WO2005114271A1 - 反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示装置 - Google Patents

反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示装置 Download PDF

Info

Publication number
WO2005114271A1
WO2005114271A1 PCT/JP2005/009266 JP2005009266W WO2005114271A1 WO 2005114271 A1 WO2005114271 A1 WO 2005114271A1 JP 2005009266 W JP2005009266 W JP 2005009266W WO 2005114271 A1 WO2005114271 A1 WO 2005114271A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
refractive index
group
cellulose acylate
index layer
Prior art date
Application number
PCT/JP2005/009266
Other languages
English (en)
French (fr)
Inventor
Eiichi Kato
Hiroyuki Yoneyama
Kazuhiro Nakamura
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to KR1020067024041A priority Critical patent/KR101224731B1/ko
Publication of WO2005114271A1 publication Critical patent/WO2005114271A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2001/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate, a method for manufacturing the same, and an image display device using the same, and more particularly, to a polarizing plate having excellent antireflection properties of a displayed image, good image clarity, and excellent visibility. And a method of manufacturing the same, and an image display device.
  • a liquid crystal display device is one of various displays, and its use is expanding year by year as a space-saving image display device with low power consumption.
  • the use of polarizing plates is indispensable due to the principle of image display, and the demand for polarizing plates is expanding.
  • a polarizing plate has a protective film attached to both sides or one side of a polarizing film having polarizing ability via an adhesive layer.
  • an anti-reflection film that uses a principle of optical interference to reduce the reflectance on the polarizing plate surface using the principle of optical interference in order to prevent a decrease in contrast and reflection of an image due to reflection of external light. (Anti-reflection film) is generally placed on the outermost surface of the display.
  • a hydrophilic resin is mainly used, and in particular, polybutyl alcohol is used.
  • PVA resin is preferably used.
  • a polarizing film is formed by uniaxially stretching a PVA-based resin film and then dyeing it with iodine or a dichroic dye, or dyeing it and stretching it, followed by crosslinking with a curable conjugate.
  • the protective film of the PVA-based polarizing film needs to be an optically transparent and low birefringent transparent film.
  • Cellulose triacetate is mainly used to secure adhesion between the polarizing film and the protective film.
  • one surface of the protective film is subjected to a hydrophilic treatment, and then bonded via a hydrophilic adhesive.
  • a method of protecting the surface of the protective film that has not been subjected to the hydrophilic treatment in advance and immersing the protective film in an aqueous alkali solution to modify the surface has been proposed as an easy treatment method (Patent Document 1, Patent Document 2, etc.).
  • Patent Document 3 a method using an alkaline solution containing a lower alcohol for the purpose of achieving a quick iridani treatment
  • Patent Document 4 a method using an alkali solution containing a polymer and a surfactant
  • a polarizing plate has a structure in which a polarizing film is protected by two protective films.
  • the polarizing plate is used on the viewing side surface of a liquid crystal display device or the like, it is different from the polarizing plate.
  • the provision of an antireflection film having a further antireflection function has too many constituent layers of an image device, and is greatly restricted in both manufacturing cost and function. Therefore, a display device has been proposed that realizes cost reduction and thin siding by providing an anti-reflection function to a protective film of a polarizing plate of an image display device (Patent Document 5 and the like).
  • Patent Document 5 Patent Document 5 and the like.
  • the conventional method of immersion treatment in an alkaline aqueous solution causes deterioration of the antireflection film.
  • Patent Document 6 a method has been proposed in which an alkali solution is applied on a film surface and at least one surface is subjected to an oxidation treatment.
  • an organic solvent in an alkaline solution, the oxidation reaction activity can be increased compared to a pure water solvent.However, depending on the type or content of the organic solvent, the added substances contained in the film to be treated may elute. In some cases, the quality of the optical film such as generation of haze is deteriorated.
  • the low-refractive-index layer which is the outermost surface, is a thin film with a thickness of around 100 nm, and in order to achieve high scratch resistance, the strength of the film itself and adhesion to the lower layer are desired. Conventional methods are not yet sufficient.
  • Patent Document 1 JP-A-7-151914
  • Patent Document 2 JP-A-8-171016
  • Patent Document 3 JP-A-2002-303724 (Paragraph No. [0071])
  • Patent Document 4 JP-A-7-62120
  • Patent Document 5 JP-A-2002-116323
  • Patent Document 6 International Publication No. 02Z46809 pamphlet
  • LCDs are widely used as flat panel displays indispensable in the era of advanced information and communications, taking advantage of their features of thinness, light weight, and low power consumption.
  • monitors and televisions capable of displaying high-definition color images
  • Increasing size and increasing mopiling are prominent.
  • an object of the present invention is to provide a polarizing plate having a uniform in-plane color, good -Eutral property, excellent durability, and no reflection of external light.
  • Another object of the present invention is to provide a method of manufacturing a polarizing plate which is produced stably with high productivity even in a long roll form excellent in moisture resistance and weather resistance in which an antireflection film and a polarizing film are integrated, And a polarizing plate obtained thereby.
  • Still another object of the present invention is to provide, as a polarizing film, an obliquely stretched hydrophilic resin-based film obtained by an oblique stretching method and capable of improving the yield in a polarizing plate punching step, It is to provide a high-performance and inexpensive polarizing plate.
  • Another object of the present invention is to provide a durable, high-quality image display having a polarizing plate having a protective film provided with an antireflection film on one side of the polarizing film. To provide the equipment.
  • a polarizing plate provided with an antireflection film having the following constitution, a method for producing the same, and an image display device using the same are provided, and the above object of the present invention is achieved.
  • Hydrophilic resin-based film A cellulose acylate film is provided as a protective film on both sides of a polarizing film formed from a resin, and a multilayer film is formed on the cellulose acylate film on one side of the polarizing film.
  • Ra Arithmetic average roughness (Ra) based on 1994 is 0.0002 ⁇ m to 0.3 m, ten-point average roughness (Rz) force ⁇ 0.0002 ⁇ m to 0.5 m, maximum height (Ry): 0.002 / ⁇ to 1.0 m, and the average distance (Sm) between surface irregularities is 0.001 m to 5 ⁇ m.
  • a polarizing plate according to the number of visual diameter 100 / zm or more point defects is less than 1 per lm 2 (1).
  • the thickness of the polarizing film is 5 to 22 m, and the transmittance at 700 nm when the polarizing film is cross-cord is 0.001% to 0.3%, and the transmittance at 410 nm is 0.001. % To 0.3%, the polarizing plate according to (1) or (2).
  • the low refractive index layer is cured by applying a curable composition containing at least one of a hydrolyzate of an organosilane represented by the following general formula (1) and a partial condensate thereof.
  • R 1Q represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents an integer of 0 to 2.
  • the in-plane rate of change of the L *, a *, and b * values of the CIE1976L * a * b * color space of the specularly reflected light is 20% or less (1) to (6).
  • the antireflection film has a higher refractive index than the cellulose acylate film between the cellulose acylate film and the low refractive index layer having a lower refractive index than the cellulose acylate film. It has a multilayer structure having at least two high-refractive-index layers having different refractive indices, and at least one of the high-refractive-index layers having a higher refractive index is made of cobalt or aluminum having an average particle size of 3 to 80 nm.
  • the polarizer according to any one of (1) to (7), further comprising inorganic ultrafine particles mainly composed of titanium dioxide containing at least one element selected from zirconium.
  • the antireflection film has a multilayer structure having an antiglare layer between a cellulose acylate film and a low refractive index layer having a lower refractive index than the cellulose acylate film.
  • the surface haze on the side opposite to the surface in contact with the polarizing film after the formation of the refractive index layer is 2% to 7%, and the internal haze of the entire film is 0 to 50%.
  • the polarizing plate according to any one of (8).
  • the antireflection film has a multilayer structure having a hard coat layer between a cellulose acylate film and a low refractive index layer having a lower refractive index than the cellulose acylate film.
  • the hard coat layer contains at least one of a hydrolyzate of the organosilane represented by the general formula (1) and a partial condensate thereof. , A polarizing plate described in any of the above.
  • Antireflection film strength A multilayer structure having an antistatic layer between the cellulose acylate film and the low refractive index layer having a lower refractive index than the cellulose acylate film.
  • an optical compensation film having an optically anisotropic layer is provided on the cellulose acylate film on the other side of the polarizing film.
  • the alkali oxidization treatment is at least an alkali agent, water, water soluble with an inorganic / organic value (I / O value) of 0.5 or more and a solubility parameter of 16 to 40 [mi / m 3 ] 1/2 .
  • a production method comprising a step carried out using an alkali solution containing an organic solvent and at least one of a surfactant and a compatibilizer.
  • Alkali acid treatment treatment process At least (a) a step of applying an alkali solution to a cellulose acylate film having a surface temperature in the range of room temperature to 100 ° C; (15) The production method according to (15), wherein the step of maintaining the temperature in the range of room temperature to 100 ° C. and the step (c) of washing the alkaline solution with a cellulose acylate film.
  • the polarizing film is held by holding both ends of the hydrophilic resin-based film for a polarizing film which is continuously supplied by holding means and applying tension while advancing the holding means in the longitudinal direction of the film, thereby stretching the polarizing film.
  • the locus L1 of the holding means from the substantial holding start point to the substantial holding release point at one end of the hydrophilic resin-based film, and the hydrophilicity The starting point force of the substantial holding at the other end of the resin-based resin film, the trajectory L2 of the holding means to the holding release point, and the distance W between the substantial holding points of both holding means satisfy the following formula (1).
  • a manufacturing method characterized in that the holding means is manufactured by a stretching method in which the difference in the conveying speed in the longitudinal direction is less than 1%.
  • the present invention uses a cellulose acylate film as a protective film used on both sides of a polarizing film formed of a hydrophilic resin-based film, and forms a multilayer structure on the cellulose acylate film.
  • a long polarizing plate is formed by forming an anti-reflection film of the present invention, and the surface morphology of the cellulose acylate film after being subjected to the alkali acid treatment on the polarizing film side surface is finely controlled. .
  • the maximum height (Ry) is 0.002 / ⁇ -1. O ⁇ m, and the average spacing (Sm) of the surface irregularities is 0.001 ⁇ m-5 ⁇ m.
  • the surface of the cellulose acylate film By making the surface of the cellulose acylate film in this way, this surface of the film and the surface of the polarizing film formed of the hydrophilic resin-based film are bonded via a hydrophilic adhesive.
  • the polarizing plate produced together has extremely good adhesion between the protective film, the cellulose acylate film, and the polarizing film, and is a homogeneous film in which visual defects do not pose a practical problem.
  • the alkali oxidizing treatment of the surface of the cellulose acylate film of the present invention is uniformly performed to obtain an appropriate hydrophilic surface, and sufficiently adheres to the hydrophilic adhesive layer. It is presumed that anchoring was uniformly expressed.
  • the cell Controlling the uniform dispersion of inorganic fine particles to be added and the control of the surface shape of the metal support in the casting process when forming a succinate film by the solution casting method It has been found that it can be achieved by performing a film forming by an alkali acid treatment, which is capable of performing a rapid treatment for suppressing precipitation and aggregation of additives in the film, and the like.
  • the polarizing plate of the present invention has a polarizing film thickness of 5 ⁇ m or more and 22 ⁇ m or less, and a transmittance of 700 nm at the time of cross Nicol of 0.001% or more and 0.3% or less of 410 nm. Is preferably 0.001% or more and 0.3% or less.
  • a dichroic dye having an absorption in a corresponding wavelength region in addition to a dichroic substance such as iodine is added to a polarizing film. It has been found that it is effective to add as a hue adjusting agent, to add a hardener such as boric acid when adding a dichroic substance such as iodine, or to combine them.
  • the polarizing plate with anti-reflection ability of the present invention has excellent anti-reflection properties with no visual defects in displayed images, uniform in-plane color, good -Eutral property, moisture resistance and weather resistance. It is an excellent polarizing plate with no reflection of external light, and can be produced stably with high productivity even in a long roll form.
  • the polarizing plate with antireflection ability of the present invention for an image display device it is possible to improve contrast, improve tint, and further improve moisture resistance and weather resistance.
  • FIG. 1 is a schematic view showing measurement of an inclination angle in the present invention.
  • FIG. 2 is a schematic plan view showing an example of the method of the present invention for obliquely stretching a polymer film.
  • FIG. 3 is a schematic plan view showing another example of the method of the present invention for obliquely stretching a polymer film.
  • FIG. 4 is a schematic plan view showing how the polarizing plate of the present invention is punched.
  • FIG. 5 is a schematic plan view showing how a conventional polarizing plate is punched.
  • A, B, C vertices of a triangle whose area assumed on the substrate surface is 0.5 to 2 / ⁇ 2.
  • ⁇ ', ⁇ ', C ' The three points A, B, and C also extend vertically upward, and the three points are antiglare.
  • O—O ′ base material force A perpendicular line extending vertically upward.
  • The angle between normal D 'and perpendicular O'. Incline angle.
  • a cellulose acylate film is provided as a protective film on both sides of a polarizing film obtained by dyeing a hydrophilic resin film with iodine and / or a dichroic compound. It is a long polarizing plate in which a multilayered antireflection film is coated on the cellulose acylate film on the side.
  • a hydrophilic resin a PVA-based resin is particularly preferable.
  • the polarizing plate of the present invention is provided with an optical compensation film (or retardation film) as necessary on the protective film opposite to the protective film coated with the antireflection film. is there.
  • “long” refers specifically to those having a length of 100 to 5000 m.
  • the term “wide” means a width of 0.7 to 2.
  • “numerical value A” to “numerical value B” means “more than numerical value A and less than numerical value B” when the numerical value represents a physical property value, a characteristic value, and the like.
  • (meth) ataliloyl means “atariloyl or methacryloyl or both.” The same applies to “(meth) atalylate”, “(meth) acrylic acid”, and “(meth) acrylamide”.
  • the acylate film of the present invention preferably has a thickness of 10 to 120 ⁇ m, more preferably 20 to 120 ⁇ m, still more preferably 30 to: LOO ⁇ m, and most preferably 30 to 80 ⁇ m. ⁇ m. Further, the variation width of the film thickness is preferably within ⁇ 3%, more preferably within ⁇ 2.5%, and further preferably within ⁇ 1.5%. Within this fluctuation range, the protection filter It is good that the thickness as the lum does not substantially affect the antireflection property.
  • the cellulose acylate has a number average molecular weight of 7 ⁇ 10 4 to 25 ⁇ 10 4 ,
  • Etc. are effective.
  • the dissolving step, the casting step, and the drying step will be described later in the section of the production method.
  • the cellulose acylate film used in the present invention is preferably in the form of a long roll having a length of 100 to 5000 m and a width of 0.7 m to 2 m, and more preferably 0.7 to 1.50 m.
  • the polarizing plate with anti-reflection capability and the image display device using the same can be made thinner and lighter, and good optical characteristics such as improved light transmittance and improved contrast and display brightness can be stabilized.
  • a long and wide protective film can be handled with good handling without causing problems such as wrinkles.
  • the cellulose acylate film used in the present invention is made of cellulose ester as a raw material.
  • cellulose as a raw material of the cellulose ester include cotton linter, kenaf, and wood pulp (hardwood pulp and softwood pulp). Just a little
  • the power of esterifying cellulose to produce cellulose acylate is obtained by purifying linter, kenaf, and pulp. .
  • the cellulose acylate is a carboxylic acid ester in which a hydroxyl group of cellulose is substituted with an acyl group such as an acetyl group, and has a total carbon number of the acyl group of ⁇ to 22.
  • the acyl group having 2 to 22 carbon atoms of the cellulose acylate used in the present invention is not particularly limited, and may be an aliphatic acyl group or an aromatic acyl group.
  • enolequinolecanoleboninoleestenole enolekeninolecanoleboninoleestenole
  • cyclohexanecarbyl ester or aromatic carboyl ester, aromatic alkyl carboyl ester of senorelose. May have a further substituted group.
  • acyl groups include propionyl, butanoyl, heptanoyl, hexanoyl, otatanyl, decanoyl, dodecanoyl, tridecanol, octadecanol, cyclohexancarbyl, adamantancarbol, methacrylyl, atalylylyl, benzoylyl, benzoylethyl Examples include naphthylcarbol and cinnamoyl groups.
  • isyl groups are propionyl, butanol, pentanoyl, hexanoylcyclohexanecarbol, adamantanecarbol, phenylacetyl, benzoyl and the like.
  • a method for synthesizing cellulose acylate is disclosed in Hatsumei Kyokai Disclosure No. 2001-1745.
  • the cellulose acylate used in the present invention preferably has a degree of substitution of cellulose with a hydroxyl group that satisfies the following formulas (8) and (9) in terms of solubility.
  • Equation (8) 2.3 ⁇ SA '+ SB' ⁇ 3.0
  • S A ′ replaces the hydrogen atom of the hydroxyl group of cellulose! /
  • the degree of substitution of the acetyl group, and SB ′ replaces the hydrogen atom of the hydroxyl group of the cellulose! / 22 represents the degree of substitution of the acyl group.
  • SA represents an acetyl group which substitutes a hydrogen atom of a hydroxyl group of cellulose
  • SB represents an acetyl group having 3 to 22 carbon atoms by substituting a hydrogen atom of a hydroxyl group of cellulose.
  • the glucose unit comprising j8-1 and 4 forming cellulose has a free hydroxyl group at the 2-, 3- and 6-positions.
  • Cellulose acylate is a polymer in which some or all of these hydroxyl groups are esterified with an acyl group.
  • the degree of acyl substitution means the proportion of cellulose esterified at each of the 2-, 3-, and 6-positions (100% esterification at each position has a substitution degree of 1).
  • substitution of SA and SB The sum of degrees (SA ′ + SB ′) is more preferably 2.6 to 3.0, and particularly preferably 2.80 to
  • the degree of SA substitution (SA ′) is more preferably 1.4 to 3.0, and especially 2
  • SB represents an acyl group having 3 or 4 carbon atoms by substituting a hydrogen atom of a hydroxyl group of cellulose.
  • SB is more preferably at least 28% a substituent at the 6-position hydroxyl group, more preferably at least 30% a substituent at the 6-position hydroxyl group, and still more preferably at least 31%.
  • a cellulose acylate film having a value of 0.85 or more, particularly 0.90 or more, can also be mentioned as a preferable example. These cellulose acylate films make it possible to prepare a solution with good solubility, and particularly to prepare a good solution in a non-chlorine organic solvent.
  • the degree of substitution can be obtained by measuring the degree of binding of a fatty acid bound to a hydroxyl group in cellulose and calculating the degree of substitution. The measurement can be performed according to ASTM-D817-91 and ASTM-D817-96. The state of the substitution of the hydroxyl group with the acyl group is measured by 13 c NMR.
  • the polymer component constituting the film is preferably composed of cellulose acylate that substantially satisfies the above formulas (8) and (9). "Substantially” means 55% by weight or more (preferably 70% by weight or more, more preferably 80% by weight or more) of all polymer components. Cellulose acylate may be used alone or in combination of two or more.
  • the polymerization degree of the cellulose acylate preferably used in the present invention is a viscosity average polymerization degree of 200 to 700, preferably 230 to 550, more preferably 230 to 350, and particularly preferably 230 to 350.
  • Pama viscosity The average degree of polymerization is 240 to 320.
  • the average degree of polymerization can be measured by the limiting viscosity method of Uda et al. (Uda Kazuo, Saito Hideo, Journal of the Textile Society of Japan, Vol. 18, No. 1, pp. 105-120, 1962). Further details are described in JP-A-9-95538.
  • the number average molecular weight Mn of the cellulose acylate is preferably in the range of 7 ⁇ 10 4 to 25 ⁇ 10 4 , more preferably in the range of 8 ⁇ 10 4 to 15 ⁇ 10 4 .
  • the ratio MwZMn of the mass average molecular weight Mw of the cellulose acylate to the number average molecular weight Mn is preferably 1.0 to 5.0, more preferably 1.0 to 3.0.
  • the average molecular weight and the molecular weight distribution of the cellulose ester can be measured by using high performance liquid chromatography, and by using this, the above Mn and Mw can be calculated, and MwZMn can be calculated.
  • the cellulose acylate film used in the present invention includes cellulose acylate, a plasticizer, and fine particles (particularly preferably, those described below) satisfying the above-mentioned formulas (8) and (9).
  • the average primary particle diameter of 3 to: LOOnm fine particles) is preferably used.
  • the plasticizer used in the present invention is a component added to impart flexibility to the cellulose acylate film, improve dimensional stability, and improve moisture resistance.
  • the preferred plasticizer is preferably a force having a boiling point of 200 ° C. or higher and being a liquid at 25 ° C. or a solid having a melting point of 25 to 250 ° C. More preferably, a plasticizer having a boiling point of 250 ° C. or higher and being liquid at 25 ° C. or a solid plasticizer having a melting point of 25 to 200 ° C. is exemplified.
  • the purification is usually carried out by distillation under reduced pressure, and in the present invention, which is more preferable as the vacuum becomes higher, it is more preferable to use a plasticizer having a vapor pressure of 1333 Pa or less at 200 ° C. Is preferably a compound having a vapor pressure of 667 Pa or less, more preferably 133 to 1 Pa.
  • ester phosphates As these preferably added plasticizers, ester phosphates, carboxylate esters, polyol esters and the like having the above-mentioned physical properties are used.
  • phosphate esters include triphenyl phosphate, diphenyl-biphenyl phosphate, octyldiphenol-phosphate, tributinolephosphate, trioctinolephosphate, getinolecyclohexylphosphate, and the like.
  • carboxylic acid ester examples include a phthalic acid ester and a citrate ester.
  • phthalic acid esters include dimethyl phthalate, getyl phthalate, dibutyl phthalate, octyl phthalate, diphenyl phthalate, and getyl hexyl phthalate.
  • citrate esters include triethyl O-acetylquenate, O— Tributyl acetyl citrate, acetyl triethyl citrate, acetyl butyl triate and the like.
  • Examples of other carboxylic esters include butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, and various trimellitate esters.
  • Examples of glycolic acid esters include triacetin, tributyrin, butyl phthalyl butyl dallicolate, ethyl phthalyl acetyl dallicolate, methyl phthalyl ethyl daricolate, butyl phthalyl butyl tallic cholate, methyl phthalyl methyl dalicolate, propyl phthalyl Examples include propyl glycolate, butyl phthalyl butyl tallicolate, and octyl phthalyl octyl phthalic acid.
  • plasticizer is also preferably used. According to these publications, not only examples of plasticizers but also methods of using them are described in terms of their properties. .
  • plasticizers examples include (di) pentaerythritol esters described in JP-A-11-124445, glycerol esters described in JP-A-11-246704, and diglycerol esters described in JP-A-2000-63560. JP-A-11-92574, substituted phthalic acid esters described in JP-A-11-90946, and esters containing an aromatic ring and a cyclohexane ring described in JP-A-2003-165868. Daggers and the like are preferably used.
  • a high molecular weight plasticizer having a resin component having a molecular weight of 1,000 to 100,000 is also used. It is preferable to use in combination with the above low-molecular plasticizer.
  • These plasticizers may be used alone or in combination of two or more.
  • the added amount of the plasticizer is preferably 2 to 30 parts by mass, particularly preferably 5 to 20 parts by mass based on 100 parts by mass of cellulose acylate.
  • the fine particles preferably used in the cellulose acylate film for forming the protective film are added to the film in order to improve the mechanical strength and dimensional stability of the film and to improve the moisture resistance, and are preferably hydrophobic. preferable.
  • the primary average particle diameter of the fine particles is preferably from 3 to: LOOnm, more preferably from 3 to 80 nm, and still more preferably from 5 to 60 nm, from the viewpoint of suppressing haze.
  • the primary average particle diameter of the fine particles can be measured by measuring the particles with a transmission electron microscope to determine the average particle diameter.
  • the apparent specific gravity of the fine particles is preferably 70 to 200 gZ liter or more, more preferably 100 to 200 gZ liter.
  • the addition amount of the fine particles is preferably 0.005 to 2 parts by mass, and particularly preferably 0.01 to: 0 parts by mass with respect to 100 parts by mass of cellulose acylate.
  • Preferred examples of the fine particles include, as the inorganic compound, a compound containing silicon, silicon dioxide, titanium oxide, zinc oxide, aluminum oxide, barium oxide, zirconium oxide, strontium oxide, Antimony oxide, tin oxide, tin oxide 'antimony, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and the like are more preferable.
  • An inorganic compound containing zirconium or zirconium oxide can suppress the increase in the haze of the cellulose acylate film, and hence silicon dioxide is particularly preferably used.
  • the fine particles suitably used in the cellulose acylate film in the present invention are preferably surface-treated for the reason that aggregation in the dope and in the film after film formation is suppressed and the fine particles are stably dispersed. It is preferred that The surface treatment is performed, for example, by treating the surface of the fine particles with an organic compound.
  • the organic compound that can be used in this case include a class of inorganic fillers such as conventionally known metal oxides and inorganic pigments.
  • surface modifiers include, for example, “Evaluation of Pigment Dispersion Stabilization and Surface Treatment Information Association, published in 2001). Specific examples include an organic compound having a polar group having an affinity for the surface of the fine particles and a coupling compound.
  • Examples of the polar group having an affinity for the fine particle surface include a carboxyl group, a phosphono group, a hydroxy group, a mercapto group, a cyclic acid anhydride group, an amino group, and the like. Compounds containing are preferred.
  • long chain aliphatic carboxylic acids eg, stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid, etc.
  • polyol conjugates eg, pentaerythritol triatalylate, dipentaerythritol pentaatalylate, ECH Modified glycerol, etc.
  • phosphono group-containing conjugates eg, EO-modified phosphoric acid, etc.]
  • alkanolamines ethylenediamine EO adduct (5 mol), etc.].
  • Examples of the coupling conjugate include conventionally known organometallic compounds, and include silane coupling agents, titanate coupling agents, aluminate coupling agents, and the like. Silane coupling agents are most preferred. Specifically, for example, there is a coupling coupling compound described in "Crosslinking Agent Handbook" (published by Taiseisha, 1981), by Fuzo Yamashita and Tosuke Kaneko.
  • silicone resin having a three-dimensional network structure is preferably used.
  • a commercially available product having a trade name such as “Tospearl” (trade name; manufactured by Toshiba Silicone Co., Ltd.) can be used.
  • the shape of the fine particles used in the present invention is not particularly limited, but is preferably a rice grain, a sphere, a cube, a spindle, or an irregular shape.
  • the fine particles may be used alone, or two or more kinds may be used in combination.
  • the fine particles preferably used in the present invention are preferably uniformly dispersed in the film after film formation. Therefore, the fine particles are preferably introduced into the dope solution after preparing a fine particle dispersion in the following manner or the like.
  • a fine particle dispersion is prepared using a disperser, and the dispersion is added to the dope solution and stirred.
  • a dispersion device is used to prepare a fine particle dispersion, and a small amount of cellulose acylate is separately added to the solvent and dissolved by stirring.
  • the fine particle dispersion is added thereto and stirred.
  • the fine particle addition liquid obtained by stirring is sufficiently mixed with the dope liquid using an in-line mixer.
  • the mass average diameter of the primary particles of the fine particles in the dispersion is preferably from 3 to 200 nm, more preferably from 3 to 150 nm, further preferably from 3 to: LOOnm, and particularly preferably from 5 to 80 nm.
  • the fine particles dispersed in the wet dispersion according to the present invention preferably substantially maintain the fine particles at a primary particle size or more so as not to excessively increase the specific surface area of the fine particles during dispersion.
  • the dispersed fine particles in the wet dispersion preferably do not contain large particles having an average particle diameter of 500 nm or more, and particularly preferably do not contain large particles having an average particle diameter of 300 nm or more. . This makes it possible to form a film having no optical defects, a low haze value and good transparency, and a film having specific fine irregularities (described later) without coarse irregularities on its surface.
  • U The mass average diameter of the primary particles of the fine particles in the dispersion
  • an ultraviolet absorber to the cellulose acylate film in order to improve the light resistance of the film itself or to prevent deterioration of image display members such as a polarizing plate and a liquid crystal compound of a liquid crystal display device. ,.
  • the ultraviolet absorber is excellent in the ability to absorb ultraviolet light having a wavelength of 370 nm or less from the viewpoint of preventing deterioration of the liquid crystal, and absorbs visible light having a wavelength of 400 nm or more from the viewpoint of good image display properties. It is preferable to use a small amount.
  • the transmittance power at a wavelength of 370 nm is desirably 20% or less, preferably 10% or less, and more preferably 5% or less.
  • Examples of such ultraviolet absorbers include oxybenzophenone-based compounds, benzotriazole-based compounds, salicylate-based compounds, benzophenone-based compounds, cyanoatalylate-based compounds, nickel complex salt-based compounds, and the aforementioned ultraviolet absorbers. Examples include, but are not limited to, high-molecular-weight ultraviolet absorbing compounds containing a functional group. Two or more ultraviolet absorbers may be used.
  • the ultraviolet absorbent may be dissolved in an organic solvent such as alcohol-methylene chloride or dioxolane and then added to the dope, or may be directly added to the dope composition. May be. Those that do not dissolve in an organic solvent such as inorganic powders are dispersed in an organic solvent and a cellulose ester using a dissolver or a sand mill, and then added to the dope.
  • an organic solvent such as alcohol-methylene chloride or dioxolane
  • the amount of the ultraviolet absorber used is preferably from 0.1 to 5.0 parts by mass, more preferably from 0.5 to 2.0 parts by mass, per 100 parts by mass of cellulose acylate. More preferably, the amount is 0.8 to 2.0 parts by mass.
  • the cellulose acylate composition of the present invention may contain various other additives (e.g., an antioxidant (e.g., an antioxidant, a peroxide decomposer, Agents, metal deactivators, acid scavengers, amines, etc.), optically anisotropic controlling agents, release agents, antistatic agents, infrared absorbers, etc.), which can be solid or oily. It may be a thing. That is, the melting point and boiling point are not particularly limited. Furthermore, as the infrared absorber, for example, those described in JP-A-2001-194522 can be used.
  • the timing of adding these additives may be any time in the dope preparation step, but may be performed by adding the additive to the last step of the dope preparation step. Furthermore, the addition amount of each material is not particularly limited as long as the function is exhibited. Further, when the cellulose acylate film is formed of a multilayer resin, the types and amounts of additives of each layer may be different. For example, it is described in Japanese Patent Application Laid-Open No. 2001-151902 and the like, and these are technologies that have been conventionally known. Details of these materials, including the above-mentioned UV absorbers, are described in detail in pages 16 to 22 of the Hatsumei Kyokai Disclosure Bulletin No. 2001-1745 (issued on March 15, 2001, Hatsumei Kyokai). Is preferably used.
  • the amount of these additives to be used is preferably appropriately in the range of 0.001 to 20% by mass in the whole composition of cellulose acylate.
  • Examples of the organic solvent to be used include conventionally known organic solvents, and for example, those having a solubility parameter of 17 to 22 are preferable.
  • Cellulose ⁇ sheet rate of the present invention is preferably a solution that is 10 to 30 mass 0/0 dissolved in an organic solvent, more preferably from 13 to 27% by weight, particularly 15 to 25 wt% soluble
  • a cellulose acylate solution is preferred.
  • the method for preparing cellulose silicate at these concentrations may be prepared at a predetermined concentration at the stage of dissolution, or may be prepared in advance as a low-concentration solution (for example, 9 to 14% by mass), followed by a concentration step described later. May be adjusted to a predetermined high concentration solution.
  • the cellulose acylate solution of the present invention may be converted into a predetermined low-concentration cellulose acylate solution by adding a variety of additives to the cellulose acylate solution of the present invention. It is particularly problematic if implemented so that
  • the method for dissolving the cellulose acylate solution (dope) in the present invention is not particularly limited, and it can be carried out by a room temperature dissolution method, a cooling dissolution method, or a high temperature dissolution method. It may be implemented by a combination of these.
  • JP-A-5-163301, JP-A-61-106628, JP-A-58-127737, JP-A-9-95544, JP-A-10-95854, JP-A-10-45950, JP 2000-5 3784, JP 11-322946, JP 11-322947, JP 2-276830, JP 2000-273239, JP 11-71463, JP 04-259511, JP-A-2000-273184, JP-A-11-323017, JP-A-11-302388, and other publications describe a method for preparing a cellulose acylate solution.
  • the method for dissolving these cellulose acylates in an organic solvent can also be applied to the present invention within the scope of the present invention.
  • These details, especially for the non-chlorine solvent system, are carried out by the method described in detail in the above-mentioned Japanese Patent Publication No. 2001-1745, pp. 22-25.
  • the dope solution of cellulose acylate used in the present invention usually, Solution concentration and filtration are carried out, and similarly described in detail in the above-mentioned official gazette No. 2001-1745, page 25.
  • the dissolution at a high temperature is higher than the boiling point of the organic solvent used, and in such a case, the dissolution is performed under a pressurized state.
  • the cellulose acylate solution used in the present invention preferably has a viscosity and a dynamic storage activity in a specific range.
  • 1 mL of the sample solution use a steel cone with a diameter of 4 cmZ2 ° (both manufactured by TA Instruments) for the rheometer “CL S500”, and the measurement conditions were 40 ° C to 110 ° C in the Oscillation Step / Temperature Ramp.
  • the static non-Newtonian viscosity n * (Pa-sec) at 40 ° C and the storage modulus G '(Pa) at 5 ° C are determined by measuring at 2 ° CZ. The measurement is started after the sample solution is kept at the measurement start temperature until the liquid temperature becomes constant.
  • the viscosity at 40 ° C. is 1 to 300 Pa ′ sec and the dynamic storage modulus at 5 ° C. is 10,000 to 1,000,000 Pa. More preferably, the viscosity at 40 ° C. is 1 to 200 Pa ′ sec, and the dynamic storage modulus at 5 ° C. is 30,000 to 500,000 Pa.
  • the method and equipment for producing the cellulose acylate film include a conventionally known solution casting film forming method and a solution casting film forming apparatus called a drum method or a band method for producing a cellulose triacetate film. Used.
  • the surface of the metal support used in the casting step may have an arithmetic average roughness (Ra) of 0.015 m or less and a ten-point average roughness (Rz) of 0.05 m or less. preferable. More preferably, the arithmetic average roughness (Ra) is 0.001 to 0.01 / zm, and the ten-point average roughness (Rz) is 0.001 to 0.02 / zm. More preferably, the (Ra) Z (Rz) ratio is 0.15 or more. As described above, by setting the surface roughness of the metal support within a predetermined range, the surface shape of the formed film can be controlled within a preferable range described later.
  • the dope (cellulose acylate solution) prepared from the dissolving machine (pot) is stored in a storage pot and the foam contained in the dope is defoamed for final preparation.
  • Dope dope outlet For example, a dope is sent to a pressurized die through a pressurized fixed-quantity gear pump that can deliver liquid at high precision according to the number of revolutions, and the dope is placed on the metal support of the casting part where the die (slit) force of the pressurized die is running endlessly. At the peeling point where the metal support has run almost completely, the freshly dried dope film (also called web) is also peeled off by the metal support.
  • Both ends of the obtained web are sandwiched by clips, transported by a tenter while maintaining the width, and dried. Subsequently, the web is transported by a group of rolls of a drying apparatus, dried, and wound up to a predetermined length by a winder.
  • the combination of the tenter and the dryer for the rolls varies depending on the purpose.
  • one type of cellulose acylate solution may be cast in a single layer, or two or more types of cellulose acylate solutions may be co-cast simultaneously or sequentially.
  • the protective film for the polarizing film provided in the present invention which serves as a support for the antireflection film, has the following characteristics.
  • the cellulose acylate film used as the protective film preferably has a specific surface shape.
  • the surface shape of the cellulose acylate film will be described.
  • the surface of the cellulose acylate film on the side on which the antireflection layer is provided has an arithmetic average roughness (Ra) of surface irregularities of the film of 0.0001 to 0.3 ⁇ m based on JIS B-0601-1994. m, even 0.0001 to 0.1111, especially 0.0002 to 0.015 m; ten-point average roughness (Rz) force ⁇ ⁇ . 0001 to 0.5 / ⁇ ⁇ , and even 0.000001 ⁇ 0.3111, especially 0.002 to 0.05 m; and the maximum height (Ry) is 1.0 m or less, further 0.8 m or less, especially 0.05 m or less. Is preferred.
  • the alkaline film is treated as a protective film for the polarizing film with a uniform coating surface having no coating unevenness, the wettability with the processing liquid becomes uniform, and the oxidation of the surface proceeds evenly. Further, when the oxidized surface is bonded to the polarizing film, the adhesiveness is improved by the anchor effect of the adhesive.
  • the concave and convex shapes on the surface can be evaluated by a transmission electron microscope (TEM), an atomic force microscope (AFM) or the like. (Mechanical properties of film)
  • the curl value in the width direction of the protective film used in the present invention is 7 ⁇ ! It is preferred that it is + 7Zm.
  • the curl value in the width direction of the protective film is within the above-mentioned range, trouble in handling of the film and cutting of the film will not occur. Particle generation due to the film coming into strong contact with the transport rolls and the adhesion of foreign substances to the film at the center, etc. are reduced, and the frequency of point defects and coating streaks of the polarizing plate of the present invention exceeds the allowable values. Is preferred.
  • the curl value is measured by a measurement method defined by the American National Standards Institute (ANSIZASCPH1.29).
  • the amount of residual solvent in the protective film used in the present invention is preferably 1.5% by mass or less, because curling can be suppressed. Furthermore 0. 01: and more preferably L is 0 mass 0/0 or less. This is presumably because the main effect is that free deposition is reduced by reducing the amount of residual solvent during film formation by the above-mentioned solution casting method.
  • the tear strength of the cellulose acylate film is such that the tear strength based on the tear test method (Elmendorf tear method) of JIS K-7128-2: 1998 is 2 g or more. Is preferable in that the strength of the resin can be sufficiently maintained. More preferably, it is 5 to 25 g, and still more preferably 6 to 25 g. In terms of 60 / zm, 8 g or more is more preferable, and more preferably 8 to 15 g. Specifically, a 50 mm X 64 mm sample piece can be measured using a light load tear strength tester after conditioning for 2 hours at 25 ° C and 65% RH.
  • the drawing strength is preferably 2 g or more, more preferably 5 g or more.
  • Particularly preferred is 10 g or more.
  • the drawing strength was determined by pulling the surface of the protective film using a sapphire needle having a cone apex angle of 90 ° and a tip radius of 0.25m, and the load at which the drawing mark could be visually confirmed ( g) can be evaluated. (Equilibrium moisture content of film)
  • the equilibrium water content of the cellulose acylate film used in the present invention depends on the film thickness regardless of the film thickness so as not to impair the adhesiveness to a water-soluble polymer such as polyvinyl alcohol when used as a protective film for a polarizing plate.
  • the equilibrium water content at 25 ° C. and 80% RH is 0 to 4% by mass. 0.1 to 3.5% by mass is more preferable, and 1 to 3% by mass is particularly preferable.
  • the equilibrium water content is within this range, when the cellulose acylate film is used as a protective film for a polarizing plate, the film has good adhesion and the humidity dependence of the film retardation is large. This is preferable because it does not become too much.
  • the moisture content was measured by measuring the cellulose acylate film sample 7 mm X 35 mm of the present invention with a moisture meter ⁇ CA-03 ⁇ and a sample dryer ⁇ VA-05 ⁇ (both manufactured by Mitsubishi Iridaku Co., Ltd.). And measure by Karl Fischer method.
  • the water content is calculated by dividing the water content (g) by the sample mass (g).
  • the moisture permeability of the cellulose acylate film used in the present invention was measured at a temperature of 60 ° C. and a humidity of 95% RH based on JIS Z-0208, and the obtained value was converted to a film thickness of 80 m. It was done.
  • the moisture permeability is 400 ⁇ 2000 8 111 2 '2411,
  • the moisture permeability is equal to or less than the upper limit, because the absolute value of the humidity dependence of the retardation value of the film rarely exceeds 0.5 nm /% RH.
  • the absolute value of the humidity dependence of the Re value and the Rth value is 0.5n. /% RH is less, so preferred.
  • a polarizing plate with an optical compensation film is incorporated in a liquid crystal display device, since it hardly causes problems such as a change in color and a decrease in viewing angle.
  • the moisture permeability is equal to or more than the lower limit, when a polarizing plate is manufactured by attaching the film to a polarizing film, problems such as the drying of the adhesive being hindered by the cellulose acylate film and causing poor adhesion are caused. It is preferable because it hardly occurs.
  • the cellulose acylate film provided with an anti-reflection film used in the present invention has at least an anti-reflection film applied thereon, and has a surface on the other side (hereinafter sometimes referred to as a back surface). Hydrophilization treatment renders it hydrophilic.
  • the present invention is characterized in that the surface after the vulcanization treatment, that is, the surface in contact with the polarizing film forms a hydrophilic surface state having the above-mentioned specific uneven shape! /.
  • a physical treatment such as a plasma treatment may be used in combination with the alkali treatment before the alkali treatment, because the effect of preventing adhesion of dust and the like can be expected by the subsequent alkali treatment.
  • Physical processing such as plasma processing includes, for example, the contents described in the above-mentioned published technique 2001-1745, p30.
  • the alkali treatment liquid used for the alkali treatment an appropriate treatment liquid is selected depending on the composition of the antireflection film or the method of the oxidation treatment, but the alkali agent is contained in an amount of 0.1 to 5 mol. Any alkali aqueous solution having a Zkg concentration may be used.
  • the acid treatment is carried out using an alkali solution further containing at least one of a water-soluble organic solvent, a surfactant and a compatibilizer.
  • alkali agent examples include inorganic alkali agents such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, and the like. Monoethanolamine, diethanolamine, triethanolamine, 1,8-diazabicyclo [5,4,0] -7-indene (DBU), 1,5-diazabicyclo [4,3,0] -5-nonene (0?, Organic alkali agents such as tetramethylammonium hydroxide are also used.
  • inorganic alkali agents such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, and the like.
  • Monoethanolamine, diethanolamine, triethanolamine, 1,8-diazabicyclo [5,4,0] -7-indene (DBU), 1,5-diazabicyclo [4,3,0] -5-nonene (0?
  • Organic alkali agents such as tetramethylammonium hydroxide are also used.
  • alkali agents can be used alone or in combination of two or more, and a part thereof may be added in the form of a salt, for example, as a halide.
  • sodium hydroxide and potassium hydroxide are preferable. The reason is that adjusting these amounts enables pH adjustment in a wide pH range.
  • the concentration of the alkaline solution is determined according to the type of the alkaline agent used, the reaction temperature and the reaction time. In order to complete the oxidation reaction in a short time, it is preferable to prepare a solution with a high concentration. However, if the alkali concentration is too high, the stability of the alkali solution is impaired, and precipitation may occur during long-time coating.
  • the content of the alkali agent is preferably 0.1 to 5 monoles / kg force in the alkaline solution, more preferably 0.5 to 3 monoles / kg force! / ⁇ .
  • the solvent of the alkaline solution of the present invention is preferably a mixture of water and an organic solvent.
  • the organic solvent any organic solvent that is miscible with water can be used.
  • an inorganic property Z organic value (IZO value) 0.5 or more, ⁇ one solubility parameter is in the range of 16 ⁇ 40 [mj / m 3] 1/2 Preferred . More preferably, the I / O value is 0.6 to 10, and the solubility parameter is 18 to 31 [mi / m 3 ] 1/2 . If the IZO value is not less than the lower limit value and the inorganic property is not too strong, and if the solubility parameter is not less than the lower limit value, the alkali oxidization rate is reduced and the uniformity of the oxidization degree over the entire surface is reduced. This is preferable because inconveniences such as damage to the toner do not occur.
  • the ⁇ value is 10 or less and it is on the organic side, and if the solubility parameter is below the upper limit value, the aging rate is sufficient and haze is generated in the obtained cellulose acylate film. Inconvenience, such as loss of uniformity over the entire surface of the film. It is preferable because it does not fray.
  • Examples of the organic solvent having the solubility parameter and the IZO value within the above ranges and preferably usable in the present invention include the solvents shown in Table 1 below.
  • an organic solvent especially an organic solvent having the above-mentioned ranges of organic and solubility in combination with a compatibilizer and a surfactant described below, a high oxidation rate can be maintained, and The uniformity of acidity is improved over the entire surface.
  • Preferable organic solvents having characteristic values are, for example, those described in "Synthetic solvent
  • inorganic Z organic value (IZO value) of the organic solvent is described in, for example, Yoshio Tanaka, “Organic Conceptual Diagram”, Sankyo Publishing Co., 1983, pp. 1-31.
  • solubility parameter used was the one described in "Solvent Pocket Book", ppll (Ohm, published in 1967), edited by The Society of Synthetic Organic Chemistry, Japan.
  • monohydric aliphatic alcohols eg, methanol, ethanol, propanol, butanol, etc.
  • alicyclic alcohols eg, cyclohexanol, cyclohexylmethanol, etc.
  • Phenylalkanols eg, benzyl alcohol, phenoxyethanol, methoxybenzyl alcohol, etc.
  • heterocyclic alcohols eg, furfuryl alcohol, tetrahydrofurfuryl alcohol, etc.
  • monoethers of glycol compounds eg, Methyl cellosolve, ethyl cellosolve, propyl cellosolve, methoxymethoxyethanol, butyl cellosolve, hexyl cellosolve, methyl carbitol , Ethyl carbitol, propyl carbitol, butyl carbitol, methoxytridary cone, ethoxytriglycone, propy
  • the organic solvent When the organic solvent is used alone or as a mixture of two or more, it is preferable that at least one organic solvent has high solubility in water.
  • the solubility of such an organic solvent in water is preferably 50% by mass or more, and more preferably one that is freely mixed with water.
  • an alkaline solution having sufficient solubility in an alkali agent, a salt of a fatty acid by-produced in the oxidation treatment, a carbonate salt generated by absorbing carbon dioxide in the air, etc. is prepared. it can.
  • the proportion of the organic solvent used in the alkaline solution can be determined according to the type of the solvent, miscibility with water (water solubility), reaction temperature and reaction time. In order to complete the oxidation reaction in a short time, it is preferable to prepare a solution with a high concentration. However, if the solvent concentration is too high, components (such as plasticizers) in the acylate film may be extracted or the film may be excessively swelled, so it is necessary to select an appropriate film.
  • the mixing ratio of water and the organic solvent is preferably 3Z97 to 85Z15, more preferably 5 ⁇ 95 to 6 ⁇ 40, and particularly preferably 15/85 to 40/60. Within this range, the entire surface of the film can be easily subjected to oxidation treatment without impairing the optical properties of the acylate film.
  • the organic solvent contained in the alkaline solution used in the present invention includes an organic solvent having an action of reducing the haze of the cellulose acylate film, which is the object of the present invention, and improving the uniformity and stability of the degree of oxidation.
  • an organic solvent having a function as a dissolution aid such as a surfactant, a compatibilizing agent, and an antifoaming agent, which can enhance the effect of the present invention by coexistence, may be included. .
  • Organic solvents having this effect are preferred as described above.
  • An organic solvent different from the organic solvent having a new iZo value may be used.
  • Preferred organic solvents having a solubilizing agent effect include, for example, phenol-ethanolamine and phenol-ethanolamine, fluorinated alcohols (for example, CF (CH)) ( ⁇ is an integer of 3 to 8). ⁇ 2 ⁇ + 1 2 m
  • the number and m are integers of 1 or 2), 1,2,2,3,3-heptafluoropropanol, hexafluorobutanediol, perfluorocyclohexanol, etc.).
  • the content of the organic solvent used for the purpose of the dissolution aid is preferably 0.1 to 5% based on the total weight of the used solution.
  • the alkaline solution used in the present invention preferably contains a surfactant.
  • a surfactant lowers the surface tension to facilitate coating, improves the uniformity of the coating, prevents the occurrence of defects due to repelling, and reduces the haze of the film, which is likely to occur when an organic solvent is present. Inhibits and further promotes the uniform progress of the oxidation reaction. The effect is further remarkable by the coexistence of a compatibilizer described later.
  • the surfactant used is not particularly limited, and may be a deviation such as an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or a fluorine-based surfactant.
  • a-on surfactant examples include fatty acid salts, abietic acid salts, hydroxyalkanesulfonic acid salts, alkanesulfonic acid salts, dialkylsulfosuccinic acid ester salts, a-olefin sulfonic acid salts, and linear alkylbenzenesulfonic acid salts.
  • Acid salts branched-chain alkylbenzenesulfonates, alkylnaphthalenesulfonates, alkylphenoxypolyoxyethylenepropylsulfonates, polyoxyethylenealkylsulfofuryl ether salts, N-methyl-N-oleyltaurine sodium salt, N — Alkyl sulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated tallow oil, sulfates of fatty acid alkyl esters, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fats Monoglyceride sulfates Es ether salts, polyoxyethylene alkyl Hue - ether sulfate ester salts, polio alkoxy polyoxyethylene styryl Hue - ether sulfate ester salts, alkyl phosphoric acid ester Salts, polyoxyethylene alkyl ether
  • cationic surfactant examples include alkylamine salts, quaternary ammonium salts such as tetrabutynoleammonium bromide, polyoxyethylene alkylamine salts, and polyethylenepolyamine derivatives.
  • amphoteric surfactant examples include carboxybetaines, alkylaminocarboxylic acids, sulfobetaines, aminosulfates, and imidazolines. (Noon surfactant)
  • non-ionic surfactant examples include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl ether, polyoxyethylene polyoxypropylene alkyl ether, and Lyserin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol fatty acid partial esters, propylene glycol monofatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters , Polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, polyoxyethylenated castor oils, polyoxyethylene glycerin fatty acid partial esters, Fatty acid diethanolamides, N, N-bis 2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid esters, trialkylamine oxides and the like can be mentioned.
  • the weight average molecular weight of these nonionic surfactants is preferably 300 to 50,000, more preferably 500 to 5,000.
  • R 41 to R 45 each represent a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an alkenyl group, an alkyl group, an aryl group, a carboxylic group, a carboxylate Group, sulfol group and sulfonate group.
  • alkyl group examples include a methyl group, an ethyl group, and a hexyl group
  • specific examples of the alkenyl group include a butyl group and a probel group
  • specific examples of the alkynyl group include And an acetyl group, a propyl group and the like
  • specific examples of the aryl group include a phenyl group and a 4-hydroxyphenyl group.
  • nl, n2, n3 represent an integer of 0 or more. However, nl, n2, and n3 are not all 0.
  • Specific examples of the compound represented by the general formula (4) include homopolymers such as polyethylene glycol and polypropylene glycolone, and copolymers of ethylene glycol and propylene glycolone.
  • 10Z90 to 90Z10 are also preferable in terms of solubility in an alkaline solution.
  • graft polymers and block polymers are preferable in view of solubility in an alkali solution and ease of alkalinization treatment.
  • the fluorinated surfactant refers to a surfactant containing a perfluoroalkyl group in the molecule.
  • fluorine-based surfactants include, for example, perfluoroalkyl carbonates, perfluoroalkyl sulfonates, perfluoroalkyl phosphate esters, etc., such as a fluorinated surfactants, Amphoteric type such as fluoroalkyl betaine, cationic type such as perfluoroalkyltrimethylammonium salt, perfluoroalkylamine oxide, perfluoroalkylethylene oxide, Oligomers containing fluoroalkyl groups and hydrophilic groups, oligomers containing perfluoroalkyl groups and lipophilic groups, oligomers containing perfluoroalkyl groups, hydrophilic groups and lipophilic groups, perfluoroalkyl groups and lipophilic groups
  • Non-ionic types such as urethane are included.
  • polyoxyethylene can be read as a polyoxyalkylene such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. Is included.
  • the surfactants may be used alone or in combination of two or more as long as the effect is not impaired by the combined use.
  • the quaternary ammonium salts as a cationic surfactant the various polyethylene glycol derivatives as a non-ionic surfactant, Polyethylene oxide derivatives such as various polyethylene oxide adducts, and betaine-type compounds as amphoteric surfactants are preferred.
  • the added amount of the surfactant in the alkaline solution of the surfactant is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, and particularly preferably 0 to 10% by mass. 03-3% by mass. Within this range, the effect of the addition of the surfactant is exhibited, and good diaperability is obtained.
  • the alkaline solution used in the present invention preferably contains a compatibilizer.
  • the compatibilizer is a hydrophilic conjugate having a solubility of water of 30 g or more in 100 g of the compatibilizer at a temperature of 25 ° C.
  • the solubility of water is 50 gZ100 g, more preferably 100 gZ100 g.
  • the compatibilizer in the present invention is a liquid compound, the boiling point is preferably at least 100 ° C, more preferably at least 120 ° C.
  • the compatibilizer can prevent the alkali liquid adhering to the wall surface from drying, suppress the adhesion, and stably maintain the solution.
  • the treated film has a reduced haze and is stable even in the case of a long continuous oxidizing treatment. As a uniform acidity level is obtained over the entire surface preferable.
  • the compatibilizer used in the present invention may be any material as long as it satisfies the above conditions.
  • the compatibilizer include a water-soluble polymer containing a repeating unit having a hydroxyl group and a Z or amide group, such as a polyol compound and a saccharide.
  • the polyol compound may be any of a low molecular compound, an oligomer compound, and a high molecular compound.
  • aliphatic polyols include alkanediols having 2 to 8 carbon atoms (e.g., ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, glycerin monomethinole ether, glycerin monoethynol ether, cyclohexane Xanediol, cyclohexanedimethanol, diethylene glycol, dipropylene glycol, etc.), alkanepolyols having 3 to 18 carbon atoms and having 3 or more hydroxy groups (for example, glycerin, trimethylolethane, trimethylolpropane, Trimethylolbutane, hexanetriol, pentaerythritol, digly
  • polyalkyleneoxy polyols the same alkylene diols as described above may be bonded to each other, or different alkylene diols may be bonded to each other.
  • Alkylene polyols are more preferred.
  • the number of bonds in each case is 3 to: LOO is preferred. More preferably, it is 3 to 50.
  • Specific examples include polyethylene glycol, polypropylene glycol, and poly (oxyethylene-oxypropylene).
  • saccharides include, for example, Chapter 2 of "Natural Polymers", edited by the Society of Polymer Science, Japan Society of Polymer Science (Kyoritsu Shuppan Co., Ltd., 1984); And other water-soluble compounds described in “Industrial Chemicals II” (Asakura Publishing Co., Ltd., published in 1967). Preference is given to sugars which do not have free aldehyde groups ⁇ ketone groups and which do not exhibit reducibility.
  • Glucose, sucrose, trehalose-type oligosaccharides in which reducing groups are bonded to each other, glycosides in which a reducing group of a saccharide is bonded to a non-saccharide, and sugar alcohols obtained by hydrogenating and reducing saccharides are all classified into the present invention. It is preferably used. These non-reducing sugars can be used alone or in combination of two or more.
  • a water-soluble polymer containing a repeating unit containing a hydroxy group and a Z or amide group For example, natural gums (for example, gum arabic, guar gum, tragacanth gum, etc.), polybutyl alcohol, polybutylpyrrolidone, dihydroxypropyl atalylate polymer, celluloses and chitosans with ethylene oxide or propylene oxide Addition reactants with epoxy compounds, alkylene polyols, polyalkyleneoxy polyols, sugar alcohols and the like can be mentioned. Of these, alkylene polyols, polyalkyleneoxy polyols and sugar alcohols are preferred.
  • the content of these compatibilizers is preferably 0.5 to 35% by mass in the alkaline solution, more preferably 1 to 25% by mass.
  • the alkaline solution in the present invention contains an antifoaming agent.
  • This additive can be contained in the alkaline solution at a concentration of preferably 0.001 to 5% by mass, particularly preferably 0.005 to 3% by weight. Within this range, adhesion of fine bubbles to the film surface is also eliminated, and oxidation by alkali treatment proceeds uniformly without unevenness.
  • oils and fats such as castor oil and linseed oil, fatty acid esters such as natural wax, alcohols such as polyoxyalkylene monohydric alcohol, di-t-amyl phenoxyethanol, and heptylse alcohol.
  • Nonylse mouth solvent Nonylse mouth solvent, ethers such as 3-heptyl carbitol, amines such as diamylamine, amides such as polyalkyleneamide and acylate polyamide, dimethylpolysiloxane, methylphenolpolysiloxane, methylhydrogenpolysiloxane, fluorocarbon Examples include silicone oil-based defoamers such as polysiloxanes and copolymers of dimethylpolysiloxane and polyalkylene oxide.
  • additives may be used in combination with the alkaline solution used in the present invention.
  • examples of such additives include a fungicide and Z or a bactericide, an alkali solution stabilizer (an antioxidant and the like), and the like.
  • the additive of the alkaline solution in the present invention is not limited to these. (water)
  • the water used for the alkaline solution is the Japanese Water Supply Law (Act No. 177 of 1957) and the ministerial ordinance on water quality standards based on it (August 31, 1978 Ordinance No. 56 of the Ministry of Health and Welfare), It is preferable to use those based on the influence on each element and minerals in the state of contamination in water specified by the Law No. 125 of July 1, 1948 and its separate table), and the water standard specified by WHO. In order to more reliably achieve the effects of the present invention, it is preferable to use such water.
  • the alkali solution preferably does not contain polyvalent metal ions such as calcium and magnesium.
  • the respective concentrations of calcium and magnesium are preferably between 0.001 and 40 OmgZL, and more preferably between 0.001 and 150 mgZL.
  • the concentration of other polyvalent metal ions is preferably 0.001 to 1000 mg ZL!
  • the lower limit of 0.001mgZL for each of these ions means that it is below the measurement limit.
  • the alkaline solution also does not contain ions such as chloride ions and carbonate ions.
  • the chloride ion concentration is preferably from 0.001 to 500 mg ZL, and more preferably from 0.001 to 300 mg / L.
  • carbonate ions are not contained.
  • the concentration of carbonate ions is preferably 0.001 to 3500 mg / L, and more preferably 0.001 to 1000 mgZL. 0.001 to 200 mgZL Is particularly preferred.
  • the concentration of 0.001mgZL which is more preferable as the concentration is lower, the lower the measurement limit is. In these concentration ranges, the generation of insolubles in the solution is suppressed.
  • the alkaline solution comprising the composition described above used in the present invention has a surface tension of 45 mNZm or less (temperature of 25 ° C) and a viscosity of 0.8 to 20 mPa's (temperature of 25 ° C). Preferably, it is within the range. More preferably, the surface tension is 20 to 40 mNZm (temperature of 25 ° C) and the viscosity is 1 to 15 mPa's (temperature of 25 ° C). Within this range, the wettability to the film surface, the retention of the solution applied to the film surface, and the removal of the alkaline solution from the film surface after the vulcanization treatment are excellent. /. [0127] The density of the alkaline solution, 0.
  • the density of the alkali solution is not less than the lower limit value, since there is no problem such as wind unevenness caused by wind pressure accompanying the transport of the film and loss of uniformity of treatment. Further, when the value is not more than the upper limit value, it is preferable because a coating streak parallel to the transport direction is generated due to the own weight of the alkaline solution, so that there is no problem such that the uniformity of treatment is impaired. If the uniformity of the treatment is impaired, the thickness of the alignment film becomes uneven.
  • the electric conductivity of the alkaline solution of the alkaline method of the present invention may be 1 to: L00 mS / cm in order to minimize the load in the washing step described below. More preferably, it is 2 to 50 mSZcm. Having the electric conductivity in this range suppresses the occurrence of a bright spot failure (foreign matter defect) due to the remaining impurities, and improves the adhesion to the polarizing film via the adhesive.
  • the absorbance of the alkaline solution at a measurement wavelength of 400 nm is preferably less than 2.0. It is preferable to determine the processing conditions (temperature, time, etc.), the liquid sending system, the size of the coater, etc., so that the additive in the cellulose acylate film is not extracted during the processing so that the absorbance of the liquid does not increase. In an alkaline solution with high absorbance, the additives of the cellulose acylate film often dissolve into the solution, and these additives adhere to the cellulose acylate film and cause bright spot failure (foreign matter defects). It may cause the occurrence. To control the absorbance of the alkaline solution, activated carbon can be used to absorb and remove the eluted components.
  • Activated carbon is not limited in its form, material and the like as long as it has a function of removing coloring components in an alkaline solution.
  • the method of removing the coloring component is not particularly limited either. A method of directly putting the activated carbon into the alkaline solution tank, or a method of circulating the alkaline solution between the Zidani solution tank and the purification apparatus filled with the activated carbon are adopted. it can.
  • any of conventionally known methods such as a dipping method, a spraying method, and a coating method can be mentioned.
  • a coating method in which only one side is uniformly and uniformly oxidized is preferable.
  • an anti-reflection film with a configuration including a sol-Z gel cured film use an alkali treatment It is preferable to use a coating method because the sol Z-gel film may be deteriorated.
  • a coating method a conventionally known coating method can be used as described later.
  • the oxidation treatment is preferably performed at a processing temperature in a range not exceeding 120 ° C, at which deformation of the film to be processed and deterioration of the processing solution do not occur. Further, the temperature is preferably in the range of 10 to 100 ° C, and particularly preferably in the range of 20 to 80 ° C.
  • a step of applying an alkali solution to a cellulose acylate film having a surface temperature in a range of room temperature to 100 ° C It is preferable to carry out an alkali oxidation treatment by the step of maintaining the temperature of the rate film in the range of room temperature to 100 ° C., and (c) the step of washing off the alkali solution with the cellulose acylate film.
  • the room temperature indicates a temperature in the range of 10 ° C to 30 ° C.
  • the cellulose acylate film is previously subjected to a predetermined process before the application of the alkali solution.
  • the blowing of air at a predetermined temperature, contact heat transfer by a heat transfer roll, induction heating by microwave, or infrared ray Radiant heating by a heater is preferably used.
  • the contact heat transfer by the heat transfer roll is preferable because it can be performed in a small installation area where the heat transfer efficiency is high and the film temperature rises quickly at the start of conveyance.
  • a common double jacket roll or electromagnetic induction roll can be used.
  • the variation in the coating amount is preferable to control the variation in the coating amount to less than 30% in the width and length directions of the film.
  • Examples of the coating method include a die coater (such as an ethostrusion coater (slot coater), a slit coater, an extrusion coater, and a slide coater), a roll coater (forward roll coater, reverse roll coater, and gravure coater), and a rod coater.
  • a die coater such as an ethostrusion coater (slot coater), a slit coater, an extrusion coater, and a slide coater
  • a roll coater forward roll coater, reverse roll coater, and gravure coater
  • a rod coater a rod coater.
  • the application amount of the alkali solution required for the oxidation reaction is determined by multiplying the number of oxidation reaction sites per unit area of the cellulose acylate film by the oxidation depth required for developing adhesion with the orientation film.
  • the temperature of the cellulose acylate film is preferably kept at least 10 ° C or more, more preferably 15 ° C or more until the oxidation reaction is completed.
  • the heating means is preferably selected in consideration of the fact that one surface of the cellulose acylate film is wet with an alkaline solution.
  • spraying of hot air onto the surface opposite to the coating surface contact heat transfer by a heating roll, induction heating by a microwave, or radiant heat by an infrared heater can be preferably used.
  • Infrared heaters are preferable because they can be heated in a non-contact manner and without the flow of air, so that the influence on the alkali solution coated surface can be minimized.
  • an electric, gas, oil or steam type far-infrared ceramic heater can be used as the infrared heater.
  • the use of an oil-type or steam-type infrared heater using oil or steam as a heat medium also favors explosion proof in an atmosphere in which an organic solvent coexists.
  • the temperature of the cellulose acylate film may be the same as or different from the temperature heated before the alkali solution treatment. Also, the temperature may be changed continuously or stepwise during the oxidation reaction.
  • a non-contact infrared thermometer that is generally commercially available can be used to detect the film temperature, and feedback control is performed on the heating means in order to control the temperature in the above-mentioned temperature range.
  • the transport speed of the film is determined by the combination of the composition of the alkaline solution and the coating method. In general, 10 to 500 mZ is preferable, and 20 to 30 OmZ is more preferable. It is preferable to appropriately determine the physical properties (specific gravity, viscosity, and surface tension) of the alkali solution, the coating method, and the coating operation conditions so that a stable coating operation can be performed according to the transport speed.
  • the first is to dilute the applied alkaline solution to lower the alkali concentration and reduce the reaction speed.
  • the second is to lower the temperature of the cellulose acylate film coated with the alkaline solution and reduce the reaction speed.
  • the third method is to neutralize with an acidic solution.
  • a method of applying a diluent, a method of spraying the diluent, or a method of dipping the cellulose acylate film together with the diluent in a container containing the diluent is used.
  • a method of applying a diluting liquid and a method of spraying the diluting liquid are preferable methods for performing the application while continuously transporting the cellulose acylate film.
  • the method of applying a diluent is most preferable because it can be carried out using the minimum necessary amount of diluent.
  • the application of the diluting liquid is desirably of a continuous coating method capable of applying the diluting liquid again on the cellulose acylate film already coated with the alkaline solution.
  • the coating method may be the same as that described in the above-mentioned acid treatment step.
  • the diluting solution dissolves the alkali agent in the alkali solution.
  • the organic solvent may be used singly or as a diluent that may be used in combination of two or more kinds thereof, and may be used arbitrarily without dissolving or swelling the cellulose acylate film.
  • Preferred ⁇ solvent is water.
  • the alkali neutralizing solution contains a surfactant in order to prevent an extract such as a substance added to the film from adhering to the film. Although there is no particular limitation on the surfactant, the surfactant used in the above alkaline solution can be advantageously used.
  • the application amount of the diluent is determined by subtracting the alkali concentration of the force determined according to the concentration of the alkali solution by one.
  • the amount be diluted LO times. It is more preferable that the amount be diluted 2 to 5 times.
  • An acid can also be used to quickly stop the acidification reaction with an alkali. It is preferable to use a strong acid because it can be neutralized with a small amount. Further, considering the ease of washing with water, it is preferable to select an acid having high solubility in salt water generated after neutralization with an alkali. Hydrochloric, nitric, phosphoric, sulfuric, chromic and methanesulfonic acids are particularly preferred. If the concentration of carbonate ions or chloride ions in the alkaline solution is high, precipitation may occur due to a rapid neutralization reaction. In such a case, a weak buffer acid is added to the alkaline neutralized solution. Is preferably added.
  • weak acids examples include sorbitol, sucrose, glucose, galactose, arabinose, xylose, fructose, ribose, mannose and lasconolevic acid described in “Ionisation Constants oi Organic Acids m Aqueous Solution” of PergamonPress.
  • saccharides there may be mentioned alcohols, aldehydes, compounds having a phenolic hydroxyl group, oximes, nucleic acid-related substances and the like.
  • a method of applying an acid solution, a method of spraying an acid solution, or a method of immersing the entire film in a container containing the acid solution can be adopted.
  • the method of applying the acid solution and the method of spraying the acid solution are preferable for performing the film while continuously transporting the film.
  • the method of applying an acid solution is most preferable because it can be carried out using the minimum necessary amount of the acid solution.
  • the application of the acid solution is desirably of a system capable of continuous application in which the acid solution can be applied again on the cellulose acylate film on which the alkali solution has already been applied.
  • the application method is the same as the content described in the above-mentioned ⁇ ⁇ processing.
  • a roll coater or a rod coater is preferable.
  • the amount of the acid solution applied is determined according to the type of alkali and the concentration of the alkali solution. It is preferable to determine the amount of the acid solution to be applied so that the pH after application of the acid solution is 99.
  • the oxidation reaction can also be stopped by lowering the temperature of the cellulose acylate film.
  • the oxidation reaction can be substantially stopped by sufficiently lowering the temperature from a state kept at room temperature or higher in order to promote the reaction.
  • the means for lowering the temperature of the film is determined in consideration of that one side of the cellulose acylate film is wet. Blowing of cold air onto the opposite side of the coating or contact heat transfer by a cooling roll can be preferably employed.
  • the temperature of the film after cooling is preferably from 0 to 60 ° C, more preferably from 10 to 30 ° C.
  • the film temperature is preferably measured with a non-contact infrared thermometer. Based on the measured temperature, feedback control can be performed on the cooling means to adjust the cooling temperature.
  • the means for lowering the temperature may be used in combination with the above-mentioned dilution method using a diluent or the neutralization method.
  • the water washing step is performed to completely remove the alkaline solution.
  • a neutralization means is used, the neutralization is performed to completely remove the composition such as salts generated by the neutralization. If the composition of the alkaline solution or the salts produced by the neutralization remain, the influence of the oxidation reaction further progresses on the formation of the coating film of the polarizing film to be bonded next and the orientation of the polarizing film. May have an effect.
  • the washing with water can be performed by a method of applying water, a method of spraying water, or a method of immersing the entire polymer film in a container containing water.
  • Water spraying is performed by a method using a coating head (for example, Fountain Coater, Frog mouth coater), or a method using a spray nozzle used for humidifying or coating air, or automatically cleaning a tank. Can be implemented.
  • a coating head for example, Fountain Coater, Frog mouth coater
  • a spray nozzle used for humidifying or coating air, or automatically cleaning a tank.
  • a method in which conical or fan-shaped spray nozzles are arranged in the width direction of the film and arranged so that the water stream collides with the entire width can be adopted.
  • a commercially available spray nozzle for example, Keuchi Co., Ltd., Spraying Systems Co., Ltd.] may be used!
  • the water spray speed is higher and higher, and turbulent mixing can be obtained. However, if the speed is high, the transport stability of the cellulose acylate film that is continuously transported may be impaired, so the spraying impact speed is preferably about 50 to: LOOOcmZ seconds.
  • the spraying impact speed is preferably about 50 to: LOOOcmZ seconds.
  • a dilution of at least 100 to 1,000 times, preferably 500 to 10,000 times, more preferably 1,000 to 100,000 times is obtained. It is preferable to use washing water.
  • a batch-type washing method in which the water is divided and applied several times, rather than the whole amount at a time, is preferable.
  • the amount of water is divided into several parts and supplied to a plurality of rinsing means installed in tandem in the film transport direction.
  • An appropriate time (distance) is provided between one rinsing means and the next rinsing means, and the dilution of the alkaline coating solution by diffusion proceeds. More preferably, if the water on the film flows along the surface of the film by, for example, providing a slope on the conveyed polymer film, mixed dilution by flow can be obtained in addition to diffusion.
  • the most preferable method is to provide a draining means for removing the water film on the film between the washing means, so that the washing dilution efficiency can be further increased.
  • Specific draining means include a blade used for a blade coater, an air knife used for an air knife coater, a rod used for a rod coater, and a roll used for a roll coater. It is advantageous that the number of washing means arranged in a tandem is large. However, from the viewpoint of installation space and equipment cost, usually 2 to 10 stages, preferably 2 to 5 stages are used.
  • the thickness of the water film after the draining means is preferably thinner, but the minimum water film thickness is limited depending on the type of the draining means to be used.
  • Methods for physically contacting a solid with a film, such as a blade, a rod, or a roll, involve scratching the film surface, even if the solid is a low-hardness elastic material such as rubber. It is preferable to leave a finite water film as a lubricating fluid because the elastic body is worn away. Usually more than a few / zm, preferably 10 m The above water film is left as a lubricating fluid.
  • An air knife is preferable as the draining means capable of reducing the thickness of the water film to the limit.
  • the water film thickness can be made close to zero.
  • the range depends on the original thickness of the water film on the cellulose acylate film and the speed of transport of the film. 1S
  • the wind speed is usually 10 to 500 mZ seconds, preferably 20 to 300 mZ seconds.
  • the air knife should be blown to the air line blower so that the wind speed distribution in the width direction of the cellulose acylate film is usually within 10%, preferably within 5%. Adjust the air supply method.
  • the pure water used in the present invention has a specific electric resistance of at least 100 ⁇ or more, and in particular, metal ions such as sodium, potassium, magnesium and calcium are less than 1 mgZL, and ions such as chlorine and nitric acid are 0.1 mgZL. Less than. Pure water can be easily obtained by a simple substance such as a reverse osmosis membrane, an ion exchange resin, or distillation, or a combination thereof.
  • the temperature of the washing water is usually set in the range of 5 to 90 ° C, preferably 25 to 80 ° C, more preferably 25 to 60 ° C.
  • a solvent washing step for removing components insoluble in water may be performed before or after the washing step. May be.
  • the same washing method and draining means as described above can be used, and the same solvent as described in the above diluent can be used.
  • a drying step may be performed.
  • the water film can be sufficiently removed with a water-draining means such as an air knife, so a drying step is not always necessary.However, before winding the cellulose acylate film into a roll, it is preferable to adjust the water content. Suta Heat drying may be performed. Conversely, it is also possible to control the humidity with a wind having the set humidity.
  • the surface of the cellulose acylate film used in the present invention which has been subjected to the heat treatment, is in contact with the polarizing film and has a surface roughness arithmetic average roughness (Ra) force O. 0002 ⁇ m based on JIS B-0601-1994. m to 0.3 m, ten-point average roughness (Rz) force 0.0002 ⁇ m to 0.5 m, and average spacing (Sm) of surface irregularities is 0.001 m to 5 m. I do.
  • Ra surface roughness arithmetic average roughness
  • Rz ten-point average roughness
  • Sm average spacing
  • the ratio (RaZRz) of the arithmetic mean roughness (Ra) to the ten-point mean roughness (Rz) is 0.1 to 1, and the maximum height (Ry) force according to JIS B-0601-1994 ⁇ ) 002 / ⁇ ⁇ 1.0 m Power to be ⁇ ! /,. More preferably, the arithmetic average roughness (Ra) is 0.0002-0.1 ⁇ m, the ten-point average roughness (Rz) is 0.0002-0.3 / ⁇ , and the average (3111) force SO. 0015 m to 3 m, the (RaZRz) ratio is 0.15 to 1, and the maximum height (Ry) is 0.002 / ⁇ to 0. or less.
  • the treated surface is bonded to a polarizing film via an adhesive, a uniform polarizing plate having no surface unevenness is produced, and adhesion is improved by an anchor effect of the adhesive layer. I do.
  • the surface of the cellulose acylate film that has been subjected to the hydrophilization treatment has the following 1) to 6
  • the adhesion to the polarizing film becomes sufficient, and a bright spot failure occurs when the polarizing plate of the present invention is used in an image display device.
  • Excellent characteristics without optical defects such as clouding and cloud-like failure.
  • the contact angle with water on the film surface is preferably in the range of 20 to 55 °.
  • the contact angle with water is more preferably in the range of 25 to 50 °, particularly preferably in the range of 30 to 45 °.
  • the surface energy on the film surface is preferably in the range of 55 to 75 mNZm.
  • C OZC-O ratio, which indicates the ratio of the abundance of chemical bonds on the surface, is in the range of 0 to 0.6, and C-C / C-O ratio is in the range of 0.45 to 0.75.
  • C 0
  • the / C—O ratio is more preferably in the range of 0 to 0.55 than the force S, and particularly preferably in the range of 0 to 0.5.
  • the C—C / C—O ratio is more preferably in the range of 0.5 to 0.7, particularly preferably in the range of 0.5 to 0.65! / ⁇ .
  • the degree of acyl substitution on the surface of the cellulose acylate film is preferably in the range of 1.8 to 2.7.
  • the degree of acyl substitution is more preferably in the range of 1.85-2.5, and particularly preferably in the range of 1.85-2.4.
  • the evaluation method of the surface properties 1), 3) and 4) of the cellulose acylate film can be carried out by the method described in WO 02Z46809 pamphlet pages 27-30.
  • the evaluation method of the surface energy of surface properties is based on the contact angle method, the wet heat method, and the adsorption method described in “Basics and Application of Wetting” (published by Realize, 1989). You can ask.
  • the contact angle method it is preferable to use the contact angle method. Specifically, two types of solvents whose surface energies are known are dropped on the cellulose acylate film, and the liquid is formed at the intersection between the droplet surface and the film surface by the angle between the tangent drawn on the droplet and the film surface. The angle containing the drop is defined as the contact angle, and the surface energy of the film can be calculated by calculation.
  • the antireflection film provided on the cellulose acylate film as a protective film for the polarizing film will be described.
  • the antireflection film according to the present invention is formed of a multilayer antireflection film in which at least two or more layers (light transmission layers) having light transmittance and different in refractive index are laminated.
  • the antireflection film having a two-layer structure is composed of a layer selected from an antistatic layer, a hard coat layer, an antiglare layer, a high refractive index layer, and a low refractive index layer (outermost layer) on a protective film.
  • the protective film, the high refractive index layer and the low refractive index layer have a refractive index satisfying the following relationship.
  • the hard coat layer may be an anti-glare node coat layer which also functions as an anti-glare layer.
  • An antireflection film having at least a three-layer laminating force is formed by forming two high refractive index layers on a protective film.
  • the layer structure is as follows: the lower refractive index layer (medium refractive index layer), the higher refractive index layer of the two high refractive index layers (high refractive index layer), and the low refractive index layer (outermost layer).
  • the protective film, the medium-refractive-index layer, the high-refractive-index layer, and the low-refractive-index layer have a refractive index that satisfies the following relationship.
  • Refractive index of high refractive index layer > Refractive index of medium refractive index layer> Refractive index of protective film> Refractive index of low refractive index layer
  • the antistatic layer may be an antistatic hard coat layer that also functions as a hard coat layer.
  • the antistatic layer may be an antistatic antiglare layer that also functions as an antiglare layer.
  • Each layer in such a multilayer structure has the following formula (2) for the middle refractive index layer, the lower formula (3) for the high refractive index layer, and the lower formula (3) for the design wavelength ⁇ (400 to 680 nm). It is preferable that the refractive index layer satisfies the following expression (4), respectively, from the viewpoint that an antireflection film having more excellent antireflection performance can be produced.
  • Equation (4) (m ⁇ / 4) X O. 85 ⁇ d ⁇ (m ⁇ / 4) ⁇ 1.05
  • nm 1 1 1 layer thickness (nm); m is 2; n is the refractive index of the high refractive index layer; and d is
  • d is the thickness (nm) of the low refractive index layer
  • the antireflection film of the present invention achieved by the above-described layer structure can achieve both low reflection and reduction of the tint of reflected light, and further, reduction of the tint change due to the incident angle.
  • a polarizing plate integrally formed with a protective film coated with an anti-reflection film for example, when applied to the outermost surface of a liquid crystal display device, can provide a display device having unprecedented visibility.
  • the polarizing plate of the present invention having such an anti-reflection film is provided with a wavelength For incident light at an incident angle of 5 ° in the range of 380 nm to 780 nm, the a * and b * values of the CIE1 976L * a * b * color space of specularly reflected light are 0 ⁇ a * ⁇ 7 and 1 10 ⁇ b * ⁇ 0
  • Specularly reflected light with respect to incident light of any angular force in the range of incident angle of 5 to 45 ° satisfies a * ⁇ 0 and b * ⁇ 0 in the color space.
  • the color can be reduced, and the change in color due to the incident angle of the reflected light can be reduced.
  • a * ⁇ 0 does not give a cyan tint and b * ⁇ 0 does not have a yellow tint.
  • a * ⁇ 0, b * ⁇ 0, and C * [(a *) 2 + (b *) 2
  • the specular reflectivity and color were measured by attaching an adapter "ARV-474" to a spectrophotometer "V-550" (manufactured by JASCO Corporation) in the wavelength range of 380 to 780 nm.
  • V-550 spectrophotometer
  • the average reflectance at 450 to 650 ⁇ m can be calculated, and the antireflection property can be evaluated.
  • the tint of the reflected light is significantly reduced, so that the unevenness of the tint of the reflected light due to the uneven thickness of the antireflection layer is also significantly reduced. That is, the allowable range of the film thickness non-uniformity is expanded, the production yield is increased, and the cost can be further reduced.
  • a wavelength of 380 nm and a wavelength of 780 nm are used. Color of the specularly reflected light of the CIE standard illuminant D
  • the AE * ab value is a value obtained by the following equation (5).
  • Equation (5) [( ⁇ L *) 2 + ( ⁇ a *) 2 + ( ⁇ b *) 2 ] 1 2
  • ⁇ A a * and Ab * are the L * value, a * value, and b * value of the CIE1976 L * a * b * color space at any two places 10 cm apart in the TD direction or MD direction, respectively. Represents the difference between
  • the a * value, b * value, or C * value at all the incident angles of 5 to 45 ° is within the above range means that the incident angle is 5 to 45 °.
  • the specular power of each specular reflection light means that the calculated a *, b * value or C * is within the above range.
  • the antireflection film of the present invention having the above-described layer configuration, it is preferable to use the following low refractive index layer, high refractive index layer, and medium refractive index layer.
  • the high refractive index layer according to the present invention has a refractive index of 1 by coating a curable composition containing high refractive index inorganic compound fine particles (hereinafter, sometimes referred to as high refractive index particles) and a matrix binder. It is preferable that the film comprises a curable film of 55 to 2.50.
  • the refractive index is more preferably from 1.65 to 2.40, and particularly preferably from 1.70 to 2.20.
  • the surface of the high refractive index layer has a fine surface unevenness having a size that does not affect optically.
  • the arithmetic operation of the surface unevenness of the high refractive index layer based on JIS B-0601-1994 is performed.
  • Average roughness (Ra) force ⁇ ) 001 to 0.03 m, more preferably 0.001 to 0.015 m, especially in the range of 0.001 to 0.001 / zm; ten-point average roughness (Rz ) Force ⁇ 0.001-0.06 m, even 0.002-0.051 111, especially in the range of 0.002-0.025 / zm; and maximum height (Ry) force ⁇ ).
  • 09 m Hereinafter, it is more preferably 0.05 / zm or less, particularly preferably 0.04 m or less.
  • the ratio (RaZRz) between the arithmetic average roughness (Ra) and the ten-point average roughness (Rz) is 0.15.
  • the average interval (Sm) between the surface irregularities of the high refractive index layer based on B-0601-1994 is 0.01-1 ⁇ m.
  • the relationship between Ra and Rz indicates the uniformity of the surface irregularities. More preferably, the (RaZRz) ratio is 0.17 or more and the average
  • the coated surface of the low-refractive-index layer applied on the high-refractive-index layer becomes a good surface with no uneven stripes and the like, and improves the adhesion between both layers. It is possible to do.
  • the concave and convex shapes on the layer surface can be evaluated by an atomic force microscope (AFM).
  • the refractive index of the matrix binder is usually Since the ratio is 1.4 to 1.5, the proportion of the high refractive index particles used should be 40 to 80% by mass based on the total mass of the force-curing film determined by the refractive index of the high refractive index particles used. Is more preferably 45 to 75% by mass.
  • the high refractive index layer designed by increasing the ratio of the high refractive index particles increases the layer strength of itself and adheres to the low refractive index layer provided on the high refractive index layer.
  • high-refractive-index particles having an ultrafine particle diameter and a uniform particle size are used, and these are uniformly dispersed in a high-refractive-index layer. It is preferable that the surface of the layer forms the above-mentioned uneven state.
  • the entire surface of the high refractive index layer is even and uniform. It is preferable because the anchoring effect is sufficiently exhibited and the adhesion is maintained. Further, even after long-term storage, the adhesion between the two layers is maintained without change.
  • the number of luminance defects having a diameter of 50 ⁇ m or more, which are visually conspicuous as foreign matter is 1%. Preferably, it is less than 20 pieces per square meter.
  • composition for forming high refractive index layer [Composition for forming high refractive index layer]
  • the high-refractive-index particles contained in the high-refractive-index layer in the present invention have a refractive index of 1.80 to 2.80, more preferably 1.90 to 2.80; Is 3 ⁇ 100nm It is preferably from 3 to 80 nm, particularly preferably from 5 to 80 nm.
  • the refractive index of the high refractive index particles is equal to or more than the lower limit, the refractive index of the high refractive index layer can be effectively increased.
  • the particles are colored. , So preferred.
  • the average particle size of the primary particles of the high refractive index particles is equal to or less than the upper limit, there is no inconvenience such that the haze value of the formed high refractive index layer becomes high and the transparency of the layer is impaired. If the average particle diameter is preferably not less than the lower limit, the refractive index is high, and the refractive index is preferably maintained.
  • preferable high refractive index particles include oxides or composite oxides such as Ti, Zr, Ta, In, Nd, Sn, Sb, Zn, La, W, Ce, Nb, V, Sm, and Y. And particles whose main component is a sulphide.
  • the main component refers to a component having the largest content (% by mass) of the components constituting the particle.
  • More preferred high refractive index particles in the present invention are particles containing as a main component an oxide or a composite oxide containing at least one metal element selected from Ti, Zr, Ta, In, and Sn. You.
  • the high refractive index particles used in the present invention may contain various elements in the particles (hereinafter, such elements may be referred to as containing elements).
  • the contained elements include Li, Si, Al, B, Ba, Co, Fe, Hg, Ag, Pt, Au, Cr, Bi, P, and S.
  • elements such as Sb, Nb, P, B, In, V, and halogen in order to increase the conductivity of the particles. and most preferably to 20 weight 0/0 that is contained.
  • the high-refractive-index particles are inorganic fine particles containing titanium dioxide as a main component containing at least one element selected from the group consisting of Co, Zr and A1 (hereinafter referred to as "special particles"). Constant oxide ").
  • a particularly preferred element is Co.
  • the total content of the contained elements Co, Al, and Zr is preferably 0.05 to 30% by mass relative to Ti, more preferably 0.1 to: L0% by mass, and further preferably 0.2 to 7% by mass. %, Particularly preferably from 0.3 to 5% by mass, most preferably from 0.5 to 3% by mass.
  • the contained elements Co, Al, and Zr exist inside or on the surface of the inorganic fine particles containing titanium dioxide as the main component.
  • U which is most preferably present both inside and on the surface, is more preferably present inside the inorganic fine particles containing titanium dioxide as a main component.
  • the contained element which is a metal element may be present as an oxide.
  • Other preferable high refractive index particles include a titanium element and at least one metal element selected from metal elements whose oxides have a refractive index of 1.95 or more (hereinafter, "Met"). ), And the composite oxide is at least one metal ion selected from the group consisting of Co ions, Zr ions and A1 ions. (Sometimes referred to as “specific double oxide”).
  • Ta, Zr, In, Nd, Sb, Sn, and Bi are preferable as the metal element having a refractive index of 1.95 or more.
  • Ta, Zr, Sn and Bi are preferable.
  • the content of metal ions doped into the composite oxide should not exceed 25% by mass of the total metal [Ti + Met] constituting the composite oxide, in order to maintain the refractive index.
  • Perspective power is preferable. More preferably 0.05 to 10 mass 0/0, more preferably 0. 1 to 5 mass 0/0, most preferably from 3 to 3 wt% 0.1.
  • the doped metal ion may be present as appropriate from the surface to the inside of the composite oxide, which may be in the form of either a metal ion or a metal atom. Preferably, it is present both on the surface and inside.
  • the high refractive index particles used in the present invention preferably have a crystal structure.
  • the crystal structure is preferably composed mainly of either rutile, a mixed crystal of rutile Z-anatase, or anatase, particularly preferably the rutile structure.
  • the high-refractive-index particles which are the above-mentioned specific oxide or specific double oxide, preferably have a refractive index of 1.90 to 2.80.
  • the refractive index of the high refractive index particles is more preferably from 2.10 to 2.80, and even more preferably from 2.20 to 2.80.
  • this makes it possible to suppress the photocatalytic activity of the titanium dioxide, and to significantly improve the weather resistance of the high refractive index layer itself and the two layers under the upper Z in contact with the high refractive index layer. can do.
  • a conventionally known method can be used as a method of doping the above-described specific metal element or metal ion.
  • a conventionally known method can be used.
  • methods described in JP-A-5-330825, JP-A-11-263620, JP-T-11-512336, European Patent Application Publication No. 0335773, etc .; ion implantation method for example, Shunichi Gonda, Junzo Ishikawa, Eiji Kamijo, “Ion Beam Applied Technology” (Chem. I), published in 1989, Yasushi Aoki, “Surface Science”, 18 (5), 262, 1998, Shoichi Abo, etc. "Surface Science", vol. 20 (2), p. 60, 1999, etc.] and the like.
  • the high refractive index particles used in the present invention may be surface-treated.
  • Surface treatment is a process for modifying the surface of the particles using an inorganic compound and Z or an organic compound, whereby the wettability of the surface of the high-refractive-index particles is adjusted, and fine particles are formed in an organic solvent. Dispersibility and dispersion stability in the composition for forming a refractive index layer are improved.
  • the inorganic compound to be physically adsorbed on the particle surface include inorganic compounds containing silicon (such as SiO), inorganic compounds containing aluminum [such as Al 2 O 3, Al (OH)], and cobalt containing
  • Inorganic compounds (CoO, Co O, Co O, etc.), zirconium-containing inorganic compounds [
  • the organic compound used for the surface treatment a conventionally known inorganic filler such as a metal oxide and an inorganic pigment can be used.
  • a conventionally known inorganic filler such as a metal oxide and an inorganic pigment can be used.
  • it is described in “Pigment dispersion stabilization and surface treatment technology, evaluation”, Chapter 1 (Technical Information Association, published in 2001).
  • Specific examples include an organic compound having a polar group having an affinity for the surface of the high-refractive-index particles, and a coupling compound.
  • the polar group having an affinity for the surface of the high refractive index particles include a carboxy group, a phosphono group, a hydroxy group, a mercapto group, a cyclic acid anhydride group, and an amino group, and a compound containing at least one kind in a molecule. Is preferred.
  • long-chain aliphatic carboxylic acids eg, stearic acid, lauric acid, oleic acid, linoleic acid, linolenic acid, etc.
  • polyol conjugates eg, pentaerythritol triatalylate, dipentaerythritol pentaatalylate, ECH ( Epichlorohydrin) -modified glycerol triatalylate, etc.
  • phosphono group-containing compounds eg, EO (ethylene oxide) -modified triatalylate phosphate]
  • alkanolamines ethylenediamine EO adduct (5 mol), etc.
  • Examples of the coupling conjugate include conventionally known organometallic compounds, and include silane coupling agents, titanate coupling agents, aluminate coupling agents, and the like. Silane coupling agents are most preferred. Specific examples include compounds described in paragraphs “0011” to “0015” in JP-A-2002-9908 and 2001-310423. Compounds represented by the following general formula (2) or general formula (2-1) are also preferred.
  • two or more compounds can be used in combination.
  • the high refractive index particles used in the present invention are used as cores to form particles having other inorganic compound power. It is also preferable that the fine particles have a core Z-shell structure in which an ell is formed. As the shell, an oxidized product having at least one elemental power selected from A1SiZr is preferable. Specifically, for example, the contents described in JP-A-2001-166104 can be mentioned.
  • the shape of the high refractive index particles used in the present invention is not particularly limited, but is preferably a rice grain, a sphere, a cube, a spindle, or an irregular shape.
  • the high refractive index particles may be used alone or in combination of two or more.
  • the dispersant is preferably a low molecular compound having a polar group having an affinity for the surface of the high refractive index particles, or a high molecular compound.
  • R represents a hydrocarbon group having 118 carbon atoms (for example, methyl group, ethyl group,
  • Pill butyl, hexyl, octyl, decyl, dodecyl, octadecyl, croethyl, methoxyethyl, cyanoethyl, benzyl, methylbenzyl
  • R represents a hydrogen atom or the same content as R
  • the group having a dissociable proton may be a salt thereof.
  • the amino group and the quaternary ammonium group are more preferably a tertiary amino group or a quaternary ammonium group, which may be any of a primary amino group, a secondary amino group and a tertiary amino group.
  • the group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is an aliphatic group having a carbon atom of 112 (the same as the above R or R group) Etc.)
  • the tertiary amino group may be a ring-forming amino group containing a nitrogen atom (for example, a piperidine ring, a morpholine ring, a piperazine ring, a pyridine ring, etc.).
  • the group may be a quaternary ammonium group of these cyclic amino groups.
  • an alkyl group having 16 carbon atoms is more preferable.
  • the counter ions of the quaternary ammonium groups are halide ions, PF ions, SbF ions, and BF ions.
  • B (R) ion represents a hydrocarbon group such as butyl group, phenyl group, tolyl group
  • the polar group of the dispersant according to the present invention is preferably an aionic group having a pKa of 7 or less or a salt of these dissociative groups.
  • a carboxyl group, a sulfo group, a phosphono group, an oxyphosphono group, or a salt of these dissociative groups is preferable.
  • the dispersant preferably further contains a crosslinkable or polymerizable functional group.
  • the crosslinkable or polymerizable functional group include an addition reaction by a radical species and an ethylenically unsaturated group capable of performing a polymerization reaction [for example, a (meth) atalyloyl group, an aryl group, a styryl group, a vinyloxy group carbonyl group, a vinyloxy group, and the like.
  • Cationic polymerizable groups epoxy group, thioepoxy group, oxetanyl group, vinyloxy group, spiro orthoester group, etc.
  • polycondensation reactive groups hydrolyzable silyl group, N-methylol group
  • it is an ethylenically unsaturated group, an epoxy group, or a hydrolyzable silyl group.
  • the dispersant used in the present invention is preferably a polymer dispersant.
  • a polymer dispersant containing an ionic group and a crosslinkable or polymerizable functional group is preferable.
  • the mass average molecular weight (Mw) of the polymer dispersant is not particularly limited, but is preferably 1 ⁇ 10 3 or more as a polystyrene equivalent value measured by a GPC method. Mw is more preferably 2 ⁇ 10 3 to 1 ⁇ 10 6 , still more preferably 5 ⁇ 10 3 to 1 ⁇ 10 5 , particularly preferably 8 ⁇ 10 3 to 8 ⁇ 10 4 .
  • the dispersion medium used for wet dispersion of the high refractive index particles can be appropriately selected from water and an organic solvent, and is preferably a liquid having a boiling point of 50 ° C. or higher, and a boiling point of 60 ° C. or higher. More preferably, the organic solvent is in the range of ° C to 180 ° C.
  • the dispersion medium is preferably used in such a proportion that the total component for forming the high refractive index layer containing the high refractive index particles and the dispersant is 5 to 50% by mass, more preferably 10 to 30% by mass. . In this range, the dispersion easily proceeds, and the resulting dispersion is in a range of viscosity with good workability, and thus is preferable.
  • Examples of the dispersion medium include alcohols, ketones, esters, amides, ethers, ether esters, hydrocarbons, and halogenated hydrocarbons.
  • alcohols eg, methanol, ethanol, propanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, ethylene glycol monoacetate, etc.
  • ketones eg, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanol
  • esters eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl formate, propyl formate, butyl formate, ethyl lactate
  • aliphatic hydrocarbons eg, hexane, cyclohexane
  • Halogenated hydrocarbons eg,
  • Preferred dispersion media include toluene, xylene, methylethyl ketone, methyl isobutyl ketone, cyclohexanone, and butanol.
  • a coating solvent system mainly containing a ketone solvent (for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) is also preferably used, and the content of the ketone solvent is included in the composition for forming a high refractive index layer. It is preferably at least 10% by mass of the entire solvent. It is preferably at least 30% by mass, more preferably at least 60% by mass.
  • the curable composition for forming a high-refractive-index layer used in the present invention is an ultrafine particle dispersion of a high-refractive-index inorganic compound having an average particle size of 100 nm or less, thereby improving the stability of the liquid of the composition.
  • the high-refractive index layer which is a cured film formed from the curable composition, has high-refractive-index particles uniformly dispersed in a matrix of the cured film in the form of ultrafine particles.
  • a transparent high refractive index layer having uniform characteristics is formed.
  • the size of the ultrafine particles present in the matrix of the high refractive index layer is more preferably 10 to 80 nm, preferably in the range of average particle size 3 to LOOnm.
  • large particles having an average particle diameter of 500 nm or more are not included, and it is particularly preferable that large particles having an average particle diameter of 300 nm or more are not included. This is preferable because the surface of the cured film can form the above-mentioned specific uneven shape.
  • the inorganic fine particles having a high refractive index do not contain the coarse particles in the above-mentioned range! Dispersion can be achieved by a wet dispersion method using a medium.
  • Examples of the wet disperser include hitherto known ones such as a sand grinder mill (eg, a bead mill with a pin), a dyno mill, a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill.
  • a sand grinder mill eg, a bead mill with a pin
  • a dyno mill e.g., a bead mill with a pin
  • a dyno mill e.g., a high-speed impeller mill
  • a high-speed impeller mill e.g., a sand grinder mill, a dyno mill, and a high-speed impeller mill are preferable.
  • the media used with the above disperser preferably has an average particle size of less than 0.8 mm! /. Average particle size force
  • the average particle size of the media is more preferably 0.5 mm or less, and even more preferably 0.05-0.3 mm.
  • Beads are preferred as media used for wet dispersion. Specific examples include zircon beads, glass beads, ceramic beads, steel beads, and the like. 2mm zircon your beads are especially preferred!
  • the dispersion temperature in the dispersion step is preferably from 20 to 60 ° C, more preferably from 25 to 45 ° C.
  • Dispersing in ultrafine particles at a temperature in this range is preferable because reaggregation and precipitation of the dispersed particles do not occur. This is presumably because the dispersant is appropriately adsorbed on the inorganic compound particles and the dispersion stability does not become poor due to desorption of the dispersant from the particles at room temperature.
  • a high refractive index film excellent in uniformity of refractive index, film strength, adhesion to an adjacent layer and the like can be formed without impairing transparency.
  • a preliminary dispersion treatment may be performed before the wet dispersion step.
  • Preliminary dispersion processing examples include ball mills, three-roll mills, kneaders and extruders.
  • the filter medium for microfiltration preferably has a filter particle size of 25 m or less.
  • the type of filter medium for microfiltration is not particularly limited as long as it has the above performance, and examples thereof include a filament type, a felt type, and a mesh type.
  • the material of the filter medium for finely filtering the dispersion is not particularly limited as long as it has the above performance and does not adversely affect the coating solution of the obtained composition for forming a high refractive index layer.
  • the high refractive index layer preferably contains high refractive index particles and a matrix.
  • the matrix of the high refractive index layer is:
  • the composition is formed by applying and then curing the composition for forming a high refractive index layer containing at least one of the following.
  • thermoplastic resin (A) conventionally known thermoplastic resin
  • (C) a combination of a binder precursor (such as a curable polyfunctional monomer or a polyfunctional oligomer described below) and a polymerization initiator,
  • a binder precursor such as a curable polyfunctional monomer or a polyfunctional oligomer described below
  • One example is the solder formed.
  • a composition for forming a high refractive index layer may be prepared from a dispersion containing the organic binder of (a), (port) or (c), the high refractive index composite oxide fine particles, and a dispersant. I like it.
  • This composition is applied on a protective film, and after a coating film is formed, the composition is cured by a method according to a binder-forming component to form a high refractive index layer.
  • the curing method is appropriately selected according to the type of the binder component.
  • the crosslinking reaction of the curable conjugate for example, a polyfunctional monomer or a polyfunctional oligomer
  • the curable conjugate for example, a polyfunctional monomer or a polyfunctional oligomer
  • a method of causing a polymerization reaction may be mentioned.
  • a method in which a curable compound is cross-linked or polymerized by irradiating light with the combination of the above (c) to form a cured binder is preferred.
  • the binder in the cured film produced in this manner is, for example, a cross-linking or a polymerization reaction of the above-mentioned dispersant and a curable polyfunctional monomer or polyfunctional oligomer which is a precursor of the binder.
  • the anionic group of the dispersant is incorporated into the binder.
  • the binder in the cured film has the function of maintaining the dispersed state of the inorganic fine particles
  • the crosslinked or polymerized structure gives the binder a film-forming ability and contains high refractive index particles. The physical strength, chemical resistance, and weather resistance in the high refractive index layer, which is a cured film, can be improved.
  • thermoplastic resin (a) and the reaction-curable resin (mouth) examples include compounds described in paragraph [0034] of JP-A-8-122504.
  • a crosslinking agent epoxy conjugate, polyisocyanate compound, polyol compound, polyamine conjugate, melamine compound, etc.
  • a polymerization initiator azobis compound, Curing agents such as organic peroxide compounds, organic halogenated compounds, UV salted compounds, UV light initiators such as ketone compounds, etc.
  • polymerization accelerators organometallic compounds, oxide compounds, bases
  • Specific examples include the compounds described in “Handbook of Crosslinking Agents” by Fuzo Yamashita and Tosuke Kaneko (Taiseisha, 1981).
  • the functional group of the photocurable polyfunctional monomer or polyfunctional oligomer may be radical polymerizable or cationic polymerizable, or may be shifted.
  • radical polymerizable functional group examples include a (meth) atalyloyl group, a buloxy group, and a styryl group.
  • an ethylenically unsaturated group such as an aryl group.
  • a (meth) atalyloyl group is preferable. It is preferable to contain a polyfunctional monomer having two or more radically polymerizable groups in the molecule.
  • the radical polymerizable polyfunctional monomer is preferably selected from compounds having at least two terminal ethylenically unsaturated bonds. Preferred are compounds having 2 to 6 terminal ethylenically unsaturated bonds in the molecule. Such compounds are widely known in the field of polymer materials, and in the present invention, they can be used without any particular limitation. These can be in chemical forms such as, for example, monomers, prepolymers (ie, dimers, trimers and oligomers) or mixtures thereof, and copolymers thereof.
  • radical polymerizable monomer examples include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), and esters and amides thereof.
  • unsaturated carboxylic acids eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters and amides thereof are preferred.
  • an addition reaction product of an unsaturated compound having a nucleophilic substituent such as a hydroxyl group, an amino group or a mercapto group, a sulfonic acid ester or an amide, and a monofunctional or polyfunctional isocyanate or an epoxy compound Dehydration condensation products with polyfunctional carboxylic acids and the like are also preferably used.
  • a reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol is also preferable. is there.
  • Examples of the aliphatic polyhydric alcohol compound include alkanediol, alkanetriol, cyclohexanediol, cyclohexanetriol, inositol, and cyclohexanedimethyl. Examples thereof include tanore, pentaerythritol, sonorebitone, dipentaerythritol, tripentaerythritol, glycerin, and diglycerin. Polymerizable ester compounds (monoesters or polyesters) of these aliphatic polyhydric alcohol conjugates and unsaturated carboxylic acids
  • Examples thereof include compounds described in paragraphs [0026] to [0027] of JP-A-2001-139663.
  • Examples of other polymerizable esters include, for example, vinyl methacrylate, aryl metharylate, aryl acrylate, JP-B-46-27926, JP-B-51-47334, and JP-A-57-196231.
  • the aliphatic alcohol esters described above, those having an aromatic skeleton described in JP-A-2-226149, etc., and those having an amino group described in JP-A-11165613 are also preferably used.
  • polymerizable amide formed from the aliphatic polyamine conjugate and the unsaturated carboxylic acid include methylenebis (meth) acrylamide, 1,6-hexamethylenebis (meth) acrylamide, Examples thereof include diethylenetriaminetris (meth) acrylamide, xylylenebis (meth) atarylamide, and those having a cyclohexylene structure described in JP-B-54-21726.
  • vinyl urethane compounds containing two or more polymerizable butyl groups in one molecule JP-B-48-41708, etc.
  • urethane acrylates JP-B-2-16765, etc.
  • Urethane conjugates having an ethylene oxide skeleton JP-B No. 62-39418, etc.
  • polyester acrylates JP-B No. 52-30490, etc.
  • Adhesion Society of Japan, Vol. 20 (7), 300 308 (1984) can also be used.
  • Two or more of these radically polymerizable polyfunctional monomers may be used in combination.
  • a compound having a cationically polymerizable group (hereinafter, also referred to as “cationically polymerizable compound” or “cationically polymerizable organic compound”) that can be used to form a binder for the high refractive index layer Will be described.
  • the cationically polymerizable conjugate used in the present invention may be any compound that undergoes a polymerization reaction and Z or a crosslinking reaction when irradiated with an active energy ray in the presence of an active energy ray-sensitive cationic polymerization initiator.
  • cyclic thioethereal conjugates, cyclic ethereal conjugates, spiroorthoesteri conjugates, vinyl hydrocarbon compounds, vinyl ethereal conjugates, and the like In the present invention, one kind or two or more kinds of the above-mentioned cationically polymerizable organic compounds may be used.
  • the number of cationic polymerizable groups in one molecule is preferably 2 to 10, particularly preferably 2 to 5.
  • the molecular weight of the compound is less than 3000, preferably in the range from 200 to 2000, particularly preferably in the range from 400 to 1500.
  • the molecular weight is at least the lower limit, problems such as volatilization during the film formation process will not occur, and when the molecular weight is at or below the upper limit, compatibility with the composition for forming a high refractive index layer will not occur. 'Preferred because it does not cause problems such as poor sex!
  • Examples of the epoxy conjugate include an aliphatic epoxy conjugate and an aromatic epoxy conjugate.
  • Examples of the aliphatic epoxy conjugate include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof, polyglycidyl esters of aliphatic long-chain polybasic acids, and glycidyl atalylate / glycidyl methacrylate. Homopolymers, copolymers and the like can be mentioned.
  • epoxy conjugates for example, monoglycidyl ethers of aliphatic higher alcohols, glycidyl esters of higher fatty acids, epoxidized soybean oil, butyl epoxy stearate, octyl epoxy stearate, epoxidized ama-
  • the oil include an oil and an epoxidized polybutadiene.
  • the alicyclic epoxy conjugate include polyglycidyl ethers of polyhydric alcohols having at least one alicyclic ring, and unsaturated alicyclic rings (for example, cyclohexene, cyclopentene, dicyclootatene).
  • Tricyclodecene) -containing compounds obtained by epoxidizing a compound containing a suitable oxidizing agent such as hydrogen peroxide, peracid or the like, and cyclohexenoxide or cyclopentenoxide-containing compounds.
  • Examples of the aromatic epoxy conjugate include mono- and poly-glycidyl ethers of a monovalent or polyvalent phenol having at least one aromatic nucleus or its alkylene oxide-added syrup.
  • Examples of these epoxy conjugates include compounds described in paragraphs [0084] to [0086] of JP-A-11-242101, and JP-A-10-1 Compounds described in paragraph Nos. [0044] to [0046] in 58385 are exemplified.
  • epoxidized conjugates in view of rapid curing properties, aromatic epoxides and alicyclic epoxides are preferred, and alicyclic epoxides are particularly preferred.
  • one of the above epoxy conjugates may be used alone, but two or more may be used in an appropriate combination.
  • Examples of the cyclic thioethereal conjugate include compounds in which the above-mentioned epoxy ring is a thioepoxy ring.
  • Specific examples of the compound containing an oxetal group as a cyclic ether include the compounds described in paragraphs [0024] to [0025] of JP-A-2000-239309. These compounds are preferably used in combination with an epoxy group-containing compound.
  • Examples of the spiroorthoester compound include compounds described in JP-T-2000-506908 and the like.
  • Examples of the vinyl hydrocarbon compound include a styrene compound, a vinyl group-substituted alicyclic hydrocarbon compound (such as burcyclohexane and burbicycloheptene), a compound described in the above-mentioned radically polymerizable monomer, Compound Q [. Polymer Science: Part A: Polymer Chemistry, Vol. 32, p. 2895 (1994), etc.], alkoxy allene compound ["J. Polymer Science: Part A: Polymer Chemistry", Vol. 33, p. 2493 ( 1995)], Bull compound ["J. Polymer Science: Part A: Polymer
  • the polyfunctional conjugate used in the present invention may be a compound containing at least one of the above-mentioned radical polymerizable groups and cation polymerizable groups in at least one molecule. Is preferred. For example, compounds described in paragraphs [0031] to [0052] of JP-A-8-277320, compounds described in paragraph [0015] of JP-A-2000-191737, and the like can be mentioned. The compounds used in the present invention are not limited to these. [0243] The radical polymerizable compound and the cationic polymerizable compound described above are contained in a ratio of 90:10 to 20:80 by mass ratio of the radical polymerizable compound to the cationic polymerizable compound. It is preferable that the content is contained in the ratio of 80: 20-30: 70, and more preferable.
  • Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator.
  • the polymerization initiator used in the present invention is preferably a compound that generates a radical or an acid upon irradiation with light, Z, or heat.
  • the photopolymerization initiator used in the present invention preferably has a maximum absorption wavelength of 400 nm or less. By setting the absorption wavelength in the ultraviolet region in this manner, handling can be performed under white light. Further, a compound having a maximum absorption wavelength in a near infrared region can also be used.
  • the radical-generating compound suitably used in the present invention refers to a compound that generates a radical by irradiation with light, Z or heat, and starts and promotes the polymerization of a compound having a polymerizable unsaturated group.
  • a known polymerization initiator, a compound having a bond having a small bond dissociation energy, or the like can be appropriately selected and used.
  • the compounds generating radicals can be used alone or in combination of two or more.
  • Examples of the compound generating a radical include a conventionally known organic peroxide compound, a thermal radical polymerization initiator such as an azo-based polymerization initiator, and an organic peroxide compound (described in Japanese Patent Application Laid-Open No. 2001-139663 and the like). ), Aminyidani (described in Japanese Patent Publication No. 44-20189), Disulfonatedly Dyed Compounds (JP-A-5-239015, JP-A-61-166544), organic halogenated compounds, carbonyl compounds, organic compounds Photo-radical polymerization initiators such as boric acid compounds are listed.
  • JP-A-8-134404 [0015] ] To [0016], and the compounds described in paragraphs [0029] to [0031] of JP-A-11217518, etc., and include acetophenone, hydroxyacetophenone, benzophenone, thioxane, and benzoinethyl.
  • examples thereof include benzoin compounds such as ether and benzoin isobutyl ether; benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate; ethyl ethyl p-ethylaminobenzoate; benzyldimethyl ketal; and acylphosphinoxide.
  • organic borate compounds include, for example, Kunz, Martin "Rad.
  • radical generating compounds may be used alone or in combination of two or more.
  • the addition amount can be 0.1 to 30% by mass, preferably 0.5 to 25% by mass, and particularly preferably 1 to 20% by mass based on the total amount of the radical polymerizable monomer.
  • the composition for a high-refractive-index layer will have a long-term stability and will have high polymerizability without any problem.
  • Examples of the acid generator include known compounds such as a photoinitiator for photoionization thione polymerization, a photodecolorant for dyes, a photochromic agent, and a known acid generator used for microresist and the like. Examples thereof include mixtures thereof.
  • Examples of the acid generator include an organic halide compound, a disulfone compound, and a dimethyl compound. Among these, specific examples of the organic halogenated compound and the disulfonated compound include those capable of generating the radical. And the same compounds as described above.
  • Examples of o-pharmaceutical compounds include diazo-pium salt, ammo-pharmaceutical salt, imi-pium salt, phospho-pium salt, odonium salt, sulfo-pum salt, arso-pum salt, Examples thereof include seleno-pium salts and the like, for example, compounds described in paragraphs [0058] to [0059] of JP-A-2002-29162.
  • phosporium salt that can be suitably used include, for example, the amylorid sulfoyu described in paragraph [0035] of JP-A-9-268205. Salt, triaryl sulfonium salt or triaryl sulfonium salt described in paragraphs [0010] to [0011] of JP-A-2000-71366, and step number [0017] of JP-A-2001-288205. And the thiobenzoic acid S-phenyl ester described in JP-A-2001-133696, paragraphs [0030] to [0033].
  • acid generator examples include organic metal Z organic halides described in paragraphs [0059] to [062] of JP-A-2002-29162, and o --- trobenzyl-type protecting groups.
  • Compounds such as photoacid generators and compounds that generate sulfonic acid upon photolysis (eg, iminosulfonates).
  • These acid generators may be used alone or in combination of two or more. These acid generators are used in an amount of 0.1 to 20% by mass, preferably 0.5 to 15% by mass, particularly preferably 1 to L0% by mass, based on 100 parts by mass of the total thione polymerizable monomer. Can be added. When the amount of addition is within the above range, the stability and polymerization reactivity of the composition for high refractive index are also preferable.
  • the composition for forming a high refractive index layer according to the present invention comprises a radical polymerization initiator in an amount of 0.5 to 10% by mass or a cation based on the total mass of the radically polymerizable compound or the cationic polymerizable compound. It is preferable to contain the polymerization initiator in a ratio of 1 to L0% by mass. More preferably, it contains 1 to 5% by mass of a radical polymerization initiator or 2 to 6% by mass of a cationic polymerization initiator.
  • the composition for forming a high refractive index layer used in the present invention may be used in combination with a conventionally known ultraviolet spectral sensitizer or chemical sensitizer.
  • these sensitizers include Michler's ketone, amino acids (such as glycine), and organic amines (such as butylamine and dibutylamine).
  • the near-infrared spectral sensitizer used in combination is preferably a compound having a molecular extinction coefficient of 10,000 or more as long as it is a light-absorbing substance having an absorption band in at least a part of a wavelength region of 700 nm or more. Further, a value having an absorption in a range of 750 to 1400 nm and a molecular extinction coefficient of 20000 or more is preferable. Also, 420nm ⁇ 700nm visible More preferably, there is an absorption valley in the light wavelength region and the film is optically transparent.
  • the near-infrared spectral sensitizer various pigments and dyes known as near-infrared absorbing pigments and near-infrared absorbing dyes can be used. Among them, it is preferable to use a conventionally known near-infrared absorbing agent.
  • Commercially available dyes and literatures e.g., ⁇ Near-infrared absorbing dyes '', ⁇ Chemical Industry '', May 1986, pp. 45-51, ⁇ Development and market trends of functional dyes in the 1990s '', Chapter 2.3. (1990) CMC, "Specially-functional dyes" [edited by Ikemori's Pillar Valley, 1986, published by CMC], J.
  • an organometallic compound having a hydrolyzable functional group as a matrix of the high refractive index layer used in the present invention to form a cured film after forming a coating film by a sol-gel reaction.
  • organometallic compound examples include compounds having an equivalent force such as Si, Ti, Zr, and A1.
  • hydrolyzable functional group examples include an alkoxy group, an alkoxycarbol group, a halogen atom, and a hydroxyl group, and particularly, an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group is preferable.
  • Preferred organometallic compounds are an organic silicon compound represented by the following general formula (1) and a partial hydrolyzate (partial condensate) thereof. It is a well-known fact that the organosilicon compound represented by the general formula (1) easily hydrolyzes, followed by a dehydration condensation reaction.
  • R 11 represents a substituted or unsubstituted C 1-30 aliphatic group or a C 6-14 aryl group.
  • Y 11 represents a halogen atom (such as a chlorine atom or a bromine atom), an OH group, an OR 12 group, or an OCOR 12 group.
  • R 12 represents a substituted or unsubstituted alkyl group.
  • p represents an integer of 0 to 3, preferably 0, 1 or 2, and particularly preferably 1. However, when p is 0, Y 11 represents an OR 12 group or an OCOR 12 group.
  • the aliphatic group represented by R 11 preferably has 1 to 18 carbon atoms (eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, hexadecyl) Octadecyl, benzyl group, phenethyl group, cyclohexyl group, cyclohexylmethyl, hexyl group, decyl group, dodecenyl group, etc.). More preferably, it has 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms.
  • the substituent is not particularly limited, but may be a halogen (fluorine, chlorine, bromine, etc.), a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, or an alkyl group (methyl, ethyl, i-propyl, propyl, t- Butyl, etc.), aryl groups (phenyl, naphthyl, etc.), aromatic heterocyclic groups (furyl, pyrazolyl, pyridyl, etc.), alkoxy groups (methoxy, ethoxy, i-propoxy, hexyloxy, etc.), aryloxy ( Phenoxy, etc.), alkylthio groups (methylthio, ethylthio, etc.), arylthio groups (phenylthio, etc.), alkoxyl groups (butyl, 1-probel, etc.), alkoxysilyl groups (trimethoxysilyl, trieth
  • a hydroxyl group, a mercapto group, a carboxyl group, an epoxy group, an alkyl group, an alkoxysilyl group, an acyloxy group, and an acylamino group are more preferable, and an epoxy group and a polymerizable group are particularly preferable.
  • R 12 is a force representing a substituted or unsubstituted alkyl.
  • the description of the substituent in the alkyl group is the same as that of R 11 .
  • the content of the compound of the general formula (1) is preferably from 10 to 80% by mass of the total solids of the high refractive index layer, more preferably from 20 to 70% by mass, and particularly preferably from 30 to 50% by mass. It is.
  • Specific examples of the compound represented by the general formula (1) include, for example, paragraphs in JP-A-2001-166104. [0054] to [0056].
  • the organic binder preferably has a silanol group. It is preferable that the binder has a silanol group, because the physical strength, chemical resistance and weather resistance of the high refractive index layer are further improved.
  • the silanol group is, for example, a binder precursor (such as a curable polyfunctional monomer or a polyfunctional oligomer), a polymerization initiator, or a high refractive index particle as a binder forming component constituting a coating composition for forming a high refractive index layer.
  • An organic silicon compound represented by the general formula (1) having a crosslinkable or polymerizable functional group is blended into the coating composition together with the dispersant contained in the dispersion, and the coating composition is placed on a protective film. It can be guided to a binder by coating and subjecting the above dispersant, polyfunctional monomer or polyfunctional oligomer, or organic silicon compound represented by the general formula (1) to a crosslinking reaction or a polymerization reaction.
  • the hydrolysis-condensation reaction for curing the organometallic compound is preferably performed in the presence of a catalyst.
  • the catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as oxalic acid, acetic acid, formic acid, trifluoroacetic acid, methanesulfonic acid and toluenesulfonic acid, sodium hydroxide, potassium hydroxide, ammonia and the like.
  • Inorganic bases organic bases such as triethylamine and pyridine, metal alkoxides such as triisopropoxyaluminum, tetrabutoxyzircodium and tetrabutoxytitanate, metal chelates such as ⁇ -diketones and j8-ketoesters, and the like. No. Specifically, for example,
  • the proportion of these catalyst compounds in the composition is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, more preferably 0.5 to 10% by mass, based on the organometallic compound. It is.
  • the reaction conditions are preferably adjusted as appropriate depending on the reactivity of the organometallic compound.
  • the matrix preferably has a specific polar group.
  • Particular polar groups include ionic groups, amino groups, and quaternary ammonium groups.
  • Specific examples of the aionic group, amino group and quaternary ammonium group include the same as those described for the dispersant.
  • the matrix of the high refractive index layer having a specific polar group is, for example, a high refractive index layer-forming matrix.
  • a dispersion containing high-refractive-index inorganic fine particles and a dispersant is mixed with the coating composition, and a binder precursor having a specific polar group (a curable polyfunctional monomer having a specific polar group, A combination of a polyfunctional oligomer) and a polymerization initiator and at least one of the organic silicon compounds represented by the general formula (1) having a specific polar group and having a crosslinkable or polymerizable functional group.
  • a monofunctional monomer having a specific polar group and a crosslinkable or polymerizable functional group is blended, and the coating composition is applied on a protective film, and the above dispersant and monofunctional monomer are mixed. It can be obtained by crosslinking or polymerizing a monomer, a polyfunctional monomer, a polyfunctional oligomer and Z or an organic silicon compound represented by the general formula (1).
  • a monofunctional monomer having a specific polar group can function as a dispersion aid for inorganic fine particles in the coating composition, and is therefore preferable. Furthermore, after coating, a good uniform dispersibility of the high refractive index particles in the high refractive index layer is maintained by forming a binder through a crosslinking reaction or a polymerization reaction with a dispersant, a polyfunctional monomer or a polyfunctional oligomer, or a polyfunctional monomer. Thus, a high refractive index layer having excellent physical strength, chemical resistance, and weather resistance can be produced.
  • the usage amount of the monofunctional monomer having an amino group or a quaternary ammonium group to the dispersant is preferably from 0.5 to 50% by mass, more preferably from 1 to 30% by mass.
  • the monofunctional monomer can function effectively before the high refractive index layer is applied.
  • the proportion of the repeating unit having an ionic group in the polymer is preferably from 0.5 to 99% by mass, more preferably from 3 to 95% by mass, of all the repeating units. Most preferably, it is ⁇ 90% by mass.
  • the repeating unit may have two or more same or different V-ionic groups.
  • the proportion is preferably from 2 to 98 mol%, more preferably from 4 to 96 mol%, and still more preferably from 6 to 94 mol%. Is most preferred.
  • the proportion is preferably from 0.1 to 50% by mass, more preferably from 0.5 to 30% by mass. Yes.
  • the proportion of the repeating unit having a crosslinked or polymerized structure in the polymer is 1 to 90% by mass.
  • the matrix formed by crosslinking or polymerizing the binder should be formed by applying a composition for forming a high refractive index layer on a protective film, and simultaneously or after the application, by a crosslinking or polymerization reaction. Is preferred.
  • the high refractive index layer in the present invention may further contain other compounds as appropriate depending on the application and purpose.
  • the refractive index of the high refractive index layer is preferably higher than that of the protective film.
  • a resin in addition to the above components (inorganic fine particles, polymerization initiator, sensitizer, etc.), a resin, a surfactant, an antistatic agent, a coupling agent, a thickener, a coloring prevention Agent, colorant (pigment, dye), defoamer, leveling agent, flame retardant, ultraviolet absorber, infrared absorber, adhesion promoter, polymerization inhibitor, antioxidant, surface modifier, conductive It is better to add fine metal particles.
  • a resin in addition to the above components (inorganic fine particles, polymerization initiator, sensitizer, etc.), a resin, a surfactant, an antistatic agent, a coupling agent, a thickener, a coloring prevention Agent, colorant (pigment, dye), defoamer, leveling agent, flame retardant, ultraviolet absorber, infrared absorber, adhesion promoter, polymerization inhibitor, antioxidant, surface modifier, conductive It is better to add fine metal particles.
  • the high-refractive-index layer is preferably constructed by applying a coating solution of the above-described composition for forming a high-refractive-index layer directly or via another layer on a protective film described below.
  • the coating liquid for forming a high refractive index layer used in the present invention is prepared by mixing a dispersion of high refractive index particles, a liquid for forming a matrix binder, and an additive used as needed into a dispersion medium for coating at a predetermined concentration. Prepared by dilution.
  • the coating solution of the composition for forming a high refractive index layer is preferably filtered before coating. It is preferable to use a filter having a pore size as small as possible within a range that does not remove components in the coating solution. For the filtration, it is preferable to use a filter having an absolute filtration accuracy of 0.1 to: LOO / zm, and more preferably 0.1 to 25 / zm.
  • the thickness of the filter is preferably from 0.1 to: LOmm, more preferably from 0.2 to 2 mm. In that case, it is preferable to filter at a filtration pressure of 15 kgfZcm 2 or less, more preferably, 10 kgfZcm 2 or less, and particularly preferably 2 kgf / cm 2 or less.
  • Filtration One member of the filter is not particularly limited as long as it does not affect the application liquid. Specifically, the same filter member as the above-mentioned filtration member for the wet dispersion of the inorganic compound can be used. It is also preferable to ultrasonically disperse the filtered coating liquid immediately before coating to assist defoaming and dispersion retention of the dispersion.
  • the high refractive index layer is formed by dip coating, air knife coating, curtain coating, roller one coating, and the above-described composition for forming a high refractive index layer on a protective film of a polarizing film. It can be prepared by applying by a known thin film forming method such as a wire bar coating method, a gravure coating method, a microgravure coating method, an etastrusion coating method, and drying, and irradiating with light, Z or heat. Preferably, curing by light irradiation is advantageous because rapid curing is possible. Further, it is also preferable to use a heat treatment in the latter half of the light curing treatment.
  • the light source for light irradiation may be any light source in the ultraviolet light range or near-infrared light, such as ultra-high pressure, high pressure, medium pressure, and low pressure mercury lamps, chemical lamps, and carbon arc lamps. Lamps, metal halide lamps, xenon lamps, sunlight and the like. Various types of available laser light sources having a wavelength of 350 to 42 Onm may be irradiated with a multi-beam. In addition, examples of near-infrared light sources include halogen lamps, xenon lamps, and high-pressure sodium lamps. Various types of available laser light sources with wavelengths of 750 to 1400 nm can be converted into multiple beams for irradiation.
  • a near-infrared light source When a near-infrared light source is used, it may be used in combination with an ultraviolet light source, or may be irradiated with light from the side of the protective film opposite to the side where the high refractive index layer is coated. The curing of the film in the depth direction in the coating film layer proceeds in the vicinity of the surface without delay, and a cured film in a uniform cured state is obtained.
  • photo-radical polymerization by light irradiation it can be performed in air or an inert gas in order to shorten the induction period of polymerization of the radical-polymerizable monomer or to sufficiently increase the polymerization rate. It is preferable that the atmosphere has an oxygen concentration as low as possible. Irradiation intensity of UV light is 0.1 to: LOOmWZcm 2 is preferable, and the amount of light irradiation on the coating film surface is preferable.
  • the temperature distribution of the coating film in the light irradiation step is preferably controlled within ⁇ 3 ° C, more preferably within ⁇ 1.5 ° C, and more preferably within ⁇ 1.5 ° C. In this range, the polymerization reaction in the in-plane and in-layer depth direction of the coating film proceeds uniformly, and thus it is preferable.
  • the hardness of the high refractive index layer is, in a pencil hardness test according to JIS K-5400, preferably H or more, more preferably 2H or more, most preferably 3H or more.
  • the abrasion resistance of the high-refractive-index layer is preferably the smaller the abrasion of the test piece coated with the high-refractive-index layer before and after the test in a Taber test according to JIS K-5400.
  • the haze of the high refractive index layer is preferably as low as possible. The haze is preferably at most 5%, more preferably at most 3%, particularly preferably at most 1%.
  • the thickness of the high refractive index layer is preferably from 30 to 500 nm, more preferably from 50 to 300 nm.
  • 0.5 to: LO / zm is preferred, more preferably 1 to 7111, and particularly preferably 2 to 5 m.
  • the antireflection film of the present invention preferably has a laminated structure in which the high refractive index layer is composed of two layers having different refractive indices. That is, on the protective film, the lower refractive index layer of the two high refractive index layers (medium refractive index layer) and the higher refractive index layer of the two high refractive index layers (high refractive index layer) Index layer) and a low refractive index layer (outermost layer).
  • the middle refractive index layer has a refractive index between the refractive index of the protective film and the refractive index of the high refractive index layer. Thus, the refractive index of each refractive index layer is relative.
  • the middle refractive index layer is formed by applying the composition for forming a middle refractive index layer in the same manner as the high refractive index layer.
  • the material constituting the middle refractive index layer in the present invention may be any of conventionally known materials, but it is preferable to use the same material as the high refractive index layer.
  • Refractive index is the seed of inorganic fine particles
  • a thin layer having a thickness of 30 to 500 nm is formed in a manner easily adjusted by the type and amount used, and in the same manner as described in the description of the high refractive index layer. More preferably, the thickness is 50 to 300 nm.
  • the refractive index of the low refractive index layer in the present invention is preferably in the range of 1.31-1.49 for the purpose of imparting antireflection properties. More preferably, it is 1.35 to 1.49, and still more preferably 1.35 to 1.48.
  • the low refractive index layer in the present invention is preferably constructed as an outermost layer having scratch resistance and stain resistance.
  • the low-refractive-index layer contains at least one inorganic fine particle having a hollow structure having an average particle diameter of 30% to 100% of the thickness of the low-refractive-index layer and a refractive index of 1.17 to 1.40.
  • the refractive index of the inorganic fine particles is more preferably 1.17 to 1.37. It is preferable that the average particle diameter of the inorganic fine particles is in the range of 30% to 100% of the thickness of the low refractive index layer, since the strength of the low refractive index layer film is sufficiently exhibited.
  • inorganic fine particles having such a refractive index in the low refractive index layer it is possible to suppress an increase in the refractive index of the layer itself, and to perform long-time thermosetting or oxidation treatment for providing a polarizing film. It is possible to achieve both low refractive index and high film strength without being restricted by the above.
  • the low refractive index layer in the present invention is formed mainly of a thermosetting and a crosslinkable fluorine-containing compound of Z or light or radiation (for example, ionizing radiation) curable, and is constituted by a cured fluorine-containing polymer. Is preferred.
  • the low refractive index layer is a hydrolyzate of an organosilane represented by the following general formula (2), which is produced in the presence of the above-mentioned inorganic fine particles and an acid catalyst, and Z or the same. It may be a cured film formed by applying and curing a curable low refractive index layer forming composition containing at least one kind of a partially condensate and a fluoropolymer having a curable reactive group. Preferred,.
  • General formula (2) (R 21 ) Si (Y 21 )
  • R 21 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • Y 21 represents a hydroxyl group or a hydrolyzable group.
  • Q represents an integer of 1 to 3.
  • the composition for forming a low refractive index layer further contains a polyfunctional polymerizable compound containing at least two polymerizable groups selected from a radical polymerizable group and Z or a cationic polymerizable group, and a polymerization initiator. Is preferred ⁇ .
  • a preferable example is a material mainly composed of a partial condensate thereof and capable of forming a so-called sol-gel film.
  • the cured film is formed by applying and curing a curable composition containing at least one of a hydrolyzate of an organosilane represented by the following general formula (1) and a partial condensate thereof. It is preferably a cured film to be formed.
  • R 1Q represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • X represents a hydroxyl group or a hydrolyzable group.
  • N represents an integer of 0 to 2.
  • hollow inorganic fine particles hereinafter sometimes referred to as hollow particles.
  • the hollow particles have a refractive index of usually 1.17 to: L40, preferably 1.17 to: L.37, and more preferably 1.17 to: L35.
  • the refractive index here indicates the refractive index of the whole particle, not the refractive index of only the outer shell forming the hollow particle.
  • the refractive index of the hollow particles is preferably 1.17 or more from the viewpoint of the strength of the particles and the scratch resistance of the low refractive index layer containing the hollow particles.
  • the refractive index of these hollow particles should be measured with an Abbe refractometer [manufactured by Atago Co., Ltd.]. Can do.
  • the radius of the cavity in the hollow particle is r
  • the radius of the outer shell of the particle is r.
  • the porosity w (%) of the hollow particles is calculated according to the following equation (6).
  • the porosity of the hollow particles is preferably from 10 to 60%, more preferably from 20 to 60%.
  • the average particle size of the hollow particles is preferably 30 to 100%, more preferably 35 to 80%, and particularly preferably 40 to 60%, of the thickness of the low refractive index layer. That is, if the thickness of the low refractive index layer is 100 nm, the particle size of the hollow particles is preferably 30 to: LOOnm, more preferably 35 to 80 nm, and particularly preferably 40 to 60 nm. When the average particle diameter is in the above range, the strength of the film is sufficiently exhibited, which is preferable.
  • the inorganic fine particles used in the low refractive index layer include silicon dioxide (silica), fluorine-containing particles.
  • Magnetic fluoride, calcium fluoride, barium fluoride are preferred. Particularly preferred are silicon dioxide (silica) particles.
  • the shape of the inorganic fine particles is preferably a rice grain, a sphere, a cube, a spindle, a short fiber, a ring, or an irregular shape.
  • inorganic fine particles having an average particle size of less than 25% of the thickness of the low refractive index layer
  • small size particles at least one kind of inorganic fine particles having an average particle size of less than 25% of the thickness of the low refractive index layer
  • small-sized particles can be present in gaps between large-sized particles, they can contribute as a retaining agent for large-sized particles, and are therefore preferable. It is also favorable in terms of raw material costs.
  • the average particle size of the small-sized particles is preferably 1 to 20 nm when the low-refractive-index layer is 100 nm.
  • the amount of the small-sized particles to be used is preferably from 5 to: LOO parts by mass, more preferably from 10 to 80 parts by mass, per 100 parts by mass of the large-sized particles (preferably hollow particles).
  • Specific examples of the compound constituting the small-sized particles include those described above for the hollow particles. The same thing is mentioned. Particularly preferably, a silicon oxidant is exemplified.
  • the hollow particles (large-sized particles) and the small / sized inorganic fine particles having a deviation of! / ⁇ are also used to stabilize the dispersion in a dispersion liquid or a curable low refractive index layer forming composition solution.
  • physical surface treatment such as plasma discharge treatment, corona discharge treatment, and chemical surface treatment with surfactants and coupling agents have been performed. Is also good.
  • the use of coupling agents is particularly preferred.
  • an alkoxymetal compound for example, a titanium coupling agent or a silane coupling agent
  • treatment with a silane coupling agent is particularly preferred.
  • Examples of the silane coupling agent include those represented by the general formula (2).
  • the above-mentioned coupling agent is used as a surface treatment agent for inorganic fine particles in the low-refractive-index layer for performing a surface treatment in advance before preparing a curable low-refractive-index layer-forming composition coating solution. It is preferable that the composition is further added as an additive during the preparation of the coating solution and contained in the layer.
  • the inorganic fine particles are dispersed in a medium before the surface treatment in order to reduce the load of the surface treatment.
  • the mixing ratio of the inorganic fine particles is 5 to 90 parts by mass with respect to 100 parts by mass of the composition for forming a low refractive index layer. More preferably, it is more preferably 20 to 60 parts by mass.
  • the amount of the hollow particles in all the particles is preferably 5 to 95 parts by mass, more preferably 10 to 90 parts by mass, and particularly preferably 30 to 80 parts by mass. .
  • the low refractive index layer in the present invention is composed of a thermosetting type and a fluorine-containing polymer formed and cured mainly of a Z or light or radiation (for example, ionizing radiation) curable crosslinkable fluorine-containing compound. I prefer to run.
  • “mainly composed of a fluorine-containing compound” means that the content of the fluorine-containing compound contained in the low refractive index layer is 50% by mass or more based on the total mass of the low refractive index layer. And it is more preferable to contain 60% by mass or more! / ,.
  • the refractive index of the fluorine-containing compound is preferably from 1.35 to L50. More preferably 1.
  • the fluorine-containing compound preferably contains fluorine atoms in the range of 35 to 80% by mass.
  • Examples of the fluorinated compound include a fluorinated polymer, a fluorinated surfactant, a fluorinated ether, and a fluorinated silane conjugate.
  • a fluorinated polymer e.g., ethylene glycol dimethacrylate
  • a fluorinated surfactant e.g., sodium bicarbonate
  • a fluorinated ether e.g., sodium bicarbonate
  • a fluorinated silane conjugate e.g., a fluorinated silane conjugate.
  • the fluorine-containing polymer used for the low refractive index layer includes a repeating structural unit containing a fluorine atom, a repeating structural unit containing a crosslinkable or polymerizable functional group, and other repeating structural units having a substituent power. Strong copolymers are preferred. That is, a copolymer of a fluorinated monomer and a monomer for providing a crosslinkable group, that is, a hardener that is a crosslinkable or polymerizable functional group.
  • a fluorine-containing polymer obtained by copolymerizing another monomer, which is preferably a fluorine-containing polymer having a reactive group, may be used!
  • crosslinkable or polymerizable functional group may be any of conventionally known functional groups!
  • Examples of the polymerizable functional group include a radical polymerizable group and a cationic polymerizable group.
  • a radical polymerizable group for example, a (meth) atalyloyl group, a styryl group, a buloxy group, etc.
  • a cationic polymerizable group for example, an epoxy group, a thioepoxy group, an oxetal group, etc.
  • silyl group which is hydrolyzed and reactive for polycondensation for example, a trimethoxysilyl group, a trialkoxysilyl group, a triacetoxysilyl group, etc. may be mentioned.
  • a repeating structural unit formed by a hydrocarbon-based copolymer component is preferred for solvent solubility, and such a structural unit is introduced in an amount of about 50% by mass in the whole polymer. Fluorinated polymers are preferred. In this case, it is preferable to combine with the silicone compound.
  • the silicone conjugate is a compound having a polysiloxane structure, which contains a curable functional group or a polymerizable functional group in a polymer chain and has a crosslinked structure in a low refractive index layer film.
  • a polysiloxane structure which contains a curable functional group or a polymerizable functional group in a polymer chain and has a crosslinked structure in a low refractive index layer film.
  • Sylaplane manufactured by Chisso Corporation
  • the crosslinking or polymerization reaction of the fluorine-containing polymer having a crosslinking or polymerizable group is performed by irradiating or heating the curable composition for forming the outermost low-refractive index layer simultaneously with or after the application. It is preferable to carry out this. At this time, the same polymerization initiator and spectral sensitizer as those described for the high refractive index layer can be used.
  • copolymerized optionally other monomers include the same ones exemplified in X 31 in the general formula described below (3) in particular limitation Nag specifically.
  • a curing agent may be appropriately used in combination with the above polymer.
  • the low refractive index layer is formed by a condensation reaction between an organometallic compound such as a silane coupling agent and a specific fluorinated hydrocarbon group-containing silane coupling agent in the presence of a catalyst.
  • a cured sol-Z gel film formed by curing is also preferably used.
  • a cured sol-Z gel film for example, a polyfluoroalkyl group-containing silane compound or a partially hydrolyzed condensate thereof (Japanese Unexamined Patent Publication No. Nos.
  • Examples of the catalyst to be used in combination include conventionally known compounds, and those described in the above documents are preferable.
  • the fluorine-containing polymer having a curable reactive group particularly useful in the present invention includes perfluoro compounds selected from perfluoroolefin, perfluorocycloolefin, and non-conjugated perfluorogen, and butyl ethers. Or, a copolymer of butyl esters. In particular, it preferably has a group capable of undergoing a cross-linking reaction by itself [a radical reactive group such as a (meth) atalyloyl group, a ring-opening polymerizable group such as an epoxy group or an oxetanyl group]. These cross-linking reactive group-containing polymer units occupy 5 to 70 mol% of all polymer units. And particularly preferably 30 to 60 mol%.
  • the preferred U of the copolymer used in the present invention is, for example, a compound represented by the following general formula (3).
  • the component [F] represents the following component (pfl), component (pf 2) or component (pf 3) [0330] [Formula 3] Component (Pf1)
  • R represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms.
  • R represents a fluorine atom or a -CF group, which may be the same or different, and j represents an integer of 1 to 4 (preferably, j is 1 or 2)
  • a is 0 or 1
  • b is 2 ⁇
  • R A R represents a fluorine atom or a CF group, respectively.
  • a 0 or 1 as in the above component (pf2).
  • d represents 0 or 1
  • e represents 0 or an integer of 1 to 4
  • f represents 0 or 1
  • g represents 0 or an integer of 1 to 5.
  • E + f + g is an integer in the range of 1 to 6.
  • X 32 represents a linking group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms. May have a branched structure or may have a ring structure. Further, it may have a hetero atom selected from 0, N, and S.
  • Preferred examples of the linking group X 32 include *-(CH 2) —O — **, * — (CH 2)
  • Y 31 represents a hydrogen atom or a methyl group. From the viewpoint of curing reactivity, a hydrogen atom is more preferable.
  • X 31 represents a repeating unit derived from any Bulle monomers, especially braking if a component of the monomer copolymerizable with monomers corresponding to the component [F]
  • Layers below the low refractive index layer such as adhesion to the high refractive index layer, Tg (contributes to skin hardness) of the polymer, solubility in solvents, transparency, slipperiness, dust resistance, and stain resistance
  • Various viewpoints such as properties can be appropriately selected, and may be composed of a single or a plurality of vinyl monomers according to the purpose.
  • X 31 in the general formula (3) is preferred! /,
  • Bull esters such as butyl acetate, butyl propionate, and butyl butyrate, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, glycidyl meta acrylate, aryl (meth) acrylate, (Meth) atalylates such as butyl (meth) atalylate, (meth) atalyloyloxypropyltrimethoxysilane, styrene derivatives such as styrene and p-hydroxymethylstyrene, and unsaturated acids such as crotonic acid, maleic acid and itaconic acid More preferably the force which may be mentioned Le Bon acid and its derivatives such as a vinyl ether derivative conductors, Bulle ester derivatives, particularly preferably Bulle ether derivative.
  • Le Bon acid and its derivatives such as a vinyl ether derivative conductors, Bulle ester derivatives,
  • the component [F] may be a component (pfl).
  • R 21 represents a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, hexyl, decyl, and the like. Hexadecyl and the like.
  • Examples of the aryl group include phenyl and naphthyl, and a phenyl group is preferable.
  • Y 21 represents a hydroxyl group or a hydrolyzable group, for example, an alkoxy group (an alkoxy group having 1 to 5 carbon atoms is preferable, such as a methoxy group and an ethoxy group), and a halogen atom.
  • an alkoxy group an alkoxy group having 1 to 5 carbon atoms is preferable, such as a methoxy group and an ethoxy group
  • a halogen atom for example, Cl, Br, I, etc.
  • R 22 COO R 22 is preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, for example, CH COO, CH COO, etc.
  • an alkoxy group is preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • q represents an integer of 1 to 3, preferably 1 or 2, and particularly preferably 1.
  • R 21 or the Y 21 there are a plurality may be different from one even more R 21 or Y 21 is the same, respectively.
  • a halogen atom fluorine, chlorine, odor arsenide
  • a hydroxyl group a mercapto group
  • a carboxyl group an epoxy group, an alkyl group (methyl, E chill, i —Propyl, propyl, t-butyl, etc.), aryl group (phenyl, naphthyl, etc.), aromatic heterocyclic group (furyl, pyrazolyl, pyridyl, etc.), acyloxy group (acetoxy, atariloyloxy, methacryloyloxy, etc.) ), An alkoxycarbol group (methoxycarbol, ethoxycarbol, etc.), an aryloxycarbol group (phenoxycarbol, etc.), a carbamoyl group (carbamoyl, N-methylcarbamoyl, N, N —Dimethylcarbamoyl
  • R 21 is plural, it is preferable that at least one of them is a substituted alkyl group or a substituted Ariru group.
  • organosilane conjugates represented by the general formula (2) in particular, the organosilane conjugate having a vinyl polymerizable substituent such as a methacryloxy group or an atariloyloxy group. Is preferred. Specific examples include those described in paragraphs [0026] to [0028] of JP-A-2004-42278.
  • the hydrolyzate and the Z or partial condensate of the organosilane compound are generally produced by treating the organosilane compound in the presence of a catalyst.
  • a catalyst acids, bases, organometallic compounds and the like can be used, and specific examples thereof include the same ones as described in the high refractive index layer sol-gel reaction.
  • Organosilane Sol Component for Fluoropolymer in Low Refractive Index Layer
  • the amount is preferably 5 to: LOO mass% is preferred 5 to 40 mass% is more preferred 8 to 35 mass% is still more preferred 10 to 30 mass% is particularly preferred. If the amount used is too small, the effect of the present invention is difficult to be obtained, but if the amount used is less than the upper limit, the refractive index will increase too much, or the shape of the film of the low refractive index layer will deteriorate. Therefore, it is preferable to use an appropriate amount within the above-mentioned range since the excellent effects of the present invention can be exhibited without causing any troubles such as inconvenience. (Polyfunctional polymerizable compound)
  • a polyfunctional polymerizable compound can be further added to the curable composition for forming a low refractive index layer.
  • the polyfunctional polymerizable compound may contain at least two polymerizable groups even if the radical polymerizable functional group and the Z or cationic polymerizable functional group are different.
  • the radical polymerizable functional group include an ethylenically unsaturated group such as a (meth) atalyloyl group, a buroxy group, a styryl group, and an aryl group.
  • the cationically polymerizable conjugate used in the present invention may be any of compounds that cause a polymerization reaction and Z or a crosslinking reaction when irradiated with an active energy ray in the presence of an active energy ray-sensitive cationic polymerization initiator.
  • Typical examples thereof include epoxy compounds, cyclic thioetherified compounds, cyclic etherified compounds, spiroorthoesterified compounds, and
  • the radical polymerizable compound and the cationic polymerizable compound described above are mixed in a mass ratio of radical polymerizable compound: cationic polymerizable compound of 90:10 to 20:80. And more preferably in a ratio of 80:20 to 30:70.
  • the compounding amount of the polyfunctional polymerizable compound containing the radical polymerizable compound and the cationic polymerizable compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the fluoropolymer.
  • the low refractive index layer of the present invention in addition to the components described above, antifouling properties, water resistance, chemical resistance, it is preferable that a known silicone compound or fluorine compound antifouling agent, a slipping agent, or the like is appropriately added.
  • these additives it is preferably added in the range of 0.01 to 20% by mass of the total solid of the curable composition for forming the low refractive index layer, more preferably 0.05. It is the case where it is added in the range of from 10 to 10% by mass, and particularly preferably 0.1 to 5% by mass.
  • Preferred examples of the silicone-based compound include those containing a plurality of dimethylsilyloxy units as repeating units and having a substituent at the terminal of the compound chain and at the Z or side chain.
  • a compound chain containing dimethylsilyloxy as a repeating unit may contain structural units other than dimethylsilyloxy. It is preferable that the same or different substituent is present, and that there are at least two substituents. Examples of preferred substituents include atalyloyl, methacryloyl, butyl, aryl, cinnamoyl, epoxy, oxetal, hydroxyl, fluoroalkyl, polyoxyalkylene, carboxyl, amino and the like. Groups.
  • the molecular weight of the silicone compound is not particularly limited, but is preferably 100,000 or less, particularly preferably 50,000 or less, most preferably 3,000 to 30,000.
  • the silicone atom content of the silicone compound is not particularly limited, but is preferably 18.0% by mass or more, particularly preferably 25.0 to 37.8% by mass.
  • Examples of preferred silicone compounds include those described in paragraph [0068] of JP-A-2004-42278, but are not limited thereto.
  • the fluorine-based compound a compound having a fluoroalkyl group is preferable.
  • the fluoroalkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and has a linear chain [for example, —CF CF, —CH (CF) H, —CH (CF) CF, —CH CH (CF) H
  • An alicyclic structure (preferably a 5- or 6-membered ring, for example, a perfluorocyclohexyl group, a perfluorocyclopentyl group or an alkyl group substituted with these groups), and an ether bond.
  • a perfluorocyclohexyl group preferably a perfluorocyclohexyl group, a perfluorocyclopentyl group or an alkyl group substituted with these groups
  • an ether bond preferably one CH OCH CF CF, -CH CH OCH CFH, — CH CH OCH CH CF, — CH CH OCF CF OCF H, etc.).
  • a plurality of fluoroalkyl groups may be contained in the same molecule.
  • the fluorine-based compound preferably further has a substituent that contributes to bond formation or compatibility with the film of the low refractive index layer.
  • the substituents may be the same or different, and a plurality of substituents are preferred.
  • Preferred examples of the substituent include an attaryloyl group, a methacryloyl group, a butyl group, an aryl group, a cinnamoyl group, an epoxy group, an oxetal group, a hydroxyl group, a polyoxyalkylene group, a carboxyl group, and an amino group.
  • the fluorine-based compound may be a polymer or an oligomer with a compound containing no fluorine atom, and the molecular weight is not particularly limited and used.
  • the fluorine atom content of the fluorine compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass.
  • Examples of preferred fluorine compounds include 2020 “,” M-2020 “, 3833”, and ⁇ M-3833 “[trade names: manufactured by Daikini Danigaku Kogyo Co., Ltd.];” MegaFac F-171 ", “MegaFac F-172”, “MegaFac F-179A”, “Diffensor MCF-300” [trade name: manufactured by Dainippon Ink Co., Ltd.], etc., but are not limited thereto. .
  • a sol Z gel cured product which cures a silane coupling agent and a specific fluorinated hydrocarbon group-containing silane coupling agent by a condensation reaction in the presence of a catalyst is also preferable.
  • these cured sol-Z gels which are composite conjugates of silicon and fluorine, include, for example, polyalkylene-containing silane conjugates or partially hydrolyzed condensates thereof (Japanese Unexamined Patent Publication No. — Nos. 142958, 58-147483 and 58-147484), perfluoroalkyl group-containing silane coupling agents described in JP-A-9-157582, and fluorine-containing lengths.
  • Silyl conjugates containing a poly (perfluoroalkyl ether) group as a chain group compounds described in JP-A-2000-117902, JP-A-001-48590, JP-A-2002-53804, etc.
  • the above-mentioned other additives may be used in combination with these sol-Z gel cured products.
  • the low refractive index layer according to the invention is further provided with a dustproof agent such as a known cationic surfactant or a polyoxyalkylene compound for the purpose of imparting properties such as dustproofness and antistatic.
  • a dustproof agent such as a known cationic surfactant or a polyoxyalkylene compound for the purpose of imparting properties such as dustproofness and antistatic.
  • An antistatic agent or the like can be appropriately added.
  • dust and antistatic agents are The aforementioned silicone compound or fluorine compound may have its structural unit as a part of the function. When these are added as additives, they are preferably added in the range of 0.01 to 20% by mass of the total solid content of the curable composition, more preferably in the range of 0.1 to 5% by mass. This is the case when it is added.
  • the low refractive index layer may also include a microvoid. Specifically, for example, the content S described in JP-A-9222502, JP-A-9288201, JP-A-116902 and the like can be mentioned.
  • organic fine particles can also be used.
  • the organic fine particles include compounds S described in paragraphs [0020] to [0038] of JP-A-11 3820, and The shape is the same as the above-mentioned inorganic fine particles.
  • the thickness of the low refractive index layer is preferably from 0.03 to 0.2 ⁇ m, more preferably from 0.05 to 0.15 ⁇ m.
  • the surface energy of the low refractive index layer in the present invention is preferably 26 mNZm or less, more preferably 15 to 25.8 mNZm. It is preferable to keep the surface energy within this range in terms of antifouling properties.
  • the low-refractive-index layer may be a thermosetting or a cured film of a fluorine-based polymer containing a light- or radiation-curable (eg, ionizing radiation) -curable crosslinkable fluorine-based compound. It is preferable because the effect is exhibited. In particular, if the fluorine-based compound force contained in the low refractive index layer as the outermost layer is 50% by mass or more with respect to the total mass of the outermost layer, the entire surface of the low refractive index layer film has stable characteristics without unevenness. Is preferred.
  • the surface energy of a solid can be determined by the contact angle method, the heat of wetting method, and the adsorption method as described in "Basics and Application of Wetting” (Realize Inc., issued on Dec. 10, 1989).
  • the contact angle method it is preferable to use the contact angle method.
  • two types of solutions whose surface energies are known are dropped on the protective film surface of the polarizing plate, and the tangent drawn to the droplet and the film at the intersection of the droplet surface and the film surface.
  • the angle between the surface and the one that contains the droplet is defined as the contact angle, and the surface energy of the film can be calculated by calculation.
  • the contact angle of the outermost layer surface with water is 90 ° or more, even 95 ° or more, especially 100 ° or more It is preferable that
  • the dynamic friction coefficient of the surface of the low refractive index layer is preferably 0.25 or less, more preferably 0.05 to 0.25, and particularly preferably 0.03 to 0.15.
  • the kinetic friction coefficient described here is the dynamic friction between the surface and a 5mm diameter stainless steel hard sphere when a 0.98N load is applied to a 5mm diameter stainless steel hard sphere at a force of 4N at a speed of 60cmZ. Refers to the coefficient.
  • the hardness of the low refractive index layer is preferably at least H, more preferably at least 2H, most preferably at least 3H, in a pencil hardness test according to JIS K-5400.
  • the abrasion resistance of the low refractive index layer is preferably as small as possible in the Taber test according to JIS K-6902.
  • the hard coat layer can be provided on the surface of the protective film in order to impart physical strength to the antireflection film. In particular, it is preferable to provide between the protective film and the high refractive index layer.
  • the hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a light, Z or heat curable compound.
  • a coating composition containing a polyester (meth) acrylate, a polyurethane (meth) acrylate, a polyfunctional monomer, a polyfunctional oligomer, or a hydrolyzable functional group-containing organometallic compound is coated on a protective film, and the curable compound is cured.
  • the curable functional group a photopolymerizable functional group is preferred, and the organometallic compound containing a hydrolyzable functional group is preferably an organic alkoxysilyl conjugate. Specifically, those having the same contents as the matrix binder of the high refractive index layer can be mentioned. Further, it is also preferable to use a combination of a radical polymerizable group-containing compound and a cationic polymerizable group-containing compound described in JP-A-2002-322430.
  • the hard coat layer preferably contains inorganic fine particles having an average primary particle diameter of 300 nm or less. It is more preferably from 10 to 150 nm, and still more preferably from 20 to: LOOnm.
  • the average particle diameter here is a mass average diameter.
  • composition of the hard coat layer examples include those described in JP-A-2002-144913, JP-A-2000-9908, and International Publication No. 00/46617.
  • the content of the inorganic fine particles in the hard coat layer is preferably from 10 to 90% by mass, more preferably from 15 to 80% by mass, based on the total mass of the hard coat layer.
  • the high refractive index layer can also serve as the hard coat layer.
  • the high refractive index layer also functions as the hard coat layer, it is preferable that the inorganic fine particles are finely dispersed and contained in the hard coat layer using the method described for the high refractive index layer.
  • the thickness of the hard coat layer can be appropriately designed depending on the application.
  • the thickness of the hard coat layer is preferably 0.2 to 10 ⁇ m, more preferably 0.5 to 7 ⁇ m, and particularly preferably 0.7 to 5 ⁇ m.
  • the inorganic fine particles contained in the hard coat layer By selecting the inorganic fine particles contained in the hard coat layer to have a conductive property such as ITO or ⁇ , it is possible to form an antistatic layer, and to have both the hard coat property and the antistatic property. I'm sorry.
  • the hardness of the hard coat layer is preferably 2 or more, more preferably 2 or more, most preferably 3 or more, in a pencil hardness test according to JIS II-5400.
  • the abrasion resistance of the node coat layer is preferably the smaller the abrasion of the test piece before and after the test in the Taber test according to JIS II-5400.
  • Each layer of the anti-reflection film is formed by a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating, a microgravure method, an etastrusion coating method (U.S. Pat. It can be formed by application using a method.
  • the microgravure method and the gravure method are also preferable from the viewpoint that drying unevenness can be reduced by minimizing the wet coating amount.
  • two or more layers may be applied simultaneously. Examples of the simultaneous coating method include the methods described in U.S. Patent Nos. 2761791, 2941 898, 3508947, and 3526528, and Yuji Harazaki, Coating Engineering, page 253, Asakura Shoten (1973).
  • a light irradiation step for filtration and curing before the application of the curable composition coating solution for forming each layer, and the formation of the high refractive index layer It is preferable to carry out the contents described above.
  • the antireflection film of the present invention is the antireflection film having the multilayer structure according to the above-described embodiment, wherein the antireflection film has a light scattering layer (that is, the high refractive index layer may be a light scattering layer) and a low refractive index as follows.
  • An anti-reflection film consisting of a layer (a hard coat layer may be provided on the surface of the light-scattering layer opposite to the low-refractive-index layer), or an anti-reflection film having a specific light-scattering irregularity shape May be adopted.
  • the light-scattering layer in the present invention is preferably formed by dispersing at least one kind of light-transmitting particles having an average particle diameter of 0.5 to 7.5 ⁇ m in light-transmitting resin.
  • the difference in the refractive index between the transparent particles and the light-transmitting resin is 0.005 to 0.2, and the light-scattering layer contains 3 to 30% by mass of the total solid content of the light-scattering layer.
  • the light scattering layer in the present invention also includes an internal scattering type light scattering layer having substantially no light scattering effect due to surface irregularities.
  • the translucent particles in the present invention have an average particle diameter of 0.5 to 7.0 O ⁇ m, and more preferably 1.5 to 4.0.
  • the translucent particles may be particles of an organic compound or particles of an inorganic compound! If the average particle size of the light-transmitting particles is equal to or larger than the lower limit, a favorable light scattering effect is exhibited, and if the average particle size is equal to or smaller than the preferred lower limit, the film becomes thicker and the curl of the film increases. This is preferable because the light scattering effect without the occurrence of such troubles as the light scattering effect is also good.
  • the smaller the variation in particle size the smaller the variation in scattering characteristics, and the easier the design of haze value.
  • the light-transmitting particles can be used without any particular limitation as long as the difference in the refractive index from the light-transmitting resin having high transparency has the above-mentioned numerical value.
  • polymethyl methacrylate beads (refractive index 1.49), acrylic styrene copolymer beads (refractive index 1.54), melamine formaldehyde beads (refractive index 1.57), polycarbonate beads (refractive index 1.57) ), Cross-linked polystyrene beads (refractive index 1.61), polychloride bead beads (refractive index 1.60), benzoguanamine melamine formaldehyde beads (refractive index 1.68), and the like.
  • the inorganic fine particles for example, silica beads (refractive index 1. 44), alumina beads (refractive index: 1.63) and the like, and hollow inorganic beads are also preferred for preventing sedimentation and lowering the refractive index.
  • the difference in the refractive index between the translucent particles and the translucent resin is preferably from 0.02 to 0.20, more preferably from 0.04 to 0.10.
  • the amount of translucent particles added to translucent resin is as important as the difference in refractive index.
  • the content of the translucent particles is preferably 3 to 30% by mass, and more preferably 5 to 20% by mass, based on the total solid content of the light scattering layer.
  • the content of the light-transmitting particles is less than the upper limit, problems such as clouding of the film do not occur.
  • the content is more than the lower limit, which is preferable, a sufficient light scattering effect can be obtained.
  • the light-transmitting particles two or more different light-transmitting particles may be used in combination.
  • the mixture of a plurality of types of particles effectively controls the refractive index, so that the translucent particles with the highest refractive index and the translucent particles with the lowest refractive index are used. It is preferable that the difference in refractive index between the particles and the conductive particles is 0.005 or more and 0.10 or less.
  • the translucent particles as described above are added, since the translucent particles are likely to settle in the translucent resin, an inorganic filler such as silica is added to prevent sedimentation. Is also good.
  • the inorganic filler having a particle size of 0.5 m or less is used in an amount of 0.1 so as not to impair the transparency of the light scattering layer with respect to the translucent resin. It is better to contain less than about%.
  • the light-transmitting resin that forms the light scattering layer is mainly a reaction-curing resin, that is, (1) an ionizing radiation-curing resin that is cured by ultraviolet rays or electron beams, and (2) an ionizing radiation-curing resin.
  • a mixture of a thermoplastic resin and a solvent, and (3) a thermosetting resin are suitably used. Specifically, those having the same contents as the matrix of the high refractive index layer are mentioned.
  • the thickness of the light scattering layer is usually about 0.5 Pm to 50 Pm, preferably 1 Pm to 20 Pm, and more preferably 2 Pm to 10 Pm.
  • the refractive index of the translucent resin is preferably 1.51 to 2.00, more preferably 1.51 to 1.
  • the refractive index of the translucent resin is a value measured without including the translucent particles.
  • the hard coat layer and the light scattering layer are used as an interface binder, as described in detail in the section of the low refractive index layer, the organic silyl conjugation product represented by the general formula (2) and ⁇ or its organic compound. It is preferable to contain a hydrolyzate of the silyllid conjugate and ⁇ or a partial condensate thereof.
  • surfactant examples include commercially available products such as "" -5103 "and” ⁇ -503 "[trade names: both manufactured by Shin-Etsu Chemical Co., Ltd.], and ⁇ or a hydrolyzate thereof. Or a partial condensate thereof is a preferred compound.
  • the addition amount of the surfactant is based on 100 parts by mass of the total solid content of the composition for forming a light-scattering layer.
  • 1 to 50 parts by mass are preferred, and 2 to 30 parts by mass is more preferred.
  • a surfactant to the hard coat layer or the light scattering layer because the surface uniformity of the antireflection film in the present invention can be improved.
  • the surfactant include a perfluoroalkyl group-substituted (meth) acrylate copolymer having 6 to 12 carbon atoms, and a perfluorovinyl ether copolymer having 6 to 12 carbon atoms.
  • the amount of the surfactant added is based on 100 parts by mass of the total solid content of the composition for forming a light scattering layer.
  • the anti-reflection film may have an anti-glare function (anti-glare function) for scattering external light. Yes.
  • the anti-glare function is obtained by forming irregularities on the surface of the antireflection film.
  • the haze of the antireflection film should be 1 to 50%.
  • the haze is caused by surface scattering occurring at the interface between the outermost surface of the film and air, and by the internal scattering occurring at the interface between regions having different refractive indexes inside the film. Can be divided into those that do.
  • the former is hereinafter referred to as surface haze, and the latter is hereinafter referred to as internal haze.
  • the surface haze of the surface opposite to the surface in contact with the polarizing film after forming the low refractive index layer is 2% to 7%, and By setting the internal haze of the entire film to 0 to 50%, sufficient anti-glare properties and prevention of surface turbidity can be achieved at a high level, which is preferable.
  • the surface of the uppermost layer of the antireflection film (usually, a low refractive index layer) has an arithmetic surface roughness based on JIS B 0601-1994.
  • the maximum height (Ry) of the surface unevenness is 2 m or less, more preferably 0.05 to 1.5 / ⁇ , particularly 0.1 to 1.
  • the inclination angle of the unevenness profile (specular reflection) It is preferable that the average value of the inclination angle with respect to the surface is 15 ° or less, more preferably 0.25 to 15 °, particularly preferably 0.25 to 10 °.
  • the inclination angle of the uneven profile is preferably small.
  • the angle of inclination of the irregular asperity profile is not unique but exists with a distribution, but if the frequency of small angles of inclination is not too high, good antiglare properties can be obtained. This is preferable because glare films do not cause problems such as whitening.
  • the concave and convex shapes on the film surface can be evaluated by using a two-dimensional roughness meter “SJ-400” manufactured by Mitutoyo Corporation or a “Micro Map” machine manufactured by RYOKA SYSTEM.
  • the tilt angle is determined by the following method. That is, as shown in FIG.
  • the protective area on the film plane is assumed triangle ABC in the range of 0.5 to 2 111 2
  • the three vertices A, B, three perpendicular line extended from the C vertically upward Points that intersect with the string-proof anti-reflective coating surface are denoted by ⁇ ', ⁇ ', C '.
  • the normal ⁇ of the triangle A'B'C 'plane formed by these three points D-D' is perpendicular to the triangle ABC plane force on the protective film.
  • the angle of inclination of the antireflection film surface is assumed triangle ABC in the range of 0.5 to 2 111 2
  • the three vertices A, B, three perpendicular line extended from the C vertically upward Points that intersect with the string-proof anti-reflective coating surface are denoted by ⁇ ', ⁇ ', C '.
  • the normal ⁇ of the triangle A'B'C 'plane formed by these three points D-D' is perpendicular to the triangle ABC plane force on the
  • Measurement area on the protective film at that time is preferably in a 0. 25 mm 2 or more
  • any method can be applied as long as the surface shape can be sufficiently maintained.
  • a method in which fine particles are used in the low refractive index layer, thereby forming irregularities on the film surface for example, Japanese Patent Application Laid-Open No. 2000-271878, the lower layer of the low refractive index layer (high refractive index layer, medium refractive index)
  • a small amount (0.1 to 50% by mass) of relatively large particles is added to the surface layer or the hard coat layer) to form a surface unevenness film.
  • JP-A-2000-281410, JP-A-2000-95893, etc. a method of physically providing a low-refractive-index layer on the surface after coating.
  • a method of transferring an uneven shape for example, an embossing method (for example, — 278839, JP-A-11-183710, JP-A-2000-275401, etc., release paper transfer method (for example, Japanese Patent Publication No. 3332534, etc.), and particle spray transfer method (for example, 87632) and the like.
  • the embossing method is preferred, and is mentioned as an embodiment.
  • the antireflection film of the present invention may be in the form of a specific surface unevenness in the present invention by embossing the multilayer antireflection film produced as described above. Thereby, the thickness of the antireflection film can be made substantially constant.
  • the embossing plate used in the present invention may be any iron alloy containing carbon and chromium having a Vickers hardness of 500 or more.
  • the shape of the embossing plate is preferably the following unevenness parameter. If the regularity of the uneven arrangement is high, light interference is not preferred.
  • the average roughness period (Sm) is preferably 5 m to 100 mS, more preferably 5 m to 30 mS.
  • the arithmetic average roughness (Ra) is preferably from 0.05 to 20 ⁇ m, more preferably from 0.3 to 1 ⁇ m.
  • the inclination angle of the uneven profile is preferably distributed in the range of 0.5 ° to 10 °, and more preferably in the range of 0.5 ° to 5 °.
  • the average roughness period (Sm), arithmetic average roughness (Ra) and average inclination angle are the two-dimensional roughness meter "SJ-400" manufactured by Mitutoyo Corporation or “Micro Map” manufactured by RYOKA SYSTEM Co., Ltd. It can be measured using a "" machine.
  • the embossing in the present invention is carried out by using a single-sided embossing calender on the protective film coated with the antireflection film prepared as described above.
  • the following pressing conditions are the pressure applied to the film surface, the plate surface temperature, and the pressing time.
  • the pressing pressure is 1 X 10 5 or more Pa is preferably tool 1 X 10 5 ⁇ 100 X 10 5 Pa and more
  • the linear pressure corresponding to these pressure ranges is more preferably 10 OON / cm or more S ⁇ 1000-50,000 N / cm force S, more preferably ⁇ 5000-3000 ONZcm.
  • the preheat roll temperature during pressing is preferably 60 to 180 ° C, more preferably 70 to 160 ° C; the embossing roll surface temperature is preferably 80 ° C to 220 ° C. More preferably, the temperature is in the range of ° C to 200 ° C. Pressing time is preferably 1 second to 600 seconds
  • the transport speed is preferably 1 to 50 mZ, more preferably 5 to 30 mZ.
  • the laminated type antireflection film may further include a moisture-proof layer, an antistatic layer (conductive layer), a primer layer, an undercoat layer or a protective layer, a shield layer, a sliding layer, and a single layer of gas barrier.
  • the shield layer is provided to shield electromagnetic waves and infrared rays.
  • the polarizing plate of the present invention comprises a polarizing film formed of a cured film composed of a hydrophilic resin and dichroic molecules, on one side of the above-described cellulose acylate film with an antireflection film, and on the other side.
  • the above "cellulose acylate film” is used.
  • the polarizing film used in the present invention also has a polychromatic alcohol (PVA) and a dichroic molecular force as a hydrophilic resin.
  • PVA polychromatic alcohol
  • modified cellulose such as poly (N-methylolacrylamide), carboxymethyl modification and the like can also be used.
  • PVA which is preferable as an embodiment of the present invention, is a polymer material obtained by kneading poly (vinyl acetate), and is a component copolymerizable with vinyl acetate such as unsaturated carboxylic acid, unsaturated sulfonic acid, olefins, and vinyl ethers. May be contained.
  • a modified PVA containing an acetoacetyl group, a sulfonic acid group, a carboxyl group, an oxyalkylene group, or the like can also be used.
  • the degree of saponification of PVA is not particularly limited, but from the viewpoint of solubility and the like, is preferably 80 to L00 mol%, and particularly preferably 90 to L00 mol%.
  • the degree of polymerization of PVA is not particularly limited.
  • the number average polymerization degree of 1S is preferably 1,000 to 10,000, and 1500 to 5,000 is particularly preferred! / ⁇ .
  • PV The syndiotacticity of A is preferably 55% or more to improve durability as described in Japanese Patent No. 2978219, but is preferably 45-52.5% described in Japanese Patent No. 3317494. Can also be used!
  • a polarizing film by introducing dichroic molecules.
  • a method for producing a PVA film a method in which a stock solution obtained by dissolving a PVA-based resin in water or an organic solvent is cast to form a film is generally preferably used.
  • the concentration of polyvinyl alcohol-based resin in the stock solution is usually 5 to 20% by mass.
  • a PVA film having a film thickness of 10 to 200 m can be manufactured by casting the stock solution by a casting method.
  • the production of the PVA film can be carried out with reference to Japanese Patent No. 3342516, JP-A-09-328593, JP-A-13-302817, and JP-A-14-144401.
  • the crystallinity of the PVA film is not particularly limited.
  • the average crystallinity (Xc) described in Japanese Patent No. 3251073 is 50 to 75% by mass, and in order to reduce in-plane hue variation.
  • a PVA film having a crystallinity of 38% or less described in JP-A-14-236214 can be used.
  • Birefringence of PVA film (An) It is described in preferred instrument Patent No. 3,342,516 small birefringence can be preferably used 1. 0 X 10- 3 or less of the PVA film . However, as described in JP-A-14-228835, the birefringence of the PVA film may be set to 0.02 or more and 0.01 or less in order to obtain a high degree of polarization while avoiding cutting during stretching of the PVA film! / However, the value of (nx + ny) Z2-nz may be 0.0003 or more and 0.01 or less as described in JP-A-14-060505. Where nx is the refractive index in the longitudinal direction of the film, ny is the refractive index in the width direction of the film, and nz is
  • Retardation Re (in-plane) of the PVA film is Onm ⁇ : LOOnm is preferred, and Onm ⁇ 5 Onm is more preferred.
  • the Rth (thickness direction) of the PVA film is preferably from Onm to 500 nm, more preferably from Onm to 300 nm.
  • the polarizing plate of the present invention includes a PVA film having a 1,2-glycol bond content of 1.5 mol% or less described in Japanese Patent No. 3021494; Japanese Patent Application Laid-Open No. 13-316492.
  • the film thickness of the PVA film before stretching is not particularly limited, but from the viewpoint of stability of film retention and uniformity of stretching, 1 to 1 mm is preferred, and 20 to 200 ⁇ m is particularly preferred. ,. As described in JP-A No. 14-236212, a thin PVA film may be used in which the stress generated when stretched 4 to 6 times in water is 10 N or less as described above. .
  • dichroic molecule a higher-order iodine ion such as I- or I- or a dichroic dye is preferably used.
  • higher-order iodine ions are particularly preferably used.
  • high-order iodine ions can convert iodine into iodine. It can be produced in a state where PVA is immersed in a solution dissolved in an aqueous potassium fluoride solution and in an aqueous solution of Z or boric acid, and is adsorbed and oriented on the PVA.
  • dichroic dye when used as the dichroic molecule, specific examples thereof include “Application of Polarizing Film” (CMC, published on February 10, 1986) or “COLOR IND EX, Third Edition, Volume 2 '' (The Society of
  • the dichroic dyes described in JP-A-6-65815 and JP-A-7-261024 can also be preferably used. In order to produce dichroic molecules having various hues, the use of two or more dichroic dyes does not work. When a dichroic dye is used, the adsorption thickness may be 4 m or more, as described in JP-A-14-082222.
  • the preferred thickness of the polarizing film is 5 to 40 m, more preferably 10 to 30 m, and particularly preferably 5 to 22 ⁇ m.
  • the transmittance at 700 nm of the polarizing film at the time of cross-col is 0.001% to 0.3% and the transmittance at 410 nm is 0%.
  • a preferred embodiment is 001% or more and 0.3% or less.
  • the upper limit of the transmittance at 700 nm during cross-col is preferably 0.3% or less, more preferably 0.2%. 4
  • the upper limit of the transmittance at 10 nm is preferably 0.3% or less, preferably 0.08% or less, and more preferably 0.05% or less.
  • the polarizing film has a dichroic substance such as iodine and has an absorption in the corresponding wavelength range as described above. It has been found that it is effective to add a coloring agent as a hue adjusting agent, and to add a hardener such as boric acid when adding a dichroic substance such as iodine. It is also effective to perform these operations in combination with ⁇ a.
  • Two or more hue adjusters may be blended. If the dye to be added has an absorption at 410 nm or 700 nm, the ability to achieve the object of the present invention should have a main absorption of 380 nm to 500 nm or 600 nm to 720 nm.
  • the amount of the dye to be added can be arbitrarily determined according to the absorbance of the dye to be used, the dichroic ratio, and the like. In any case, there is no particular limitation as long as the transmittance at 700 nm during crossing is 0.3% or less and the transmittance at 410 nm is 0.3% or less.
  • the hue adjusting agent to the polarizing film
  • immersion is preferable among all the methods used such as immersion, coating, and spraying.
  • the step of adding may be either before or after stretching, but is preferably before stretching in view of improving the polarization performance.
  • a separate addition process may be provided! Alternatively, it can be carried out in the dyeing step or the hardening agent adding step to be described later.
  • the ratio of the thickness of the polarizing film to the thickness of the protective film described below is 0.011 A (thickness of the polarizing film) ZB (protective film) It is also preferable to set the thickness in the range of ⁇ 0.16.
  • intersection angle between the slow axis of the protective film and the absorption axis of the polarizing film may be any value, but is preferably parallel or an azimuth of 45 ⁇ 20 °.
  • the polarizing plate of the present invention comprises a swelling step, a dyeing step, a hardening step, a stretching step, a drying step, and a protective film pasting step. It can be manufactured by a bonding step and a drying step after bonding. It is possible to arbitrarily change the order of the above-mentioned dyeing step, hardening step and stretching step, or to combine and carry out several steps at the same time.
  • the swelling step, the dyeing step, and the drying step as follows, the polarizing plate of the present invention can be suitably manufactured.
  • the method for reducing the thickness of the polarizing film can be achieved by a conventional stretching method such as increasing the stretching ratio, reducing the film thickness, or using a PVA film.
  • the film thickness of the PVA film which is usually used, is [for example, “VF-P”, “VF-PS”, etc., manufactured by Kuraray Co., Ltd.].
  • VF-P VF-P
  • VF-PS VF-PS
  • the thickness of the polarizing film becomes 20 m or less. 4 times or more in horizontal uniaxial stretching method by tenter method, etc.
  • stretched the thickness of the polarizing film becomes 20 m or less.
  • the thickness of the polarizing film is reduced to 20 ⁇ m or less by reducing the thickness of the PVA film to 50 m or less and stretching the film about 6 times or more by uniaxial stretching.
  • a stretching method in which the polymer film for a polarizing film is uniaxially stretched in the transport direction or after being uniaxially stretched and then stretched in the lateral direction may be used. it can.
  • This method is a method generally called biaxial stretching.
  • a simultaneous biaxial stretching method using a tenter method and a simultaneous biaxial stretching method using a tubular method are known. In this method, when a 75 ⁇ m thick PVA film is stretched about 4 times or more in the vertical direction and about 1.5 times or more in the horizontal direction, the thickness of the polarizing film becomes 20 m or less.
  • a preferred stretching method in the present invention is an oblique stretching method described in JP-A-2002-86554.
  • this stretching method the thickness of the polarizing film is reduced to 20 m or less by stretching the PVA film having a PVA film thickness of 125 / zm or less four times or more.
  • the thickness of the polarizing film is preferably thinner from the viewpoints of failure in which light leakage occurs (frame failure) and lightening of the polarizing plate member. Problems such as cutting of the film, adverse effects on handling when immersed in dyeing solution or hardening solution, and cracking during drying after elongation occur. Therefore, in the present invention, the preferred thickness of the polarizing film is 5 ⁇ m to 22 ⁇ m, and more preferably 8 ⁇ m to 20 ⁇ m.
  • the swelling step is preferably performed only with water.
  • the optical performance is stabilized, and the generation of the polarizing film substrate in the production line is avoided.
  • the degree of swelling of the polarizing film substrate can be controlled by swelling the polarizing film substrate with an aqueous boric acid solution.
  • the temperature and time of the swelling step can be arbitrarily set at a force of 10 ° C to 50 ° C, and 5 ° or more. C or more and 50 ° C or less
  • the temperature is set to a temperature of 35 ° C. or more and 45 ° C. or less for 5 seconds or more and 600 seconds or less, preferably 15 seconds or more and 300 seconds or less.
  • the method described in JP-A-2002-86554 can be used.
  • any means such as application or spraying of an iodine or dye solution rather than immersion is possible.
  • the dichroic substance used for dyeing is not particularly limited, but it is preferable to use iodine in order to obtain a high-contrast polarizing plate.
  • the dyeing step is preferably performed in a liquid phase.
  • iodine When iodine is used, it is performed by immersing a PVA film in an iodine-potassium iodide aqueous solution. Iodine is 0.05 ⁇ 20gZL, potassium iodide is 3 ⁇ 200gZL, and the mass ratio of iodine to iodide power is 1 ⁇ 2000 force. Staining time is 10-1200 seconds
  • the preferred liquid temperature is 10 to 60 ° C. More preferably, iodine is 0.5 to 2 gZL, potassium iodide is 30 to 120 gZL, the mass ratio of iodine to potassium iodide is 30 to 120, dyeing time is 30 to 600 seconds, and liquid temperature is 20 to 50 °. C.
  • a boron-based compound such as boric acid or borax as a hardening agent and simultaneously perform the dyeing step and the hardening step described below.
  • boric acid it is preferable to add 1 to 30 times by mass ratio to iodine.
  • a dichroic dye in this step and the amount is preferably 0.001 to: Lg / L.
  • Replenishment may be in either a solution or solid state. When adding as a solution, the concentration may be made high and may be added little by little as needed.
  • the hardening step it is preferable to include a crosslinking agent by dipping in a crosslinking agent solution or applying a solution. Further, as described in JP-A-11-52130, the hardening step can be performed by dividing into several steps.
  • cross-linking agent those described in US Reissued Patent No. 232897 can be used. As described in Patent No. 3357109, in order to improve dimensional stability, a cross-linking agent is used. Although polyhydric aldehydes can be used as the agent, boric acids are most preferably used.
  • metal ions may be added to a boric acid-potassium iodide aqueous solution.
  • the metal ion is preferably salted zinc, but as described in JP-A-2000-35512, instead of salted zinc, halogenated zinc such as zinc iodide, zinc sulfate, zinc acetate, etc. Can also be used.
  • an aqueous solution of potassium monoborate containing zinc chloride is prepared, and the PVA film is immersed in the film to form a hardened film.
  • Boric acid is 1 to: LOOgZL
  • potassium iodide is 1 to 120 gZL
  • zinc chloride is 0.01 to 10 gZL
  • the hardening time is preferably 10 to 1200 seconds.
  • the liquid temperature is preferably 10 to 60 ° C. More preferably, boric acid is 10 to 80 gZL, potassium iodide is 5 to: LOOgZL
  • salted zinc 0.02 to 8 gZL
  • hardening time is 30 to 600 seconds
  • liquid temperature is 20 to 50 ° C. is there.
  • Fig. 2 shows a typical example of a method for obliquely stretching a polymer film as a schematic plan view.
  • the oblique stretching method used in the present invention comprises the steps of introducing the raw film shown in (a) in the direction of the arrow (a), stretching the film in the width direction shown in (b), and stretching the film shown in (c). The next step, ie, the step of feeding in the (mouth) direction is included.
  • the “stretching step” refers to the entire process for performing the oblique stretching method used in the present invention, including these (a) to (c) steps.
  • the film is continuously introduced from the direction (a), and is held for the first time by the holding means on the left side when viewed from the upstream side at the point B1. At this point, one end of the film is not yet held, and no tension is generated in the width direction.
  • point B1 is the effective retention start point (hereinafter, Starting point).
  • the substantial retention starting point is defined as the point where both ends of the film are retained for the first time.
  • the actual holding start point is indicated by two points, a holding start point A1 on the further downstream side, and a point C1 that intersects a trajectory 23 of the holding means on the opposite side with a linear force drawn substantially perpendicularly from A1 to the introduction film 21. .
  • the substantial holding release point (hereinafter referred to as the “substantially holding release point”) is defined as the Cx point, which separates from the holding means further upstream, and a straight line drawn substantially perpendicular to the center line 22 of the film sent from Cx to the next process.
  • the force is defined by two points, Ay, which intersect the trajectory 24 of the holding means on the opposite side.
  • the angle of the final stretching direction of the film is determined by the stroke difference Ay—Ax (that is, I L1 -L2 I) of the left and right holding means at the end point of the substantial stretching process (effective holding release point), and It is determined by the ratio to the distance W (the distance between Cx and Ay). Therefore, the inclination angle ⁇ formed by the stretching direction with respect to the transport direction to the next step is an angle satisfying the following equation (12).
  • Equation (12): ⁇ ⁇ W /
  • the upper film edge in Fig. 2 is the force that is held up to 28 after point Ay. The other end is held !, so that no new stretching in the width direction occurs, and 18 and 28 are at the substantial holding release points. Absent.
  • the substantial holding start points at both ends of the film are not simple penetration points into the right and left holding means.
  • the two substantial holding starting points are, more precisely, what is defined above, a straight line connecting one of the left and right holding points and the other holding point is the center line of the film introduced into the film holding process. And these two holding points are defined as being located at the most upstream.
  • the two substantial holding release points are points that are substantially orthogonal to the center line of the film sent to the next step, which is a linear force connecting one of the left and right holding points and another holding point. Yes, and these two holding points are defined as being located most downstream.
  • substantially orthogonal means that a straight line connecting the center line of the film and the left and right substantial holding start points or the substantial holding release point is 90 ⁇ 0.5 °.
  • the angle between the slow axis of the protective film and the absorption axis of the polarizing film is 10 ° or more and less than 90 °, preferably 20 ° or more and 70 ° or less, more preferably 40 ° or more and 50 ° or less. ° or less.
  • a single plate can be obtained from a long polarizing plate at a high yield in the step of punching the polarizing plate, which is preferable.
  • Such a polarizing plate can be manufactured by devising a stretching method of the polymer film constituting the polarizing film as described above. (Drying process)
  • the drying conditions follow the method described in JP-A-2002-86554, but as described above, the temperature is preferably 80 ° C or lower, more preferably 70 ° C or lower.
  • the preferred drying time is between 30 seconds and 60 minutes.
  • the polarizing film produced by the present invention is provided as a polarizing plate by attaching protective films to both surfaces thereof.
  • the two protective films may be the same or different.
  • When laminating the polarizing film and the protective film supply the adhesive liquid immediately before laminating so that the polarizing film and the protective film overlap. It is preferable that the sheets are bonded with a pair of rolls.
  • the thickness of the adhesive layer after drying is preferably from 0.001 to 5 ⁇ m, more preferably from 0.005 to 3 ⁇ m.
  • the adhesive between the polarizing film and the protective film is not particularly limited, and includes, for example, a PVA-based resin (modified PVA into which an acetoacetyl group, a sulfonic acid group, a carboxyl group, an oxyalkylene group, or the like is introduced). ) And an aqueous solution of a boron compound. Among them, PVA-based resin is preferred. (Drying process after bonding)
  • the temperature range is 30 ° C to 100 ° C, and the drying time is preferably 30 seconds to 60 minutes. is there
  • the content of the element in the polarizing film is 0.1 to 3.
  • Zinc is preferably 0.001 to 2. OgZm2.
  • an organic titanium layer is used in any of the dyeing step, the stretching step, and the hardening step. It is desirable to add and use a conjugate and Z or an organic zirconium compound, and to contain at least one compound selected from an organic titanium compound and an organic zirconium compound.
  • FIG. 5 shows an example of punching a conventional polarizing plate
  • FIG. 4 shows an example of punching a polarizing plate of the present invention
  • the conventional polarizing plate has a polarizing absorption axis 71, that is, a stretching axis, which coincides with the longitudinal direction 72
  • the polarizing plate of the present invention has a structure as shown in FIG.
  • the polarization absorption axis 81 that is, the stretching axis is inclined 45 ° with respect to the longitudinal direction 82, and this angle is L Since the angle formed between the absorption axis of the polarizing plate and the vertical or horizontal direction of the liquid crystal cell itself when pasted to the liquid crystal cell in a CD, oblique punching is not required in the punching process. Moreover, as can be seen from FIG. 3, the polarizing plate of the present invention can be manufactured by slitting along the longitudinal direction without punching, since the cutting is straight along the longitudinal direction, and thus the productivity is also high. Markedly
  • the preferred single-plate transmittance of the polarizing plate of the present invention is 40.0-49.5%, more preferably 41.0-49.5%. Further, the iodine concentration and the single-plate transmittance may be in the ranges described in JP-A-14 258051. Further, the transmittance (parallel transmittance) when two polarizing plates of the same type are overlapped with the absorption axes coincident is preferably in the range of 36 to 42%, and when the absorption axes are overlapped at right angles. A preferred range of the transmittance (orthogonal transmittance) is 0.001 to 0.05%. The transmittance is defined by the following equation (13) based on IS O-8701.
  • K, S (), y (), and ⁇ ( ⁇ ) are as follows.
  • the preferred range of polarization at the polarizing plate of the present invention is a 999 0/0 or less, more [ Preferred 99. 940% More than 99. 995%.
  • the dichroic ratio defined by the following formula (15) preferably ranges from 48 to 1215, more preferably from 53 to 525.
  • the difference ⁇ between the maximum value T and the minimum value T of the parallel transmittance T is preferably 6% or less, more preferably min
  • the transmittance ratio R parallel transmittance at a wavelength of 490 nm Z parallel transmittance at a wavelength of 550 nm
  • This embodiment is particularly preferable for a reflective or transflective liquid crystal display device.
  • optical characteristics when the polarizing plate is arranged in a cross-col are absorption peaks in the wavelength range of 550 to 650 nm in the absorbance characteristics Ap Z 450 to 520 nm.
  • Ap ratios of 1.5 or less are preferred. More preferably 1.4 or less, particularly preferably 1.2 or less
  • the standard deviation of the parallel transmittance for each lOnm between 20 and 700 nm of the light wavelength power is 3 or less, and the parallel transmittance (parallel transmittance for each lOnm between 420 and 700 nm of the light wavelength). It is preferable that the minimum value of the Z orthogonal transmittance) is 300 or more. As a result, a display image with contrast is obtained on the liquid crystal display device, and the display color when a white screen is displayed is effective for neutralization.
  • the hue of the polarizing plate of the present invention is preferably evaluated using the lightness index L * in the L * a * b * color system recommended as the CIE uniform perception space, and the chroma takeness indices a * and b *. . L * and b * are defined by Expression (20) using the above X, Y, and ⁇ .
  • X, ⁇ , and ⁇ ⁇ represent the tristimulus values of the illumination light source.
  • X 98.07
  • the range of a * of a single polarizing plate is preferably from 2.5 to 0.2, and more preferably 2. 0 to 0.
  • the preferred range of b * for a single polarizing plate is 1.5 to 5, and more preferably 2 to 4.5.
  • the preferred range of a * of the parallel transmitted light of the two polarizing plates is 4.0 to 0, more preferably 3.5 to 0.5.
  • the preferred range of b * of the parallel transmitted light of the two polarizing plates is 2.0 to 8, and more preferably 2.5 to 7.
  • the preferred range of a * of the orthogonally transmitted light of the two polarizing plates is 0.5 to 2, and more preferably 0 to 1.0.
  • the preferred range of b * of the orthogonally transmitted light of the two polarizing plates is 2.0 to 2, more preferably 1.5 to 0.5.
  • Hue can be evaluated using the chromaticity coordinates (X, y) calculated from X, Y, and ⁇ described above.For example, the hue is orthogonal to the chromaticity (X, y) of the parallel transmitted light of two polarizing plates.
  • the chromaticity (X, y) of the transmitted light is
  • JP-A No. 14-214436, JP-A No. 13-166136, JP-A No. 14-169024, and the relationship between hue and absorbance are described in JP-A No. 1311827. It can also be preferably performed to be within the range.
  • Polarizers are arranged in a cross-col to allow light with a wavelength of 550 nm to enter, when perpendicular light enters, and at a 40 ° angle to the azimuthal normal at 45 ° to the polarization axis. It is also preferable that the transmittance ratio and the xy chromaticity difference at the time of incidence are within the ranges described in JP-A Nos. 13-166135 and 13-166137. Further, as described in JP-A-10-068817, as described in Japanese Patent Application Laid-Open No.
  • the transmittance difference of the transmitted light within the wavelength range of 520 to 640 nm of the transmission spectrum and within the wavelength range of 20 nm shall be 6% or less. Also, it is preferable that the difference in transmitted light luminance at an arbitrary lcm distance on the film, as described in JP-A-08-248201, be within 30%.
  • the order parameter value calculated by means such as polarization Raman scattering and polarization FT-IR is preferably 0.2 to 1.0. Range. Further, as described in JP-A-59-133509, the difference between the orientation coefficient of the polymer segment in the entire amorphous region of the polarizing film and the orientation coefficient of the occupied molecule (at least 0.75) is described.
  • the orientation coefficient of the amorphous region of the polarizing film is 0.65 to 0.85, or I or I is higher order iodine ion.
  • the degree of orientation of the layer is also preferable to set the degree of orientation of the layer to 0.8 to 1.0 as an order parameter value.
  • the polarizing plate of the present invention is a polarizing plate having an anti-reflection function in which the above-mentioned anti-reflection film is coated on one side of the protective film on the above-mentioned polarizing film and the polarizing plate having the protective film strength.
  • the polarizing plate provided with the antireflection film is manufactured by the following methods (1) to (3).
  • An antireflection film is applied on the surface of the protective film of the polarizing plate formed by bonding the protective film to the polarizing film.
  • the method (2) or (3) is a preferred embodiment because the polarizing plate can be formed into a thin film.
  • the point defect in the present invention is a defect that is visually observed by reflection on an antireflection film, and is provided with an antireflection film of a polarizing plate. The operation can be detected visually. By reducing the point defects, the yield at the time of manufacturing can be increased, and a large-area polarizing plate can be manufactured.
  • the number of point defects having a visual diameter of 100 m or more is preferably 20 or less per lm 2 , more preferably 10 or less, and even more preferably 5 or less. Below, particularly preferably one or less.
  • the polarizing plate with antireflection ability of the present invention is a polarizing plate in which a multilayered antireflection film is provided on one side of a cellulose acylate film as a protective film.
  • Anti-reflection (AR) layer with at least a “medium Z high Z low” refractive index layer laminated, and at least an anti-glare anti-reflection layer consisting of at least an anti-glare layer or a light-scattering layer and a low-refractive-index layer Membrane (Anti-Grain: AG) and the like.
  • the average value (that is, the average reflectance) of the specular reflectance in the wavelength region from 450 nm to 650 nm in the incident light at an incident angle of 5 ° is preferably 0.5% or less in the case of the AR type antireflection film. And more preferably at most 0.4%, particularly preferably at most 0.3%. In the case of the AG type antireflection film, the content is 2.5% or less, preferably 1.8% or less, more preferably 1.4% or less.
  • the specular reflectance of the incident light at an incident angle of 5 ° is the ratio of the intensity of light reflected at the normal direction 5 ° to the incident light plus 5 ° normal force to the polarizing plate surface, It is a measure of the reflection due to the specular reflection of the background.
  • the intensity of light reflected at the normal direction of 5 ° is weakened by the amount of scattered light caused by the surface irregularities provided for the purpose. Therefore, the specular reflectivity can be said to be a measurement method that reflects the contribution of both the antiglare property and the antireflection property.
  • the change in the average reflectance of the polarizing plate of the present invention before and after the light resistance test at a wavelength of 380 to 680 nm is preferably 0.5% or less, more preferably 0.4% or less. More preferably, it is more preferably 0.2% or less. Within this range, good visibility can be maintained, which is preferable.
  • the polarizing plate with anti-reflection ability of the present invention is a CIE standard light source D of wavelength 380 nm to 780 ⁇ .
  • the color of specularly reflected light that is, L * in the CIE1976L * a * b * color space
  • b * values are 3 ⁇ L * ⁇ 20,-7 ⁇ a * ⁇ 7, and 10 ⁇
  • b * ⁇ 10, 0 ⁇ a * ⁇ 5, and 7 ⁇ b * ⁇ 0 greatly reducing the color.
  • the neutral color when external light with high brightness, such as fluorescent light in a room, is slightly reflected is neutral.
  • the specular reflectivity and color were measured using a spectrophotometer "V-550" (manufactured by JASCO Corporation) with an adapter "ARV-474" attached to it in the wavelength range of 380 to 780 nm.
  • the specular reflectance at an emission angle of 5 ° at an incident angle of 5 ° is measured, and the average reflectance at 450 to 650 nm is calculated to evaluate the antireflection property.
  • the color of the specularly reflected light with respect to the incident light of CIE standard light source D at an incident angle of 5 ° is expressed as CIE1976L *.
  • the L * value, a * value, and b * value in the aV color space can be calculated, and the tint of reflected light can be evaluated.
  • the tint uniformity of the reflected light can be calculated from the a * b * on the L * a * b * chromaticity diagram obtained from the reflection spectrum of the reflected light from 380 nm to 680 nm using the following equation ( According to 21), it can be obtained as a color change rate.
  • a * and a * are the maximum and minimum values of a * value, respectively; b * and b *
  • max min max min is the maximum and minimum b * value, respectively; a * and b * are the a * and a *
  • the rate of change in color is preferably 30% or less, more preferably 20% or less, and most preferably 8% or less.
  • the polarizing plate of the present invention preferably has a ⁇ E force of 15 or less, which is a change in color before and after the weather resistance test, more preferably 10 or less, more preferably 5 or less. Is most preferred. In this range, low reflection and reduction of the color of reflected light can be achieved at the same time.For example, when applied to the outermost surface of an image display device, external light with high brightness, such as fluorescent light in a room, is slightly reduced. The color when reflected in the image is neutral, and the quality of the displayed image is good.
  • AL, Aa, Ab are the changes in the L *, a *, and b * values before and after the weathering test.
  • the polarizing plate with antireflection ability of the present invention provides a film in which the optical properties and the mechanical properties of the film (the tear strength, the tear strength, the adhesion and the like do not substantially matter even after the weather resistance test).
  • the feature is that the change in the above characteristics is suppressed after the weather resistance test.
  • the weather resistance test in the present invention is a weather resistance test based on JIS K-5600-7-7: 1999, and is based on Sunshine Weathero Meter ⁇ S-80 ⁇ [Suga Test Machine
  • Such an antireflection film having reflected light of a neutral tint and having a low reflectance has a balance between the refractive index of the low refractive index layer and the refractive index of the light transmitting resin of the light diffusion layer. It is obtained by optimizing.
  • the change rates of the light transmittance and the degree of polarization before and after that are based on the respective absolute values. It is preferably at most 3%.
  • the rate of change of the light transmittance is preferably 2% or less
  • the rate of change of the degree of polarization is preferably 1.0% or less, more preferably 0.1% or less.
  • a polarizing film composed of a stretched film of a hydrophilic polymer containing 0.6% by mass or more of a dichroic substance, and a cellulose acylate film, which is preferred for the present invention having good moisture resistance. It will be possible.
  • the degree of polarization after standing for 0 hours is 95% or more and the single transmittance is 38% or more.
  • the change in the light transmittance and the degree of polarization before and after that is preferably 3% or less based on their absolute values.
  • the rate of change of the light transmittance is preferably 2% or less, and the rate of change of the degree of polarization is preferably 1.0% or less, more preferably 0.1% or less based on the absolute value.
  • both the dimensional change rate in the absorption axis direction and the dimensional change rate in the polarization axis direction of the polarizing plate are ⁇ 0. It is preferably within 6%.
  • the dimensional change D satisfies the following relationship.
  • the adjustment of the stretching in the stretching step of the polarizing film, the moisture content of the polarizing film when it is bonded to the protective film (the ratio of the weight of water in the polarizing film to the total weight of the polarizing film is determined by the thickness of the polarizing film. Although it depends, it is generally less than 20% by mass, and preferably in the range of 13 to 17% by mass).
  • the polarizing plate with anti-reflection ability of the present invention protects a functional layer such as a viewing angle widening film of an LCD or a ⁇ / 4 plate to be applied to a reflective LCD by protecting a polarizing film on a side opposite to a side having an anti-reflection film. It is also preferably used as a composite polarizing plate provided on the film side.
  • the viewing side polarizing plate of the present invention is preferably provided with an optical compensation film on the protective film on the side opposite to the side having the antireflection film of the polarizing plate. As a result, a wide viewing angle of a display image of the liquid crystal display device can be obtained.
  • Examples of the optical compensation film include a birefringent film formed by uniaxially or biaxially stretching a polymer film, and an optically anisotropic layer formed of a birefringent liquid crystal material on a support. And a liquid crystal alignment film.
  • the thickness of the optical compensation film is not particularly limited, but is generally about 5 to: L00 m.
  • a liquid crystal alignment film having an optically anisotropic layer on a support is preferred.
  • Examples of the material of the polymer film serving as the birefringent film include polybutanolone, polybutyral, polymethylbutylether, polyhydroxyethynoleatalylate, hydroxyethylcellulose, hydroxypropylcellulose, and methylcell.
  • the optically anisotropic layer is preferably designed to compensate for liquid crystal compound molecules in a liquid crystal cell in black display of a liquid crystal display device.
  • the alignment state of the liquid crystal compound molecules in the liquid crystal cell in black display differs depending on the mode of the liquid crystal display device.
  • the orientation of the liquid crystal compound molecules in this liquid crystal cell is described in IDW'00, FMC 7-1, pp. 411-414.
  • the liquid crystal compound used for the optically anisotropic layer may be a rod-shaped liquid crystal or a discotic liquid crystal. Also included. Most preferred are discotic liquid crystals.
  • rod-shaped liquid crystal examples include those described in JP-A-2000-304932.
  • discotic liquid crystals examples include benzene derivatives described in the research report of C. Destrade et al., Mol. Cryst. Vol. 71, page 111 (1981), research reports of C. Destrade et al. Cryst. 122, p. 141 (1985), turixene derivatives described in Physicslett, A, vol. 78, p. 82 (1990), research report by B. Kohne et al., Angew. Chem. Cyclohexane Derivatives described in JM Lehn et al., J. Chem. Commun., 1794 (1985), J. Zhang et al., Research Report, J. Am. Chem. Soc. Vol. 116, p. 2655 (1994) [Listed here! Examples include perazacrown-based and ferroacetylene-based macrocycles.
  • the discotic liquid crystal has a structure in which these are generally used as a core of a molecular center, and linear alkyl groups ⁇ ⁇ alkoxy groups, substituted benzoyloxy groups and the like are radially substituted as the linear chains. Shows liquid crystallinity.
  • the molecule is not limited to the above description as long as the molecule itself has negative uniaxiality and can impart a certain orientation. Further, in the present invention, it is not necessary that the finally formed substance is the above-mentioned compound, for example, a low-molecular discotic liquid crystal reacts by heat, light, etc.
  • the optically anisotropic layer is generally formed by applying a solution in which a discotic compound and another compound (eg, a plasticizer, a surfactant, a polymer, etc.) are dissolved in a solvent onto an alignment film, drying the solution, Next, it is obtained by heating to a discotic nematic phase formation temperature, and then cooling while maintaining the orientation state (disc-coated nematic phase).
  • the optically anisotropic layer is formed by applying a solution in which a discotic compound and another compound (for example, a polymerizable monomer and a photopolymerization initiator) are dissolved in a solvent to an alignment film, drying the solution, and then drying the solution. It is obtained by heating to the temperature of forming the tutanematic phase, polymerizing (by irradiation with UV light, etc.), and further cooling.
  • the thickness of the optically anisotropic layer is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and 0.7 to 5 / 0 ⁇ . Is most preferred. However, depending on the mode of the liquid crystal cell, it may be thick (3 to 10 / ⁇ ) in order to obtain high optical anisotropy.
  • the alignment film is a force that is generally used to have a function of defining the alignment direction of the liquid crystal compound molecules. If the alignment state of the liquid crystal compound is fixed after the alignment, the alignment film plays its role. It is not necessarily essential as a component of the invention. For example, it is also possible to prepare an optical compensation film by transferring only an optically anisotropic layer on an alignment film having a fixed alignment state onto a support.
  • the alignment film may be formed by rubbing an organic compound (preferably a polymer), obliquely depositing an inorganic compound, forming a layer having microgroups, or using an organic compound (eg, a LB film) by the Langmuir's method (LB film). It can be provided by such means as accumulation of ⁇ -tricosanoic acid, dioctadecylmethylammonium-dimethyl chloride, methyl stearylate). Further, there is known an alignment film in which an alignment function is generated by application of an electric field, a magnetic field, or light irradiation.
  • the alignment film is preferably formed by rubbing a polymer.
  • the polymer used for the alignment film has, in principle, a molecular structure capable of aligning liquid crystal molecules.
  • the present invention in addition to the function of aligning liquid crystal molecules, it has a function of bonding a side chain having a crosslinkable functional group (for example, a double bond) to the main chain or aligning liquid crystal molecules. It is preferable to introduce a crosslinkable functional group into the side chain.
  • a crosslinkable functional group for example, a double bond
  • any of a polymer crosslinkable by itself or a polymer crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.
  • Examples of the polymer used for the alignment film include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, a polyolefin, a methacrylate copolymer described in JP-A-8-338913, middle step number [0022].
  • Modified polybutyl alcohol, poly (N-methylolatarylamide), polyester, polyimide, butyl acetate copolymer, carboxymethyl cellulose, polycarbonate and the like can be mentioned.
  • Polybutyl alcohol and modified polyvinyl alcohol are most preferred.
  • Specific examples of the composition for forming an alignment film such as the modified polybutyl alcohol conjugate and a crosslinking agent include those described in JP-A Nos. 2000-155216 and 2002-62426. Can be
  • the alignment film can be basically formed by coating the above-mentioned polymer as a material for forming an alignment film on a support, heating and drying (crosslinking), and rubbing.
  • the cross-linking reaction may be performed at any time after coating on the support as described above.
  • a spin coating method As an application method of the orientation film, a spin coating method, a dip coating method, a curtain coating method, an etastrusion coating method, a rod coating method or a roll coating method is preferable. Especially, the rod coating method is preferred.
  • the orientation film may be provided directly on the support, or provided with an undercoat layer on the support and then provided on the undercoat layer. When provided directly on the support, it is preferable to perform the above-mentioned surface hydrophilization treatment.
  • liquid crystal molecules of an optically anisotropic layer provided on the alignment film are aligned. Thereafter, if necessary, the polymer of the alignment film is reacted with the polyfunctional monomer contained in the optically anisotropic layer, or the polymer of the alignment film is cross-linked using a cross-linking agent.
  • the thickness of the alignment film is preferably in the range of 0.1 to: LO / zm.
  • the support for coating the optically anisotropic layer is not particularly limited as long as it is a plastic film having high light transmittance.
  • cellulose acylate which is a protective film of the polarizing plate. That is, it is preferable that an alignment film (although not necessarily essential as described above) and an optically anisotropic layer are formed directly on the protective film of the polarizing plate.
  • the support on which the optically anisotropic layer is coated plays an important role in itself, the support has a Re retardation value of 0 to 200 nm and an Rth retardation value of The power is preferably adjusted to ⁇ 400nm! / ,.
  • a compound that absorbs ultraviolet light having a wavelength ( ⁇ max) at which the absorption maximum of the ultraviolet absorption spectrum of the solution is shorter than 400 nm is adjusted by retardation. It is preferable to contain it as an agent.
  • conjugated compounds include ultraviolet absorbing compounds such as phenylsalicylic acids, 2-hydroxybenzophenones, benzotriazoles, and triphenyl phosphate.
  • aromatic compounds having at least two aromatic rings for example, JP-A-2000-111914
  • trif-reny conjugates for example, JP-A-2000-275434
  • rod-like conjugates for example, JP-A-2000-275434.
  • JP-A-2002-363343, JP-A-2003-35821 and the like discotic compounds (compounds containing a 1,3,5-triazine skeleton and a porphyrin skeleton in a molecule and the like: for example, JP-A-2001-166144) Etc.) are preferred. It is preferable that these compounds have substantially no absorption in the visible light region. Preferably, these compounds have substantial absorption in the visible light region.
  • the birefringence ( ⁇ : ⁇ -ny) of the support film is preferably from 0 to 0.002. Further, the birefringence index ⁇ (nx + ny) Z2-nz ⁇ in the thickness direction of the film is preferably 0.04 or less.
  • the front retardation value (Re) and the retardation value (Rth) in the film thickness direction of the support film are calculated according to Formulas (23) and (24).
  • nx is the refractive index in the in-plane slow axis direction of the film (maximum in-plane refractive index); ny is the refractive index in the direction perpendicular to the in-plane slow axis of the film; nz is the thickness of the film Is the refractive index in the direction. d is the thickness of the film in nm.
  • the thickness of the cellulose acylate film is preferably from 20 to 200 ⁇ m, more preferably from 30 to 120 ⁇ m. More preferred! / ,.
  • an optically anisotropic layer is formed on a protective film and bonded to a polarizing film
  • the surface on the side to be bonded to the polarizing film is subjected to an oxidizing treatment. It is preferable to carry out the treatment in accordance with the acidification treatment.
  • the structure of the viewing side polarizing plate is a laminated film of "Anti-reflection film Z protective film, polarizing film Z protective film", and more preferably “anti-reflective film Z protective film Z polarizing film Z optical compensation film (protection film) Film Z (alignment film) Z optically anisotropic layer) ", and further reduction in thickness, weight and cost can be achieved. Since the upper protective film of the polarizing plate also functions as an antireflection film and the lower protective film also functions as a support coated with an optically anisotropic layer, it has excellent physical strength and weather resistance, and has an antireflection function. A thin, light polarizing plate with excellent visibility can be obtained.
  • the polarizing plate and the optical compensation film have the same contents as those described above for the viewing side polarizing plate (upper polarizing plate).
  • the image display device of the present invention is characterized in that the above-described polarizing plate with antireflection ability of the present invention is arranged on an image display surface.
  • the polarizing plate with antireflection ability of the present invention can be applied to an image display device such as a liquid crystal display (LCD) and an organic EL display.
  • the image display device of the present invention is preferably applied to a transmissive, reflective or transflective liquid crystal display device in the mode of TN, STN, IPS, VA and OCB. This will be further described below.
  • any conventionally known liquid crystal display device can be used.
  • Tatsuo Uchida supervised “Reflective Color LCD Comprehensive Technology” [CMC Co., Ltd., 1999] “New Development of Flat Panel Display” [Toray Research Center, Inc., Research Division, 1996], “LCD-related Market status and future prospects (upper volume), (lower volume) "[Fuji Chimera Research Institute, Inc., 2003].
  • TN twisted nematic
  • STN super-steered nematic
  • VA vertical alignment
  • IPS in-plane switching
  • optically compensated bend cell It can be preferably used for a transmissive, reflective, or transflective liquid crystal display device of a mode such as OCB).
  • the optical film of the present invention has a good contrast, a wide viewing angle, and a change in hue and external light even when the size of the display image of the attached liquid crystal display device is 17 inches or more. Transfer prevention can be realized, which is preferable.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • the alignment state in the liquid crystal cell is such that the rod-like liquid crystal molecules rise in the center of the cell and the rod-like liquid crystal molecules lie down near the cell substrate.
  • the OCB mode liquid crystal cell is a bend alignment mode liquid crystal cell in which rod-like liquid crystal molecules are aligned in substantially opposite directions (symmetrically) at the upper and lower portions of the liquid crystal cell.
  • a liquid crystal display device using a bend alignment mode liquid crystal cell is a device in which the devices disclosed in US Pat. Nos. 4,583,825 and 5,410,422 are symmetrically oriented at the upper and lower portions of the liquid crystal cell. Therefore, the liquid crystal cell in the bend alignment mode has a self-optical compensation function. Therefore, this liquid crystal mode is also called an OCB (Optically Compensatory Bend) liquid crystal mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

 反射防止膜と偏光膜を一体化した、耐湿性、耐候性に優れた長尺の偏光板であって、面内の色味が均質でニュートラル性が良好で、耐久性にすぐれ、外光の写り込みのない偏光板及びその製造方法、並びにそのような偏光板を用いた画像表示装置を提供すること。  ポリビニルアルコール系フィルムから形成された偏光膜の両側に、保護フィルムとしてセルロースアシレートフィルムが設けられ、且つ偏光膜の一方の側のセルロースアシレートフィルム上に、多層構造の反射防止膜が塗設されてなる長尺の偏光板であって、該セルロースアシレートフィルムの偏光膜側表面にアルカリ鹸化処理が施され、且つアルカリ鹸化処理後の偏光膜側表面の凹凸が特定の形状を有することを特徴とする偏光板が開示される。

Description

反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示 装置
技術分野
[0001] 本発明は、偏光板、その製造方法、及びそれを用いた画像表示装置に関し、更に 詳しくは、表示画像の反射防止性に優れ、画像鮮明性が良好で視認性に優れた偏 光板、その製造方法、並びに画像表示装置に関する。
背景技術
[0002] 各種ディスプレイの一つに液晶表示装置があり、消費電力の小さい省スペースの 画像表示装置として年々用途が広がって 、る。液晶表示装置ではその画像表示の 原理上、偏光板の使用が必須であり、偏光板の需要は拡大している。偏光板は一般 に、偏光能を有する偏光膜の両面又は片面に、接着剤層を介して保護フィルムが貼 り合わされている。液晶表示装置などの画像表示装置においては、偏光板表面の、 外光の反射によるコントラストの低下や像の映り込みを防止するために、光学干渉の 原理を用いて反射率を低減する反射防止膜 (反射防止フィルム)をディスプレイの最 表面に配置することが一般的になっている。
[0003] 偏光膜の素材としては親水性樹脂が主に用いらており、特にポリビュルアルコール
(PVA)系榭脂が好ましく用いられて ヽる。 PVA系榭脂フィルムを一軸延伸してから ヨウ素又は二色性染料で染色する力、あるいは染色して力 延伸し、さらに硬化性ィ匕 合物で架橋することにより偏光膜が形成される。
[0004] PVA系偏光膜の保護フィルムは、光学的に透明で複屈折が小さい透明フィルムで あることが必要で、主としてセルローストリアセテートが用いられており、偏光膜と保護 フィルムとの密着性を確保するために、保護フィルムの片面を親水化処理したのち親 水性接着剤を介して貼り合わされる。保護フィルムの親水化処理を施さな ヽ面を予め 保護しアルカリ水溶液中に浸漬して鹼化する方法が、処理が容易な方法として提案 されている (特許文献 1、特許文献 2等)。また酸ィ匕処理の迅速ィ匕を図ることを目的に 低級アルコール含有のアルカリ溶液を用いる方法 (特許文献 3)、或いは低級アルコ ール及び界面活性剤を含有するアルカリ溶液を用いる方法 (特許文献 4)等が提案さ れている。
[0005] し力しながら、偏光膜表面に白化現象を生じさせることなぐ処理面全面をムラ無く 円滑に処理し、粘着剤を介して偏光膜と充分な密着性を保持するように接着すること は容易ではなぐまた偏光板打ち抜き工程での得率が低く生産性がよくないなどの問 題があった。
[0006] 一般に偏光板は、偏光膜が 2枚の保護フィルムによって保護された構造を有してい るが、偏光板を液晶表示装置などの視認側表面に使用するとき、この偏光板とは別 に、さら反射防止性の機能をもつ反射防止膜を設けることは、画像装置の構成層が 多くなりすぎ、製造コスト面と機能発揮の両面で制約が大きい。そこで、画像表示装 置の偏光板の保護フィルムに反射防止機能を付与することで、コスト削減と薄手ィ匕を 実現させる表示装置の提案がなされている (特許文献 5等)。しかし、従来のアルカリ 水溶液中に浸漬処理する方法では、反射防止膜の劣化を生じてしまう。
[0007] またアルカリ溶液をフィルム面上に塗布して少なくとも片面を酸ィ匕処理する方法 (特 許文献 6)が提案されている。アルカリ溶液中に有機溶媒を含ませることによって純粋 な水溶媒よりも鹼化反応活性を高められるが、有機溶媒の種類又は含有量によって は、処理するフィルム中に含有される添加物質が溶出して、ヘイズ発生等の光学フィ ルムとしての品質を劣化させる場合がある。
[0008] さらに最近の画像表示装置の大画面化、モパイル化等の急速な進展で、長尺なフ イルムを、連続してより迅速且つ安定に生産できることが望まれている力 アルカリ溶 液をフィルムの片面に連続的に長尺塗布する場合には、塗布液の組成変化などによ つてフィルムの全長に亘つて、全面的に均一で且つ安定した酸ィ匕度を得にくいという 問題も生じがちである。
[0009] さらにまた反射防止膜は表示装置の最表面に用いられるため、高い耐擦傷性が要 求される。最表面となる低屈折率層は、その厚さが lOOnm前後の薄膜であり、高い 耐擦傷性を実現するためには、皮膜自体の強度、及び下層への密着性が望まれて いるが、従来の方法では未だ充分ではない。
特許文献 1:特開平 7— 151914号公報 特許文献 2 :特開平 8— 171016号公報
特許文献 3 :特開 2002— 303724号公報 (段落番号 [0071])
特許文献 4:特開平 7— 62120号公報
特許文献 5:特開 2002— 116323号公報
特許文献 6:国際公開第 02Z46809号パンフレット
発明の開示
発明が解決しょうとする課題
[0010] 最近、 LCDは、薄型 ·軽量 '低消費電力の特徴を生かして、高度情報 ·通信時代に 必須のフラットパネルディスプレイとして多用され、特に高精細のカラー画像表示が 可能なモニターやテレビなどの大型化、あるいはモパイル化の伸びが顕著となって いる。また耐湿性'耐候性の向上した高精細のカラー画像表示、及びより一層の画面 全体の均質性良好となる方法が望まれている。さらに薄膜ィ匕した長尺の偏光板を安 定に生産性よく作製し、偏光板や表示装置の軽量ィ匕及び低コスト化も強く望まれて いる。
[0011] 従って本発明の目的は、面内の色味が均質で-ユートラル性が良好で、耐久性に すぐれ、外光の写り込みのな 、偏光板を提供することである。
[0012] また本発明の他の目的は、反射防止膜と偏光膜を一体化した耐湿性、耐候性に優 れる長尺なロール形態でも安定に生産性よく作製される偏光板の製造法、及びそれ によって得られる偏光板を提供することである。
[0013] さらに本発明の他の目的は、斜め延伸方法により得られ、偏光板打ち抜き工程に おける得率を向上することができる斜め延伸した親水性榭脂系フィルムを偏光膜とし て有し、高性能で安価な偏光板を提供することにある。
[0014] さら〖こは、本発明の他の目的は、反射防止膜を塗設した保護フィルムを偏光膜の 一方の側に有する偏光板を備えた、耐久性良好な表示品位の高い画像表示装置を 提供することである。
課題を解決するための手段
[0015] 本発明によれば、下記構成の反射防止膜塗設の偏光板、それの製造方法、及び それを用いた画像表示装置が提供され、本発明の上記目的が達成される。 (1)親水性榭脂系フィルムカゝら形成された偏光膜の両側に、保護フィルムとしてセル ロースァシレートフィルムが設けられ、且つ偏光膜の一方の側のセルロースァシレー トフイルム上に、多層構造の反射防止膜が塗設されてなる長尺の偏光板において、 該セルロースァシレートフィルムの偏光膜側表面にアルカリ酸ィ匕処理が施され、且つ 該偏光膜側表面の凹凸の、 JIS B— 0601— 1994に基づく算術平均粗さ (Ra)が 0 . 0002 μ m〜0. 3 m、十点平均粗さ(Rz)力 ^0. 0002 μ m〜0. 5 m、最大高さ( Ry)が、 0. 002 /ζ πι〜1. 0 m、及び表面凹凸の平均間隔(Sm)が 0. 001 m〜 5 μ mであることを特徴とする偏光板。
(2)視覚的直径 100 /z m以上の点欠陥の数が lm2当たり 1個以下である(1)に記載 の偏光板。
(3)偏光膜の膜厚が 5〜22 mで有り、且つ該偏光膜力クロス-コル時の 700nmの 透過率が 0. 001%〜0. 3%で、 410nmの透過率が 0. 001%〜0. 3%である(1) 又は(2)に記載の偏光板。
(4)偏光板を 60°C、 90%RHの雰囲気に 500時間放置した場合の、その前後にお ける光透過率及び偏光度の変化率が、絶対値に基づいて 3%以下である(1)〜(3) の!、ずれか 1項に記載の偏光板。
(5)反射防止膜の最上層が、平均粒径が該低屈折率層の厚みの 30%〜100%であ り、且つ屈折率が 1. 17〜: L 40である中空構造の無機微粒子を少なくとも 1種含有 してなる、屈折率が 1. 35〜: L 49の低屈折率層である(1)〜 (4)のいずれかに記載 の偏光板。
(6)前記低屈折率層が、下記一般式(1)で表されるオルガノシランの加水分解物、 およびその部分縮合物の少なくとも何れか一つを含有する硬化性組成物を塗布し硬 化して形成される硬化膜であることを特徴とする(1)〜(5)のいずれかに記載の偏光 板。
一般式 (1)
(R10) Si (X)
n 4~n
(式中、 R1Qは置換もしくは無置換のアルキル基または置換もしくは無置換のァリール 基を表す。 Xは水酸基または加水分解可能な基を表す。 nは 0〜2の整数を表す。 ) (7) CIE標準光源 D の、波長 380nmから 780nmの領域における入射角 5°の入射
65
光に対して、正反射光の CIE1976L*a*b*色空間の L*, a*, b*値それぞれの値の、面 内における変化率が 20%以下である(1)〜(6)の 、ずれか 1項に記載の偏光板。
(8)反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルム より屈折率が低い低屈折率層との間に、該セルロースァシレートフィルムよりも屈折率 が高ぐ且つ屈折率の相異なる少なくとも 2層の高屈折率層を有する多層構造を有し ており、これら高屈折率層のうち少なくとも屈折率の高い方の層が、平均粒径 3〜80 nmのコバルト、アルミニウム、及びジルコニウムから選ばれる少なくとも 1種の元素を 含有する二酸化チタンを主成分とする無機超微粒子を含有する(1)〜(7)の ヽずれ かに記載の偏光板。
(9)反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルム より屈折率が低い低屈折率層との間に防眩層を有する多層構造を有しており、該低 屈折率層を形成した後の偏光膜と接する面の反対側の表面ヘイズが 2%〜7%、且 つ、フィルム全体の内部ヘイズが 0〜50%であることを特徴とする、(1)〜(8)のいず れかに記載の偏光板。
(10)反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィル ムより屈折率が低い低屈折率層との間に、ハードコート層を有する多層構造を有して おり、該ハードコート層が前記一般式(1)に記載のオルガノシランの加水分解物、お よびその部分縮合物の少なくとも何れか一つを含有することを特徴とする、 (1)〜(8) の!、ずれかに記載の偏光板。
(11)反射防止膜力 セルロースァシレートフィルムと、該セルロースァシレートフィル ムより屈折率が低い低屈折率層との間に、更に帯電防止層を有する多層構造を有し て 、ることを特徴とする、 (1)〜(10)の 、ずれかに記載の偏光板。
(12)偏光板の耐候性試験前後の、波長 380ηπ!〜 680nmにおける平均反射率の 変化が 0. 5%以下であり、且つ反射光の色味変化 Δ Ε力 L*aV色度図上で 15以 下である(1)〜(11)の 、ずれか 1項に記載の偏光板。
(13)保護フィルムであるセルロースァシレートフィルムの延伸軸と、偏光膜の延伸軸 との角度が 10° 以上 90° 未満である(1)〜(12)のいずれかに記載の偏光板。 (14)偏光膜の他方の側のセルロースァシレートフィルム上に光学異方性層を有する 光学補償フィルムを設けた(1)〜(13)の 、ずれかに記載の偏光板。
(15)反射防止膜が塗設されてなるセルロースァシレートフィルムの反対面をアルカリ 鹼化処理してから偏光膜と貼り合せることによる請求項 1に記載の偏光板の製造方 法において、該アルカリ鹼化処理が、少なくともアルカリ剤、水、無機性,有機性値( I/O値)が 0. 5以上で且つ溶解度パラメーターが 16〜40[mi/m3] 1/2である水溶 性有機溶媒、並びに界面活性剤及び相溶化剤の少なくともいずれかを含有するァ ルカリ溶液を用いて実施される工程を含むことを特徴とする製造方法。
(16)アルカリ酸ィ匕処理力 少なくとも、(ィ)表面温度が室温〜 100°Cの範囲のセル ロースァシレートフィルムにアルカリ溶液を塗布する工程、(口)セルロースァシレート フィルムの温度を室温〜 100°Cの範囲に維持する工程、及び、(ハ)アルカリ溶液を セルロースァシレートフィルム力 洗い落とす工程力 なる(15)に記載の製造方法。
(17)アルカリ溶液を塗布する工程が、アルカリ溶液をダイコーター方式により塗布す る工程である(16)に記載の製造方法。
(18)連続的に供給される偏光膜用親水性榭脂系フィルムの両端を保持手段により 保持し、該保持手段をフィルムの長手方向に進行させつつ張力を付与して延伸する ことにより偏光膜を製造する(1)に記載の偏光板の製造方法において、該親水性榭 脂系フィルムの一方端の実質的な保持開始点から実質的な保持解除点までの保持 手段の軌跡 L1、及び親水性榭脂系フィルムの他方端の実質的な保持開始点力 保 持解除点までの保持手段の軌跡 L2と、両保持手段の実質的な保持解除点の距離 Wが下記数式(1)を満たし、且つ両保持手段の長手方向の搬送速度の差が 1%未 満である延伸方法により製造することを特徴とする製造方法。
数式(1) : I L2-L1 I >0. 4W
(19)画像表示面に、 (1)〜(14)のいずれ力 1項に記載の偏光板が配置されてなる ことを特徴とする画像表示装置。
(20)画像表示装置が、 TN、 STN、 IPS, VA及び OCBのいずれかのモードの透過 型、反射型又は半透過型の液晶表示装置であることを特徴とする(19)に記載の画 像表示装置。 [0018] 本発明は、親水性榭脂系フィルムカゝら形成された偏光膜の両側に使用する保護フ イルムとしてセルロースァシレートフィルムを使用し、該セルロースァシレートフィルム 上に、多層構造の反射防止膜を形成して長尺の偏光板を作成し、該セルロースァシ レートフィルムの偏光膜側表面にアルカリ酸ィヒ処理が施された後の表面形態を微細 に制御したことを特徴とする。すなわち、 JIS B— 0601— 1994に基づく算術平均粗 さ(Ra)力 ^Ο. 0002 μ m〜0. 3 m、十点平均粗さ(Rz)力 ^0. 0002 μ m〜0. 5 m 、最大高さ(Ry)が、 0. 002 /ζ πι〜1. O ^ m,及び表面凹凸の平均間隔(Sm)が 0. 001 ^ m〜5 μ mとするものである。
[0019] セルロースァシレートフィルムの表面をこのようにすることにより、該フィルムのこの面 と、親水性榭脂系フィルムから形成された偏光膜の表面とを親水性の接着剤を介し て貼り合せて作製された偏光板は、保護フィルムであるセルロースァシレートフィルム と偏光膜との密着性が極めて良好で、視覚的な欠陥が実用上問題とならない均質な ものとなる。
[0020] これらは、本発明のセルロースァシレートフィルム表面のアルカリ鹼化処理が均一 に行われて適切な親水性表面となり、親水性接着剤層と充分に接着すること及び該 接着剤層のアンカリングが均一に発現したことによると推定される。
[0021] 上記セルロースァシレートフィルムの、偏光膜側の表面にアルカリ酸ィ匕処理が施さ れた後の表面形態を微細に制御して上記の範囲とするには、後述するように、セル口 一スァシレートフィルムを溶液流延方法により製膜する際に、添加する無機微粒子の 分散を均一にすること、流延工程での金属支持体の表面形状を制御すること等を制 御して製膜すること、さらには該フィルム中の添加物の析出 ·凝集等を抑制する迅速 処理が可能なアルカリ酸ィヒ処理で均一に親水化処理すること等もって達成できること が見出された。
[0022] セルロースァシレートフィルムのアルカリ鹼化処理については、それぞれの項にお いて詳述する。
[0023] 更に、本発明の偏光板は、偏光膜の膜厚が 5 μ m以上 22 μ m以下、かつクロス二 コル時の 700nmの透過率が 0. 001%以上 0. 3%以下で 410nmの透過率が 0. 00 1%以上 0. 3%以下であることが好ましい。このようにすることで、薄膜ィ匕した際発生 するクロス-コル時の色相の青味化が防止されて、ニュートラルグレーに近い色相が 得られることを見出した。
[0024] クロス-コル時の 700nmの透過率及び 410nmの透過率を下げる手段としては、偏 光膜に、ヨウ素などの二色性物質に加えて対応する波長域に吸収をもつ二色性色素 を色相調整剤として添加すること、ヨウ素などの二色性物質を添加する際にホウ酸な どの硬膜剤を添加すること、これらを組み合わせて行うこと等が有効であることを見出 した。
発明の効果
[0025] 本発明の反射防止能付き偏光板は、表示画像に視覚的な欠陥が無ぐ反射防止 性に優れ、面内の色味が均質で-ユートラル性が良好で、耐湿性と耐候性に優れて おり、外光の写り込みのない卓越した偏光板であり、長尺なロール形態でも安定に生 産性よく作製される。また本発明の反射防止能付き偏光板を画像表示装置に用いる ことによって、コントラストの良化、色味の改良、更に耐湿性及び耐候性の向上を図る ことができる。
図面の簡単な説明
[0026] [図 1]本発明における傾斜角度の測定を示す模式図である。
[図 2]ポリマーフィルムを斜め延伸する、本発明の方法の一例を示す概略平面図であ る。
[図 3]ポリマーフィルムを斜め延伸する、本発明の方法の別の一例を示す概略平面図 である。
圆 4]本発明の偏光板を打ち抜く様子を示す概略平面図である。
[図 5]従来の偏光板を打ち抜く様子を示す概略平面図である。
符号の説明
[0027] A, B, C :基材面に仮定した面積が 0. 5〜2 /ζ πι2である三角形の頂点。
[0028] Α', Β', C' : 3点 A, B, C力も鉛直上向きに垂線を伸ばし、その 3点が防眩性
反射防止膜の表面と交わった点。
[0029] D— D' :三角形 A'B'C'面の法線。
[0030] O— O':基材力 鉛直上向きに伸ばした垂線。 φ:法線 D'が、垂線 O'となす角度。傾斜角度。
(ィ)フィルム導入方向
(口)次工程へのフィルム搬送方向
(a)フィルムを導入する工程
(b)フィルムを延伸する工程
(c)延伸フィルムを次工程へ送る工程
A1 フィルムの保持手段への嚙み込み位置とフィルム延伸の起点位置(実質保持開 始点:右)
B1 フィルムの保持手段への嚙み込み位置(左)
C1 フィルム延伸の起点位置 (実質保持開始点:左)
Cx フィルム離脱位置とフィルム延伸の終点基準位置 (実質保持解除点:左) Ay フィルム延伸の終点基準位置 (実質保持解除点:右)
I L1 -L2 I 左右のフィルム保持手段の行程差
W フィルムの延伸工程終端における実質幅
Θ 延伸方向とフィルム進行方向のなす角
11 導人側フィルムの中央線
12 次工程に送られるフィルムの中央線
13 フィルム保持手段の軌跡 (左)
14 フィルム保持手段の軌跡 (右)
15 導入側フィルム
16 次工程に送られるフィルム
17, 17'左右のフィルム保持開始(嚙み込み)点
18, 18'左右のフィルム保持手段からの離脱点
21 導人側フィルムの中央線
22 次工程に送られるフィルムの中央線
23 フィルム保持手段の軌跡 (左)
24 フィルム保持手段の軌跡 (右)
25 導入側フィルム 26 次工程に送られるフィルム
27, 27'左右のフィルム保持開始(嚙み込み)点
28, 28'左右のフィルム保持手段からの離脱点
71 吸収軸 (延伸軸)
72 長手方向
81 吸収軸 (延伸軸)
82 長手方向
発明を実施するための最良の形態
[0032] 本発明の偏光板は、親水性榭脂フィルムに沃素及び/又は二色性化合物を染色し てなる偏光膜の両側に、保護フィルムとしてセルロースァシレートフィルムが設けられ 、且つ一方の側のセルロースァシレートフィルム上に、多層構造の反射防止膜が塗 設されてなる長尺の偏光板である。親水性榭脂として、 PVA系榭脂が特に好ましい ものである。更に本発明の偏光板は、その反射防止膜が塗設された保護フィルムと は反対側の保護フィルム上に、必要に応じて、光学補償フィルム (又は位相差フィル ム)を設けてなるものである。
[0033] なお本明細書において、「長尺」とは、具体的には、長さ 100〜5000mのものを言 う。また、「幅広」とは幅 0. 7〜2. Omをいう。また、「数値 A」〜「数値 B」という記載は、 数値が物性値、特性値等を表す場合に、「数値 A以上数値 B以下」の意味を表す。「 (メタ)アタリロイル」の記載は、「アタリロイルまたはメタクリロイル、あるいは両者」の意 味を表す。「(メタ)アタリレート」、「(メタ)アクリル酸」、「(メタ)アクリルアミド」も同様で ある。
<セルロースァシレートフィルム >
先ず本発明の偏光板の保護フィルムとして用いられるセルロースァシレートフィルム について説明する。
[0034] 本発明におけるァシレートフィルムは、その厚さが、好ましくは 10〜120 μ m、より 好ましくは 20〜120 μ m、さらに好ましくは 30〜: LOO μ m、最も好ましくは 30〜80 μ mである。また、膜厚の変動幅は、好ましくは ± 3%以内であり、よりに好ましくは ± 2 . 5%以内、さらに好ましくは ± 1. 5%以内である。この変動幅内において、保護フィ ルムとしての厚みが反射防止性に実質上の影響を及ぼさない良好なものとなる。
[0035] 膜厚変動幅を ± 3%以内とするには、
(1)セルロースァシレートを数平均分子量が 7 X 104〜25 X 104の範囲のものとする、
(2)流延によるフィルム形成に際して、セルロースァシレートを主成分とする組成物の 有機溶媒溶液 (ドープ)の濃度及び粘度を調節する、
(3)乾燥工程において膜表面の乾燥温度及び、乾燥風を用いる場合にはその風量 や風向等を調節する、
などが有効である。溶解工程、流延工程及び乾燥工程は後述する製造方法の欄で 説明する。
[0036] 本発明に用いられるセルロースァシレートフィルムは、長さ 100〜5000m、幅 0. 7 m〜2mで、さらには 0. 7〜1. 50mの長尺ロール形態であることが好ましい。このこと により、反射防止能付き偏光板及びそれを用いた画像表示装置を薄く軽量ィヒし、光 透過率を高めてコントラストや表示輝度を改善することができるなどの良好な光学特 性が安定して得られ、長尺で幅広な保護フィルムを皺等の問題を生じることなくハン ドリング性よく取り扱うことができる。
〔セルロースァシレート組成物〕
[セノレロースァシレート]
本発明で用いられるセルロースァシレートフィルムは、セルロースエステルを原料と してなるものである。該セルロースエステルの原料のセルロースとしては、綿花リンタ 一、ケナフ、木材パルプ (広葉樹パルプ、針葉樹パルプ)などがあり、何れの原料セ ルロースカゝら得られるセルロースエステルでも使用でき、場合により混合して使用して ちょい。
[0037] 本発明においては、セルロースからエステル化してセルロースァシレートを作製す る力 上記のセルロースがそのまま利用できる訳ではなぐ本発明におけるセルロー スは、リンター、ケナフ、パルプを精製して用いられる。
[0038] 本発明においてセルロースァシレートとは、セルロースの水酸基がァセチル基等の ァシル基で置換されてなるカルボン酸エステルのことであり、該ァシル基の総炭素数 力^〜 22であるものをいう。 [0039] 本発明に用いられるセルロースァシレートの炭素数 2〜22のァシル基としては、脂 肪族ァシル基でも芳香族ァシル基でもよぐ特に限定されない。それらは、例えばセ ノレロースのァノレキノレカノレボニノレエステノレ、ァノレケニノレカノレボニノレエステノレ、シクロへ キサンカルボ-ルエステル、又は芳香族カルボ-ルエステル、芳香族アルキルカル ボ-ルエステルなどであり、それぞれさらに置換された基を有していてもよい。これら の好ましいァシル基としては、プロピオニル、ブタノィル、ヘプタノィル、へキサノィル 、オタタノィル、デカノィル、ドデカノィル、トリデカノィル、ォクタデカノィル、シクロへキ サンカルボ-ル、ァダマンタンカルボ-ル、メタクロィル、アタリロイル、フエニルァセチ ル、ベンゾィル、ナフチルカルボ-ル、シンナモイル基などを挙げることができる。こ れらの中で、より好ましいァシル基は、プロピオニル、ブタノィル、ペンタノィル、へキ サノィルシクロへキサンカルボ-ル、ァダマンタンカルボ-ル、フエ-ルァセチル、ベ ンゾィルなどである。
[0040] セルロースァシレートの合成方法は、発明協会公開技報公技番号 2001— 1745号
(2001年 3月 15日発行 発明協会) 9頁に詳細に記載されている。
[0041] 本発明に用いられるセルロースァシレートは、セルロースの水酸基への置換度が下 記数式 (8)及び(9)を満足するものが、溶解性の点で好ま ヽ。
[0042] 数式(8) : 2. 3≤SA' + SB'≤3. 0
数式(9) : 0≤SA'≤3. 0
ここで、 S A'はセルロースの水酸基の水素原子を置換して!/、るァセチル基の置換度 、また SB'はセルロースの水酸基の水素原子を置換して!/、る炭素原子数 3〜22のァ シル基の置換度を表す。なお、 SAはセルロースの水酸基の水素原子を置換してい るァセチル基を表し、 SBはセルロースの水酸基の水素原子を置換して 、る炭素原子 数 3〜22のァシル基を表す。
[0043] セルロースを構成する j8— 1, 4結合して!/、るグルコース単位は、 2位、 3位及び 6位 に遊離の水酸基を有している。セルロースァシレートは、これらの水酸基の一部又は 全部をァシル基によりエステルイ匕した重合体 (ポリマー)である。ァシル置換度は、 2 位、 3位及び 6位のそれぞれについて、セルロースがエステル化している割合(各位 それぞれ 100%のエステルイ匕は置換度 1)を意味する。本発明では、 SAと SBの置換 度の総和(SA' + SB')は、より好ましくは 2. 6〜3. 0であり、特に好ましくは 2. 80〜
3. 00である。また、 SAの置換度(SA')はより好ましくは 1. 4〜3. 0であり、特には 2
. 3〜2. 9である。
[0044] 更に、下記数式(10)を同時に満足することが好ましい。
[0045] 数式(10) : 0≤SB〃≤1. 2
ここで、 SB"はセルロースの水酸基の水素原子を置換して!/、る炭素原子数 3又は 4 のァシル基を表す。
[0046] さらに SB"はその 28%以上が 6位水酸基の置換基であるのが好ましぐより好まし くは 30%以上が 6位水酸基の置換基であり、 31%以上がさらに好ましぐ特には 32 %以上が 6位水酸基の置換基であることも好ましい。また更に、セルロースァシレート の 6位の SA'と SB"の置換度の総和が 0. 8以上であり、さらには 0. 85以上であり、特 には 0. 90以上であるセルロースァシレートフィルムも好ましいものとして挙げることが できる。これらのセルロースァシレートフィルムにより溶解性の好まし 、溶液が作製で き、特に非塩素系有機溶媒において、良好な溶液の作製が可能となる。
[0047] なお置換度は、セルロース中の水酸基に結合した脂肪酸の結合度を測定し、計算 によって得られる。測定方法としては、 ASTM— D817— 91、 ASTM— D817— 96 に準拠して測定することができる。また、水酸基へのァシル基の置換の状態は、 13c NMR法によって測定される。
[0048] 上記セルロースァシレートフィルムは、フィルムを構成するポリマー成分が実質的に 前記の数式(8)及び(9)を満足するセルロースァシレートからなることが好まし 、。 「 実質的に」とは、全ポリマー成分の 55質量%以上 (好ましくは 70質量%以上、さらに 好ましくは 80質量%以上)を意味する。セルロースァシレートは単独もしくは 2種類以 上の併用であってもよい。
[0049] 本発明で好ましく用いられるセルロースァシレートの重合度は、粘度平均重合度 20 0〜700、好ましく ίま 230〜550、更【こ好ましく ίま 230〜350であり、特【こ好ましく ίま粘 度平均重合度 240〜320である。平均重合度は、宇田らの極限粘度法 (宇田和夫、 斉藤秀夫、繊維学会誌、第 18卷第 1号、 105〜120頁、 1962年)により測定できる。 更に特開平 9— 95538号公報に詳細に記載されている。 [0050] またセルロースァシレートの数平均分子量 Mnは、好ましくは 7 X 104〜25 X 104の 範囲、より好ましくは、 8 X 104〜15 X 104の範囲にあることが望ましい。また、該セル ロースァシレートの質量平均分子量 Mwの数平均分子量 Mnに対する比 MwZMn は、好ましくは 1. 0〜5. 0、より好ましくは 1. 0〜3. 0である。なお、セルロースエステ ルの平均分子量及び分子量分布は、高速液体クロマトグラフィーを用いて測定でき、 これを用いて上記 Mn及び Mwを算出し、 MwZMnを計算することができる。
[0051] 本発明において用いられる上記セルロースァシレートフィルムは、上述の数式(8) 及び(9)を満足する範囲にあるセルロースァシレート、可塑剤、及び微粒子 (特に好 ましくは、後述する平均 1次粒径 3〜: LOOnmの微粒子)を各々少なくとも 1種含有して なるフィルムが好ましく用いられる。
[可塑剤]
本発明で用いられる可塑剤は、セルロースァシレートフィルムに柔軟性を与え、寸 法安定性を向上させ、耐湿性を向上させるために添加される成分である。好ましい可 塑剤は、沸点が 200°C以上で、 25°Cで液体である力、又は融点が 25〜250°Cであ る固体であることが好ましい。更に好ましくは沸点が 250°C以上で、 25°Cで液体であ る力、又は融点が 25〜200°Cの固体である可塑剤が挙げられる。可塑剤が液体の 場合は、その精製は通常減圧蒸留によって実施され、高真空ほど好ましぐ本発明 では、特に 200°Cにおける蒸気圧が 1333Pa以下の可塑剤を用いることが好ましぐ より好ましくは蒸気圧 667Pa以下、更に好ましくは 133〜lPaの化合物が好ましい。
[0052] これらの好ましく添加される可塑剤としては、上記の物性の範囲内にあるリン酸エス テル、カルボン酸エステル、ポリオールエステル等が用いられる。リン酸エステルの例 には、トリフエ-ルホスフェート、ジフエ-ルビフエ-ルホスフェート、ォクチルジフエ- ノレホスフェート、トリブチノレホスフェート、トリオクチノレホスフェート、ジェチノレシクロへキ シルホスフェート等が挙げられる。
[0053] カルボン酸エステルとしては、フタル酸エステル及びクェン酸エステルが代表的で ある。フタル酸エステルの例には、ジメチルフタレート、ジェチルフタレート、ジブチル フタレート、ジォクチルフタレート、ジフエ-ルフタレート、ジェチルへキシルフタレート 等が挙げられる。クェン酸エステルの例には、 O—ァセチルクェン酸トリエチル、 O— ァセチルクェン酸トリブチル、クェン酸ァセチルトリエチル、タエン酸ァセチルトリブチ ル等が挙げられる。
[0054] その他のカルボン酸エステルの例には、ォレイン酸ブチル、リシノール酸メチルァセ チル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。グリコール酸ェ ステルの例としては、トリァセチン、トリブチリン、ブチルフタリルブチルダリコレート、ェ チルフタリルェチルダリコレート、メチルフタリルェチルダリコレート、ブチルフタリルブ チルダリコレート、メチルフタリルメチルダリコレート、プロピルフタリルプロピルグリコレ ート、ブチルフタリルブチルダリコレート、ォクチルフタリルオタチルダリコレートなどが ある。
[0055] また、特開平 5— 194788号、特開昭 60— 250053号、特開平 4— 227941号、特 開平 6— 16869号、特開平 5— 271471号、特開平 7— 286068
号、特開平 5— 5047号、特開平 11 80381号、特開平 7— 20317号、特開平 8— 57879号、特開平 10— 152568号、特開平 10— 120824号の各公報などに記載さ れて 、る可塑剤も好ましく用いられる。これらの公報によると可塑剤の例示だけでなく その利用方法ある 、はその特性にっ 、ての好まし!/、記載が多数あり、本発明にお!/ヽ ても好ましく用いられるものである。
[0056] その他の可塑剤としては、特開平 11 124445号記載の(ジ)ペンタエリスリトール エステル類、特開平 11— 246704号記載のグリセロールエステル類、特開 2000— 6 3560号記載のジグリセロールエステル類、特開平 11 92574号記載のタエン酸ェ ステル類、特開平 11— 90946号記載の置換フ -ルリン酸エステル類、特開 2003 — 165868号等記載の芳香環とシクロへキサン環を含有するエステルイ匕合物などが 好ましく用いられる。
[0057] また、分子量 1000〜10万の榭脂成分を有する高分子可塑剤も用いられる。上記 の低分子可塑剤と併用することが好ましい。例えば、特開 2002— 22956号公報に 記載のポリエステル及び Z又はポリエーテル、特開平 5— 197073号公報に記載の ポリエステルエーテル、ポリエステルウレタン又はポリエステル、特開平 2— 292342 号公報に記載のコポリエステルエーテル、特開 2002— 146044号公報等記載のェ ポキシ榭脂又はノボラック榭脂等が挙げられる。 [0058] これらの可塑剤は単独もしくは 2種類以上を混合して用いてもょ ヽ。可塑剤の添カロ 量はセルロースァシレート 100質量部に対して 2〜30質量部、特に 5〜20質量部が 好ましい。
[微粒子]
保護フィルム形成用のセルロースァシレートフィルムに好ましく用いられる微粒子は 、フィルムの機械的強度と寸法安定性の向上、及び耐湿性を向上させるために添カロ されるもので、疎水性であるのが好ましい。
[0059] 微粒子の 1次平均粒子径としては、ヘイズを低く抑えるという観点から、好ましくは、 3〜: LOOnmであり、より好ましくは 3〜80nmであり、更に好ましくは 5〜60nmである 。微粒子の 1次平均粒子径の測定は、透過型電子顕微鏡で粒子を測定し、平均粒 径を求めることができる。
[0060] 微粒子の見掛け比重としては、 70〜200gZリットル以上が好ましぐ更に好ましく は、 100〜200gZリツ卜ルである。
[0061] 微粒子の添力卩量はセルロースァシレート 100質量部に対して 0. 005〜2質量部、 特に 0. 01〜: L 0質量部とするのが好ましい。
[0062] 微粒子の好ま ヽ具体例は、無機化合物としては、ケィ素を含む化合物、二酸化ケ ィ素、酸化チタン、酸化亜鉛、酸ィ匕アルミニウム、酸化バリウム、酸ィ匕ジルコニウム、酸 化ストロンチウム、酸化アンチモン、酸化スズ、酸化スズ 'アンチモン、炭酸カルシウム 、タルク、クレイ、焼成カオリン、焼成ケィ酸カルシウム、水和ケィ酸カルシウム、ケィ 酸アルミニウム、ケィ酸マグネシウム及びリン酸カルシウム等が好ましぐ更に好ましく はケィ素を含む無機化合物や酸化ジルコニウムであり、セルロースァシレートフィルム のヘイズ上昇を抑制できるので、ニ酸ィ匕ケィ素が特に好ましく用いられる。
[0063] 本発明においてセルロースァシレートフィルムに好適に用いられる微粒子としては、 ドープ中及び製膜後のフィルム中での凝集が抑制されて微粒子として安定に分散さ れるなどの理由から、表面処理されていることが好ましい。表面処理は、微粒子の表 面を有機化合物で処理するなどして行われ、その際用いることができる有機化合物 の例には、従来公知の金属酸ィ匕物や無機顔料等の無機フイラ一類の表面改質剤な どを挙げることができ、例えば「顔料分散安定化と表面処理技術'評価」第一章 (技術 情報協会、 2001年刊行)等に記載されている。具体的には、該微粒子表面と親和性 を有する極性基を有する有機化合物、カップリングイ匕合物があげられる。
[0064] 微粒子表面と親和性を有する極性基としては、カルボキシル基、ホスホノ基、ヒドロ キシル基、メルカプト基、環状酸無水物基、アミノ基等があげられ、分子中に少なくと も 1種を含有する化合物が好ましい。例えば、長鎖脂肪族カルボン酸 (例えばステア リン酸、ラウリン酸、ォレイン酸、リノール酸、リノレン酸等)、ポリオ一ルイ匕合物(例えば ペンタエリスリトールトリアタリレート、ジペンタエリスリトールペンタアタリレート、 ECH 変性グリセロール等)、ホスホノ基含有ィ匕合物 [例えば EO変性リン酸等]、アルカノー ルァミン [エチレンジァミン EO付加体(5モル)等]が挙げられる。
[0065] カップリングイ匕合物としては、従来公知の有機金属化合物が挙げられ、シランカツ プリング剤、チタネートカップリング剤、アルミネートカップリング剤等が含まれる。シラ ンカップリング剤が最も好ましい。具体的には、例えば山下普三、金子東助「架橋剤 ハンドブック」(大成社、 1981年刊)記載のカップリングイ匕合物が挙げられる。
[0066] 表面処理に際しては、上述したィ匕合物を 2種類以上併用することもできる。
[0067] 有機化合物としては、例えば、シリコーン榭脂、弗素榭脂及びアクリル榭脂等のポリ マーが好ましぐ中でも、三次元の網状構造を有するシリコーン榭脂が好ましく用いら れる。例えば、「トスパール」 [商品名;以上東芝シリコーン (株)製]等の商品名を有す る市販品が使用できる。
[0068] 本発明で使用される微粒子の形状は、特に限定されないが米粒状、球形状、立方 体状、紡錘形状、不定形状が好ましい。微粒子は単独で用いてもよいが、 2種類以 上を併用して用いることもできる。
[0069] 本発明に好ましく供される微粒子は、製膜後のフィルム中に均一に分散されること が好ましい。そこで微粒子は、以下のような態様等で微粒子分散物を調製した後にド ープ液に導入されることが好まし 、。
(1)溶媒と微粒子を撹拌混合した後、分散機で微粒子分散液とし、ドープ液に加え て撹拌する。
(2)溶媒と微粒子を撹拌混合した後、分散機で微粒子分散液とし、別に溶媒に少量 のセルロースァシレートを加え、撹拌溶解する。これに前記微粒子分散液を加えて撹 拌して得られる微粒子添加液をインラインミキサーでドープ液と十分混合する。
(3)溶媒に少量のセルロースァシレートをカ卩えて撹拌溶解し、これに微粒子をカ卩えて 分散機で分散して微粒子添加液とする。微粒子添加液をインラインミキサーでドープ 液と十分混合する。
[0070] 分散物中の微粒子の一次粒子の質量平均径は 3〜200nmであることが好ましぐ より好ましくは 3〜150nm、さらに好ましくは 3〜: LOOnm、特に好ましくは 5〜80nm である。特に、本発明における湿式分散物中の分散微粒子は、分散時において微粒 子の比表面積を過度に大きくしないために、微粒子を一次粒径以上に実質的に維 持することが好ましい。更には、湿式分散物中の分散微粒子中には、 500nm以上の 平均粒子径の大粒子が含まれな ヽことが好ましぐ 300nm以上の平均粒子径の大 粒子が含まれないことが特に好ましい。このことにより、光学的欠陥のない、ヘイズ値 の小さい透明性良好なフィルムであり、その表面に粗大な凹凸のない特定の微細な 凹凸形状 (後述)を有するフィルムを形成することができ、好ま U、。
[紫外線吸収剤]
上記セルロースァシレートフィルムには、フィルム自身の耐光性向上、或いは偏光 板、液晶表示装置の液晶化合物等の画像表示部材の劣化防止のために、更に紫外 線吸収剤を添加することが好まし 、。
[0071] 紫外線吸収剤としては、液晶の劣化防止の点より波長 370nm以下の紫外線の吸 収能に優れ、且つ良好な画像表示性の点より波長 400nm以上の可視光の吸収が 可及的に少ないものを用いることが好ましい。特に、波長 370nmでの透過率力 20 %以下であることが望ましぐ好ましくは 10%以下、より好ましくは 5%以下である。こ のような紫外線吸収剤としては、例えば、ォキシベンゾフエノン系化合物、ベンゾトリア ゾール系化合物、サリチル酸エステル系化合物、ベンゾフエノン系化合物、シァノア タリレート系化合物、ニッケル錯塩系化合物、前記のような紫外線吸収性基を含有す る高分子紫外線吸収化合物等があげられるが、これらに限定されない。紫外線吸収 剤は 2種以上用いてもよい。
[0072] 紫外線吸収剤のドープへの添加方法は、アルコールゃメチレンクロリド、ジォキソラ ンなどの有機溶媒に溶解してカゝら添加してもよ ヽし、また直接ドープ組成中に添加し てもよい。無機粉体のように有機溶媒に溶解しないものは、有機溶媒とセルロースェ ステル中にデゾルバやサンドミルを使用し、分散してからドープに添加する。
[0073] 本発明において紫外線吸収剤の使用量は、セルロースァシレート 100質量部に対 し 0. 1〜5. 0質量部が好ましぐより好ましくは 0. 5〜2. 0質量部、さらに好ましくは 0 . 8〜2. 0質量部である。
[他の添加剤]
更に、本発明のセルロースァシレート組成物には、各調製工程において用途に応 じた他の種々の添加剤 (例えば、劣化防止剤 (例えば、酸化防止剤、過酸化物分解 剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、ァミン等)、光学異方性コントロー ル剤、剥離剤、帯電防止剤、赤外吸収剤等)を加えることができ、それらは固体でもよ く油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない 。さらにまた、赤外吸収剤としては例えば特開平 2001— 194522号公報に記載のも のが使用できる。
[0074] これらの添加剤の添加する時期は、ドープ調製工程において何れで添加してもよ いが、ドープ調製工程の最後の工程に添加剤を添加する工程をカ卩えて行ってもよい 。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。ま た、セルロースァシレートフィルムが多層カゝら形成される場合、各層の添加物の種類 や添加量が異なってもよい。例えば特開平 2001— 151902号公報などに記載され ているが、これらは従来力も知られている技術である。上記の紫外線吸収剤を含めて これらの詳細は、発明協会公開技報公技番号 2001— 1745号(2001年 3月 15日発 行、発明協会) 16〜22頁に詳細に記載されている素材が好ましく用いられる。
[0075] これらの添加剤の使用量は、セルロールァシレート全組成物中、 0. 001〜20質量 %の範囲で適宜用いられることが好まし 、。
(溶媒)
次に、本発明にお 、てセルロースァシレートを溶解する有機溶媒にっ 、て記述す る。
[0076] 用いられる有機溶媒としては、従来公知の有機溶媒が挙げられ、例えば溶解度パ ラメ一ターで 17〜22の範囲ものが好ましい。低級脂肪族炭化水素の塩化物、低級 脂肪族アルコール、炭素原子数 3から 12までのケトン、炭素原子数 3〜12のエステ ル、炭素原子数 3〜 12のエーテル、炭素原子数 5〜8の脂肪族炭化水素類、炭素数 6〜 12の芳香族炭化水素類、フルォロアルコール類(例えば、特開平 8— 143709 号公報 段落番号 [0020]、同 11 60807号公報 段落番号 [0037]等に記載の 化合物)等が挙げられる。
本発明のセルロースァシレートは、有機溶媒に 10〜30質量0 /0溶解している溶液で あることが好ましいが、より好ましくは 13〜27質量%であり、特には 15〜25質量%溶 解して 、るセルロースァシレート溶液であることが好まし 、。これらの濃度にセルロー スァシレートを調製する方法は、溶解する段階で所定の濃度になるように調製しても よぐまた予め低濃度溶液 (例えば 9〜14質量%)として作製した後に後述する濃縮 工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースァシレ ート溶液として後に、種々の添加物を添加することで所定の低濃度のセルロースァシ レート溶液としてもよぐいずれかの方法で本発明のセルロースァシレート溶液濃度 になるように実施されれば特に問題な 、。
[ドープの調製]
本発明におけるセルロースァシレート溶液 (ドープ)の調製にっ 、ては、その溶解方 法は特に限定されず、室温溶解法、冷却溶解法又は高温溶解方法により実施される ことができ、さらにはこれらの組み合わせで実施されてもよい。これらに関しては、例 えば特開平 5— 163301号、特開昭 61— 106628号、特開昭 58— 127737号、特 開平 9— 95544号、特開平 10— 95854号、特開平 10— 45950号、特開 2000— 5 3784号、特開平 11— 322946号、特開平 11— 322947号、特開平 2— 276830号 、特開 2000— 273239号、特開平 11— 71463号、特開平 04— 259511号、特開 2 000— 273184号、特開平 11— 323017号、特開平 11— 302388号などの各公報 にセルロースァシレート溶液の調製法が記載されて 、る。これらのセルロースァシレ ートの有機溶媒への溶解方法は、本発明においても、その範囲であればこれらの技 術を適宜適用できるものである。これらの詳細、特に非塩素系溶媒系については、前 記の公技番号 2001— 1745号 22〜25頁に詳細に記載されている方法で実施され る。さらに本発明に用いられるセルロースァシレートのドープ溶液に関しては、通常、 溶液濃縮やろ過が実施され、同様に前記の公技番号 2001— 1745号 25頁に詳細 に記載されている。なお、高温度で溶解する場合は、使用する有機溶媒の沸点以上 の場合がほとんどであり、その場合は加圧状態で行われる。
[0078] 本発明で用いられるセルロースァシレート溶液は、その溶液の粘度と動的貯蔵弹 性率が特定の範囲であることが好ましい。試料溶液 lmLについて、レオメーター" CL S 500 "に直径 4cmZ2° の Steel Cone (共に TA Instrumennts社製)を用い、 測定条件は、 Oscillation Step/Temperature Rampで 40°C〜一 10°Cの範囲 を 2°CZ分で可変して測定し、 40°Cの静的非ニュートン粘度 n* (Pa - sec)及び 5°Cの 貯蔵弾性率 G' (Pa)を求める。試料溶液は、予め測定開始温度にて液温一定となる まで保温した後に測定を開始する。本発明では、 40°Cでの粘度が l〜300Pa' sec であり、且つ 5°Cでの動的貯蔵弾性率が 1万〜 100万 Paであることが好ましい。より 好ましくは、 40°Cでの粘度が l〜200Pa' secであり、且つ 5°Cでの動的貯蔵弾性 率が 3万〜 50万 Paである。
[セルロースァシレートフィルムの製造方法]
次に、上記セルロースァシレート溶液を用いた保護フィルムとしてのセルロースァシ レートフィルムの製造方法にっ 、て述べる。上記セルロースァシレートフィルムを製造 する方法及び設備は、セルローストリアセテートフィルム製造に供するドラム方法若し くはバンド方法と称される、従来公知の溶液流延製膜方法及び溶液流延製膜装置が 用いられる。
[0079] 流延工程で用いられる金属支持体は、その表面が算術平均粗さ (Ra)が 0. 015 m以下で、十点平均粗さ(Rz)が 0. 05 m以下であることが好ましい。より好ましくは 、算術平均粗さ(Ra)が 0. 001〜0. 01 /z mで、十点平均粗さ(Rz)が 0. 001〜0. 0 2 /z mである。更に好ましくは、(Ra)Z(Rz)比が 0. 15以上である。このように、金属 支持体の表面粗さを所定の範囲とすることで、製膜後のフィルムの表面形状を後述 する好ましい範囲内に制御できる。
[0080] 以下、バンド法を例として製膜の工程を説明する。
[0081] 溶解機 (釜)から調製されたドープ (セルロースァシレート溶液)を貯蔵釜でー且貯 蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口か ら、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して 加圧型ダイに送り、ドープを加圧型ダイの口金 (スリット)力もエンドレスに走行してい る流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点 で、生乾きのドープ膜 (ウェブとも呼ぶ)を金属支持体力も剥離する。得られるウェブ の両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装 置のロール群で搬送し乾燥を終了して巻き取り機で所定の長さに巻き取る。テンター とロール群の乾燥装置との組み合わせはその目的により変わる。これらの各製造ェ 程については、前記の公技番号 2001— 1745号 25〜30頁に詳細に記載され、流 延 (共流延を含む)、金属支持体、乾燥、剥離、延伸などに分類される。
[0082] 流延工程では 1種類のセルロースァシレート溶液を単層流延してもよいし、 2種類 以上のセルロースァシレート溶液を同時及び又は逐次共流延してもよい。
[セルロースァシレートフィルムの特性]
本発明に供される偏光膜の保護フィルムであり、反射防止膜の支持体となる保護フ イルムとしては、以下のような特性を有する。
(フィルム表面の性状)
保護フィルムとして用いるセルロースァシレートフィルムは、特定の表面形状を有す るのが好ましい。以下、セルロースァシレートフィルムの表面形状について説明する。
[0083] 前記セルロースァシレートフィルムの反射防止層を設ける側の表面は、 JIS B— 06 01— 1994に基づくフィルムの表面凹凸の算術平均粗さ(Ra)が 0. 0001〜0. 3 μ m、さらには 0. 0001〜0. 1 111、特には0. 0002〜0. 015 m ;十点平均粗さ(Rz )力 ^Ο. 0001〜0. 5 /ζ πι、さらには 0. 0001〜0. 3 111、特には0. 002〜0. 05 m ;且つ最大高さ(Ry)が 1. 0 m以下、さらには 0. 8 m以下、特には 0. 05 m以 下;であることが好ましい。これらの範囲内において、塗布ムラの無い均一な塗布面 状で、偏光膜の保護フィルムとしてアルカリ酸ィヒ処理する際に処理液との濡れが均 一になり、表面の酸化がムラなく進行し、さらに酸化処理された面と偏光膜と貼り合せ た場合に、粘着剤のアンカー効果により密着性が向上する。
[0084] 表面の凹と凸の形状は、透過型電子顕微鏡 (TEM)、原子間力顕微鏡 (AFM)等 により評価することができる。 (フィルムの力学特性)
(フィルムの機械的特性)
本発明に用いる保護フィルムの幅方向のカール値は、 7Ζπ!〜 + 7Zmであるこ とが好ましい。長尺で広幅の保護フィルムに対し行う際に、保護フィルムの幅方向の カール値が前述の範囲内にあると、フィルムのハンドリングの支障や、フィルムの切断 が起きることがなぐまた、フィルムのエッジや中央部などで、フィルムが搬送ロールと 強く接触することからくる発塵や、フィルム上への異物付着が少なくなり、本発明の偏 光板の点欠陥や塗布スジの頻度が許容値を超えることがなく好ましい。また、偏光膜 貼り合せ時に気泡が入ることを防ぐことができて好ましい。
[0085] カール値は、アメリカ国家規格協会の規定する測定方法 (ANSIZASCPH1. 29
- 1985)に従い測定することができる。
[0086] 本発明に用いる保護フィルムの残留溶媒量は、 1. 5質量%以下とすることでカール を抑制できるので好ましい。さらに 0. 01〜: L 0質量0 /0以下であることがより好ましい 。これは、前述の溶液流延製膜方法による成膜時の残留溶媒量を少なくすることで 自由堆積が小さくなることが主要な効果要因になるためと思われる。
[0087] セルロースァシレートフィルムの引き裂き強度は、その JIS K— 7128— 2 : 1998の 引裂き試験方法 (エルメンドルフ引裂き法)に基づく引裂き強度が、 2g以上であるの 力 前記の膜厚においても膜の強度が充分に保持できる点で好ましい。より好ましく は、 5〜25gであり、更に好ましくは 6〜25gである。また 60 /z m換算では、 8g以上が 好ましぐより好ましくは 8〜15gである。具体的には、試料片 50mm X 64mmを、 25 °C、 65%RHの条件下に 2時間調湿した後に軽荷重引裂き強度試験機を用いて測 定できる。
[0088] また、引搔き強度は 2g以上であることが好ましぐ 5g以上であることがより好ましぐ
10g以上であることが特に好ましい。この範囲とすることにより、フィルム表面の耐傷 性、ノ、ンドリング性が問題なく保持される。
[0089] 引搔き強度は、円錐頂角が 90°で先端の半径が 0. 25mのサフアイャ針を用いて保 護フィルム表面を引搔き、引搔き跡が目視にて確認できる荷重 (g)をもって評価する ことができる。 (フィルムの平衡含水率)
本発明に用いられるセルロースァシレートフィルムの平衡含水率は、偏光板の保護 フィルムとして用いる際、ポリビュルアルコールなどの水溶性ポリマーとの接着性を損 なわないために、膜厚のいかんに関わらず、 25°C、 80%RHにおける平衡含水率が 、 0〜4質量%であることが好ましい。 0. 1〜3. 5質量%であることがより好ましぐ 1〜 3質量%であることが特に好ましい。平衡含水率がこの範囲内であれば、セルロース ァシレートフィルムを偏光板の保護フィルムとして用いる際に、フィルムの接着性のよ さを維持すると共に、フィルムのレターデーシヨンの湿度依存性が大きくなりすぎるこ とがないので好ましい。
含水率の測定法は、本発明のセルロースァシレートフィルム試料 7mm X 35mmを 、水分測定器〃 CA— 03〃及び試料乾燥装置〃 VA— 05〃 [共に三菱ィ匕学 (株)製]を用 いてカールフィッシャー法により測定する。含水率は、水分量 (g)を試料質量 (g)で 除して算出する。
(フィルムの透湿度)
本発明に用いられるセルロースァシレートフィルムの透湿度は、 JIS Z— 0208をも とに、温度 60°C、湿度 95%RHの条件において測定し、得られた値を膜厚 80 mに 換算したものである。該透湿度は400〜20008 1112' 2411、さら〖こは 50
0〜 1800gZm2 · 24h、特には 600〜 1600g/m2 · 24hの範囲であることが好まし!/ヽ 。透湿度が該上限値以下であれば、フィルムのレターデーシヨン値の湿度依 存性の絶対値が 0. 5nm/%RHを超えることが少ないので好ましい。また本発明の 反射防止能付き偏光板のセルロースァシレートフィルムに、光学異方性層を有する 光学補償フィルムを積層した場合も、 Re値、 Rth値の湿度依存性の絶対値が 0. 5n /%RHを超えることが少な 、ので好まし 、。さらにこのような光学補償フィルム付き 偏光板が液晶表示装置に組み込まれた場合には、色味の変化や視野角の低下など の不具合を引き起こすことがほとんどないので好ましい。一方、該透湿度が該下限値 以上であれば、偏光膜に貼り付けて偏光板を作製する場合に、セルロースァシレート フィルムにより接着剤の乾燥が妨げられて接着不良を引き起こすなどの不具合が生 じにくいので好ましい。 [0091] セルロースァシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄けれ ば透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を 80 mに設け換 算する必要がある。膜厚の換算は、
(80 μ m換算の透湿度 =実測の透湿度 X実測の膜厚 μ m/80 μ m)
として求める。
[0092] 透湿度の測定法は、「高分子の物性 II」(高分子実験講座 4 共立出版)の 285頁 〜294頁:蒸気透過量の測定 (質量法、温度計法、蒸気圧法、吸着量法)に記載の 方法を適用することができ、本発明のセルロースァシレートフィルム試料 70mm φを 2 5°C、 90%RH及び 60°C、 95%RHでそれぞれ 24時間調湿し、透湿試験装置 ["KK — 709007"東洋精機 (株)製]にて、 JIS Z— 0208〖こ従って、単位面積あたりの水 分量 (g/m2)を算出し、透湿度 =調湿後質量-調湿前質量で求める。
〔アルカリ鹼化処理〕
本発明に用いられる反射防止膜が塗設されたセルロースァシレートフィルムは、少 なくとも反射防止膜が塗設されて 、な 、側の表面 (以下、背面と 、うことがある)をァ ルカリ鹼化処理することにより親水化される。本発明では、鹼化処理後の該表面、す なわち偏光膜と接する側の表面が、前記した特定の凹凸形状の親水性表面状態を 形成して!/、ることを特徴とする。
[0093] またアルカリ処理を行う前に、プラズマ処理等の物理的な処理を併用してもよぐ引 き続くアルカリ処理により塵埃等の付着防止の効果が期待できるので好ま U、。ブラ ズマ処理等の物理的処理は、例えば前記公開技法 2001— 1745号公報 p30等記 載の内容が挙げられる。
[アルカリ溶液]
本発明において、アルカリ酸ィ匕処理に用いられるアルカリ処理液は、反射防止膜を 構成する組成物又は鹼化処理の方法によって適切な処理液が選ばれるが、アルカリ 剤が 0. 1〜5モル Zkg濃度のアルカリ水溶液であればよい。好ましくは、水溶性有機 溶媒、界面活性剤、相溶化剤の少なくともいずれカゝを更に含有するアルカリ溶液を 用いて酸ィ匕処理されることが好ま 、。
(アルカリ剤) 本発明に用いられるアルカリ剤の例として、水酸化ナトリウム、水酸ィ匕カリウム、水酸 ィ匕リチウム、水酸ィ匕アンモ-ゥムなどの無機アルカリ剤が挙げられる。またモノエタノ ールァミン、ジエタノールァミン、トリエタノールァミン、、 1, 8—ジァザビシクロ [5, 4, 0]—7—ゥンデセン(DBU)、 1, 5—ジァザビシクロ [4, 3, 0]—5—ノネン(0 ? 、 テトラメチルアンモ-ゥムヒドロキシドなどの有機アルカリ剤も用いられる。
[0094] これらのアルカリ剤は単独で、又は 2種以上組み合わせて使用することができ、一 部を例えばハロゲンィ匕したような塩の形で添加してもよい。
[0095] これらのアルカリ剤の中でも、水酸化ナトリウム、水酸化カリウムが好ましい。その理 由は、これらの量を調整することにより広い pH領域での pH調整が可能となるためで ある。
[0096] アルカリ溶液の濃度は、使用するアルカリ剤の種類、反応温度及び反応時間に応 じて決定する。短い時間で酸ィ匕反応を完了するためには、高い濃度に溶液を調製す ることが好ましい。ただし、アルカリ濃度が高すぎるとアルカリ溶液の安定性が損なわ れ、長時間塗布において析出する場合もある。アルカリ剤の含有量は、アルカリ溶液 中の 0. 1〜5モノレ/ kg力好ましく、 0. 5〜3モノレ/ kg力より好まし!/ヽ。
(有機溶媒)
本発明のアルカリ溶液の溶媒は、水及び有機溶媒の混合溶液カゝらなることが好まし い。有機溶媒としては、水と混和可能な有機溶媒であればいずれも用いることができ る。
[0097] その中でも好ましい有機溶媒は、無機性 Z有機性値 (IZO値)が 0. 5以上で、且 つ溶解度パラメーターが 16〜40[mj/m3] 1/2の範囲のものが好ましい。より好ましく は、 I/O値が 0. 6〜10で、且つ溶解度パラメーターが 18〜31 [mi/m3] 1/2である。 IZO値が該下限値以上で無機性が強くなりすぎず、且つ溶解度パラメーターが該下 限値以上であれば、アルカリ酸ィ匕速度が低下したり、また酸ィ匕度の全面にわたっての 均一性が損なわれたりするなどの不都合が生じないので好ましい。一方、 ΙΖΟ値が 1 0以下であって有機性の側となり、且つ溶解度パラメーターが該上限値以下であれ ば、鹼化速度も十分であり、また得られるセルロースァシレートフィルムにヘイズを生 じさせたり、また酸ィ匕度の全面にわたる均一性が損なわれたりするなどの不都合が生 じないので好ましい。
[0098] 溶解度パラメーター及び IZO値が上記の範囲にあって、本発明に好ましく用いるこ とができる有機溶媒の例には下表 1の溶媒が挙げられる。
[0099] [表 1]
Figure imgf000029_0001
[0100] また、有機溶媒、とりわけ上記有機性と溶解性の各範囲の有機溶媒を、後述する相 溶化剤及び界面活性剤と組み合わせて用いることにより、高い酸ィ匕速度が維持され て、且つ全面に亘つて酸ィ匕度の均一性が向上する。
[0101] 好ま ヽ特性値を有する有機溶媒は、例えば、有機合成化学協会編、「新版溶剤 ホケッ
トブック」 [ (株)オーム社、 1994年刊]等に記載のものが挙げられている。また、有機 溶媒の無機性 Z有機性値 (IZO値)については、例えば、田中善生著「有機概念図 」三共出版社 1983年刊、 1〜31頁に解説されている。
[0102] 溶解度パラメータ一は有機合成化学協会編「溶剤ポケットブック」 ppll (オーム社、 1967年刊行)に記載されているものを使用した。
[0103] 具体的には、一価脂肪族アルコール類(例えば、メタノール、エタノール、プロパノ ール、ブタノール等)、脂環式アル力ノール(例えば、シクロへキサノール、シクロへキ シルメタノール等)、フエ-ルアルカノール(例えば、ベンジルアルコール、フエノキシ エタノール、メトキシベンジルアルコール等)、複素環式アル力ノール類(例えば、フ ルフリルアルコール、テトラヒドロフルフリルアルコール等)、グリコール化合物のモノ エーテル類(例えば、メチルセルソルブ、ェチルセルソルブ、プロピルセルソルブ、メト キシメトキシエタノール、ブチルセルソルブ、へキシルセルソルブ、メチルカルビトー ル、ェチルカルビトール、プロピルカルビトール、ブチルカルビトール、メトキシトリダリ コーノレ、エトキシトリグリコーノレ、プロピレングリコールモノメチルエーテル、プロピレン グリコールモノェチルエーテル、プロピレングリコールモノプロピルエーテル等)、ケト ン類 (例えば、アセトン、メチルェチルケトン等)、アミド類 (例えば、 N, N—ジメチルホ ルムアミド、 N—メチルー 2—ピロリドン、 1, 3—ジメチルイミダゾリジノン等)、及びェ 一テル類(例えば、テトラヒドロフラン、ピラン、ジォキサン、ジメチルセルソルブ、ジェ チルセルソルブ、ジプロピルセルソルブ、メチルェチルセルソルブ、ジメチルカルビト ール、ジメチルカルビトール、メチルェチルカルビトール等)などが挙げられる。これら の有機溶媒は、それぞれ単独で、又は 2種以上を混合して用いられる。
[0104] 有機溶媒を単独で、又は 2種以上混合して用いる場合の少なくとも 1種の有機溶媒 は、水への溶解性が大きなものが好ましい。このような有機溶媒の水への溶解度は、 50質量%以上であることが好ましぐ水と自由に混合するものがより好ましい。このよ うな有機溶媒を用いることにより、アルカリ剤、鹼化処理で副生する脂肪酸の塩、空 気中の二酸化炭素を吸収して生じる炭酸の塩等に対する溶解性が充分なアルカリ溶 液を調製できる。
[0105] 有機溶媒のアルカリ溶液中の使用割合は、溶媒の種類、水との混和性 (水溶性)、 反応温度及び反応時間に応じて決定することができる。短い時間で酸化反応を完了 するためには、高い濃度に溶液を調製することが好ましい。ただし、溶媒濃度が高す ぎると、ァシレートフィルム中の成分(可塑剤など)が抽出されたり、フィルムの過度の 膨潤が起こったりする場合があり、適切に選択する必要がある。
[0106] 水と有機溶媒の混合比は、質量比が 3Z97〜85Z15、さらには 5Ζ95〜6θΖ40 、特には 15/85〜40/60であることが好ましい。この範囲において、ァシレートフィ ルムの光学特性を損なうことなく容易にフィルム全面が均一に酸ィ匕処理される。
[0107] 本発明に用いられるアルカリ溶液が含有する有機溶媒には、本発明の目的である セルロースァシレートフィルムのヘイズを低減させ、酸化度の均一性や安定性を高め る作用を持つ有機溶媒のほかに、共存させることによって本発明の効果を増大させる ことができる、後述する界面活性剤や相溶化剤、消泡剤等の溶解助剤としての作用 を有する有機溶媒も含むことができる。この作用を有する有機溶媒は、上記した好ま しい iZo値を有する有機溶媒とは異なる有機溶媒であってもよい。溶解助剤作用を 有する好ましい有機溶媒は、例えば、 Ν—フエ-ルエタノールァミン及び Ν—フエ- ルジェタノールァミン、フッ化アルコール(例えば、 C F (CH ) ΟΗ (ηは 3〜8の整 η 2η+1 2 m
数、 mは 1又は 2の整数)、 1, 2, 2, 3, 3—ヘプタフルォロプロパノール、へキサフル ォロブタンジオール、ペルフルォロシクロへキサノール等)等を挙げることができる。 溶解助剤の目的で用いられる有機溶媒の含有量は使用液の総重量に対して 0. 1〜 5%が好ましい。
(界面活性剤)
本発明に用いるアルカリ溶液は、界面活性剤を含有することが好ましい。界面活性 剤を添加することによって、表面張力を下げて塗布を容易にし、塗膜の均一性を上 げてハジキによる欠陥箇所の発生を防止し、且つ有機溶媒が存在すると起こり易い フィルムのヘイズを抑止し、さらに鹼化反応の均一進行を促進する。その効果は、後 述する相溶化剤の共存によってさらに顕著となる。用いられる界面活性剤には特に 制限はなぐァニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、ノニオン 界面活性剤、フッ素系界面活性剤等の 、ずれであってもよ!/、。
以下、本発明に使用しうる界面活性剤について順次説明する。
(ァ-オン界面活性剤)
ァ-オン界面活性剤としては、例えば、脂肪酸塩類、ァビエチン酸塩類、ヒドロキシ アルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステ ル塩類、 a—ォレフインスルホン酸塩類、直鎖アルキルベンゼンスルホン酸塩類、分 岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキ ルフエノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキ ルスルホフヱ-ルエーテル塩類、 N—メチルー N—ォレイルタウリンナトリウム塩、 N— アルキルスルホ琥珀酸モノアミドニナトリウム塩、石油スルホン酸塩類、硫酸化牛脂 油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリ ォキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エス テル塩類、ポリオキシエチレンアルキルフエ-ルエーテル硫酸エステル塩類、ポリオ キシエチレンスチリルフエ-ルエーテル硫酸エステル塩類、アルキルリン酸エステル 塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレン アルキルフエ-ルエーテルリン酸エステル塩類、スチレン z無水マレイン酸共重合物 の部分酸化物類、ォレフィン Z無水マレイン酸共重合物の部分酸化物類、ナフタレ ンスルホン酸塩ホルマリン縮合物類等が好適に挙げられる。
(カチオン界面活性剤)
カチオン界面活性剤としては、例えば、アルキルアミン塩類、テトラブチノレアンモ- ゥムブロミド等の第四級アンモ-ゥム塩類、ポリオキシエチレンアルキルアミン塩類、 ポリエチレンポリアミン誘導体等が挙げられる。
(両性界面活性剤)
両性界面活性剤としては、例えば、カルボキシベタイン類、アルキルアミノカルボン 酸類、スルホベタイン類、ァミノ硫酸エステル類、イミダゾリン類等が挙げられる。 (ノ-オン性界面活性剤)
ノ-オン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル類、 ポリオキシエチレンアルキルフエニルエーテル類、ポリオキシエチレンポリスチリルフ ェ-ルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グ リセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリトリトー ル脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、蔗糖脂肪酸 部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシェ チレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル 類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキ シエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、 N, N— ビス 2—ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルァミン、トリエタノ ールァミン脂肪酸エステル、トリアルキルアミンォキシド等が挙げられる。
[0109] これらのノニオン性界面活性剤の重量平均分子量は、 300〜50, 000力 子ましく、 500〜5, 000力特に好まし!/ヽ。
[0110] 本発明において、前記ノ-オン性界面活性剤の中でも、下記一般式 (4)で表される 化合物が好ましい。 [0111] [化 1] 一般式 (4) :
R-0(CH2C H R 20)^CH2C HR"0 ^tC H2C H 440)^- R45
[0112] 一般式 (4)中、 R41〜R45は、それぞれ、水素原子、炭素数 1〜18のアルキル基、ァ ルケニル基、アルキ-ル基、ァリール基、カルボ-ル基、カルボキシラート基、スルホ -ル基、スルホナート基を表す。アルキル基の具体例としては、メチル基、ェチル基、 へキシル基等が挙げられ、アルケニル基の具体例としては、ビュル基、プロべ-ル基 等が挙げられ、アルキニル基の具体例としては、ァセチル基、プロピ-ル基等が挙げ られ、ァリール基の具体例としては、フエニル基、 4ーヒドロキシフエニル基等が挙げら れる。
[0113] nl, n2, n3は 0以上の整数を表す。ただし、 nl, n2, n3の総てが 0であることはな い。
[0114] 一般式 (4)で表される化合物の具体例としては、ポリエチレングリコール、ポリプロピ レングリコーノレ等のホモポリマー、エチレングリコールとプロピレングリコーノレのコポリ マー等が挙げられる。該コポリマーの比率は、 10Z90〜90Z10がアルカリ溶液へ の溶解性の点力も好ましい。また、コポリマーの中でもグラフトポリマー、ブロックポリ マーが、アルカリ溶液に対する溶解性とアルカリ鹼ィ匕処理の容易性の点カゝら好ましい
(フッ素系界面活性剤)
フッ素系界面活性剤は、分子内にペルフルォロアルキル基を含有する界面活性剤 を指す。このようなフッ素系界面活性剤としては、例えば、ペルフルォロアルキルカル ボン酸塩、ペルフルォロアルキルスルホン酸塩、ペルフルォロアルキルリン酸エステ ル等のァ-オン型、ペルフルォロアルキルべタイン等の両性型、ペルフルォロアルキ ルトリメチルアンモ-ゥム塩等のカチオン型、ペルフルォロアルキルアミンォキシド、 ペルフルォロアルキルエチレンォキシド付カ卩物、ペルフルォロアルキル基及び親水 性基含有オリゴマー、ペルフルォロアルキル基及び親油性基含有オリゴマー、ペル フルォロアルキル基、親水性基及び親油性基含有オリゴマー、ペルフルォロアルキ ル基及び親油性基含有ウレタン等の非イオン型が挙げられる。 [0115] 以上の界面活性剤のうち、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、 ポリオキシプロピレン、ポリオキシブチレン等のポリオキシアルキレンに読み替えること もでき、それらもまた前記界面活性剤に包含される。前記界面活性剤は、一種単独 で使用してもよいし、併用により効果を損なわない限りにおいては、 2種以上を併用し てもよい。
[0116] 以上の界面活性剤の中でも、本発明においては、カチオン性界面活性剤としての 前記四級アンモ-ゥム塩類、ノ-オン性界面活性剤としての前記各種のポリエチレン グリコール誘導体類、前記各種のポリエチレンォキシド付加物類等のポリエチレンォ キシド誘導体類、両性界面活性剤としてのベタイン型化合物類が好まし 、。
[0117] これらの界面活性剤のアルカリ溶液に対する添カ卩量は、好ましくは、 0. 001-20 質量%であり、より好ましくは、 0. 01〜10質量%であり、特に好ましくは、 0. 03〜3 質量%である。この範囲において、界面活性剤の添加効果発現し、良好な鹼ィ匕性が 得られる。
湘溶化剤)
本発明に用いるアルカリ溶液は、相溶化剤を含有することが好ましい。本発明にお いて相溶化剤とは、温度 25°Cにおいて、相溶化剤 100gに対する水の溶解度が 30g 以上となる親水性ィ匕合物である。好ましくは、水の溶解度が 50gZl00gであり、より 好ましくは lOOgZlOOgである。また、本発明における相溶化剤が液状化合物の場 合は、沸点が 100°C以上であることが好ましぐより好ましくは 120°C以上である。
[0118] 本発明に係るアルカリ処理浴の装置において、相溶化剤は、壁面に付着したアル カリ液の乾燥を防止し、固着を抑制し溶液を安定に保持することができる。またフィル ム表面のアルカリ液が、水洗工程での洗い落としまでの間に乾燥して固形物が析出 し、水洗工程での固形物の洗い出しが困難になることを抑止することができる。特に 後述する塗布方式での処理にぉ 、て、塗布後一定時間保持したのち酸ィヒ停止処置 をするまでの間での固形物析出の抑止に極めて効果的である。更には、溶媒となる 水と有機溶媒の相分離を防止する効果がある。とりわけ、界面活性剤と有機溶媒と上 記規定の相溶化剤との共存によって、処理されたフィルムは、ヘイズが減少し、且つ 長尺の連続酸ィ匕処理の場合であっても安定して全面均一な酸ィ匕度が得られるので 好ましい。
[0119] 本発明に用いられる相溶化剤は、上記の条件を満たす材料であれば、 ヽずれの材 料であっても用いることができる。好ましい相溶化剤としては、ポリオール化合物、糖 類を始めとするヒドロキシ基及び Z又はアミド基を有する繰り返し単位を含む水溶性 重合体が挙げられる。
[0120] ポリオール化合物としては、低分子化合物、オリゴマー化合物、高分子化合物の何 れでもよい。例えば、脂肪族ポリオール類としては、炭素数 2〜8のアルカンジオール (例えばエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジォー ル、へキサンジオール、グリセリンモノメチノレエーテル、グリセリンモノエチノレエーテノレ 、シクロへキサンジオール、シクロへキサンジメタノール、ジエチレングリコール、ジプ ロピレンダリコール等)、ヒドロキシ基を 3個以上含有する炭素数 3〜18のアルカンポリ オール類(例えば、グリセリン、トリメチロールェタン、トリメチロールプロパン、トリメチロ ールブタン、へキサントリオール、ペンタエリトリトール、ジグリセリン、ジペンタエリトリト ール、イノシトール等)等を挙げることができる。またポリアルキレンォキシポリオール 類としては、上記のような同じアルキレンジオール同士が結合していても、異なるアル キレンジオールが互いに結合して 、てもよ 、が、同じアルキレンジオール同士が結合 したポリアルキレンポリオールがより好ましい。いずれの場合もの結合数は 3〜: LOOが 好ましい。より好ましくは 3〜50である。具体的にはポリエチレングリコール、ポリプロ ピレンダリコール、ポリ(ォキシエチレン一ォキシプロピレン)等が挙げられる。
[0121] 糖類としては、例えば、高分子学会高分子実験学編集委員会編「天然高分子」第 二章 (共立出版 (株)、 1984年刊)、小田良平等編「近代工業化学 22、天然物工業化 学 II」((株)朝倉書店、 1967年刊)等に記載の水溶性ィ匕合物が挙げられる。遊離の アルデヒド基ゃケトン基を持たない還元性を示さない糖類が好ましい。グルコース、ス クロース、還元基同士の結合したトレハロース型少糖類、糖類の還元基と非糖類が結 合した配糖体及び糖類に水素添加して還元した糖アルコールに分類され、何れも本 発明に好適に用いられる。これらの非還元糖は、単独もしくは二種以上を組み合わ せて使用できる。
[0122] ヒドロキシ基及び Z又はアミド基含有の繰り返し単位を含有する水溶性重合体とし ては、天然ガム類 (例えば、アラビアガム、グァーガム、トラガンドガム等)、ポリビュル アルコール、ポリビュルピロリドン、ジヒドキシプロピルアタリレート重合体、セルロース 類やキトサン類のエチレンォキシド、又はプロピレンォキシドとのエポキシ化合物との 付加反応体、アルキレンポリオール、ポリアルキレンォキシポリオール、糖アルコール 等が挙げられる。中でも好ましくは、アルキレンポリオール、ポリアルキレンォキシポリ オール及び糖アルコールが挙げられる。具体的には、エチレングリコール、プロピレ ングリコール、ブチレングリコール、ジエチレングリコール、ジ(n—プロピレングリコー ル)、ジ(i プロピレングリコール)、ポリエチレングリコール(結合数 3〜20)、ポリプロ ピレンダリコール (結合数 3〜: LO)、さらには、グリセリン、ジグリセリンが挙げられる。
[0123] これらの相溶化剤の含有量は、アルカリ溶液中の 0. 5〜35質量%が好ましぐ 1〜 25質量%がより好ましい。
(消泡剤)
更に、本発明におけるアルカリ溶液には消泡剤を含有させることが好ましい。この添 加剤は、アルカリ溶液中に、好ましくは 0. 001〜5質量%、特に好ましくは 0. 005〜 3重量%の濃度で含有させることができる。この範囲において、フィルム表面への微 小な気泡の付着も無くなり、アルカリ処理による酸化がムラ無く均一に進行する。
[0124] 消泡剤としては、ヒマシ油、亜麻仁油等の油脂系、天然ワックス等の脂肪酸エステ ル系、ポリオキシアルキレン一価アルコール等のアルコール系、ジ—t—アミルフエノ キシエタノール、へプチルセ口ソルブ、ノニルセ口ソルブ、 3—へプチルカルビトール 等のエーテル系、ジアミルァミン等のアミン系、ポリアルキレンアミド、ァシレートポリア ミド等のアミド系、ジメチルポリシロキサン、メチルフエ-ルポリシロキサン、メチル水素 ポリシロキサン、フロロポリシロキサン、ジメチルポリシロキサンとポリアルキレンォキシ ドとの共重合体等のシリコーンオイル系の消泡剤が挙げられる。
(他の添加剤)
本発明に用いるアルカリ溶液には、他の添加剤を併用してもよい。このような添加剤 としては、例えば、防黴剤及び Z又は防菌剤、アルカリ液安定化剤 (酸化防止剤等) 等が挙げられる。なお本発明におけるアルカリ溶液の添加剤は、これらに限定される ものではない。 (水)
またアルカリ溶液に用いる水としては、 日本国水道法(昭和 32年法律第 177号)及 びそれに基づく水質基準に関する省令 (昭和 53年 8月 31日厚生省令第 56号)、同 国温泉法 (昭和 23年 7月 10日法律第 125号及びその別表)、及び、 WHO規定水道 水基準によって規定される水中の混入の状態における各元素やミネラル等への影響 などに基づくものが好ましい。本発明の効果の達成をより確実にするために、このよう な水を用いることが好まし 、。
[0125] アルカリ溶液には、カルシウム及びマグネシウムなどの多価金属イオンが含まれな いことが好ましい。カルシウム及びマグネシウムの各濃度は、それぞれ、 0. 001-40 OmgZLであるのが好ましぐ 0. 001〜150mgZLであるのが更に好ましい。またそ の他の多価金属イオンの濃度 0. 001〜1000mgZLであることが好まし!/、。
なおこれら各イオンの下限値 0. OOlmgZLとは、測定限界以下であることを意味し ている。
[0126] 一方、アルカリ溶液には、塩ィ匕物イオンや炭酸イオンなどのァ-オンも含まな 、こと が好ましい。塩化物イオン濃度は 0. 001〜500mgZLであることが好ましぐ 0. 001 〜300mg/Lであることが更に好ましい。また、炭酸イオンも含まれないことが好まし 炭酸イオン濃度は 0. 001〜3500mg/Lであること力 子ましく、 0. 001〜1000 mgZLであることが更に好ましぐ 0. 001〜200mgZLであることが特に好ましい。 以上の各イオン種とも、上記の多価金属イオンと同様、濃度が低いほど好ましぐ下 限の 0. OOlmgZLも、同様に、測定限界以下であることを意味している。これらの濃 度範囲において、溶液中の不溶解物の生成が抑えられる。
(液の物性)
本発明に用いられる以上述べた組成物カゝらなるアルカリ溶液は、その溶液の表面 張力が 45mNZm以下(温度 25°C)であり、且つ粘度が 0. 8〜20mPa's (温度 25 °C)の範囲であることが好ましい。さらに好ましくは、表面張力が 20〜40mNZm (温 度 25°C)であり、且つ粘度が l〜15mPa's (温度 25°C)である。この範囲において、 フィルム表面への濡れ性、フィルム表面に塗布した溶液の保持性、鹼化処理後のフ イルム表面からのアルカリ液の除去性が優れて 、るので好まし!/、。 [0127] また、アルカリ溶液の密度は、 0. 65-1. 05g/cm3であることが好ましぐ 0. 75〜0 . 95g/cm3であることがより好ましい。アルカリ溶液の密度が該下限値以上であれば、 フィルムの搬送に伴う風圧により風ムラが生じて、処理の均一性が損なわれるなど不 具合が生じないので好ましい。また、該上限値以下であれば、アルカリ溶液の自重に より搬送方向に平行な塗布スジが発生して、やはり処理の均一性が損なわれるなど 不具合が生じないので好ましい。処理の均一性が損なわれると、配向膜の厚みムラ の原因となる。
[0128] さらに、本発明のアルカリ鹼ィ匕方法のアルカリ鹼ィ匕溶液の電気伝導度は、後述する 洗浄工程での負荷を最小限にするために、 1〜: L00mS/cmであることが好ましぐ 2 〜50mSZcmであることがより好ましい。この範囲の電気伝導度を有することが、残 存する不純物による輝点故障 (異物欠陥)の発生を抑制し、偏光膜との接着剤を介し ての密着性が良好となる。
[0129] またさらに、測定波長 400nmにおけるアルカリ溶液の吸光度は 2. 0未満であること が好ましい。処理時にセルロースァシレートフィルム中の添加剤を抽出して液の吸光 度が上がったりしないように、処理条件 (温度、時間等)や送液系、コーターの大きさ などを決定することが好ましい。吸光度の高いアルカリ溶液では、液中にセルロース ァシレートフィルムの添加剤が溶け出していることが多ぐこれらの添加剤がセルロー スァシレートフィルム上に付着して輝点故障 (異物欠陥)の発生原因となることがある 。アルカリ溶液の吸光度の制御には活性炭を用い、溶出成分を吸着、除去する方法 が利用できる。活性炭は、アルカリ溶液中の着色成分を除去する機能を有していれ ばよぐその形態、材質等に制限はない。着色成分の除去方法も特に限定されるもの ではなぐ活性炭を直接アルカリ溶液槽に入れる方法、鹼ィ匕溶液槽と活性炭を充填 した浄ィ匕装置間にアルカリ溶液を循環させる方法を採用することができる。
[アルカリ鹼ィ匕方法]
以上述べたアルカリ溶液を用いてのセルロースァシレートフィルムの表面処理方法 は、従来公知のいずれの方法でもよぐ浸漬方法、吹き付け方法、塗布方法等が挙 げられる。特に、片面のみをムラなく均一に酸ィ匕処理する塗布方式が好ましい。ゾル Zゲル硬化膜を含む構成の反射防止膜の場合、浸漬方法ではアルカリ処理による ゾル Zゲル膜の劣化を生じることがあるために塗布方法を用いることが好まし 、。塗 布の方法としては、後に述べるように従来公知の塗布方法を用いることができる。
[0130] 酸ィ匕処理は、処理するフィルムの変形、処理液の変質等が生じない温度 120°Cを 超えない範囲の処理温度で行うことが好ましい。更に温度 10〜100°Cの範囲が好ま しぐ特に温度 20〜80°Cの範囲が好ましい。
[0131] 更に、塗布方式で処理する場合には、(ィ)表面温度が室温〜 100°Cの範囲の温 度のセルロースァシレートフィルムにアルカリ溶液を塗布する工程、(口)セルロースァ シレートフィルムの温度を室温〜 100°Cの範囲に維持する工程、及び、(ハ)アルカリ 溶液をセルロースァシレートフィルム力 洗い落とす工程によりアルカリ酸ィ匕処理を実 施することが好ましい。ここで室温とは、温度 10°C〜30°Cの範囲の温度を表す。
[0132] セルロースァシレートフィルムを、その表面が所定の温度となるようにしてアルカリ溶 液で酸ィ匕処理する工程には、アルカリ溶液を塗布する前にセルロースァシレートフィ ルムを予め所定の温度に調整しておく工程、アルカリ液を予め所定の温度に調整し ておく工程、又はこれらを組み合わせた工程等が挙げられる。塗布する前にセル口 一スァシレートフィルムを予め所定の温度に調整する工程を組み合わせることが好ま しい。
[0133] セルロースァシレートフィルムを予め 20°C以上に温度調整する本発明における好 ましい工程では、所定温度の風の吹き付け、伝熱ロールによる接触伝熱、マイクロ波 による誘導加熱、あるいは赤外線ヒーターによる輻射熱加熱などが好ましく利用でき る。特に伝熱ロールによる接触伝熱は、熱伝達効率が高ぐ小さな設置面積で行える 点、搬送開始時のフィルム温度の立上りが速い点などの理由で好ましい。一般の 2重 ジャケットロールや電磁誘導ロール(トクデン社製)が利用できる。
[0134] セルロースァシレートフィルムをアルカリ溶液で鹼化処理する工程では、塗布量の 変動をフィルムの幅方向及び長さ方向に対して 30%未満に制御することが好ましい
[0135] 塗布方式としては、例えば、ダイコーター(エタストルージョンコーター(スロットコー ター)、スリットコーター、押し出しコーター、スライドコーター)、ロールコーター(順転 ロールコーター、逆転ロールコーター、グラビアコーター)、ロッド(細い金属線を巻い たロッド)コーター、ブレードコーターなどが好ましく利用できる。塗布方式に関しては
、各種文献 [例えば〃 Modern Coating and DryingTechnology", E. Cohen, E. Gutoff編, VCH Publishers, Inc.刊(1992年)]に記載されている。
[0136] アルカリ溶液の塗布量は、その後水洗除去するため、廃液処理を考慮して極力抑 制することが望まし望ましぐ 1〜: L00cc/m2が好ましぐ l〜50cc/m2がより好まし い。少ない塗布量域でも安定に操作できるロッドコーター、グラビアコーター、ブレー ドコーター、ダイコーターが好ましい。特に、少ない塗布量域で塗布スジのムラを発生 することなく高速で塗布でき、塗布装置部と塗布液が塗布される表面が非接触の方 法であるダイコーターが好まし!/、。
[0137] また、連続塗布方式を採用することも好ま 、。酸化反応に必要なアルカリ溶液の 塗布量は、セルロースァシレートフィルムの単位面積当りの酸ィ匕反応サイト数に、配 向膜との密着を発現させるために必要な酸ィ匕深さを乗じた総酸ィ匕サイト数( =理論ァ ルカリ塗布量)が目安となる。鹼ィ匕反応の進行にともなって、アルカリ剤が消費され反 応速度が低下するため、実際には、この理論アルカリ塗布量の数倍を塗布することが 好ましい。具体的には、理論アルカリ塗布量の 2〜20倍であることが好ましぐ 2〜5 倍であることがさらに好ましい。
[0138] アルカリ溶液の温度は、反応温度(=フィルムの温度)に等しいことが望ましい。また アルカリ溶液を塗布した後、酸ィ匕反応が終了するまで、セルロースァシレートフィルム の温度を少なくとも 10°C以上、さらには 15°C以上に保つことが好ましい。
[0139] 加熱手段は、セルロースァシレートフィルムの片面がアルカリ溶液により濡れている 状態であることを考慮して選択するのがよい。例えば塗布面の反対側の面への熱風 の吹き付け、加熱ロールによる接触伝熱、マイクロ波による誘導加熱、あるいは、赤外 線ヒーターによる輻射熱加熱などが好ましく利用できる。赤外線ヒーターは、非接触 で且つ空気の流れを伴わずに加熱できるため、アルカリ溶液塗布面への影響を最小 にできるため好ましい。赤外線ヒーターは、電気式、ガス式、オイル式又はスチーム 式の遠赤外セラミックヒーターが利用できる。熱媒体としてオイル又はスチームを用い るオイル式又はスチーム式の赤外線ヒーターの使用は、有機溶媒が共存する雰囲気 における防爆の観点力も好まし 、。 [0140] セルロースァシレートフィルムの温度は、アルカリ溶液処理前に加熱した温度と同じ でも異なっていてもよい。また、酸化反応中に温度を連続的、又は段階的に変更して ちょい。
[0141] フィルム温度の検出には、一般に市販されている非接触の赤外線温度計が利用で き、上記温度範囲に制御するために、加熱手段に対してフィードバック制御を行って ちょい。
[0142] 本発明においては、とくにセルロースァシレートフィルムを搬送しながら鹼化処理を 実施することが好ましい。フィルムの搬送速度は、上記アルカリ溶液の組成と塗布方 式の組み合わせによって決定される力 一般に 10〜500mZ分が好ましぐ 20-30 OmZ分がさらに好ましい。搬送速度に応じて、安定な塗布操作が行えるように、アル カリ溶液の物性 (比重、粘度、表面張力)、塗布方式及び塗布操作条件を適宜決定 することが好ましい。
[0143] アルカリ溶液とセルロースァシレートフィルムとの鹼化反応を停止するには、 3つの 方法がある。 1つは、塗布されたアルカリ溶液を希釈してアルカリ濃度を下げ、反応速 度を低下させる方法であり、 2つ目は、アルカリ溶液が塗布されたセルロースァシレー トフイルムの温度を下げ、反応速度を低下させる方法であり、 3つ目は、酸性の液によ つて中和する方法である。
[0144] 塗布されたアルカリ溶液を希釈するためには、希釈液を塗布する方法、希釈液を吹 き付ける方法、又は希釈液の入った容器にセルロースァシレートフィルムごと浸漬す る方法などが採用できる。中でもセルロースァシレートフィルムを連続搬送しながら実 施する上では、希釈液を塗布する方法と希釈液を吹き付ける方法が好ま ヽ方法で ある。希釈液を塗布する方法は、必要最小限の希釈液量を用いて実施できるために 最も好ましい。
[0145] 希釈液の塗布は、既にアルカリ溶液が塗布されたセルロースァシレートフィルム上 に、希釈液を再度適用できる連続塗布可能な方式であることが望ましい。塗布方法 は、前記した酸ィヒ処理工程で記載したものと同様の方法が挙げられる。
[0146] 希釈液は、セルロースァシレートフィルムを溶解したり膨潤したりすることなぐアル カリ濃度を低下させることが目的であるため、アルカリ溶液中のアルカリ剤を溶解する 液でなければならない。従ってその溶媒としては、水又は有機溶媒と水との混合液が 用いられる。有機溶媒は単独でも 2種以上を併用してもよぐ希釈液としてセルロース ァシレートフィルムを溶解又は膨潤しな 、割合で任意に用いることができる。好ま ヽ 溶媒は水である。また、アルカリ中和液には、フィルム添加物質などの抽出物をフィ ルムに付着させないために、界面活性剤を含ませることが好ましい。界面活性剤とし ては特に限定はないが、前記のアルカリ鹼ィ匕溶液に用いる界面活性剤を有利に利 用できる。
[0147] 希釈液の塗布量は、アルカリ溶液の濃度に応じて決定される力 元のアルカリ濃度 を 1
. 5〜: LO倍に希釈する量であることが好ましぐ 2〜5倍に希釈する量であることがさら に好ましい。
[0148] アルカリによる酸ィ匕反応を迅速に停止するためには、酸を用いることもできる。少な い量で中和できるため、強酸を用いることが好ましい。さらに、水洗の容易さを考慮す ると、アルカリとの中和反応後に生成する塩力 水に対して高い溶解度を有している ような酸を選択することが好ましい。塩酸、硝酸、リン酸、硫酸、クロム酸及びメタンス ルホン酸が特に好ましい。また、アルカリ液中の炭酸イオン濃度や塩ィ匕物イオン濃度 が高い場合には、急激な中和反応により沈殿が生じることあり、その場合にはアル力 リ中和液中に緩衝性の弱酸を添加することが好ましい。このような弱酸としては、 Per gamonPress社 ィ丁の" Ionisation Constants oi Organic Acids m Aque ous Solution "に記載のソルビット、スクロース、グルコース、ガラクトース、ァラビノ ース、キシロース、フラクトース、リボース、マンノース及び L ァスコノレビン酸などの糖 類の他、アルコール類、アルデヒド類、フエノール性水酸基を有する化合物やォキシ ム類、核酸関連物質などが挙げられる。
[0149] 塗布されたアルカリ溶液を酸で中和するためには、酸溶液を塗布する方法、酸溶 液を吹き付ける方法、又は酸溶液の入った容器にフィルムごと浸漬する方法が採用 できる。酸溶液を塗布する方法及び酸溶液を吹き付ける方法が、フィルムを連続搬 送しながら実施する上で好ましい。酸溶液を塗布する方法が、必要最小限の酸溶液 を用いて実施できるために最も好ま 、。 [0150] 酸溶液の塗布は、既にアルカリ溶液が塗布されたセルロースァシレートフィルム上 に、酸溶液を再度適用できる連続塗布可能な方式であることが望ましい。塗布方式 に関しては前記した鹼ィ匕処理で記載の内容と同様である。アルカリ溶液と酸溶液とを 速やかに混合してアルカリを中和させるためには、ロールコーターやロッドコーターが 好ましい。
[0151] 酸溶液の塗布量は、アルカリの種類とアルカリ溶液の濃度に応じて決定される。酸 溶液塗布後の pH力 〜9になるように酸溶液の塗布量を決定することが好ましぐ pH 6〜8になるように決定することがさらに好ま 、。
[0152] セルロースァシレートフィルムの温度を降下させて、酸化反応を停止することもでき る。反応を促進させるために室温以上に保たれた状態から、充分に温度低下させる ことによって実質的に酸ィ匕反応を停止させることができる。フィルムの温度を低下させ る手段は、セルロースァシレートフィルムの片面が濡れて 、ることを考慮して決定され る。塗布の反対面への冷風の吹き付け、又は冷却ロールによる接触伝熱が好ましく 採用できる。冷却後のフィルム温度は、 0〜60°Cであることが好ましぐ 10〜30°Cで あることがより好ましい。フィルム温度は、非接触式の赤外線温度計で測定することが 好ましい。測定した温度から、冷却手段に対してフィードバック制御を行い、冷却温 度を調節することもできる。温度低下手段には、前記の希釈液による希釈法、又は中 和法と併用することもできる。
[0153] 水洗工程は、アルカリ溶液を完全に除去するために実施される。また中和の手段を 用いた場合は、中和により生じた塩類等の組成物を完全に除去するために実施され る。アルカリ溶液の組成物又は中和による生成塩類等が残っていると、酸化反応がさ らに進行するば力りでなぐ次に貼り合せる偏光膜の塗膜形成や偏光膜の配向性に 影響を及ぼすことがある。水洗には、水を塗布する方法、水を吹き付ける方法、又は 水の入った容器にポリマーフィルムごと浸漬する方法などにより実施することができる
[0154] 水吹きつけ方法は、塗布ヘッド(例えば、フアウンテンコーター、フロッグマウスコー ター)を用いる方法、又は空気の加湿や塗装、タンクの自動洗浄に利用されるスプレ 一ノズルを用いる方法などにより実施することができる。塗布方式に関しては、「コー ティングのすべて」荒木正義編集、(株)加工技術研究会(1999年)に記載がある。具 体的には、円錐状又は扇状のスプレーノズルを、フィルムの幅方向に配列して、全幅 に水流が衝突するように配置する方法を採用することができる。市販のスプレーノズ ル [例えば、(株) 、けうち製、スプレーイングシステムズ社製]を用いてもよ!、。
[0155] 水の吹き付け速度は、大き 、方が高 、乱流混合を得ることができる。ただし、速度 が大き 、と、連続搬送するセルロースァシレートフィルムの搬送安定性を損なう場合 もあるので、吹き付けの衝突速度は、 50〜: LOOOcmZ秒程度であることが好ましい。 用いられるアルカリ性塗布液のアルカリ濃度や、副次添加物、溶媒の種類にもよるが 、少なくとも 100〜1000倍、好ましくは 500〜1万倍、さらに好ましくは 1000〜十万 倍の希釈が得られる水洗水を使用することが好ましい。
[0156] 水洗で一定量の水を用いる場合、一度に全量適用するよりも数回に分割して適用 する回分式洗浄方法が好ましい。すなわち、水の量を幾つかに分けて、フィルムの搬 送方向にタンデムに設置した複数の水洗手段に供給する。一つの水洗手段と次の 水洗手段との間には適当な時間 (距離)を設けて、拡散によるアルカリ性塗布液の希 釈を進行させる。さらに好ましくは、搬送されるポリマーフィルムに傾斜を設けるなどし て、フィルム上の水がフィルム面に沿って流れる様にすれば、拡散に加えて、流動に よる混合希釈が得られる。最も好ましい方法としては、水洗手段と水洗手段の間に、 フィルム上の水膜を除去する水切り手段を設けることにより、更に水洗希釈効率を高 めることができる。具体的な水切り手段としては、ブレードコーターに用いられるブレ ード、エアナイフコーターに用いられるエアナイフ、ロッドコーターに用いられるロッド 、ロールコーターに用いられるロールが挙げられる。タンデムに配置された水洗手段 の数は、多い方が有利である。ただし、設置スペースならびに設備コストの観点から、 通常は 2〜10段、好ましくは 2〜5段が使用される。
[0157] 水切り手段後の水膜厚みは、薄 、方が好ま 、が、用いる水切り手段の種類によつ て最低水膜厚みが制限される。ブレード、ロッド、ロールなど、物理的に固体をフィル ムに接触させる方法にぉ 、ては、たとえ固体がゴムなどの硬度の低 ヽ弾性体であつ たとしても、フィルム表面にキズを付けたり、弾性体が磨り減ったりするので、有限の 水膜を潤滑流体として残すことが好ましい。通常は、数/ z m以上、好ましくは 10 m 以上の水膜を潤滑流体として残存させる。
[0158] 極限まで水膜厚みを減少させられる水切り手段としては、エアナイフが好ましい。充 分な風量と風圧を設定することにより、水膜厚みをゼロに近づけることができる。ただ し、エアの吹出し量が大きすぎると、ばたつきや寄りなど、セルロースァシレートフィル ムの搬送安定性に影響を及ぼすことがあるので、好ましい範囲が存在する。その範 囲は、セルロースァシレートフィルム上の元の水膜厚み、フィルムの搬送速度にもよる 1S 通常は 10〜500mZ秒、好ましくは 20〜300mZ秒の風速を使用する。また、 均一に水膜除去を行うためには、セルロースァシレートフィルムの幅方向の風速分布 を、通常は 10%以内、好ましくは 5%以内になるよう、エアナイフの吹出しロゃェアナ ィフへの給気方法を調整する。
[0159] 水洗水には、純水を用いることが好ましい。本発明に用いられる純水とは、比電気 抵抗が少なくとも 1Μ Ω以上であり、特にナトリウム、カリウム、マグネシウム、カルシゥ ムなどの金属イオンは lmgZL未満、塩素、硝酸などのァ-オンは 0. lmgZL未満 のものを指す。純水は、逆浸透膜、イオン交換榭脂、蒸留などの単体、又はこれらの 組み合わせによって、容易に得ることができる。
[0160] 洗浄水の温度は、高い方が洗浄能力は高くなる。しかし、搬送されるセルロースァ シレートフィルム上に水を吹き付ける方法においては、空気と接触する水の面積が大 きいため、高温ほど蒸発の発生が著しくなつて周囲の湿度が増し、結露する危険性 が高くなる。このため、洗浄水の温度は、通常は 5〜90°C、好ましくは 25°C〜80°C、 さらに好ましくは 25°C〜60°Cの範囲で設定される。
[0161] アルカリ性塗布液の成分又は酸ィ匕反応の生成物が水に容易に溶けない場合には 、水洗工程の前又は後に、水に不溶な成分を除去するための溶媒洗浄工程を付カロ してもよい。溶媒洗浄工程は、上に述べた水洗方法、水切り手段と同様のものを利用 することができ、また用いる溶媒も上記希釈液に記載と同様のものを利用することが できる。
[0162] 水洗工程の次に乾燥工程を実施することもできる。通常は、エアナイフなどの水切 り手段で十分に水膜を除去できるため、乾燥工程は必ずしも必要ではないが、セル ロースァシレートフィルムをロール状に巻き取る前に、好まし 、含水率に調整するた めに加熱乾燥を行ってもよい。逆に、設定された湿度を有する風で調湿することもで きる。
[アルカリ鹼ィ匕処理後の表面の特性]
(表面の形状)
本発明に用いられるアル力リ処理されたセルロースァシレートフィルムの、偏光膜と 接する側の表面は、 JIS B— 0601— 1994に基づく表面凹凸の算術平均粗さ (Ra) 力 O. 0002 μ m〜0. 3 m、十点平均粗さ(Rz)力 0. 0002 μ m〜0. 5 m、及び 表面凹凸の平均間隔(Sm)が 0. 001 m〜5 mであることを特徴とする。更には、 算術平均粗さ (Ra)と十点平均粗さ (Rz)との比 (RaZRz)が 0. 1〜1、及び JIS B— 0601— 1994に基づく最大高さ(Ry)力^). 002 /ζ πι〜1. 0 mとなること力 ^好まし!/、 。より好ましくは、算術平均粗さ(Ra)が 0. 0002-0. 1 ^ m,十点平均粗さ (Rz)が 0 . 0002〜0. 3 /ζ πι、及び表面 凸の平均 [¾隔(3111)力 SO. 0015 m〜3 mであり 、(RaZRz)比が 0. 15〜1、最大高さ(Ry)が 0. 002 /ζ πι〜0. 以下である。 上記の範囲内において、処理された面と粘着剤を介して偏光膜と貼り合せた場合 に面状にムラのない均一な偏光板が作製され、且つ粘着剤層のアンカー効果により 密着性が向上する。
(親水性表面の特性)
セルロースァシレートフィルムの親水化処理が施された側の表面は、下記の 1)〜6
)の表面特性のうちの少なくとも一つ (好ましくは複数)を満足することで偏光膜との密 着性が充分となり、且つ本発明の偏光板を画像表示装置に用いた際の、輝点故障 や雲状故障等の光学的な欠陥のない優れた特性を発現する。
1)フィルム表面における水との接触角は 20〜55°の範囲にあることが好ましい。水と の接触角は、 25〜50°の範囲にあることがより好ましぐ 30〜45°の範囲にあることが 特に好ましい。
2)フィルム表面における表面エネルギーは 55〜75mNZmの範囲にあることが好ま しい。
3)表面における化学結合の存在量の比を示す C = OZC— O比が 0〜0. 6の範囲 にあり、且つ C— C/C— O比が 0. 45〜0. 75の範囲にあることが好ましい。 C = 0 /C— O比は、 0〜0. 55の範囲にあること力 Sより好ましく、 0〜0. 5の範囲にあること が特に好ましい。 C— C/C— O比は、 0. 5〜0. 7の範囲にあることがより好まし く、 0. 5〜0. 65の範囲にあること力特に好まし!/ヽ。
4)セルロースァシレートフィルム表面のァシル置換度が、 1. 8〜2. 7の範囲にあるこ とが好ましい。ァシル置換度は 1. 85-2. 5の範囲にあることがより好ましぐ 1. 85〜 2. 4の範囲にあることが特に好ましい。
(表面特性の評価方法)
セルロースァシレートフィルムの表面特性 1)、 3)及び 4)の評価方法につ!、ては、 国際公開 02Z46809号パンフレット p. 27— 30に記載の方法で行うことができる。
[0164] 表面特性の表面エネルギー [評価項目 2] ]の評価方法は、「ぬれの基礎と応用」(リ ァライズ社、 1989年刊行)に記載の接触角法、湿潤熱法、及び吸着法により求める ことができる。本発明におけるセルロースァシレートフィルムの場合、接触角法を用い ることが好ましい。具体的には、表面エネルギーが既知の 2種類の溶媒をセルロース ァシレートフィルムに滴下し、液滴表面とフィルム表面との交点において、液滴に引 いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によ りフィルムの表面エネルギーを算出できる。
<反射防止膜 >
次に、偏光膜の保護フィルムとしてのセルロースァシレートフィルム上に設けられる 反射防止膜にっ 、て説明する。
〔反射防止膜の層構成〕
本発明に係る反射防止膜は、光透過性を有し且つ互いに屈折率の異なる層(光透 過層)が少なくとも 2層以上積層された多層型反射防止膜により形成される。 2層積層 からなる反射防止膜は、保護フィルム上に、帯電防止層、ハードコート層、防眩層、 高屈折率層、および低屈折率層(最外層)の中から選ばれる層からなる。保護フィル ム、高屈折率層及び低屈折率層は以下の関係を満足する屈折率を有する。
[0165] 高屈折率層の屈折率 >保護フィルムの屈折率 >低屈折率層の屈折率
また、ハードコート層は防眩層の機能を兼ねた防眩性ノヽードコート層としても良い。
[0166] 少なくとも 3層積層力 なる反射防止膜は、保護フィルム上に、 2つの高屈折率層の うち屈折率の低い方の層(中屈折率層)、 2つの高屈折率層のうち屈折率の高い方の 層(高屈折率層)、低屈折率層 (最外層)の順序の層構成を有する。保護フィルム、中 屈折率層、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有する
[0167] 高屈折率層の屈折率 >中屈折率層の屈折率 >保護フィルムの屈折率 >低屈折率 層の屈折率
また、帯電防止層はハードコート層の機能を兼ねた帯電防止性ハードコート層でも よぐ帯電防止層は防眩層の機能を兼ねた帯電防止性防眩層であってもよい。
[0168] このような多層構造における各層は、設計波長 λ (400〜680nm)に対して、中屈 折率層が下数式 (2)を、高屈折率層が下数式 (3)を、低屈折率層が下数式 (4)をそ れぞれ充足することが、より優れた反射防止性能を有する反射防止膜を作製できる 点で好ましい。
[0169] 数式(2): (m λ /4) X O. 60< n d < (m λ /4) X O. 80
1 1 1 1
数式(3): (m λ /4) Χ 1. 00く n d < (m λ /4) Χ 1. 50
2 2 2 2
数式(4): (m λ /4) X O. 85< η d < (m λ /4) Χ 1. 05
3 3 3 3
[式中、 mは 1であり、 nは中屈折率層の屈折率であり、そして、 dは中屈折率層の
1 1 1 層厚 (nm)であり; mは 2であり、 nは高屈折率層の屈折率であり、そして、 dは
2 2 2 高屈折率層の層厚 (nm)であり; mは 1であり、 nは低屈折率層の屈折率であり、そし
3 3
て、 dは低屈折率層の層厚 (nm)である]
3
上記のような層構造とすることで達成される本発明における反射防止膜は、低反射 と反射光の色味の低減、さらに入射角によるその色味変化の低減を両立することが できるため、このような反射防止膜が塗設された保護フィルムと一体ィ匕した偏光板は 、例えば液晶表示装置の最表面に適用した場合、これまでにない視認性の高さを有 する表示装置が得られる。入射角 5°での入射光における鏡面反射率の、 450nmか ら 650nmまでの波長領域での平均値が 0. 5%以下であること力 表示装置表面で の外光の反射による視認性の低下を防止できるため好ましぐさらに 0. 4%以下であ ることが、外光の反射を十分に防止することができ、好ましい。
[0170] またこのような反射防止膜を有する本発明の偏光板は、 CIE標準光源 D の、波長 380nmから 780nmの領域における入射角 5°の入射光に対して、正反射光の CIE1 976L*a*b*色空間の a*値、 b*値が、 0≤a*≤7、 一 10≤b*≤0の範囲であ
り、且つ入射角 5〜45°の範囲のあらゆる角度力 の入射光に対する正反射光が、該 色空間において、 a*≥0、 b*≤0を満たすことで、低入射角における反射光の色味を 低減し、且つ、反射光の入射角にともなう色味変化を低減することができる。
[0171] さらに入射角 5〜45°の範囲のあらゆる角度力 の入射光に対する正反射光が、該 色空間において、 C*= [ (a*) 2+ (b*) 2] 1/2≤12の範囲内であることによって、従来の 反射防止膜付き偏光板で問題となっていた赤紫色力も青紫色の反射光の着色を低 減し、且つ反射光の入射角にともなう色味の変化をさらに低減することができる。
[0172] さらにまた C*= [ (a*) 2+ (b*) 2] 1/2≤10の範囲内とすることで、反射光の色味、及び その入射角による変化を十分に低減することができる。この反射防止膜付き偏光板を 液晶表示装置に適用した場合、室内の蛍光灯のような、輝度の高い外光が僅かに映 り込んだ場合の色味が、広い入射角にわたつて-ユートラノレで気にならない。
[0173] 詳しくは a*≥0であればシアン味を帯びることがなぐ b*≤0であれば黄味を帯びるこ とがなく好ましい。また a*≥0、 b*≤0であって、且つ C*= [ (a*) 2+ (b*) 2
] 1 2< 12であれば、マゼンタ味が強くなりすぎることがなく好ましい。
[0174] 鏡面反射率及び色味の測定は、分光光度計 "V— 550" [日本分光 (株)製]にァダ プター" ARV— 474"を装着して、 380〜780nmの波長領域において、入射角 α ( a = 5〜45° 、 5° 間隔)における出射角 αの鏡面反射率を測定し、 450〜650η mの平均反射率を算出し、反射防止性を評価することができる。さらに、測定された 反射スペクトルから、 CIE標準光源 D の各入射角の入射光に対する正反射光の色
65
味を表す CIE1976LW色空間の L*値、 a*値、 b*値を算出し、反射光の色味を評価 することができる。
[0175] また、上記のように反射光の色味が大幅に低減されることで、反射防止層の膜厚ム ラに起因する反射光の色味ムラも大幅に低減される。すなわち、膜厚ムラの許容範 囲が広がることになり、製造得率が上がり、コストの更なる低減が可能となる。定量的 には、 TD方向(保護フィルムの長手方向と直交する方向)又は MD方向(保護フィル ムの長手方向)の 10cm離れた任意の 2つの場所での、波長 380nm力ら 780nmの 領域における CIE標準光源 D の、入射角 5° の入射光に対する正反射光の色味ム
65
ラで表すことができ、 CIE1976L*aV色空間の A E*ab値で 2未満であることが好まし い。 A E*abの値が 1. 5未満であれば完全に人間の目で色ムラを検知できなくなるの でより好
ましい。
[0176] なお A E*ab値は、下記数式(5)により求められる値である。
[0177] 数式 (5): Δ E*ab= [ ( Δ L*) 2+ ( Δ a*) 2+ ( Δ b*) 2] 1 2
ここで、 Δΐ A a*, Ab*は、それぞれ、 TD方向又は MD方向の 10cm離れた任 意の 2つの場所における CIE1976L*a*b*色空間の L*値, a*値, b*値の差を表す。
[0178] 本発明において、「5〜45° のすベての入射角における a*値、 b*値、又は C*値が 、上記範囲内にある」とは、入射角 5〜45° における 5° 間隔の入射光に対して、そ のそれぞれの正反射光スペクトル力も算出された a*、 b*値もしくは C*が上記範囲内に あることを意味する。
[0179] 以上の層構成を有する本発明の反射防止膜においては、以下の低屈折率層、高 屈折率層および中屈折率層を用いることが好ましい。
〔高屈折率層〕
本発明における高屈折率層は、高屈折率の無機化合物微粒子 (以下、高屈折率 粒子と ヽぅことがある)及びマトリックスバインダーを含有する硬化性組成物を塗設し てなる、屈折率 1. 55〜2. 50の硬化性膜からなることが好ましい。屈折率は 1. 65〜 2. 40であることがより好ましぐ 1. 70-2. 20であることが特に好ましい。
[0180] また高屈折率層の表面は、光学的に影響を与えない大きさの微細な表面凹凸形態 をなしており、 JIS B— 0601— 1994に基づく該高屈折率層の表面凹凸の算術平 均粗さ(Ra)力^). 001〜0. 03 m、さらには 0. 001〜0. 015 m、特には 0. 001 〜0. 010 /z mの範囲;十点平均粗さ(Rz)力 ^0. 001〜0. 06 m、さらには 0. 002 〜0. 05 111、特には0. 002〜0. 025 /z mの範囲;且つ最大高さ(Ry)力^). 09 m以下、さらには 0. 05 /z m以下、特には 0. 04 m以下;であることが好ましい。
[0181] さらに、上記の光学的に影響を与えない大きさの微細な表面凹凸形態において、 算術平均粗さ (Ra)と十点平均粗さ (Rz)との比 (RaZRz)が 0. 15以上で、且つ JIS B— 0601— 1994に基づく該高屈折率層の表面凹凸の平均間隔(Sm)が 0. 01〜 1 μ mであることが好ましい。ここで、 Raと Rzの関係は表面の凹凸の均一性を示すも のである。さらに好ましくは、(RaZRz)比が 0. 17以上、平均間(S
m)が 0. 01〜0. 8 mであるのがよい。これらの範囲内であれば、該高屈折率層の 上に塗布される低屈折率層の塗布面状は、ムラゃスジ等のみられない良好なものと なり、且つ両層間の密着性を向上させることが可能となる。層表面の凹と凸の形状は 、原子間力顕微鏡 (AFM)により評価することができる。
[0182] 高屈折率層を、高屈折率粒子がマトリックスバインダー中に分散されてなる屈折率 1. 55〜2. 50の高屈折率硬化膜とするには、通常、マトリックスバインダーの屈折率 は 1. 4〜1. 5であることから、該高屈折率粒子の使用割合は、用いられる該高屈折 率粒子の屈折率によって決まる力 硬化膜の全質量中の 40〜80質量%であること が好ましぐより好ましくは 45〜75質量%である。
[0183] このように、高屈折率粒子の比率を多くして設計する高屈折率層の、それ自身の層 強度を高め、且つ該高屈折率層上に設けられる低屈折率層との密着性を強固にす るには、後述するように、高屈折率粒子として超微粒子径で、その粒度が揃ったもの を用い、且つこれを高屈折率層中に均一に分散させること、及びその層の表面が上 記のような凹凸状態を形成することが好ましい。高屈折率層表面全体の表面凹凸の 形状と分布を特定の範囲とすることで、長尺フィルムに連続して低屈折率層を設けた 時にでも、該低屈折率層の全面がムラなく均一にアンカリング効果を十分に発揮して 密着が保たれるので好ましい。また、長期間を保存した後でも両層の密着性が変化 無く保持されるので好まし 、。
[0184] また、前記の表面形状が形成された高屈折率層を含む反射防止膜においては、視 覚的に異物として目立ちやすくなる直径 50 μ m以上の大きさの輝度欠陥の数が、 1 平方メートル当たり 20個以下となることが好ましい。
[高屈折率層形成用組成物]
(高屈折率の無機微粒子)
本発明において高屈折率層に含まれる高屈折率粒子は、屈折率が 1. 80〜2. 80 、さらには 1. 90〜2. 80 ;—次粒子の平均粒径が 3〜150nm、さらには 3〜100nm 、とりわけ 3〜80nm、特には 5〜80nmであることが好ましい。高屈折率粒子の屈折 率が該下限値以上であれば、高屈折率層の屈折率を効果的に高めることができ、屈 折率が該上限値以下であれば粒子が着色するなどの不都合がな 、ので好ま 、。ま た高屈折率粒子の一次粒子の平均粒径が該上限値以下であれば、形成される高屈 折率層のヘイズ値が高くなつて層の透明性を損なうなどの不都合が生じないので好 ましぐ平均粒径が該下限値以上であれば高 、屈折率が保持されるので好ま 、。
[0185] 好ましい高屈折率粒子の具体例は、 Ti、 Zr、 Ta、 In、 Nd、 Sn、 Sb、 Zn, La、 W、 C e、 Nb、 V、 Sm、 Y等の酸化物又は複合酸化物、硫ィ匕物を主成分とする粒子が挙げ られる。ここで主成分とは、粒子を構成する成分の中で最も含有量 (質量%)が多い 成分をさす。本発明でより好ましい高屈折率粒子は、 Ti、 Zr、 Ta、 In、 Snから選ばれ る少なくとも 1種の金属元素を含む酸ィ匕物又は複合酸ィ匕物を主成分とする粒子であ る。
[0186] 本発明で使用される高屈折率粒子には、粒子の中に種々の元素が含有されてい ても構わな 、(以下このような元素を含有元素と 、うことがある)。含有元素としては、 例えば、 Li、 Si、 Al、 B、 Ba、 Co、 Fe、 Hg、 Ag、 Pt、 Au、 Cr、 Bi、 P、 Sなどが挙げら れる。酸化錫、酸化インジウムにおいては、粒子の導電性を高めるために、 Sb、 Nb、 P、 B、 In、 V、ハロゲンなどの含有元素を含有させることが好ましぐ特に、酸化アン チモンを約 5〜20質量0 /0含有させたものが最も好ましい。
[0187] 本発明で特に好ま 、高屈折率粒子は、含有元素として Co、 Zr、 A1から選ばれる 少なくとも 1つの元素を含有する二酸ィ匕チタンを主成分とする無機微粒子 (以降、「特 定の酸化物」と称することもある)が挙げられる。特に好ましい含有元素は Coである。 含有元素 Co、 Al、 Zrの総含有量は、 Tiに対し 0. 05〜30質量%であることが好まし ぐより好ましくは 0. 1〜: L0質量%、さらに好ましくは 0. 2〜7質量%、特に好ましくは 0. 3〜5質量%、最も好ましくは 0. 5〜3質量%である。含有元素 Co、 Al、 Zrは、二 酸ィ匕チタンを主成分とする無機微粒子の内部又は表面に存在する。二酸化チタンを 主成分とする無機微粒子の内部に存在することがより好ましぐ内部と表面の両方に 存在することが最も好ま U、。これら金属元素である含有元素は酸ィ匕物として存在し てもよい。 [0188] また他の好ましい高屈折率粒子としては、チタン元素と、その酸ィ匕物が屈折率 1. 9 5以上となる金属元素から選ばれる少なくとも 1種の金属元素(以下、「Met」とも略称 することがある)との複合酸ィ匕物の粒子で、且つ該複合酸化物は Coイオン、 Zrイオン 及び A1イオンカゝら選ばれる金属イオンの少なくとも 1種がドープされてなる無機微粒 子(「特定の複酸化物」と称することもある)が挙げられる。ここで、その酸ィ匕物の屈折 率が 1. 95以上となる金属元素としては、 Ta、 Zr、 In、 Nd、 Sb, Sn及び Biが好まし い。特には、 Ta、 Zr、 Sn、 Biが好ましい。複合酸化物にドープされる金属イオンの含 有量は、複合酸化物を構成する全金属 [Ti+Met]量に対して、 25質量%を超えな い範囲で含有することが屈折率維持の観点力 好ましい。より好ましくは 0. 05〜10 質量0 /0、さらに好ましくは 0. 1〜5質量0 /0、最も好ましくは 0. 3〜3質量%である。
[0189] ドープされた金属イオンは、金属イオン又は金属原子の何れの形体で存在してもよ ぐ複合酸化物の表面から内部まで適宜に存在することができる。表面と内部との両 方に存在することが好ま 、。
[0190] 本発明で用いられる高屈折率粒子は、結晶構造を有することが好ましい。結晶構 造は、ルチル、ルチル Zアナターゼの混晶又はアナターゼのいずれかが主成分であ ることが好ましぐ特にルチル構造が主成分であることが好ましい。このことにより、前 記特定の酸化物又は特定の複酸化物である高屈折率粒子は、屈折率が 1. 90〜2. 80を有することになり好ましい。高屈折率粒子の屈折率は、より好ましくは 2. 10〜2 . 80であり、更に好ましくは 2. 20〜2. 80である。またこのことにより、二酸ィ匕チタン が有する光触媒活性を抑えることができ、本発明における高屈折率層自身及び高屈 折率層と接する上 Z下の両層のそれぞれの耐候性を著しく改良することができる。
[0191] 上記した特定の金属元素又は金属イオンをドープする方法は、従来公知の方法を 用いることができる。例えば、特開平 5— 330825号公報、同 11— 263620号公報、 特表平 11— 512336号公報、欧州特許出願公開第 0335773号明細書等に記載の 方法;イオン注入法 [例えば、権田俊一、石川順三、上条栄治編「イオンビーム応用 技術」(株)シ―ェムシ一、 1989年刊行、青木康、「表面科学」 18卷(5)、 262頁、 19 98、安保正一等、「表面科学」 20卷(2)、 60頁、 1999等記載]等に従って製造でき る。 [0192] 本発明で用いられる高屈折率粒子は表面処理されていてもよい。表面処理とは、 無機化合物及び Z又は有機化合物を用いて該粒子表面の改質を実施するもので、 これにより高屈折率粒子表面の濡れ性が調整され有機溶媒中での微粒子化、高屈 折率層形成用組成物中での分散性や分散安定性が向上する。粒子表面に物理ィ匕 学的に吸着させる無機化合物としては、例えば、ケィ素を含有する無機化合物(SiO など)、アルミニウムを含有する無機化合物 [Al O , Al (OH)など]、コバルトを含有
2 2 3 3
する無機化合物(CoO , Co O , Co Oなど)、ジルコニウムを含有する無機化合物 [
2 2 3 3 4
ZrO
2, Zr (OH
)など]、鉄を含有する無機化合物 (Fe Oなど)などが挙げられる。
4 2 3
[0193] 表面処理に用いる有機化合物の例には、従来公知の金属酸化物や無機顔料等の 無機フイラ一類の表面改質剤を用いることができる。例えば、「顔料分散安定化と表 面処理技術,評価」第一章 (技術情報協会、 2001年刊行)等に記載されている。
[0194] 具体的には、高屈折率粒子表面と親和性を有する極性基を有する有機化合物、力 ップリングイ匕合物があげられる。高屈折率粒子表面と親和性を有する極性基としては 、カルボキシ基、ホスホノ基、ヒドロキシ基、メルカプト基、環状酸無水物基、アミノ基 等があげられ、分子中に少なくとも 1種を含有する化合物が好ましい。例えば、長鎖 脂肪族カルボン酸 (例えばステアリン酸、ラウリン酸、ォレイン酸、リノール酸、リノレン 酸等)、ポリオ一ルイ匕合物 [例えばペンタエリスリトールトリアタリレート、ジペンタエリス リトールペンタアタリレート、 ECH (ェピクロルヒドリン)変性グリセロールトリアタリレート 等]、ホスホノ基含有化合物 [例えば EO (エチレンォキシド)変性リン酸トリアタリレ ート等]、アルカノールァミン [エチレンジァミン EO付加体(5モル)等]が挙げられる。
[0195] カップリングイ匕合物としては、従来公知の有機金属化合物が挙げられ、シランカツ プリング剤、チタネートカップリング剤、アルミネートカップリング剤等が含まれる。シラ ンカップリング剤が最も好ましい。具体的には、例えば特開 2002— 9908号公報、同 2001— 310423号公報中の段落番号「0011」〜「0015」記載の化合物等が挙げら れる。後述の一般式(2)又は一般式(2— 1)で表される化合物も好ま 、。
[0196] これらの表面処理には、 2種類以上の化合物を併用することもできる。
[0197] 本発明に用いられる高屈折率粒子は、これをコアとして他の無機化合物力もなるシ エルを形成したコア Zシェル構造の微粒子であることも好ましい。シェルとしては、 A1 Si Zrから選ばれる少なくとも 1種の元素力もなる酸ィ匕物が好ましい。具体的には、 例えば特開 2001— 166104号公報記載の内容が挙げられる。
[0198] 本発明で使用される高屈折率粒子の形状は、特に限定されないが、米粒状、球形 状、立方体状、紡錘形状又は不定形状が好ましい。高屈折率粒子は単独で用いて もよいが、 2種類以上を併用して用いることもできる。
(分散剤)
本発明で使用される高屈折率粒子を、安定した所定の超微粒子として用いるため、 分散剤を併用することが好ましい。分散剤としては、該高屈折率粒子表面と親和性を 有する極性基を有する低分子化合物、又は高分子化合物であることが好ま U
[0199] 上記極性基としては、ヒドロキシ基、メルカプト基、カルボキシル基、スルホ基、ホス ホノ基、ォキシホスホノ基、 -P ( = 0) (R ) (OH)基、 -0-P ( = 0) (R ) (OH)基、
1 1
アミド基(一 CONHR SO NHR )、環状酸無水物含有基、アミ
2 2 2
ノ基、四級アンモニゥム基等が挙げられる。
[0200] ここで、 Rは炭素数 1 18の炭化水素基を表す (例えばメチル基、ェチル基、プロ
1
ピル基、ブチル基、へキシル基、ォクチル基、デシル基、ドデシル基、ォクタデシル基 、クロ口ェチル基、メトキシェチル基、シァノエチル基、ベンジル基、メチルベンジル基
、フエネチル基、シクロへキシル基等)。 Rは、水素原子又は Rと同一の内容を表す
2 1
[0201] 上記極性基にお!、て、解離性プロトンを有する基はその塩であってもよ!/、。また、上 記ァミノ基、四級アンモニゥム基は、一級アミノ基、二級アミノ基又は三級アミノ基のい ずれでもよぐ三級アミノ基又は四級アンモ-ゥム基であることがさらに好ましい。二級 アミノ基、三級アミノ基又は四級アンモ-ゥム基の窒素原子に結合する基は、炭素原 子数が 1 12の脂肪族基 (上記 R又は Rの基と同一の内容のもの等)であることが
1 2
好ましい。また、三級アミノ基は、窒素原子を含有する環形成のアミノ基 (例えば、ピ ペリジン環、モルホリン環、ピぺラジン環、ピリジン環等)であってもよぐ更に四級アン モ-ゥム基はこれら環状アミノ基の四級ァモ -ゥム基であってもよい。特に炭素原子 数が 1 6のアルキル基であることがさらに好ましい。 [0202] 四級アンモ-ゥム基の対イオンは、ハライドイオン、 PFイオン、 SbFイオン、 BFィ
6 6 4 オン、 B (R )イオン は、炭化水素基を表し、例えばブチル基、フエ-ル基、トリル
3 4 3
基、ナフチル基、ブチルフエニル基等)、スルホン酸イオン等が好ましい。
[0203] 本発明に係る分散剤の極性基としては、 pKaが 7以下のァ-オン性基又はこれらの 解離基の塩が好ましい。特に、カルボキシル基、スルホ基、ホスホノ基、ォキシホスホ ノ基、又はこれらの解離基の塩が好ましい。
[0204] 分散剤は、さらに架橋性又は重合性官能基を含有することが好ま ヽ。架橋性又 は重合性官能基としては、ラジカル種による付加反応'重合反応が可能なエチレン 性不飽和基 [例えば (メタ)アタリロイル基、ァリル基、スチリル基、ビニルォキシ基カル ボニル基、ビニルォキシ基等]、カチオン重合性基 (エポキシ基、チォエポキシ基、ォ キセタニル基、ビニルォキシ基、スピロオルトエステル基等)、重縮合反応性基 (加水 分解性シリル基等、 N—メチロール基)等が挙げられ、好ましくはエチレン性不飽和 基、エポキシ基、又は加水分解性シリル基である。
[0205] 具体的には、例えば特開 2001— 310423号公報中の段落番号 [0013]〜 [0015 ]記載の化合物等が挙げられる。
[0206] 本発明に用いられる分散剤は、高分子分散剤であることが好ましい。特に、ァ-ォ ン性基、及び架橋性又は重合性官能基を含有する高分子分散剤が好ましい。高分 子分散剤の質量平均分子量 (Mw)は、特に限定されないが、 GPC法で測定された ポリスチレン換算値として、 1 X 103以上であることが好ましい。より好ましい Mwは 2 X 103〜1 X 106であり、更に好ましくは 5 X 103〜1 X 105、特に好ましくは 8 X 103〜8 X 104である。この範囲のものが、高屈折率粒子が分散されやすぐ且つ凝集物や沈殿 物を生じない安定な分散物が得られるので好ましい。具体例としては、例えば特開平 11 - 153703号公報中の段落番号 [0024]〜 [0041 ]記載の内容等が挙げられる
(分散媒体)
本発明において、高屈折率粒子の湿式分散に供する分散媒体は、水及び有機溶 媒カも適宜選択して用いることができ、沸点が 50°C以上の液体であることが好ましく 、沸点が 60°C〜180°Cの範囲の有機溶媒であることがより好ましい。 [0207] 分散媒体は、高屈折率粒子及び分散剤を含む高屈折率層を形成するための全成 分が 5〜50質量%、さらには 10〜30質量%となる割合で用いることが好ましい。この 範囲において、分散が容易に進行し、得られる分散物は作業性良好な粘度の範囲と なるので好ましい。
[0208] 分散媒体としては、アルコール類、ケトン類、エステル類、アミド類、エーテル類、ェ 一テルエステル類、炭化水素類、ハロゲンィ匕炭化水素類等が挙げられる。具体的に は、アルコール(例えばメタノール、エタノール、プロパノール、ブタノール、ベンジル ァノレコーノレ、エチレングリコーノレ、プロピレングリコール、エチレングリコールモノァセ テート等)、ケトン(例えばメチルェチルケトン、メチルイソブチルケトン、シクロへキサノ ン、メチルシクロへキサノン等)、エステル(例えば酢酸メチル、酢酸ェチル、酢酸プロ ピル、酢酸プチル、蟻酸ェチル、蟻酸プロピル、蟻酸プチル、乳酸ェチル等)、脂肪 族炭化水素(例えばへキサン、シクロへキサン)、ハロゲンィ匕炭化水素(例えばメチル クロ口ホルム等)、芳香族炭化水素(例えばベンゼン、トルエン、キシレン等)、アミド( 例えばジメチルホルムアミド、ジメチルァセトアミド、 n—メチルピロリドン等)、エーテル (例えばジォキサン、テトラハイド口フラン、エチレングリコールジメチルエーテル、プロ ピレングリコールジメチルエーテル等)、エーテルアルコール(例えば 1ーメトキシ 2 プロパノール、ェチルセルソルブ、メチルカルビノール等)が挙げられる。単独での 2種以上を混合して使用してもよい。好ましい分散媒体は、トルエン、キシレン、メチ ルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ブタノールが挙げられる。 また、ケトン溶媒 (例えばメチルェチルケトン、メチルイソブチルケトン、シクロへキサノ ン等)を主にした塗布溶媒系も好ましく用いられ、ケトン系溶媒の含有量が高屈折率 層形成用組成物に含まれる全溶媒の 10質量%以上であることが好ましい。好ましく は 30質量%以上、さらに好ましくは 60質量%以上である。
(無機微粒子の超微粒子化)
本発明に用いられる硬化性の高屈折率層形成用組成物は、平均粒径 lOOnm以 下の高屈折率無機化合物の超微粒子分散物とすることにより、該組成物の液の安定 性が向上し、この硬化性組成物から形成される硬化膜である高屈折率層は、高屈折 率粒子が硬化膜のマトリックス中で、超微粒子状態で均一に分散されて存在し、光学 特性が均一で透明な高屈折率層が形成される。高屈折率層のマトリックス中で存在 する超微粒子の大きさは、平均粒径 3〜: LOOnmの範囲が好ましぐ 10〜80nmがよ り好ましい。更には、 500nm以上の平均粒子径の大粒子が含まれないことが好ましく 、 300nm以上の平均粒子径の大粒子が含まれないことが特に好ましい。これにより、 硬化膜表面が上記した特定の凹凸形状を形成できるので好ましい。
[0209] 上記の高屈折率の無機微粒子を上記の範囲の粗大粒子を含まな!/、超微粒子の大 きさに分散するには、前記の分散剤と共に、平均粒径 0. 8mm未満のメディアを用い た湿式分散方法で分散して達成することができる。
[0210] 湿式分散機としては、サンドグラインダーミル (例えば、ピン付きビーズミル)、ダイノ ミル、高速インペラ一ミル、ぺッブルミル、ローラーミル、アトライター、コロイドミル等の 従来公知のものが挙げられる。特に本発明に用いられる無機微粒子を超微粒子に 分散するには、サンドグラインダーミル、ダイノミル、及び高速インペラ一ミルが好まし い。
[0211] 上記分散機と共に用いるメディアとしては、その平均粒径が 0. 8mm未満であること が好まし!/、。平均粒径力この範囲のメディアを用いることで上記の高屈折率粒子の粒 子径が lOOnm以下となり、且つ粒子径の揃った超微粒子を得ることができる。メディ ァの平均粒径は、より好ましくは 0. 5mm以下であり、さらに好ましくは 0. 05-0. 3m mである。また湿式分散に用いられるメディアとしては、ビーズが好ましい。具体的に は、ジルコ-ァビーズ、ガラスビーズ、セラミックビーズ、スチールビーズ等が挙げられ 、分散中におけるビーズの破壊等を生じ難い等の耐久性と超微粒子化の上力 0. 0 5〜0. 2mmのジルコユアビーズが特に好まし!/、。
[0212] 分散工程での分散温度は 20〜60°Cが好ましぐより好ましくは 25〜45°Cである。
この範囲の温度で超微粒子に分散すると分散粒子の再凝集、沈殿等が生じな 、た め好ましい。これは、無機化合物粒子への分散剤の吸着が適切に行われ、常温下で の分散剤の粒子からの脱着等による分散安定不良とならないためと考えられる。この ような範囲において分散工程を実施することにより、透明性を損なわない屈折率均一 性、膜の強度、隣接層との密着性等に優れた高屈折率膜を形成できる。
[0213] また、上記湿式分散の工程の前に、予備分散処理を実施してもよい。予備分散処 理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダー及びェクストル ーダ一が含まれる。
[0214] 更には、分散物中の分散粒子がその平均粒径、及び粒子径の単分散性が上記し た範囲を満足する上で、分散物中の粗大凝集物を除去するために、ビーズとの分離 処理にお 、て精密濾過されるように濾材を配置することも好ま 、。精密濾過するた めの濾材は濾過粒子サイズ 25 m以下が好ましい。精密濾過するための濾材のタイ プは、上記性能を有していれば特に限定されないが、例えばフィラメント型、フェルト 型、メッシュ型が挙げられる。分散物を精密濾過するための濾材の材質は上記性能 を有しており、且つ得られる高屈折率層形成用組成物の塗布液に悪影響を及ばさな ければ特に限定はされないが、例えばステンレス、ポリエチレン、ポリプロピレン、ナイ ロン等が挙げられる。
(高屈折率層のマトリックス)
高屈折率層は、高屈折率粒子とマトリックスを含有してなることが好ましい。
[0215] 本発明の好ましい態様によれば、高屈折率層のマトリックスは:
(A)有機バインダー、又は
(B)加水分解性官能基を含有する有機金属化合物、及びこの有機金属化合物の部 分縮合物、
の少なくともいずれかを含有する高屈折率層形成用組成物を塗布後に、硬化して形 成される。
(A)有機バインダー
有機ノ インダーとしては、
(ィ)従来公知の熱可塑性榭脂、
(口)従来公知の反応硬化型榭脂と硬化剤との組み合わせ、又は
(ハ)バインダー前駆体 (後述する硬化性の多官能モノマーや多官能オリゴマーなど) と重合開始剤との組み合わせ、
力ら形成されるノ インダ一が挙げられる。
[0216] 上記 (ィ)、(口)又は (ハ)の有機バインダーと、高屈折率複合酸化物微粒子と分散 剤を含有する分散液から高屈折率層形成用組成物が調製されることが好ま ヽ。こ の組成物は、保護フィルム上に塗布され、塗膜が形成された後、バインダー形成用 成分に応じた方法で硬化されて高屈折率層が形成される。硬化方法は、バインダー 成分の種類に応じて適宜選択され、例えば加熱及び光照射の少なくともいずれかの 手段により、硬化性ィ匕合物 (例えば、多官能モノマーや多官能オリゴマーなど)の架 橋反応又は重合反応を生起させる方法が挙げられる。中でも、上記 (ハ)の組み合わ せを用いて光照射することにより硬化性化合物を架橋反応又は重合反応させて硬化 したノ インダーを形成する方法が好まし ヽ。
[0217] 更に、高屈折率層形成用組成物を塗布と同時又は塗布後に、高屈折率粒子を含 む該組成物に含有される分散剤を、架橋反応又は重合反応させることが好ましい。
[0218] このようにして作製した硬化膜中のバインダーは、例えば、前記した分散剤とバイン ダ一の前駆体である硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重 合反応し、ノインダ一に分散剤のァニオン性基が取りこまれた形となる。さらに、硬化 膜中のバインダーは、ァ-オン性基が無機微粒子の分散状態を維持する機能を有 するので、架橋又は重合構造がバインダーに皮膜形成能を付与して、高屈折率粒子 を含有する硬化膜である高屈折率層中の物理強度、耐薬品性、耐候性を改良するこ とがでさる。
[0219] 前記 (ィ)の熱可塑性榭脂及び前記 (口)の反応硬化型榭脂としては、例えば、特開 平 8 - 122504号公報段落番号 [0034]記載の化合物等が挙げられる。
[0220] これらの反応硬化型榭脂に必要に応じて、架橋剤(エポキシィ匕合物、ポリイソシァネ ート化合物、ポリオール化合物、ポリアミンィ匕合物、メラミン化合物等)、重合開始剤( ァゾビス化合物、有機過酸化化合物、有機ハロゲンィ匕合物、ォ-ゥム塩ィ匕合物、ケト ン化合物等の UV光開始剤等)等の硬化剤、重合促進剤 (有機金属化合物、酸化合 物、塩基性化合物等)等の従来公知の化合物を加えて使用する。具体的には、例え ば、山下普三、金子東助「架橋剤ハンドブック」(大成社、 1981年刊)記載の化合物 が挙げられる。
[0221] 以下、硬化したバインダーの好ま 、形成方法である前記 (ハ)の組み合わせを用 Vヽて、光照射により硬化性化合物を架橋又は重合反応させて硬化したバインダーを 形成する方法について、主に説明する。 [0222] 光硬化性の多官能モノマーや多官能オリゴマーの官能基としては、ラジカル重合 性又はカチオン重合性の 、ずれでもよ 、。
[0223] ラジカル重合性官能基としては、(メタ)アタリロイル基、ビュルォキシ基、スチリル基
、ァリル基等のエチレン性不飽和基等が挙げられ、中でも (メタ)アタリロイル基が好ま しい。分子内に 2個以上のラジカル重合性基を含有する多官能モノマーを含有する ことが好ましい。
[0224] ラジカル重合性多官能モノマーとしては、末端エチレン性不飽和結合を少なくとも 2 個有する化合物力 選ばれることが好ましい。好ましくは、分子中に 2〜6個の末端ェ チレン性不飽和結合を有する化合物である。このような化合物群はポリマー材料分 野において広く知られるものであり、本発明においては、これらを特に限定なく用いる ことができる。これらは、例えば、モノマー、プレポリマー(すなわち 2量体、 3量体及び オリゴマー)又はそれらの混合物、並びにそれらの共重合体などの化学的形態をも つことができる。
[0225] ラジカル重合性モノマーの例としては、不飽和カルボン酸 (例えば、アクリル酸、メタ クリル酸、ィタコン酸、クロトン酸、イソクロトン酸、マレイン酸等)や、そのエステル類、 アミド類が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物 とのエステル、不飽和カルボン酸と脂肪族多価アミンィ匕合物とのアミド類が挙げられ る。
[0226] また、ヒドロキシル基、アミノ基、メルカプト基等の求核性置換基を有する不飽和力 ルボン酸エステル類やアミド類と、単官能もしくは多官能イソシァネート類、エポキシ 類との付加反応物、多官能のカルボン酸との脱水縮合反応物等も好適に使用される 。また、イソシアナ一ト基ゃエポキシ基等の親電子性置換基を有する不飽和カルボン 酸エステル又はアミド類と単官能もしくは多官能のアルコール類、アミン類及びチォ ール類との反応物も好適である。さらに別の例として、上記の不飽和カルボン酸の代 わりに、不飽和ホスホン酸、スチレン等に置き換えたィ匕合物群を使用することも可能 である。
[0227] 脂肪族多価アルコール化合物としては、アルカンジオール、アルカントリオール、シ クロへキサンジオール、シクロへキサントリオール、イノシットール、シクロへキサンジメ タノ一ノレ、ペンタエリスリトール、ソノレビトーノレ、ジペンタエリスリトール、トリペンタエリス リトール、グリセリン、ジグリセリン等が挙げられる。これら脂肪族多価アルコールィ匕合 物と、不飽和カルボン酸との重合性エステル化合物(モノエステル又はポリエステル)
、例として、例えば、特開 2001— 139663号公報段落番号 [0026]〜[0027]記載 の化合物が挙げられる。
[0228] その他の重合性エステルの例としては、例えば、ビニルメタタリレート、ァリルメタタリ レート、ァリルアタリレート、特公昭 46— 27926号、特公昭 51— 47334号、特開昭 5 7—196231号記載の脂肪族アルコール系エステル類や、特開平 2— 226149号等 記載の芳香族系骨格を有するもの、特開平 1 165613号記載のアミノ基を有するも の等も好適に用いられる。
[0229] さらに脂肪族多価アミンィ匕合物と不飽和カルボン酸とから形成される重合性アミドの 具体例としては、メチレンビス (メタ)アクリルアミド、 1, 6 へキサメチレンビス (メタ)ァ クリルアミド、ジエチレントリァミントリス (メタ)アクリルアミド、キシリレンビス (メタ)アタリ ルアミド、特公昭 54— 21726号記載のシクロへキシレン構造を有するもの等を挙げ ることがでさる。
[0230] さらにまた、 1分子中に 2個以上の重合性ビュル基を含有するビニルウレタン化合 物(特公昭 48—41708号公報等)、ウレタンアタリレート類 (特公平 2 - 16765号等) 、エチレンォキシド系骨格を有するウレタンィ匕合物(特公昭 62— 39418号等)、ポリ エステルアタリレート類 (特公昭 52— 30490号等))、更に、 日本接着協会誌 20卷(7 ) , 300〜308頁(1984年)に記載の光硬化性モノマー及びオリゴマーも使用するこ とができる。これらラジカル重合性の多官能モノマーは、二種類以上を併用してもよ い。
[0231] 次に、高屈折率層のバインダーの形成に用いることができるカチオン重合性基含 有の化合物(以下、「カチオン重合性ィ匕合物」又は「カチオン重合性有機化合物」とも 称する)について説明する。
[0232] 本発明に用いられるカチオン重合性ィ匕合物は、活性エネルギー線感受性カチオン 重合開始剤の存在下に、活性エネルギー線を照射したときに重合反応及び Z又は 架橋反応を生ずる化合物のいずれもが使用でき、代表例としては、エポキシ化合物 、環状チォエーテルィ匕合物、環状エーテルィ匕合物、スピロオルソエステルイ匕合物、ビ -ル炭化水素化合物、ビニルエーテルィ匕合物などを挙げることができる。本発明で は前記したカチオン重合性有機化合物のうちの 1種を用いても 2種以上を用いてもよ い。
[0233] カチオン重合性基含有ィ匕合物としては、 1分子中のカチオン重合性基の数は 2〜1 0個が好ましぐ特に好ましくは 2〜5個である。該化合物の分子量は 3000以下であ り、好ましくは 200〜2000の範囲、特に好ましくは 400〜 1500の範囲である。分子 量が該下限値以上であれば、皮膜形成過程での揮発が問題となるなどの不都合が 生じることがなぐまた該上限値以下であれば、高屈折率層形成用組成物との相溶 '性が悪くなるなどの問題を生じな ヽので好まし!/、。
[0234] 前記エポキシィ匕合物としては脂肪族エポキシィ匕合物及び芳香族エポキシィ匕合物が 挙げられる。
[0235] 脂肪族エポキシィ匕合物としては、例えば、脂肪族多価アルコール又はそのアルキレ ンォキシド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジル エステル、グリシジルアタリレートゃグリシジルメタタリレートのホモポリマー、コポリマー などを挙げることができる。さらに、前記のエポキシィ匕合物以外にも、例えば、脂肪族 高級アルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル、ェポ キシ化大豆油、エポキシステアリン酸ブチルエポキシステアリン酸オタチル、エポキシ ィ匕アマ-油、エポキシィ匕ポリブタジエンなどを挙げることができる。また、脂環式ェポ キシィ匕合物としては、少なくとも 1個の脂環族環を有する多価アルコールのポリグリシ ジルエーテル、又は不飽和脂環族環(例えば、シクロへキセン、シクロペンテン、ジシ クロオタテン、トリシクロデセン等)含有化合物を過酸化水素、過酸等の適当な酸化剤 でエポキシ化して得られるシクロへキセンォキシド又はシクロペンテンォキシド含有化 合物などを挙げることができる。
[0236] また、芳香族エポキシィ匕合物としては、例えば少なくとも 1個の芳香核を有する 1価 又は多価フエノール又はそのアルキレンォキシド付カ卩体のモノー又はポリーグリシジ ルエーテルを挙げることができる。これらのエポキシィ匕合物として、例えば、特開平 1 1— 242101号公報中の段落番号 [0084]〜[0086]記載の化合物、特開平 10—1 58385号公報中の段落番号 [0044]〜[0046]記載の化合物等が挙げられる。
[0237] これらのエポキシィ匕合物のうち、速硬化性を考慮すると、芳香族エポキシド及び脂 環式エポキシドが好ましぐ特に脂環式エポキシドが好ましい。本発明では、上記ェ ポキシィ匕合物の 1種を単独で使用してもよ ヽが、 2種以上を適宜組み合わせて使用 してちよい。
[0238] 環状チォエーテルィ匕合物としては、上記のエポキシ環がチォエポキシ環となる化合 物が挙げられる。環状エーテルとしてのォキセタ-ル基を含有する化合物としては、 具体的には、例えば特開 2000— 239309号公報中の段落番号 [0024]〜 [0025] に記載の化合物等が挙げられる。これらの化合物は、エポキシ基含有化合物と併用 することが好ましい。
[0239] スピロオルソエステル化合物としては、例えば特表 2000— 506908号公報等記載 の化合物を挙げることができる。
[0240] ビニル炭化水素化合物としては、スチレン化合物、ビニル基置換脂環炭化水素化 合物(ビュルシクロへキサン、ビュルビシクロヘプテン等)、前記ラジカル重合性モノ マーで記載の化合物、プロぺ-ル化合物 Q[. Polymer Science : Part A: Poly mer Chemistry, 32卷, 2895頁(1994年)記載等]、アルコキシアレン化合物 ["J . Polymer Science : Part A: Polymer Chemistry", 33卷, 2493頁(1995 年)記載等]、ビュル化合物 ["J. Polymer Science: Part A: Polymer
Chemistry", 34卷, 1015頁(1996年)、特開 2002— 29162号等記載]、イソプ 口べ-ノレィ匕合物 ["J. Polymer Science: Part A: Polymer Chemistry", 34 卷, 2051頁( 1996年)記載等]等を挙げることができる。
[0241] これらは 2種以上を適宜組み合わせて使用してもよい。
[0242] また、本発明に用いられる多官能性ィ匕合物は、前記のラジカル重合性基及びカチ オン重合性基力も選ばれる少なくとも各 1種を、少なくとも分子内に含有する化合物 を用いることが好ましい。例えば、特開平 8— 277320号公報中の段落番号 [0031] 〜 [0052]記載の化合物、特開 2000 - 191737号公報中の段落番号 [0015〕記載 の化合物等が挙げられる。本発明に供される化合物は、これらに限定されるものでは ない。 [0243] 以上述べたラジカル重合性ィ匕合物とカチオン重合性ィ匕合物とを、ラジカル重合性 化合物:カチオン重合性化合物の質量比で、 90: 10〜20: 80の割合で含有して ヽ ることが好ましく、 80: 20-30: 70の割合で含有して 、ることがより好まし 、。
[0244] 次に、前記 (ハ)の組み合わせにお 、て、バインダー前駆体と組み合わせて用いら れる重合開始剤にっ 、て詳述する。
[0245] 重合開始剤としては、熱重合開始剤、光重合開始剤などが挙げられる。
[0246] 本発明で用いられる重合開始剤は、光及び Z又は熱照射により、ラジカルもしくは 酸を発生する化合物であることが好まし 、。本発明にお 、て用いられる光重合開始 剤は、極大吸収波長が 400nm以下であることが好ましい。このように吸収波長を紫 外線領域にすることにより、取り扱いを白灯下で実施することができる。また、近赤外 線領域に極大吸収波長を持つ化合物を用いることもできる。
[0247] まず、ラジカルを発生する化合物について詳述する。
[0248] 本発明において好適に用いられるラジカルを発生する化合物は、光及び Z又は熱 照射によりラジカルを発生し、重合性の不飽和基を有する化合物の重合を、開始、促 進させる化合物を指す。公知の重合開始剤や結合解離エネルギーの小さな結合を 有する化合物などを、適宜、選択して用いることができる。また、ラジカルを発生する 化合物は、単独で又は 2種以上を併用して用いることができる。
[0249] ラジカルを発生する化合物としては、例えば、従来公知の有機過酸化化合物、ァゾ 系重合開始剤等の熱ラジカル重合開始剤、有機過酸化化合物 (特開 2001— 1396 63号公報等記載)、アミンィ匕合物(特公昭 44— 20189号公報記載)、ジスルホンィ匕 合物(特開平 5— 239015号公報、特開昭 61— 166544号公報等)、有機ハロゲン 化化合物、カルボニル化合物、有機ホウ酸化合物等の光ラジカル重合開始剤が挙 げられる。
[0250] 上記有機ハロゲン化化合物としては、具体的には、若林等" Bull Chem. S oc Japan"42卷、 2924頁(1969年)、米国特許第 3, 905, 815
号明細書、 M. P. Hutt"J. Heterocyclic Chemistry" 1卷(3) , (1970年)等 に記載の化合物が挙げられ、特に、トリノ、ロメチル基が置換したォキサゾールイ匕合物 : s トリァジン化合物が挙げられる。 [0251] 上記カルボ二ルイ匕合物としては、例えば、「最新 UV硬化技術」 60〜62頁 [ (株) 技術情報協会刊、 1991年]、特開平 8— 134404号公報の段落番号 [0015]〜[00 16]、同 11 217518号公報の段落番号 [0029]〜[0031]に記載の化合物等が 挙げられ、ァセトフエノン系、ヒドロキシァセトフエノン系、ベンゾフエノン系、チォキサ ン系、ベンゾインェチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化 合物、 p ジメチルァミノ安息香酸ェチル、 p ジェチルァミノ安息香酸ェチル等の安 息香酸エステル誘導体、ベンジルジメチルケタール、ァシルホスフィンォキシド等が 挙げられる。
[0252] 上記有機ホウ酸塩化合物としては、例えば、 Kunz, Martin"Rad. Te
ch. '98 Proceeding April 19〜22頁, 1998年, Ch
icago〃等に記載される有機ホウ酸塩記載される化合物があげられる。
[0253] これらのラジカル発生化合物は、 1種のみを添加しても、 2種以上を併用してもよい 。添加量としては、ラジカル重合性モノマーの全量に対し 0. 1〜30質量%、好ましく は 0. 5〜25質量%、特に好ましくは 1〜20質量%で添加することができる。この範囲 において、高屈折率層用組成物の経時安定性が問題なく高い重合性となる。
[0254] 次に、光重合開始剤として用いることができる光酸発生剤について詳述する。
[0255] 酸発生剤としては、光力チオン重合の光開始剤、色素類の光消色剤、光変色剤、 又はマイクロレジスト等に使用されている公知の酸発生剤等、公知の化合物及びそ れらの混合物等が挙げられる。また酸発生剤としては、例えば、有機ハロゲン化化合 物、ジスルホン化合物、ォ -ゥム化合物等が挙げられ、これらのうち有機ハロゲンィ匕 合物、ジスルホンィ匕合物の具体例は、前記ラジカルを発生する化合物の記載と同様 のものが挙げられる。
[0256] ォ -ゥム化合物としては、ジァゾ -ゥム塩、アンモ-ゥム塩、イミ-ゥム塩、ホスホ-ゥ ム塩、ョードニゥム塩、スルホ -ゥム塩、アルソ-ゥム塩、セレノ -ゥム塩等が挙げられ 、例えば特開 2002— 29162号公報の段落番号 [0058]〜 [0059]に記載の化合 物等が挙げられる。
[0257] 本発明において、好適に用いることのできるォ-ゥム塩の具体例としては、例えば、 特開平 9— 268205号公報の段落番号 [0035]に記載のアミルイ匕されたスルホユウ ム塩、特開 2000— 71366号公報の段落番号 [0010]〜 [0011]に記載のジァリー ルョードニゥム塩又はトリアリールスルホ -ゥム塩、特開 2001— 288205号公報の段 落番号 [0017]に記載のチォ安息香酸 S—フエ-ルエステルのスルホ -ゥム塩、特 開 2001— 133696号公報の段落番号 [0030]〜 [0033]に記載のォ-ゥム塩等が 挙げられる。
[0258] 酸発生剤の他の例としては、特開 2002— 29162号公報の段落番号 [0059]〜[0 062]に記載の有機金属 Z有機ハロゲンィ匕物、 o— -トロベンジル型保護基を有する 光酸発生剤、光分解してスルホン酸を発生する化合物 (イミノスルフォネート等)等の 化合物が挙げられる。
[0259] これらの酸発生剤は、 1種のみを用いてもよいし、 2種以上を併用してもよい。これら の酸発生剤は、全力チオン重合性モノマーの全質量 100質量部に対し 0. 1〜20質 量%、好ましくは 0. 5〜15質量%、特に好ましくは 1〜: L0質量%の割合で添加する ことができる。添加量が上記範囲において、高屈折率用組成物の安定性、重合反応 性等力も好ましい。
[0260] 本発明における高屈折率層形成用組成物は、ラジカル重合性ィ匕合物又はカチォ ン重合性化合物の合計質量に対して、ラジカル重合開始剤を 0. 5〜10質量%又は カチオン重合開始剤を 1〜: L0質量%の割合で含有していることが好ましい。より好ま しくは、ラジカル重合開始剤を 1〜5質量%、又はカチオン重合開始剤を 2〜6質量 %の割合で含有する。
[0261] 本発明で用いられる高屈折率層形成用組成物には、紫外線照射により重合反応を 行う場合、従来公知の紫外線分光増感剤、化学増感剤を併用してもよい。これらの 増感剤としては、例えばミヒラーズケトン、アミノ酸 (グリシンなど)、有機アミン (プチル ァミン、ジブチルァミンなど)等が挙げられる。
[0262] また、近赤外線照射により重合反応を行う場合には、近赤外線分光増感剤を併用 することが好ましい。併用する近赤外線分光増感剤は、 700nm以上の波長域の少 なくとも一部に吸収帯を有する光吸収物質であればよぐ分子吸光係数が 10000以 上の値を有する化合物が好ましい。更には、 750〜1400nmの領域に吸収を有し、 且つ分子吸光係数が 20000以上の値が好ましい。また、 420nm〜700nmの可視 光波長域に吸収の谷があり、光学的に透明であることがより好ましい。
[0263] 近赤外線分光増感剤は、近赤外線吸収顔料及び近赤外線吸収染料として知られ る種々の顔料及び染料を用いることができる。その中でも、従来公知の近赤外線吸 収剤を用いることが好ましい。市販の染料並びに、文献 [例えば、「化学工業」 1986 年 5月号 45〜51頁の「近赤外吸収色素」、「90年代機能性色素の開発と市場動向」 第 2章 2. 3項(1990年)シーエムシー、「特殊機能色素」 [池森'柱谷編集、 1986年 、(株)シーエムシー発行]、 J. FABIAN, "Chem. Rev. "、 92卷, 1197〜1226頁 (1992年)]、日本感光色素研究所が 1995年に発行したカタログ、 Excitonlnc.が 1989年に発行したレーザー色素カタログ及び特許に記載されている公知の染料が 利用できる。
(B)加水分解性官能基を含有する有機金属化合物及びこの有機金属化合物の部 分縮合物
本発明に用いられる高屈折率層のマトッリタスとして、加水分解可能な官能基を含 有する有機金属化合物を用いて、ゾルゲル反応により塗布膜形成後に硬化された膜 を形成することも好ましい。
[0264] 有機金属化合物としては、 Si、 Ti、 Zr、 A1等力もなる化合物が挙げられる。加水分 解可能な官能基な基としては、アルコキシ基、アルコキシカルボ-ル基、ハロゲン原 子、水酸基が挙げられ、特に、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の アルコキシ基が好ましい。好ましい有機金属化合物は、下記一般式(1)で表される有 機ケィ素化合物及びその部分加水分解物 (部分縮合物)である。なお、一般式(1)で 表される有機ケィ素化合物は、容易に加水分解し、引き続いて脱水縮合反応が生じ ることはよく知られた事実である。
[0265] 一般式 (1) : (RU) — Si (Yu)
P 4-p
一般式 (1)中、 R11は、置換もしくは無置換の炭素数 1〜30脂肪族基又は炭素数 6 〜14ァリール基を表す。 Y11は、ハロゲン原子 (塩素原子、臭素原子等)、 OH基、 O R12基、 OCOR12基を表す。ここで、 R12は置換もしくは無置換のアルキル基を表す。 p は 0〜3の整数を表し、好ましくは 0、 1又は 2、特に好ましくは 1である。ただし、 pが 0 の場合は、 Y11は OR12基又は OCOR12基を表す。 [0266] 一般式(1)において R11の脂肪族基としては、好ましくは炭素数 1〜18 (例えば、メ チル、ェチル、プロピル、ブチル、ペンチル、へキシル、ォクチル、デシル、ドデシル、 へキサデシル、ォクタデシル、ベンジル基、フエネチル基、シクロへキシル基、シクロ へキシルメチル、へキセ-ル基、デセ-ル基、ドデセニル基等)が挙げられる。より好 ましくは炭素数 1〜12、特に好ましくは 1〜8のものである。 R11のァリール基としては、 フエ-ル、ナフチル、アントラ-ル等が挙げられ、好ましくはフエ-ル基である。
[0267] 置換基としては特に制限はないが、ハロゲン (フッ素、塩素、臭素等)、水酸基、メル カプト基、カルボキシル基、エポキシ基、アルキル基 (メチル、ェチル、 i—プロピル、 プロピル、 t—ブチル等)、ァリール基 (フエ-ル、ナフチル等)、芳香族へテロ環基 (フ リル、ピラゾリル、ピリジル等)、アルコキシ基 (メトキシ、エトキシ、 i—プロポキシ、へキ シルォキシ等)、ァリールォキシ (フエノキシ等)、アルキルチオ基 (メチルチオ、ェチ ルチオ等)、ァリールチオ基 (フエ-ルチオ等)、ァルケ-ル基 (ビュル、 1—プロべ- ル等)、アルコキシシリル基(トリメトキシシリル、トリエトキシシリル等)、ァシルォキシ基
(ァセトキシ、(メタ)アタリロイル等)、アルコキシカルボ-ル基 (メトキシカルボ-ル、ェ トキシカルボ-ル等)、ァリールォキシカルボ-ル基(フエノキシカルボ-ル等)、カル バモイル基(力ルバモイル、 N—メチルカルバモイル、 N, N—ジメチルカルバモイル 、 N—メチルー N—ォクチルカルバモイル等)、ァシルァミノ基(ァセチルアミ入ベン ゾィルアミ入アクリルアミ入メタクリルアミノ等)等が好ましい。
[0268] これらの置換基のうちで、更に好ましくは水酸基、メルカプト基、カルボキシル基、ェ ポキシ基、アルキル基、アルコキシシリル基、ァシルォキシ基、ァシルァミノ基であり、 特に好ましくはエポキシ基、重合性のァシルォキシ基((メタ)アタリロイル)、重合性の ァシルァミノ基 (アクリルアミ入メタクリルァミノ)である。またこれら置換基は更に置換 されていてもよい。
[0269] 前記のように R12は置換もしくは無置換のアルキルを表す力 アルキル基中の置換 基の説明は R11と同じである。
[0270] 一般式(1)の化合物の含有量は、高屈折率層の全固形分の 10〜80質量%が好 ましぐより好ましくは 20〜70質量%、特に好ましくは 30〜50質量%である。
[0271] 一般式(1)の化合物の具体例として、例えば特開 2001— 166104号公報段落番 号 [0054]〜 [0056]記載の化合物が挙げられる。
[0272] 高屈折率層にお 、て、有機バインダーは、シラノール基を有するものであることが 好ましい。バインダーがシラノール基を有することで、高屈折率層の物理強度、耐薬 品性、耐候性がさらに改良されるので好ましい。シラノール基は、例えば、高屈折率 層形成用の塗布組成物を構成するバインダー形成成分として、バインダー前駆体( 硬化性の多官能モノマーや多官能オリゴマーなど)や重合開始剤、高屈折率粒子の 分散液に含有される分散剤と共に、架橋又は重合性官能基を有する一般式 (1)で 表される有機ケィ素化合物を該塗布組成物に配合し、この塗布組成物を保護フィル ム上に塗布して、前記の分散剤、多官能モノマーや多官能オリゴマー、一般式 (1)で 表される有機ケィ素化合物を架橋反応又は重合反応させることによりバインダーに導 人することができる。
[0273] 前記の有機金属化合物を硬化させるための加水分解 '縮合反応は、触媒存在下で 行われることが好ましい。触媒としては、塩酸、硫酸、硝酸などの無機酸類、シユウ酸 、酢酸、ギ酸、トリフルォロ酢酸、メタンスルホン酸、トルエンスルホン酸などの有機酸 類、水酸化ナトリウム、水酸ィ匕カリウム、アンモニアなどの無機塩基類、トリェチルアミ ン、ピリジンなどの有機塩基類、トリイソプロポキシアルミニウム、テトラブトキシジルコ ユウム、テトラブトキシチタネートなどの金属アルコキシド類、 βージケトン類又は j8— ケトエステル類の金属キレートイ匕合物類等が挙げられる。具体的には、例えば特開 2
000— 275403号公報中の段落番号 [0071]〜[0083]記載の化合物等が挙げら れる。
[0274] これらの触媒化合物の組成物中での割合は、有機金属化合物に対し、 0. 01〜50 質量%、好ましくは 0. 1〜50質量%、さらに好ましくは 0. 5〜10質量%である。反応 条件は有機金属化合物の反応性により適宜調節されることが好ましい。
[0275] 高屈折率層にお 、て、マトリックスは特定の極性基を有することも好ま 、。特定の 極性基としては、ァ-オン性基、アミノ基、及び四級アンモ-ゥム基が挙げられる。ァ ユオン性基、アミノ基及び四級アンモ-ゥム基の具体例としては、前記分散剤につい て述べたものと同様のものが挙げられる。
[0276] 特定の極性基を有する高屈折率層のマトリックスは、例えば、高屈折率層形成用の 塗布組成物に、高屈折率無機微粒子と分散剤を含む分散液を配合し、硬化膜形成 成分として、特定の極性基を有するバインダー前駆体 (特定の極性基を有する硬化 性の多官能モノマーや多官能オリゴマーなど)と重合開始剤の組み合わせ及び、特 定の極性基を有し、且つ架橋又は重合性官能基を有する一般式(1)で表される有機 ケィ素化合物の少なくともいずれかを配合し、さらに所望により、特定の極性基及び、 架橋性又は重合性の官能基を有する単官能性モノマーを配合し、該塗布組成物を 保護フィルム上に塗布して上記の分散剤、単官能性モノマー、多官能モノマーや多 官能オリゴマー及び Z又は一般式(1)で表される有機ケィ素化合物を架橋又は重合 反応させること〖こより得られる。
[0277] 特定の極性基を有する単官能性モノマーは、塗布組成物の中で無機微粒子の分 散助剤として機能することができ、好ましい。さらに、塗布後、分散剤、多官能モノマ 一や多官能オリオリゴマーと架橋反応、又は、重合反応させてバインダーとすること で高屈折率層における高屈折率粒子の良好な均一な分散性を維持し、物理強度、 耐薬品性、耐候性に優れた高屈折率層を作製することができる。
[0278] アミノ基又は四級アンモニゥム基を有する単官能性モノマーの分散剤に対する使 用量は、 0. 5〜50質量%であることが好ましぐさらに好ましくは 1〜30質量%である
[0279] 高屈折率層の塗布と同時又は塗布後に、架橋又は重合反応によってバインダーを 形成すれば、高屈折率層の塗布前に単官能性モノマーを有効に機能させることがで きる。
[0280] ポリマー中のァ-オン性基を有する繰り返し単位の割合は、全繰り返し単位中の 0 . 5〜99質量%であることが好ましく 3〜95質量%であることがさらに好ましぐ 6〜90 質量%であることが最も好ましい。繰り返し単位は、二つ以上の同じでも異なってもよ Vヽァ-オン性基を有して 、てもよ 、。
[0281] シラノール基を有する繰り返し単位を含む場合、その割合は、 2〜98モル%である ことが好ましぐ 4〜96モル%であることがさらに好ましぐ 6〜94モル%であることが 最も好ましい。アミノ基又は四級アンモ-ゥム基を有する繰り返し単位を含む場合、そ の割合は、 0. 1〜50質量%であることが好ましぐ更には 0. 5〜30質量%が好まし い。
[0282] なお、シラノール基、アミノ基、及び四級アンモ-ゥム基は、ァ-オン性基を有する 繰り返し単位又は、架橋もしくは重合構造を有する繰り返し単位に含まれて 、ても、 同様の効果が得られる。
[0283] ポリマー中の架橋又は重合構造を有する繰り返し単位の割合は、 1〜90質量%で ある
ことが好ましぐ 5〜80質量%であることがさらに好ましぐ 8〜60質量%であることが 最も好ましい。
[0284] ノ インダ一が架橋又は重合してなるマトリックスは、高屈折率層形成用組成物を保 護フィルム上に塗布して、塗布と同時又は塗布後に、架橋又は重合反応によって形 成することが好ましい。
(高屈折率層の他の添加物)
本発明における高屈折率層は、更に用途 ·目的によって適宜他の化合物を添加す ることができる。例えば、高屈折率層の上に低屈折率層を有する場合、高屈折率層 の屈折率は保護フィルムの屈折率より高いことが好ましぐ高屈折率層に、芳香環、 フッ素以外のハロゲンィ匕元素(例えば、 Br, I, C1等)、 S, N, P等の原子を含有する と有機化合物の屈折率が高くなることから、これらを含有する硬化性化合物などの架 橋又は重合反応で得られるバインダーも好ましく用いることができる。
[0285] 高屈折率層には、前記の成分 (無機微粒子、重合開始剤、増感剤など)以外に、榭 脂、界面活性剤、帯電防止剤、カップリング剤、増粘剤、着色防止剤、着色剤 (顔料 、染料)、消泡剤、レべリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与 剤、重合禁止剤、酸化防止剤、表面改質剤、導電性の金属微粒子等を添加すること ちでさる。
[高屈折率層の形成]
高屈折率層は、後述する保護フィルム上に、直接又は他の層を介して、上述の高 屈折率層形成用組成物の塗布液を塗布して構築することが好ま 、。本発明で用い られる高屈折率層形成用の塗布液は、高屈折率粒子の分散物、マトリックスバインダ 一用液、必要に応じて用いる添加剤を、塗布用分散媒にそれぞれ所定の濃度に混 合 ·希釈して調製される。
[0286] 高屈折率層形成用組成物の塗布液は、塗布前に濾過することが好ま ヽ。濾過の フィルタ一は、塗布液中の成分が除去されな 、範囲でできるだけ孔径の小さ 、ものを 使うことが好ましい。濾過には絶対濾過精度が 0. 1〜: LOO /z m、さらには 0. 1〜25 /z mのフィルターが用いられることが好ましい。フィルターの厚さは、 0. 1〜: LOmmが 好ましぐ更には 0. 2〜2mmが好ましい。その場合、ろ過圧力は 15kgfZcm2以下、 さらには lOkgfZcm2以下、特には 2kgf/cm2以下で濾過することが好ましい。ろ過 フィルタ一部材は、塗布液に影響を及ぼさなければ特に限定されない。具体的には 、前記した無機化合物の湿式分散物のろ過部材と同様のものが挙げられる。また、 濾過した塗布液を、塗布直前に超音波分散して、脱泡、分散物の分散保持を補助 することも好まし ヽ。
[0287] 本発明において高屈折率層は、偏光膜の保護フィルム上に、以上述べた高屈折率 層形成用組成物をディップコート法、エアーナイフコート法、カーテンコート法、ローラ 一コート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法、エタ ストルージョンコート法等の公知の薄膜形成方法で塗布し、乾燥、光及び Z又は熱 照射することにより作製することができる。好ましくは、光照射による硬化が、迅速硬 化が可能であり有利である。更には、光硬化処理の後半で加熱処理を併用すること も好ましい。
[0288] 光照射の光源は、紫外線光域又は近赤外線光のものであればいずれでもよぐ紫 外線光の光源として、超高圧、高圧、中圧、低圧の各水銀灯、ケミカルランプ、カー ボンアーク灯、メタルノヽライド灯、キセノン灯、太陽光等が挙げられる。波長 350〜42 Onmの入手可能な各種レーザー光源をマルチビーム化して照射してもよ 、。また、 近赤外光光源としてはハロゲンランプ、キセノンランプ、高圧ナトリウムランプが挙げら れ、波長 750〜1400nmの入手可能な各種レーザー光源をマルチビーム化して照 射してちょい。
[0289] 近赤外光光源を用いる場合、紫外線光源と組み合わせて用いる、あるいは高屈折 率層塗設側と反対の保護フィルム面側より光照射してもょ ヽ。塗膜層内の深さ方向で の膜硬化が表面近傍と遅滞なく進行し、均一な硬化状態の硬化膜が得られる。 [0290] 光照射による光ラジカル重合の場合は、空気又は不活性気体中で行うことができる 力 ラジカル重合性モノマーの重合の誘導期を短くしたり、又は重合率を十分に高め たりするために、できるだけ酸素濃度を少なくした雰囲気とすることが好ましい。照射 する紫外線の照射強度は、 0. 1〜: LOOmWZcm2程度が好ましぐ塗布膜表面上で の光照射量
は 100〜: LOOOmjZcm2が好ましい。また、光照射工程での塗布膜の温度分布は 、均一なほど好ましぐ ± 3°C以内が好ましぐ更には ± 1. 5°C以内に制御されること が好ましい。この範囲において、塗布膜の面内及び層内深さ方向での重合反応が均 一に進行するので好まし 、。
[0291] 高屈折率層の硬度は、 JIS K— 5400に従う鉛筆硬度試験で、 H以上であることが 好ましぐ 2H以上であることがさらに好ましぐ 3H以上であることが最も好ましい。ま た高屈折率層の耐擦傷性は、 JIS K— 5400に従うテーバー試験で、試験前後の高 屈折率層を塗設した試験片の摩耗量が少な ヽほど好ま ヽ。高屈折率層のヘイズは 低いほど好ましい。ヘイズは 5%以下であることが好ましぐさらに好ましくは 3%以下 、特に好ましくは 1%以下である。
[0292] 高屈折率層の膜厚は 30〜500nmが好ましぐさらに 50〜300nmの範囲内にある ことがより好ましい。高屈折率層がハードコート層を兼ねる場合、 0. 5〜: LO /z mが好 ましぐより好ましくは 1〜7 111、特に 2〜5 mが好ましい。
〔中屈折率層〕
本発明における反射防止膜は、高屈折率層が屈折率の異なる 2層からなる積層構 成であることが好ましい。すなわち、保護フィルム上に、 2つの高屈折率層のうち屈折 率の低 、方の層(中屈折率層)、 2つの高屈折率層のうち屈折率の高 、方の層(高屈 折率層)、低屈折率層 (最外層)の順序の 3層構造を有することが好ましい。中屈折率 層は、保護フィルムの屈折率と高屈折率層の屈折率の中間の屈折率を有する。この ように各屈折率層の屈折率は相対的なものである。中屈折率層は、高屈折率層と同 じ方法で中屈折率層形成用組成物を塗設して形成する。
[0293] 本発明における中屈折率層を構成する材料は、従来公知の材料の何れでもよいが 、前記高屈折率層と同様のものを用いることが好ましい。屈折率は無機微粒子の種 類、使用量で容易に調整され、上記高屈折率層に記載の内容と同様にして、膜厚 3 0〜500nmの薄層を形成する。更に好ましくは、 50〜300nmの膜厚である。
〔低屈折率層〕
本発明における低屈折率層の屈折率は、反射防止性を付与する目的で、好ましく は 1. 31-1. 49の範囲であるの力好ましい。より好ましくは、 1. 35-1. 49、さらに 好ましくは 1. 35~1. 48である。
[0294] 本発明における低屈折率層は、耐擦傷性、防汚性を有する最外層として構築され ることが好ましい。そして、該低屈折率層は、平均粒径が該低屈折率層の厚みの 30 %〜100%で、且つ屈折率 1. 17〜1. 40である中空構造の無機微粒子を少なくとも 1種含有してなることが好ましい。該無機微粒子の屈折率は、より好ましくは 1. 17〜 1. 37である。無機微粒子の平均粒径が低屈折率層の厚みの 30%〜100%の範囲 であれば、低屈折率層皮膜の強度が十分に発現されるので好ましい。またこのような 屈折率の無機微粒子を低屈折率層に用いることにより、層自体の屈折率の上昇を抑 えながら、しかも長時間の熱硬化や偏光膜を設けるために行う酸ィ匕処理などの制約 を受けることなぐ低い屈折率と高い皮膜強度の両立を達成できる。
[低屈折率層の硬化膜形成用素材]
更に上記低屈折率層には、低屈折率を実現し、且つ表面への滑り性の付与が効 果的に行え、耐擦傷性を大きく向上させる手段として、従来公知のシリコーン及び Z 又は含フッ素化合物の導入された硬化膜形成用素材を適宜適用することが好ましい 。含フッ素化合物を含有することがより好ましい。特に、本発明における低屈折率層 は、熱硬化性及び Z又は光もしくは放射線 (例えば電離放射線)硬化型の架橋性の 含フッ素化合物を主体として形成され、硬化した含フッ素ポリマーにより構成されるこ とが好ましい。
[0295] そのため、本発明において低屈折率層は、上記無機微粒子、酸触媒の存在下で 製造されてなる、下記一般式 (2)で表されるオルガノシランの加水分解物及び Z又 はその部分縮合物、及び硬化性反応基を有する含フッ素ポリマーを、それぞれ少な くとも 1種含有する硬化性の低屈折率層形成用組成物を塗布し硬化して形成される 硬化膜であることが好まし 、。 [0296] 一般式(2): (R21) Si (Y21)
Q 4-q
(式中、 R21は置換もしくは無置換のアルキル基又は置換もしくは無置換のァリール 基を表す。 Y21は水酸基又は加水分解可能な基を表す。 qは 1〜3の整数を表す。 ) また、低屈折率層形成用組成物は、更に、ラジカル重合性基及び Z又はカチオン 重合性基から選ばれる重合性基を少なくとも 2個以上含有する多官能重合性化合物 及び重合開始剤を含有することが好まし ヽ。
[0297] また、上記以外に、含フッ素基が導入されたオルガノシランと熱硬化性及び Z又は 光もしくは放射線 (例えば電離放射線)硬化型の架橋性の基を有するオルガノシラン の加水分解物及び Z又はその部分縮合物を主成分とする、所謂ゾルーゲル膜を形 成可能なものより構成されるものが好ましい例として挙げられる。
[0298] また硬化膜は、下記一般式(1)で表されるオルガノシランの加水分解物、およびそ の部分縮合物の少なくとも何れか一つを含有する硬化性組成物を塗布し硬化して形 成される硬化膜であることが好ま 、。
[0299] 一般式(1)
(R10) Si (X)
n 4-n
(式中、 R1Qは置換もしくは無置換のアルキル基または置換もしくは無置換のァリール 基を表す。 Xは水酸基または加水分解可能な基を表す。 nは 0〜2の整数を表す。 ) 以下、硬化性の低屈折率層形成用組成物にっ ヽて説明する。
[低屈折率層形成用組成物]
(中空構造の無機微粒子)
上記低屈折率層はその屈折率上昇をより一層少なくするために、中空の無機微粒 子(以下、中空粒子ということがある)を用いることが好ましい。中空粒子は屈折率が、 通常 1. 17〜: L 40、好ましくは 1. 17〜: L . 37、さらに好ましくは 1. 17〜: L 35であ るのがよい。ここでの屈折率は粒子全体としての屈折率を表し、中空粒子を形成して いる外殻のみの屈折率を表すものではない。中空粒子の屈折率は、粒子の強度及 び該中空粒子を含む低屈折率層の耐擦傷性の観点から、 1. 17以上とすることが好 ましい。
[0300] なお、これら中空粒子の屈折率はアッベ屈折率計 [ァタゴ (株)製]にて測定すること ができる。
[0301] なお、中空粒子内の空腔の半径を 、粒子外殻の半径を r。とするとき、中空粒子の 空隙率 w (%)は下記数式 (6)に従って計算される。
[0302] 数式(6) :w= (r/r ) 3 X 100
中空粒子の空隙率は、好ましくは 10〜60%、さらに好ましくは 20〜60%である。
[0303] 中空粒子の平均粒径は、該低屈折率層の厚みの 30〜100%、さらには 35〜80% 、特には 40〜60%であることが好ましい。即ち、低屈折率層の厚みが lOOnmであれ ば、中空粒子の粒径は 30〜: LOOnm、さらには 35〜80nm、特には 40〜60nmの範 囲となることが好ましい。該平均粒径が前記の範囲であると、膜の強度が十分に発現 されて好ましい。
[0304] 低屈折率層に用いられる無機微粒子としては、二酸ィ匕珪素 (シリカ)、含フッ素粒子
(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の粒子が好ましい。特に 好ましくは二酸化珪素 (シリカ)粒子である。
[0305] 無機微粒子の形状は米粒状、球形状、立方体状、紡錘形状、短繊維状、リング状、 又は不定形状であることが好まし 、。
(小サイズ粒径の無機微粒子)
また、平均粒径が低屈折率層の厚みの 25%未満である無機微粒子 (以下、「小サ ィズ粒子」と称することがある)の少なくとも 1種を、前記のこれより大きい粒径の無機 微粒子 (以下、「大サイズ粒子」と称すこともある)と併用することが好ましい。この小サ ィズ粒子は中空構造をもたな 、ものでよ!、。
[0306] 小サイズ粒子は、大サイズ粒子同士の隙間に存在することができるため、大サイズ 粒子の保持剤として寄与することができるので好ましい。また、原料コストの点でも好 ましい。
[0307] 小サイズ粒子の平均粒径は、低屈折率層が lOOnmの場合、 l〜20nmが好ましく
、 5〜15nmが更に好ましい。
[0308] 小サイズ粒子の使用量は、大サイズ粒子 (好ましくは中空粒子) 100質量部に対し て 5〜: LOO質量部が好ましぐより好ましくは 10〜80質量部である。
[0309] 小サイズ粒子を構成する具体的な化合物としては、前記の中空粒子で例示したと 同様のものが挙げられる。特に好ましくは、ケィ素の酸ィ匕物が挙げられる。
(無機微粒子の分散液)
上記した中空粒子 (大サイズ粒子)、及び小サイズ粒子の!/ヽずれの無機微粒子も、 分散液中又は硬化性の低屈折率層形成用組成物溶液中で、分散安定化を図るた めに、あるいはノインダー成分との親和性、結合性を高めるために、プラズマ放電処 理ゃコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による 化学的表面処理がなされていてもよい。カップリング剤の使用が特に好ましい。カツ プリング剤としては、アルコキシメタルイ匕合物(例えば、チタンカップリング剤、シラン力 ップリング剤)が好ましく用いられる。なかでも、シランカップリング剤による処理が特に 好ま 、。シランカップリング剤としては一般式(2)で表されるものが挙げられる。
[0310] 上記のカップリング剤は、低屈折率層の無機微粒子の表面処理剤として、硬化性 の低屈折率層形成用組成物塗布液調製以前に予め表面処理を施すために用いら れるが、該塗布液調製時にさらに添加剤として添加して該層に含有させることが好ま しい。
[0311] 無機微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の 負荷軽減のために好ま U、。
[0312] 上記無機微粒子の配合割合は、上記低屈折率層形成用組成物 100質量部に対し て 5〜90質量部とするのが、低屈折率層皮膜の透明性、強度等の観点力も好ましく 、 20〜60質量部とするのがさらに好ましい。また、中空粒子と他の粒子を配合する場 合は、全粒子中の中空粒子は 5〜95質量部が好ましぐより好ましくは 10〜90質量 部、特に好ましくは 30〜80質量部である。
(含フッ素ポリマー)
前述の通り、本発明における低屈折率層は、熱硬化型及び Z又は光又は放射線( 例えば電離放射線)硬化型の架橋性の含フッ素化合物を主体として形成され硬化し た含フッ素ポリマーにより構成されて 、るのが好ま 、。
[0313] 本発明において、「含フッ素化合物を主体とする」とは、低屈折率層中に含まれる含 フッ素化合物が低屈折率層の全質量に対し、 50質量%以上であることを意味し、 60 質量%以上含まれることがより好まし!/、。 [0314] 含フッ素化合物の屈折率は 1. 35〜: L 50であることが好ましい。より好ましくは 1.
36-1. 47である。また、含フッ素化合物はフッ素原子を 35〜80質量%の範囲で含 むことが好ましい。
[0315] 含フッ素化合物には、含フッ素ポリマー、含フッ素界面活性剤、含フッ素エーテル、 含フッ素シランィ匕合物等が挙げられる。具体的には、例えば特開平 9— 222503号 公報段落番号 [0018]〜 [0026]、同 11 38202号公報 段落番号 [0019]〜[00 30]、同 2001— 40284号公報 段落番号 [0027ト [0028]、同 2004— 45462号 公報 段落番号 [0030]〜 [0047]等の記載の化合物等が挙げられる。
[0316] 低屈折率層に用いられる含フッ素ポリマーとしては、フッ素原子を含む繰り返し構 造単位、架橋性もしくは重合性の官能基を含む繰り返し構造単位、及びそれ以外の 置換基力 なる繰り返し構造単位力 なる共重合体が好ましい。すなわち、含フッ素 モノマーと架橋性基付与のためのモノマーとの共重合体、すなわち、架橋性又は重 合性の官能基である硬
化性反応基を有する含フッ素ポリマーが好ましぐさらにその他のモノマーが共重合 された含フッ素ポリマーを用いてもよ!、。
[0317] 架橋性又は重合性の官能基としては従来公知の官能基の何れでもよ!/、。
[0318] 重合性の官能基としては、ラジカル重合性基、カチオン重合性基が挙げられる。好 ましくは、ラジカル重合性基 [例えば、(メタ)アタリロイル基、スチリル基、ビュルォキシ 基等]、カチオン重合性基 (例えば、エポキシ基、チォエポキシ基、ォキセタ-ル基等
)が挙げられる。また加水分解し重縮合反応性のシリル基 (例えば、トリメトキシシリル 基、トリアルコキシシリル基、トリァセトキシシリル基等)が挙げられる。
[0319] その他の繰り返し構造単位としては、溶媒可溶ィ匕のために炭化水素系共重合成分 により形成される繰り返し構造単位が好ましぐこのような構造単位をポリマー全体中 50質量%程度導入したフッ素系ポリマーが好ましい。この際には、シリコーンィ匕合物 と組み合わせることが好まし 、。
[0320] シリコーンィ匕合物としては、ポリシロキサン構造を有する化合物であり、高分子鎖中 に硬化性官能基又は重合性官能基を含有して、低屈折率層皮膜中で橋かけ構造を 有するものが好ましい。例えば、上巿品の「サイラプレーン」 [チッソ (株)製]等の反応 性シリコーン、特開平 11— 258403号公報に記載のポリシロキサン構造の両末端に シラノール基含有の化合物等が挙げられる。
[0321] 架橋又は重合性基を有する含フッ素ポリマーの架橋又は重合反応は、最外層であ る低屈折率層を形成するための硬化性組成物を塗布と同時又は塗布後に光照射や 加熱することにより実施することが好ましい。この際、用いることのできる重合開始剤、 分光増感剤は前記の高屈折率層で記載の内容と同一のものが挙げられる。
[0322] 共重合してもよいその他のモノマーには特に限定はなぐ具体的には後述の一般 式(3)中の X31で例示のものと同様のものが挙げられる。
[0323] 上記のポリマーに対しては特開平 10— 25388号及び特開平 10— 147739号各 公報に記載のごとく適宜硬化剤を併用してもよい。
[0324] また、低屈折率層としては、上述したようにシランカップリング剤等の有機金属化合 物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮 合反応で硬化して形成されるゾル Zゲル硬化膜も好ましく用いられ、このようなゾル Zゲル硬化膜としては、例えば、ポリフルォロアルキル基含有シラン化合物又はその 部分加水分解縮合物(特開昭 58— 142958号公報、同 58— 147483号公報、同 5 8— 147484号公報等記載の化合物)、特開平 9— 157582号公報記載のペルフル ォロアルキル基含有シランカップリング剤、フッ素含有長鎖基であるポリ「ペルフルォ 口アルキルエーテル」基を含有するシリル化合物(特開 2000— 117902号公報、同 2001— 48590号公報、同 2002— 53804号公報記載の化合物等)等が挙げられる
[0325] 併用する触媒としては、従来公知の化合物が挙げられ、上記文献中に記載のもの が好ましく挙げられる。
[0326] 本発明で特に有用な硬化性反応基を有する含フッ素ポリマーとしては、ペルフルォ ロォレフイン、ペルフルォロシクロォレフィン、非共役ペルフルォロジェンから選ばれ るペルフルォロ化合物類とビュルエーテル類又はビュルエステル類の共重合体が挙 げられる。特に単独で架橋反応可能な基 [ (メタ)アタリロイル基等のラジカル反応性 基、エポキシ基、ォキセタニル基等の開環重合性基等]を有していることが好ましい。 これらの架橋反応性基含有重合単位はポリマーの全重合単位の 5〜70モル%を占 めていることが好ましぐ特に好ましくは 30〜60モル%を占めていることである。
[0327] 本発明に用いられる共重合体の好ま U、態様として下記一般式 (3)で表される化 合物が挙げられる。
[0328] [化 2] 一般式 (3) :
Figure imgf000081_0001
[0329] 一般式(3)中、成分 [F]は、以下の成分 (pfl)、成分 (pf 2)又は成分 (pf 3)を表す [0330] [化 3] 成分 (Pf1 )
Figure imgf000081_0002
[0331] 成分(pfl)において、 R はフッ素原子又は炭素数 1〜3のペルフルォロアルキル 基を表わす。
[0332] [化 4]
Figure imgf000081_0003
[0333] 成分 (pf2)において、 R は、それぞれ同じでも異なってもよぐフッ素原子又 は—CF 基を表わし、 jは 1〜4の整数 (好ましくは jは 1又は 2)を表わす
j 2j+l
。好ましくは、フッ素原子又は— CF基、— C F基である。 aは 0又は 1、 bは 2〜
3 2 5
5の整数を表わす。 cは 0又は 1を表わす。 a及び Z又は cが 0の場合、それぞれ単結 合を表す。 [0334] [化 5]
Figure imgf000082_0001
[0335] 成分 (pf3)において、 RA R ま、それぞれフッ素原子又は CF基を表わす
3
。 aは、上記成分 (pf2)と同様 0又は 1を表す。 dは 0又は 1、 eは 0又は 1〜4の整数、 f は 0又は 1、 gは 0又は 1〜5の整数を表わす。 d、 e、 f及び Z又は gが 0の場合、それ ぞれ単結合を表す。また (e+f +g)は 1〜6の範囲の整数である。
[0336] 前記の一般式(3)において、 X32は炭素数 1〜10、より好ましくは炭素数 1〜6、特 に好ましくは炭素数 2〜4の連結基を表し、直鎖であっても分岐構造を有していてもよ ぐまた環構造を有していてもよい。さらに 0、 N、 Sから選ばれるヘテロ原子を有して いてもよい。連結基 X32の好ましい例としては、 * - (CH ) — O— * *、 *— (CH )
2 2 2 2
-NH-水水、 ー (CH ) O 水水、 ー (CH ) O—水水、 ー (CH ) O
2 4 2 6 2 2 (CH ) O 水水、水 -CONH- (CH ) O—水水、水 CH C
2 2 2 3 2
H (OH) CH O—水水、水 CH CH OCONH (CH ) — O—水水(ここで
2 2 2 2 3
、 *はポリマー主鎖側の連結部位を表し、 * *は (メタ)アタリロイル基側の連結部位 を表す。)等が挙げられる。 uは 0又は 1を表わす。
[0337] また一般式 (3)にお 、て、 Y31は水素原子又はメチル基を表す。硬化反応性の観点 から、より好ましくは水素原子である。
[0338] さらに一般式(3)中、 X31は任意のビュルモノマーから導かれる繰返し単位を表わし 、成分 [F]に相当するモノマーと共重合可能な単量体の構成成分であれば特に制 限はなぐ低屈折率層の下の層、例えば高屈折率層への密着性、ポリマーの Tg (皮 膜硬度に寄与する)、溶媒への溶解性、透明性、滑り性、防塵 ·防汚性等種々の観点 力も適宜選択することができ、 目的に応じて単一又は複数のビニルモノマーによって 構成されていてもよい。
[0339] 一般式(3)における X31の好まし!/、例としては、メチルビ-ルエーテル、ェチルビ- ノレエーテノレ、 t ブチルビ-ルエーテル、シクロへキシルビ-ルエーテル、イソプロピ ノレビニノレエーテノレ、ヒドロキシェチノレビニノレエーテノレ、ヒドロキシブチノレビニノレエーテ ル、グリシジルビ-ルエーテル、ァリルビュルエーテル等のビュルエーテル類、酢酸 ビュル、プロピオン酸ビュル、酪酸ビュル等のビュルエステル類、メチル(メタ)アタリ レート、ェチル (メタ)アタリレート、ヒドロキシェチル (メタ)アタリレート、グリシジルメタ アタリレート、ァリル (メタ)アタリレート、ビュル (メタ)アタリレート、 (メタ)アタリロイルォ キシプロピルトリメトキシシラン等の (メタ)アタリレート類、スチレン、 p ヒドロキシメチ ルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、ィタコン酸等の不飽和カル ボン酸及びその誘導体等を挙げることができる力 より好ましくはビニルエーテル誘 導体、ビュルエステル誘導体であり、特に好ましくはビュルエーテル誘導体である。
[0340] x、 y、 zはそれぞれの構成成分のモル0 /0を表わし、 30≤x≤60, 5≤y≤70, 0≤z ≤65を満たす値を表す。好ましくは、 35≤x≤55, 30≤y≤60, 0≤z≤20の場合 であり、特に好ましくは 40≤x≤55、 40≤y≤55, 0≤z≤ 10の場合である。ただし、 x+y+z= 100である。
[0341] 特に好ましくは、一般式 (3)において、 [F]成分が (pfl)成分のもが挙げられ、具体 的には特開 2004— 45462号公報段落番号「0043」〜「0047」に記載の化合物等 が挙げられる。
(オルガノシランィ匕合物)
次に、前記一般式(2)で表されるオルガノシランの加水分解物及び Z又はその部 分縮合物について説明する。
[0342] 一般式(2): (R21) Si (Y21)
上記一般式(2)において、 R21は、置換もしくは無置換のアルキル基、又は置換もし くは無置換のァリール基を表す。アルキル基として好ましくは、炭素数 1〜30、より好 ましくは炭素数 1〜16、特に好ましくは 1〜6のものであり、例えばメチル、ェチル、プ 口ピル、イソプロピル、へキシル、デシル、へキサデシル等が挙げられる。ァリール基 としてはフエ-ル、ナフチル等が挙げられ、好ましくはフエニル基である。
[0343] Y21は、水酸基又は加水分解可能な基を表し、例えばアルコキシ基 (炭素数 1〜5の アルコキシ基が好ましぐ例えばメトキシ基、エトキシ基等が挙げられる)、ハロゲン原 子 (例えば Cl、 Br、 I等)、及び R22COO (R22は水素原子又は炭素数 1〜5のアルキル 基が好ましぐ例えば CH COO、 C H COO等が挙げられる)で表される基が
3 2 5
挙げられ、好ましくはアルコキシ基であり、特に好ましくはメトキシ基又はエトキシ基で ある。
[0344] qは 1〜3の整数を表し、好ましくは 1又は 2であり、特に好ましくは 1である。
[0345] R21又は Y21が複数存在するとき、複数の R21又は Y21はそれぞれ同じであっても異な つていてもよい。
[0346] R21に含まれる置換基としては特に制限はないが、ハロゲン原子 (フッ素、塩素、臭 素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基 (メチル、ェ チル、 i—プロピル、プロピル、 t—ブチル等)、ァリール基(フエ-ル、ナフチル等)、芳 香族へテロ環基 (フリル、ピラゾリル、ピリジル等)、ァシルォキシ基 (ァセトキシ、アタリ ロイルォキシ、メタクリロイルォキシ等)、アルコキシカルボ-ル基 (メトキシカルボ-ル 、エトキシカルボ-ル等)、ァリールォキシカルボ-ル基(フエノキシカルボ-ル等)、 力ルバモイル基(力ルバモイル、 N—メチルカルバモイル、 N, N—ジメチルカルバモ ィル、 N—メチルー N—ォクチルカルバモイル等)、ァシルァミノ基(ァセチルアミ入 ベンゾィルアミ入アクリルアミ入メタクリルアミノ等)等が挙げられ、これら置換基は更 に置換されていてもよい。
[0347] R21が複数ある場合は、少なくとも一つが置換アルキル基もしくは置換ァリール基で あることが好ましい。
[0348] 前記一般式(2)で表されるオルガノシランィ匕合物の中でも、特にメタクロィルォキシ 基、アタリロイルォキシ基等のビニル重合性の置換基を有するオルガノシランィ匕合物 が好ましい。具体的には、特開 2004— 42278号公報段落番号 [0026]〜 [0028] 記載のものが挙げられる。
[0349] オルガノシラン化合物の加水分解物及び Z又は部分縮合物は、一般に前記オル ガノシラン化合物を触媒の存在下で処理して製造されるものである。触媒としては、 酸類、塩基類、有機金属化合物等が使用でき、具体的には前記高屈折率層ゾルゲ ル反応で記載と同様のものが挙げられる。
[0350] 低屈折率層における、含フッ素ポリマーに対するオルガノシランのゾル成分の使用 量は、 5〜: LOO質量%が好ましぐ 5〜40質量%がより好ましぐ 8〜35質量%が更に 好ましぐ 10〜30質量%が特に好ましい。使用量が少なすぎると本発明の効果が得 にくいが、該上限値以下の使用量とすれば屈折率が増加しすぎたり、低屈折率層の 皮膜の形状'面状が悪ィ匕したりするなどの不具合が生じることがなぐ本発明の優れ た効果を発揮することができるので該範囲内で適宜の量使用することが好ましい。 (多官能重合性化合物)
前述したように、前記の低屈折率層形成用の硬化性組成物には、更に多官能重合 性ィ匕合物を添加することもできる。
[0351] 多官能重合性化合物としては、ラジカル重合性官能基及び Z又はカチオン重合性 官能基の ヽずれでも 2個以上重合性基を含有してょ ヽ。ラジカル重合性官能基とし ては、(メタ)アタリロイル基、ビュルォキシ基、スチリル基、ァリル基等のエチレン性不 飽和基等が挙げられる。
[0352] 本発明に用いられるカチオン重合性ィ匕合物は、活性エネルギー線感受性カチオン 重合開始剤の存在下に活性エネルギー線を照射したときに重合反応及び Z又は架 橋反応を生ずる化合物のいずれもが使用でき、代表例としては、エポキシ化合物、 環状チォエーテルィ匕合物、環状エーテルィ匕合物、スピロオルソエステルイ匕合物、ビ
-ル炭化水素化合物、ビニルエーテルィ匕合物などを挙げることができる。
[0353] これらのラジカル重合性化合物、カチオン重合性ィ匕合物の具体的な内容としては、 前記の高屈折率層に記載の多官能モノマーやオリゴマーと同様のものが挙げられる
[0354] 上記したラジカル重合性ィ匕合物とカチオン重合性ィ匕合物とを、ラジカル重合性ィ匕 合物:カチオン重合性ィ匕合物の質量比で、 90: 10〜20: 80の割合で含有して 、るこ と力 子ましく、 80 : 20〜30: 70の割合で含有していることがより好ましい。またラジカ ル重合性化合物とカチオン重合性化合物とを含む前記多官能重合性化合物の配合 量は、前記含フッ素ポリマー 100質量部に対して、 0. 1〜20質量部とするのが好ま しい。
(その他の添加剤)
本発明における低屈折率層には、以上述べた成分の他、防汚性、耐水性、耐薬品 性、滑り性等の特性を付与する目的で、公知のシリコーン系化合物又はフッ素系化 合物の防汚剤、滑り剤等を適宜添加されていることが好ましい。これらの添加剤を添 加する場合には低屈折率層形成用の硬化性組成物全固形分の 0. 01〜20質量% の範囲で添加されることが好ましぐより好ましくは 0. 05〜10質量%の範囲で添加さ れる場合であり、特に好ましくは 0. 1〜5質量%の場合である。
[0355] シリコーン系化合物の好ましい例としては、ジメチルシリルォキシ単位を繰り返し単 位として複数個含む、化合物鎖の末端及び Z又は側鎖に置換基を有するものが挙 げられる。ジメチルシリルォキシを繰り返し単位として含む化合物鎖中には、ジメチル シリルォキシ以外の構造単位を含んでもょ ヽ。置換基は同一であっても異なって 、て もよぐ複数個あることが好ましい。好ましい置換基の例としては、アタリロイル基、メタ クリロイル基、ビュル基、ァリール基、シンナモイル基、エポキシ基、ォキセタ-ル基、 水酸基、フルォロアルキル基、ポリオキシアルキレン基、カルボキシル基、ァミノ基な どを含む基が挙げられる。
[0356] シリコーン系化合物の分子量には特に制限はないが、 10万以下であることが好まし く、 5万以下であることが特に好ましぐ 3000〜30000であることが最も好ましい。シリ コーン系化合物のシリコーン原子含有量にも、特に制限はないが、 18. 0質量%以 上であることが好ましぐ 25. 0〜37.8質量%であることが特に好ましぐ 30
. 0-37. 0質量%であることが最も好ましい。
[0357] 好ましいシリコーン系化合物の例としては、例えば特開 2004— 42278号公報段落 番号 [0068]記載のもの等が挙げられるがこれらに限定されるものではない。
[0358] フッ素系化合物としては、フルォロアルキル基を有する化合物が好ましい。該フル ォロアルキル基は炭素数 1〜20であることが好ましぐより好ましくは 1〜10であり、直 鎖 [例えば— CF CF、 -CH (CF ) H、— CH (CF ) CF、— CH CH (CF ) H
2 3 2 2 4 2 2 8 3 2 2 2 4 等]であっても、分岐構造 [例えば— CH (CF ) 、 -CH CF (CF ) 、—CH (CH ) C
3 2 2 3 2 3
F CF、 -CH (CH ) (CF ) CF H等]であっても
2 3 3 2 5 2
、脂環式構造 (好ましくは 5員環又は 6員環、例えばペルフルォロシクロへキシル基、 ペルフルォロシクロペンチル基又はこれらで置換されたアルキル基等)であってもよく 、エーテル結合を有していてもよい(例えば一 CH OCH CF CF、 -CH CH OCH C F H、— CH CH OCH CH C F 、— CH CH OCF CF OCF CF H等)。該フ
2 4 8 2 2 2 2 8 17 2 2 2 2 2 2
ルォロアルキル基は同一分子中に複数含まれて 、てもよ 、。
[0359] フッ素系化合物は、さらに低屈折率層の皮膜との結合形成又は相溶性に寄与する 置換基を有して ヽることが好ま ヽ。該置換基は同一であっても異なって ヽてもよく、 複数個あることが好ましい。好ましい置換基の例としてはアタリロイル基、メタクリロイル 基、ビュル基、ァリール基、シンナモイル基、エポキシ基、ォキセタ-ル基、水酸基、 ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。
[0360] フッ素系化合物は、フッ素原子を含まない化合物とのポリマーであってもオリゴマー であってもよぐ分子量に特に制限はなく用いられる。フッ素系化合物のフッ素原子 含有量には特に制限は無いが、 20質量%以上であることが好ましぐ 30〜70質量 %であることが特に好ましい。好ましいフッ素系化合物の例としては、 2020"、 " M— 2020"、 3833"、〃M— 3833" [商品名:以上、ダイキンィ匕学工業 (株)製]; 「メガファック F— 171」、「メガファック F— 172」、「メガファック F— 179A」、「ディフエ ンサ MCF— 300」 [商品名:以上、大日本インキ (株)製]などが挙げられるがこれらに 限定されるものではない。
[0361] またシランカップリング剤と、特定のフッ素含有炭化水素基含有のシランカップリン グ剤とを、触媒共存下に縮合反応で硬化するゾル Zゲル硬化物も好ましい。これらの 珪素とフッ素との複合ィ匕合物であるゾル Zゲル硬化物の具体例としては、例えば、ポ リフルォロアルキル基含有シランィ匕合物又はその部分加水分解縮合物(特開昭 58 — 142958号公報、同 58— 147483号公報、同 58— 147484号公報等記載のィ匕合 物)、特開平 9— 157582号公報記載のペルフルォロアルキル基含有シランカツプリ ング剤、フッ素含有長鎖基であるポリ「ペルフルォロアルキルエーテル」基を含有する シリルイ匕合物(特開 2000— 117902号公報、同 001— 48590号公報、同 2002— 5 3804号公報記載の化合物等)等が挙げられる。これらのゾル Zゲル硬化物には、上 記した他の添加剤を必要により併用してもよい。
[0362] 本発明における低屈折率層には、さらに防塵性、帯電防止等の特性を付与する目 的で、公知のカチオン系界面活性剤又はポリオキシアルキレン系化合物のような、防 塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は、前 述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含 まれていてもよい。これらを添加剤として添加する場合には、硬化性組成物全固形分 の 0. 01〜20質量%の範囲で添加されることが好ましぐより好ましくは 0. 1〜5質量 %の範囲で添加される場合である。
[0363] 低屈折率層はまた、ミクロボイドを内包してもよい。具体的には、例えば特開平 9 222502号公報、同 9 288201号公報、同 11 6902号公報等に記載の内容力 S 挙げられる。
[0364] さらに本発明においては、有機微粒子を用いることもでき、該有機微粒子としては、 例えば、特開平 11 3820公報の段落番号 [0020]〜 [0038]に記載の化合物等 力 Sあげられ、その形状は、上述の無機微粒子と同じである。
[0365] 低屈折率層の厚さは 0. 03〜0. 2 μ mが好ましぐ 0. 05〜0. 15 μ mがより好まし い。
[低屈折率層の性状]
本発明における低屈折率層は、その表面エネルギーが 26mNZm以下、さらには 15〜25. 8mNZmの範囲であることが好ましい。表面エネルギーをこの範囲にする ことが防汚性の点で好まし 、。
[0366] また上記低屈折率層は、熱硬化性又は、光もしくは放射線 (例えば電離放射線)硬 化型の架橋性フッ素系化合物を含有する、フッ素系ポリマーによる硬化膜であれば 防汚性の効果が発現されるので好ましい。特に、最外層となる低屈折率層中に含ま れるフッ素系化合物力 最外層の全質量に対して 50質量%以上であれば、低屈折 率層皮膜の表面全体力 Sムラ無く安定した特性を示すので好ましい。
[0367] 固体の表面エネルギーは、「ぬれの基礎と応用」(リアライズ社 1989. 12. 10発 行)に記載のように接触角法、湿潤熱法、及び吸着法により求めることができる。本発 明のフィルムの場合、接触角法を用いることが好ましい。具体的には、表面エネルギ 一が既知である 2種の溶液を、偏光板の保護フィルム面上に滴下し、液滴の表面とフ イルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を 含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。 最外層表面の水に対する接触角は 90°以上、さらには 95°以上、特には 100°以上 であることが好ましい。
[0368] また低屈折率層表面の動摩擦係数は、 0. 25以下であることが好ましぐさらには 0 . 05〜0. 25、特には 0. 03〜0. 15であることが好ましい。ここで記載した動摩擦係 数とは、直径 5mmのステンレス剛球に 0. 98Nの荷重を力 4ナ、速度 60cmZ分で表 面を移動させたときの、表面と直径 5mmのステンレス剛球の間の動摩擦係数をいう。
[0369] 低屈折率層の硬度は、 JIS K— 5400に従う鉛筆硬度試験で、 H以上であることが 好ましぐ 2H以上であることがさらに好ましぐ 3H以上であることが最も好ましい。ま た低屈折率層の耐擦傷性は、 JIS K— 6902に従うテーバー試験での摩耗量は小さ いほど好ましい。
〔ハードコート層〕
ハードコート層は、反射防止膜に物理強度を付与するために保護フィルムの表面 に設けることができる。特に保護フィルムと前記高屈折率層の間に設けることが好まし い。
[0370] ハードコート層は、光及び Z又は熱の硬化性化合物の架橋反応、又は、重合反応 により形成されることが好ましい。例えば、ポリエステル (メタ)アタリレート、ポリウレタン (メタ)アタリレート、多官能モノマーや多官能オリゴマー又は加水分解性官能基含有 の有機金属化合物を含む塗布組成物を保護フィルム上に塗布し、硬化性化合物を 架橋反応、又は、重合反応させることにより形成することができる。
[0371] 硬化性官能基としては、光重合性官能基が好ましぐまた加水分解性官能基含有 の有機金属化合物は有機アルコキシシリルイ匕合物が好ましい。具体的には、高屈折 率層のマトリックスバインダーと同様の内容のものが挙げられる。更には、特開 2002 — 322430号公報記載のラジカル重合性基含有ィ匕合物とカチオン重合性基含有ィ匕 合物とを併用することも好ましい。
[0372] ハードコート層は、一次粒子の平均粒径が 300nm以下の無機微粒子を含有するこ とが好ましい。より好ましくは 10〜150nmであり、さらに好ましくは 20〜: LOOnmであ る。ここでいう平均粒径は質量平均径である。一次粒子の平均粒径を 200nm以下に することで透明性を損なわないハードコート層を形成できる。無機微粒子はハードコ ート層の硬度を高くすると共に、塗布層の硬化収縮を抑える機能がある。また、ハー ドコート層の屈折率を制御する目的にも添加される。ハードコート層の具体的な構成 組成物としては、例えば特開 2002— 144913号公報、同 2000— 9908号公報、国 際公開第 00/46617号パンフレット等に記載の内容のもが挙げられる。ハードコー ト層における無機微粒子の含有量は、ハードコート層の全質量に対し 10〜90質量 %であることが好ましぐより好ましくは 15〜80質量%である。
[0373] 前記したように、高屈折率層はハードコート層を兼ねることができる。高屈折率層が ハードコート層を兼ねる場合、高屈折率層で記載した手法を用いて無機微粒子を微 細に分散してハードコート層に含有させて形成することが好ましい。ハードコート層の 膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、 0. 2〜10 μ mであること力 S好ましく、より好ましくは 0. 5〜7 μ m、特に好ましくは 0. 7〜5 μ m である。
[0374] ハードコート層中に含有させる無機微粒子に ITO、 ΑΤΟ等の導電性を有するのを 選択することで、帯電防止層とすることもでき、ハードコート性と帯電防止性とを兼ね ることちでさる。
[0375] ハードコート層の硬度は、 JIS Κ— 5400に従う鉛筆硬度試験で、 Η以上であること が好ましぐ 2Η以上であることがさらに好ましぐ 3Η以上であることが最も好ましい。 またノヽードコート層の耐擦傷性は、 JIS Κ— 5400に従うテーバー試験で、試験前後 の試験片の摩耗量が少な 、ほど好まし 、。
〔反射防止膜の各層の形成〕
反射防止膜の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、 ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法、エタスト ルージョンコート法 (米国特許 2681294号明細書)等の方法を用いて、塗布により形 成することができる。ウエット塗布量の最小化により乾燥ムラを少なくできるという観点 力もマイクログラビア法及びグラビア法が好まし 、。塗布に際しては 2層以上の層を同 時に塗布してもよい。同時塗布の方法については、米国特許 2761791号、同 2941 898号、同 3508947号、同 3526528号の各明細書及び原崎勇次著、コーティング 工学、 253頁、朝倉書店(1973)に記載の方法が挙げられる。また各層形成用の硬 化性組成物塗布液の塗布前の濾過、硬化での光照射工程と、前記高屈折率層の形 成で記載の内容を行うことが好ましい。
〔反射防止膜の光拡散性 z防眩性の形成〕
本発明の反射防止膜は、上記に記載の態様の多層構造の反射防止膜が、下記内 容の光散乱層 (すなわち前記高屈折率層が光散乱層であってもよい)と低屈折率層 ( 低屈折率層の反対側の光散乱層面にハードコート層を設けてもよい)からなる反射 防止膜であってもよいし、あるいは光散乱性の特定の凹凸形状を形成した反射防止 膜の態様であってもよい。
〔光散乱層〕
本発明における光散乱層は、好適には少なくとも 1種の平均粒子径 0. 5〜7. Ο μ mの透光性粒子を透光性榭脂に分散してなるものであり、該透光性粒子と該透光性 榭脂との屈折率の差が 0. 005-0. 2で、該透光性粒子が光散乱層全固形分中に 3 〜30質量%含有されてなる層からなる。本発明における光散乱層には、表面の凹凸 による光散乱効果が実質的にない内部散乱系の光散乱層も含まれる。
(透光性粒子)
本発明における透光性粒子は、平均粒子径 0. 5〜7. O ^ m,さらには 1. 5〜4. 0
/z mの単分散性粒子であることが好ましい。透光性粒子は、有機化合物の粒子であ つても無機化合物の粒子であってもよ!ヽ。透光性粒子の平均粒子径が該下限値以 上であれば、良好な光散乱効果が発揮されるので好ましぐ該下限値以下であれば 、膜厚が厚くなつてフィルムのカールが大きくなるなどの不具合が生じることがなぐ 光散乱効果も良好なものとなるので好ましい。粒子径にばらつきがないほど、散乱特 性にばらつきが少なくなりヘイズ価の設計が容易となる。
透光性粒子としては、透明度が高ぐ透光性榭脂との屈折率差が前記のような数値 になるものであれば特に限定されずに使用することができ、有機微粒子としては、例 えばポリメチルメタタリレートビーズ (屈折率 1. 49)、アクリル スチレン共重合体ビー ズ (屈折率 1. 54)、メラミン ホルムアルデヒドビーズ (屈折率 1. 57)、ポリカーボネ 一トビーズ (屈折率 1. 57)、架橋ポリスチレンビーズ (屈折率 1. 61)、ポリ塩ィ匕ビュル ビーズ(屈折率 1. 60)、ベンゾグアナミン メラミン ホルムアルデヒドビーズ(屈折 率 1. 68)等が挙げられる。また無機微粒子としては、例えばシリカビーズ (屈折率 1. 44)、アルミナビーズ (屈折率 1. 63)等が挙げられ、沈降防止や屈折率低下のため に中空無機ビーズも好まし 、。
[0377] 透光性粒子と透光性榭脂との間の屈折率の差は、 0. 02-0. 20、さらには 0. 04 〜0. 10であることが好ましい。その差が該上限値以下であれば、得られる散乱層皮 膜が白濁するなどの不具合が生じないので好ましぐ該下限値以上であれば、十分 な光散乱効果を得ることができるので好ましい。透光性粒子の透光性榭脂に対する 添加量も、屈折率の差と同様に重要である。透光性粒子の含有量は、光散乱層全固 形分中 3〜30質量%、さらには 5〜20質量%であることが好ましい。透光性粒子の 含有量が該上限値以下であれば、フィルムが白濁するなどの不具合が生じないので 好ましぐ該下限値以上であれば、十分な光散乱効果を得ることができるので好まし い。
[0378] 透光性粒子としては、異なる 2種以上の透光性粒子を併用してもよい。 2種類以上 の透光性粒子を用いる場合には、複数種類の粒子の混合により屈折率の制御を効 果的にするため、最も屈折率の高い透光性粒子と最も屈折率の低い透光性粒子との 間の屈折率の差が 0. 005以上、 0. 10以下とすることが好ましい。
[0379] またより大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性 粒子で別の光学特性を付与することも可能である。例えば、 133ppi以上の高精細デ イスプレイに反射防止膜塗設保護フィルムを貼り付けた場合、ギラツキと呼ばれる光 学性能上の不具合が生じないことが要求される。ギラツキは、反射防止膜表面に存 在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を 失うことに由来するが、防眩性を付与する透光性粒子よりも粒子径が小さぐ透光性 榭脂の屈折率とは異なる屈折率を有する透光性粒子を併用することにより大きく改善 することができる。
[0380] 上記のような透光性粒子を添加する場合には、透光性榭脂中で透光性粒子が沈 降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無 機フイラ一は添加量が増すほど、透光性粒子の沈降防止に有効ではあるが、光散乱 層の透明性に悪影響を与えことがある。従って、好ましくは、粒径 0. 5 m以下の無 機フイラ一を、透光性榭脂に対して光散乱層の透明性を損なわない程度に、 0. 1質 量%未満程度含有させるのがよ 、。
(透光性樹脂)
光散乱層を形成する透光性榭脂としては、主として反応硬化型榭脂、即ち、(1)紫 外線や電子線によって硬化する電離放射線硬化型榭脂、 (2)電離放射線硬化型榭 脂に熱可塑性榭脂と溶媒を混合したもの、(3)熱硬化型榭脂の 3種類が好適に使用 される。具体的には、前記の高屈折率層のマトリックスと同様の内容のものが挙げら れる。
[0381] また光散乱層の厚さは、通常 0. 5 μ m〜50 μ m程度とし、好ましくは 1 μ m〜20 μ m、さらに好ましくは 2 m〜10 mがよい。
[0382] 透光性榭脂の屈折率は、好ましくは 1. 51〜2. 00であり、より好ましくは 1. 51〜1
. 90であり、更【こ好ましく ίま 1. 51〜: L 85であり、特【こ好ましく ίま 1. 51〜: L 80であ る。なお、透光性榭脂の屈折率は、透光性粒子を含まずに測定した値である。
[0383] さらにハードコート層、光散乱層は、界面結合剤として、前記の低屈折率層の項で 詳述した、一般式 (2)で表される有機シリルイ匕合物及び Ζ又はその有機シリルイ匕合 物の加水分解物及び Ζ又はその部分縮合物を含有することが好ましい。
[0384] 界面結合剤として具体的には、例えば" ΚΒΜ - 5103"及び" ΚΒΜ - 503" [商品 名:共に信越化学工業 (株)製]等の市販品、及び Ζ又はその加水分解物及び Ζ又 はその部分縮合物が好ましい化合物として挙げられる。
[0385] 界面結合剤の添加量は、光散乱層形成用組成物の全固形分 100質量部に対して
、 1〜50質量部が好ましぐ 2〜30質量部がより好ましい。
[0386] 更に、ハードコート層や光散乱層に界面活性剤を添加すると、本発明における反射 防止膜の面状均一性を向上させることができるので好ましい。界面活性剤としては、 例えば炭素数 6〜12のペルフルォロアルキル基置換 (メタ)アタリレート共重合体、炭 素数 6〜 12のペルフルォロビニルエーテル共重合体等が挙げられる。
[0387] 界面活性剤の添加量は、光散乱層形成用組成物の全固形分 100質量部に対して
、 0. 01〜20質量部が好ましぐ 0. 1〜10質量部がより好ましい。
〔防眩性反射防止膜の形状〕
反射防止膜は、外光を散乱させるアンチグレア機能 (防眩性機能)を有して 、てもよ い。アンチグレア機能は、反射防止膜の表面に凹凸を形成することにより得られる。 反射防止膜がアンチグレア機能を有する場合、反射防止膜のヘイズは、 1〜50%で あることが
好ましぐ用途に応じて低ヘイズの領域、中ヘイズの領域、高ヘイズの領域で作り分 けるのが好ましい。
[0388] 防眩層を有する場合には、そのヘイズはフィルムの最表面と空気の界面で起こる表 面散乱に起因するものと、フィルム内部の屈折率の異なる領域の界面で起こる内部 散乱に起因するものとに分けることができる。前者を以後、表面ヘイズと呼び、後者を 以後、内部ヘイズと呼ぶ。本発明の偏光板の保護フィルムが比較的高い防眩性を有 する場合には、低屈折率層を形成した後の偏光膜と接する面の反対側の表面ヘイズ 力 2%〜7%、且つ、フィルム全体の内部ヘイズが 0〜50%とすることにより、充分な 防眩性と表面の白濁防止を高次元で両立でき、好ましい。
[0389] 本発明の反射防止膜が防眩性を保持する場合、反射防止膜最上層 (通常は低屈 折率層)の表面は、 JIS B 0601— 1994に基づく該層の表面凹凸の算術平均粗さ (Ra)力 ^0. 02〜: L O /z m、さらには 0. 02〜0. 8 111、特には0. 04〜0. 6 mの範 囲;表面凹凸の平均間隔(Sm)が 5〜65 /ζ πι、さらには5〜50 111、特には 10〜40 μ mの範囲;であり、且つ十点平均粗さ (Rz)と算術平均粗さ (Ra)の比 (RzZRa)が 10以下、さらには 9以下、特には 8以下;であることが好ましい。
[0390] また表面凹凸の最大高さ(Ry)が 2 m以下、さらには 0. 05-1. 5 /ζ πι、特には 0 . 1〜1. であり、凹凸プロファイルの傾斜角(正反射面に対する傾斜角度の平 均値)が 15°以下、さらには 0. 25〜15°、特には 0. 25〜10°にあることが好ましい。
[0391] ここで、 Raと Rzの関係は表面の凹凸の均一性を示すものである。
[0392] また、凹凸プロファイルの傾斜角は小さ 、方が好まし 、。不規則な凹凸プロファイル の傾斜角は一義でなく分布をもって存在するが、小さい傾斜角の頻度が高くなりすぎ なければ良好な防眩性が得られ、大きい傾斜角の頻度が高くなりすぎなければ防眩 フィルムが白味をおびてくるなどの不具合を生じないので好ましい。膜表面の凹と凸 の形状は、(株)ミツトヨ製 2次元粗さ計〃 SJ— 400 "型又は、(株) RYOKA SYSTE M製の「マイクロマップ」機により評価することができる。 [0393] 本発明において、傾斜角度は以下の方法で決定される。すなわち、図 1に示すよう に、保護フィルム面上に面積が 0. 5〜2 1112の範囲の三角形 ABCを想定し、その 3 頂点 A, B, Cから鉛直上向きに伸ばした 3つの垂線が防弦性反射防止膜表面と交わ る点を Α', Β', C'とする。この 3点によって形成される三角形 A'B'C'平面の法線 D— D'が、保護フィルム上の三角形 ABC平面力も鉛直上向きに伸ばした垂線 O— O'と なす角 φを防弦性反射防止膜表面の傾斜角度とする。
[0394] そのときの保護フィルム上での測定面積は、 0. 25mm2以上とすることが好ましく
、この保護フィルム上の測定面を三角形に分割して、上記方法に従い傾斜角度 φを 測定し、その全測定値を平均して表面の平均傾斜角度を求め、また全測定三角形に ついて、傾斜角度が 10° 以上であるものの割合を求める。
[0395] 測定する装置はいくつかある力 一例としてマイクロマップ社 (米国)製" SXM52 0— AS150 "型を用いた場合について説明する。例えば、対物レンズが 10倍の時、 傾斜角度の測定単位 (測定対象三角形)は 0. 85 m2単位であり、測定範囲は 0. 4 8mm2である。対物レンズの倍率を大きくすれば、それに合わせて測定単位と測定範 囲は小さくなる。測定データは、〃MAT— LAB〃等のソフトを用いて解析し、傾斜角 度分布及びそれらの平均値を算出することができる。これにより傾斜角度が 10° 以 上の割合を容易に求めることができる。本発明において、傾斜角度が 10°以上の割 合は 2%以下、さらには 1%以下であることが好ましい。これにより、防眩性と黒色の 明示性とを両立させることができる。
[反射防止膜の表面形状の形成]
反射防止膜表面に凹凸を形成する方法は、これらの表面形状を充分に保持できる 方法であればいずれの方法でも適用できる。例えば、低屈折率層中に微粒子を使用 し、それにより膜表面に凹凸を形成する方法 (例えば、特開 2000— 271878号公報 等)、低屈折率層の下層(高屈折率層、中屈折率層又はハードコート層)に比較的大 きな粒子 (粒径 0. 05〜5 ;ζ ΐη)を少量 (0. 1〜50質量%)添加して表面凹凸膜を形 成し、その上にこれらの形状を維持して低屈折率層を設ける方法 (例えば、特開 200 0— 281410号公報、同 2000— 95893号公報等)、低屈折率層を塗設後の表面に 物理的に凹凸形状を転写する方法 [例えば、エンボス加工方法 (例えば、特開昭 63 — 278839号公報、特開平 11— 183710号公報、特開 2000— 275401号公報等) 、剥離紙転写方法 (例えば、特登 3332534号公報等)、粒子スプレー転写方法 (例 えば、特開平 6— 87632号公報等)等が挙げられる。
[0396] 多層構造の各層の膜厚を揃えること、表面凹凸形状を制御すること、及びその凹凸 の耐久性を向上させること等の観点から、防眩性層 (もしくは光散乱層)を設ける方法 、又はエンボスカ卩ェ方法が好まし 、態様として挙げられる。
(エンボス加工)
本発明の反射防止膜は、上記に記載の態様のようにして作製した多層構造の反射 防止膜をエンボス加工することにより、本発明における特定の表面凹凸形状とした態 様であってもよい。これにより、反射防止膜の膜厚が実質的に一定とすることができる
(エンボス版)
本発明に用いるエンボス版は、ビッカーズ硬度が 500以上の炭素とクロムを含む鉄 合金であればいずれでもよぐそのエンボス版の形状は、以下の凹凸のパラメーター であることが好ましい。凹凸配列の規則性が高いと光干渉が発生するために好ましく ない。平均凹凸周期(Sm)は 5 m〜 100 m力 S好ましく、 5 m〜30 m力 Sさらに 好ましい。算術平均粗さ(Ra)は、 0. 05 μ m〜20 μ mが好ましぐ 0. 3- 1 μ mがさ らに好ましい。凹凸プロファイルの傾斜角は 0. 5°〜10°に分布していることが好まし ぐ 0. 5°〜5°に分布していることがさらに好ましい。
[0397] 平均凹凸周期 (Sm)、算術平均粗さ (Ra)、平均傾斜角は (株)ミツトヨ製 2次元粗さ 計" SJ— 400型"もしくは、(株) RYOKA SYSTEM製の「マイクロマップ」機を用い て測定することができる。
(エンボス加工条件)
本発明におけるエンボス加工は、上記のように作製した反射防止膜塗設の保護フィ ルムに、片面ェンボシングカレンダ一機を用いて実施される。次に示すプレス条件は 、フィルム表面に掛ける圧力、版の表面温度及びプレス時間である。
[0398] プレス圧力は 1 X 105Pa以上が好ましぐ 1 X 105〜100 X 105Paがさらに
好ましぐ 5 X 105〜50 X 105Paが最も好ましい。本発明に用いられるロール版ならび にバックアップロールの直径の範囲では、これら圧力範囲に対応する線圧として、 10 OON/cm以上力 S好まし <、 1000〜50000N/cm力 Sさらに好まし <、 5000〜3000 ONZcmが最も好ましい。
[0399] プレス時のプレヒートロール温度は、好ましくは 60〜180°C、より好ましくは 70〜16 0°C ;エンボスロール表面温度は、 80°C〜220°Cであることが好ましぐ 100°C〜200 °Cであることがさらに好ましい。プレス時間は 1秒〜 600秒が好ましぐ
10秒〜 300秒がさらに好ましい。搬送速度は l〜50mZ分が好ましぐ 5〜30mZ 分がさらに好ましい。
〔その他の層〕
積層型反射防止膜には、さらに、防湿層、帯電防止層(導電層)、プライマー層、下 塗層や保護層、シールド層、滑り層、ガスノ リア一層を設けてもよい。シールド層は、 電磁波や赤外線を遮蔽するために設けられる。
《偏光板》
本発明の偏光板は、親水性樹脂と二色性分子から構成される硬化膜から形成され る偏光膜の一方の側に、前記の反射防止膜付きのセルロースァシレートフィルム、他 方の側に前記の「セルロースァシレートフィルム」を用いる。
<偏光膜>
本発明で用いられる偏光膜は、親水性榭脂としてポリビュルアルコール (PVA)と 二色性分子力も構成することが好ましい。他の親水性榭脂として、ポリ(N—メチロー ルアクリルアミド)、カルボキシメチル変性等の変性セルロース等も用いることが出来る 。本発明の態様として好ましい PVAは、ポリ酢酸ビュルをケンィ匕したポリマー素材で あるが、例えば不飽和カルボン酸、不飽和スルホン酸、ォレフィン類、ビニルエーテ ル類のような酢酸ビニルと共重合可能な成分を含有しても構わない。また、ァセトァ セチル基、スルホン酸基、カルボキシル基、ォキシアルキレン基等を含有する変性 P VAも用いることができる。
[0400] PVAのケン化度は特に限定されないが、溶解性等の観点から 80〜: L 00モル%が 好ましぐ 90〜: L00モル%が特に好ましい。また PVAの重合度は特に限定されない 1S 数平均重合度で 1000〜10000力好まし <、 1500〜5000力特に好まし!/ヽ。 PV Aのシンジオタクティシティ一は、特許 2978219号明細書に記載されているように耐 久性を改良するため 55%以上が好ましいが、特許第 3317494号に記載されている 45-52. 5%も好ましく用!ヽること力できる。
[0401] PVAはフィルム化した後、二色性分子を導入して偏光膜を構成することが好ましい 。 PVAフィルムの製造方法は、 PVA系榭脂を水又は有機溶媒に溶解した原液を流 延して成膜する方法が一般に好ましく用いられる。原液中のポリビニルアルコール系 榭脂の濃度は、通常 5〜20質量%であり、この原液を流延法により製膜することによ つて、膜厚 10〜200 mの PVAフィルムを製造できる。 PVAフィルムの製造は、特 許第 3342516号、特開平 09 - 328593号、特開平 13 - 302817号公報、特開平 14 -144401号公報を参考にして行うことができる。
[0402] PVAフィルムの結晶化度は、特に限定されないが、特許第 3251073号に記載さ れている平均結晶化度 (Xc) 50〜75質量%や、面内の色相バラツキを低減させるた め、特開平 14-236214号公報に記載されている結晶化度 38%以下の PVAフィ ルムを用いることができる。
[0403] PVAフィルムの複屈折(An)は小さいことが好ましぐ特許第 3342516号明細書 に記載されている、複屈折が 1. 0 X 10— 3以下の PVAフィルムを好ましく用いることが できる。ただし、特開平 14— 228835号公報に記載されているように、 PVAフィルム の延伸時の切断を回避しながら高偏光度を得るため、 PVAフィルムの複屈折を 0.02 以上 0.01以下としてもよ!/、し、特開平 14— 060505号に記載されて!ヽるように(nx+ ny) Z2— nzの値を 0. 0003以上 0. 01以下としてもよい。なおここで、 nxはフィルム 長手方向の屈折率、 nyはフィルム幅方向の屈折率、 nzは
フィルム厚み方向の屈折率である。
[0404] PVAフィルムのレターデーシヨン Re (面内)は Onm〜: LOOnmが好ましぐ Onm〜5 Onmがさらに好ましい。また、 PVAフィルムの Rth (膜厚方向)は Onm〜500nmが好 ましぐ Onm〜300nmがさらに好ましい。
[0405] この他、本発明の偏光板には、特許 3021494号明細書に記載されている 1, 2— グリコール結合量が 1. 5モル%以下の PVAフィルム;特開平 13— 316492号公報 に記載されている 5 μ m以上の光学的異物が 100cm2当たり 500個以下である Ρ VAフィルム;特開平 14 030163号公報に記載されているフィルムの TD方向の熱 水切断温度斑が 1. 5°C以下である PVAフィルム;さらにグリセリンなどの 3〜6価の多 価アルコールを 1〜100質量部混合したり、また特開平 06— 289225号公報に記載 されている可塑剤を 15質量%以上混合した溶液力ゝら製膜した PVAフィルム;などを 好ましく用いることができる。
[0406] PVAフィルムの延伸前のフィルム膜厚は特に限定されないが、フィルム保持の安定 性、延伸の均質性の観点から、 1 μ m〜lmmが好ましぐ 20-200 μ mが特に好ま し 、。特開平 14— 236212号公報に記載されて 、るように水中にお 、て 4倍から 6倍 の延伸を行った時に発生する応力が 10N以下となるような薄い PVAフィルムを使用 してちよい。
[0407] 二色性分子は I—や I—などの高次のヨウ素イオン又は二色性染料を好ましく使用す
3 5
ることができる。本発明では高次のヨウ素イオンが特に好ましく使用される。高次のョ ゥ素イオンは、「偏光板の応用」永田良編 (CMC出版)や「工業材料」第 28卷、第 7 号、 39〜45頁に記載されているように、ヨウ素をヨウ化カリウム水溶液に溶解した液 及び Z又はホウ酸水溶液に PVAを浸漬し、 PVAに吸着 ·配向した状態で生成する ことができる。
[0408] 二色性分子として二色性染料を用いる場合は、その具体例としては、例えば、「偏 光フィルムの応用」(CMC刊、昭和 61年 2月 10日発行)、或いは「COLOUR IND EX, ThirdEdition, Volume2」 (The Society of
Dyers and Colourists, The American Association of Textile Chemi sts and Colrists刊、 1971年発行)中の C. L Direct染料(直接染料)等をあげる ことができる。さらに特開昭 62— 70802号、特開平 1— 161202号、特開平 1— 172 号、特開平 1— 172907号、特開平 1— 183602号、特開平 1— 248105号、特 開平 1 265205号、特開平 6— 65815号、特開平 7— 261024号の各公報記載の 二色性染料等も好ましく使用することができる。各種の色相を有する二色性分子を製 造するため、これらの二色性染料は 2種以上を配合しても力まわない。二色性染料を 用いる場合、特開平 14— 082222号公報に記載されているように、吸着厚みが 4 m以上であってもよい。 [0409] フィルム中の該二色性分子の含有量は、少なすぎると偏光度が低ぐまた、多すぎ ても単板透過率が低下することから通常、フィルムのマトリックスを構成するポリビュル アルコール系重合体に対して、 0.01質量%から 5質量%の範囲に調整される。
[0410] 偏光膜の好ましい膜厚としては 5〜40 m、さらには 10〜30 m、特には 5〜22 μ mの範囲である。偏光膜の膜厚が 5〜22 mと薄膜ィ匕した場合には、該偏光膜が クロス-コル時の 700nmの透過率が 0. 001%以上 0. 3%以下で 410nmの透過率 が 0. 001%以上 0. 3%以下とする態様が好ましい。クロス-コル時の 700nm の透過率の上限は、 0.3%以下であることが好ましぐ 0. 2%であることが好ましい。 4 10nmの透過率の上限は 0. 3%以下であることが好ましぐ 0. 08%以下であること 力 り好ましぐ 0. 05%以下であることがさらに好ましい。このことにより、経時変化に よる偏光膜の収縮によって生じる画像表示装置の周辺部からの光漏れ故障 (額縁故 障)を改良し、且つ表示画像のサイズが 17インチ以上の大きな画面となっても、青味 が少な!/、ニュートラルグレーの色味を示し、良好な表示画像品位を達成することがで きる。
[0411] クロス-コル時の 700nmの透過率及び 410nmの透過率を下げる手段としては、偏 光膜に、ヨウ素などの二色性物質に加えて対応する波長域に吸収をもつ上記の二色 性色素を色相調整剤として添加すること、ヨウ素などの二色性物質を添加する際にホ ゥ酸などの硬膜剤を添加すること等が有効であることを見出した。また、これらを^ aみ 合わせて行うことも有効である。
[0412] 上記色相調整剤は 2種以上を配合してもよい。添加する色素は、 410nm又は 700 nmに吸収を有すれば本発明の目的を達成する力 主吸収が 380nmから 500nmも しくは 600nm力ら 720nmに有すること力 子ましい。また、添加する色素量は、使用 する色素の吸光度、二色比などにより任意に決めることができる。いずれもクロスニコ ル時の 700nmの透過率が 0. 3%以下で 410nmの透過率が 0. 3%以下になれば 特に制限されることはない。
[0413] また、上記色相調整剤を偏光膜に添加する方法としては、浸漬、塗布、噴霧などの あらゆる方法が用いられる力 その中でも浸漬が好ましい。添加する工程は、延伸前 、延伸後のいずれでもかまわないが、偏光性能向上の観点力 延伸前が好ましい。 単独で添加工程を設けてもよ!、し、後述する染色工程又は硬膜剤添加工程の!/、ず れカもしくは両方において行うこともできる。
[0414] 偏光膜の厚さと後述する保護フィルムの厚さの比は、特開平 14— 174727号公報 に記載されているように、 0. 01≤ A (偏光膜の膜厚) ZB (保護フィルムの膜厚)≤0. 16の範囲とすることも好ましい。
[0415] 保護フィルムの遅相軸と偏光膜の吸収軸の交差角は、任意の値でよ!、が、平行も しくは 45 ± 20°の方位角であることが好ましい。
[偏光板用ポリマーフィルムの膨潤調節 ·二色性物質及び硬膜剤の添加方法] また、本発明の偏光板は、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、 保護膜貼り合わせ工程、貼り合わせ後乾燥工程により作製することができる。上記の 染色工程、硬膜工程、延伸工程の順序を任意に変えること、またいくつかの工程を 組み合わせて同時に行うことも可能である。特に、上記膨潤工程、染色工程、及び乾 燥工程を以下のように行うことにより、本発明の偏光板を好適に作製することができる
(ィ)上記膨潤工程で、偏光板用ポリマーフィルムが PVAフィルムの場合、二色性物 質であるヨウ素の染色を促進させるために、予め水などに浸漬させる力 このときの温 度を 30°C〜50°C、好ましくは 35°C〜45°Cにする。
(口)染色工程で二色性物質であるヨウ素を偏光板用ポリマーフィルムに染色させるが 、このときに、硬膜剤であるホウ酸を、ヨウ素に対し質量比で 1から 30倍添加する。 (ハ)乾燥工程で延伸された偏光膜を乾燥させるが、このときの温度を 80°C以下、好 ましくは 70°C以下にする。
[0416] 上記各工程の説明は、後述する。
(偏光膜の厚みを薄くする方法)
偏光膜の厚みを薄くする方法は、従来の延伸法において、延伸倍率を高くする、膜 厚の薄 、PVAフィルムを用いる等の方法により達成できる。通常用いられて 、る PV Aフィルムの膜厚は、 [例えば (株)クラレ製" VF— P"、 "VF— PS"など]である 力 この場合は、長手方向の縦一軸延伸法では 8倍程度以上延伸すると、偏光膜の 膜厚は 20 m以下となる。テンター方式などにより、横一軸延伸法では 4倍以上延 伸すると、偏光膜の膜厚は 20 m以下となる。また、 PVAフィルムの膜厚を、 50 m 以下に薄くして、一軸延伸にて 6倍程度以上延伸することにより、偏光膜の膜厚は 20 μ m以下となる。
[0417] 本発明においては、これらの一軸延伸の他に、偏光膜用ポリマーフィルムを搬送方 向に一軸延伸しながら又は一軸延伸した後、横方向に延伸して製造する延伸方法も 用いることができる。この方法は、一般に二軸延伸と呼ばれる方法である。この方法 で一般的なものはテンター方式による同時二軸延伸法やチューブラ方式による同時 二軸延伸法などが知られている。この方式では、膜厚 75 μ mの PVAフィルムを、縦 方向に 4倍程度以上、横方向に 1. 5倍程度以上延伸すると、偏光膜の膜厚は 20 m以下となる。
[0418] 本発明において好ましい延伸方式は、特開 2002— 86554号公報に記載の斜め 延伸方法である。この延伸方法では、 PVAフィルムの膜厚が 125 /z m以下の PVAフ イルムを 4倍以上延伸することにより、偏光膜の膜厚は 20 m以下となる。
[0419] 本発明にお 、て、光漏れが発生する故障 (額縁故障)、及び偏光板部材の軽量ィ匕 の観点から、偏光膜の厚みは薄いほうが好ましいが、薄すぎると、延伸中に膜が切断 したり、染色液'硬膜液などに浸漬させる際のハンドリングに悪影響を及ぼしたり、延 伸後の乾燥中に亀裂が入ったりするなどの問題が発生する。従って、本発明におい て、好ましい偏光膜の厚みは 5 μ m〜22 μ mであり、更に好ましくは 8 μ m〜20 μ m である。
[各工程の説明]
以下、本発明の偏光板を作製する場合の各工程について説明する。
翻工程)
膨潤工程は、水のみで行うことが好ましいが、特開平 10— 153709号公報に記載 されて 、るように、光学性能の安定ィ匕及び製造ラインでの偏光フィルム基材のシヮ発 生回避のために、偏光フィルム基材をホウ酸水溶液により膨潤させて、偏光フィルム 基材の膨潤度を管理することもできる。
[0420] また、膨潤工程の温度及び時間は、任意に定めることができる力 10°C〜50°C、 5 秒以上が好ましぐ二色性色素を用いない場合には前述の通り 30°C以上 50°C以下 、好ましくは 35°C以上 45°C以下の温度で 5秒以上 600秒以下、好ましくは 15秒以上 300秒以下とすることが好まし 、。
(染色工程)
染色工程は、特開 2002— 86554号公報に記載の方法を用いることができる。また 、染色方法としては浸漬だけでなぐヨウ素もしくは染料溶液の塗布又は噴霧等、任 意の手段が可能である。染色に用いる二色性物質は特に限定されるものではないが 、高コントラストな偏光板を得るためには、ヨウ素を用いることが好ましい。また、染色 工程は液相で行うのが好まし 、。
[0421] ヨウ素を用いる場合には、ヨウ素—ヨウ化カリウム水溶液に PVAフィルムを浸漬させ て行われる。ヨウ素は 0. 05〜20gZL、ヨウ化カリウムは 3〜200gZL、ヨウ素とヨウ 化力リゥムの質量比は 1〜 2000力 S好まし 、。染色時間は 10〜 1200秒が
好ましぐ液温度は 10〜60°Cが好ましい。さらに好ましくは、ヨウ素は 0. 5〜2gZL、 ヨウィ匕カリウムは 30〜120gZL、ヨウ素とヨウ化カリウムの質量比は 30〜120とし、染 色時間は 30〜600秒、液温度は 20〜50°Cとする。
[0422] 前述の通り、硬膜剤としてホウ酸,ホウ砂等のホウ素系化合物を添加して、染色ェ 程と後述する硬膜工程を同時に行うことも有効である。ホウ酸を用いる場合は、ヨウ素 に対し質量比で 1から 30倍添加することが好ましい。また、この工程で二色性色素を 添加することも有効で、その量は 0. 001〜: Lg/Lが好ましい。また、水溶液中の添加 物量を一定にすることは、偏光性能維持のために重要であることから、連続して製造 する場合には、ヨウ素、ヨウ化カリウム、ホウ酸、二色性色素などを補充しつつ製造す ることが好ましい。補充は、溶液、固形のいずれの状態でもよい。溶液で添加する場 合には、高濃度にしておき、必要に応じて少量ずつ添加してもよい。
(硬膜工程)
硬膜工程は、架橋剤溶液に浸漬、又は溶液を塗布して架橋剤を含ませるのが好ま しい。また、特開平 11— 52130号公報に記載されているように、硬膜工程を数回に 分けて行うこともできる。
[0423] 架橋剤としては米国再発行特許第 232897号明細書に記載のものが使用でき、特 許第 3357109号公報に記載されているように、寸法安定性を向上させるため、架橋 剤として多価アルデヒドを使用することもできるが、ホウ酸類が最も好ましく用いられる
[0424] 硬膜工程に用いる架橋剤としてホウ酸を用いる場合には、ホウ酸—ヨウ化カリウム水 溶液に金属イオンを添加してもよい。金属イオンとしては塩ィ匕亜鉛が好ましいが、特 開 2000— 35512号公報に記載されているように、塩ィ匕亜鉛の変わりに、ヨウ化亜鉛 などのハロゲンィ匕亜鉛、硫酸亜鉛、酢酸亜鉛などの亜鉛塩を用いることもできる。
[0425] 好ましくは、塩ィ匕亜鉛を添加したホウ酸一ヨウ化カリウム水溶液を作製し、 PVAフィ ルムを浸漬させて硬膜を行うのがよい。ホウ酸は 1〜: LOOgZL、ヨウ化カリウムは 1〜 120gZL、塩化亜鉛は 0. 01〜10gZL、硬膜時間は 10〜 1200秒が好ましぐ液温 度は 10〜60°Cが好ましい。さらに好ましくは、ホウ酸は 10〜80gZL、ヨウ化カリウム は 5〜: LOOgZL、塩ィ匕亜鉛は 0. 02〜8gZL、硬膜時間は 30〜600秒、液温度は 2 0〜50°Cである。前述の通り、この工程で二色性色素を添カ卩して染色工程も同時に 行うことも有効で、その詳細は既に述べた。
(延伸工程)
延伸は、前述の通り、延伸後に 22 m以下の偏光膜になるように調整したうえで、 米国特許 2, 454, 515号明細書などに記載されているような、一軸延伸方法を用い ることができる。本発明においては、特開 2002— 86554号公報に記載されているよ うなテンター方式による斜め延伸法で行うことも好ましい。以下、本発明で用いる斜め 延伸方法について説明する。
[0426] 図 2は、ポリマーフィルムを斜め延伸する方法の典型例を、概略平面図として、示し たものである。本発明で用いる斜め延伸方法は、(a)で示される原反フィルムを矢印( ィ)方向に導入する工程、(b)で示される幅方向延伸工程、及び (c)で示される延伸 フィルムを次工程、即ち(口)方向に送る工程を含む。以下「延伸工程」と称するときは 、これらの(a)〜(c)工程を含んで、本発明で用いる斜め延伸方法を行うための工程 全体を指す。
[0427] フィルムは (ィ)の方向から連続的に導入され、上流側から見て左側の保持手段に B1点で初めて保持される。この時点ではまだ一方のフィルム端は保持されておらず 、幅方向に張力は発生しない。つまり、 B1点は実質的な保持開始点 (以下、「実質保 持開始点」という)には相当しない。本発明で用いる方法では、実質保持開始点は、 フィルム両端が初めて保持される点で定義される。実質保持開始点は、より下流側の 保持開始点 A1と、 A1から導入側フィルムの 21に略垂直に引いた直線力 反対側の 保持手段の軌跡 23と交わる点 C 1の 2点で示される。この点を起点とし、両端の保持 手段を実質的に等速度で搬送すると、単位時間ごとに A1は A2, A3 · · · ·Αηと移動 し、 C1は同様に C2, C3 ' · · ' Cnに移動する。つまり同時点に基準となる保持手段が 通過する点 Anと Cnを結ぶ直線力 その時点での延伸方向となる。
[0428] 斜め延伸方法では、図 2のように Anは Cnに対し次第に遅れてゆくため、延伸方向 は、搬送方向垂直力も徐々に傾斜していく。実質的な保持解除点 (以下、「実質保持 解除点」という)は、より上流で保持手段から離脱する Cx点と、 Cxから次工程へ送ら れるフィルムの中心線 22に略垂直に引いた直線力 反対側の保持手段の軌跡 24と 交わる点 Ayの 2点で定義される。最終的なフィルムの延伸方向の角度は、実質的な 延伸工程の終点 (実質保持解除点)での左右保持手段の行程差 Ay— Ax (すなわち I L1 -L2 I )と、実質保持解除点の距離 W (Cxと Ayの距離)との比率で決まる。従 つて、延伸方向が次工程への搬送方向に対しなす傾斜角 Θは下記数式(12)を満た す角度である。
[0429] 数式(12) : ίαη θ =W/ | L1—L2 |
図 2の上側のフィルム端は、 Ay点の後も 28まで保持される力 もう一端が保持され て!、な 、ため新たな幅方向延伸は発生せず、 18及び 28は実質保持解除点ではな い。
[0430] 以上のように、斜め延伸方法において、フィルムの両端にある実質保持開始点は、 左右各々の保持手段への単純な嚙み込み点ではない。二つの実質保持開始点は、 上記で定義したことをより厳密に記述すれば、左右いずれかの保持点と他の保持点 とを結ぶ直線がフィルムを保持する工程に導入されるフィルムの中心線と略直交して いる点であり、且つこれらの二つの保持点が最も上流に位置するものとして定義され る。同様に、本発明において、二つの実質保持解除点は、左右いずれかの保持点と 他の保持点とを結ぶ直線力 次工程に送りだされるフィルムの中心線と略直交してい る点であり、しかもこれら二つの保持点が最も下流に位置するものとして定義される。 ここで、略直交とは、フィルムの中心線と左右の実質保持開始点、あるいは実質保持 解除点を結ぶ直線が、 90±0. 5°であることを意味する。
[0431] テンター方式の延伸機を用いて左右の行程差を付けようとする場合、レール長など の機械的制約により、しばしば保持手段への嚙み込み点と実質保持開始点に大きな ずれが生じたり、保持手段力 の離脱点と実質保持解除点に大きなずれが生じたり することがあるが、上に定義した実質保持開始点と実質保持解除点間の工程が、下 記の数式(1)の関係を満たし関係を満たし、かつ両保持手段の長手方向の搬送速 度の差が 1%未満であれば本発明の目的は達成される。搬送速度の差は、さらに好 ましくは 0. 5%未満であり、最も好ましくは 0. 05%未満である。ここで述べる速度とは 、毎分当たりに左右各々の保持手段が進む軌跡の長さのことである。一般的なテンタ 一延伸機等では、チ ーンを駆動するスプロケット歯の周期、駆動モータの周波数等 に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数0 /0のムラを生ずる 力 これらは本発明で述べる速度差には該当しない。
[0432] 数式(1) : I L2-L1 | >0. 4W
本発明の好ましい偏光板としては、保護フィルムの遅相軸と偏光膜の吸収軸との角 度が 10° 以上 90° 未満、好ましくは 20° 以上 70° 以下、より好ましくは 40° 以上 5 0° 以下である偏光板が挙げられる。保護フィルムの遅相軸と偏光膜の吸収軸との 角度をこの範囲とすることにより、長尺の偏光板より単板を偏光板打ち抜き工程で高 得率で得ることができるので好ましい。このような偏光板は、前述のように偏光膜を構 成するポリマーフィルムの延伸方法等を工夫することにより、作製することができる。 (乾燥工程)
乾燥条件は、特開 2002— 86554号公報に記載の方法に従うが、前述の通り、温 度を 80°C以下、好ましくは 70°C以下にすることが好ましい。好ましい乾燥時間は 30 秒〜 60分である。
(保護フィルム貼り合わせ工程)
本発明で製造された偏光膜は、その両面に保護フィルムを貼り付けて偏光板として 供される。 2枚の保護フィルムは同じでも異なってもよい。偏光膜と保護フィルムの貼 り合わせは、貼合直前に接着液を供給し、偏光膜と保護フィルムを重ね合わせるよう に、一対のロールで貼り合わせることが好ましい。乾燥後の接着剤層の厚みは、 0. 0 01〜5 μ mであることが好ましぐ 0. 005〜3 μ mであることがより好ましい。
[0433] また、特開 2001— 296426号公報及び特開 2002— 86554号公報に記載されて いるように、偏光膜の延伸に起因するレコードの溝状の凹凸を抑制するには、貼り合 わせ時の偏光膜の水分率を調整することが好ましぐ本発明では 0. 1〜30質量%に することが好ましい。
[0434] 偏光膜と保護フィルムとの接着剤は特に限定されな ヽが、 PVA系榭脂 (ァセトァセ チル基、スルホン酸基、カルボキシル基、ォキシアルキレン基等が導入された変性 P VAを含む)やホウ素化合物水溶液等が挙げられ、中でも PVA系榭脂が好ま Uヽ。 (貼り合わせ後の乾燥工程)
貼り合わせ後の乾燥条件は、特開 2002— 86554号公報に記載の方法に従うが、 好まし 、温度範囲は 30°C〜100°Cであり、好まし 、乾燥時間は 30秒〜 60分である
[0435] 以上の工程により作製された偏光板は、偏光膜中の元素含有量が、ヨウ素 0. 1〜3 .
Figure imgf000107_0001
亜鉛 0. 001〜2. OgZm2であることが好ましい。特に、単板透過率を 41 %以上にすることが好ましぐ このためには、ヨウ素の含有量を低くすることが好ましぐ好ましいヨウ素の含有量は 0 . 1〜1. Og, mである。
[0436] また、特許第 3323255号明細書に記載されて ヽるように、偏光板の寸法安定性を 向上させるために、染色工程、延伸工程及び硬膜工程のいずれかの工程において、 有機チタンィ匕合物及び Z又は有機ジルコニウム化合物を添加使用し、有機チタン化 合物及び有機ジルコニウム化合物力 選ばれた少なくとも一種の化合物を含有する ことちでさる。
(打ち抜き工程)
図 5に従来の偏光板打ち抜きの例を、図 4に本発明の偏光板打ち抜きする例を示 す。従来の偏光板は、図 5に示されるように、偏光の吸収軸 71すなわち延伸軸が長 手方向 72と一致しているのに対し、本発明の偏光板は、図 4に示されるように、偏光 の吸収軸 81すなわち延伸軸が長手方向 82に対して 45°傾斜しており、この角度が L CDにおける液晶セルに貼り合わせる際の偏光板の吸収軸と、液晶セル自身の縦ま たは横方向とのなす角度に一致しているため、打ち抜き工程において斜めの打ち抜 きは不要となる。しかも図 3からわかるように、本発明の偏光板は切断が長手方向に 沿って一直線であるため、打ち抜かず長手方向に沿ってスリットすることによつても製 造可能であるため、生産性も格段
に優れている。
[偏光板の特性]
(透過率及び偏光度)
本発明の偏光板の好ましい単板透過率は 40. 0-49. 5%である力 さらに好まし くは 41. 0-49. 5%である。またヨウ素濃度と単板透過率は、特開平 14 258051 号公報に記載されている範囲であってもよい。さらに同種の 2枚の偏光板を、吸収軸 を一致させて重ねた場合の透過率(平行透過率)の好ま 、範囲は 36〜42%であり 、また吸収軸を直交させて重ねた場合の透過率 (直交透過率)の好ましい範囲は、 0 . 001〜0. 05%である。これらの透過率 ίお IS Z— 8701に基づいて、下記の数式( 13)で定義される。
[0437]
Figure imgf000108_0001
[0438] ここで、 K、S ( )、y ( )、 τ ( λ )は以下の通りである。
[0439] [数 2]
Figure imgf000108_0002
S ( X ) :色の表示に用いる標準光の分光分布
y ( λ ) : XYZ系における等色関数
τ ( λ ) :分光透過率
X:測定波長 [nm]
また本発明の偏光板における偏光度の好ましい範囲は、下記の数式(14)での定 義 ίこ基づ ヽて、 99. 9000/0以上 99. 9990/0以下であり、さら【こ好ましく ίま 99. 940% 以上 99. 995%以下である。
[数 3] 平行透過率一直交透遢率
数式(1 4) : 儸光度 (%) = 100 x
平行透過率 +直交透過率
[0442] さらに、下記の数式( 15)で定義される二色性比の好ま 、範囲は 48以上 1215以 下であるが、さらに好ましくは 53以上 525以下である。
[0443] [数 4]
数式 (1 5) :二色性比 =
Figure imgf000109_0001
[0444] また本発明の偏光板の、波長 440〜670nmの範囲における平行透過率において 、その平行透過率 Tの最大値 T と最小値 T との差 ΔΤは、好ましくは 6%以下、よ max min
り好ましくは 4%以下、さらに好ましくは 2%以下であるのがよい。更には、光透過特性 における透過率比 R (波長 490nmの平行透過率 Z波長 550nmの平行透過率)及
T1
び透過率比 R (波長 610nmの平行透過率
T2 Z波長 550nmの平行透過率)が共に 1
. 00±0. 02の範囲内、好ましくは、 ±0. 01の範囲内である。反射型又は半透過反 射型の液晶表示装置にぉ 、て好ま 、態様となる。
[0445] 偏光板をクロス-コルに配置した場合の光学特性は、吸光度特性における 550〜6 50nmの波長範囲での吸収ピーク Ap Z450〜520nmの波長範囲での吸収ピーク
1
Apの比 1. 5以下のものが好ましい。より好ましくは 1. 4以下、特に好ましくは 1. 2以
2
下のものが挙げられる。これにより、クロス-コルに配置した場合の漏れ光の低減によ る黒さの強化、すなわち-ユートラルな色相化の点より好ま 、。
[0446] 更には、波長 440nmにおける平行透過率 Tp 及び直交透過率 Tc 、波長 550η
440 440
mにおける平行透過率 Tp 及び直交透過率 Tc 、並びに波長 610nmにおける平
550 550
行透過率 Tp 及び直交透過率 Tc 力 下記数式(16)〜(19)を同時に満足するこ
610 610
とが好ましい。 [0447] 数式(16) : 0. 85≤Tp /Τρ ≤1. 10
440 550
数式(17) : 0. 90≤Τρ ΖΤρ ≤1. 10
610 550
数式(18) : 1. 0≤Tc /Tc ≤8. 0
440 550
数式(19) : 0. 08≤Tc /Tc ≤1. 10
610 550
これらの範囲内とすることで、反射型又は半透過反射型の液晶表示装置において
、バックライトの輝線ピーク(波長 440nm、 550nm及び 610nm)を持つ 3つの波長で ノ ツキ及び直交透過率のバラツキが少なぐ鮮明な色再現性に問題のな 、良好な 表示画像が得られる。
[0448] また、光の波長力 20〜700nmの間での lOnm毎の平行透過率の標準偏差が 3 以下で、且つ、光の波長が 420〜700nmの間での lOnm毎の(平行透過率 Z直交 透過率)の最小値が 300以上とすることが好ましい。これにより、液晶表示装置でコン トラストのある表示画像がえられ、白画面表示を行なった時の表示色がニュートラル 化に有効となる。
(色相)
本発明の偏光板の色相は、 CIE均等知覚空間として推奨されている L*a*b*表色系 における明度指数 L*及び、クロマテイクネス指数 a*と b*を用いて好ましく評価される 。 L*、 b*は、前記の X、 Y、 Ζを用いて数式(20)で定義される。
[0449] [数 5] 数式 (20) :
Figure imgf000110_0001
[0450] ここで X、 Υ、 Ζは照明光源の三刺激値を表し、標準光 Cの場合、 X = 98.07
0 0 0 0
2、 Υ = 100、Ζ = 118.225であり、標準光 D の場合、 X = 95.045、
0 0 65 0
Υ = 100, Ζ = 108.892である。
0 0
[0451] 偏光板単枚の好ましい a*の範囲は 2. 5〜0. 2であり、さらに好ましくは 2. 0〜0である。偏光板単枚の好ましい b*の範囲は 1. 5〜5であり、さらに好ましくは 2〜4.5である。 2枚の偏光板の平行透過光の a*の好ましい範囲は 4. 0〜0であり、 さらに好ましくは 3. 5〜一 0. 5である。 2枚の偏光板の平行透過光の b*の好ましい 範囲は 2. 0〜8であり、さらに好ましくは 2. 5〜7である。 2枚の偏光板の直交透過光 の a*の好ましい範囲は 0. 5〜2であり、さらに好ましくは 0〜1. 0である。 2枚の偏光 板の直交透過光の b*の好ましい範囲は 2. 0〜2であり、さらに好ましくは 1. 5〜 0. 5である。
色相は、前述の X、 Y、 Ζから算出される色度座標 (X, y)で評価してもよぐ例えば、 2枚の偏光板の平行透過光の色度 (X , y )と直交透過光の色度 (X , y )は、特開平 p p
14— 214436号公報、特開平 13— 166136号公報、特開平 14— 169024号公報 等に記載されている範囲にしたり、色相と吸光度の関係を特開平 13— 311827号公 報に記載されている範囲内にしたりすることも好ましく行うことができる。
(視野角特性)
偏光板をクロス-コルに配置して波長 550nmの光を入射させる場合の、垂直光を 入射させた場合と、偏光軸に対して 45°の方位カゝら法線に対し 40°の角度で入射さ せた場合の、透過率比や xy色度差を特開平 13— 166135号公報ゃ特開平 13— 1 66137号公報に記載された範囲とすることも好ましい。また、特開平 10— 068817 号公報に記載されて 、るように、クロス-コル配置した偏光板積層体の垂直方向の 光透過率 (T )と、積層体の法線から 60° 傾斜方向の光透過率 (T )との比 (Τ /Ύ
0 60 60
)を 10000以下としたり、特開平 14— 139625号公報に記載されているように、偏光
0
板に法線から仰角 80°までの任意な角度で自然光を入射させた場合に、その透過ス ベクトルの 520〜640nmの波長範囲において波長域 20nm以内における透過光の 透過率差を 6%以下としたり、特開平 08— 248201号公報に記載されている、フィル ム上の任意の lcm離れた場所における透過光の輝度差が 30%以内とすることも好 ましい。
(配向度)
PVAの配向度は高い程良好な偏光性能が得られるが、偏光ラマン散乱や偏光 FT —IR等の手段によって算出されるオーダーパラメーター値として 0. 2〜1. 0が好まし い範囲である。また、特開昭 59— 133509号公報に記載されているように、偏光膜の 全非晶領域の高分子セグメントの配向係数と占領分子の配向係数 (0.75以上)との 差
が少なくとも 0.15としたり、特開平 04— 204907号公報に記載されているよう に、偏光膜の非晶領域の配向係数が 0. 65〜0. 85としたり、 Iや Iの高次ヨウ素ィォ
3 5
ンの配向度を、オーダーパラメーター値として 0. 8〜1. 0とすることも好ましく行うこと ができる。
<反射防止能付き偏光板 >
本発明の偏光板は、前記の偏光膜とその保護フィルム力もなる偏光板に、前記した 反射防止膜を片側の保護フィルムに塗設してなる反射防止能付き偏光板である。
[0453] この反射防止膜が設けられた偏光板は、次の(1)〜(3)の方法で製造される。
(1)反射防止膜が積層された保護フィルムの背面と、一方の面に保護フィルムが貼り 合された偏光膜の他方の面とを接着剤を用いて貼り合わせる。
(2)反射防止膜が積層された保護フィルムの背面を酸化処理等で表面親水化処理 し、このフィルム面に偏光膜を、接着剤を用いて貼り合わせる。
(3)偏光膜に保護フィルムが貼り合されて形成された偏光板の、保護フィルムの面上 に反射防止膜を塗設する。
[0454] これらのうち、偏光板の薄膜ィ匕が可能となることから、 (2)又は(3)の方法が好まし い態様である。
〔反射防止能付き偏光板の特性〕
[光学的特性及びその耐候性]
本発明の反射防止能付き偏光板においては、セルロースァシレートフィルム上に多 層構造の反射防止膜を積層するので、ゴミ、ほこり等の異物が存在すると点欠陥が 目立ちやすくなる。
[0455] ここで本発明における点欠陥とは、目視により、反射防止膜上の反射で見える欠陥 のことで、偏光板の反射防止膜が設けられて 、な 、側の面を黒塗りする等の操作に より目視で検出できる。点欠陥を少なくすることにより製造時の得率を高めることがで き、大面積の偏光板を製造することが可能となる。 [0456] 本発明の偏光板においては、視覚的直径 100 m以上の点欠陥の数力 lm2当 たり 20個以下であることが好ましぐより好ましくは 10個以下、さらに好ましくは 5個以 下、特に好ましくは 1個以下である。
(反射率)
本発明の反射防止能付き偏光板は、保護フィルムとしてのセルロースァシレートフィ ルムの一方の側に、多層構造の反射防止膜を設けてなる偏光板であり、具体的な態 様としては、少なくとも「中 Z高 Z低」の屈折率層が積層された反射防止膜 (Anti—R eflection : AR)、少なくとも防眩層又は光散乱層 Z低屈折率層カゝらなる防眩性反射 防止膜 (Anti— Grain : AG)等が挙げられる。その入射角 5°の入射光における鏡面 反射率の 450nmから 650nmまでの波長領域での平均値 (すなわち平均反射率)は 、上記 AR型の反射防止膜の場合、好ましくは 0. 5%以下であり、より好ましくは 0. 4 %以下、特に好ましくは 0. 3%以下である。また上記 AG型の反射防止膜の場合は、 2. 5%以下であり、 1. 8%以下が好ましぐより好ましくは 1. 4%以下である。
[0457] 上記の入射角 5°の入射光における鏡面反射率とは、偏光板表面の法線方向 + 5° 力 入射した光に対する法線方向 5°で反射した光の強度の割合であり、背景の鏡 面反射による映り込みの尺度になる。防眩性機能をもつ反射防止膜を適用する場合 には、防眩性付
与のために設けた表面凹凸に起因する散乱光の分だけ、法線方向 5°で反射した 光の強度は弱くなる。従って、鏡面反射率は防眩性と反射防止性の両方の寄与を反 映する測定法といえる。
[0458] 更には、耐光性試験前後における本発明の偏光板の、波長 380〜680nmにおけ る平均反射率の変化は 0. 5%以下であることが好ましぐ 0. 4%以下であることがより 好ましぐ 0. 2%以下であることがより好ましい。この範囲において、良好な視認性を 維持でき、好ましい。
(色味、及びその面内変化率)
本発明の反射防止能付き偏光板は、 CIE標準光源 D の、波長 380nmから 780η
65
mの領域における入射角 5°の入射光に対して、正反射光の色味、すなわち CIE197 6L*a*b*色空間の L*、
Figure imgf000113_0001
b*値が、それぞれ 3≤L*≤20、— 7≤a*≤7、且つ、 10≤ b*≤ 10の範囲内であることが好ましい。この範囲とすることで、従来の偏光板で問題 となっていた赤紫色力 青紫色の反射光の色味が低減され、さらに 3≤L*≤10、 0≤ a*≤5、且つ、 7≤b*≤0の範囲内とすることで大幅に低減され、液晶表示装置に 適用した場合、室内の蛍光灯のような、輝度の高い外光が僅かに映り込んだ場合の 色味がニュートラルで、気にならない。詳しくは a*≤ 7であれば赤味が強くなりすぎるこ と力 よく、 a*≥— 7であればシアン味が強くなりすぎることがなく好ましい。また b*≥— 7であれば青味が強くなりすぎることがなぐ b*≤0であれば黄味が強くなりすぎること がなく好ましい。
[0459] 本発明にお 、て、上記の L*、
Figure imgf000114_0001
及び b*の各値が表示画像の全面にお 、て一定で あることが好ましぐ特に各値の面内における変化率が 20%以下であることが好まし い。更に好ましくは 8%以下である。この範囲において、色味ムラのない視認性良好 な表示画像となる。
[0460] 鏡面反射率及び色味の測定は、分光光度計 "V— 550" [日本分光 (株)製]にァダ プター" ARV— 474"を装着して、 380〜780nmの波長領域において、入射角 5° における出射角— 5°の鏡面反射率を測定し、 450〜650nmの平均反射率を算出し 、反射防止性を評価することができる。さらに、測定された反射スペクトルから、 CIE 標準光源 D の入射角 5°の入射光に対する正反射光の色味を表わす、 CIE1976L*
65
aV色空間の L*値、 a*値、 b*値を算出し、反射光の色味を評価することができる。
[0461] これらは、該保護フィルム自身の色味及びその変動幅が上記の範囲内に抑制され たこと、反射防止膜塗設表面の凹凸形状を均一化されたフィルム表面に膜厚のムラ を低減して反射防止膜が形成されること、偏光膜の色味の-ユートラル性が改善され たこと等の本発明の偏光板を構成する各構成成分を適切に調整することで反射光の 色味ムラが大幅に低減される。
[0462] 更には、反射光の色味均一性は、反射光の 380nm〜680nmの反射スペクトルに より求めた L*a*b*色度図上での a*b*より、下記の数式(21)に従って色味の変化 率として得ることができる。
[0463] [数 6] 数式(21): 色味の変化率(a*)- a""t"> a"in X100 色味の変化率 (b*)= "x""in x 100
[0464] ここで、 a* 及び a* は、それぞれ a*値の最大値及び最小値; b* 及び b*
max min max min は、それぞれ b*値の最大値及び最小値; a*及び b* は、それぞれ a*値及び a*値の
av av
平均値である。色の変化率は、それぞれ 30%以下であることが好ましぐ 20%以下 であることがより好ましぐ 8%以下であることが最も好ましい。
[0465] また、本発明における偏光板は、耐候性試験前後の色味の変化である Δ E力 15 以下であることが好ましぐ 10以下であることがより好ましぐ 5以下であることが最も好 ましい。この範囲において、低反射と反射光の色味の低減を両立することができるた め、例えば画像表示装置の最表面に適用した場合、室内の蛍光灯のような、輝度の 高い外光が僅かに映り込んだ場合の色味が、ニュートラルで、表示画像の品位が良 好となり、好ましい。
[0466] 上記の色味の変化 Δ Eは、下記の数式(22)に従って求めることができる。
[0467] 数式(22):ΔΕ =[(AL )2+(Aa )2+(Ab )2]12
ここで、 AL , Aa , Abは、耐候性試験前後の L*値, a*値, b*値それぞれの変化 量である。
[0468] 本発明の反射防止能付き偏光板は、これらの光学特性及び膜の機械的特性 (引裂 き強度、引搔き強度、密着性等が耐候性試験後も実質的に問題とならない範囲の変 化に抑制されていることが特徴である。特に耐候性試験後に上記特性の変化が抑制 されて ヽることが特徴である。
[0469] なお本発明における耐候性試験とは、 JIS K— 5600— 7— 7: 1999に基づく耐候 性試験であり、サンシャイン ·ウエザー ·ォ ·メーター〃 S - 80〃 [スガ試験機
(株)製]、湿度 50%RH、処理時間 150時間による耐候性試験を意味する。
[0470] このようなニュートラルな色味の反射光を有し、且つ低反射率を有する反射防止膜 は、低屈折率層の屈折率と光拡散層の透光性榭脂の屈折率のバランスを最適化す ることで得られる。
(光透過率及び偏光度の、温度及び Z又は湿度の耐久性) 本発明の反射防止能付き偏光板は、 60°C、 90%RHの雰囲気に 500時間放置し た場合の、その前後における光透過率及び偏光度の変化率が、それぞれの絶対値 に基づいて 3%以下であることが好ましい。特に、光透過率の変化率は 2%以下、ま た、偏光度の変化率は 1. 0%以下、更には 0. 1%以下であることが好ましい。これら の特性は、二色性物質を 0. 6質量%以上含有する親水性高分子の延伸フィルムか らなる偏光膜、耐湿性良好となる本発明に好まし 、セルロースァシレートフィルム等 によってはじめて可會となる。
[0471] また特開平 07— 077608号【こ記載されて!ヽるよう【こ、 80°C、 90%RH, 50
0時間放置後の偏光度が 95%以上、単体透過率が 38%以上であることも好ましい。 更には、 80°C、ドライ雰囲気下に 500時間放置した場合の、その前後における光透 過率及び偏光度の変化率も、それぞれの絶対値に基づいて 3%以下であることが好 ましい。特に、光透過率の変化率は 2%以下、また、偏光度の変化率は絶対値に基 づいて 1. 0%以下、更には 0. 1%以下であることが好ましい。
[寸法変化率]
本発明の反射防止能付き偏光板が、 70°Cの加熱条件下に 120時間置いた場合に 、当該偏光板の吸収軸方向の寸法変化率及び偏光軸方向の寸法変化率が、共に ±0. 6%以内であることが好ましい。
[0472] 偏光板の加熱時の寸法挙動において、偏光板の吸収軸方向の変化と偏光軸方向 の変化の異方性が少ないため、偏光板の伸縮によりプラスチックセルの面内にかか る負荷が均等となり、液晶表示装置の組み立て等で問題となって 、る異形のパネル の反りが解消される。従って、偏光板の吸収軸方向の寸法変化率 Dと偏光軸方向の
A
寸法変化率 Dとが、以下の関係を満たすことがさらに好ましい。
B
[0473] 0. 05< (寸法変化率 D—寸法変化率 D ) < +0. 05
A B
これらは、偏光膜の延伸工程での延伸の調節、保護フィルムと貼り合わせる際の偏 光膜の含水率 (偏光膜の全体重量に占める偏光膜中の水分重量割合を、偏光膜の 厚さにもよるが、一般に 20質量%未満とし、 13〜17質量%の範囲であることが好ま しい)等を調整することにより可能とすることができる。
[その他の耐久性] さらに、特開平 06-167611号公報に記載されているように 80°Cで 2時間放置 した後の収縮率が 0. 5%以下となること、あるいは 80°C、 90%RHの雰囲気中で 20 0時間放置処理後のラマン分光法による 105cm— 1及び 157cm— 1のスペクトル強度比 の変化を、特開平 08— 094834号公報ゃ特開平 09— 197127号公報に記載され た範囲とすることも好まし 、。
〔他の機能性層〕
本発明の反射防止能付き偏光板は、 LCDの視野角拡大フィルム、反射型 LCDに 適用するための λ Ζ4板等の機能層を、反射防止膜を有する側とは反対側の偏光膜 の保護フィルム側に有する、複合した偏光板としても好ましく使用される。
[光学補償フィルム]
本発明の視認側偏光板は、偏光板の反射防止膜を有する側とは反対側の保護フ イルム上に光学補償フィルムを設けてなることが好ましい。これにより、液晶表示装置 の表示画像の広視野角が可能となる。
[0474] 光学補償フィルムとしては、例えば、高分子フィルムを一軸又は二軸延伸処理して なる複屈折性フィルム、支持体上に複屈折を示す液晶性材料からなる光学的異方性 層を有する液晶配向フィルムなどがあげられる。光学補償フィルムの厚さは特に制限 されないが、 5〜: L00 m程度が一般的である。これら光学補償フィルムのなかでも 支持体上に光学的異方性層を有する液晶配向フィルムが好ましい。
[0475] 前記複屈折性フィルムとなる高分子フィルムの素材としては、たとえば、ポリビュル ァノレコーノレ、ポリビュルブチラール、ポリメチルビュルエーテル、ポリヒドロキシェチノレ アタリレート、ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース、メチルセル ロース、ポリカーボネート、ポリアリレート、ポリスノレホン、ポリエチレンテレフタレート、 ポリエチレンナフタレート、ポリエーテルスルホン、ポリフエ-レンスルファイド、 ポリフ -レンオキサイド、ポリアリルスルホン、ポリメチルメタタリレート、ポリアミド、ポリ イミド、ポリオレフイン、ポリ塩化ビュル、セルロース系重合体、ノルボルネン系榭脂又 はこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物などがあげ られる。これら高分子素材は延伸等により配向物 (延伸フィルム)となる。
[液晶配向フィルム] 上記光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶化合物 分子を補償するように設計することが好ましい。黒表示における液晶セル中の液晶化 合物分子の配向状態は、液晶表示装置のモードにより異なる。この液晶セル中の液 晶化合物分子の配向状態に関しては、 IDW'00、 FMC7- 2, 411〜414頁に記載 されている。
(液晶化合物)
光学異方性層に用いられる液晶化合物は、棒状液晶でも、ディスコティック液晶で もよぐまたそれらが高分子液晶、もしくは低分子液晶、さらには、低分子液晶が架橋 され液晶性を示さなくなつたものも含む。最も好ましいのは、ディスコティック液晶であ る。
[0476] 棒状液晶の好ましい例としては、特開 2000— 304932号公報に記載のものがあげ られる。
[0477] ディスコティック液晶の例としては、 C. Destradeらの研究報告、 Mol. Cryst. 71 卷、 111頁(1981年)に記載されているベンゼン誘導体、 C. Destradeらの研究報 告、 Mol. Cryst. 122卷、 141頁(1985年)、 Physicslett, A, 78卷、 82頁(1990 )に記載されているトルキセン誘導体、 B. Kohneらの研究報告、 Angew. Chem. 9 6卷、 70頁(1984年)に記載されたシクロへキサン誘導体及び J. M. Lehnらの研究 報告、 J. Chem. Commun. , 1794頁(1985年)、 J. Zhangらの研究報告、 J. Am . Chem. Soc. 116卷、 2655頁(1994年)【こ記載されて!ヽるァザクラウン系やフエ -ルアセチレン系マクロサイクルなどを挙げることができる。
[0478] 上記ディスコティック液晶は、一般的にこれらを分子中心の母核とし、直鎖のアルキ ル基ゃアルコキシ基、置換べンゾィルォキシ基等がその直鎖として放射線状に置換 された構造であり、液晶性を示す。ただし、分子自身が負の一軸性を有し、一定の配 向を付与できるものであれば上記記載に限定されるものではない。また、本発明にお いて、円盤状ィ匕合物から形成したとは、最終的にできた物質が前記化合物である必 要はなぐ例えば、低分子ディスコティック液晶が熱、光等で反応する基を有しており 、結果的に熱、光等で反応により重合又は架橋し、高分子量化し液晶性を失ったも のも含まれる。上記ディスコティック液晶の好ましい例は特開平 8— 50206号公報に 記載のものが挙げられる。
[0479] 上記光学異方性層は、一般にディスコティック化合物及び他の化合物(例えば、可 塑剤、界面活性剤、ポリマー等)を溶媒に溶解した溶液を配向膜上に塗布し、乾燥し 、次いでディスコティックネマチック相形成温度まで加熱し、その後配向状態 (デイス コテイツタネマチック相)を維持して冷却することにより得られる。あるいは、上記光学 異方性層は、ディスコティック化合物及び他の化合物(更に、例えば重合性モノマー 、光重合開始剤)を溶媒に溶解した溶液を配向膜上に塗布し、乾燥し、次いでデイス コテイツタネマチック相形成温度まで加熱したのち重合させ (UV光の照射等により)、 さらに冷却することにより得られる。
[0480] 光学異方性層の厚さは、 0. 1〜10 μ mであることが好ましぐ 0. 5〜5 μ mであるこ とがさらに好ましぐ 0. 7〜5 /ζ πιであることが最も好ましい。ただし、液晶セルのモー ドによっては、高い光学的異方性を得るために、厚く(3〜10 /ζ πι)する場合が ある。
己向膜]
配向膜は、液晶化合物分子の配向方向を規定する機能を有するために通常用い られる力 液晶化合物を配向後にその配向状態を固定してしまえば、配向膜はその 役割を果たして 、るために、本発明の構成要素として必ずしも必須のものではな 、。 例えば、配向状態が固定された配向膜上の光学異方性層のみを支持体上に転写し て光学補償フィルムを作製することも可能である。
[0481] 配向膜は、有機化合物 (好ましくはポリマー)のラビング処理、無機化合物の斜方蒸 着、マイクログループを有する層の形成、あるいはラングミュア'プロジェット法 (LB膜 )による有機化合物(例、 ω—トリコサン酸、ジォクタデシルメチルアンモ -ゥムクロライ ド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付 与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
[0482] 配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用す るポリマーは、原則として、液晶分子を配向させる機能のある分子構造を有する。
[0483] 本発明では、液晶分子を配向させる機能に加えて、架橋性官能基 (例えば、二重 結合)を有する側鎖を主鎖に結合させるか、又は液晶分子を配向させる機能を有す る架橋性官能基を側鎖に導入することが好ま ヽ。
[0484] 配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤によ り架橋されるポリマーのいずれも使用することができし、これらの組み合わせを複数使 用することができる。
[0485] 配向膜に使用されるポリマーの例としては、例えば特開平 8— 338913号公報中段 落番号 [0022]記載のメタタリレート系共重合体、スチレン系共重合体、ポリオレフィ ン、ポリビュルアルコール及び変性ポリビュルアルコール、ポリ(N—メチロールアタリ ルアミド)、ポリエステル、ポリイミド、酢酸ビュル共重合体、カルボキシメチルセルロー ス、ポリカーボネート等が挙げられる。ポリビュルアルコール及び変性ポリビュルアル コールが最も好ま 、。これらの変性ポリビュルアルコールィ匕合物及び架橋剤等の 配向膜形成用組成物の具体例として、例えば特開 2000— 155216号公報、同 200 2— 62426号公報等に記載のもの等が挙げられる。
[0486] 配向膜は、基本的に、配向膜形成材料である上記ポリマーを、支持体上に塗布し た後、加熱乾燥 (架橋させ)し、ラビング処理することにより形成することができる。架 橋反応は、前記のように、支持体上に塗布した後、任意の時期に行ってよい。
[0487] 配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコ 一ティング法、エタストルージョンコーティング法、ロッドコーティング法又はロールコ 一ティング法が好まし 、。特にロッドコーティング法が好ま U、。
[0488] 配向膜は、支持体上に直接設けるか、又は支持体に下塗層を設けて力 その下塗 層の上に設ける方法が挙げられる。支持体上に直接設ける場合は、前記の表面親 水化処理を行うことが好ま U、。
[0489] また、下塗層を設ける場合には、例えば特開平 7— 333433号公報、特開平 11— 248940号公報等記載の下塗層による方法などの方法が挙げられる。
[0490] 次に、配向膜の上に設けられる光学異方性層の液晶分子を配向させる。その後、 必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応さ せるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させる。
[0491] 配向膜の膜厚は、 0. 1〜: LO /z mの範囲にあることが好ましい。
[液晶化合物力 なる光学異方性層を塗設する支持体] 光学異方性層を塗設するための支持体は、高光透過率なプラスチックフィルムであ れば特に制限はな 、が、偏光板の保護フィルムであるセルロースァシレートを用いる ことが好ましい。すなわち、偏光板の保護フィルムの上に直接配向膜 (前述のとおり 必ずしも必須では無 、)と光学異方性層が形成されて 、ることが好まし 、。
[0492] 光学異方性層を塗設する支持体は、それ自身が光学的に重要な役割を果たすた め、支持体の Reレターデーシヨン値を 0〜200nm、そして、 Rthレターデーシヨン値 力^〜 400nmに調節されることが好まし!/、。
[0493] 支持体としてセルロースァシレートフィルムを用いる場合は、溶液の紫外線吸収ス ベクトルの吸収極大を与える波長( λ max)が 400nmより短波長にある紫外線を吸 収する化合物をレターデーシヨン調整剤として含有することが好ま 、。このようなィ匕 合物の例として、フエニルサリチル酸類、 2—ヒドロキシベンゾフエノン類、ベンゾトリア ゾール類、トリフエニルホスフェート等の紫外線吸収化合物を挙げることができる。ま た、少なくとも 2つの芳香族環を有する芳香族化合物(例えば特開 2000 - 111914 号公報等)、トリフ -レンィ匕合物(例えば特開 2000— 275434号公報等)、棒状ィ匕 合物(例えば特開 2002— 363343号公報、同 2003— 35821号公報等)、円盤状 化合物(1, 3, 5—トリァジン骨格、ポルフィリン骨格を分子に含有の化合物等:例え ば特開 2001—166144号公報等)等が好ましい。これらの化合物類は、可視光領域 に実質的に吸収を有していないことが好ましい。これらの化合物類は、可視光領域に 実質的に吸収を有して 、な 、ことが好ま U、。
[0494] なお、支持体フィルムの複屈折率( Δ η:ηχ— ny)は、 0〜0. 002であることが好ま しい。また、フィルムの厚み方向の複屈折率 { (nx+ny) Z2— nz}は、 0. 04以下で あることが好ましい。
[0495] 支持体フィルムの正面レターデーシヨン値 (Re)及び膜厚方向のレターデーシヨン 値 (Rth)は、数式(23)及び(24)に従って算出される。
[0496] 数式(23): Re= (nx— ny) X d
数式(24): Rth= { (nx+ny) /2-nz} X d
式中、 nxは、フィルムの面内の遅相軸方向の屈折率(面内の最大屈折率)であり; n yは、フィルムの面内の遅相軸に垂直な方向の屈折率であり; nzは、フィルムの厚み 方向の屈折率である。 dは、単位を nmとするフィルムの厚さである。
[0497] 光学補償フィルムの支持体にセルロースァシレートフィルムを用いる場合、セルロー スァシレートフィルムの厚さは 20〜200 μ mであることが好ましぐ 30〜120 μ mであ ることがより好まし!/、。
[0498] 保護フィルム上に光学異方性層を形成して力 偏光膜と張り合わせる場合には、偏 光膜と貼り合わせる側の表面が酸ィ匕処理されていることが好ましぐ前記の酸ィ匕処理 に従って実施することが好まし 、。
[0499] 視認側偏光板の構成は、「反射防止膜 Z保護フィルム,偏光膜 Z保護フィルム」の 積層フィルム、更に好適には「反射防止膜 Z保護フィルム Z偏光膜 Z光学補償フィ ルム (保護フィルム Z (配向膜) Z光学異方性層)」の積層フィルムとなり、薄膜化、軽 量ィ匕並びにコスト低減が一層図られる。偏光板の上側保護フィルムを反射防止膜が 、下側保護フィルムを、光学異方性層が塗設された支持体が兼ねることにより、物理 強度、耐候性に優れ、反射防止機能を有し、視認性に優れた、薄くて軽い偏光板を 得ることができる。
[0500] ここで、偏光板、光学補償フィルムは、上記の視認側偏光板 (上側偏光板)で記載 と同様の内容のものである。
<画像表示装置 >
本発明の画像表示装置は、以上述べた本発明の反射防止能付き偏光板が画像表 示面に配置されていることを特徴とする。このように、本発明の反射防止能付き偏光 板は、液晶表示装置 (LCD)、有機 ELディスプレイのような画像表示装置に適用す ることができる。そして、本発明の画像表示装置は、 TN、 STN、 IPS, VA及び OCB の!、ずれかのモードの透過型、反射型又は半透過型の液晶表示装置に適用するの が好ましい。以下、さらに説明する。
[0501] 液晶表示装置としては、従来公知の何れも用いることができる。例えば、内田龍雄 監修「反射型カラー LCD総合技術」 [ (株)シーエムシー、 1999年刊]、「フラットパネ ルディスプレイの新展開」 [ (株)東レリサーチセンター調査部門、 1996年刊]、「液晶 関連市場の現状と将来展望 (上巻)、(下巻)」 [富士キメラ総研 (株)、 2003年刊]等 に記載されているものが挙げられる。 [0502] 具体的には、例えばッイステツドネマチック (TN)、スーパーッイステツドネマチック( STN)、バーティカルァライメント (VA)、インプレインスイッチング (IPS)、ォプティカ リーコンペンセィテツトベンドセル(OCB)等のモードの透過型、反射型、又は半透過 型の液晶表示装置に好ましく用いることができる。
[0503] また、本発明の光学フィルムは、付設する液晶表示装置表示画像の大きさが 17ィ ンチ以上であっても、コントラストが良好で広い視野角を有し、且つ色相変化及び外 光の移りこみ防止を実現でき、好ましい。
[TNモード液晶表示装置]
TNモードの液晶セルは、カラー TFT液晶表示装置として最も多く利用されており、 多数の文献の記載が挙げられる。 TNモードの黒表示における液晶セル中の配向状 態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶 性分子が寝た配向状態にある。
[OCBモード液晶表示装置]
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的 に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配 向モードの液晶セルを用いた液晶表示装置は、米国特許 4583825号、同 541042 2号の各明細書に開示されている装置が液晶セルの上部と下部とで対称的に配向し ているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため 、この液晶モードは、 OCB (Optically Compensatory Bend)液晶モードとも呼 ばれる。
[0504] OCBモードの液晶セルも TNモード同様、黒表示においては、液晶セル中の配向 状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液 晶性分子が寝た配向状態にある。
[VAモード液晶表示装置]
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に 配向している。
[0505] VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直 に配向させ、電圧印加時に実質的に水平に配向させる狭義の VAモードの液晶セル (特開平 2— 176625号公報記載)に加えて、(2)視野角拡大のため、 VAモードをマ ルチドメイン化した(MVAモード)の液晶セル [SID97、 Digest of Tech. Paper s (予稿集) 28 (1997) 845記載]、(3)棒状液晶性分子を電圧無印加時に実質的に 垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード (n— ASMモー ド)の液晶セル [日本液晶討論会の予稿集 58〜59 (1998)記載]及び (4) SURVAI VALモードの液晶セル(LCDインターナショナル 98で発表)が挙げられる。
[IPSモード液晶表示装置]
IPSモードの液晶セルでは、液晶分子を基板に対して常に水平面内で回転させる モードで、電界無印加時には電極の長手方向に対して若干の角度を持つように配向 されている。電界を印加すると電界方向に液晶分子は向きを変える。液晶セルを挟 持する偏光板を所定角度に配置することで光透過率を変えることが可能となる。液晶 分子としては、誘電率異方性 Δ εが正のネマチック液晶を用いる。液晶層の厚み (ギ ヤップ)は、 2. 8 m超 4. 5 m未満とする。これは、レターデーシヨン A n'dが 0. 25 μ ιΜθ. 32 m未満の時、可視光の範囲内で波長依存性が殆どない透過率特性 が得られる。偏光板の組み合わせにより、液晶分子がラビング方向から電界方向に 4 5° 回転したとき最大透過率を得ることができる。なお液晶層の厚み (ギャップ)はポリ マビーズで制御している。もちろんガラスビーズヤファイバー、榭脂製の柱状スぺー サでも同様のギャップを得ることができる。また液晶分子は、ネマチック液晶であれば 、特に限定したものではない。誘電率異方性 Δ εは、その値が大きいほうが、駆動電 圧が低減でき、屈折率異方性 Δ ηは小さ 、ほうが液晶層の厚み (ギャップ)を厚くでき 、液晶の封入時間が短縮され、且つギャップばらつきを少なくすることができる。
[その他液晶モード]
STNモードの液晶表示装置に対しては、上記と同様の考え方で本発明の偏光板 を供することができる。 ECBモードにも同様〖こ適用することができる。
また、 λ Ζ4板と組み合わせることで、反射型液晶用の偏光板や、有機 ELディスプ レイ用表面保護板として表面及び内部からの反射光を低減するのに用いることがで きる。
実施例 1 [0507] 以下、本発明を実施例及び比較例によりさらに具体的に例証するが、本発明はこ れらの実施例により限定されるものではない。
実施例 1及び比較例 1
〔保護フィルムの作製〕
[セルロースァシレートフィルム(保護フィルム)(CA— 1)の作製]
{微粒子分散物 (RL— 1)の調製)
下記の組成からなる混合物及びビーズ径 0. 2mmのジルコ-ァビーズを、ダイノミ ル分散機に投入して湿式分散し、体積平均粒径 55nmになるように分散を行った。 得られた分散物を 200メッシュのナイロン布で濾過してビーズを分離し、微粒子分散 物 (RL— 1)を調製した。得られた微粒子分散物の粒度分布を測定したところ、粒径 300nm以上の粒子は 0%であった。
[0508] ここで体積平均粒径は、『粒度分布測定装置 LA920 (堀場製作所製)』で測定し た。
•微粒子分散物 (RL— 1)の組成
疎水性シリカ 2. 00質量部
商品名" AEROSIL R812"
メチル基変性体、一次粒径 7nm:日本ァエロジル (株)製
セルローストリアセテート 2. 00質量部
置換度 2. 85 (6位置換度 0. 90)
下記の分散剤 (DP— 1) 0. 25質量部
メチレンクロライド 78. 70質量咅
メタノーノレ 14. 20質量咅
ブタノール 2. 86質量部
[0509] [ィ匕 6] 分散剤 (DP— 1〉
C12H250(CH2CH20)4— P(OH)2
[0510] {セルロースァシレート溶液 (A— 1)の調製 下記の組成力もなる混合物を攪拌溶解して、セルロースァシレート溶液 (A- 1)を 調製した。
'セルロースァシレート溶液 (A— 1)組成
セノレローストリアセテート 100質量部
置換度 2. 85 (6位置換度 0. 90)
トリフエ二/レホスフエート 1. 0質量部
下記の可塑剤 (K一 1) 6. 0質量部
下記の可塑剤 (K一 2) 4. 0質量部
下記の UV剤: UV— 1 0. 8質量部
下記の UV剤: UV— 2 0. 5質量部
メチレンクロライド 300質量部
メタノーノレ 54質量部
1ーブタノール 11質量部
[化 7]
K- 1 K-2 R
Figure imgf000126_0001
R : -COC2H5
[0512] [化 8]
Figure imgf000126_0002
[0513] (ドープの調製)
セルロースァシレート溶液 (A— 1) 474質量部に、微粒子分散物 (RL— 1) 15. 3質 量部を攪拌しながら添加し、添加終了後充分に攪拌した後、更に室温 (25°C)にて 3 時間放置し、得られた不均一なゲル状溶液を、 70°Cにて 6時間冷却した後、 50°C に加温 ·攪拌して完全に溶解したドープを得た。
[0514] 次に得られたドープを、 50°Cで絶対濾過精度 0. 01mmの濾紙" # 63" [東洋濾紙
(株)製]により濾過し、さらに絶対濾過精度 0. 0025mmの濾紙" FH025"
(ポール社製)にてフィルター濾過及び脱泡を行ってドープを調製した。
(溶液流延方法)
上述のようにして得られたドープを、バンド流延機を用いて流延して、セルロースァ シレートフィルムを製膜した。金属支持体 (流延バンド)としては、ステンレススチール からなり、幅 2m、長さ 56m (面積 112m2)からなるものを用いた。該金属支持体の 算術平均粗さ(Ra)は 0. 006 μ mで、最大高さ(Ry)は 0. 06 μ mであり、また十点平 均粗さ (Rz)は 0. 009 μ mであった。算術平均粗さ (Ra)、最大高さ (Ry)、十点平均 粗さ(Rz)の各測定は、 JIS B— 0601に規定によった。
[0515] 流延されたドープは、流延直後の 1秒間は風速 0. 5mZ秒以下で乾燥し、それ以 降は風速 15mZ秒で乾燥した。乾燥風の温度は 50°Cであつた。
[0516] 流延バンドから剥ぎ取った時のフィルムの残留溶媒量は 230質量%であり、フィル ムの温度は 6°Cであった。流延力 剥ぎ取りまでの間における平均乾燥速度は 74 5質量%Z分であった。また、剥ぎ取り時点でのドープのゲルイ匕温度は約 10°Cであ つた o
[0517] 金属支持体上での膜面温度が 40°Cとなってから、 1分間乾燥し、剥ぎ取った後、乾 燥風の温度を 120°Cとした。このときのフィルムの幅方向の温度分布は 5°C以下であ り、乾燥の平均風速は 5mZ秒、伝熱係数の平均値は 25kcal/m2.Hr'°Cであり、フ イルムの幅方向分布は 、ずれも 5%以内であった。また乾燥ゾーン中におけるピンテ ンター担持部分は遮風装置により乾燥熱風が直接当らな 、ようにした。
[0518] 次に、セルロースァシレートフィルムを延伸する工程を行った。すなわち、残留溶媒 量が 15質量%のフィルムの状態で、 130°Cの条件で、テンターを用いて 25%の延伸 倍率で横延伸し、延伸後の幅のまま 50°Cで 30秒間保持した後クリップを外して巻き 取りを行った。剥ぎ取りより卷取りまでの間で蒸発した溶媒は初期の溶媒量の 97質 量%であった。乾燥したフィルムは、さらにローラーで搬送しつつ乾燥させる乾燥ェ 程において、 145°Cの乾燥風により乾燥した後、湿度、温度を調整して、卷取り時の 残留溶媒量 0. 32質量%、水分量 0. 6質量%で巻き取り、保護フィルムとしてのセル ロースァシレートフィルム(CA—1) (長さ 3500m、幅 1300mm、厚み 80 m)を製 造した。膜厚の変動幅は ± 2. 2%であり、幅方向のカール値は 0. 3Zmであった
[比較例用保護フィルムの作製]
{比較例用保護フィルム (CAR— 1)の作製 }
セルロースァシレートフィルム(CA—1)の作製において、流延直後の 1秒間は風速 0. 5mZ秒以下で乾燥し、流延製膜時の乾燥風を平均風速 20mZ分、温度 60°Cと した以外はセルロースァシレートフィルム(CA— 1)の作製と同様にして膜厚 80 μ m のセルロースァシレートフィルム(CAR— 1)を作製した。
{比較例用保護フィルム (CAR— 2)の作製 }
前記の微粒子分散物 (RL— 1)の分散にお 、て、分散条件を代えることにより分散 粒子の平均粒子径が 200nmの微粒子分散物 (RLR— 1)を調製した。この時の分散 物の 500nm以上の粒子の含有量は 20体積%であった。次にセルロースァシレート フィルム (CA—1)の作製において、微粒子分散物 (RL—1)を用いる代わりに、この 微粒子分散物(RLR— 1)を用いた以外は、セルロースァシレートフィルム(CA— 1) の作製と同様にして、膜厚 80 mのセルロースァシレートフィルム(CAR— 2)を作製 した。
[0519] 得られたこれらフィルム(CAR— 1)及び(CAR— 2)の残留溶媒量、水分量はフィ ルム(CA— 1)と同等であった。
[0520] 得られたセルロースァシレートフィルム(CA—1)、 (CAR— 1)及び(CAR— 2)に ついて、下記方法に従ってそれらの性状を測定した。結果を表 2に示す。
[保護フィルムの性状]
(フィルム表面の凹凸形状)
得られたセルロースァシレートフィルム CA— 1、 CAR— 1及び CAR— 2の各試料 について、 JIS B— 0601— 1994に基づき、フィルムの金属支持体側の表面(外面) と金属支持体と反対側の表面(内面)の表面形状を測定した。 (フィルムの光学特性)
'ヘイズ
ヘイズはヘイズ計〃 1001DP〃型 [日本電色工業 (株)製]を用いて測定した。フィル ム 1サンプルにっき、 5点を測定し、その平均値を採用した
(力学的特性の評価方法)
'カール
カール値は、アメリカ国家規格協会の規定する測定方法 (ANSIZASCPH1. 29 1985、 Method—A)に従い測定した。ポリマーフイノレムを、幅方向に 35mm、長 手方向に 2mmの大きさに切り取った後、カール板に設置する。これを温度 25°C、湿 度 65%RHの環境下に 1時間調湿後カール値を読みとる。そして同様に、ポリマーフ イノレムを、幅方向に 2mm、長手方向に 35mmの大きさに切り取った後、カーノレ板に 設置する。これを温度 25°C、相対湿度 65%の環境下に 1時間調湿後カール値を読 みとる。幅方向、長手方向の二方向で測定し、両者のうちの大きい値をカール値とし た。カール値は、曲率半径 (m)の逆数で表す。
•引き裂き強度
フィルムを幅 65mm X長さ 50mmに切断してサンプルを作製した。このサンプルを 温度 30°C、湿度 85%RHの室内で 2時間以上調湿し、 ISO 6383Z2 1983の規 格に従い、(株)東洋精機製作所製の軽荷重引裂強度試験器を用いて、引き裂きに 要する荷重 (g)を求めた。
(透湿度)
前記した方法で、温度 60°C、湿度 95%RHの条件で測定し、フィルム膜厚 80 m に換算した。
[表 2]
Figure imgf000129_0001
表面形状数値 *;上段:バンド面の反対側(内面) 下段:バンド面側(外面) 〔反射防止膜 (AF)の作製〕
[ハードコート層用塗布液 (HCL— 1)の調製]
トリメチロールプロパントリアタリレート ["TMPTA〃日本ィ匕薬 (株)製] 750. 0質量部 に、質量平均分子量 3000のポリ(グリシジルメタタリレート) 270. 0質量部、メチルェ チルケトン 730. 0質量部、シクロへキサノン 500. 0質量部、光重合開始剤「ィルガキ ユア 184」 [チバ 'スペシャルティ'ケミカルズ (株)製] 50. 0質量部及び光重合開始剤 ジ(t ブチルフエ-ル)ヨウドニゥム 'へキサフルオロフォスフェイト(Di (t—butyl phenyl) iodoniumhexafluoro Phosphate) 24. 0質量部を添カ卩して攪拌した。孔径 0. 4 mのポリプロピレン製フィルターで濾過してハードコ
ート層用の塗布液を調製した。
{二酸ィ匕チタン微粒子 (T— 1)の作製 }
特開平 5— 330825号公報に基づいて、鉄 (Fe)をコバルトに変更した以外は同公 報と同様にして、二酸ィ匕チタン粒子の中にコバルトをドープしたコバルト含有の二酸 化チタン微粒子 (T—1)を作製した。コバルトのドープ量は、 TiZCo (質量比)で、 98 . 5/1. 5となるようにした。作製した二酸ィ匕チタン微粒子 (T—1)は、ルチル型の結 晶構造が認められ、 1次粒子の平均粒子サイズ力 S40nm、比表面積が 44m2Z gであつ 7こ o
{二酸化チタン微粒子分散液 (TL 1)の調製)
上記二酸化チタン微粒子 (T— 1) 100g、下記構造の高分子分散剤 (DP— 2) 20g 、及びシクロへキサノン 360gを添カ卩して、粒径 0. 1mmのジルコユアビーズと共にダ イノミルにより分散した。分散温度は 35〜40°Cで 5時間実施した。 300nm以上の粒 子径が 0%の平均径 55nmの二酸ィ匕チタン微粒子分散液 (TL—1)を調製した。 [0523] [化 9] 分散剤 DP— 2
Figure imgf000131_0001
COOCH2CH=CH2
Mw: 3x104 (質量組成比)
[0524] [中屈折率層用塗布液 (MLL— 1)の調製]
上記の二酸ィ匕チタン微粒子分散液 (TL— 1) 88. 9質量部に、ジペンタエリスリトー ルペンタアタリレートとジペンタエリスリトールへキサアタリレートの混合物("DPHA") 58. 4質量部、光重合開始剤「ィルガキュア 907」 [チバ 'スペシャルティ'ケミカルズ( 株)製] 3. 1質量部、光増感剤「カャキュア一 DETX」 [日本ィ匕薬 (株)製] 1. 1質量部 、メチルェチルケトン 482. 4質量部、及びシクロへキサノン 1869. 8質量部を添加し て攪拌した。十分に攪拌ののち、孔径 0. 4 mのポリプロピレン製フィルターで濾過 して中屈折率層用塗布液 (MLL— 1)を調製した。
[高屈折率層用塗布液 (HLL— 1)の調製]
上記の二酸化チタン分散液 (TL 1) 586. 8質量部に、〃DPHA"47. 9質量部、「 ィルガキュア 907」 4. 0質量部、「カャキュア一 DETX」1. 3質量部、メチルェチルケ トン 455. 8質量部、及びシクロへキサノン 1427. 8質量部を添カ卩して攪拌した。孔径 0. 4 mのポリプロピレン製フィルターで濾過して高屈折率層用塗布
液 (HLL— 1)を調製した。
[低屈折率層用塗布液 (LLL 1)の調製]
〃DPHA〃1. 4質量部、下記構造のフッ素系ポリマー(PF— 1) 5. 6質量部、中空シ リカ(平均粒径 40nm、シヱル層厚 7nm、屈折率 1. 31、 18質量%イソプロパノール 分散液) 20. 0質量部、反応性シリコーン" RMS— 033" (Gelest社製) 0. 7質量部、 下記内容のゾル液(a) 6. 2質量部、及び「ィルガキュア 907」 0. 2質量部をメチルェ チルケトン 315. 9質量部に投入して攪拌した。孔径 1 mのポリプロピレン製フィルタ 一でろ過して、低屈折率層用塗布液 (LLL 1)を調製した。 [0525] [化 10] フッ素系ポリマー (PF— 1 )
Figure imgf000132_0001
Mw : 5 X10 (モル組成比)
[0526] [ゾル液 (a)の調製]
攪拌機、還流冷却器を備えた反応器、メチルェチルケトン 120質量部、アタリロイル ォキシプロピルトリメトキシシラン" KBM— 5103" [信越ィ匕学工業 (株)製] 100質量部 、ジイソプロポキシアルミニウムェチルァセトアセテート 3質量部を加えて混合し、さら にイオン交換水 30質量部をカ卩えて 60°Cで 4時間反応させたのち、室温まで冷却して ゾル液 (a)を得た。質量平均分子量は 1600であり、オリゴマー成分以上の成分のう ち、分子量が 1000〜20000の成分は 100%であった。またガスクロマトグラフィー分 祈から、原料のアタリロイルォキシプロピルトリメトキシシランは全く残存して 、なかつ た。
[反射防止膜 (AF— 1)の作製]
前記のロール形態の各セルロースァシレートフィルム(CA— 1)、 (CAR- 1)及び( CAR— 2)のバンド面上に、前記ハードコート層用塗布液 (HCL— 1)を、リバースグ ラビアコ一ターを用いて塗布した。 100°Cで乾燥した後、酸素濃度が 1. 0体積%以 下の雰囲気になるように窒素パージしながら 160WZcmの空冷メタルハライドランプ [アイグラフィックス (株)製]を用いて、照度 400mWZcm2、照射量 300mj/cm2の 紫外線を照射して塗布層を硬化させ、厚さ 8 μ mのハードコート層(HC— 1)を形成し た。得られたハードコート層の上に、中屈折率層用塗布液 (MLL— 1)、高屈折率層 用塗布液 (HLL— 1)、低屈折率層用塗布液 (LLL— 1)を、 3つの塗布ステーション を有するリバースグラビアコーターを用いて連続して塗布した。
[0527] 中屈折率層の乾燥条件は 100°C、 2分間とし、紫外線硬化条件は酸素濃度が 1. 0 体積%以下の雰囲気になるように窒素パージしながら、 180WZcmの空冷メタルノヽ ライドランプ [アイグラフィックス (株)製]を用いて、照度 400mWZcm2、照射量 4 OOmiZcm2の照射量とした。硬化後の中屈折率層 (ML- 1)は屈折率 1. 630 、膜厚 67nmであった。
[0528] 高屈折率層の乾燥条件は 90°C、 1分の後、 100°C、 1分とし、紫外線硬化条件は、 酸素濃度が 1. 0体積%以下の雰囲気になるように窒素パージしながら、 240W/c mの空冷メタルノヽライドランプ [アイグラフィックス (株)製]を用いて、照度 600mWZc 照射量 600mj/cm2の照射量とした。硬化後の高屈折率層(HL— 1)は屈折率 1. 905、膜厚 107nmであった。
[0529] 低屈折率層は 120°Cで 150秒乾燥の後、更に 140°Cで 8分乾燥させてから、窒素 パージ下で 240WZcmの空冷メタルノヽライドランプ [アイグラフィックス (株)製]を用 いて、照度 400mWZcm2、照射量 900mjZcm2の紫外線を照射した。屈折率 1. 4 3、厚さ 90nmの低屈折率層(LL— 1)を形成し、セルローストリアセテートフィルムの 一方の表面上に反射防止膜 (AF— 1)を作製した。
[反射防止膜の特性の評価]
得られた各反射防止膜塗設セルローストリアセテートフィルムの試料にっ 、て、以 下の内容の性能評価を行い、その結果を表 3に記載した。
(動摩擦係数)
フィルム試料の反射防止膜側表面滑り性の指標として、動摩擦係数により評価した 。動摩擦係数は、試料を 25°C、湿度 60%RHで 2時間調湿した後、〃: HEIDON— 14 "動摩擦測定機 jf東科学 (株)製]により、 5πιπι φステンレス鋼球、荷重 100g、 速度 60cmZ分にて測定した値を用いた。
(密着性の評価)
各フィルム試料を温度 25°C、湿度 60%RHの条件で 2時間調湿した。各試料の反 射防止膜を有する側の表面を、カッターナイフで碁盤目状に縦 11本、横 11本の切り 込みを入れて合計 100個の正方形の升目を刻み、その升目が刻まれた箇所につ!ヽ て、 日東電工 (株)製のポリエステル粘着テープ" NO. 31B"を用いて密着試験を繰り 返し 3回行った。剥がれの有無を目視で観察し、下記の 4段階評価を行った。
[0530] ◎: 100升において剥がれが全く認められなかったもの。
[0531] 〇: 100升において剥がれが認められたものが 2升以内のもの。
[0532] △: 100升において剥がれが認められたものが 10〜3升のもの。 [0533] X: 100升において剥がれが認められたものが 10升をこえたもの。
(鉛筆硬度評価)
各フィルム試料を、温度 25°C、湿度 60%RHの条件で 2時間調湿した後、 JIS S— 6006が規定する 3Hの試験用鉛筆を用い lkgの荷重をかけて、反射防止膜側 の表面を 5箇所につ 、て試験し、下記の基準で目視評価した。
[0534] 〇:全ての箇所において傷が全く認められない。
[0535] △:傷が 1又は 2つ。
[0536] X:傷が 3つ以上。
(鏡面反射率及び色味の均一性)
分光光度計 "V— 550 "[日本分光 (株)製]にアダプター" ARV— 474"を装着して 、 380〜780nmの波長領域において、各フィルム試料の入射角 5° における出射角 - 5°の鏡面反射率を測定し、 450〜650nmの測定された反射スペクトルから、 CIE 標準光源 D の入射角 5°の入射光に対する正反射光の色味を表わす CIE1976L*a
65
V色空間の L*値、 a*値、 b*値を算出し、この中から a*値、 b*値を用いて反射光の色味 を評価した。
[0537] フィルム試料は長さ方向に lmを試料とし、測定点はロール形態の長さ及び幅方向 の中央、並びに両端の各 3点を測定した。フィルム試料は、塗工ロールの先端部、中 央部、及び終端部を用いた。各値は上記の測定点の中央値とし、変動幅は最大値と 最小値との差を中央値で除した計算値を%表示した。下記の 4段階評価を行った。
[0538] 〇:変化率が 10%以下
△:変化率が 10%を超え 20%未満
X:変化率が 20%以上
(耐候性の評価)
サンシャインウエザーメーター [〃S - 80〃スガ試験機 (株)製]を用い、湿度 50%RH で、露光時間 150時間の各水準の耐候性試験を行った。
[0539] 耐候性試験後の各試料について、前記と同様にして鏡面反射率及び反射スぺタト ルを測定し、波長 380ηπ!〜 780nmの波長領域における CIE色度図反射光の色味 を計算して、上記耐候性試験前の試料の鏡面反射率及び色味と比較することにより 、耐候性試験前後の鏡面反射率の変化及び色味の変化を求めた。色味の変化につ いては、 CIE1976L*aV色空間における耐候性試験前後での AL , Aa , Abを 測定し、前記数式(26)に従って、耐候性試験前後での ΔΕを求め、下記の 4段階 評価を行った。
[0540] (反射光の色味変化 Δ E )
◎ : ΔΕが 5以下、
〇: ΔΕが 5〜10、
Δ: ΔΕが 10〜15、
Χ:ΔΕ力 S15以上
(表面エネルギー)
表面の耐汚染性 (指紋付着性)の指標として、各試料を温度 25°C、湿度 60%RH で 2時間調湿した後、前記記載の接触角法により測定した。
(スチルウール耐摩耗性)
各試料を、 #0000のスチルウールに 500gZcm2の荷重を力け、 60往復した ときの傷の状態を観察して、以下の 3段階で評価した。
[0541] A:傷が全く付かない。
[0542] B:少し傷が付くが見えにくい。
[0543] C:顕著に傷が付く。
[0544] [表 3]
Figure imgf000135_0001
本発明に係るセルロースァシレートフィルム(CA— 1)の上に、本発明に用いられる 上記の反射防止膜 (AF— 1)が設けられたフィルム試料は、低反射率、膜の密着性' 強度、表面の防汚性 (表面エネルギー、動摩擦係数)及び耐候性ともに良好であつ た。一方、比較例用セルロースァシレートフィルム(CAR— 1)及び(CAR— 2)の上 に反射防止膜 (AF- 1)が設けられたフィルム試料は、 Vヽずれも反射防止性がやや 低下し、反射防止膜の強度も不十分であった。
[反射防止膜塗設保護フィルム背面の表面処理]
前記の反射防止膜 (AF— 1)が塗設された各セルロースァシレートフィルムの背面 の上に、温度 60°Cの誘電式加熱ロールを通過させ、フィルム表面温度 40°Cに昇温 した後に、下記に示す組成のアルカリ溶液 (S— 1)を、ロッドコーターを用いて塗布量 14mlZm2、塗布速度 40mZ分で塗布し、 110°Cに加熱した (株)ノリタケカンパ-一 リミテド製のスチーム式遠赤外ヒーターの下に 8秒滞留させた後に、同じくロッドコータ 一を用いて純水を 3mlZm2塗布した。この時のフィルム温度は 40°Cであった。次い で、フアウンテンコーターによる水洗とエアナイフによる水切りを 3回繰り返した後に 7 0°Cの乾燥ゾーンに 5秒間滞留させて乾燥した。
•アルカリ溶液 (S— 1)組成
水酸化カリウム 8. 55質量部
水 17. 85質量部
イソプロパノール 59. 5質量部
界面活性剤(SF— 1) 1. 1質量部
C H O (CH CH O) H
プロピレングリコーノレ 13. 0質量部
消泡剤 0. 015質量咅
「サーフィノール DF110DJ [日信化学工業 (株)製]
[親水化表面処理後のフィルムの特性]
作成した各フィルムにつ 、て、以下の試験を行!ヽアルカリ処理の効果を確認した。 その結果を表 4に示す。
(表面の形状)
酸化処理した表面の凹凸形状を、上記のフィルム形状の測定と同様に、 JIS B— 0 601 - 1994【こ基づ!/ヽて¾定した。
(水との接触角)
接触角計 ["CA— X"型接触角計、協和界面科学 (株)製]を用い、乾燥状態 (20°C Z65%RH)で、液体として純水を使用して直径 1. Ommの液滴を針先に作り、これ をフィルムの表面に接触させてフィルム上に液滴を作った。フィルムと液体とが接する 点における、液体表面に対する接線とフィルム表面がなす角で、液体を含む側の角 度を接触角とした。
[0547] 各フィルムについて、 lm2の面内において両端及び中央の 9箇所の接触角を測定 し、上限値と下限値を記載した。ただし、 ± 1°の範囲は測定におけるばらつきの範囲 であり、その中央値で示した。
(表面の面状:異物、濁り)
鹼ィ匕処理フィルムから、全幅で長手方向に lmの長さに試料を切りだし、この試料 にシャゥカステン上で光を透過させながら、目視及びルーペで異物及び濁りの有無 を観察し、以下の基準を用いて評価した。
[0548] 〇:異物、濁りの発生が全く認められない(10人で評価し、一人も認識できないレべ ル)。
[0549] △:異物、濁りが弱く発生する(10人で評価し、 2〜5人が認識するレベル)。
[0550] X:異物、濁りが強く発生する(10人で評価し、 6人以上が認識するレベル)。
[0551] [表 4]
Figure imgf000137_0001
[0552] 表 4に示すように、本発明に用いられる、反射防止膜 (AF— 1)が塗設されたセル口 一スァシレートフィルムを鹼化処理したフィルム (AFS— 1)は、表面の凹凸形状が本 発明の範囲内であり、 1平方メートルの面内おいて、水との接触角は 34°で、面内の バラツキが見られな!/、均一な処理が施されたものであった。このフィルムの表面状態 も、フィルム全面において異物や濁りの発生は認められな力つた。一方、従来技術に 係るフィルム (AFRS— 1)は、表面凹凸が大きくバラツキがあり、 lm2の面内おける水 との接触角のバラツキが大きぐ 32°〜42°の範囲にわたった。また、表面状態も悪化 し、特に異物が多く見られた。またもう 1つの従来技術に係るフィルム (AFRS— 2)も 表面凹凸の形状が大きぐ表面状態も異物が散見された。
実施例 1—1
〔反射防止能付き偏光板 (P— 1)の作製〕
[本発明の偏光膜 (H— 1)及び偏光板 (P— 1) ]
数平均重合度 1700、膜厚 mの PVAフィルムを、イオン交換水に 1分浸漬し 、ゴムローラーにて余剰水分を取った後、該 PVAフィルムを、ヨウ素 1. Og/ ヨウ 化カリウム 90. Og/Lの水溶液に、 25°Cにて 50秒間、フィルムが弛まないように浸漬 し、ゴムローラーにて余剰水分を取った後、さらにホウ酸 40gZL、ヨウ化カリウム 30g ZLの水溶液に、 30°Cにて 90秒間、フィルムが弛まないように浸漬後、ステンレス製 のブレードにて余剰水分を除去し、フィルム中の含有水分率の分布を 2%以下にした 状態で図 2の形態のテンター延伸機に導入した。
[0553] 搬送速度を 4mZ分として、 200m送出し、 55°C、 95%RH雰囲気下で 4. 2倍に延 伸した後、テンターを延伸方向に対し図 2の如く屈曲させ、以降幅を一定に保ち、収 縮させながら、 45秒で膜面温度が 60°Cから 5°Cとなるように 80°C雰囲気で 3分 30秒 乾燥させた後、テンター力も離脱して膜厚 18 μ mの偏光膜 (Η— 1)を得た。
[0554] 偏光膜作製中の延伸温度湿度の変動は、温度が 55 ±0. 2°C、湿度が 95 ± 1%R Hであった。延伸開始前の PVAフィルムの含水率は 32質量%で、乾燥後の含水率 は 2. 5質量%であった。
[0555] 左右のテンタークリップの搬送速度差は、 0. 05%未満であり、導入されるフィルム の中心線と次工程に送られるフィルムの中心線のなす角は、 46°であった。ここで I L1 -L2 I は 0. 7m、Wは0. 7mであり、 | L1 -L2 | =Wの関係にあった。テンタ 一出口における実質延伸方向 Ax— Cxは、次工程へ送られるフィルムの中心線 22 に対し 45°傾斜していた。テンター出口におけるシヮ、フィルム変形及び延伸ムラは 観察されなかった。
[0556] 次に、この偏光膜の幅方向から 3cm、カッターにて耳きりをした後、 PVA [ (株)クラ レ製" PVA— 117H"] 3質量0 /oZヨウ化カリウム 4質量0 /0水溶液を接着剤として、該 偏光膜の一方の面に、前記反射防止膜 (AF— 1)が塗設されその背面が酸ィ匕処理さ れたセルロースァシレートフィルム (AFS— 1)を貼り合わせ、該偏光膜の他方の面に 、前記の反射防止膜塗設フィルムの酸ィ匕処理と同様に処理されたセルロースァシレ 一トフイルム(CA— 1)の処理面を各々貼り合わせ、さらに 70°Cで 10分間加熱して有 効幅 650mm、長さ 500mのロール形態の反射防止能付き偏光板 (P— 1)を作製し た。表面の膜面温度は非接触型温度計〃 IT 540N" [ (株)堀場製作所製]にて測 し 7こ。
[0557] 得られた反射防止能付き偏光板 (P— 1)の吸収軸方向は、長手方向に対し 45°傾 斜していた。このロール形態の偏光板 (P— 1)の 550nmにおける透過率及び偏光度 を 10mおきに測定した結果、単板透過率の変動は 43. 0±0. 3%、偏光度は 99. 9 2±0. 02%であった。またクロス-コル時の波長 700nm及び 400nmにおける透過 率 ίま、 700mn力 SO. 03%, 400mn力 0. 070/0であった。単板透過率、偏光度、ク uス ニコル時の透過率は島津自記分光光度計" UV3100 " [ (株)島津製作所製]にて測 し 7こ。
[0558] 偏光度は、 2枚の偏光板を、吸収軸を一致させて重ねた場合の透過率(%)及び吸 収軸を直交させて重ねた場合の透過率(%)を求め、前記数式(14)により求めた。 単板透過率、偏光度は視感度補正を行った。
[0559] さらに図 4の如く 310 X 233mmサイズに裁断したところ、 91. 5%の面積効率で辺 に対し 45°吸収軸が傾斜した偏光板を得ることができた。
比較例 1 1及び 1 2
[比較用偏光板 (PR— 1)及び (PR— 2) ]
実施例 1 1の反射防止能付き偏光板 (P— 1)において、偏光膜の一方の面に、反 射防止膜 (AF— 1)が塗設されその背面が鹼ィ匕処理されたセルロースァシレートフィ ルム (AFS— 1)を貼り合わせる代わりに、反射防止膜 (AF— 1)が塗設されその背面 が鹼化処理されたセルロースァシレートフィルム(AFRS— 1)又は(AFRS— 2)を貼 り合わせ、さらに偏光膜の裏面に、セルロースァシレートフィルム(CA— 1)の鹼化処 理面を貼り合わせる代わりに、セルロースァシレートフィルム(CAR— 1)又は(CAR —2)の酸ィ匕処理面を貼り合わせる以外は実施例 1と同様にして、比較用偏光板 (PR 1)又は (PR— 2)を作製した。得られた偏光板における保護フィルム、反射防止膜 及びアルカリ鹼ィ匕処理後のフィルムの組み合わせ、並びに得られた偏光板の単板透 過率、偏光度の変動幅、及びクロスニコル時の透過率を表 5に示す。
[0560] [表 5]
Figure imgf000140_0001
[0561] [反射防止能付き偏光板の特性の評価]
得られた各偏光板について、下記の内容を評価し、その結果を表 6に記載した。 (偏光膜の密着性)
前記反射防止能付き偏光板作製に際して、反射防止膜塗設保護フィルムと偏光膜 を貼りあわせて得た積層物を試料とし、その各試料を温度 25°C、湿度 60%RHの条 件で 2時間調湿した。各試料の偏光膜側の表面をカッターナイフで碁盤目状に縦 11 本、横 11本の切り込みを入れて、合計 100個の正方形の升目を刻み、その升目が 刻まれた箇所について、 日東電工 (株)製のポリエステル粘着テープ" NO. 31B"を 用いて密着試験を繰り返し 3回行った。偏光膜のセルロースァシレートフィルムからの 剥がれの有無を目視で観察し、下記の 4段階評価を行った。
[0562] ◎: 100升において剥がれが全く認められなかったもの
〇: 100升において剥がれが認められたものが 2升以内のもの
△: 100升において剥がれが認められたものが 10〜3升のもの
X: 100升において剥がれが認められたものが 10升をこえたもの
(反射防止能付き偏光板の密着性)
反射防止能付き偏光板を、アクリル系接着剤を用いてガラス板に貼りつけ 90°Cで 2 0時間保存した。アクリル系接着剤は液晶表示装置の組み立てに用いるものと同じも のを用い、ガラス板は液晶セルに用いられるものと同じものを用いた。ガラス板力も反 射防止能付き偏光板を垂直方向に剥がして (90°剥離)、剥離残りが生じた部分を調 ベることで、密着性を評価した。
[0563] ◎:全く発生しな 、(10人が評価し、 1人も認識できな 、レベル)
〇:わずかに発生する(10人が評価し、 1〜3人が認識するレベル) Δ:弱く発生する(10人が評価し、 3〜5人が認識するレベル)
X:強く発生する(10人が評価し、 6人以上が認識するレベル)
(光学的欠陥)
各偏光板の反射防止膜表面と、偏光板の反射防止膜が設けられて 、な 、側 (偏光 板の裏側)の保護フィルム表面を「マジックインキ」(商品名)で黒塗りした後、その塗 装面上にあるサイズが 100 μ m以上の輝点欠陥の数を目視で判定した。 lm2あたり の偶数でカウントした。
(鏡面反射率及び色味の均一性)
各偏光板を、前記反射防止膜の鏡面反射率及び色味の均一性と同様の測定内容 と評価基準で評価した。
(耐久性)
各偏光板を、 60°C、 95%RHの条件下に 500時間放置した後の偏光度を評価した 。偏光度は前記同様にして求めた。
[0564] ◎:偏光度の変化率が 2%未満
〇:偏光度の変化率が 2%以上 3%以下
Δ:偏光度の変化率が 3%を超え 4%未満
X:偏光度の変化率が 4%以上
謹性)
各偏光板を、前記反射防止膜の耐候性と同様の内容で試験した。反射率変化を下 記の基準,及び色味変化は前記反射防止膜と同様の基準で其々評価した。
[0565] 〇:平均反射率の変化が 0. 5%以下
△:平均反射率の変化が 0. 5%を越え、 0. 8%以下
X:平均反射率の変化が 0. 8%を越える
[0566] [表 6]
«光板 «光腹 僕光板 光学的欠 B 偏光度 色味 耐候性
No. 密着性 密着性 W久性 均一性反射率/色味 実施例 1-1 P-J o O 05 o 0 o/@ 比較例 1 -1 PR- 1 Δ 厶 3.5 o o 0/® 比被 « 1 -2 PR— 2 X Δ ≥5 o 0 Δ/Ο [0567] 実施例 1 1の反射防止能付き偏光板 (P— 1)は、密着強度が充分であり、視覚的 な異物となる光学的欠陥は実用上問題とならないもので、色味均一性は良好であつ た。また偏光板の耐久性及び耐候性も良好であった。一方、比較例 1—1及び 1—2 の偏光板 (PR— 1)及び (PR— 2)は、ともに密着強度が不十分で、視覚的な異物が 実用する上で問題となるほどに多力つた。
[0568] 以上のように、本発明の反射防止能付き偏光板のみ力 偏光板の全面にわたって 視覚的異物が無ぐ低反射率で反射防止性能に優れ、反射光の色味もニュートラル に近似しており、且つ耐候性 '耐湿性などの耐久性にも優れたものであり、さらに長 尺の形態で生産性よく作製できる偏光板であった。
実施例 11—1
本発明の偏光板を液晶表示装置に装着して、表示画像の性能を評価した。
〔液晶表示装置〕
[視認側偏光板 (SHB— 1) ]
光学補償層を有する光学補償フィルム「ワイドビューフィルム A 12BJ [富士写真 フィルム (株)製]の背面 (光学補償層を有する側とは反対側の表面)を実施例 1— 1 のアル力リ鹼化処理と同様の条件で鹼化処理した。
[0569] 次に反射防止能付き偏光板 (P— 1)の裏側の保護フィルム (セルローストリァセテ一 トフイルム)の表面を、同様にしてアルカリ鹼化処理し、接着剤としてポリビュルアルコ ール系接着剤を用いて、反射防止能付き偏光板 (P— 1)及び上記光学補償フィルム の各酸ィ匕処理したセルロースァシレートフィルム面同士を貼り合わせた。この様にし て、視認側偏光板 (SHB— 1)を作製した。
[下側偏光板 (BHB— 1) ]
前記の偏光膜 (H— 1)の両面の保護フィルムとして、前記のセルロースァシレートフ イルム(CA—1)を用い、それぞれの片面を前記と同様にアルカリ酸ィ匕処理して、この 処理面を偏光膜 (H— 1)にポリビニル系接着剤を用いて貼り合わせて偏光板を作製 した。次にこの偏光板の一方の側のセルローストリアセテートフィルム(CA— 1)の表 面、及び光学補償フィルム「ワイドビューフィルム A 12B」の背面 (光学補償層を有 する側とは反対側の表面)を、同様にアルカリ鹼ィ匕処理した。接着剤としてポリビュル アルコール系接着剤を用いて、各酸ィ匕処理した面同士を貼り合わせた。この様にし て、下側偏光板 (BHB— 1)を作製した。
[TNモード液晶表示装置]
TNモードで 20インチの液晶表示装置〃 TH— 20TA3"型 [松下電器 (株)製]に設 けられて 、る視認側の偏光板の代わりに、本発明の視認側偏光板 (SHB— 1)の光 学異方性層が液晶セル側となるようにアクリル系粘着剤を介して、観察者側に 1枚貼 り付けた。またバックライト側には、光学異方性層側が液晶セル側となるように粘着剤 を介して上記の下側偏光板 (BHB— 1)を貼り付けた。観察者側の偏光板の透過軸 と、ノ ックライト側の偏光板の透過軸とは、 Oモードとなるように配置した。
比較例 11 1及び 11 2
実施例 11 1において、視認側偏光板用の偏光板として反射防止性偏光板 (P— 1)を用いる代わりに、反射防止性偏光板 (PR— 1)又は(PR— 2)を用いる以外は実 施例 11— 1と同様にして視認側偏光板 (SHB— R1)又は(SHB— R2)を作製し、以 下、これらの視認側偏光板 (SHB— R1)又は(SHB— R2)を用いる以外は実施例 1 1—1と同様にして、 TNモード液晶表示装置を作製した。
[0570] これらの液晶表示装置に用いられた各偏光板の構成を表 7に示す。
[0571] [表 7]
Figure imgf000143_0001
光学補債フィルム ワイドビューフィルム" A 12B"富士写真フィルム (株)ΙΪ
[液晶表示装置の描画性能]
上記の各液晶表示装置について、以下の内容の画像描画性を評価した。その結 果を表 8に示す。
(描画画像のムラ評価)
測定機("ΕΖ— Contrast 160D〃ELDIM社製)を用いて、黒表示(L1)時の描画 ムラを目視で観察した。
[0573] 〇:全く発生しな 、(10人が評価し、 1人も認識できな 、レベル)。
[0574] △:弱く発生する(10人が評価し、 1〜5人が認識するレベル)。
[0575] X:強く発生する(10人が評価し、 6人以上が認識するレベル)。
(外光の写り込み評価)
外光の映り込みの評価を、蛍光灯を用いて行い、目視にて下記 4段階評価を行つ た。
[0576] ◎:映り込みの変化はあるが全く気にならない。
[0577] 〇:映り込みの変化はあるが殆ど気にならない。
[0578] Δ:映り込みの変化は気になるが、許容できる。
[0579] X:映り込みの変化が気になる。
(黒表示の光漏れ)
液晶表示装置正面からの方位方向 45°、極角方向 70°における黒表示の光漏れ 率を測定し、下記の基準に従って評価した。
[0580] 〇:光漏れ率が 0. 1%を超えない。
[0581] △:光漏れ率が 0. 4%以下、 0. 1以上の範囲。
[0582] X:光漏れ率が 0. 4%を超える。
(黒表示の色味評価)
液晶表示装置について、測定機("EZ— Contrast 160D"ELDIM社製)を用い て、黒表示 (L1)時の色味変化を目視で観察した。
[0583] ◎:全く認められな 、(10人が評価し、 1人も認識できな 、レベル)。
[0584] 〇:僅かに認められる(10人が評価し、 1〜2人が認識するレベル)。
[0585] △:弱く認められる(10人が評価し、 3〜5人が認識するレベル)。
[0586] X:強く発生する(10人が評価し、 6人以上が認識するレベル)。
(コントラスト、及び視野角)
液晶表示装置の液晶セルに、白表示電圧 2V、黒表示電圧 6Vを印加し、測定機(〃 EZ- Contrast 160D〃ELDIM社製)を用いて、コントラスト比及び左右
方向(セルのラビング方向と直交方向)の視野角(コントラスト比が 10以上となる角度 範囲の広さ)を調べた。
[0587] ◎:全く気にならない
〇:変化はあるが殆ど気にならない
△:変化は気になるが、許容できる
X:変化が気になる
(色味変化)
(コントラスト、視野角)の評価方法と同様の装置を用いて、 15°C、 30%RH環境と、 25°C、 80%RH環境における、視野角が正面から 60°の範囲内における色調の変 化の度合いを目視で観察し、下記の基準で評価した。
[0588] ◎:全く気にならない。
[0589] 〇:変化はあるが殆ど気にならない。
[0590] △:変化は気になる力 許容できる。
[0591] X:変化が気になる。
[0592] [表 8]
Figure imgf000145_0001
[0593] 本発明の実施例 11— 1の液晶表示装置は、高輝度の外光の写り込みがなく表示 画像の描画性の 、ずれもが鮮明で良好であり、保護フィルムの耐久性も良好であつ た。比較例 11 1及び比較例 11 2の液晶表示装置は、画像ムラ'黒表示の光漏れ が不十分なものとなった。またコントラストが不十分で色味の変化も実施例のものより 大きかった。
[0594] 以上の様に、本発明の液晶表示装置のみが全面均一で明るい鮮明な表示画像を 描画でき、且つ耐久性も良好なものであった。
実施例 2—1〜2 - 3
実施例 1にお 、て、反射防止膜付き偏光板 (P— 1)の反射防止膜の代わりに下記 内容の各層、及び偏光膜 (H— 2)を用いた他は、実施例 1と同様にして反射防止膜 付き偏光板 (P— 2)〜 (P— 3)を作製した。
〔反射防止膜 (AF)の作製〕
レ、ードコート層用塗布液 (HCL— 2)の調製]
ジペンタエリスリトールペンタアタリレートとジペンタエリスリトールへキサアタリレート の混合物 ["DPHA〃日本ィ匕薬 (株)製] 315. 0質量部に、シリカ微粒子のメチルェチ ルケトン分散液 ["MEK— ST"、固形分濃度 30質量%、 日産化学 (株)製] 450. 0質 量部、メチルェチルケトン 15. 0質量部、シクロへキサノン 220. 0質量部、光重合開 始剤「ィルガキュア 907」 [チバ 'スペシャルティ'ケミカルズ (株)製] 16. 0質量部、を 添カ卩して攪拌した。孔径 0. 4 mのポリプロピレン製フィルターで濾過してハードコー ト層用の塗布液 (HCL - 2)を調製した。
{二酸ィ匕チタン微粒子 (T— 2)の作製 }
特開平 5— 330825号公報に基づいて、鉄 (Fe)をジルコニウムに変更した以外は 同公報と同様にして、二酸ィ匕チタン粒子の中にジルコニウムをドープしたジルコユウ ム含有の二酸ィ匕チタン微粒子 (T— 2)を作製した。ジルコニウムのドープ量は、 Ti/ Zr (質量比)で、 97. 5/2. 5となるようにした。作製した二酸ィ匕チタン微粒子は、ル チル型の結晶構造が認められ、 1次粒子の平均粒子サイズが 40nm、比表面積が 39 m Z gであった。
{二酸化チタン微粒子分散液 (TL 2)の調製)
上記二酸ィ匕チタン微粒子 (T— 2) 100g、下記の分散剤(DP— 3) 18g、及びシクロ へキサノン 303gを添カ卩して、粒径 0. 1mmのジルコ-ァビーズ用いてダイノミルによ り分散した。分散温度は 40〜45°Cで 6時間分散して二酸化チタン微粒子分散液 (T L— 2)を調製した。得られた分散液の分散粒子の平均径は 55nmで、 300nm以上 の粒子は 0%であった。 [0595] [化 11]
Figure imgf000147_0001
[0596] {複合酸化物微粒子分散液 (TL 3)の調製)
コバルトイオンドープ(ドープ量 4質量%)の Ti及び Ta力 なる複合酸ィ匕物 [TiZ (T i+Ta) =0. 8モル比]微粒子 (T— 3) 92g、下記構造のシリル化合物 3 lg、及びシク 口へキサノ 337gの混合物を、サンドミル(1Z4Gのサンドミル)にて 6時間微細分散し た。分散メディアとして、粒径 0. 2mmのジルコ-ァビーズを 1400g用いた。ここ〖こ 1 モル ZL塩酸 0. lgを添加して窒素雰囲気下で 80°Cに昇温し、更に 4時間攪拌した 。得られた分散液の表面処理したドープ複合酸ィ匕物微粒子の粒径は 60nm、 300η m以上の粒子は 0%であった。
[0597] [化 12]
Figure imgf000147_0002
[0598] {複合酸化物微粒子分散液 (TL 4)の調製)
チタン、ビスマス及びジルコニウムからなる複合酸化物 [BiZ (Bi+Ti+Zr) =0. 0 8モル比、 ZrZ (Bi+Ti+Zr) =0. 05モル比]微粒子 (T— 4) 100gに、下記分散剤 (DP— 4) 25g、及びシクロへキサノン 375gを添カ卩して、粒径 0. 1mmのジルコ-アビ ーズを用いてダイノミルにより分散した。分散温度は 40〜45°Cで 6時間分散して複 合酸ィ匕物微粒子分散液を調製した。得られた分散液の分散粒子の平均径は 75nm で、 300nm以上の粒子は 0%であった。 [0599] [化 13] 分散剤 (DP— 4)
Figure imgf000148_0001
[0600] [中屈折率層用塗布液 (MLL— 2)〜(MLL— 4)及び高屈折率層用塗布液 (HLL
2)〜(HLL— 4)の調整]
実施例 1にお ヽて、中屈折率層用塗布液 (MLL— 1)及び高屈折率層用塗布液( HLL- 1)中に二酸ィ匕チタン微粒子分散物 (TL—1)を用いる代わりに、上記の二酸 化チタン微粒子分散液 (TL 2)及び複合酸化物微粒子分散液 (TL 3)〜 (TL 4)のいずれかを用いた以外は実施例 1と同様にして、それぞれの塗布液を調製した
[低屈折率層用塗布液 (LLL 2)の調製]
屈折率 1. 42の熱架橋性フッ素系ポリマー ["JTA113"、固形分濃度 6%、JSR (株 )製 ] 130質量部、シリカゾル [シリカ、〃MEK— ST〃、平均粒径 15nm、固形分濃度 3 0質量%、 日産化学 (株)製] 5質量部、中空シリカ ["CS60— IPA"、平均粒径 60nm 、シェル層厚 10nm、屈折率 1. 31、イソプロパノール 20質量%分散液、触媒化成( 株)製] 15質量部、前記のゾル液 (a) 6質量部、メチルェチルケトン 50質量部、及び シクロへキサノン 60質量部を添加、攪拌の後、孔径 1 μ mのポリプロピレン製フィルタ 一でろ過して、低屈折率層用塗布液 (LLL 2)を調製した。
[低屈折率層用塗布液 (LLL 3)の調製]
屈折率 1. 42の熱架橋性フッ素系ポリマー ["JTA113"、固形分濃度 6%、JSR (株 )製 ] 150質量部、" DPHA〃3. 5質量部、シリカゾル〃 MEK— ST〃 5質量部、中空 シリカ〃 CS60—IPA"15質量部、上記のゾル液 a6質量部、反応性シリコーン〃 X22— 164C"3質量部、メチルェチルケトン 50質量部、及びシクロへキサノン 60質量部を 添加、攪拌の後、孔径 1 μ mのポリプロピレン製フィルターでろ過して、低屈折率層用 塗布液 (LLL 3)を調製した。
[反射防止膜 (AF— 2)〜 (AF— 4)の作製]
保護フィルムとしてセルロースァシレートフィルム(CA—1)を用い、その上に、実施 例 1—1と同様にして、前記のハードコート層塗布液 (HCL— 2)、中屈折率層塗布液 、高屈折率層用塗布液及び低屈折率層塗布液を順次塗設して、ハードコート層 (H C 2)、中屈折率層、高屈折率層及び低屈折率層から構成される反射防止膜 (AF 2)〜 (AF— 4)を作製した。使用した塗布液および反射防止膜の各層の組み合わ せを表 9に示す。
〔反射防止性偏光板 (P— 2)の作製〕
[偏光膜 (H— 2)の作製]
数平均重合度が 2400、膜厚 75 μ mの PVAフィルムを、 40°Cのイオン交換水にて 1分間浸漬し、ゴムローラーにて余剰水分を取った後、ヨウ素 1. Og/ ヨウ化力リウ ム 80. OgZLの水溶液に 25°Cにて 55秒、フィルムが弛まないように浸漬し、ゴムロー ラーにて余剰水分を取った後、さらにホウ酸 40gZL、ヨウ化カリウム 30gZLの水溶 液に 30°Cにて 90秒、フィルムが弛まないように浸漬後、ステンレス製ブレードにて余 剰水分を除去し、フィルム中の含有水分率の分布を 2%以下にした状態で、図 3の形 態のテンター延伸機に導入した。
[0601] 搬送速度を 15mZ分として、 500m送出し、 60°C、 95%RH雰囲気下で 4. 5倍に 延伸し、テンターを延伸方向に対し図 3の如く屈曲させ、以降幅を一定に保ち、収縮 させながら、 30秒で膜面温度が 60°C力も 65°Cとなるように 80°C雰囲気で 3分 30秒 乾燥させた後、テンター力も離脱して膜厚 19 μ mの偏光膜 (H - 2)を作製した。
[0602] 偏光膜作成中の延伸温度湿度の変動は温度が 60±0. 1°C、湿度が 95% ±0. 5 %であった。延伸開始前の PVAフィルムの含水率は 33%で、乾燥後の含水率は 2. 2%であった。
[0603] 左右のテンタークリップの搬送速度差は、 0. 05%未満であり、導入されるフィルム の中心線と次工程に送られるフィルムの中心線のなす角は、 47°であった。ここで I L1 -L2 I は 0. 7m、Wは0. 7mであり、 | L1 -L2 | =Wの関係にあった。テンタ 一出口における実質延伸方向 Ax— Cxは、次工程へ送られるフィルムの中心線 22 に対し 45°傾斜していた。テンター出口におけるシヮ、フィルム変形及び延伸ムラは 観察されなかった。
[反射防止性偏光板 (P— 2)の作製]
得られた偏光膜 (H— 2)と反射防止膜 (AF— 2)及び CA—1を用いて、同様にして 反射防止性偏光板 (P— 2)を作製した。得られた偏光板の吸収軸方向は、長手方向 に対し 45°傾斜して!/、た。このロール形態の偏光板の 550nmにおける透過率及び 偏光度を 10mおきに測定した結果、単板透過率の変動は 43. 2±0. 1%、偏光度 は 99. 97±0. 01%であった。またクロス-コル時の波長 700nmでの透過率は 0. 1 5%、波長 400nmでの透過率は 0. 08%であった。
[0604] さらに図 4の如く 310 X 233mmサイズに裁断したところ、 91. 5%の面積効率で辺 に対し 45°吸収軸が傾斜した偏光板を得ることができた。
[反射防止性偏光板 (P— 3)及び (P— 4)の作製]
上記反射防止性偏光板 (P— 2)の作製にぉ 、て、反射防止膜 (AF— 2)を用いる 代わりに、反射防止膜 (AF— 3)又は (AF— 4)を用いる以外は同様にして、反射防 止性偏光板 (P— 3)及び (P— 4)を作製した。得られた偏光板の偏光膜と反射防止 膜の組み合わせ、並びに単板透過率及び偏光度の変動幅を表 9に示す。
[0605] [表 9]
Figure imgf000150_0001
Figure imgf000150_0002
[0606] 実施例 12 〔液晶表示装置〕
[視認側偏光板 (SHB— 2)〜(SHB— 4) ]
実施例 11 1の視認側偏光板 (SHB— 1)における反射防止性偏光板 (P— 1)の 代わりに、上記の各反射防止性偏光板 (P— 2)〜(P— 4)を用いた以外は、実施例 1 1 1と同様にして視認側偏光板 (SHB 2)〜(SHB—4)を作製した。
[OCBモード液晶表示装置]
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング 処理を行った。得られた 2枚のガラス基板をラビング方向が平行となる配置で向力 ヽ 合わせ、セルギャップを 6 mに設定した。セルギャップに、 Δ η力 . 1396の液晶性 化合物(〃ZLI1132〃メルク社製)を注入し、ベンド配向液晶セルを作製した。作製し たベンド配向セルを挟むように、視認側偏光板(SHB— 2)〜(SHB— 4)のいずれか を、光学補償フィルムが液晶セル側となるように粘着剤を介して、セルの視認側に貼 り付けた。またバックライト側には、光学異方性層側が液晶セル側となるように粘着剤 を介して下側偏光板 (BHB— 1)を貼り付けた。視認側の偏光板の透過軸と、バックラ イト側の偏光板の透過軸とは、 Oモードとなるように配置した。液晶表示装置に用い た各種偏光板の組み合わせを表 10に示す。
[0607] [表 10]
Figure imgf000151_0001
光学補儐フィルム ワイドビューフィルム" A 12B" S土写真フィルム (株 >¾
[0608] 実施例 12— 1〜12— 3の液晶表示装置について、実施例 11 1の液晶表示装置 と同様にして各性能を調べた。これらの液晶表示装置はいずれも、実施例 11 1の 液晶表示装置と同等の良好な性能を示した。
実施例 3
〔保護フィルム (CA— 2)の作製〕 [微粒子分散物 (RL— 2)の調製]
下記の組成からなる混合物及びビーズ径 0. 2mmのジルコ-ァビーズを、ダイノミ ル分散機で投入し湿式分散して体積平均粒径 55nmになるよう分散を行った。得ら れた分散物を 200メッシュのナイロン布でビーズを分離して、微粒子分散物 (RL— 2 )を調製した。得られた分散物の分散粒子径は、走査型電子顕微鏡で測定し、またレ 一ザ一解析 ·散乱粒子径分布測定装置" LA― 920" [ (株)堀場製作所製]を用 ヽて 分散物の粒度分布を測定したところ、粒径 300nm以上の粒子は 0%であった。
[0609] 微粒子分散物 (RL— 2)の組成
疎水性シリカ 2. 20質量部
商品名" AEROSIL (R)972"
メチル基変性体、一次粒径 16nm 日本ァエロジル (株)
セノレローストリアセテート 2. 00質量部
置換度 2. 78 (6位置換度 0. 90)
下記構造の分散剤 (DP— 5) 0. 22質量部
酢酸メチル 71. 0質量部
メタノーノレ 6. 2質量部
アセトン 6. 1質量部
エタノーノレ 6. 1質量部
1ーブタノール 6. 1質量部
[0610] [化 14]
( D P— 5 )
ff
C12H250(CH2CH20)2 -P(OH)
[0611] [セルロースァシレート溶液 (A— 2)の調製]
下記の組成カゝらなる混合物を攪拌溶解して、セルロースァシレート溶液 (A- 9)を 調製した。
.セルロースァシレート溶液 (A— 2)組成
セルロースアセテートプロピオネート 100質量部 置換度 2. 70 (アセテート Zプロピオネート比 ΙΖΟ. 4)
下記構造の可塑剤 Κ 3 8. 0質量部
下記構造の可塑剤 Κ 4 6. 5質量部
下記のレターデーシヨン調整剤 RC- 12. 0質:
下記構造の UV— 3 0. 7質量部
下記構造の UV— 4 0. 55質量部
酢酸メチル 290質量部
メタノーノレ 25質量部
アセトン 25質量部
エタノーノレ 25質量部
1ーブタノール 25質量部
[0612] [化 15]
Κ-3 K-4
C2HS- C(CH2OCOCH3)3
Figure imgf000153_0001
[0613] [化 16]
Figure imgf000153_0002
[0614] (ドープの調製)
セルロースァシレート溶液 (A— 2) 474質量部に、微粒子分散物 (RL— 2) 15. 3質 量部を添加して充分に攪拌した後、更に室温(25°C)にて 3時間放置し、得られた不 均一なゲル状溶液を、 70°Cにて 6時間冷却した後、 50°Cに加温 '攪拌して完全に 溶解したドープを得た。
[0615] 次に得られたドープを、 50°Cで絶対濾過精度 0. Olmmの濾紙" # 63" [東洋濾紙
(株)製]により濾過し、さらに絶対濾過精度 0. 0025mmの濾紙" FH025"
(ポール社製)にてフィルター濾過及び脱泡を行ってドープを調製した。
(溶液流延方法)
上記のようにして得られたドープを、ドラム上に流延して、セルロースァシレート溶液 力 セルロースァシレートフィルムを製膜した。ドラムはハードクロム鍍金を施し、その 表面は、中心線平均粗さ(Ra)が 0. 010 m、最大高さ(Ry)が 0. 60 mであり、ま た十点平均粗さ(Rz)は 0. 016 μ mの、直径 200mm、幅 2500mmのものを用いた
[0616] 流延方法は、実施例 1記載のバンド流延と同様の条件で行った。ドラム面上での膜 面温度が 40°Cとなってから 1分間乾燥し、残留溶媒量が 50質量%のフィルムを剥ぎ 取った後、 140°Cの乾燥風で、残留溶媒量力 0質量%のフィルムを、テンターを用 いて幅方向に 17%延伸し、延伸後の幅のまま 130°Cで 30秒間保持した。この後、 1 30°Cの乾燥風で 20分間乾燥し、残留溶媒量が 0. 25質量%のセルロースァシレー トフイルム(保護フィルム)(CA— 2)を、厚さ 60 πι、長さ 1000m、幅 1. 34mの卷き ロール形態で製造した。膜厚の変動幅は ± 2. 4%であった。幅方向のカール値は— 0. 4Zm、ヘイズ 0. 2%であった。
[0617] その他のフィルムの特性を表 11に記載した。
[0618] [表 11]
Figure imgf000154_0001
表面形状 *:上段:ドラム ffiの反対側(内面) /下段:ドラム面側 (外面)
[0619] 表 11に示されるごとく、得られたセルロースァシレートフィルム(CA— 2)は、フィル ムの力学的な特性が本発明の範囲内で、表面形状も均一性が良好であり、且つ透 湿も適切な範囲であった。
〔反射防止膜 (AF- 5)の作製〕 上記のセルロースァシレートフィルム(CA— 2)の内面側(ドラム側)表面上に、 " ペルノックス C—4456 - S7" [ATOを分散したハードコート剤(固形分 45質量 %):日本ペルノックス (株)製]を塗布、乾燥後、紫外線を照射して硬化し、厚み 1 μ mの帯電防止層(ECL)を形成した。このフィルムの表面抵抗は 108 Ω /口オーダー の導電性であった。
[0620] なお表面抵抗率は、試料を、 25°C、 65%RHの条件下に 1時間放置した後、同条 件下で三菱化学 (株)製 抵抗率計" MCP— HT260 "を用いて測定した。
[0621] このフィルム上に下記のようにしての反射防止膜 (AF— 5)を作製した。
{防眩性ハードコート層用塗布液 (HCL— 3)及び防眩性ハードコート層(HC— 3) } ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレートの混合物" PETA〃[日本火薬 (株)製] 50質量部、硬化開始剤「ィルガキュア 184」(チバ 'スぺ シャルティ'ケミカルズ (株)製) 2質量部、第 1の透光性微粒子としてアクリルースチレ ンビーズ [綜研ィ匕学 (株)製、粒径 3. δ μ ηι,屈折率 1. 55] 5質量部、第 2の透光性 微粒子としてスチレンビーズ [綜研ィ匕学 (株)製、粒径 3. 5 /ζ πι、屈折率 1. 60] 5. 2 質量部、シランカップリング剤" ΚΒΜ— 5103" [信越ィ匕学工業 (株)製] 10質量部、及 び下記のフッ素系ポリマー(PF— 2) 0. 03質量部をトルエン 50質量部と混合して塗 布液として調製し、これをロール形態力 巻き出された上記の導電層(ECL)付きセ ルロースァシレートフィルムの上に、乾燥膜厚 6. になるように塗布し、溶媒乾燥 後、 160WZcmの空冷メタルハライドランプ (アイグラフィックス (株)製)を用いて、照 度 400mWZcm2、照射量 300mj/cm2の紫外線を照射して塗布層を硬化させて、 屈折率 1. 54の防眩性ノヽードコート層(HC— 3)を作製した。
[0622] [化 17]
フッ素系ポリマー(PF— 2)
Figure imgf000155_0001
Mw : 4X104 (¾量粗成比)
[0623] {低屈折率層(LL 1)の形成 } 上記の防眩性ハードコート層(HC— 3)上に、前記低屈折率層用塗布液 (LLL 1 )を、マイクログラビアコーターを用いて塗布した。 80°Cで乾燥した後、酸素濃度が 1 . 0体積%以下の雰囲気になるように窒素パージしながら、 160WZcmの空冷メタル ノ、ライドランプ (アイグラフィックス (株)製)を用いて、照度 550mWZcm2、照射量 60 Omj/cm2の紫外線を照射し、低屈折率層 (LL— 1) (屈折率 1. 43、膜厚 86nm)を 形成した。このようにして、本発明の反射防止膜 (AF— 5)を作製した。
[0624] 得られた反射防止膜の平均反射率は 2. 1%、ヘイズは 43%であった。
[0625] また機械的特性、耐久性に関わる実施例 1記載の性能について、実施例 1と同様 にして
評価した。鮮明性及び反射光の色味の均一性は、実施例 1の反射防止膜と同等の 良好なものであった。
(表面処理)
上記の、一方の表面に、防眩性ノヽードコート層(HC— 3)及び低屈折率層 (LL- 1 )力もなる反射防止膜 (AF— 5)が形成されたセルロースァシレートフィルム(CA— 2) の、反射防止膜とは反対側の表面に、 100°Cの熱風を吹き付けて 45°Cまで加熱した 後に、 25°Cに保温した下記内容のアルカリ溶液(S— 2)を、エタストルージョンコータ 一を用いて塗布量 17ccZm2、塗布速度 65mZ分で塗布し、 8秒間経過後、再びェ タストルージョンコーターを用いて純水を 5ccZm2塗布した。この時のフィルム温度は 45°Cであった。次いで、エタストルージョン型コーターを用いて lOOOccZm2の純水 を塗布し、水洗を行い、 5秒間経過後に lOOmZ秒の風をエアナイフより水塗布面に 衝突させた。次いでエタストルージョンコーターにより水洗とエアナイフによる水切りを 2回繰り返した後、 80°Cの乾燥ゾーンに 10秒間滞留させて乾燥し、反射防止膜塗設 鹼ィ匕処理フィルム AFS - 5を作製した。
'アルカリ溶液 (S— 2)組成
水 41. 6質量部
イソプロパノール 41. 6質量部
水酸ィ匕ナトリウム 4. 0質量部
下記の界面活性剤(SF— 2) 0. 8質量部 C H 0 (CH CH O) H
14 29 2 2 10
相溶化剤:エチレングリコール 12. 0質量部
消泡剤 0. 05質量部
「プルトニック TR701」 [旭電化工業 (株)製]
得られたフィルム (AFS— 5)表面の特性を表 12に記載する。
[0626] アルカリ溶液の塗布をェクストルージョンコーターを用い験ィ匕速度を 65mZ分の高 速処理で行ったフィルム (AFS— 5)は、実施例 1と同等の結果を示し、験化処理後 の表面の面状は良好で均一な親水化が行われた。
[表 12]
Figure imgf000157_0001
[0628] 〔光学補償フィルムの作製〕
前記のセルロースァシレートフィルム(CA— 2)の内面側表面を、上記の反射防止 膜 (AF— 5)が形成されたセルロースァシレートフィルムの背面と同様にアルカリ險化 処理を行った。この表面処理したフィルム上に、下記の組成の配向膜塗布液を、ロッ ドコーターで 28mL/m2の塗布量となるように塗布し、 60°Cの温風で 60秒、さらに 9 0°Cの温風で 150秒乾燥した。
•配向膜塗布液
下記変性ポリビニルアルコ 20質量部
クェン酸 0. 05質量咅
グルタルアルデヒド 0. 5質量部
水 360質量部
メタノーノレ 120質量部 [0629] [化 18]
変性ポリビニルアルコール
Figure imgf000158_0001
[0630] (配向膜面のラビング処理)
次に、環境条件(25°C、 45%RH)のもとに、フィルムの長手方向に配向膜面に、巿 販のラビング布を貼り付けたラビンダロールで搬送方向に対し平行にラビング処理を 実施した。
[光学異方性層の形成]
配向膜上に、下記構造のディスコティック液晶性ィ匕合物(DA) 41. 01質量部、ェチ レンオキサイド変成トリメチロールプロパントリアタリレート "V # 360" [大阪有機化学( 株)製] 4. 06質量部、セルロースアセテートブチレード CAB551— 0.
2" (イーストマンケミカル社製) 0. 90質量部、セルロースアセテートブチレード' CAB 531— 1〃 (イーストマンケミカル社製) 0. 23質量部、光重合開始剤「ィルガ キュア 907」(チバ 'スペシャルティ ·ケミカルズ (株)製) 1. 35質量部、増感剤「力ャキ ユア一 DETX」 [日本化薬 (株)製] 0. 45質量部、下記構造のフッ素系界面活性剤( SF- 3) 0. 40質量部を、 102質量部のメチルェチルケトンに溶解した溶液を塗布液 とし、これを、 # 3. 4のワイヤーバーで塗布した。これを 130°Cの恒温ゾーンで 2分間 加熱し、ディスコティック液晶性ィ匕合物を配向させた。次に、 60°Cの雰囲気下で 120 WZcmの高圧水銀灯を用いて、 1分間 UV照射し、ディスコティック液晶性ィ匕合物を 重合させた。その後、室温まで放冷した。このようにして、膜厚 2. の光学異方 性層を形成し、光学補償フィルム (WV— 1)を作製した。 [0631] [化 19]
ディスコ亍イツク液 ft性化合物( DA)
Figure imgf000159_0001
[0632] フッ素系界面活性剤(SF— 3)
C F CH CH O (CH CH O) — H
8 17 2 2 2 2 10
(表面処理)
得られた光学補償フィルム (WV— 1)の、光学異方層が設けられて 、な 、側のフィ ルム表面を、前記の反射防止膜 (AF— 5)が形成されたセルロースァシレートフィル ムの背面と同様に酸ィ匕処理した。
〔偏光膜 (H— 3)及び視認側偏光板 (SHB— 5)〕
数平均重合度が 2400、膜厚 75 μ mの PVAフィルムを、 40°Cのイオン交換水にて 60秒間予備膨潤し、ステンレス製のブレードにて表面水分を搔き取ったのち、ヨウ素 0. 7g/ ヨウ化カリウム 60. Og/ ホウ酸 lgZLの水溶液に、濃度が一定になる ように濃度補正しつつ 40°Cで 55秒浸漬し、さらにホウ酸 42. 5gZL、ヨウ化カリウム 3 OgZL、 C. I. Direct Yellow 44 ( λ max410nm) 0. lg/L、 C. I. Direct Bl ue 1 ( λ max650nm) 0. lgZLの水溶液に、濃度が一定になるように濃度補正し つつ、 PVAフィルムを 40°Cで 90秒浸漬後、フィルムの両面をステンレス製ブレード にて余剰水分を搔き取り、テンター延伸機を用いて、横一軸延伸した。搬送速度を 4 mZ分として、 100m送出し、 60°C、 95%RH雰囲気下で 4. 12倍まで延伸し、以降 幅を一定に保ち、収縮させながら 65°C雰囲気で乾燥させた後、テンターから離脱し 偏光膜 (H— 3)を得た。偏光膜の厚みは 17. 5 /ζ πι、含水率は 3質量%であった。
[0633] このロール形態の偏光膜の 550nmにおける透過率及び偏光度を 10mおきに測定 した結果、単板透過率の変動は 43. 2±0. 1%、偏光度は 99. 97±0. 01%であつ た。またクロス-コル時の波長 700nmでの透過率が 0. 11%、波長 400nmでの透過 率が 0. 08%であった。
[0634] 次に、幅方向から 3cm、カッターにて耳きりをした後、 PVA"PVA— 124H〃[ (株)ク ラレ製] 3質量%水溶液を接着剤として、上記の鹼ィ匕処理した反射防止膜 (AF— 5) 塗設セルロースァシレートフィルム(AFS— 5)の酸化処理面、及び上記の酸化処理 した光学補償フィルム (WV—1)の鹼ィ匕処理面とを、それぞれ貼り合わせ、さらに 70 °Cで 10分間加熱して有効幅 650mm、長さ 100mのロール形態の反射防止能付き 視認側偏光板 (SHB— 5)を作製した。
[0635] 以下に、本発明の視認側偏光板 (SHB— 5)の構成についてまとめる。
[0636] [表 13]
Figure imgf000160_0001
[0637] 実施例 13
〔液晶表示装置〕
[下側偏光板 (BHB— 2) ]
前記の偏光膜 (H— 3)の両面の保護フィルムとして、前記のセルロースァシレートフ イルム (CA— 2)を用い、そのそれぞれの片面を前記と同様にアルカリ酸ィ匕処理して 、この処理面を偏光膜 (H— 3)にポリビュル系接着剤を用いて貼り合わせて偏光板 を作製した。次にこの偏光板の一方の側のセルローストリアセテートフィルム(CA— 2 )の表面、及び上記光学補償フィルム (WV— 1)の光学補償層を有しな!/、側の表面 を、同様にアルカリ鹼ィ匕処理した。接着剤としてポリビニルアルコール系接着剤を用 いて、各酸ィ匕処理した面同士を貼り合わせた。この様にして、下側偏光板 (BHB— 2 )を作製した。
[液晶表示装置]
IPSモードで 20インチの液晶表示装置" W20— lc3000 "型 [日立製作所 (株)製] に設けられて 、る光学フィルムの代わりに、本発明の偏光板 (SHB— 5)の光学異方 性層が液晶セル側となるように、アクリル系粘着剤を介して視認側に 1枚貼り付けた。 また液晶セルの下側には、本発明の偏光板 (BHB— 2)を保護フィルムが液晶セル 側となるように、アクリル系粘着剤を介して 1枚貼り付けた。
[0638] 以下に、本発明の液晶表示装置に用いられた偏光板の構成についてまとめる。
[0639] [表 14]
Figure imgf000161_0001
[0640] [液晶表示装置の描画性能]
実施例 13の表示装置につ ヽて、実施例 11 1と同様にして描画画像の画像品位 を評価した。その結果は、ギラツキ感のない均一性良好な画像で、黒表示での色味 、コントラスト、視野角、色味の-ユートラル性のいずれも良好な性能を示した。
実施例 4
実施例 1で作製した反射防止膜 (AF—1)付き保護フィルムを、以下の内容でェン ボス加工を行 、表面に凹凸形状を賦形した。
[表面凹凸形状の形成]
ェンボシングカレンダ一機 [由利ロール (株)製]に、下記内容のエンボス版を装着 し、線圧 5000NZcm、プレ加熱温度 90°C、およびエンボスローノレ温度 160°Cの条 件にて、前記の反射防止膜 (AF— 1)付き保護フィルムの片面にプレス操作を行!、、 防眩性賦与の反射防止膜 (AF - 6)付き保護フィルムを作製した。なおバックアップ ロールは常温、搬送速度 lmZ分の条件で行った。
(エンボス版)
熱硬化処理した直径 20cm、幅 12cmの S45C材芯金ロールを、ケロシン力卩ェ液( 液中に平均粒径 1. 5 /z mのグラフアイト粒子を 3gZL添加したもの)で、三菱電機( 株)製型彫放電カ卩工機〃 EA8〃型を用いて、厚み 0. 5mmの銅電極にてマイナスのコ ンデンサー放電加工し、算術平均粗さ (Ra) 0. 3 m、平均凹凸周期(Sm) 25 m のエンボス版を得た。 [表面形状の評価]
得られた防眩性反射防止膜 (AF— 6)付き保護フィルム表面の形状は、 JIS B-0 601— 1994に基づいて、表面凹凸の算術平均粗さ (Ra)、十点平均粗さ (Rz)、最 大高さ (Ry)、および表面凹凸の平均間隔 (Sm)を、(株)ミツトヨ製二次元粗さ計" SJ —400 "型により評価した。但し、 Ra、 Rzおよび Ryは、測定長 4/z m、 Smの測定長 は とした。表面凹凸の均一性は、(RaZRz)の比により算出した。凹凸プロフ アイルの傾斜角度分布は、 "SurfaceExplore SX— 520"システム [菱化システム(株 )製、干渉顕微鏡:ニコン (株)製「MM 40Z60シリーズ」対物レンズ:二光束干渉 対物レンズ、ハロゲンランプ使用、 CCDカメラ: 640 X 480]のマイクロマップソフトを 用いて測定した値である。測定結果を表 15に示す。
[0641] [表 15]
Figure imgf000162_0001
[0642] [反射防止膜の性能評価]
得られた防眩性賦与の反射防止膜 (AF 6)付き保護フィルムにつ 、て、以下の内 容の性能評価を行った。得られた結果を表 16に示す。また、耐候試験を行った後の 試料は、試験前の性能と変化の無 、極めて良好なものであった。
(防眩性)
作製した防眩性賦与の反射防止膜 (AF— 6)付き保護フィルムに、ルーバーなしの むき出し蛍光灯(8000cdZm2)を映し、その反射像のボケの程度を以下の基準で評 価し 7こ。
[0643] ◎:蛍光灯の輪郭が全くわ力 ない。
[0644] 〇:蛍光灯の輪郭がわずかにわかる。
[0645] Δ:蛍光灯はぼけて!/、るが、輪郭は識別できる。
[0646] X:蛍光灯がほとんどぼけない。
(ギラツキ) 作製した防眩性賦与の反射防止膜 (AF-6)付き保護フィルムを、 133ppi ( 133pi xels/inch)に模したセル上、距離 lmmの位置に載せ、ギラツキ(防眩性賦与の反 射防止膜の表面凹凸が起因の輝度バラツキ)の程度を、以下の基準で目視評価した
[0647] ◎:全く〜ほとんどギラツキが見られな 、。
[0648] 〇:わずかにギラツキがある。
[0649] Δ:少しギラツキがある。
[0650] X:ギラツキがはっきり認識できる。
(密着性の評価)
各フィルム試料を温度 25°C、湿度 60%RHの条件で 2時間調湿した。各試料の反 射防止膜を有する側の表面を、カッターナイフで碁盤目状に縦 11本、横 11本の切り 込みを入れて合計 100個の正方形の升目を刻み、その升目が刻まれた箇所につ!ヽ て、 日東電工 (株)製のポリエステル粘着テープ" NO. 31B"を用いて密着試験を繰り 返し 3回
行った。剥がれの有無を目視で観察し、下記の 4段階評価を行った。
[0651] ◎: 100升において剥がれが全く認められなかったもの。
[0652] 〇: 100升において剥がれが認められたものが 2升以内のもの。
[0653] △: 100升において剥がれが認められたものが 10〜3升のもの。
[0654] X: 100升において剥がれが認められたものが 10升をこえたもの。
(耐擦傷性)
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
[0655] 評価環境条件: 25°C、 60%RH
こすり材:試料と接触するテスターのこすり先端部(lcm X lcm)にスチールウール ( 日本スチールウール (株)製、 No. 0000)を巻いて、動かないようバンド固定した。
[0656] 移動距離 (片道): 13cm,こすり速度: 13cmZ秒、荷重: 500gZcm2
先端部接触面積: lcm X lcm、こすり回数: 20往復。
[0657] こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部 分の傷を、以下の基準で評価した。 [0658] ◎:非常に注意深く見ても、全く傷が見えない。
[0659] 〇:弱い傷が見えるが、殆ど気にならない。
[0660] Δ:中程度の傷が見える。
[0661] X:—目見ただけで分かる傷があり、気になる。
(鉛筆硬度評価)
各フィルム試料を、温度 25°C、湿度 60%RHの条件で 2時間調湿した後、 JIS S— 6006が規定する 3Hの試験用鉛筆を用い lkgの荷重をかけて、反射防止膜側 の表面を 5箇所につ 、て試験し、下記の基準で目視評価した。
[0662] 〇:全ての箇所において傷が全く認められない。
[0663] △:傷が 1又は 2つ。
[0664] X:傷が 3つ以上。
(質感)
10cm四方のガラス板の両面に、偏光膜をクロス-コル配置で貼り合せ、さらに片側 の偏光膜上に、エンボス面を上にして防眩性賦与の反射防止膜 (AF— 6)付き保護 フィルムを貼り付けた。 100Wの白色電球から 2m離した位置でエンボス面を観察し、 質感について以下の 1〜5のランク付けを行った。
[0665] 5 :反射光の強度が視覚的に均一で、しっとりした質感である。
[0666] 1 :反射光の強度が視覚的にばらついており、ざらざらした質感である。
[0667] 予めランク 5とランク 1の両極端を定め、この間のランクは相対評価した。
[0668] [表 16]
Figure imgf000164_0001
〔反射防止性偏光板の作製〕
実施例 1 1の反射防止膜 (AF— 1)付き保護フィルムの代わりに、上記の防眩性 反射防止膜 (AF— 6)付き保護フィルムを用いた以外は実施例 1—1と同様にして、 偏光板 (P— 6)を作製した。次に視認側偏光板 (SHB— 6)を実施例 11 1と同様に して作製した。 実施例 14
〔液晶表示装置〕
実施例 11 1にお ヽて、視認側偏光板 (SHB— 1)の代わりに視認側偏光板 (SH B— 6)を用いた以外は、実施例 11—1と同様にして液晶表示装置に付設した。以下 に、本発明の液晶表示装置に用いられた偏光板の構成についてまとめる。
[表 17]
Figure imgf000165_0001
光学補僂フィルム * :ワイドビューフィルム" A 12B"ま士写真フィルム (株〉製 得られた液晶表示装置について、実施例 1と同様にして性能を評価した。その結果 は、ギラツキ感のない均一性良好な画像で、黒表示での色味、コントラスト、視野角、 色味の-ユートラル性、色味の湿度依存性の 1、ずれも良好な性能を示した。
実施例 5
実施例 3において、導電性層 (ECL)が形成されたセルロースァシレートフィルム(C A— 2)上に、防眩性ハードコート層(HC— 3)を設ける代わりに、下記内容の光散乱 層(HC—4)を設ける以外は、実施例 3と同様にして視認側偏光板 (SHB— 7)を作 製した。
〔光散乱層 (HC— 4)の作製〕
光散乱層を構成する透光性榭脂としては、紫外線硬化型榭脂" PETA" [日本化薬 (株)製、屈折率 1. 51) 50質量部を用い、これに硬化開始剤「ィルガキュア 184」(チ バ 'スペシャルティ'ケミカルズ (株)製) 2質量部、第 1の透光性微粒子としてアクリル —スチレンビーズ [綜研ィ匕学 (株)製、粒径 3. 5 111、屈折率 1. 55] 5質量部、第 2の 透光性微粒子としてスチレンビーズ [綜研ィ匕学 (株)製、粒径 3. 5 111、屈折率 1. 60 ] 5. 2質量部、シランカップリング剤" KBM— 5103" [信越ィ匕学工業 (株)製] 10質量 部、および下記のフッ素系ポリマー(PF— 3) 0. 03質量部をカ卩えたものをトルエン 50 質量部と混合して塗布液として調製し、これをロール形態から巻き出された導電層付 きセルロースァシレートフィルム(CA— 2)の上に、乾燥膜厚 6. O /z mになるように塗 布し、溶媒乾燥後、 160WZcmの空冷メタルハライドランプ [アイグラフィックス (株) 製]を用いて、照度 400mWZcm2、照射量 300mj/cm2の紫外線を照射して塗布 層を硬化させ光散乱層 (HC— 4)を作製した。
[0672] [化 20] フッ素系ポリマー (PF— 3)
Figure imgf000166_0001
Mw: 1.5 x104 (モル組成比〉
[0673] {低屈折率層(LL 1)の形成 }
次いで上記の光散乱層(HC— 4)上に、実施例 3と同様にして、低屈折率層 (LL- 1)を形成して、本発明の光散乱性反射防止膜 (AF— 7)を作製し、次いで、実施例 1 1 1と同様にして視認側偏光板 (SHB— 7)を作製した。
実施例 15
実施例 13にお 、て、視認側偏光板 (SHB— 5)の代わりに、視認側偏光板 (SHB —7)を用いた以外は、実施例 13と同様にして、液晶表示装置に付設した。以下に、 本発明の液晶表示装置に用いられた偏光板の構成についてまとめる。
[0674] [表 18]
Figure imgf000166_0002
[0675] 得られた液晶表示装置について、実施例 11—1と同様にして表示画像の性能を評 価した。その実施例と同様にして表示画像の性能を評価した。その結果は、実施例 1 3と同等で良好であった。 実施例 6—1〜6— 4
実施例 1において、アルカリ酸ィ匕処理のアルカリ溶液(S— 1)の代わりに、下記の表 19に記載のアルカリ溶液 (S— 3)〜(S— 6)の 、ずれかを用いる以外は、実施例 1と 同様にして、反射防止能付き偏光板 (P— 8)〜 (P— 11)を作製した。
[0676] 19]
Figure imgf000167_0003
内の数値は貢量 ϋ
Figure imgf000167_0001
SF-4 :ソルビタンモノステアレート PEOエーテル。
SF— 5:スルホコハク酸ジ 2—ェチルへキシルエステルカリウム塩(下記構造式)。 SF— 6:ジ (N—ラウリルイミノエチル)グリシン(下記構造式)。
SF- 7 :下記構造のアンモ-ゥムクロリド化合物。
[0678] [化 21]
Figure imgf000167_0002
SF-6: [c12H25 NH(CH2)2]2NCH2COOH SF-7: C12H25 N+f(CH2CH20)4H] - CI"
[0679] なお、表中の有機溶媒の溶解度パラメーター([mj/m3] 1/2)及び I/O値は、明細 書中にも前記したが、以下に挙げておく。
[0680] [表 20] 溶解度
有機溶媒 パラメーター I/O値
(mJ/m
イソプロパノール 23.5 2.00
n-プロパノール 24.3 1.67
メチルセ口ソルブ 23.3 2.00
2-ブタノール 22.1 1.25
エタノール 26.0 2.50
プロピレングリコール
20.7 1.50
モノメチルエー亍ル
メタノール 29.7 5.00
[0681] 各アルカリ溶液(S— 3)〜(S— 6)の粘度は、 1. 8〜6mPa' s (温度 25°C)、表面張 力は 20〜30mN/m (25°C)であった。
[0682] 又、得られた各処理後のフィルムの表面形状は、実施例 1とほぼ同等の好ましいも のであった。
[0683] 上記実施例 6— 1〜6— 4で作製された反射防止能付き偏光板について、実施例 1 の偏光板と共に以下にまとめる。
[0684] [表 21]
Figure imgf000168_0001
得られた偏光板について実施例 1と同様にして各性能を評価した。その結果は、い ずれの偏光板も実施例 1と同等の良好なものであった。
実施例 6— 5〜6— 8
実施例 1の反射防止膜 (AF— 1)の作製において、反射防止膜の塗設をセルロー スァシレートフィルム(CA— 1)の代わりにセルロースァシレートフィルム(CA— 2)上 に行った以外は同様にして、反射防止膜 (AF—1)塗設セルロースァシレートフィル ムを作製した。得られた反射防止膜塗設セルロースァシレートフィルムは実施例 1と 同等の良好な性能を示した。
[反射防止膜塗設保護フィルム背面の表面処理]
前記の反射防止膜 (AF— 1)が塗設されたセルロースァシレートフィルムの背面、 すなわちセルロースァシレートフィルム(CA— 2)の表面を、 100°Cの熱風を吹き付け てフィルム表面温度 45°Cまで加熱した後に、 25°Cに保温したアルカリ溶液(S— 3)を 、エタストルージョンコーターを用いて塗布量 17cc/m2、塗布速度 65mZ分で 塗布し、滞留時間 7. 5秒間経過後、再びエタストルージョンコーターを用いて純水を 5ccZm2塗布した。この時のフィルム温度は 40°Cであった。次いで、エタストルージ ヨン型コーターを用いて lOOOccZm2の純水を塗布し、水洗を行い、 5秒間経過後 に lOOmZ秒の風をエアナイフより水塗布面に衝突させた。次いでエタストルージョン コーターにより水洗とエアナイフによる水切りを 2回繰り返した後、 80°Cの乾燥ゾーン に 10秒間滞留させて乾燥し、反射防止膜塗設セルロースァシレートフィルム酸ィ匕処 理後フィルム (AFS - 12)を作製した。
[0686] アルカリ溶液 (S— 3)およびアルカリ溶液の滞留時間を表 22のとおりに変えた以外 は、反射防止膜塗設セルロースァシレートフィルム酸ィ匕処理後フィルム (AFS— 12) と同様にして、処理後フィルム (AFS— 13)〜 (AFS - 15)を作製した。
〔反射防止能付き偏光板 (P— 12)〜 (P— 15)の作製〕
得られた反射防止膜塗設セルロースァシレートフィルム鹼ィ匕処理後フィルム (AFS 12)〜 (AFS— 15)を用 、た以外は実施例 1 1の反射防止能付き偏光板 (P— 1 )と同様にして、反射防止能付き偏光板 (P— 12)〜 (P— 15)を作製した。
[0687] 上記実施例 6— 5〜6— 8で作製された反射防止能付き偏光板について、表 22に まとめて示す。
[0688] [表 22] 反射防止能 保護フィル 反射防止膜 アル力リ処 アル力リ¾ 処理後フィ 偏光膜 付き偏光板 ム 理液 理液滞留時 ルム
No. No. No. No. (秒) No. No.
実施例 6-5 P- 12 CA-2 AF-1 S-3 7.5 AFS-12 H-1 実施例 6-6 P-13 CA-2 AF-1 S 4 7 AFS- 13 H- 1 実施例 6-7 P-H CA-2 AF-1 S-5 9 AFS- 14 H-1 実施例 6-8 P-15 CA-2 AF-1 S-G 10 AFS-15 H-1 [0689] 得られた反射防止能付き偏光板 (P— 12)〜(P— 15)について実施例 1と同様にし て各性能を評価した。その結果は、いずれの反射防止能付き偏光板も実施例 1と同 等の良好なものであった。
実施例 17
実施例 11 1で作製した一方の面に反射防止膜付き偏光板 (P— 1)の、反射防止 膜が塗設されて 、な 、側の保護フィルムに λ Ζ4板を張り合わせ、有機 EL表示装置 の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反 射がカットされ、色味が-ユートラル性良好な極めて視認性の高 、表示が得られた。 実施例 18
実施例 3において、帯電防止層(ECL)を省略し、防眩性ハードコート層用塗布液( HCL— 3)の代わりに、以下の組成物を用い、低屈折率層用塗布液を LLL 1の代 わりに LLL 2にした以外は実施例 3と同様にして防眩性ノヽードコート層、低屈折率 層を順次形成した。
[0690] ·防眩性ハードコート層用塗布液
ジペンタエリスリトールペンタアタリレート、ぺジペンタエリスリトールへキサアタリレー トの混合物〃 DPHA〃[日本火薬 (株)製] 50質量部、硬化開始剤「ィルガキュア 184」 (チバ 'スペシャルティ ·ケミカルズ (株)製) 2質量部、透光性微粒子としてアクリル スチレンビーズ [綜研ィ匕学 (株)製、粒径 3. 5 /ζ πι、屈折率 1. 54] 13. 5質量部、シラ ンカップリング剤" ΚΒΜ— 5103" [信越ィ匕学工業 (株)製] 10質量部、及び下記のフ ッ素系ポリマー(PF— 2) 0. 03質量部をメチルイソブチルケトン 30質量部、メチルェ チルケトン 10重量部、プロピレングリコール 10重量部と混合して塗布液として調製し た。
[0691] 得られた反射防止膜の平均反射率は 2. 1%、ヘイズは 22%であった。ヘイズの内 訳は、内部ヘイズ 18%、表面ヘイズ 4%であった。内部ヘイズは、以下のようにして 測定し、表面ヘイズはヘイズから内部ヘイズを引いた値とした。
(内部ヘイズの測定法)
1. JIS— K7136に準じて得られたフィルムの全ヘイズ値 (Η)を測定する。
[0692] 2.得られたフィルムの低屈折率層側の表面および裏面にシリコーンオイルを数滴 添加し、厚さ lmmのガラス板(ミクロスライドガラス品番 S 9111、 MATSUNAMI製 )を 2枚用いて裏表より挟んで、完全に 2枚のガラス板と得られたフィルムを光学的に 密着し、表面ヘイズを除去した状態でヘイズを測定し、別途測定したガラス板 2枚の 間にシリコーンオイルのみを挟みこんで測定したヘイズを弓 I V、た値をフィルムの内部 ヘイズとして算出した。
[0693] 得られたフィルムを用いた偏光板は、充分な防眩性と白濁防止効果を高 、次元で 両立していた。
実施例 19
実施例 18において使用した防眩性ノヽードコート層用塗布液の代わりに、以下の組 成物を用いた以外は実施例 3と同様にしてクリア一ハードコート層、低屈折率層を順 次形成した。
(クリア一ハードコート層用塗布液)
KAYARAD DPCA- 20 (日本化薬 (株)製) 100質量部、メチルェチルケトン 67 質量部、シクロへキサノン 15質量部、ィルガキュア一 184 (チバスべシャリティーケミ カルズ (株)製) 8質量部、 MEK— ST (屈折率 1. 47、平均粒径 15nmのシリカ超微 粒子、 日産化学 (株)製) 103質量部、 KBM- 5103 (アタリロイル基含有オルガノシ ラン、信越化学 (株)製) 15質量部の混合物を、攪拌した後、孔径 0. 4 mのポリプロ ピレン製フィルターで濾過した。
[0694] 得られた反射防止膜の平均反射率は 1. 5%、ヘイズは 0. 3%であった。
[0695] 得られたフィルムを用いた偏光板は、充分な反射防止性と耐擦傷性に優れていた
。また、クリア一ハードコートに特有の虹色のムラが全く観察されず、高い表示品位を 提供できるものであった。
[0696] 実施例 20
実施例 19において、低屈折率層用塗布液 (LLL— 2)の代わりに、以下の組成物 を用いた以外は実施例 19と同様にしてクリア一ハードコート層、低屈折率層を順次 形成した。
(低屈折率層用塗布液)
(a)中空シリカ微粒子ゾルの調整 中空シリカ微粒子ゾル (イソプロピルアルコールシリカゾル、平均粒子径 60nm、シ エル厚み 10應、シリカ濃度 20質量0 /0、シリカ粒子の屈折率 1. 31、特開 2002— 79 616の調製例 4に準じサイズを変更して作成) 500gに、アタリロイルォキシプロビルト リメトキシシラン (信越ィ匕学工業 (株)製) 30g、およびジイソプロポキシアルミニウムェ チルアセテート 1. 5gカ卩ぇ混合した後に、イオン交換水を 9gをカ卩えた。 60°Cで 8時間 反応させた後に室温まで冷却し、ァセチルアセトン 1. 8gを添加した。この分散液 50 Ogにほぼシリカの含量一定となるようにシクロへキサノンを添カ卩しながら、圧力 20kPa で減圧蒸留による溶媒置換を行った。分散液に異物の発生はなぐ固形分濃度をシ クロへキサノンで調整し 20質量%にしたときの粘度は 25°Cで 5mPa' sであった。得ら れた分散液 Aのイソプロピルアルコールの残存量をガスクロマトグラフィーで分析した ところ、 1. 5%であった。
(b)塗布液の調整
3—グリシドキシプロピルトリメトキシシラン 100g、トリフルォロプロピルトリメトキシシラ ン 1000g、ヘプタデカフルォロデシルトリメトキシシラン 400g、テトラエトキシシラン 50 0g、イソブタノール 200gをフラスコに仕込み、撹拌した。次に 0. 25Nの酢酸水 419g を少量ずつ滴下した。滴下終了後、室温で 3時間撹拌した。次にアルミニウムァセチ ルァセトナート 6gをカ卩え、更に撹拌を 3時間行った。その後、イソプロピルアルコール 600gを添加して、孔径 1 μ mのポリプロピレン製フィルターでろ過して得られた液 10 Ogに対して、更に、前記 (a)で調整した中空シリカを 97g添加し、攪拌の後、孔径 30 m、 10 m、 1 mのポリプロピレン製フィルターで多段ろ過して、低屈折率層用 塗布液を調製した。
[0697] 得られた反射防止膜の平均反射率は 1. 2%、ヘイズは 0. 3%であった。
[0698] 得られたフィルムを用いた偏光板は、充分な反射防止性と耐擦傷性に優れていた
。また、クリア一ハードコートに特有の虹色のムラが全く観察されず、高い表示品位を 提供できるものであった。
[0699] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0700] 本出願は、 2004年 5月 20日出願の日本特許出願(特願 2004— 150223)および 2004年 8月 3日出願の日本特許出願 (特願 2004— 227204)に基づくものであり、 その内容はここに参照として取り込まれる。
産業上の利用可能性
[0701] 本発明の偏光板は各種ディスプレイ、具体的には TN、 STN、 IPS、 VA及び OCB のいずれかのモードの透過型、反射型又は半透過型の液晶表示装置などに適用で きる。

Claims

請求の範囲
[1] 親水性榭脂系フィルムカゝら形成された偏光膜の両側に、保護フィルムとしてセル口 一スァシレートフィルムが設けられ、且つ偏光膜の一方の側のセルロースァシレート フィルム上に、多層構造の反射防止膜が塗設されてなる長尺の偏光板において、該 セルロースァシレートフィルムの偏光膜側表面にアルカリ酸ィ匕処理が施され、且つ該 偏光膜側表面の凹凸の、 JIS B— 0601— 1994に基づく算術平均粗さ (Ra)が 0. 0 002 μ m〜0. 3 m、十点平均粗さ(Rz)力 ^0. 0002 μ m〜0. 5 m、最大高さ(Ry )カ 0. 002 /ζ πι〜1. O ^ m,及び表面 凸の平均 [¾隔(3111)力 0. 001 /ζ πι〜5 /ζ mであることを特徴とする偏光板。
[2] 視覚的直径 100 /z m以上の点欠陥の数が lm2当たり 1個以下である請求項 1に記 載の偏光板。
[3] 偏光膜の膜厚が 5〜22 μ mで有り、且つ該偏光膜がクロス-コル時の 700nmの透 過率が 0. 001%〜0. 3%で、 410nmの透過率が 0. 001%〜0. 3%である請求項
1又は 2に記載の偏光板。
[4] 偏光板を 60°C、 90%RHの雰囲気に 500時間放置した場合の、その前後における 光透過率及び偏光度の変化率が、絶対値に基づいて 3%以下である請求項 1〜3の いずれか 1項に記載の偏光板。
[5] 反射防止膜の最上層が、平均粒径が該低屈折率層の厚みの 30%〜100%であり
、且つ屈折率が 1. 17〜: L . 40である中空構造の無機微粒子を少なくとも 1種含有し てなる、屈折率が 1. 35〜: L 49の低屈折率層である請求項 1〜4のいずれかに記載 の偏光板。
[6] 前記低屈折率層が、下記一般式(1)で表されるオルガノシランの加水分解物、およ びその部分縮合物の少なくとも何れか一つを含有する硬化性組成物を塗布し硬化し て形成される硬化膜であることを特徴とする請求項 1〜5のいずれかに記載の偏光板 一般式 (1)
(R10) Si (X)
n 4~n
(式中、 R1Qは置換もしくは無置換のアルキル基または置換もしくは無置換のァリール 基を表す。 Xは水酸基または加水分解可能な基を表す。 nは 0〜2の整数を表す。 )
[7] CIE標準光源 D の、波長 380nmから 780nmの領域における入射角 5°の入射光
65
に対して、正反射光の CIE1976L*a*b*色空間の L*, a*, b*値それぞれの値の、面内 における変化率が 20%以下である請求項 1〜6のいずれか 1項に記載の偏光板。
[8] 反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルムよ り屈折率が低い低屈折率層との間に、該セルロースァシレートフィルムよりも屈折率 が高ぐ且つ屈折率の相異なる少なくとも 2層の高屈折率層を有する多層構造を有し ており、これら高屈折率層のうち少なくとも屈折率の高い方の層が、平均粒径 3〜80 nmのコバルト、アルミニウム、及びジルコニウムから選ばれる少なくとも 1種の元素を 含有する二酸化チタンを主成分とする無機超微粒子を含有する請求項 1〜7のいず れかに記載の偏光板。
[9] 反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルムよ り屈折率が低い低屈折率層との間に防眩層を有する多層構造を有しており、該低屈 折率層を形成した後の偏光膜と接する面の反対側の表面ヘイズが 2%〜7%、且つ 、フィルム全体の内部ヘイズが 0〜50%であることを特徴とする、請求項 1〜8のいず れかに記載の偏光板。
[10] 反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルムよ り屈折率が低い低屈折率層との間に、ハードコート層を有する多層構造を有しており 、該ハードコート層が前記一般式(1)に記載のオルガノシランの加水分解物、および その部分縮合物の少なくとも何れか一つを含有することを特徴とする、請求項 1〜8 の!、ずれかに記載の偏光板。
[11] 反射防止膜が、セルロースァシレートフィルムと、該セルロースァシレートフィルムより 屈折率が低い低屈折率層との間に、更に帯電防止層を有する多層構造を有してい ることを特徴とする、請求 1〜10のいずれかに記載の偏光板。
[12] 偏光板の耐候性試験前後の、波長 380ηπ!〜 680nmにおける平均反射率の変化 が 0. 5%以下であり、且つ反射光の色味変化 Δ Ε力 L*a*b*色度図上で 15以下で ある請求項 1〜: L 1のいずれか 1項に記載の偏光板。
[13] 保護フィルムであるセルロースァシレートフィルムの延伸軸と、偏光膜の延伸軸との 角度が 10° 以上 90° 未満である請求項 1〜12のいずれかに記載の偏光板。
[14] 偏光膜の他方の側のセルロースァシレートフィルム上に光学異方性層を有する光 学補償フィルムを設けた請求項 1〜13のいずれかに記載の偏光板。
[15] 反射防止膜が塗設されてなるセルロースァシレートフィルムの反対面をアルカリ鹼 化処理してから偏光膜と貼り合せることによる請求項 1に記載の偏光板の製造方法に おいて、該アルカリ鹼化処理が、少なくともアルカリ剤、水、無機性 Z有機性値 (IZO 値)が 0. 5以上で且つ溶解度パラメーターが 16〜40[mj/m3] 1/2である水溶性有機 溶媒、並びに界面活性剤及び相溶化剤の少なくともいずれかを含有するアルカリ溶 液を用いて実施される工程を含むことを特徴とする製造方法。
[16] アルカリ酸ィ匕処理力 少なくとも、(ィ)表面温度が室温〜 100°Cの範囲のセルロー スァシレートフィルムにアルカリ溶液を塗布する工程、(口)セルロースァシレートフィ ルムの温度を室温〜 100°Cの範囲に維持する工程、及び、(ハ)アルカリ溶液をセル ロースァシレートフィルム力 洗い落とす工程力もなる請求項 15に記載の製造方法。
[17] アルカリ溶液を塗布する工程が、アルカリ溶液をダイコーター方式により塗布するェ 程である請求項 16に記載の製造方法。
[18] 連続的に供給される偏光膜用親水性榭脂系フィルムの両端を保持手段により保持 し、該保持手段をフィルムの長手方向に進行させつつ張力を付与して延伸すること により偏光膜を製造する請求項 1に記載の偏光板の製造方法にお!、て、該親水性榭 脂系フィルムの一方端の実質的な保持開始点から実質的な保持解除点までの保持 手段の軌跡 L1、及び親水性榭脂系フィルムの他方端の実質的な保持開始点力 保 持解除点までの保持手段の軌跡 L2と、両保持手段の実質的な保持解除点の距離 Wが下記数式(1)を満たし、且つ両保持手段の長手方向の搬送速度の差が 1%未 満である延伸方法により製造することを特徴とする製造方法。
数式(1): I L2-L1 I >0. 4W
[19] 画像表示面に、請求項 1〜14のいずれか 1項に記載の偏光板が配置されてなるこ とを特徴とする画像表示装置。
[20] 画像表示装置が、 TN、 STN、 IPS, VA及び OCBの!、ずれかのモードの透過型、 反射型又は半透過型の液晶表示装置であることを特徴とする請求項 19に記載の画 175
PCT/JP2005/009266 2004-05-20 2005-05-20 反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示装置 WO2005114271A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067024041A KR101224731B1 (ko) 2004-05-20 2005-05-20 반사 방지 기능이 있는 편광판, 그 제조 방법, 및 그것을이용한 화상 표시 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-150223 2004-05-20
JP2004150223 2004-05-20
JP2004227204 2004-08-03
JP2004-227204 2004-08-03

Publications (1)

Publication Number Publication Date
WO2005114271A1 true WO2005114271A1 (ja) 2005-12-01

Family

ID=35428498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009266 WO2005114271A1 (ja) 2004-05-20 2005-05-20 反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示装置

Country Status (2)

Country Link
KR (1) KR101224731B1 (ja)
WO (1) WO2005114271A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078238A1 (ja) * 2007-12-19 2009-06-25 Konica Minolta Opto, Inc. 防眩性ハードコートフィルム、偏光板、画像表示装置および防眩性ハードコートフィルムの製造方法
JP2009184226A (ja) * 2008-02-06 2009-08-20 Konica Minolta Opto Inc 熱可塑性樹脂フィルム、及びこれを用いたハードコートフィルム
WO2010035571A1 (ja) * 2008-09-24 2010-04-01 コニカミノルタオプト株式会社 反射防止層用組成物、反射防止フィルム、偏光板、及び画像表示装置
WO2013161581A1 (ja) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
JP2015114852A (ja) * 2013-12-11 2015-06-22 サンテックオプト株式会社 タッチセンサを備えた画像表示装置およびその作製方法
JPWO2016181740A1 (ja) * 2015-05-11 2018-03-01 旭硝子株式会社 車両用の断熱ガラスユニットおよびその製造方法
CN108121027A (zh) * 2016-11-28 2018-06-05 住友化学株式会社 带保护膜的偏振性层叠膜的制造方法和偏振板的制造方法
US10618838B2 (en) 2015-05-11 2020-04-14 AGC Inc. Heat insulating glass unit for vehicle
US11447643B2 (en) * 2018-08-02 2022-09-20 Benq Materials Corporation Hard coating layered optical film, polarizer comprising the same, and image display comprising the hard coating layered optical film and/or the polarizer comprising the same
US20220314588A1 (en) * 2021-04-05 2022-10-06 Japan Aviation Electronics Industry, Limited Laminated body and display device provided with the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678275B1 (ko) * 2013-09-30 2016-11-21 주식회사 엘지화학 내츄럴 블랙에 근접한 편광판 제조 방법 및 이를 이용하여 제조된 편광판
KR20200091203A (ko) 2019-01-22 2020-07-30 동우 화인켐 주식회사 광학 부재, 이의 제조 방법 및 이를 포함하는 플렉서블 디스플레이 장치
JP7430097B2 (ja) * 2020-04-03 2024-02-09 デンカ株式会社 偏光膜用接着組成物および偏光膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207626A (ja) * 2002-01-10 2003-07-25 Fuji Photo Film Co Ltd 偏光板、偏光板の製造方法、及び表示装置
JP2003292831A (ja) * 2002-04-02 2003-10-15 Toppan Printing Co Ltd 低屈折率コーティング剤及び反射防止フィルム
JP2003313326A (ja) * 2002-02-20 2003-11-06 Fuji Photo Film Co Ltd ポリマーフイルムのアルカリ鹸化方法、表面鹸化セルロースエステルフイルム、及びそれを用いた光学フイルム
JP2004029705A (ja) * 2002-05-01 2004-01-29 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板用保護フィルム、偏光板、および画像表示装置
US20040070041A1 (en) * 2002-07-05 2004-04-15 Fuji Photo Film Co., Ltd. Anti-reflection film, polarizing plate and display device
JP2004126206A (ja) * 2002-10-02 2004-04-22 Fuji Photo Film Co Ltd 反射防止ハードコートフィルム、偏光板、および画像表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688116B2 (ja) * 1999-04-15 2011-05-25 コニカミノルタホールディングス株式会社 偏光板用保護フィルム
JP2004029199A (ja) * 2002-06-24 2004-01-29 Fuji Photo Film Co Ltd セルロースアシレートフィルムの製造方法、それにより得られたセルロースアシレートフィルム、およびそれを用いた偏光板
JP4272867B2 (ja) * 2002-10-08 2009-06-03 富士フイルム株式会社 反射防止膜、反射防止フィルム、画像表示装置、および反射防止膜の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207626A (ja) * 2002-01-10 2003-07-25 Fuji Photo Film Co Ltd 偏光板、偏光板の製造方法、及び表示装置
JP2003313326A (ja) * 2002-02-20 2003-11-06 Fuji Photo Film Co Ltd ポリマーフイルムのアルカリ鹸化方法、表面鹸化セルロースエステルフイルム、及びそれを用いた光学フイルム
JP2003292831A (ja) * 2002-04-02 2003-10-15 Toppan Printing Co Ltd 低屈折率コーティング剤及び反射防止フィルム
JP2004029705A (ja) * 2002-05-01 2004-01-29 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板用保護フィルム、偏光板、および画像表示装置
US20040070041A1 (en) * 2002-07-05 2004-04-15 Fuji Photo Film Co., Ltd. Anti-reflection film, polarizing plate and display device
JP2004126206A (ja) * 2002-10-02 2004-04-22 Fuji Photo Film Co Ltd 反射防止ハードコートフィルム、偏光板、および画像表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078238A1 (ja) * 2007-12-19 2009-06-25 Konica Minolta Opto, Inc. 防眩性ハードコートフィルム、偏光板、画像表示装置および防眩性ハードコートフィルムの製造方法
JPWO2009078238A1 (ja) * 2007-12-19 2011-04-28 コニカミノルタオプト株式会社 防眩性ハードコートフィルム、偏光板、画像表示装置および防眩性ハードコートフィルムの製造方法
JP2009184226A (ja) * 2008-02-06 2009-08-20 Konica Minolta Opto Inc 熱可塑性樹脂フィルム、及びこれを用いたハードコートフィルム
WO2010035571A1 (ja) * 2008-09-24 2010-04-01 コニカミノルタオプト株式会社 反射防止層用組成物、反射防止フィルム、偏光板、及び画像表示装置
WO2013161581A1 (ja) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 斜め延伸フィルムの製造方法
JP2015114852A (ja) * 2013-12-11 2015-06-22 サンテックオプト株式会社 タッチセンサを備えた画像表示装置およびその作製方法
JPWO2016181740A1 (ja) * 2015-05-11 2018-03-01 旭硝子株式会社 車両用の断熱ガラスユニットおよびその製造方法
US10576713B2 (en) 2015-05-11 2020-03-03 AGC Inc. Heat insulating glass unit for vehicle and manufacturing method thereof
US10618838B2 (en) 2015-05-11 2020-04-14 AGC Inc. Heat insulating glass unit for vehicle
CN108121027A (zh) * 2016-11-28 2018-06-05 住友化学株式会社 带保护膜的偏振性层叠膜的制造方法和偏振板的制造方法
CN108121027B (zh) * 2016-11-28 2022-03-18 住友化学株式会社 带保护膜的偏振性层叠膜的制造方法和偏振板的制造方法
US11447643B2 (en) * 2018-08-02 2022-09-20 Benq Materials Corporation Hard coating layered optical film, polarizer comprising the same, and image display comprising the hard coating layered optical film and/or the polarizer comprising the same
US20220314588A1 (en) * 2021-04-05 2022-10-06 Japan Aviation Electronics Industry, Limited Laminated body and display device provided with the same

Also Published As

Publication number Publication date
KR101224731B1 (ko) 2013-01-21
KR20070015428A (ko) 2007-02-02

Similar Documents

Publication Publication Date Title
WO2005114271A1 (ja) 反射防止機能付き偏光板、その製造方法、及びそれを用いた画像表示装置
JP2006072315A (ja) 反射防止能付き偏光板、その製造方法、及びそれを用いた画像表示装置
CN101957461B (zh) 抗反射薄膜、偏振片及其制备方法、液晶显示元件、液晶显示装置和图象显示装置
US7635506B2 (en) Stretched cellulose ester film, hard coat film, antireflective film, and optical compensation film, and polarizing plate, and display device using them
CN1922008B (zh) 抗反射薄膜、偏振片及其制备方法、液晶显示元件、液晶显示装置和图象显示装置
JP5331537B2 (ja) 透明支持体、光学フィルム、偏光板、および画像表示装置
JP5380025B2 (ja) 反射防止フィルム、偏光板、画像表示装置、および反射防止フィルム用透明支持体の製造方法
US20070259161A1 (en) Anti-Reflection Film and Polarizing Plate and Image Display Comprising Same
JP2006126799A (ja) 反射防止フィルムの製造方法、反射防止フィルム、それを用いた偏光板及びそれらを用いた画像表示装置
JP2009036818A (ja) 防眩性フィルム、防眩性反射防止フィルム、偏光板および画像表示装置
KR101245436B1 (ko) 반사 방지 필름의 제조 방법, 반사 방지 필름, 그것을사용한 편광판 및 그것들을 사용한 화상 표시 장치
JP7088279B2 (ja) 偏光板、偏光板の製造方法及び液晶表示装置
JP2006010829A (ja) 反射防止膜、反射防止フィルム、偏光板、及びそれを用いた画像表示装置
JP2005156642A (ja) 反射防止フィルム、偏光板、及びそれを用いた画像表示装置
JP2006091859A (ja) 反射防止フィルム、並びにそれを用いた偏光板及び画像表示装置
JP2005326713A (ja) 反射防止性偏光板、その製造方法、およびそれを用いた画像表示装置
TWI448719B (zh) Anti-reflection film, and anti-reflection film, and a polarizing plate using the same, and a display device
JP2007169330A (ja) 透明フィルム、光学フィルム、透明フィルムの製造方法、偏光板、及び画像表示装置
JP2006096861A (ja) 塗布組成物、光学機能層、反射防止フィルム、偏光板、及び画像表示装置
JP2005227472A (ja) 偏光板、液晶表示素子、及びそれを用いた液晶表示装置
JPWO2013133276A1 (ja) 偏光板およびこれを用いた表示装置
JP2006091276A (ja) 反射防止フィルム、偏光板、画像表示装置、及び反射防止フィルムの製造方法
JP4905787B2 (ja) 防眩フィルム、反射防止フィルム、偏光板、画像表示装置、及び防眩フィルムの製造方法
JP2005283872A (ja) 反射防止能付き偏光板、その製造方法、およびそれを用いた画像表示装置
JP2005157037A (ja) 反射防止フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067024041

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067024041

Country of ref document: KR

122 Ep: pct application non-entry in european phase