存在しない清浄 な半田液面 11をノズル板 56上に作り出すことができる。そして、載置板 8が奥側に位 置するとき、ドロス除去手段 9は、水平方向に回動され、先端部が半田 10から浮いた 状態となり、このまま、載置板 8が手前側に移動することにより、半田液面 11に浮遊す るドロス 12を奥側に集めることができる。このようにすることにより、ドロス 12に起因す る半田不良を低減でき、ドロス 12の発生量が多 、鉛フリー半田を使用した場合であ つても、半田かす付着やブリッジなどの品質不良を低減でき、半田品質を向上させる ことができる。
[0033] なお、ドロス除去手段 9は、上記構成に限定されるものではなぐたとえば、ドロス除 去手段 9の先端が半田 10に没した状態で、載置板 8を手前側に移動させる構成とし てもよく、このようにすると、ドロス 12を奥側と手前側の二箇所に集めることができる。 また、ドロス除去手段 9は、載置板 8に連結されているが、この構成に限定されるも のではなぐたとえば、載置板 8とは別の移動手段に連結してもよい。
[0034] 次に、上記構成の半田噴流装置 1の動作について、図面を参照して説明する。
半田噴流装置 1は、まず、面状ヒーター 3及び管ヒーター 4に通電され、固まった状 態の半田 10を、所定の半田付け温度 (通常、約 240°C〜250°C)まで加熱する。ここ で、作業終了時に、半田吹出し手段 5を、図 2に示すように、面状ヒーター 3が半田液 面 11の上部に位置する高さまで上昇させておくとよい。このようにすると、固まった半 田 10を溶融させる際、面状ヒーター 3により、半田 10が上面から下方に向力つて溶融 して 、くので、表面が固まっており内部が溶融して 、る場合にしばしば発生する半田 突沸を防止することができる。さらに、同図に示すように、半田吹出し手段 5を上昇さ せると、ノズル板 56を容易に交換することができ、電気回路基板 100の機種切り替え を効率よく行うことができる。
また、半田噴流装置 1は、管ヒーター 4を備えており、半田 10を下面力もも溶融させ ることができ、固まった半田 10を溶融させるまでの立上げ時間を短縮することができ る。
[0035] 半田 10が溶融すると、半田噴流装置 1は、ノズル 51, 52が半田液面 11に沈み込 むように、半田吹出し手段 5を降下させる。このように、待機状態のとき(半田付けして ヽな ヽとき)、ノス、ノレ 51, 52を半田 10に沈ませることにより、ノス、ノレ 51, 52を半田温度 に加熱するとともに、外気に触れて冷却されるといった不具合を防止することができる また、半田噴流装置 1は、待機状態のとき、可変速モータ 64を低速で回転させ、少 量の半田 10をノズル 51, 52から吹き出させるとよぐこのようにすると、半田槽 2内の 半田 10を適度に循環することができ、半田温度を均一化することができる。
[0036] 次に、半田付けするリード付き部品 101, 102が取り付けられ、フラックス塗布等の 前処理の施された電気回路基板 100が、載置板 8のガイド部 83にセットされる。続い て、載置板 8が奥側に移動し、ストッパ 84と当接することにより、ノズル 51, 52に対応 した半田付け位置に、電気回路基板 100が位置決めされる。また、載置板 8が奥側 に移動する際、ドロス除去手段 9が、半田液面 11上のドロス 12を奥側に移動させ、酸 化膜のな 、清浄な半田液面 11となる。
[0037] 次に、半田供給手段 6が半田吹出し手段 5に半田 10を供給するとともに、昇降手段 7が半田吹出し手段 5を上昇させる。この際、ノズル 51, 52から半田 10が噴流される 状態で、ノズル 51, 52を上昇させるとよい。このようにすると、半田槽 2の下層から吸 込み口 54を経由して新鮮な(ドロス 12が含まれない)半田 10がノズル 51, 52から噴 流され続けるので、ノズル 51, 52の内面に酸ィ匕膜が発生するといつた不具合を防止 することができる。
[0038] 次に、半田吹出し手段 5が所定の位置まで上昇し、所定時間だけその位置に停止 する。この所定時間が半田付け時間(通常、数秒)であり、この半田付け時間の間、ノ ズル 51, 52から電気回路基板 100に半田 10が吹き付けられ、電気回路基板 100に リード付き部品 101, 102が半田付けされる。
[0039] 次に、あら力じめ設定された半田付け時間が経過すると、吹き付けられている半田 10がリード付き部品 101, 102のリードからゆっくり離れるように、ステッピングモータ 7 5を制御して、ノズル 51, 52を降下させる。このようにすると、リードから余分な半田 1 0が安定して離れるので、ブリッジ不良を低減することができる。この際、ノズル 51, 5 2から半田 10が噴流される状態で、ノズル 51, 52を降下させるとよい。このようにする と、半田槽 2の下層から吸込み口 54を経由して新鮮な(ドロス 12が含まれない)半田 10力 ズル 51, 52から噴流され続けるので、ノズル 51, 52の内面に酸化膜が発生 するといつた不具合を防止することができる。
続いて、ノズル 51, 52が半田液面 11より下方に沈み、載置板 8が手前側に移動さ れ、電気回路基板 100が載置板 8から取り外され、半田付けの 1サイクルが終了する
[0040] このように、本実施形態の半田噴流装置 1は、待機状態のとき、半田 10にノズル 51 , 52が没した状態となり半田 10によって加熱され、さらに、半田付けするとき、半田 1 0を噴流しながらノズル 51, 52が上昇するので、電気回路基板 100に吹き付けられる 半田温度を精度よく制御することができ、半田付け品質を向上させることができる。ま た、たとえば、ノズル 51, 52の口径を小さくしても、リード付き部品 101, 102を良好 に半田付けすることができ、高密度化に対応することができる。
さらに、面状ヒーター 3及び管ヒーター 4を設けることにより、効率よく加熱することが できるとともに、面状ヒーター 3をフランジ 31で半田 10に対して密閉することにより、鉛 フリー半田を使用した場合であっても、面状ヒーター 3の溶食を防ぐことができる。
[0041] [電子部品の半田付け方法]
また、本発明は、電子部品の半田付け方法としても有効であり、本実施形態にかか る電子部品の半田付け方法を、図面を参照して説明する。
図 3は、本発明の実施形態に力かる電子部品の半田付け方法を説明するための概 略フローチャート図を示して 、る。
同図において、本実施形態に力かる電子部品の半田付け方法は、上記半田噴流 装置 1が待機するとき、昇降手段 7によって、ノズル 51, 52が半田槽 2の半田液面 11 に没する状態とする (ステップ Sl)。
[0042] 次に、半田付けするとき、昇降手段 7が、ノズル 51, 52を半田槽 2の半田液面 11よ り上昇させ、かつ、半田供給手段 5が、ノズル 51, 52から電気回路基板 100の所定 の半田付け箇所に半田 10を吹き付ける (ステップ S2)。
[0043] このように、本実施形態の電子部品の半田付け方法は、待機状態のとき、ノズル 51 , 52を半田液面 11に没する状態とすることにより、ノズル 51, 52が待機中に外気に より冷却され、半田付け温度が低下するといつた不具合を防止し、半田付け品質を 向上させることができる。また、ノズル 51, 52から半田 10を噴流させながら、ノズル 51 , 52を半田槽 2の半田液面 11より上昇させるとよぐこのようにすると、外気に露出し たノズル 51, 52力 噴流される半田 10により加熱されるので、ノズル 51, 52及び電 気回路基板 100に吹き付けられる半田 10の温度低下を効果的に抑制することがで きる。また、ノス、ノレ 51, 52力ら半田 10を噴流させな力ら、ノス、ノレ 51, 52を半田槽 2の 半田液面 11より下方に没入させるとよぐこのようにすると、ノズル 51, 52の内側に酸 化かすが付着するのを効果的に防止することができる。
[0044] また、本発明の電子部品の半田付け方法は、上記半田噴流装置 1を用いた電子部 品の半田付け方法において、半田吹出し手段 5に、半田 10に対して密閉された状態 で設けられた面状ヒーター 3と、半田槽 2の外部に設けた外炊き式ヒーターとしての管 ヒーター 4が、半田槽 2内の半田 10を加熱する方法としてもよい。
このようにすると、たとえば、半田 10が固まった状態で、面状ヒーター 3が故障した 場合であっても、管ヒーター 4によって半田 10を溶融させることができるので、面状ヒ 一ター 3を容易に交換することができる。また、半田 10を溶融させるまでの立上げ時 間を短縮することができる。
[0045] [半田噴流装置の製造方法]
また、本発明は、半田噴流装置の製造方法としても有効であり、本発明にかかる半 田噴流装置の製造方法は、上記半田噴流装置 1のノズル板 56を、プレス加工により 製造する方法としてある。
このようにすると、ノズル板 56力ら突設されるノズル 51, 52を、プレス加工によって、 効率よく製造することができる。
特に、ノズル 51, 52に対応したブロックを金属板に固定した金型を使用するとよぐ このようにすると、ブロックを共用化でき、製造原価のコストダウンを図ることができる。 また、ブロックを金属板に固定することにより、金型を準備できるので、製造納期を短 縮することができる。
[0046] 以上、本発明の半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付 け方法について、好ましい実施形態を示して説明したが、本発明に係る半田噴流装 置,半田噴流装置の製造方法及び電子部品の半田付け方法は、上述した実施形態 にのみ限定されるものではなぐ本発明の範囲で種々の変更実施が可能であること は言うまでもない。
たとえば、載置板 8に、リード付き部品 101, 102を上方から押える部品押え手段を 設けるとよぐこのようにすると、半田付けする際の部品浮きを防止することができる。 また、載置板 8に、回動自在の排気カバーを設けるとよぐこのようにすると、半田付 けするときに発生するフラックスガスを、排気カバーを介して効率よく排気することが できるので、作業環境を向上させることができる。
産業上の利用可能性
本発明の半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方 法は、電気回路基板にリード付き部品を半田付けしているが、半田付け対象物は、 上記電気回路基板やリード付き部品に限定されるものではない。たとえば、金属製の ケースに金属製の蓋を半田付けする場合にも好適に利用することができる。

Claims

請求の範囲
[1] 半田槽と、
この半田槽内の半田を加熱する加熱手段と、
電気回路基板の所定の半田付け箇所に前記半田を吹き付けるノズルが突設され、 前記半田槽内に昇降自在に取り付けられた半田吹出し手段と、
この半田吹出し手段に前記半田を供給する半田供給手段と、
半田付けするとき、前記ノズルを前記半田槽の半田液面より上方に位置させ、かつ 、待機状態のときは、前記ノズルを前記半田槽の半田液面より没入させる昇降手段と 前記電気回路基板を所定の位置に位置決めする位置決め手段と
を具備したことを特徴とする半田噴流装置。
[2] 半田槽と、
電気回路基板の所定の半田付け箇所に半田を吹き付けるノズルが突設された半田 吹出し手段と、
この半田吹出し手段に前記半田を供給する半田供給手段と、
前記半田吹出し手段に、前記半田に対して密閉された状態で設けられ、前記半田 槽内の前記半田を加熱する加熱手段と、
前記電気回路基板を所定の位置に位置決めする位置決め手段と
を具備したことを特徴とする半田噴流装置。
[3] 半田槽と、
電気回路基板の所定の半田付け箇所に前記半田を吹き付けるノズルが突設され、 前記半田槽内に昇降自在に取り付けられた半田吹出し手段と、
この半田吹出し手段に前記半田を供給する半田供給手段と、
前記半田吹出し手段に、前記半田に対して密閉された状態で設けられ、前記半田 槽内の前記半田を加熱する加熱手段と、
半田付けするとき、前記ノズルを前記半田槽の半田液面より上方に位置させ、かつ 、待機状態のときは、前記ノズルを前記半田槽の半田液面より没入させる昇降手段と 前記電気回路基板を所定の位置に位置決めする位置決め手段と を具備したことを特徴とする半田噴流装置。
[4] 前記ノズルが前記半田槽の半田液面より没入しているとき、前記半田槽の半田液 面に浮遊するドロスを押しのけるドロス除去手段を備えたことを特徴と請求項 1又は 3 記載の半田噴流装置。
[5] 前記半田吹出し手段が、交換自在に取り付けられる、前記ノズルが突設されたノズ ル板を備えたことを特徴と請求項 1 , 3又は 4の 、ずれかに記載の半田噴流装置。
[6] 前記加熱手段として、前記半田槽の外部に外炊き式ヒーターを設けたことを特徴と する請求項 1〜5のいずれかに記載の半田噴流装置。
[7] 上記請求項 1, 3, 4又は 5のいずれかに記載の半田噴流装置を用いた電子部品の 半田付け方法において、
待機状態のときは、前記昇降手段が、前記ノズルを前記半田槽の半田液面より没 入させ、
半田付けするとき、前記半田供給手段が、前記ノズルから半田を噴流させ、かつ、 前記昇降手段が、前記ノズルを前記半田槽の半田液面より上方に位置させることを 特徴とする電子部品の半田付け方法。
[8] 上記請求項 2又は 3記載の半田噴流装置を用いた電子部品の半田付け方法にお いて、
前記半田吹出し手段に、前記半田に対して密閉された状態で設けられた加熱手段 と、前記半田槽の外部に設けた外炊き式ヒーターとが、前記半田槽内の前記半田を 加熱することを特徴とする電子部品の半田付け方法。
[9] 上記請求項 5記載の半田噴流装置の製造方法において、
前記ノズル板を、プレス加工により製造することを特徴とする半田噴流装置の製造 方法。
PCT/JP2005/010177 2004-06-03 2005-06-02 半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法 WO2005120141A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514133A JPWO2005120141A1 (ja) 2004-06-03 2005-06-02 半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004165297 2004-06-03
JP2004-165297 2004-06-03

Publications (1)

Publication Number Publication Date
WO2005120141A1 true WO2005120141A1 (ja) 2005-12-15

Family

ID=35463229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010177 WO2005120141A1 (ja) 2004-06-03 2005-06-02 半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法

Country Status (2)

Country Link
JP (1) JPWO2005120141A1 (ja)
WO (1) WO2005120141A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248244A (zh) * 2010-07-29 2011-11-23 深圳科安达电子科技股份有限公司 全自动焊锡机
JP4893738B2 (ja) * 2006-04-05 2012-03-07 千住金属工業株式会社 噴流はんだ槽
JP7085778B1 (ja) * 2021-11-18 2022-06-17 Faシンカテクノロジー株式会社 噴流式はんだ付け装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126960A (ja) * 1984-11-26 1986-06-14 Tamura Seisakusho Co Ltd 噴流式はんだ付け装置
JPS63122750U (ja) * 1987-01-31 1988-08-10
JPH0565472U (ja) * 1992-01-20 1993-08-31 東京生産技研株式会社 自動半田付装置
JP2000167661A (ja) * 1998-12-03 2000-06-20 Tamura Seisakusho Co Ltd 局所はんだ付け装置
JP2003205363A (ja) * 2002-01-15 2003-07-22 Nihon Dennetsu Keiki Co Ltd 誘導型電磁ポンプ式はんだ付け噴流波形成装置
JP2003258418A (ja) * 2002-03-06 2003-09-12 Senju Metal Ind Co Ltd 部分噴流はんだ付け装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143762A (ja) * 1987-11-26 1989-06-06 Tamura Seisakusho Co Ltd 噴流式はんだ付け装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126960A (ja) * 1984-11-26 1986-06-14 Tamura Seisakusho Co Ltd 噴流式はんだ付け装置
JPS63122750U (ja) * 1987-01-31 1988-08-10
JPH0565472U (ja) * 1992-01-20 1993-08-31 東京生産技研株式会社 自動半田付装置
JP2000167661A (ja) * 1998-12-03 2000-06-20 Tamura Seisakusho Co Ltd 局所はんだ付け装置
JP2003205363A (ja) * 2002-01-15 2003-07-22 Nihon Dennetsu Keiki Co Ltd 誘導型電磁ポンプ式はんだ付け噴流波形成装置
JP2003258418A (ja) * 2002-03-06 2003-09-12 Senju Metal Ind Co Ltd 部分噴流はんだ付け装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893738B2 (ja) * 2006-04-05 2012-03-07 千住金属工業株式会社 噴流はんだ槽
CN102248244A (zh) * 2010-07-29 2011-11-23 深圳科安达电子科技股份有限公司 全自动焊锡机
CN102248244B (zh) * 2010-07-29 2013-01-16 深圳科安达电子科技股份有限公司 全自动焊锡机
JP7085778B1 (ja) * 2021-11-18 2022-06-17 Faシンカテクノロジー株式会社 噴流式はんだ付け装置

Also Published As

Publication number Publication date
JPWO2005120141A1 (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
JP5326565B2 (ja) フラックス塗布装置及び方法
WO2005120141A1 (ja) 半田噴流装置,半田噴流装置の製造方法及び電子部品の半田付け方法
JP4634574B2 (ja) 局所はんだ付け装置および局所はんだ付け方法
CN210325852U (zh) Led芯片的维修装置
JP2007073786A (ja) はんだ付け方法
JP2003078242A (ja) プリント基板の部分はんだ付け方法
JP3867511B2 (ja) 部分半田付け装置
JP6645990B2 (ja) 半田付け装置及び半田付け方法
KR101453306B1 (ko) 초음파 셀렉티브 솔더링 장치
JP2004106061A (ja) プリント基板ユニットの製造方法ならびにはんだ付け装置
Nichols Lead‐Free Printed Wiring Board Surface Finishes
JP5862003B2 (ja) 電子部品接合装置および電子部品接合方法
JP2007109959A (ja) ハンダ付け装置
US20120091188A1 (en) Solder pot
JP3362351B2 (ja) プリント基板の自動はんだ付方法及びその自動はんだ付装置
JP3794372B2 (ja) 半田付け装置および半田付け方法
KR102674690B1 (ko) 메탈마스크 자동 세정장치
JP2004106004A (ja) 噴流はんだ付け装置及び噴流はんだ付け方法
CN2569521Y (zh) 增加波焊中锡波高度的装置
TWI669998B (zh) 刮刀整錫重工系統
JP2001267735A (ja) はんだ付け方法及びはんだ付け装置
JP2008140966A (ja) 部分半田付け装置のプリヒートユニット
JP5372863B2 (ja) はんだ付け装置及びはんだ付け方法
JPH0974269A (ja) 電子部品の半田付け方法
JPH06326454A (ja) 局部半田付装置の噴流ノズル構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514133

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase