WO2005117035A1 - 磁性合金およびボンド磁石 - Google Patents

磁性合金およびボンド磁石 Download PDF

Info

Publication number
WO2005117035A1
WO2005117035A1 PCT/JP2005/009573 JP2005009573W WO2005117035A1 WO 2005117035 A1 WO2005117035 A1 WO 2005117035A1 JP 2005009573 W JP2005009573 W JP 2005009573W WO 2005117035 A1 WO2005117035 A1 WO 2005117035A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic alloy
crystal phase
atomic
bonded magnet
atom
Prior art date
Application number
PCT/JP2005/009573
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamamoto
Original Assignee
Meiji University Legal Person
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji University Legal Person filed Critical Meiji University Legal Person
Priority to JP2006513921A priority Critical patent/JP4934787B2/ja
Publication of WO2005117035A1 publication Critical patent/WO2005117035A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Definitions

  • the present invention relates to a bonded magnet that suppresses deterioration of temperature characteristics due to a high residual magnetic flux density and is easy to magnetize, and a magnetic alloy optimal for use in the bonded magnet.
  • Powdered magnetic alloys containing a NdFeB type crystal phase as a main phase have been developed.
  • the powdery magnetic alloy is manufactured by a liquid quenching method. Further, the powdered magnetic alloy is molded with a binder resin, and the bound powdered magnetic alloy group is magnetized to obtain a bonded magnet.
  • bonded magnets have high magnetic properties and ease of molding, and are widely used as parts of motors for automobiles, spindle motors for various OA equipment, stepping motors, and the like.
  • demand for bonded magnets having a high coercive force, a high residual magnetic flux density and good temperature characteristics has been increasing with the improvement in performance of motors.
  • Japanese Patent Application Laid-Open No. 9-320824 discloses Nd, Fe, Co as a magnetic alloy suitable for a bonded magnet in which deterioration of temperature characteristics due to high residual magnetic flux density is suppressed and magnetization is easy. , Nb, V and B containing alloys have been proposed.
  • Patent Document 1 JP-A-9-320824
  • a bonded magnet manufactured from a magnetic alloy disclosed in Japanese Patent Application Laid-Open No. 9-320824 is easy to magnetize, but cannot be said to have a sufficiently high coercive force, and However, the irreversible demagnetization rate at 150 ° C is sufficiently small that it cannot be said to have good temperature characteristics.
  • An object of the present invention is to provide a bonded magnet having a high coercive force, a high residual magnetic flux density, a large maximum magnetic energy product (BH), and a small irreversible demagnetization rate at 150 ° C.
  • the present inventors have obtained the following findings. That is, it contains a composition component obtained by adding Tb to Nd, Pr, Fe, Co, Nd, V, and B, and has a Fe-type crystal phase and R Fe B
  • a magnetic alloy according to the present invention includes Nd, Pr, Fe, Co, Nb, V, and a composition component obtained by adding Tb to B, and has a composition formula of R Fe Co Nb V Tb B (however, x Z yopqr
  • R includes at least Nd and Pr
  • the composition ratios thereof are X: 11 to 13 atomic%, y: 8 to 11 atomic%, o: 0.5 to 2 atomic%, and p: 0.5 ⁇ 2 atomic%
  • q is set to 0.3-1 atomic%
  • r is set to 6-10 atomic%
  • z is set to 100—X—y—o—p—q—r atomic%. is there .
  • the magnetic alloy of the present invention is a magnetic alloy powder obtained by pulverizing a quenched ribbon containing the composition component based on the composition formula, and comprises a nanocomposite of a Fe type crystal phase and an R Fe B type crystal phase.
  • the composition includes a composition component obtained by adding Tb to Nd, Pr, Fe, Co, Nb, V, and B, and the composition formula thereof is represented by R Fe Co Nb V Tb B (where R is at least Nd and Pr)
  • the yarn ⁇ ratio, X of 1 to 13 atomic 0/0, y is. 8 to: L 1 atoms 0/0, o power from 0.5 to 2 atomic 0/0, p is 0.5 to 2 atomic 0/0, q force. 3-1 atoms 0/0, by r is 6-10 atomic 0/0, z is set to 100- x-y-o- p- q- r atomic%, the bonded magnet
  • a magnetic alloy capable of improving the coercive force and the maximum energy product can be obtained.
  • the magnetic alloy powder obtained by pulverizing the quenched ribbon containing the composition component based on the composition formula is a nanocomposite of an exFe-type crystal phase and an RFeB-type crystal phase.
  • the coercive force of the bonded magnet is increased, the residual magnetic flux density of the bonded magnet is increased mainly due to the presence of the a Fe type crystal phase, and the a Fe type crystal phase and the R Fe
  • the average crystal grain size of the crystal phase is desirably in the range of 20 to 50 nm.
  • the bonded magnet according to the present invention has a magnetic alloy powder bound with a heat-resistant resin as a main component,
  • the magnetic alloy powder The magnetic alloy powder,
  • composition formula is R Fe Co Nb V Tb B (where R includes at least Nd and Pr).
  • X of composition formula is zopqr
  • the magnetic alloy powder is a composite of an a Fe type crystal phase and an R Fe B type crystal phase.
  • the volume fraction of the a Fe type crystal phase is 8 to 14 vol%, and the R Fe
  • the volume ratio of the B-type crystal phase is 86 to 92 vol%.
  • the powder desirably contains the crystal phase having an average crystal grain size of 20 to 50 nm.
  • the irreversible demagnetization ratio at 150 ° C of 13% or less is imparted to the bonded magnet. I do. Moreover, coercive force 1430 ⁇ 1750KAZm, residual magnetic flux density 0. 5 to 0. 7T and maximum energy product confers a property is 56 ⁇ 72kj / m 3 in the bonded magnet. The invention's effect
  • the irreversible demagnetization rate at a high temperature can be suppressed to a small value, for example, the irreversible demagnetization rate at 150 ° C. can be suppressed to 13% or less. It is possible to obtain an optimal magnetic alloy by applying the bonded magnet and the bonded magnet.
  • the magnetic alloy according to the embodiment of the present invention includes Nd, Pr, Fe, Co,
  • Nb, V, and B and a compositional component obtained by adding Tb, and the composition formula is represented by R Fe Co Nb V Tb B x Z y o q
  • the magnetic alloy according to the embodiment of the present invention is a magnetic alloy powder obtained by pulverizing a quenched ribbon containing the above-mentioned compositional component based on the above-mentioned composition formula, and is a nanocomposite of an Fe type crystal phase and an R Fe B type crystal phase
  • the average crystal grain size of the crystal phase when calculated based on the photograph of the transmission microscope shown in FIG. 6, may be in the range of 20 to 50 nm in consideration of changes in the specifications of the manufacturing method. Helped. Also, as a result of measurement using a ⁇ - ⁇ curve, the volume ratio of the a Fe-type crystal phase was 8 to 14 vol%, and the volume ratio of the R Fe B-type crystal phase was 86 to 92 vol%.
  • the ex Fe-type crystal phase contained in the magnetic alloy powder which is a crushed product of the quenched ribbon, has an exothermic peak at, for example, around 399 ° C. in the DTA curve, and R Fe B Form
  • the 2 14 crystal phase has an exothermic peak at around 583 ° C. in the DTA curve, for example.
  • Nd, Pr, Fe, Co, Nb, V, B, and Tb are included as composition components of the magnetic alloy.
  • B, and Tb are included alone according to the composition ratio.
  • dymium is used as R in the composition formula, and other components such as Fe, Co, Nb, V, B, and Tb are included alone according to the composition ratio.
  • This dymium contains a Didymium-Fe alloy containing an Fe component or does not contain an Fe component. Any of the Didymium alloys may be used.
  • Didymium-Fe alloy containing Fe component since the alloy contains Fe component, the composition ratio of the Fe component contained alone is the composition ratio of the Fe component contained in the alloy. Set to the value obtained by subtracting.
  • the didymium it is possible to use Gigi arm containing 21 to 23% by weight of 77 to 79 weight 0/0, Pr and Nd.
  • didymium when used, it contains trace components as described in Examples, and these trace components have higher coercive force as compared with the case where the above-mentioned composition components are contained alone. It is considered that the irreversible demagnetization rate at a high temperature, for example, 150 ° C. can be sufficiently reduced. This will be repeated with the examples.
  • X is desirably 11 to 13 atomic%, preferably 12 to 12.5 atomic%. It was found that when X was less than 11 atomic%, the coercive force was reduced. Also, it was found that when X exceeds 13 atomic%, the magnetic properties tend to decrease.
  • y is 8 or more: L is desirably 1 atomic%, preferably 8 to 10 atomic%. It was found that when y was less than 8 atomic%, the irreversible demagnetization ratio increased. It was also found that when y exceeds 11 at%, the residual magnetic flux density decreases.
  • o is desirably 0.5 to 2 atomic%, preferably 0.5 to 1.5 atomic%.
  • the coercive force was found to decrease.
  • p be 0.5 to 2 atomic%, preferably 0.5 to 1.0 atomic%. It was found that the coercive force and the maximum energy product were reduced when the p force was less than 0.5 atomic%. Also, it was found that when p exceeds 2 atomic%, the magnetic properties deteriorate.
  • q is desirably 0.3 to 1 atomic%, preferably 0.3 to 0.7 atomic%.
  • q was less than 0.3 atomic%, it was found that the coercive force decreased and the irreversible demagnetization rate at 150 ° C exceeded 13%. It was also found that when q exceeds 1 atomic%, the coercive force and the maximum energy product decrease.
  • r is 6 or more: L0 atomic%, preferably 6 to 7 atomic%. It was found that when r was less than 6 atomic%, the coercive force decreased. It was also found that when r exceeds 10 atomic%, the residual magnetic flux density decreases.
  • 2 is a composition ratio of 100--0--1: atomic%, and is desirably 68 to 69.5 at%. It has been found that if z is too small, the magnetic flux density may decrease, and if it is too large, the coercive force decreases.
  • the coercive force (H) of the magnetic alloy represented by the above composition formula is 1270 to 1750 kAZm (16 to 22 kOe), and the residual magnetic flux density (Br) is 0.7 to 0.9T ( 7 to 9 kG), and the maximum energy product (BH) is 95 to 119 kJZm 3 (12 to 15 MGOe).
  • the magnetic alloy is pulverized into a magnetic alloy powder having a particle diameter of about 100 m, and the magnetic alloy powder is bound with a heat-resistant resin. are doing.
  • the bonded magnet according to the embodiment of the present invention contains a magnetic alloy powder bound with a heat-resistant resin as a main component,
  • the magnetic alloy powder The magnetic alloy powder,
  • composition formula is R Fe Co Nb V Tb B (where R includes at least Nd and Pr).
  • X of composition formula is zopqr
  • the magnetic alloy powder is a nanocomposite of an a Fe type crystal phase and an R Fe B type crystal phase.
  • the volume ratio of the a Fe type crystal phase is 8 to 14 vol%, and the body of the R Fe B type crystal phase is
  • the product ratio is 86 to 92 vol%.
  • Didim may be used as R in the above composition formula. It contains the crystal phase having an average crystal grain size of 20 to 50 nm.
  • the bonded magnet using the magnetic alloy represented by the above-mentioned composition formula is composed of the above-mentioned magnetic alloy powder and a heat-resistant resin.
  • the amount of the magnetic alloy powder in the bonded magnet is usually 97 to 98% by weight.
  • the heat-resistant resin is not particularly limited, and known resins such as epoxy resin and nylon resin can be used.
  • the bonded magnet using the granular magnetic alloy having the above-described structure has a property of irreversible demagnetization at 150 ° C of 3% or less, preferably 2% or less. Also
  • the magnetized magnetic alloy group consisting its coercive force 1430 ⁇ 1750KAZm, and the residual magnetic flux density is 0. 5 to 0. 7T and maximum energy product indicates the characteristics of 56 ⁇ 72kj / m 3
  • the irreversible demagnetization rate at 150 ° C is 97.5 g of the magnetic alloy and 97.5 g of epoxy resin.
  • 2.5 g of the fat was mixed and stirred, compression-molded at a pressure of 980 MPa, and cured at a temperature of 180 ° C. for 1 hour.
  • the measured value was 3% or less, preferably 2% or less.
  • the irreversible demagnetization rate is shown as the rate of decrease in magnetic flux after holding the bonded magnet at a temperature of 150 ° C for 1 hour.
  • the bond magnet usually has a coercive force 010 [) of 1430 to 175 (3 ⁇ 47111 (18 to 221 ⁇ 06)) and a residual magnetic flux density (Br of 0.5 to 0.7 T (5 to 7 kG)). ) And a maximum energy product (BH) of typically 56-72 kJZm3 (7-9 MGO e).
  • the bonded magnet according to the embodiment of the present invention can be widely used for a permanent magnet type motor mounted on an automobile, a spindle motor and a stepping motor of various office automation equipment, and the like.
  • Vehicle-mounted permanent magnet type motors include various types of permanent magnet type motors mounted on vehicles used in high-temperature environments, and specifically include linear motors for electric curtains and motors for opening and closing sunroofs. , Motors for power windows, motors for wipers, motors for storing electric mirrors, motors for controlling electric mirrors, steering actuators, etc.
  • R Fe Co Nb V Tb B is 11 to 13 atomic 0/0, y composition ratios x of. 8 to: LI atoms 0/0, o is 0. 5
  • each metal element is adjusted and blended, and a magnetic alloy is manufactured by a known means such as high-frequency induction melting in a vacuum or an argon atmosphere.
  • a Di—Fe alloy particularly preferably Didymiun, is more preferable.
  • a known liquid quenching method is applied to the obtained magnetic alloy to produce a quenched ribbon (magnetic alloy).
  • a known device for performing the liquid quenching method a known device that is not particularly limited can be used.
  • the obtained quenched ribbon is heat-treated in a vacuum or under an argon atmosphere, and finely pulverized to produce a powdery magnetic alloy.
  • the heat treatment temperature is usually 575 to 650 ° C
  • the holding time in the heat treatment is usually 0 to 15 minutes.
  • the holding time means the holding time at the heat treatment temperature
  • the holding time of 0 minutes means that the temperature is started immediately after reaching the heat treatment temperature.
  • the pulverization process is performed so that the average particle size is usually 100 m or less, or when the magnetic alloy is used for the production of compression-molded bonded magnets. Is performed so that the average particle size is usually 200 ⁇ m or less.
  • a device for finely pulverizing a known device which is not particularly limited can be used.
  • the obtained powdered magnetic alloy is mixed with a binder resin, and various bonded magnets are manufactured by a known method such as injection molding or compression molding.
  • the molding apparatus is not particularly limited, and a known apparatus can be used.
  • VSM vibrating sample magnetometer
  • the exothermic peak temperature was measured using a differential thermal analyzer (DTA) (manufactured by Rigaku Corporation).
  • DTA differential thermal analyzer
  • VSM vibrating sample magnetometer
  • the irreversible demagnetization rate at 150 ° C was determined as follows. First, the magnetic flux (F1) of the bonded magnet after 4.8 MAZm pulse magnetization was measured using a digital flux meter (manufactured by Toei Kogyo Co., Ltd.). Next, the magnetic flux (F2) of the bonded magnet was measured after being kept in a thermostat at a temperature of 150 ° C. for 1 hour and allowed to cool in air for 1 hour. Irreversible decrease at 150 ° C The magnetic susceptibility (%) is represented by (F1 ⁇ F2) ⁇ 100ZF1.
  • Nd, Pr, Fe, Co, Nb, V, B, and Tb were included as components of the alloy.
  • a method was employed in which the components Fe, Co, Nb, V, B, and Tb were included alone according to the composition ratio.
  • Di-Fe alloy was used as the dymium. Di means Didymium.
  • a magnetic alloy was obtained by vacuum suction.
  • the Di- Fe alloy as the composition component, Nd: 66. 73 weight 0/0, Pr: 19. 06 wt%, Fe: 14. 14 wt%, Ce: 0. 06 wt%, La : 0.01% by weight, Dy: ⁇ 0.01% by weight, Mg: ⁇ 0.01% by weight, A1: ⁇ 0.01% by weight, Ca: ⁇ 0.01% by weight alloy). Therefore, in the magnetic alloy of Example 1, in addition to Nd, Pr, Fe, Co, Nb, V, B, and Tb, trace metal elements such as Ce, La, Dy, Mg, Al, and Ca were included. Will be included.
  • a quenched ribbon (magnetic alloy) was prepared by the liquid quenching method.
  • the conditions for producing the ribbon were a roll diameter of 300 mm, a roll peripheral speed of 17.5 mZ seconds, and an injection argon gas pressure of 38 kPa.
  • the obtained quenched ribbon was heat-treated at a temperature of 600 ° C for 5 minutes and pulverized to produce a magnetic alloy powder having an average particle diameter of 100 / zm.
  • the heating time up to 600 ° C was 3 minutes.
  • the magnetic alloy according to Example 1 is a magnetic alloy powder obtained by pulverizing a quenched ribbon containing the above-mentioned compositional components based on the above-mentioned composition formula.
  • the average crystal grain size of the crystal phase is based on the image of the transmission microscope shown in FIG. The calculated value was about 25 nm, considering the changes in the specifications of the manufacturing method. Also, when observing the electron diffraction pattern in FIG. 6 (B), it was found that the a Fe type crystal phase and the R Fe B type crystal phase
  • the composite was proved to be magnetically isotropic.
  • the volume fraction of the a Fe-type crystal phase is approximately l lvol% and R Fe
  • the volume ratio of the B-type crystal phase was approximately 89 vol%.
  • the coercive force H of the magnetic alloy according to 1 is improved to S1619.4 (KAZm), the residual magnetic flux density Br is 0.766 (T), and the maximum energy product (BH) force 1 is improved.
  • a quenched ribbon to be a magnetic alloy obtained by the above-described manufacturing method was arbitrarily selected.
  • One, two, and three magnetic alloy powders and bonded magnets were used.
  • the magnetic properties of each sample and the irreversible demagnetization rate of the bonded magnet were measured.
  • Figure 4 shows the results.
  • Embodiment 1 described above is described using one sample.
  • the irreversible demagnetization rate of the two bonded magnets was improved to –3.15, and the irreversible demagnetization rate of the three bonded magnets was improved to 2.50. This also indicates that the irreversible demagnetization rate (%) at 150 ° C. of the bonded magnet according to the embodiment of the present invention is improved in the range of 2% to about 3%.
  • the demagnetization rate gradually decreased. In this case, it is about -2%, and it is suppressed to about 5% even at 200 ° C.
  • the demagnetization rate sharply decreases from around 125 ° C, and decreases to about -4% at 150 ° C and to -7% or more at 200 ° C. I have.
  • a bonded magnet having a high coercive force, a large maximum magnetic energy product (BH) ma and a small irreversible demagnetization rate at a high temperature, for example, 150 ° C. and the bonded magnet
  • the most suitable magnetic alloy can be provided.
  • FIG. 1 is a chart showing the characteristics of Example 1 of the present invention and Comparative Example 1 in comparison.
  • FIG. 2 is a characteristic diagram showing a DTA curve.
  • FIG. 3 is a table showing magnetic properties of magnetic alloys of an example and a comparative example.
  • FIG. 4 is a table showing magnetic properties of bonded magnets of an example and a comparative example.
  • FIG. 5 is a characteristic diagram showing irreversible demagnetization rates of the magnetic alloys of the bonded magnets of the example and the comparative example.
  • FIG. 6 is a photograph of a magnetic alloy powder according to Example 1 observed with a transmission microscope.

Abstract

【課題】 高保磁力で、最大磁気エネルギー積(BH)maxが大きく、且つ、150°Cにおける不可逆減磁率が小さいボンド磁石を提供する。 【解決手段】 耐熱性樹脂でバインドされた磁性合金粉末を主成分とし、前記磁性合金粉末は、Nd,Pr,Fe,Co,Nb,V及びBにTbを加えた組成成分を含み、その組成式を、RxFezCoyNboVpTbqBr(但し、Rは少なくともNd及びPrを含む)とし、前記組成式のxを11~13原子%、yを8~11原子%、oを0.5~2原子%、pを0.5~2原子%、qを0.3~1原子%、rを6~10原子%、zを100-x-y-o-p-q-r原子%に設定した組成成分を含む急冷薄帯を粉砕したものである。

Description

磁性合金およびボンド磁石
技術分野
[0001] 本発明は、残留磁束密度が高ぐ温度特性の悪化が抑制され、かつ、着磁が容易 であるボンド磁石、及び前記ボンド磁石に用いて最適な磁性合金に関する。
背景技術
[0002] Nd Fe B型結晶相を主相として含有する粉末状磁性合金が開発されており、この
2 14
粉末状磁性合金は液体急冷法により製造される。さらに、前記粉末状磁性合金をバ インダー榭脂により成形し、そのバインドされた粉末状磁性合金群を着磁してボンド 磁石を得ている。
[0003] 上述したボンド磁石は、高い磁気特性と成形の容易性を有しており、自動車のモー ター、各種 OA機器類などのスピンドルモーター、ステッピングモーター等の部品とし て広く使用されている。そして、特に、モーターの高性能化に伴い、高保磁力で、残 留磁束密度の高い且つ温度特性の良好なボンド磁石の需要が高まっている。
[0004] 特開平 9— 320824号公報には、残留磁束密度が高ぐ温度特性の悪化が抑制さ れ、かつ、着磁が容易であるボンド磁石に適合する磁性合金として、 Nd, Fe, Co, N b, V及び Bを含有する合金が提案されている。
特許文献 1:特開平 9— 320824号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特開平 9— 320824号公報に開示された磁性合金を原料として製造 したボンド磁石は、着磁が容易であるが、保磁力が十分高いものとは言えず、且つ、 150°Cにおける不可逆減磁率が十分小さく温度特性の良好なものであるとは言えな い。
[0006] 本発明の目的は、高保磁力及び高残留磁束密度、最大磁気エネルギー積 (BH) が大きぐ且つ、 150°Cにおける不可逆減磁率が小さいボンド磁石、及び前記ボン ax
ド磁石に最適な磁性合金を提供することにある。 課題を解決するための手段
[0007] 本発明者は、種々検討を重ねた結果、次の様な知見を得た。すなわち、 Nd, Pr, F e, Co, Nd, V及び Bに Tbを加えた組成成分を含み、 a Fe型結晶相及び R Fe B
2 14 型結晶相のナノコンポジットとすることにより、高い保磁力及び高い残留磁束密度、 最大エネルギー積を得ることができるとともに、 150°Cにおける不可逆減磁率を十分 に小さくすることが可能であるという知見を得た。この知見に基づいて、本発明はなさ れたものである。
[0008] 前記目的を達成するために、本発明に係る磁性合金は、 Nd, Pr, Fe, Co, Nb, V 及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B (但し x Z y o p q r
、 Rは少なくとも Nd及び Prを含む)とし、その組成比を、 Xを 1 1〜13原子%、 yを 8〜 1 1原子%、oを 0. 5〜2原子%、pを 0. 5〜2原子%、qを 0. 3〜1原子%、 rを 6〜10 原子%、zを 100— X— y— o— p— q— r原子%に設定したことを特徴とするものである 。本発明の磁性合金は、前記組成式の基に前記組成成分を含む急冷薄帯を粉砕し た磁性合金粉末であり、 a Fe型結晶相及び R Fe B型結晶相のナノコンポジットと
2 14
なっている。
[0009] 本発明によれば、 Nd, Pr, Fe, Co, Nb, V及び Bに Tbを加えた組成成分を含み、 その組成式を、 R Fe Co Nb V Tb B (但し、 Rは少なくとも Nd及び Prを含む)とし、
Z y
その糸且成比を、 Xを 1 1〜13原子0 /0、 yが 8〜: L 1原子0 /0、 o力0. 5〜2原子0 /0、 pが 0. 5〜2原子0 /0、 q力 . 3〜1原子0 /0、 rが 6〜10原子0 /0、 zが 100— x—y—o— p— q— r原子%に設定することにより、ボンド磁石の保磁力と最大エネルギー積を向上させる ことができる磁性合金が得られる。
[0010] 前記組成式の基に前記組成成分を含む急冷薄帯を粉砕した磁性合金粉末は、 ex Fe型結晶相及び R Fe B型結晶相のナノコンポジットであることが透過型顕微鏡に
2 14
よって確認された。このナノコンポジットのうち、主に R Fe B型結晶相の存在によつ
2 14
て、ボンド磁石の保磁力が高められ、主に a Fe型結晶相の存在によってボンド磁石 の残留磁束密度が高められ、さらに、前記組成物からなる a Fe型結晶相及び R Fe
2 1
B型結晶相によって、ボンド磁石の最大エネルギー積が高められるものと考えられる [0011] 前記組成式の Rとしてジジムを用いる。また、前記 a Fe型結晶相の体積割合を 8〜 14vol%、前記 R Fe B型結晶相の体積割合を 86〜92vol%に設定することが望ま
2 14
しい。また、前記結晶相の平均結晶粒径は、 20〜50nmの範囲であることが望ましい
[0012] 次に、上述した本発明に係る磁性合金を適用したボンド磁石について説明する。
本発明に係るボンド磁石は、耐熱性榭脂でバインドされた磁性合金粉末を主成分と し、
前記磁性合金粉末は、
Nd, Pr, Fe, Co, Nb, V及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B (但し、 Rは少なくとも Nd及び Prを含む)とし、前記組成式の xを z o p q r
11〜13原子0 /0、yを 8〜: L I原子0 /0、 oを 0. 5〜2原子0 /0、 pを 0. 5〜2原子0 /0、 qを 0 . 3〜1原子0 /0、rを 6〜10原子0 /0、 2を100— ー ー0— ー ー1:原子%に設定した 組成成分を含む急冷薄帯を粉砕したものであることを特徴とする。
[0013] 前記磁性合金粉末は、 a Fe型結晶相及び R Fe B型結晶相のコンポジットである
2 14
ことが望ましい。そして、前記 a Fe型結晶相の体積割合が 8〜14vol%、前記 R Fe
2 1
B型結晶相の体積割合が 86〜92vol%であることが望ましい。また、前記磁性合金
4
粉末は、平均結晶粒径が 20〜50nmの前記結晶相を含有することが望ましい。
[0014] 上述した本発明に係る磁性合金の急冷薄帯を粉砕した磁性合金粉末を耐熱榭脂 でバインドすることにより、 150°Cにおける不可逆減磁率が一 3%以下の特性をボンド 磁石に付与する。また、保磁力が 1430〜1750kAZm、残留磁束密度が 0. 5〜0. 7T及び最大エネルギー積が 56〜72kj/m3である特性をボンド磁石に付与する。 発明の効果
[0015] 以上説明したように本発明によれば、高温での不可逆減磁率を小さく抑える、例え ば 150°Cにおける不可逆減磁率が一 3%以下に抑えることができ、し力も、高保磁力 をもつボンド磁石及び、そのボンド磁石に適用して最適な磁性合金を得ることができ る。
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態について説明する。 [0017] 本発明者は、種々検討を重ねた結果、次の様な知見を得た。すなわち、 Nd, Pr, F e, Co, Nd, V及び Bに Tbをカ卩えた組成成分を含むことにより、高い保磁力及び高い 残留磁束密度と高い最大エネルギー積を得ることができるとともに、高温での不可逆 減磁率を小さく抑える、例えば 150°Cにおける不可逆減磁率を十分に小さくすること が可能であると 、う知見を得た。
[0018] 前記知見に基づいて、本発明の実施形態に係る磁性合金は、 Nd, Pr, Fe, Co,
Nb, V及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B x Z y o q
(但し、 Rは少なくとも Nd及び Prを含む)とし、その組成比の xを 1 1〜13原子%、 yを 8〜: L 1原子%、oを 0. 5〜2原子%、pを 0. 5〜2原子%、qを 0. 3〜1原子%、rを 6 〜10原子%、 zを 100— X— y— o— p— q— r原子%に設定したものである。本発明 の実施形態に係る磁性合金は、前記組成式の基に前記組成成分を含む急冷薄帯を 粉砕した磁性合金粉末であり、《Fe型結晶相及び R Fe B型結晶相のナノコンポジ
2 14
ットとなっている。前記 a Fe型結晶相及び R Fe B型結晶相のコンポジットについて
2 14
は、図 6に示す透過型顕微鏡により確認している。
[0019] また前記結晶相の平均結晶粒径は、図 6に示す透過型顕微鏡の写真に基づいて 算出すると、製造方法の諸元の変化等を考慮すると、 20〜50nmの範囲であること が分力つた。また、 σ —Τ曲線による測定を行った結果、前記 a Fe型結晶相の体積 割合は 8〜14vol%、前記 R Fe B型結晶相の体積割合は 86〜92vol%であること
2 14
を確認した。
[0020] 前記急冷薄帯の粉砕物である磁性合金粉末に含有する ex Fe型結晶相は図 2に示 すように、 DTA曲線において例えば 399°C付近に発熱ピークを有し、 R Fe B型結
2 14 晶相は図 2に示すように、 DTA曲線において例えば 583°C付近に発熱ピークを有す る。
[0021] 上述した組成式に基づいて、磁性合金の組成成分として、 Nd, Pr, Fe, Co, Nb, V, B, Tbを含ませるには、 Nd, Pr, Fe, Co, Nb, V, B, Tbの成分を単体で前記組 成比に応じて含ませる。或いは、組成式の Rとしてジジムを用い、その他の組成成分 である Fe, Co, Nb, V, B, Tbを単体で前記組成比に応じて含ませる。
[0022] このジジムには、 Fe成分を含む Didymium—Fe合金、或いは Fe成分を含まない Didymium合金のいずれを用いてもよい。ジジムとして、 Fe成分を含む Didymium — Fe合金を用いた場合には、この合金に Fe成分が含まれているため、単体で含ま せる Fe成分の組成比は、合金に含まれる Fe成分の組成比を差引 ヽたものに設定す る。また、ジジムとしては、 Ndを 77〜79重量0 /0、 Prを 21〜23重量%を含有するジジ ムを用いることが可能である。また、ジジムを用いる場合には、実施例で記述するよう な微量な成分を含むものであり、これらの微量成分が、前記組成成分を単体で含ま せる場合と比較して、より高い保磁力を得るとともに、高温例えば 150°Cにおける不 可逆減磁率を十分に小さくすることに寄与して 、ることが考えられる。このことは実施 例により追試する。
[0023] 次に、前記組成式における組成比について検討する。 Xは 11〜13原子%、好まし くは 12〜12. 5原子%とすることが望ましい。 Xが 11原子%未満の場合は、保磁力が 低下することが分った。また、 Xが 13原子%を超える場合は、磁ィ匕値が低下する傾向 を示すことが分った。
[0024] yは 8〜: L 1原子%、好ましくは 8〜10原子%とすることが望ましい。 yが 8原子%未 満の場合は、不可逆減磁率が大きくなることが分った。また、 yが 11原子%を超える 場合は、残留磁束密度が低下することが分った。
[0025] oは 0. 5〜2原子%、好ましくは 0. 5〜1. 5原子%とすることが望ましい。 o力 0. 5 原子%未満の場合は、保磁力が低下することが分った。
[0026] pは 0. 5〜2原子%、好ましくは 0. 5〜1. 0原子%とすることが望ましい。 p力 0. 5 原子%未満の場合は、保磁力および最大エネルギー積が低下することが分った。ま た、 pが 2原子%を超える場合は、磁気特性が悪ィ匕することが分った。
[0027] qは 0. 3〜1原子%、好ましくは 0. 3〜0. 7原子%とすることが望ましい。 qが 0. 3 原子%未満である場合は、保磁力が低下すると共に、 150°Cにおける不可逆減磁率 が一 3%を超えることがわ力つた。また、 qが 1原子%を超える場合は、保磁力および 最大エネルギー積が低下することが分った。
[0028] rは 6〜: L0原子%、好ましくは 6〜7原子%である。 rが 6原子%未満の場合は、保磁 力が低下することが分った。また、 rが 10原子%を超える場合は、残留磁束密度が低 下することが分った。 [0029] 2は100— ー ー0— ー ー1:原子%の組成比でぁり、好ましくは68〜69. 5原子 %とすることが望ましい。 zが少なすぎると、磁束密度が低下する恐れがあり、多すぎ ると、保磁力が低下することが分った。
[0030] 測定した結果、上述の組成式に示される磁性合金の保磁力(H )は 1270〜1750 kAZm (16〜22kOe)であり、残留磁束密度(Br)は 0. 7〜0. 9T (7〜9kG)であり 、最大エネルギー積(BH) は95〜119kJZm3 (12〜15MGOe)でぁるとぃぅ値を max
示した。
[0031] 前記本発明の実施形態に係る磁性合金を適用したボンド磁石は、前記磁性合金を 約 100 mの粒径を持つ磁性合金粉末に粉砕し、その磁性合金粉末を耐熱性榭脂 でバインドしている。
[0032] すなわち、本発明の実施形態に係るボンド磁石は、耐熱性榭脂でバインドされた磁 性合金粉末を主成分とし、
前記磁性合金粉末は、
Nd, Pr, Fe, Co, Nb, V及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B (但し、 Rは少なくとも Nd及び Prを含む)とし、前記組成式の xを z o p q r
11〜13原子0 /0、yを 8〜: L I原子0 /0、 oを 0. 5〜2原子0 /0、 pを 0. 5〜2原子0 /0、 qを 0 . 3〜1原子0 /0、rを 6〜10原子0 /0、 2を100— ー ー0— ー ー1:原子%に設定した 組成成分を含む急冷薄帯を粉砕したものであることを特徴とする。
[0033] 前記磁性合金粉末は、 a Fe型結晶相及び R Fe B型結晶相のナノコンポジットで
2 14
ある。前記 a Fe型結晶相の体積割合が 8〜14vol%、前記 R Fe B型結晶相の体
2 14
積割合が 86〜92vol%であることが望まし 、。前記組成式の Rとしてジジムを用いて もよい。平均結晶粒径が 20〜50nmの前記結晶相を含有する。
[0034] 上述した組成式に示す磁性合金を用いたボンド磁石は、上述の磁性合金の粉末と 耐熱性榭脂とからなる。ボンド磁石における磁性合金粉末の量は、通常 97〜98重 量%である。また、耐熱性榭脂としては、特に制限されることはなぐ公知の榭脂、例 えば、エポキシ榭脂,ナイロン榭脂などが使用できる。
[0035] 以上の構成の粒状磁性合金を用いたボンド磁石は図 5に示すように、 150°Cにお ける不可逆減磁率が 3%以下、好ましくは 2%以下の特性を示すこととなる。また 、前記着磁された磁性合金群は、その保磁力が 1430〜1750kAZm、残留磁束密 度が 0. 5〜0. 7T及び最大エネルギー積が 56〜72kj/m3の特性を示すこととなる
[0036] 本発明の実施形態に係る前記急冷薄帯を粉砕した磁性合金粉末を用いてボンド 磁石を整合した場合、その 150°Cにおける不可逆減磁率は、磁性合金 97. 5gとェポ キシ榭脂 2. 5gを混合'撹拌し、 980MPaの圧力で圧縮成形し、温度 180°Cで 1時間 キュア処理して得たボンド磁石として測定すると、 3%以下、好ましくは 2%以下 を示した。ここに、不可逆減磁率は、ボンド磁石を 150°Cの温度で 1時間保持した後 の磁束の減少率で示している。これにより、従来よりも高温の 150°Cまでの高温環境 下で使用できるモーター用ボンド磁石を提供することができる。
[0037] ボンド磁石は、通常 1430〜175(¾八7111 (18〜221^06)の保磁カ010[)と、通常 0. 5〜0. 7T(5〜7kG)の残留磁束密度(Br)と、通常56〜72kJZm3 (7〜9MGO e)の最大エネルギー積 (BH) とを有する。
max
[0038] 本発明の実施形態に係るボンド磁石は、自動車搭載永久磁石型モーター、各種 O A機器類などのスピンドルモーターおよびステッピングモーター等に広く使用できる。
[0039] 自動車搭載永久磁石型モーターとしては、高温環境下で使用される自動車に搭載 されている各種の永久磁石型モーターであり、具体的には、電動カーテン用リニアモ 一ター,サンルーフ開閉用モーター,パワーウィンド用モーター,ワイパー用モータ 一,電動ミラー格納用モーター,電動ミラー制御用モーター,ステアリングァクチユエ ータ等が挙げられる。
[0040] 次に、磁性合金およびボンド磁石の製造方法について説明する。組成式: R Fe C o Nb V Tb Bで示される磁性合金を適用したボンド磁石の場合は、先ず、組成式:
R Fe Co Nb V Tb Bの組成比 xは 11〜13原子0 /0、 yは 8〜: L I原子0 /0、 oは 0. 5〜
2原子%、 pは 0. 5〜2原子%、 qは 0. 3〜1原子%、 rは 6〜10原子%、 zは 100— x
-y-o-p- q— r原子%になるように各金属元素を調整して配合し、真空中または アルゴン雰囲気下において高周波誘導溶解などの公知の手段によって、磁性合金 を製造する。なお、各金属元素の調整に際し、 Nd及び Pr成分の原料としては、ジジ ム(Didymiun)が好ましぐ特に Di—Fe合金がより好ましい。 [0041] 得られた磁性合金に公知の液体急冷法を施し、急冷薄帯 (磁性合金)を作製する。 なお、液体急冷法を施す装置としては、特に制限されることはなぐ公知の装置を使 用できる。
[0042] 次 、で、真空中またはアルゴン雰囲気下にお 、て、得られた急冷薄帯を熱処理し、 微粉砕して粉末状磁性合金を作製する。熱処理温度は、通常 575〜650°Cで、熱処 理における保持時間は、通常 0〜15分である。なお、保持時間とは、熱処理温度で の保持時間を意味し、保持時間が 0分とは、熱処理温度に到達したら、直ちに降温を 開始することを意味する。微粉砕処理は、磁性合金を射出成形ボンド磁石の製造に 使用する場合は、その平均粒子径が通常 100 m以下になる様に、または、磁性合 金を圧縮成形ボンド磁石の製造に使用する場合は、その平均粒子径が通常 200 μ m以下になる様に行う。微粉砕する装置としては、特に制限されることはなぐ公知の 装置を使用できる。
[0043] 得られた粉末状磁性合金をバインダー榭脂と混合し、射出成形,圧縮成形などの 公知の方法によって種々のボンド磁石を製造する。なお、成形装置としては、特に制 限されることはなく、公知の装置を使用できる。
実施例
[0044] 以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超え ない限り、以下の実施例に限定されるものではない。なお、磁性合金およびボンド磁 石の諸特性は、以下の方法で測定した。
[0045] 磁気特性は、 4. 8MAZmのパルス着磁した後、振動試料型磁力計 (VSM) (東英 工業社製)を使用して常温で測定した。
[0046] 発熱ピーク温度は、示差熱分析計 (DTA) (リガク社製)を使用して測定した。
[0047] 磁性合金の σ—Τ曲線によるキュリー温度および温度特性は 4. 8MAZmのパル ス着磁した後、振動試料型磁力計 (VSM) (東英工業社製)を使用して測定した。
[0048] 150°Cにおける不可逆減磁率は、以下の様に求めた。まず、デジタルフラックスメ 一ター (東英工業社製)を使用して、 4. 8MAZmのパルス着磁した後のボンド磁石 の磁束 (F1)を測定した。次に、恒温槽中にて 150°Cの温度で 1時間保持し、空気中 で 1時間放冷した後のボンド磁石の磁束 (F2)を測定した。 150°Cにおける不可逆減 磁率(%)は、(F1— F2) X 100ZF1で示す。
[0049] 実施例 1に係る磁性合金は、その組成成分として、 Nd, Pr, Fe, Co, Nb, V, B, T bを含ませるにあたって、組成式の Rとしてジジムを用い、その他の組成成分である F e, Co, Nb, V, B, Tbを単体で前記組成比に応じて含ませる方法を採用した。前記 ジジムとして、 Di— Fe合金を用いた。 Diは、 Didymiumを意味する。
[0050] そして、 Diを 12. 5原子%、 Coを 10原子%、 Nbを 1原子%、 Vを 1原子%、 Tbを 0 . 5原子%、 Bを 7原子%ぉよび残部 Feの合金組成になる様に配合した。したがって 、実施例 1の磁性合金の組成式は、 Nd Pr Fe Co Nb V Tb Bとなる。この
9. 7 2. 8 68 10 1 1 0. 5 7 調合した原料 lOOgを常圧のアルゴンガス雰囲気中で高周波誘導加熱により熔解し
、真空吸い上げ法により磁性合金を得た。
[0051] 前記 Di— Fe合金は、その組成成分として、 Nd: 66. 73重量0 /0、 Pr: 19. 06重量 %、 Fe : 14. 14重量%、 Ce : 0. 06重量%、 La : 0. 01重量%、 Dy: < 0. 01重量% 、 Mg : < 0. 01重量%、 A1: < 0. 01重量%、 Ca: < 0. 01重量%の合金)を含んで いる。したがって、実施例 1の磁性合金中には、 Nd, Pr, Fe, Co, Nb, V, B, Tbに 加えて、微量な金属元素である、 Ce, La, Dy, Mg, Al, Caを含有することとなる。
[0052] アルゴンガス雰囲気中で、オリフィス径が 0. 5mmの石英製射出管に得られた前記 磁性合金を約 10g入れ、高周波誘導溶解した後、クロムメツキした銅製回転ロールの 表面に射出する片ロール液体急冷法により急冷薄帯 (磁性合金)を作製した。薄帯 作製の条件は、ロール径が 300mm、ロール周速度が 17. 5mZ秒、射出アルゴンガ ス圧が 38kPaであった。
[0053] アルゴンガス雰囲気中で、得られた急冷薄帯を温度 600°Cで 5分間熱処理し、微粉 砕して平均粒子径 100 /z mの磁性合金粉末を作製した。なお、 600°Cまでの昇温時 間は 3分であった。
[0054] 実施例 1に係る磁性合金は、前記組成式の基に前記組成成分を含む急冷薄帯を 粉砕した磁性合金粉末であり、《Fe型結晶相及び R Fe B型結晶相のナノコンポジ
2 14
ットとなっている。前記 a Fe型結晶相及び R Fe B型結晶相のコンポジットについて
2 14
は、図 6 (A)の透過型顕微鏡により確認した。
[0055] また前記結晶相の平均結晶粒径は、図 6 (A)の透過型顕微鏡の画像に基づ!/、て 算出すると、製造方法の諸元の変化等を考慮すると、約 25nmであった。また図 6 (B )の電子線回折図形を観察すると、前記 a Fe型結晶相及び R Fe B型結晶相のコ
2 14
ンポジットが磁気的に等方性であることが証明できた。
[0056] 図 2に示すように、得られた実施例 1に係る粉末状磁性合金の DTA曲線における 発熱ピークを測定したところ、 399°C付近と 583°C付近にピークを有していることが分 つた。 σ— T曲線の測定により、 a Fe型結晶相の体積割合が大凡 l lvol%で、 R Fe
2
B型結晶相の体積割合が大凡 89vol%であった。また、得られた磁性合金粉末の
14
磁気特性は、図 1及び図 3に示す結果を示している。
[0057] 次いで、得られた磁性合金粉末 97. 5gとエポキシ榭脂 2. 5gを混合'撹拌し、 980 MPaの圧力で圧縮成形し、温度 180°Cで 1時間キュア処理してボンド磁石を作製し た。得られたボンド磁石の磁気特性の結果を図 1及び図 4に示す。
[0058] 比較例 1 :
比較例 1として、磁性合金の組成が Dil2. 5原子0 /0、 ColO原子0 /0、 Nbl原子0 /0、 VI原子%、 B6原子%ぉよび残部 Feになる様に配合した以外は、実施例 1と同様の 方法により磁性合金 (組成: Nd Pr Fe Co Nb V B )及びボンド磁石を作製
9. 7 2. 8 69. 5 10 1 1 6
した。得られた磁性合金粉末及びボンド磁石の磁気特性の結果を図 1,図 3及び図 4 に示す。
[0059] 本発明の実施例 1に係る磁性合金、及び磁性合金を適用したボンド磁石と、比較 例 1とを比較する。
[0060] 比較例 1に係る磁性合金の保磁力 H 力 S 1094. 2 (KAZm)、残留磁束密度 Br力 SO cj
. 861 (T)、最大エネルギー積 (BH) 力 127. 6 (Kj/m3)であるのに対し、実施例 max
1に係る磁性合金の保磁力 H 力 S1619. 4 (KAZm)、残留磁束密度 Brが 0. 766 ( T)、最大エネルギー積(BH) 力 1に改善されている。
max
[0061] 次に、比較例 1に係る磁性合金を適用したボンド磁石の保磁力 H 力 S 1070. 3 (KA cj
Zm)、残留磁束密度 Brが 0. 714 (T)、最大エネルギー積 (BH) 力 ¾8. 9 (Kj/m max
3)、 150°Cでの不可逆減磁率(%)が 3. 64であるのに対し、本発明の実施例 1に係る 磁性合金を適用したボンド磁石の保磁力 H 力 S 1584. 4 (KAZm)、残留磁束密度 B cj
rが 0. 615 (T)、最大エネルギー積(BH) 力 5. 9、 150°Cでの不可逆減磁率(% )がー 2. 36%に改善されている。
[0062] 実施例 1に係る磁性合金及びボンド磁石を製造するにあたっては、図 4に示すよう に、上述した製造方法によって得られた磁性合金となる急冷薄帯を任意に選択して 、これらの磁性合金粉末及びボンド磁石を 1試料, 2試料及び 3試料とした。そして、 各試料の磁気特性及びボンド磁石の不可逆減磁率を測定した。その結果を図 4に示 す。上述した実施例 1は 1試料を用いて説明している。 2試料のボンド磁石の不可逆 減磁率は—3. 15、 3試料のボンド磁石の不可逆減磁率は 2. 50にそれぞれ改善 されている。このことからも、本発明の実施形態に係るボンド磁石は、 150°Cでの不可 逆減磁率 (%)が 2%〜約 3%の範囲に改善されて 、ることが分る。
[0063] 次に、マグネタエンチ社が市販している商品名 MQP— O粉末を用いて作製したボ ンド磁石 Cと、実施例 1の Di Fe Co Nb Tb Bの組成をもつボンド磁石 Dとの
12. 5 68 10 1 0. 5 7
不可逆減磁率を比較した。その結果を図 5に示す。
[0064] 図 5に示すように、実施例 1のボンド磁石 Dは、常温(25°C)から 200°Cに昇温させ た場合、減磁率は徐々に低下する特性を示しており、 150ででは約ー2%でぁり、 20 0°Cでも約 5%に抑えられている。これに対して市販のボンド磁石 Cは、 125°C付近 から減磁率が急激に低下してしまい、 150°Cでは約— 4%まで低下し、 200°Cでは— 7%以上に低下している。
[0065] この結果力もして、実施例 1のボンド磁石 Dは、 150°Cでの不可逆減磁率(%)を大 幅に改善することが証明された。
産業上の利用可能性
[0066] 以上説明したように本発明によれば、高保磁力で、最大磁気エネルギー積 (BH) ma が大きぐ且つ、高温例えば 150°Cにおける不可逆減磁率が小さいボンド磁石、及 び前記ボンド磁石に最適な磁性合金を提供することができる。
図面の簡単な説明
[0067] [図 1]図 1は、本発明の実施例 1と比較例 1との特性を比較して表示した図表である。
[図 2]DTA曲線を示す特性図である。
[図 3]実施例と比較例との磁性合金の磁気特性を示す図表である。
[図 4]実施例と比較例とのボンド磁石の磁気特性を示す図表である。 [図 5]実施例と比較例とのボンド磁石に係る磁性合金の不可逆減磁率を示す特性図 である。
[図 6]実施例 1に係る磁性合金粉末を透過型顕微鏡で観察した写真である。

Claims

請求の範囲
[1] Nd, Pr, Fe, Co, Nb, V及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B (但し、 Rは少なくとも Nd及び Prを含む)とし、
z o p q r
前記糸且成式の xを 11〜13原子%、 yを 8〜11原子%、 oを 0. 5〜2原子%、 pを 0. 5〜2原子0 /0、 qを 0. 3〜1原子0 /0、 rを 6〜10原子0 /0、 zを 100— x— y— o— p— q— r 原子%に設定したことを特徴とする磁性合金。
[2] 前記組成式の基に前記組成成分を含む急冷薄帯を粉砕した磁性合金粉末が、 oc Fe型結晶相及び R Fe B型結晶相のナノコンポジットであることを有することを特徴
2 14
とする請求項 1に記載の磁性合金。
[3] 前記 a Fe型結晶相の体積割合が 8〜14vol%、前記 R Fe B型結晶相の体積割
2 14
合が 86〜92vol%であることを特徴とする請求項 2に記載の磁性合金。
[4] 前記組成式の Rとしてジジムを用いたことを特徴とする請求項 1に記載の磁性合金
[5] 前記結晶相の平均結晶粒径は、 20〜50nmの範囲であることを特徴とする請求項
2に記載の磁性合金。
[6] 耐熱性榭脂でバインドされた磁性合金粉末を主成分とし、
前記磁性合金粉末は、
Nd, Pr, Fe, Co, Nb, V及び Bに Tbを加えた組成成分を含み、その組成式を、 R Fe Co Nb V Tb B (但し、 Rは少なくとも Nd及び Prを含む)とし、前記組成式の xを z o p q r
11〜13原子0 /0、yを 8〜: L I原子0 /0、 oを 0. 5〜2原子0 /0、 pを 0. 5〜2原子0 /0、 qを 0 . 3〜1原子0 /0、rを 6〜10原子0 /0、 2を100— ー ー0— ー ー1:原子%に設定した 組成成分を含む急冷薄帯を粉砕したものであることを特徴とするボンド磁石。
[7] 前記磁性合金粉末は、 a Fe型結晶相及び R Fe B型結晶相のコンポジットである
2 14
ことを特徴とする請求項 6に記載のボンド磁石。
[8] 前記 a Fe型結晶相の体積割合が 8〜14vol%、前記 R Fe B型結晶相の体積割
2 14
合が 86〜92vol%であることを特徴とする請求項 7に記載のボンド磁石。
[9] 前記組成式の Rとしてジジムを用いたことを特徴とする請求項 6に記載のボンド磁石
[10] 平均結晶粒径が 20〜50nmの前記結晶相を含有することを特徴とする請求項 7に 記載のボンド磁石。
[11] 150°Cにおける不可逆減磁率が 3%以下であることを特徴とする請求項 6に記載 のボンド磁石。
[12] 保磁力が 1430〜1750kAZm、残留磁束密度が 0. 5〜0. 7T及び最大エネルギ 一積が 56〜72kj/m3である特性を備えたことを特徴とする請求項 6に記載のボンド 磁石。
PCT/JP2005/009573 2004-05-25 2005-05-25 磁性合金およびボンド磁石 WO2005117035A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513921A JP4934787B2 (ja) 2004-05-25 2005-05-25 磁性合金およびボンド磁石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004154572 2004-05-25
JP2004-154572 2004-05-25

Publications (1)

Publication Number Publication Date
WO2005117035A1 true WO2005117035A1 (ja) 2005-12-08

Family

ID=35451112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009573 WO2005117035A1 (ja) 2004-05-25 2005-05-25 磁性合金およびボンド磁石

Country Status (2)

Country Link
JP (1) JP4934787B2 (ja)
WO (1) WO2005117035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525051A (ja) * 2012-03-13 2015-08-27 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク 高レベルの効率を有する電気機械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223959A (ja) * 1985-07-25 1987-01-31 Sumitomo Special Metals Co Ltd 高性能永久磁石材料
JP2001189205A (ja) * 1999-12-27 2001-07-10 Sumitomo Special Metals Co Ltd ポリイミド樹脂被膜を有する希土類系永久磁石の製造方法
JP2002015909A (ja) * 2000-04-24 2002-01-18 Seiko Epson Corp 磁石粉末、ボンド磁石の製造方法およびボンド磁石
JP2002100507A (ja) * 2000-09-26 2002-04-05 Nissan Motor Co Ltd 交換スプリング磁石およびその製造方法
JP2002343659A (ja) * 2001-05-17 2002-11-29 Nissan Motor Co Ltd 希土類磁石合金およびこれを用いた異方性交換スプリング磁石
JP2003189517A (ja) * 2001-12-21 2003-07-04 Matsushita Electric Ind Co Ltd 永久磁石モータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223959A (ja) * 1985-07-25 1987-01-31 Sumitomo Special Metals Co Ltd 高性能永久磁石材料
JP2001189205A (ja) * 1999-12-27 2001-07-10 Sumitomo Special Metals Co Ltd ポリイミド樹脂被膜を有する希土類系永久磁石の製造方法
JP2002015909A (ja) * 2000-04-24 2002-01-18 Seiko Epson Corp 磁石粉末、ボンド磁石の製造方法およびボンド磁石
JP2002100507A (ja) * 2000-09-26 2002-04-05 Nissan Motor Co Ltd 交換スプリング磁石およびその製造方法
JP2002343659A (ja) * 2001-05-17 2002-11-29 Nissan Motor Co Ltd 希土類磁石合金およびこれを用いた異方性交換スプリング磁石
JP2003189517A (ja) * 2001-12-21 2003-07-04 Matsushita Electric Ind Co Ltd 永久磁石モータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525051A (ja) * 2012-03-13 2015-08-27 ブローゼ・ファールツォイクタイレ・ゲーエムベーハー・ウント・コンパニ・コマンディットゲゼルシャフト・ヴュルツブルク 高レベルの効率を有する電気機械

Also Published As

Publication number Publication date
JP4934787B2 (ja) 2012-05-16
JPWO2005117035A1 (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
Hirosawa et al. High‐coercivity iron‐rich rare‐earth permanent magnet material based on (Fe, Co) 3B‐Nd‐M (M= Al, Si, Cu, Ga, Ag, Au)
JPH0510807B2 (ja)
JPH03227502A (ja) 耐熱ボンド磁石並びにその製造方法およびpm型モータ
JPH0447024B2 (ja)
JP2004146713A (ja) R−t−n系磁粉の製造方法およびr−t−n系ボンド磁石の製造方法
US7279053B2 (en) Alloy thin ribbon for rare earth magnet, production method of the same, and alloy for rare earth magnet
JP3560387B2 (ja) 磁性材料とその製造法
JP2005093729A (ja) 異方性磁石、その製造方法、およびこれを用いたモータ
JP3519443B2 (ja) 永久磁石合金粉末とその製造方法
JPH07263210A (ja) 永久磁石並びに永久磁石合金粉末とその製造方法
WO2005117035A1 (ja) 磁性合金およびボンド磁石
JP3622550B2 (ja) 異方性交換スプリング磁石粉末およびその製造方法
JP2002075715A (ja) 異方性バルク交換スプリング磁石およびその製造方法
JP3641021B2 (ja) 高保磁力鉄基永久磁石及びボンド磁石
JP2739860B2 (ja) 磁性材料、それから成る磁石及びそれらの製造方法
JP3735502B2 (ja) 磁石材料の製造方法
JPH10130796A (ja) 微細結晶永久磁石合金及び等方性永久磁石粉末の製造方法
JP3710154B2 (ja) 鉄基永久磁石とその製造方法並びにボンド磁石用鉄基永久磁石合金粉末と鉄基ボンド磁石
JPH0845719A (ja) ボンド磁石用急冷薄帯、ボンド磁石用粉末、ボンド磁石及びそれらの製造方法
JPH07176417A (ja) 鉄基ボンド磁石とその製造方法
JP2005272924A (ja) 異方性交換スプリング磁石材料およびその製造方法
JPH0669010A (ja) R−t−m−n系ボンド磁石の製造方法
JP2925840B2 (ja) Fe−B−R系ボンド磁石
JP3795056B2 (ja) 鉄基ボンド磁石及びボンド磁石用鉄基永久磁石合金粉末
JP3588692B2 (ja) 永久磁石同期モータ用磁石

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513921

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase