WO2005110108A1 - ヨーグルトの製造方法 - Google Patents

ヨーグルトの製造方法 Download PDF

Info

Publication number
WO2005110108A1
WO2005110108A1 PCT/JP2005/008663 JP2005008663W WO2005110108A1 WO 2005110108 A1 WO2005110108 A1 WO 2005110108A1 JP 2005008663 W JP2005008663 W JP 2005008663W WO 2005110108 A1 WO2005110108 A1 WO 2005110108A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
yogurt
milk
casein
whey protein
Prior art date
Application number
PCT/JP2005/008663
Other languages
English (en)
French (fr)
Inventor
Martin Bonisch
Ulrich Kulozik
Manfred Hub
Akiko Morita
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to EP05738903.3A priority Critical patent/EP1749447B1/en
Priority to AU2005244349A priority patent/AU2005244349B2/en
Priority to JP2006513543A priority patent/JP4650416B2/ja
Priority to NZ550795A priority patent/NZ550795A/en
Publication of WO2005110108A1 publication Critical patent/WO2005110108A1/ja
Priority to US11/559,056 priority patent/US20070134374A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1307Milk products or derivatives; Fruit or vegetable juices; Sugars, sugar alcohols, sweeteners; Oligosaccharides; Organic acids or salts thereof or acidifying agents; Flavours, dyes or pigments; Inert or aerosol gases; Carbonation methods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/127Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss
    • A23C9/1275Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss using only lactobacteriaceae for fermentation in combination with enzyme treatment of the milk product; using enzyme treated milk products for fermentation with lactobacteriaceae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • C12Y203/02013Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII

Definitions

  • the present invention relates to a method for producing yogurt using transdal evening minase. Background art
  • yogurt is produced by inoculating lactic acid bacteria starter on raw or concentrated milk, goat milk, sheep milk, etc. and fermenting it.It has acid sweetness, unique flavor, and refreshing taste. Fermented milk products. Although the variety has recently been diversified, such as the addition of juice or pulp, raw materials including milk are inoculated with a certain amount of starter, packed in distribution containers such as bottles and paper containers, and fermented. It can be broadly classified into two types: a hard type that is manufactured into a solid form and a soft type that is disintegrated after fermentation and transferred to individual food containers for distribution. These yogurt production methods are described in the following four or five steps, as described in Japanese Patent Publication No. Mainly goes through the process.
  • Step 1 Raw milk preparation: Mix raw materials including milk, heat sterilize, and cool to around 40 ° C. (2nd step) Starter Addition ⁇ Filling: After adding a certain amount of lactic acid bacteria starter, fill into individual food containers for distribution. (Third step) Fermentation start: After filling, put into a fermentation room at around 40 ° C to promote fermentation. (Fourth step) Stop fermentation: After the gel (yogurt power) is stabilized by isoelectric coagulation of casein, put it in a refrigerator at 10 ° C or lower and cool it to stop fermentation and use it as a product.
  • the soft type is as follows.
  • First step Preparation of raw milk: Mix raw materials including milk, heat sterilize, and cool to around 40 ° C.
  • (2nd step) Starter addition * Start fermentation: After adding a certain amount of lactic acid bacteria star, put it in a fermentation room at around 40 ° C to promote fermentation.
  • Third step Crushing of dart curd: After the yogurt curd is stabilized by isoelectric condensation of casein, the curd is broken to make it a semi-liquid structure.
  • Fullth step Filling: Fill into individual food containers for distribution. Note that the conditions of the filling process differ depending on the yogurt recipe and the filling equipment.
  • the filling is performed at a temperature close to the fermentation temperature, and in other cases, it is added after cooling to some extent.
  • Stop fermentation Place in a refrigerator at 10 ° C or less and cool to stop fermentation and produce the product. Depending on the recipe for fermentation, fermentation may be stopped by cooling before filling.
  • Milk proteins mainly include various milk powders such as whole milk powder and skim milk powder, casein powders such as acid casein and sodium caseinate, and whey which is a by-product of cheese production and casein production. Powders are used to improve the quality by increasing the protein content.
  • casein powders such as acid casein and sodium caseinate
  • whey which is a by-product of cheese production and casein production. Powders are used to improve the quality by increasing the protein content.
  • whey which is a by-product of cheese production and casein production. Powders are used to improve the quality by increasing the protein content.
  • whey which is a by-product of cheese production and casein production. Powders are used to improve the quality by increasing the protein content.
  • Gelatin is used as a protein other than milk protein. Gelatin has the property of gelling at low temperatures, so it can be obtained by reinforcing the structure of yogurt curd. Improving quality. At the same time, gelatin is widely used because it is easier to eat when eating than other ingredients.
  • the type of the thickening polysaccharide is not particularly limited as long as it dissolves in water to form a hydrocolloid, and examples thereof include xanthan gum, locust bean gum, carrageenan, daliroid, alginate, vectin, and agar. These materials contribute to quality improvement by increasing the viscosity of yogurt curd and reinforcing the gel structure.
  • the general effects of the above-mentioned materials include reduction of water separation during standing, provision of hardness and viscosity of yogurt, and provision of a creamy feeling and richness in texture.
  • the above-mentioned products obtained by known methods do not necessarily satisfy the various conditions required for jordal, and there is much room for improvement.
  • attempts to improve the quality of yogurt by applying transdaltaminase have been studied.
  • the merits of quality improvement using Transdal Even Minase are that there is an overall cost advantage compared to the quality improvers described above. It is possible to obtain the desired effect while reducing the amount.
  • Patent No. 3 182 954 describes a method in which raw milk is preliminarily treated with transdal evening minase, and then the transductor evening minase is inactivated by heating, and then the starter is frowned to ferment the raw milk.
  • the production method of the characteristic yogurt is described. It is described that this technique makes it possible to produce a smooth texture of Kodart without water separation.
  • a major feature of this method is that a heating step is used so that enzyme activity does not remain.
  • the above Patent No. 3182954 describes that the heat inactivation step is simultaneously a heat sterilization step of milk, but the enzyme is inactivated. For this purpose, heating conditions such as a 95 ° C heating process are required.
  • transdarminase it is not easy to deactivate transdarminase when it is difficult to perform the heat deactivation step due to equipment problems.
  • there is usually no heating step after the addition of culture so that extra cost is required to perform the heating inactivation step. Therefore, when the heat inactivation step of transdalminase could not be used in combination with the sterilization step, transdalminase was rarely used.
  • JP-A-2001-250210, JP-A-3182904, and WO2010103232 disclose a method for producing Kodart using transglutaminase. However, there is no mention of a method for preventing or suppressing the adverse effects derived from the residual activity of the enzyme.
  • the data on Da iry Chem istry and Bioch em istry, BLACKI E AC AD EM IC & PROFESSI ON AL, pp. 363-368 are data obtained by heating skim milk, and the ratio of casein to whey protein 8: Data under conditions fixed at 2. There is no description of changing the ratio of casein to whey protein from 8: 2 derived from raw milk, as in the present invention, and the use of transdaltaminase is also described in S! It can be said that the present invention cannot be easily analogized from ai Chemistry and Biochemistry, BLACK IE ACADEMI C & PROFES SIONAL, pp. 363-368.
  • US Patent No. 3,882,256 discloses a milk protein in which the mixing ratio of casein and whey protein is changed, and the solubility (water-soluble nitrogen index) of the milk protein is changed using calcium chloride and sodium tripolyphosphate.
  • solubility water-soluble nitrogen index
  • the technology described in U.S. Patent No. 3,882,256 aims to improve the quality of baked products and improve the workability of dough handling.
  • the degree of denaturation of whey is optimized, and the dairy products using transglutaminase, particularly yogurt, have the residual activity of transdalminase or excess transglutaminase. Adverse effects from unnatural reactions
  • a mixture of casein and whey is prepared by intentionally changing the ratio of casein to whey protein, and the degree of denaturation of whey is further studied in detail.
  • yogurt we found the optimal ratio of casein to whey protein and the degree of whey denaturation when using transdaltamer.
  • the technique of the present invention cannot be easily achieved by a combination of existing documents, and has been obtained as a result of intensive studies. Disclosure of the invention
  • An object of the present invention is to improve the quality of yogurt in terms of texture and prevention of syneresis in a method for producing jordart using transdalminase, and in particular, to improve transdalminase in yogurt.
  • the purpose is to prevent and suppress the adverse effects (coarse grain, lump, etc.) resulting from residual activity and excessive reaction to milk protein.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, in the production of yogurt using transdal evening kinase, the degree of denaturation of whey protein in milk protein used for the purpose of quality improvement is within a predetermined range. It has been found that the above problem can be solved by performing the treatment under heating conditions. That is, the present invention is as follows.
  • a mixture in which the mixing ratio of casein and whey protein is 20:80 to 54:46 in terms of nitrogen weight ratio is heat-treated under the condition that the degree of denaturation of whey protein is 25% to 93%.
  • yogurt using the processed milk protein product obtained by the above method and transdal evening minase.
  • the processed milk protein is heated to a mixture in which the mixing ratio of casein and whey protein is 32:68 to 48:52 in terms of nitrogen weight ratio, under the condition that the degree of denaturation of whey protein is 2% to 9%. 3.
  • the production method according to the above item 2 which is obtained by processing.
  • a milk protein-treated product obtained by heat-treating whey protein under the condition that the degree of whey denaturation is 60 to 88%, and an enzyme product for dairy products containing transdarminase.
  • casein which is a substrate for transdalminase
  • whey protein which is a substrate for transdalminase
  • the in becomes coated with whey protein.
  • the effect of the present invention can be obtained by suppressing the excessive reaction of transglutaminase to casein because whey protein plays the role of a spacer between transtalminase and casein. I have.
  • the protein may be prepared by a method including the above-mentioned conditions.
  • the type of casein-whey protein is not limited.
  • the casein raw material skim milk powder or whole milk powder, lactose or lipid removed from the milk powder, sodium caseinate, etc., are not limited as long as the main component of the protein contained is casein or casein salt, The origin is not limited either.
  • the whey protein raw material may be of any type as long as it contains whey protein as a main component, such as concentrated whey protein (WPC) and purified whey protein (WPI).
  • WPC concentrated whey protein
  • WPI purified whey protein
  • casein may contain lactose and various minerals.
  • the origin is not particularly limited as long as it satisfies the above characteristics.
  • casein separated from milk itself when purifying casein may be used. You may use cheese whey which is generated as a whey.
  • the shape of the raw material is not particularly limited, and a powdery material or a previously dissolved liquid material may be used.
  • the mixing ratio of casein to whey protein is preferably 20:80 to 54:46, preferably 32:68 to 48:52 in terms of nitrogen weight ratio.
  • the casein or whey protein in the present invention may be analyzed by, for example, the Kjeldahl method for the nitrogen weight of the whey protein.
  • the milk protein mixture at the time of heating, it is desirable to heat the milk protein mixture in a solution state so that both proteins can interact under heating conditions, from the viewpoint of the mechanism by which the effects of the present invention can be obtained.
  • the milk protein is a dried product, use a solution such as city water or milk. It is desirable to prepare a solution by dispersing, and heat the solution.
  • the processed milk protein of the present invention obtained by heat-treating whey protein without mixing casein has a degree of denaturation of whey protein of 60 to 88%, preferably 67 to 88%, more preferably It is necessary to perform heat treatment under the condition of 77 to 88%.
  • the present invention obtained by heat-treating a mixture in which the mixing ratio of casein and whey protein is 20:80 to 54:46, preferably 32:68 to 48:52 in terms of nitrogen weight ratio. It is necessary to heat-treat the processed milk protein under the condition that the degree of denaturation of the whey protein is 25% to 93%, preferably 27 to 79%.
  • the heating conditions under which the degree of whey modification is 25 to 93% will be described.
  • the heating condition is 81.
  • the temperature is preferably ⁇ 89 ° C for 1 to 10 minutes, preferably 82 ° C to 86 ° C for 2 to 4 minutes.
  • the heating temperature, heating time The method of heating does not matter.
  • the heating method all devices and methods used for general solution heating can be applied. For example, heating using a thermostat or a heat exchange plate sterilizer can be used.
  • Eluent B Acetonitrile Z pure water 80Z20 (V / V) + 0.555% Trifluoroacetic acid
  • Milk protein mixture to be subjected to liquid chromatography is diluted with distilled water to a protein concentration of about 1%.
  • the casein is adjusted to pH 4.6, which is the isoelectric point of the casein, and the casein is sedimented.
  • the casein is removed by a microfil with a pore size of 0.45 m.
  • the filtered supernatant is further diluted with distilled water so that the whey protein concentration becomes about 0.1%, and then subjected to liquid chromatography.
  • the final form of the processed milk protein product used in the present invention is desirably a dried form from the viewpoint of ease of handling and restrictions when blending with yogurt.
  • a so-called solution type that does not require a drying step can also be used.
  • a drying method any method generally used for drying a solution can be applied. Examples include a drum drying method, a freeze drying method, and a spray drying method. From the viewpoint of drying efficiency and characteristics of the dried powder, it is desirable to dry by a spray drying method. There is no particular limitation as long as it is a general condition.
  • the inlet temperature and the drying step are preferably performed at 180 ° C, and the outlet temperature is preferably set at about 80 ° C.
  • Casein in yogurt is polymerized by the action of transglutaminase, but the degree of polymerization of casein by transdalminase is preferably 15 to 33%, more preferably 18 to 32%. If the degree of polymerization is less than 15%, the structure of the yogurt is fragile. Conversely, if it exceeds 33%, problems such as a coarse structure, lack of fineness, and a structural change during storage occur.
  • the degree of polymerization was determined by analyzing the content of casein monomers, dimers, trimers, and multimers (polymers of trimers and higher) using size exclusion chromatography. Can be calculated according to the following formula.
  • transdarminase activity remains Can be added during the period between sterilization of the milk and before the start of fermentation, or while the fermentation is in a state where the transdalminase can be uniformly diffused throughout the yogurt curd.
  • inactivation there is no particular limitation as long as it is added before heat sterilization.
  • the method of producing yogurt which does not include the step of inactivating heat of transdal evening minase, comprises, for example, 95 ° C
  • the concentration of the aqueous transglutaminase solution used in the present invention may be a concentration at which the action of transdaltaminase is expressed. Specifically, 0.1 to 100 units (hereinafter unit is abbreviated as U) of transdal evening enzyme per 1 g of milk protein, preferably 0.1 to 50 U are contained. If the amount is less than the above range, the effect of improving physical properties cannot be obtained, and the effect of preventing water separation or the like is small. If it exceeds the above range, it hardens into a gel and loses the smoothness of yogurt, which is not preferable.
  • the activity unit of the transdalase minase referred to in the present invention is measured and defined as follows. That is, the reaction between benzyloxycarbonyl-L-daltaminildaricin and hydroxylamine as substrates is used to form the generated hydroxamic acid. After forming an iron complex in the presence of acetic acid, the absorbance of 525 n is measured. The activity is calculated by measuring the amount of hydroxamic acid from a calibration curve (see Japanese Patent Application Publication No. 11-27471). Of course.
  • transdal evening minase In order to sufficiently exert the effect of transdal evening minase, generally, conditions suitable for the action of transdal evening minase, that is, approximately 5 to 65 ° C. at pH 6 to 7, preferably approximately 40 ° C.
  • the temperature is preferably maintained at ⁇ 55 ° C. for 10 to 120 minutes, but in the case of the yogurt of the present invention, the fermentation step can also serve as the enzyme reaction step.
  • the pH of yogurt decreases and the efficiency of transdalminase reaction deteriorates. Therefore, transdaltaminase is desirably added to the yogurt starter after sterilization of jordart milk. There is no particular limitation on the method of adding the transdarminase.
  • the powder may be directly added and dissolved, or it may be dissolved in milk or water or the like in advance and added as a solution.
  • the transdal evening minase used in the present invention may be derived from mammals (see Japanese Patent Publication No. Hei 11-50882) or derived from fish (summary of the 1991 Autumn Meeting of the Fisheries Society of Japan). 0), those derived from plants, those derived from microorganisms (see JP-A-11-27471), those derived by genetic recombination (see JP-A-1-304899), and the like. It can be used regardless of its origin. BEST MODE FOR CARRYING OUT THE INVENTION
  • the milk protein mixture used for yogurt was prepared as follows. The ratio of casein to whey protein using WP C35 (liquid whey protein, protein content about 10%, manufactured by BMI) and concentrated skim milk (liquid skim milk, protein content about 10%, manufactured by BMI) A variety of milk protein mixtures were prepared. The total protein concentration at the time of preparing the mixture was 10%, and components other than casein such as lactose and whey protein were the same in all prepared samples. Table 1 shows the compounding ratio.
  • the degree of whey modification was determined by performing liquid chromatography on the milk protein mixture before and after heating.
  • ⁇ _lactalbumin, j3-lactoglobulin A and iS_lactoglobulin B were analyzed using the same, and the sum of the three components was calculated as whey protein mass according to the following formula.
  • Degree of whey denaturation (%) (1 whey protein mass after heating Z mass of whey protein before heating) x 100
  • ⁇ -lactalbumin, i3- The peaks of lactoglobulin A and j8-lactoglobulin B appeared at about 9.5 minutes, about 19.5 minutes, and about 19 minutes.
  • Flow rate 1. Oml / min
  • Eluent B acetonitrile Z pure water 80/20 (V / V) + 0.55% trifluoroacetic acid
  • Each milk protein mixture to be subjected to liquid chromatography was diluted with distilled water so that the protein concentration was about 1%, and then adjusted to the isoelectric point of casein, pH 4.6, to precipitate casein, and to reduce the pore size to 0.
  • the zein was removed by a 45-m microfilter, and the filtered supernatant was further diluted with distilled water so that the whey protein concentration was about 0.1%, and then subjected to liquid chromatography.
  • a soft type yogurt was prepared using the processed milk protein product prepared above.
  • the above treated product was added to sterilized skim milk (protein content 3.4%) in an amount corresponding to 1% of the weight of the raw milk to prepare a protein concentration in yogurt milk of 4.4%.
  • the yogurt milk (15 kg) whose protein concentration was adjusted was homogenized in two stages (200 bar / 40 bar, flow rate 105 L / hr) using a homogenizer, and then sterilized at 94 ° C for 3 minutes using a tube heater.
  • Prepare 15 kg of heat-sterilized yogurt milk, 4 kg of each was transferred to a sterilized incubation tank and the temperature of each yogurt milk was adjusted to 42 ° C.
  • preculture was added to the yogurt milk.
  • the preculture was prepared by dissolving 50 g of ABT-21 yogurt culture (probiotic culture, CHR HANSEN) in 450 g of a cooled skim milk solution.
  • ACT I VAMP enzyme activity lOUZg, manufactured by Ajinomoto Co., Inc.
  • Yogurt milk inoculated with lactic acid bacteria was fermented in an incubator at 42 ° C.
  • a disintegrator was prepared by attaching a very small mesh of 220 / xm, a mixer, and a cooling jacket to an elongated tube with an inner diameter of 10 mm, and disintegrated by applying pressure with a pump. .
  • the cooler was set so that the product temperature after crushing was about 20 ° C.
  • the crushed Yodart was filled in a sterilized glass container, stored at 4 ° C, and then subjected to a sensory evaluation on the yogurt sample stored for a certain period of time.
  • the sensory evaluation was carried out by three workers who were skilled in the manufacture of hodgart, visually observing the state of the hogwort and checking the texture, and judging the presence or absence of abnormalities.
  • the evaluation criteria were set based on five levels of evaluation criteria.
  • the following table shows the analytical springs for each sample.
  • the evaluation in Table 2 was performed using those stored for 1 week at 4 after preparation. . Table 2.
  • Comparative product 1 did not have sufficient hardness, and was confirmed to be unsuitable as jordart.
  • Comparative products 7 to 12 did not have sufficient reforming effects.
  • the comparative product 1 and 2 had a large amount of water separation, which caused a problem in the quality as jordart. Therefore, it was confirmed that when the milk protein was treated at 90 ° C, the quality of the yogurt could not be improved to a sufficient level. Dramatic changes in physical properties were observed during storage for comparative products 13 and 14, and especially for comparative product 14 because the gel strength was too high, all test plots were unsuitable as yogurt products.
  • the invention products 1 to 4 were prepared under the same conditions as the comparative products 13 to 14 even though the heat treatment was carried out under the same conditions as the comparative products 13 to 14. Thus, it was confirmed that jordart having both improved sensory and physical properties and capable of suppressing a change in physical properties during storage can be prepared.
  • a milk protein mixture used for yogurt was prepared in the same manner as in Example 1 except that the ratio of casein: whey protein was fixed at 40:60. Heat treatment conditions were adjusted in each test plot to change the degree of denaturation of whey. Table 4 shows the detailed conditions. Preparation conditions for processed milk protein
  • soft-type Yodart was prepared.
  • an amount equivalent to 0.5% of the weight of the raw milk was added to the processed milk protein used in Invention 3.
  • transdal evening minase (ACTIVAYG; enzyme activity of 10 OU / g, manufactured by Ajinomoto Co., Inc.) was added so as to be 1 U per 1 g of milk-derived protein.
  • the prepared yogurt milk (15 kg) was homogenized by a homogenizer in two steps (200 bar / 40 bar), and then reacted with the enzyme under the conditions specified in Table 6.
  • Test area Force whey Reaction temperature () Reaction time (hour) Comparative product 1840: 60
  • Invention 1 1 4 0: 6 0 5 0 2
  • Invention 1 2 4 0: 6 0 5 5 1
  • Invention 1 3 4 0: 6 0 6 0 .5 Casein polymerization degree and sensory evaluation result of Kodart
  • Comparative product 1 8 1 1 2 2 2 None 2 Crossing Comparative product 1 9 3 5 4 3 4 Yes 2 Viscosity too high Invention 9 2 6 5 5 4 None 5 Good Invention 1 0 3 2 4 4 5 Slight 4 Slight High viscosity Invention 1 1 2 9 5 5 4 None 5 Good Invention 1 2 2 4 5 5 4 None 5 Good Invention 1 3 1 8 3 4 4 None 4 Slightly brittle Polymerization degree is measured using size exclusion chromatography. The casein, dimer, trimer, and multimer (polymers of trimer and higher) were analyzed for the content of casein, and the sum of these four components was calculated as the total protein of casein according to the following formula. did.
  • Degree of polymerization of casein (dimer / trimer + multimer) / (monomer dodecamer + trimer + multimer) X 100
  • peaks of casein multimers trimers and higher, trimers, and dimers
  • monomers monomers, and other low-molecular peptides and salts appeared. The times were about 16 to 23 minutes, about 23 to 28 minutes, and about 34 to 47 minutes, respectively.
  • the optimal amount of the processed milk protein was the final product.
  • the ratio of casein to whey protein in the rudder was important and a suitable ratio was 77:23 to 65:35, preferably 75:25 to 68:32.
  • the effects of the present invention can be obtained as long as the ratio in the final Kodart is within the above range.
  • powderyness derived from the processed protein was added at 2.5% by weight of the raw material milk, and 0.25 to 2.0% was preferred.
  • the present invention even if the activity of transdarminase remains, it does not adversely affect gelation or lumps during storage, so that inactivation of the enzyme in the production process of Without introducing a process, it is possible to show a high effect on the modification of yogurt, that is, the improvement of the texture and the suppression of water separation.
  • a temporal change in quality during storage can be suppressed by suppressing an excessive reaction of transdalase minase. From the above, it can be said that the present invention is extremely useful in the food field.

Abstract

トランスグルタミナーゼを利用したヨーグルト製造方法において、食感、離水防止の面でヨーグルトの品質を改善する方法、特に、ヨーグルト中のトランスグルタミナーゼの残存活性や乳蛋白質への過剰な反応に由来する、きめが粗くなる、ダマができる等の悪影響を防止・抑制する方法を提供するため、トランスグルタミナーゼと、ホエー蛋白質の変性度が60~88%となる条件でホエー蛋白質を加熱処理して得られる乳蛋白質処理物、あるいはカゼインとホエー蛋白質の混合比が窒素重量比において20:80~54:46である混合物をホエー蛋白質の変性度が25%~93%となる条件で加熱処理して得られる乳蛋白質処理物を用いてヨーグルトを製造する。

Description

明細書 ヨーグルトの製造方法 技術分野
本発明はトランスダル夕ミナーゼを用いたョーグルトの製造方法に関する。 背景技術
ヨーグルトは、 元来は、 牛乳、 山羊乳、 羊乳などをそのままあるいは濃縮し たものに乳酸菌スターターを接種し、 発酵されて製造されるもので、 酸甘味、 独特の風味、 さっぱりとした口当たりを有する発酵乳製品として知られている。 その種類は、 果汁や果肉を添加したものなど最近は多様化されているものの、 乳を含む原材料に一定量のスターターを接種し、 ビンや紙容器等の流通用容器 に詰め、 発酵させてプリン状に固めて製造されるハードタイプと、 発酵後解砕 して流通用個食容器に移したソフトタイプの 2種に大別することができる。 こ れらのヨーグルトの製造方法は、 公開特許 2 0 0 1— 2 5 2 0 1 1号、 特許 3 1 8 2 9 5 4号に記載されているように、 以下の 4段階あるいは 5段階の工程 を主に経る。
ハードタイプについては下記の通りである。 (第 1工程) 原料乳調製:乳を含 む原材料を混合、 加熱殺菌し、 4 0 °C前後まで冷却する。 (第 2工程) スタータ 一添加 ·充填:一定量の乳酸菌スターターを添加後、 流通用個食容器に充填す る。 (第 3工程) 発酵開始:充填後、 4 0 °C前後の発酵室に入れて発酵を促進さ せる。 (第 4工程) 発酵停止:カゼインの等電点凝集によりゲル (ヨーグルト力 ード) が安定した後、 1 0 °C以下の冷蔵庫に入れて冷却し、 発酵を停止させ、 製品とする。
—方、 ソフトタイプについては以下の通りである。 (第 1工程) 原料乳調製:乳を含む原材料を混合、 加熱殺菌し、 4 0 °C前後ま で冷却する。 (第 2工程) スターター添加 *発酵開始:一定量の乳酸菌スター夕 一を添加後、 4 0 °C前後の発酵室に入れて発酵を促進させる。 (第 3工程) ョー ダルトカードの解砕:カゼインの等電点凝集によりヨーグルトカードが安定し た後、 カードを解碎し、 半液体状の構造にする。 (第 4工程) 充填:流通用個食 容器に充填する。 なお、 充填工程の条件はヨーグルトのレシピゃ充填設備によ つて異なり、 発酵温度に近い温度で充填する場合もあれば、 ある程度冷却した 後に添加する場合もある。 また、 果肉ソース類をヨーグルトカードに添加混合 する場合は解砕されたヨーグルトを充填する際に同時に果肉ソースの充填を行 うか、 或いは、 充填工程よりも前の工程で添加を行う必要がある。 (第 5工程) 発酵停止: 1 0 °C以下の冷蔵庫に入れて冷却し、発酵を停止させ、製品とする。 なお、 ョーダル卜のレシピによっては充填前に冷却し発酵を停止させることも ある。
ヨーグルトを製造する際には、 一般的に物性改善や食感改良の為に各種蛋白 質、 増粘多糖類が添加されている。
乳蛋白質としては、 主には、 全脂粉乳や脱脂粉乳等に代表される各種の粉乳 や酸カゼイン、 ナトリウムカゼィネート等に代表されるカゼイン粉末類、 チー ズ製造やカゼィン製造の副産物であるホエー粉末類等が利用され、 蛋白質含量 を増加させることにより品質改善を図っている。 上記のように蛋白質を添加す る方法以外に、 製造工程中での乳濃縮工程を設定する方法もある。 これらのよ うな、 ヨーグルトミックスの全固形分を高め、 製品を改質するという知見は公 知の事実であり、 ミルク総合事典 (1 9 9 2 )、 朝倉書店、 2 3 7頁にも記載さ れている。
乳蛋白質以外の蛋白質としてはゼラチンが使用される。 ゼラチンは低温でゲ ル化する特性をもつことからヨーグルトカードの構造を補強することにより品 質改善を図っている。 同時にゼラチンは他の素材と比較すると喫食時の口どけ がよいことから汎用されている。
増粘多糖類としては水に溶解してハイドロコロイドを形成するものであれば 特に種類は限定されず、 キサンタンガム、 ローカストビーンガム、 カラギーナ ン、 ダリロイド、 アルギン酸塩やべクチン、 寒天等が挙げられる。 これらの素 材はヨーグルトカードの粘性増加やゲル構造の補強により品質改善に寄与して いる。
以上に述べた素材の一般的な効果としては、 静置離水の低減やヨーグルトの 硬さ ·粘度付与、 食感面においてはクリ一ミー感付与、 濃厚感付与等が挙げら れる。 しかし、 現在工業的に行われている製造法も含め、 既知の方法で得られ る上記製品はョーダル卜に求められている種々の条件を必ずしも満たしている ものでなく、 改良の余地は多い。 また、 上記のような蛋白質や増粘多糖類添加 により品質改善を図る技術以外にも、 トランスダルタミナーゼを作用させるこ とによりヨーグルトの品質改善を図る試みが検討されてきた。 トランスダル夕 ミナーゼを用いた品質改善のメリットは上記に記載した品質改良剤と比較して 総合的にコストメリットがあること、 添加物を代替することにより製品の原材 料表示において添加物表示を削減しながらも所望の効果を得られること等が挙 げられる。
特許 3 1 8 2 9 5 4号には、 予めトランスダル夕ミナーゼで原料乳を処理し、 次いで加熱によりトランスダル夕ミナーゼを失活させた後にスターターを接顰 して原料乳を発酵させることを特徴とするヨーグルトの製法が述べられている。 この技術により、 離水の生じない滑らかな食感のョーダルトを製造できること が記載されている。 この方法では、 酵素活性が残存しないように加熱工程をと つている点が大きな特徴である。 また、 上記特許 3 1 8 2 9 5 4号では加熱失 活工程は同時に乳の加熱殺菌工程となる旨の記載があるが、 酵素を失活させる 為には 9 5 °C達温処理のような加熱条件が必要になる。
一方で十分な酵素失活工程をとらずに、 酵素活性が残存する条件でョーダル トを調整すると、 その影響で製品の保存中にヨーグルトの物性が変化し、 品質 に悪影響を与えることが確認されている。 特に原料乳に乳蛋白質を添加し固形 分を増加させたヨーグルトにおいてはその影響が顕著である。 ヨーグルトの製 造にあたり、 加熱失活工程を実施せずに調製すると保存中にヨーグルトカード のきめが粗くなる、 ゲル化が観察される等、 商品価値が著しく低下することが 確認されている。 そのため、 ヨーグルト全般、 特に無脂乳固形分を増加させた ョ一ダルトに用途にトランスダル夕ミナーゼを用いる際には、 加熱失活工程が 必須と考えられてきた。
しかしながら、 設備上の問題で加熱失活工程の実施が困難である場合にはト ランスダル夕ミナーゼを失活させることは容易ではない。 また、 出発原料に殺 菌乳を用いてヨーグルト製造を行う場合には、 通常、 カルチャー添加後に加熱 工程がないため、 加熱失活工程の実施にあたり余分なコストがかかる。 そのた め、 トランスダル夕ミナーゼの加熱失活工程が殺菌工程と併用できない場合に はトランスダル夕ミナ一ゼはあまり利用されていなかつた。 これらの背景から、 トランスダル夕ミナーゼを利用したヨーグルト製造方法において、 残存活性に 由来する悪影響を防止 ·抑制する技術開発が切望されていた。 尚、 公開特許 2 0 0 1— 2 5 2 0 1 1号、 特許 3 1 8 2 9 5 4号、 WO 2 0 0 1 1 0 2 3 2に は、 トランスグルタミナーゼを用いるョーダルトの製造方法が開示されている が、 該酵素の残存活性に由来する悪影響を防止 ·抑制する方法については言及 されていない。
また、 発明者らは、 特許 3 1 8 2 9 5 4号のようにトランスダル夕ミナ一ゼ を失活させる工程を導入しても、 原料乳に乳蛋白を添加する場合には、 過剰に トランスダル夕ミナーゼが反応し、 製品を保存中に品質が変化し、 きめが粗く なる、 ダマができる等の問題が起こることを製品開発の過程で発見したが、 こ れに由来する悪影響を防止 ·抑制する方法についてはこれまで確立されていな かった。
次に、 本発明で使用するカゼィン及びホエー蛋白質の混合物の乳蛋白質処理 物に関して、 類似する技術と本発明の相違点について、 より詳細に述べる。
Da i ry Ch emi s t ry and B i o c hemi s t ry、 BL ACK I E ACADEM I C&PROFE S S I ONAL、 363〜368 頁には、 ホエー蛋白質は加熱による影響を受けやすく、 加熱によりその変性度 が変化すると記載されている。 D a i r y Ch em i s t r y and B i o c hemi s t r y, BLACK I E A C AD EM I C & P R O F E S S I ONAL、 363〜368頁にはスキムミルクを異なる温度帯で加熱して、 ホエー蛋白質の変性度を測定した結果が記載されており、 加熱温度が高いほど 短時間で変性することが説明されている。 しかし、 ホエー蛋白質の変性度につ いて、 どの範囲が乳製品の品質改善に最適であるかという点については一切記 載がなレ。 Da i r y Ch em i s t r y and B i o c h em i s t ry、 BLACKI E AC AD EM I C & P R O F E S S I ON AL、 36 3〜 368頁に記載のデータは、 スキムミルクを加熱したデータであり、 カゼ インとホエー蛋白質の比率が 8 : 2に固定された条件のデータである。 本発明 のような、 カゼインとホエー蛋白質の比率を原料乳由来の 8 : 2から変化させ ることは一切記載されておらず、 トランスダルタミナーゼの併用についても記 載力 Sなレ^ よって!) a i r y Ch em i s t r y and B i o c hem i s t ry、 BLACK I E ACADEMI C&PROFES S I ONAL、 363〜368頁から本発明は容易に類推できないといえる。
また、 カゼインとホエーの混合物について、 スキムミルクを加熱処理してホ エー蛋白質とカゼインの混合処理物を作成することは米国特許 US 35353 04、 米国特許 US 451 9945並びに D a i r y Ch em i s t r y and B i o c h em i s t r y^ BLACK I E ACADEMI C&P
ROFES S I ONAL、 227〜 228頁に記載されているが、 この場合の カゼインとホエー蛋白質の比率は乳由来の比率、 すなわち 8 : 2に固定されて おり、 ホエーの変性度については一切記載がない。 本発明では、 意図的にこの 比率を変化させてカゼインとホエー蛋白質の混合物を調製し、 さらにホエー蛋 白質の変性度についても詳細に渡って検討を行い、 乳製品、 特にトランスダル 夕ミナ一ゼを使用するョーダルトに最適な比率及びホエー変性度を見出してい る。 米国特許 U S 4519945及び D a i ry Ch emi s t r y an d B i o c h em i s t r y, BLACK I E ACADEMI C&PRO
FES S I ONAL、 227〜228頁には上記の検討を想起させる表現は一 切ないため、 本発明はこれらの文献からは容易に類推できず、 上記文献の技術 とは異なるといえる。
さらに、 米国特許 US 3882256ではカゼインとホエー蛋白質の配合比 率を変化させ、 さらにこれに塩化カルシウムとトリポリリン酸ナトリゥムを使 用して、 乳蛋白質の溶解度 (水溶性窒素指数) を変化させた乳蛋白質混合処理 物を調製し、 ビスケットのような焼成品に適した配合比率、 溶解度の検討を行 つている。 カゼィンとホエーの比率を変化させて最適な配合を検討している点 については類似してはいるが、 米国特許 US 3882256記載の技術は焼成 品の品質改善、 ドウ取り扱いの作業性改善を課題としているのに対し、 本発明 では、 カゼインとホエーの比率に加えて、 ホエーの変性度を最適化し、 トラン スグルタミナーゼを用いる乳製品、 特にヨーグルトについて、 トランスダル夕 ミナーゼの残存活性やトランスグルタミナーゼの過剰な反応に由来する悪影響
(きめが粗くなる、 ダマができる等) を防止 '抑制することを目的としている。 このように、 米国特許 US 3882256と本発明とは課題が全く異なり、 米 国特許 U S 3 8 8 2 2 5 6の技術から本発明は容易に類推できない。
以上のとおり、本発明では、意図的にカゼインとホエー蛋白質の比率を変化さ せてカゼインとホエーの混合物を調製し、 さらにホエーの変性度についても詳 細に渡って検討を行い、 乳製品、 特にヨーグルトにおいて、 トランスダルタミ ナー^ £を用いる際に、 最適なカゼインとホエー蛋白質の比率及びホエー変性度 を見出した。 本発明の技術は上記の通り、 既存の文献の組み合わせでは容易に 達成しえず、 鋭意検討を行った結果、 得られたものである。 発明の開示
本発明の課題とするところは、 トランスダル夕ミナ一ゼを利用したョーダル ト製造法において、 食感、 離水防止の面でヨーグルトの品質を改善すること、 特に、 ヨーグルト中のトランスダル夕ミナーゼの残存活性や乳蛋白質への過剰 な反応に由来する悪影響 (きめが粗くなる、 ダマができる等) を防止 ·抑制す ることである。
本発明者は、 上記課題を解決すべく鋭意研究した結果、 トランスダル夕ミナ ーゼを用いるヨーグルト製造において、 品質改善目的で使用される乳蛋白質中 のホエー蛋白質の変性度が所定の範囲となる加熱条件で処理することにより、 上記課題が解決可能であることを見出した。 即ち本発明は以下の通りである。
1 . ホエー蛋白質の変性度が 6 0〜8 8 %となる条件でホエー蛋白質を加熱処 理して得られる乳蛋白質処理物及びトランスグルタミナーゼを用いるョーダル 卜の製造方法。
2 . カゼインとホエー蛋白質の混合比が窒素重量比において 2 0: 8 0〜5 4 : 4 6である混合物をホェ一蛋白質の変性度が 2 5 %〜 9 3 %となる条件で加熱 処理して得られる乳蛋白質処理物及びトランスダル夕ミナーゼを用いるョーグ ルトの製造方法。 3. 乳蛋白質処理物が、 カゼインとホエー蛋白質の混合比が窒素重量比におい て 32 : 68〜 48 : 52である混合物をホエー蛋白質の変性度が 2 Ί %〜Ί 9%となる条件で加熱処理して得られるものである前記 2記載の製造方法。
4. 最終製品であるヨーグルトにおいて、 トランスグル夕ミナーゼによるカゼ インの重合度が 1 5〜33 %であることを特徴とする前記 1乃至 3記載の製造 方法。
5. 最終製品であるヨーグルトにおけるカゼインとホエー蛋白質の比が、 窒素 重量比において 77 : 23〜65 : 35であることを特徴とする前記 1乃至 4 記載の製造方法。
6. 原料乳に対する該乳蛋白質処理物の添加量が 0. 2〜2. 3%であること を特徴とする前記 1乃至 5記載の製造方法。
7. 加熱処理が、 8 1 °C〜 89 ° (:、 1〜 1 0分間加熱である前記 1乃至 6記載 の製造方法。
8. トランスダル夕ミナーゼの加熱失活工程を含まないことを特徴とする前記 1乃至 7項記載の方法。
9. ホエー変性度が 60〜88%となる条件でホエー蛋白質を加熱処理して得 られる乳蛋白質処理物及びトランスダル夕ミナーゼを含有する乳製品用酵素製 剤。
10. カゼインとホエー蛋白質の混合比が窒素重量比において 20 : 80〜5 4 : 46である混合物をホェ一蛋白質の変性度が 25%〜93%となる条件で 加熱処理して得られる乳蛋白質処理物及びトランスダル夕ミナーゼを含有する 乳製品用酵素製剤。 ·
なお、 本発明の効果が得られるメカニズムは下記の様に考えられている。 ま ず、 トランスダル夕ミナ一ゼの基質であるカゼインがホエー蛋白質共存下で加 熱されることで、 カゼインの周囲にホェ一が結合することにより、 言わばカゼ インはホエー蛋白質にコーティングされた形になる。 その結果、 ホエー蛋白質 がトランスタル夕ミナーゼとカゼィンのスぺーサ一的な役割を果たし、 トラン スグルタミナーゼのカゼィンへの過剰な反応を抑制することにより本発明の効 果が得られると推察されている。
始めに、 本発明で使用される乳蛋白質処理物の調製方法について述べる。 乳 蛋白質の調製については、 上述した条件を含む方法で蛋白質の調製を行えばよ い。 まず、 原料については、 カゼインゃホエー蛋白質の種類は限定されない。 例えば、 カゼイン原料としては脱脂粉乳や全脂粉乳、 前記粉乳から乳糖あるい は脂質を除去したもの、 カゼインナトリウム等、 含有蛋白質の主成分がカゼィ ンあるいはカゼインの塩であれば種類は問わないし、 由来も限定されない。 ホ エー蛋白質原料としては、 濃縮ホエー蛋白質 (WP C)、 精製ホエー蛋白質 (W P I ) 等、 ホエー蛋白質を含有蛋白質の主成分とするものであれば種類は問わ ないし、 原料にホエー蛋白質以外の成分、 例えば乳糖や各種ミネラルを含んで いてもよい。 由来についても上記特性を満たしていれば、 特に限定されず、 例 えば、 ホエー蛋白質であれば、 乳そのものからカゼインを精製する際に分離さ れたものを用いてもよいし、 チーズ製造の副産物として発生するチーズホエー を用いても良い。 また、 上記原料の形状についても特に限定されず、 粉末状の ものを用いてもよいし、 予め溶解された液状のものを用いてもよい。 カゼイン とホエー蛋白質の混合比率は、窒素重量比率において 2 0 : 8 0〜 5 4 : 4 6、 好ましくは 3 2 : 6 8〜4 8 : 5 2がよい。 なお、 本発明におけるカゼインあ るいはホエー蛋白質の窒素重量については例えばケルダール法で分析した値を 用いればよい。
加熱時の乳蛋白質混合物の状態については、 本発明の効果が得られるメカ二 ズムの点から、 両蛋白質が加熱条件下で相互作用できるように、 溶液の状態で 加熱することが望ましい。 乳蛋白が乾燥物である場合は、 市水、 乳等の溶液に 分散させて溶液を調製し、 溶液状態にして加熱することが望ましい。
カゼインを混合せずにホエー蛋白質を加熱処理して得られる本発明の乳蛋白 質処理物は、ホエー蛋白質の変性度が 6 0〜8 8 %、好ましくは 6 7〜8 8 %、 より好ましくは 7 7〜8 8 %となる条件で加熱処理する必要がある。
カゼインとホエー蛋白質の混合比が窒素重量比において 2 0 : 8 0〜5 4 : 4 6、 好ましくは 3 2 : 6 8〜4 8 : 5 2である混合物を加熱処理して得られ る本発明の乳蛋白質処理物は、 ホエー蛋白質の変性度が 2 5 %〜 9 3 %、 好ま しくは 2 7〜7 9 %となる条件で加熱処理する必要がある。
次に、ホエー変性度が 2 5〜9 3 %となる加熱条件について述べる。例えば、 カゼインとホエー蛋白質の混合比率が 2 0 : 8 0〜5 4 : 4 6の場合、 加熱条 件は 8 1。に〜 8 9 °〇で1〜1 0分間、 好ましくは 8 2 °C〜 8 6 °C、 2〜 4分間 がよい。 但し、 カゼインとホエー蛋白質の混合比が窒素重量比において 2 0 : 8 0〜 5 4 : 4 6であり、 ホエー変性度が 2 5〜 9 3 %となるならば、 加熱温 度、 加熱時間、 加熱の方法は問わない。 加熱方法については、 一般的な溶液加 熱に使用される機器、 方法は全て適用できる。 例えば、 恒温槽を用いた加熱や 熱交換プレー卜殺菌機等が使用できる。
ホエー変性度は加熱前後の乳蛋白質混合物について、 液体クロマトグラフィ 一を用いて、 一ラクトアルブミン、 /3 _ラクトグロブリン Α、 β—ラク卜グ ロブリン Βを分析し、 3成分の和をホエー蛋白質量として、 下記の算定式に従 つて算出する。 ホエー変性度 (%)=( 1—加熱後ホエー蛋白質量 加熱前ホエー蛋白質量) : 100 なお、 加熱により、 カゼインに会合したり凝集したホエー蛋白質の上記各成 分は液体クロマトグラフィーでは検出されない。 加熱後のホエー蛋白質量が少 ないほど、 ホエー蛋白質が変性、 反応していることになる。 液体クロマトダラ フィ一によるホエー蛋白質の上記各成分の分析条件例は下記のとおりである。 流速: 1. 0m l /m i n
カラム: L a t e c 3 00A 8 τη
検出波長: 22 6 nm
溶離液 A :純水 + 0. 1 %トリフルォロ酢酸
溶離液 B :ァセトニトリル Z純水 8 0Z2 0 (V/V) + 0. 5 5 5 %トリフ ルォロ酢酸 液体クロマトグラフィ一に供する乳蛋白質混合物は、 蛋白質濃度が約 1 %と なるよう蒸留水で希釈後、 カゼインの等電点である pH4. 6に調整し、 カゼ インを沈降させ、 ポアサイズ 0. 45 mのマイクロフィル夕一によりカゼィ ンを除去する。 フィルター処理した上清をホェ一蛋白質濃度が約 0. 1 %とな るようさらに蒸留水で希釈後、 液体クロマトグラフィに供する。
本発明で使用する乳蛋白質処理物の最終形態は、 取り扱い易さの面やョーグ ルト配合時の制約から乾燥させた形態のものが望ましい。 但し、 乾燥工程をと らない、 いわゆる溶液状のものも利用可能である。 乾燥方法は一般的に溶液を 乾燥させるために用いられている方法を全て適用できる。 例としては、 ドラム ドライ法、 フリーズドライ法、 スプレードライ法等が挙げられるが、 乾燥効率 や乾燥された粉体特性の面からスプレードライ法で乾燥させることが望ましレ^ また、 乾燥条件については一般的な条件であれば、 特に制限はないが、 例えば スプレードライ法であれば、 入り口温度及び乾燥工程は 1 8 0°Cで行い、 出口 温度は 8 0°C程度で設定すると良い。
続いて、 本発明の乳蛋白質処理物を用いたヨーグルトの製造方法について述 ベる。 ヨーグルトの製造法については、 特別な工程は一切必要なく、 先に述べ た一般的なヨーグルト製造工程において上記方法で調製した乳蛋白質処理物及 びトランスダルタミナーゼを添加すればよい。 上記乳蛋白質処理物の添加タイ ミングゃ添加形態は特に問わないが、 均一に混合されるという点で、 第 1工程 である乳原料混合液 (以下ヨーグルトミルクと略す) の調製の際に添加するこ とが望ましい。 乳蛋白質処理物の添加量は、 最終製品であるヨーグルトにおけ るカゼインとホエー蛋白質の比が、 窒素重量比において 7 7 : 2 3〜6 5 : 3 5となる量が適当である。 例えば、 乳蛋白質処理物の原料乳に対する添加量は 0 . 2〜 2 . 3 %、 好ましくは 0 . 2 5〜2 . 0 %が適当である。
トランスグルタミナーゼの作用によりヨーグルト中のカゼィンは重合するが、 トランスダル夕ミナーゼによるカゼインの重合度は 1 5〜3 3 %が好ましく、 1 8〜3 2 %がより好ましい。 重合度が 1 5 %未満であるとヨーグルトの組織 構造がもろく、 逆に 3 3 %を超えると構造が粗い、 きめ細かさに欠ける、 保存 中に構造変化が起こる等の問題が生じる。 重合度は、 サイズ排除クロマトダラ フィーを用いて、 カゼインの単量体、 二量体、 三量体、 多量体 (3量体以上の 重合体) の含量を分析し、 これら 4成分の和をカゼインの総蛋白量として下記 の算定式に従って算出できる。 カゼイン重合度 (%) 二 (二量体 +三量体 +多量体) / (単量体十二量体十三 量体 +多量体) X 1 0 0 トランスダル夕ミナーゼの活性を残存させる場合は、 ョーダル卜ミルク殺菌 後から発酵開始前までの間、 あるいは発酵中のようにトランスダル夕ミナーゼ をヨーグルトカード全体に均一に拡散できる状態にある間に添加すればよいし、 トランスダル夕ミナーゼを失活させる場合には、 加熱殺菌前に添加すれば特に 制限はない。
トランスダル夕ミナーゼの加熱失活工程を含まないことを特徴とするョーグ ルトの製造方法とは、 トランスダル夕ミナーゼ添加後の工程に、 例えば 9 5 °C 達温処理等、 該酵素が失活する条件の加熱工程が含まれない製造方法を意味す る。
本発明で用いるトランスグルタミナ一ゼ水溶液の濃度は、 トランスダルタミ ナーゼの作用が発現される濃度であればよい。具体的には、乳蛋白質 1 g当たり、 トランスダル夕ミナーゼを 0 . 0 1〜1 0 0ユニット (以下ユニットは Uと略 する)、 好ましくは 0 . 1〜5 0 U含有させる。 添加量が前記範囲より少ない場 合には物性の改善効果を収めることができず離水防止等の効果も小さい。 また、 前記範囲を越える場合はゲル状に固まり、 ヨーグルトらしい滑らかさを失い、 好ましくない。
なお、 本発明でいうトランスダル夕ミナーゼの活性単位は、 次のようにして 測定され、 かつ定義されている。 すなわち、 ベンジルォキシカルボニル -L -ダル タミニルダリシンとヒドロキシルアミンを基質として反応を行い、 生成したヒ ドロキサム酸を卜リク口. 酢酸存在下で鉄錯体を形成させた後、 5 2 5 n の 吸光度を測定し、 ヒドロキサム酸の量を検量線より求め、 活性を算出する (特 開平 1一 2 7 4 7 1号公開特許公報参照)。 もちろんである。
トランスダル夕ミナーゼの作用を十分に発揮させるためには、 一般的には、 トランスダル夕ミナーゼの作用に適する条件、すなわち p H 6〜 7においてほぼ 5〜6 5 °C、 好ましくはほぼ 4 0〜5 5 °〇で1 0〜1 2 0分保持するのがよい が、 本発明のヨーグルトの場合は発酵工程が酵素反応工程を兼ねることができ る。乳酸菌による発酵が進むとヨーグルトの pHが下がり、 トランスダル夕ミナ ーゼの反応効率が悪くなるため、 トランスダルタミナーゼはョーダルトミルク 殺菌後、 ヨーグルトスターターを添加する際に添加することが望ましい。 トラ ンスダル夕ミナーゼの添加方法は特に限定されない。 例えば、 粉末を直接添加 して溶解させてもよいし、 事前に乳や水等で溶解して溶液状にして添加しても よい。 本発明に用いられるトランスダル夕ミナーゼは、 哺乳動物由来のもの (特公 平 1一 5 0 3 8 2参照)、 魚類由来のもの (平成 3年度日本水産学会秋季大会講 演要旨集第 1 8 0頁参照)、 植物由来のもの、 微生物由来のもの (特開平 1一 2 7 4 7 1 参照)、遺伝子組換えによるもの(特開平 1— 3 0 0 8 9 9 参照)、 等が知られているが、 その由来を問わず使用できる。 発明を実施するための最良の形態
以下、 実施例により本発明をさらに詳しく説明する。 もちろん、 これによつ て本発明の範囲が限定されるものではない。 実施例 1
ヨーグルトに用いる乳蛋白質混合物は以下のように調製した。 WP C 3 5 (液 体ホエー蛋白質、 蛋白質含量約 1 0 %、 B M I社製)及び濃縮スキムミルク (液 体スキムミルク、 蛋白質含量約 1 0 %、 B M I社製) を用いてカゼインとホェ —蛋白質の比率が異なる種々の乳蛋白質混合物を調製した。 なお、 混合液調製 時の総蛋白質濃度は 1 0 %とし、 乳糖などのカゼイン及びホエー蛋白質以外の 成分については全ての調製サンプルで同じになるようにした。 配合比を表 1に 述べる。
表 1. 乳蛋白質処理物の配合比、 加熱条件、 ホエー変性度
乳蛋白質 加熱処理 ホエー変性度 乳蛋白質
スキム 処理物中 条件 (%)
WPC 処理物中
試験区 ミルク のホエー
(kg) のカゼィ
(kg) 蛋白質比
ン比率 (%)
率(%)
比較品 1 0 20 0 1 00 80で 3分 3 1 . 9 比較品 2 8 12 32 68 8 0"C3分 1 8 - 6 比較品 3 1 0 1 0 40 60 8 0"C 3分 1 3 . 3 比較品 4 1 2 8 48 52 8 0 3分 1 5 . 3 比較品 5 1 5 5 60 40 8 0で 3分 1 6 . 0 比較品 6 20 0 80 20 80で3分 1 8 . 6 比較品 7 0 20 0 1 00 90で 3分 89 . 1 比較品 8 8 1 2 32 68 90で 3分 95 . 8 比較品 9 1 0 1 0 40 60 9 O : 3分 9 5 . 1 比較品 1 0 1 2 8 48 52 90で 3分 94 . 4 比較品 1 1 1 5 5 60 40 90 "C 3分 90 . 4 比較品 12 20 0 80 20 901: 3分 97 . 1 発明品 1 0 20 0 1 00 84 : 3分 77, . 1 発明品 2 8 1 2 32 68 84で 3分 79. . 8 発明品 3 10 1 0 40 60 84 ; 3分 78. . 5 発明品 4 1 2 8 48 52 8 3分 67. . 8 比較品 1 3 1 5 5 60 40 84で 3分 49. • 9 比較品 14 20 0 80 20 84 : 3分 42. . 6 表 1に従って調製した乳蛋白質混合溶液は、 S c r ap e d s u r f a c e he a t e xc h ang e r (S c h r od e r、 L u D e c k ¾ G e rmany) で 80 °C又は 84°C又は 90 °C、 3分間の加熱を行った後、 N i r o At omi z e r (S o e bo r g、 Denma r k社製) のスプレー ドライヤーを用いて乾燥した。 スプレードライの乾燥条件は、 入り口温度から 乾燥工程においては 180°C、 出口温度は 80°Cに設定した。 調製した乳蛋白 質処理物はその特性を把握するために処理物中のホエーの変性度を測定した。 その結果を合わせて表 1に示した。 ホエー変性度は加熱前後の乳蛋白質混合物 について、 液体クロマトグラフィーを用いて、 α _ラクトアルブミン、 j3—ラ クトグロブリン A、 iS_ラクトグロブリン Bを分析し、 3成分の和をホエー蛋 白質量として、 下記の算定式に従って算出した。 ホエー変性度 (%) = ( 1一加熱後ホェ一蛋白質量 Z加熱前ホエー蛋白質量) X 100 下記条件で液体クロマトグラフィーによるホエー蛋白質の上記各成分を分析 したところ、 α—ラクトアルブミン、 i3—ラクトグロブリン A、 j8—ラクトグ ロブリン Bのピークの現れる時間は、 約 9. 5分後、 約 19. 5分後、 約 19 分後であった。 流速: 1. Oml /m i n
カラム:: L a t e c 300A 8 urn
検出波長: 226 nm
溶離液 A :純水 +0. 1%トリフルォロ酢酸
溶離液 B :ァセトニトリル Z純水 80/20 (V/V) +0. 555%トリフ ルォロ酢酸
なお、液体クロマトグラフィーに供する各乳蛋白質混合物は、蛋白質濃度が約 1 %となるよう蒸留水で希釈後、カゼインの等電点である pH 4. 6に調整し、 カゼインを沈降させ、 ポアサイズ 0. 45 mのマイクロフィルタ一により力 ゼインを除去し、 フィルター処理した上清をホェ一蛋白質濃度が約 0. 1%と なるようさらに蒸留水で希釈後、 液体クロマトグラフィに供した。
次に、 上記で調製した乳蛋白質処理物を用いてソフトタイプヨーグルトを調 製した。 殺菌済みのスキムミルク (蛋白質含量 3. 4%) に上記処理物を原料 乳重量の 1 %に相当する量を加え、ヨーグルトミルクにおける蛋白質濃度が 4. 4%となるように調製した。 蛋白質濃度を調製したヨーグルトミルク (15 k g) はホモジナイザーにより 2段階 ( 200 b a r /40 b a r、 流速 105 L/h r) で均質化した後、 チューブ式の加熱機で 94°C、 3分間殺菌した。 各 15 k gの加熱殺菌したヨーグルトミルクを調製し、 うち、 各 4kgをそれ ぞれ殺菌済みのィンキュベーシヨンタンクに移し、 各ヨーグルトミルクの温度 が 42 °Cになるように温度調整した。
乳温が 42 に達したところで、 8m lのプレカルチャーをヨーグルトミル クに添加した。 なお、 プレカルチャーは 50 gの ABT— 21ヨーグルトカル チヤ一 (プロバイオティックカルチャー、 CHR HANSEN製) を 450 gの冷却したスキムミルク溶液に溶解して調製した。 トランスダル夕ミナーゼ として、 ACT I VA MP (味の素株式会社製、 酵素活性 l O OUZg) を 乳酸菌添加直後にヨーグルトミルク重量あたり 0. 02重量% (0. 54UZ乳 蛋白質 l g) となるように添加し、 軽く攪拌して均一に溶解させた。 乳酸菌を 接種したヨーグルトミルクはインキュベーターで 42 °Cの条件で発酵させた。 発酵開始後、 30分ごとに pHを測定し、 pHが 4. 6となったところで発酵 を終了し、 解砕 ·充填を行った。 解砕については、 内径 10mmの細長いチュ ーブに 220 /xmの非常に小さなメッシュ、 ミキサー、 冷却用ジャケッ卜を取 り付けた解砕機を準備し、 ポンプで圧力をかけて解砕を行った。 なお、 冷却器 は解砕後の品温が約 20 °Cになるように設定した。 解砕したョーダルトを滅菌 したガラス容器に充填し、 4°Cで保存後、 一定の期間保存したヨーグルトサン プルについて官能評価を行った。
官能評価については、 ョ一ダルト製造に熟練した 3名の作業従事者がョーグ ル卜の状態について目視による観察及び食感の確認を行い、 異常の有無の判定 を行うことにより評価した。食感に関する官能評価では、ヨーグルトの硬さ(粘 度)、 きめ細かさ、離水量に関して個別に評価を行い、 さらにそれらの結果を踏 まえて総合的な評価も行った。 保存中の物性変化の評価に関しては、 目視でゲ ル化の有無、 粘度変化を確認した。 なお、 評価基準については、 5段階の評価 基準を設定して行った。 各試料に関する分析結泉を下表に示す。 なお、 表 2中 の評価は調製後、 4 で 1週間保存したものを用いて行った。 . 表 2 . ヨーグルトの官能評価結果
官能評価 総合評価 試験区
ゲルの硬さ きめ細かさ 離水量 点数 コメン卜 食感不適 比較品 1 2 1 2 1
小さなダマがある 比蛟品 2 3 2 3 3 十分な改質効果なし 比較品 3 3 2 3 3 十分な改 S効果なし 比較品 4 1 2 3 2 ゲル強度が高すぎる 比較品 5 3 2 3 3 十分な改質効果なし 比較品 6 3 2 3 3 十分な改質効果なし 比較品 7 3 2 3 3 十分な改質効果なし 比較品 8 3 2 3 3 十分な改質効果なし 比蛟品 9 1 3 3 2 十分な改質効果なし 比較品 1 0 1 3 3 2 十分な改質効果なし 比較品 1 1 3 2 3 3 十分な改質効果なし 離水が多すぎる 比較品 1 2 1 3 1 1
ゲルが弱すぎる 改質効果顕著 発明品 1 4 4 4 4
保存中物性変化少ない 改質効果非常に顕著 発明品 2 5 5 5 5
保存中物性変化少ない 改質効果非常に顕著 発明品 3 5 5 4 5
保存中物性変化少ない 改質効果顕著 発明品 4 5 4 4 4
保存中物性変化少ない 粘度が高すぎる 比較品 1 3 2 2 3 1
保存中の変化が激しい 粘度が髙すぎる 比較品 1 4 2 2 3 1
保存中の変化が激しい ゲルの硬さ · きめ細かさ · 離水量 · 総合評価の評点基準
1点 :非常に好ましくない
2点 : やや好ましくない
3点 : どちらでもない
4点 : やや好ましい
5点 : 非常に好ましい 比較品 1では十分な硬さが得られず、 ョーダルトとしては不適であるこ とが確認された。 また、 比較品 2〜 6についてもきめ細かさに欠ける等の 評価結果に示されるように、 十分な改質効果が得られなかった。 比較品 7 〜 1 2ではいずれも十分な改質効果が得られなかった。 特に比較品 1 2に ついては離水が多く、 ョーダルトとしての品質に問題が生じることが確認 された。 従って、 9 0 °Cで乳蛋白質の処理を行った場合にはヨーグルトの 品質を十分なレベルまで改善できないことが確認された。 比較品 1 3及び 1 4については保存中に劇的な物性変化が観察されたこと、 特に比較品 1 4についてはゲル強度が高すぎたことから、 いずれの試験区もョーグルト 製品としては不適であることが確認された。 一方、 発明品 1〜4は比較品 1 3〜 1 4と同じ条件で加熱処理を行っているにもかかわらず、 カゼイン とホエー蛋白質の比率を特定の比率にして乳蛋白質処理物を調製するこ とで、 官能、 物性共に改善され、 かつ、 保存中の物性変化も抑制したョー ダルトを調製できることが確認された。
これはホエー蛋白質の変性度の最適化が本発明における課題克服に大 きく寄与していることを示している。 また、 表 3に示したように、 比較品 1〜 3及び比較品 7〜 9では発明品 1〜 3と同じ条件でカゼィンとホェ 一蛋白質を配合しているにも関わらず、 ヨーグルトの品質改善効果につい ては大きな差があることが確認された。 この結果からも、 加熱処理条件す なわちホエー蛋白質の変性度の最適化が本発明の課題克服に大きく寄与 していることを示している。 表 3. 乳蛋白質処理物の調製条件とョーダルトの官能評価結果 加熱処理条件 官能評価 総合評価 カゼィン
試験区 (ホエー変性 ゲルの きめ細 占
: ホエー 離水量 コメント
度) 硬さ かさ 数
比較品 8 0で 3分 食感不適
2 1 2 1
1 (3 1. 9 %) 小さなダマがある 発明品 0 : 84で 3分 改 K効果顕著
4 4 4 4
1 1 0 0 ( 7 7. 1 %) 保存中物性変化少ない 比較品 9 0で 3分
3 2 3 3 十分な改質効果なし
7 ( 8 9. 1 %)
比較品 8 0 3分
3 2 3 3 十分な改質効果なし 2 ( 1 8. 6 %)
発明品 3 2 : 8 4 ¾ 3分 改 K効果顕著
5 4 5 5
2 6 8 ( 7 9. 8 %) 保存中物性変化少ない 比較品 9 0で 3分
3 2 3 3 十分な改質効果なし 8 (9 5. 8 %)
比較品 8 0で 3分
3 2 3 3 十分な改質効果なし 3 ( 1 3. 3 )
発明品 40 : 8 4で 3分 改質効果非常に顕著
5 5 5 5
3 6 0 ' (7 8. 5 ) 保存中物性変化少ない 比較品 9 0で 3分
1 3 3 2 十分な改質効果なし 9 ( 9 5. 1 %)
比較品 8 0 : 3分
1 2 3 2 ゲル強度が高すぎる 4 ( 1 3. 3 )
発明品 4 8 : 8 4 : 3分 改 H効果顕著
5 4 4 4
4 5 2 ( 6 7. 8 %) 保存中物性変化少ない 比較品 9 0 3分
1 3 3 2 十分な改質効果なし 1 0 ( 9 5. 1 %) ゲルの硬さ · きめ細かさ · 離水量 · 総合評価の評点基準
1点 : 非常に好ましくない
2点 :やや好ましくない
3点 : どちらでもない
4点 :やや好ましい
5点 :非常に好ましい 実施例 2
ヨーグルトに用いる乳蛋白質混合物をカゼィン:ホエー蛋白質の比を 4 0 : 6 0に固定して実施例 1と同様に調製した。加熱処理条件については、 ホエーの変性度を変化させるために各試験区で調整を行った。 詳細条件を 表 4に示す。 乳蛋白質処理物の調製条件
Figure imgf000022_0001
次に、 上記で調製した乳蛋白質処理物を用いて、 実施例 1と同様にして ソフトタイプヨーグルトを調製し、官能評価を行った。結果を表 5に示す。 表 5 . 乳蛋白質処理物の調製条件とヨーグルトの官能評価結果
Figure imgf000023_0001
表 5に示すように、 ホエー変性度が 3 %、 1 3 %の乳蛋白質処理物では 品質改善効果が見られなかったが、 ホエー変性度が 2 7 %〜 7 9 %の範囲 では顕著な品質改善効果 (食感改善効果、 保存中物性変化抑制) が確認で きた。 一方、 変性度が 9 5 %の場合には逆に改質効果が低下することが確 認された。 発明品 6 〜 8に見られるように、 実験に用いた W P C 3 5及び 濃縮スキムミルクのロット差により同じ加熱条件であっても、 ホエー蛋白 質の変性度は一定ではなかったが、 実施例 1と同様に、 この結果からも、 ホエー蛋白質の変性度の最適化が本発明の課題克服に大きく寄与してい ることを示している。 実施例 3
発明品 3で使用した乳蛋白質処理物を用いて、 ソフトタイプヨ一ダルト を調製した。 殺菌済みのスキムミルク (蛋白質含量 3. 4 %) に発明品 3 で用いた乳蛋白質処理物を原料乳重量の 0. 5 %に相当する量を加えた。 さらに、 トランスダル夕ミナーゼ (A C T I VA Y G ;味の素株式会社 製、 酵素活性 1 0 O U/g) を牛乳由来蛋白質 1 gあたり 1 Uとなるよう に添加した。 調製したヨーグルトミルク ( 1 5 k g) はホモジナイザーに より 2段階 (2 0 0 b a r /4 0 b a r ) で均質化した後、 表 6に規定し た条件で酵素を反応させた。 規定の条件で酵素反応を行った後、 9 51:で 3分間加熱処理し、 トランスダル夕ミナーゼを失活させた。 処理したョー ダルトミルク各 4 k gをそれぞれ殺菌済みのィンキュベーシヨンタンク に移し、 各ヨーグルトミルクの乳温が 4 2 °Cに達したところで、 8 m l の プレカルチャーをヨーグルトミルクに添加した。 なお、 プレカルチャーは 5 0 gの A B T— 2 1ョーグルトカルチヤ一 (プロバイオティックカルチ ヤー、 CHR HAN S E N製) を 4 5 0 gの冷却したスキムミルク溶液 に溶解して調製した。 乳酸菌を接種したヨーグルトミルクはィンキュベー ターで 4 2 °Cの条件で発酵させた。 発酵開始後、 3 0分ごとに1) 11を測定 し、 p Hが 4. 6となったところで発酵を終了し、 解碎 ·充填を行った。 解碎については、 内径 1 0 mmの細長いチューブに 2 2 0 mの非常に小 さなメッシュ、 ミキサー、冷却用ジャケッ トを取り付けた解砕機を準備し、 ポンプで圧力をかけて解碎を行った。 なお、 冷却器は解砕後の品温が約 2 0 °Cになるように設定した。 解碎したョーダルトを滅菌したガラス容器に 充填し、 4 で保存後、 一定の期間保存したヨーグルトサンプルについて 実施例 1と同様にして官能評価を実施した。 また、 サイズ排除クロマトグ ラフィ一法を用いてカゼィンの重合度の測定も行った。 官能評価結果と重 合度測定結果を表 7に示す。
なお、 比較品として、 トランスダル夕ミナーゼを添加しないもの (比較 品 1 8 )、乳蛋白質処理物に比較品 1 4で使用した処理物を用いたもの(比 較品 1 9 ) を調製した。 表 6 . トラニ スグル ミナ- -ゼの反応条件
試験区 力ゼィン : ホエー 反応温度 ( ) 反応時間 (時間) 比較品 1 8 4 0 : 6 0 一 一
比較品 1 9 8 0 : 2 0 4 2 3
発明品 9 4 0 : 6 0 1 0 1 2
発明品 1 0 4 0 : 6 0 4 2 3
発明品 1 1 4 0 : 6 0 5 0 2
発明品 1 2 4 0 : 6 0 5 5 1
発明品 1 3 4 0 : 6 0 6 0 0 . 5 カゼィンの重合度及びョーダルトの官能評価結果
重合度 ゲルの ぎめ 保存中 4 '&
試験区 離水量 コメン卜
( % ) 硬さ 細かさ 変化 評価
比較品 1 8 1 1 2 2 2 なし 2 ちろレ 比較品 1 9 3 5 4 3 4 あり 2 粘度髙すぎる 発明品 9 2 6 5 5 4 なし 5 良好 発明品 1 0 3 2 4 4 5 わずか 4 若干粘度高い 発明品 1 1 2 9 5 5 4 なし 5 良好 発明品 1 2 2 4 5 5 4 なし 5 良好 発明品 1 3 1 8 3 4 4 なし 4 若干もろい 重合度測定はサイズ排除クロマトグラフィーを用いて、 カゼィンの単 体、 二量体、 三量体、 多量体 (3量体以上の重合体) の含量を分析し、 れら 4成分の和をカゼィンの総蛋白量として下記の算定式に従って算 した。 カゼイン重合度 (%) = (二量体十三量体 +多量体) / (単量体十二量 +三量体 +多量体) X 1 0 0 下記条件でサイズ排除クロマトグラフィ一によるカゼィンの重合度測定 を行ったところ、 カゼイン多量体 (三量体以上、 三量体、 二量体)、 単量 体、 その他低分子ペプチドや塩類のピークが現れる時間は順に、 約 1 6〜 2 3分、 約 2 3〜 2 8分、 約 34〜 47分であった。 システム: AKTA BAS I C AME R S HAM B I O S C I EN C E SA 9 0 0、 P9 0 0 p ump
カラム : S u p e r d e x 2 0 0 HR 1 0 / 3 0 ( 7 1— 7 0 5 9— 0 0)、 AME R S HAM B I O S C I ENCE S
検出波長: 2 8 0 nm
インジェクション量: 5 0 t 1
流速: 0. 5m l / i n
溶離液: 6 M U r e a / 0. 1 M N a C 1 0. 1 M P h o s p h a t e/0. 1 % CHAP S p H= 6. 8 なお、 サイズ排除クロマトグラフィ一に供するサンプル調製用バッファ 一には重合度への S— S結合の影響を排除するため、 溶離液に 1 %DTT を添加したものを用いた。 検体となるョ一グルトは、 2m lのサンプルバ ッファーに蛋白質濃度が 0. 3 %となるように溶解させた後、 超音波で 2 0分破砕し、 さらにポルテックスミキサーでよく混合したものを 4 °Cで 2 4時間静置した。 分析直前にポアサイズ 0. 4 5 mのマイクロフィルタ 一で上記の破砕液をろ過し、 その上清をサイズ排除クロマトグラフィ一に 供した。
表 7に示したように、 重合度が 1 1 %以下であると組織構造がもろく、 逆に 3 5 %以上であると構造が粗い、 きめ細かさに欠ける、 保存中に構造 変化が起こる等の問題が観察された。 食感や保存時の経時変化に問題のな い、 重合度の範囲は 1 8 %〜 3 2 %であった。 中でも、 24 %〜 2 9 %の 範囲は特に望ましい効果が得られた。 これらの結果は製品中のカゼィン重 合度も、 本発明の重要な要素であることを示している。 実施例 4
発明品 3で使用した乳蛋白質処理物を用いて、 ソフ トタイプヨーグルト を調製した。 殺菌済みのスキムミルク (蛋白質含量 3 . 4 % ) に発明品 3 で用いた乳蛋白質処理物を表 8に記載の添加量に従つて添加した。 それ以 外の条件については、 実施例 1に従ってヨーグルトの調製及び官能評価を 行った。 官能評価結果を表 9に示す。 表 8 . 乳蛋白質処理物添加量とヨーグルト中のカゼイン : ホエー比
乳蛋白質処理物添加量 ョーグルト中の
試験区
( % ) カゼィン : ホエー
発明品 1 4 0 . 2 5 7 7 : 2 3
発明品 1 5 0 . 5 7 5 : 2 5
発明品 1 6 1 . 0 7 1 : 2 9
発明品 1 7 1 . 5 6 8 : 3 2
発明品 1 8 2 . 0 6 5 : 3 5
比較品 2 0 2 - 5 6 3 : 3 7
表 9 . ヨーグルトの官能評価結果
ゲルの きめ 保存中 ΦΒ口
試験区 離水量 コメン卜
硬さ 細かさ 変化 評価
発明品 1 4 4 3 4 なし 4 改質効果あるも若干弱い 発明品 1 5 5 5 4 なし 5 顕著な改 Η効果あり 発明品 1 6 5 5 5 なし 5 顕著な改質効果あり 発明品 1 7 5 4 5 なし 5 顕著な改質効果あり
改 Κ効果あるが、 発明品 1 8 4 3 4 なし 4
若干粉っぽい食感あり 比蛟品 2 0 3 3 4 なし 3 粉っぽい食感あり
表 9のとおり、 乳蛋白質処理物の最適な添加量としては、 最終製品であ るョーダル卜におけるカゼィンとホエー蛋白質の比率が重要であり、 適当 な比率は 7 7 : 2 3〜6 5 : 3 5、 好ましくは 7 5 : 2 5〜 6 8 : 3 2で あった。 請求項で規定されている乳蛋白質処理物を用いる限り、 最終的な ョーダルトにおける比率が上記の範囲であれば本発明の効果が得られる。 添加量を基準にすると、 原料乳重量あたり 2. 5 %では蛋白質処理物由来 の粉っぽさが付与されてしまい、 0. 2 5〜 2. 0 %が好ましかった。 こ れらの結果は乳蛋白質処理物におけるカゼィンとホエー蛋白質の比率だ けでなく、 ヨーグルト製品中のカゼインとホエー蛋白質の比率も、 本発明 の重要な要素であることを示している。 産業上の利用可能性
本発明によれば、 トランスダル夕ミナ一ゼの活性が残存していても、 保 存中にゲル化やダマ発生等の悪影響を与えることがないため、 ョーダルト の製造工程において該酵素の失活工程を導入することなく、 ヨーグルトの 改質、即ち、食感の改善、離水抑制に高い効果を示すことができる。 また、 失活工程を導入する場合においても、 トランスダル夕ミナーゼの過剰な反 応を抑制することより、 保存中の品質の経時変化を抑制することができる。 以上より、 本発明は食品分野において極めて有用であるといえる。

Claims

請求の範囲
1. ホエー蛋白質の変性度が 60〜88%となる条件でホエー蛋白質を加熱処 理して得られる乳蛋白質処理物及びトランスダル夕ミナーゼを用いるョーダル 卜の製造方法。
2.カゼインとホェ一蛋白質の混合比が窒素重量比において 20: 80〜54: 46である混合物をホェ一蛋白質の変性度が 25 %〜93 %となる条件で加熱 処理して得られる乳蛋白質処理物及びトランスダル夕ミナーゼを用いるョーグ ルトの製造方法。
3. 乳蛋白質処理物が、 カゼインとホエー蛋白質の混合比が窒素重量比におい て 32 : 68〜 48 : 52である混合物をホエー蛋白質の変性度が 2 Ί %〜Ί 9 %となる条件で加熱処理して得られるものである請求の範囲第 2項記載の製 造方法。
4. 最終製品であるヨーグルトにおいて、 トランスダル夕ミナ一ゼによるカゼ インの重合度が 15〜33%であることを特徴とする請求の範囲第 1項乃至第 3項記載の製造方法。
5. 最終製品であるヨーグルトにおけるカゼインとホェ一蛋白質の比が、 窒素 重量比において 77 : 23〜65 : 35であることを特徴とする請求の範囲第 1項乃至第 4項記載の製造方法。
6. 原料乳に対する該乳蛋白質処理物の添加量が 0. 2〜2. 3%であること を特徴とする請求の範囲第 1項乃至第 5項記載の製造方法。
7. 加熱処理が、 81°C〜89°C、 :!〜 10分間加熱である請求の範囲第 1項 乃至第 6項記載の製造方法。
8. トランスダル夕ミナーゼの加熱失活工程を含まないことを特徴とする請求 ' の範囲第 1項乃至第 7項記載の方法。
9. ホエー変性度が 6 0〜88%となる条件でホエー蛋白質を加熱処理して得 られる乳蛋白質処理物及びトランスダル夕ミナーゼを含有する乳製品用酵素製 剤。
1 0. カゼインとホエー蛋白質の混合比が窒素重量比において 20 : 80〜5 4 : 6である混合物をホエー蛋白質の変性度が 2 5%〜93%となる条件で 加熱処理して得られる乳蛋白質処理物及びトランスダル夕ミナーゼを含有する 乳製品用酵素製剤。
PCT/JP2005/008663 2004-05-10 2005-05-02 ヨーグルトの製造方法 WO2005110108A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05738903.3A EP1749447B1 (en) 2004-05-10 2005-05-02 Method of producing yogurt
AU2005244349A AU2005244349B2 (en) 2004-05-10 2005-05-02 Method of producing yogurt
JP2006513543A JP4650416B2 (ja) 2004-05-10 2005-05-02 ヨーグルトの製造方法
NZ550795A NZ550795A (en) 2004-05-10 2005-05-02 Method of producing yogurt
US11/559,056 US20070134374A1 (en) 2004-05-10 2006-11-13 Production method for yogurt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-139757 2004-05-10
JP2004139757 2004-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/559,056 Continuation US20070134374A1 (en) 2004-05-10 2006-11-13 Production method for yogurt

Publications (1)

Publication Number Publication Date
WO2005110108A1 true WO2005110108A1 (ja) 2005-11-24

Family

ID=35393904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008663 WO2005110108A1 (ja) 2004-05-10 2005-05-02 ヨーグルトの製造方法

Country Status (6)

Country Link
US (1) US20070134374A1 (ja)
EP (1) EP1749447B1 (ja)
JP (1) JP4650416B2 (ja)
AU (1) AU2005244349B2 (ja)
NZ (1) NZ550795A (ja)
WO (1) WO2005110108A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000913A1 (en) * 2006-06-30 2008-01-03 Oy Linseed Protein Finland Ltd Improving of texture of dairy products
JP2008194024A (ja) * 2006-06-30 2008-08-28 Ajinomoto Co Inc 澱粉含有食品の製造方法及び澱粉含有食品改質用の酵素製剤
JP2012523835A (ja) * 2009-04-15 2012-10-11 フォンテラ コ−オペレイティブ グループ リミティド 乳製品およびプロセス
JP2013094076A (ja) * 2011-10-28 2013-05-20 Morinaga Milk Ind Co Ltd 発酵乳の製造方法
JP2014045739A (ja) * 2012-09-03 2014-03-17 Tsukishima Foods Industry Co Ltd 焼き菓子の製造方法
JP2014511176A (ja) * 2011-02-18 2014-05-15 ヴァリオ・リミテッド 乳ベースの製品およびその調製方法
JP2016178922A (ja) * 2015-03-23 2016-10-13 トモヱ乳業株式会社 後発酵型ドリンクヨーグルトおよびその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI121525B (fi) * 2005-11-22 2010-12-31 Valio Oy Menetelmä maitoperäisen hapatetun tuoretuotteen valmistamiseksi
DE602007012426D1 (de) * 2006-04-18 2011-03-24 Ajinomoto Kk Verfahren zur herstellung gerührter mit molkenproteinen angereicherter sauermilch
FI123158B (fi) 2009-05-04 2012-11-30 Valio Oy Maitoproteiinituote ja menetelmä sen valmistamiseksi
AU2014207624B2 (en) * 2013-01-15 2017-04-13 Glanbia Nutritionals (Ireland) Ltd. Method for improving viscosity, solubility, and particle size of milk protein concentrates
US11653660B2 (en) 2013-04-11 2023-05-23 Leprino Foods Company Protein fortified yogurts and methods of making
WO2016075332A1 (en) * 2014-11-14 2016-05-19 Arla Foods Amba Whey protein-based, high protein, yoghurt-like product, ingredient suitable for its production, and method of production
CN109430384A (zh) * 2018-11-22 2019-03-08 黑龙江省绿色食品科学研究院 一种添加变性乳清蛋白的凝固性酸奶的制备方法
EP3986144A1 (en) * 2019-06-20 2022-04-27 Novozymes A/S Cross-linked milk protein co-precipitate
BR112022000137A2 (pt) * 2019-07-05 2022-02-22 Novozymes As Processo para preparar um produto lácteo acidificado
CN113545394A (zh) * 2020-04-23 2021-10-26 内蒙古伊利实业集团股份有限公司 一种牛奶蛋白复配剂及其应用方法
CN114568501A (zh) * 2020-11-30 2022-06-03 内蒙古伊利实业集团股份有限公司 一种凝胶型乳制品及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197688A (ja) * 1993-01-08 1994-07-19 Ajinomoto Co Inc ヨーグルト類の製造法
JP2000004786A (ja) * 1998-06-24 2000-01-11 Ajinomoto Co Inc 食感が改善されたチーズホエイ蛋白、その製造方法及びその利用
JP2002369653A (ja) * 2000-10-10 2002-12-24 Ajinomoto Co Inc 改質された原料乳の製造方法及びそれを用いた乳製品

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1151879A (en) * 1965-09-17 1969-05-14 Commw Scient Ind Res Org Process for Manufacture of Co-Procipitates of Milk Proteins
BE791350A (nl) * 1971-11-15 1973-05-14 Stichting Bedrijven Van Het Werkwijze voor de bereiding van een melkeiwit-coprecipitaat
US4113573A (en) * 1973-09-20 1978-09-12 Fmc Corporation Method of and apparatus for steam stripping immiscible materials
US3966984A (en) * 1974-11-27 1976-06-29 Emory L. Cocke Method of reducing air pollution by recovering d-limonene from citrus pulp processing operation
US4564595A (en) * 1980-10-20 1986-01-14 Biomass International Inc. Alcohol manufacturing process
US4391830A (en) * 1981-05-21 1983-07-05 Coca Cola Company Production of liquid yogurt stabilized with high methoxyl pectin
US4488912A (en) * 1982-08-04 1984-12-18 Igi Biotechnology, Inc. Preparation of high fructose syrups from citrus residues
US4547226A (en) * 1982-08-04 1985-10-15 Igi Biotechnology, Inc. Preparation of high fructose syrups from citrus residues
NL8204923A (nl) * 1982-12-21 1984-07-16 Stichting Nl I Zuivelonderzoek Werkwijze voor het bereiden van een precipitaat van caseine en wei-eiwit alsmede aldus bereid precipitaat.
US4503079A (en) * 1982-12-27 1985-03-05 A. Duda And Sons, Inc. Process for the manufacture of ethyl alcohol from citrus molasses
US4650689A (en) * 1985-03-25 1987-03-17 Urban Fuels, Inc. Process for ethanol production from cellulosic materials
US4952504A (en) * 1987-07-28 1990-08-28 Pavilon Stanley J Method for producing ethanol from biomass
US5135861A (en) * 1987-07-28 1992-08-04 Pavilon Stanley J Method for producing ethanol from biomass
US4915707A (en) * 1987-10-21 1990-04-10 Lemco Energy, Inc. Process for purifying limonene for fuel and the like
US4818250A (en) * 1987-10-21 1989-04-04 Lemco Energy, Inc. Process for producing fuel from plant sources and fuel blends containing same
US5198074A (en) * 1991-11-29 1993-03-30 Companhia Industreas Brasileiras Portela Process to produce a high quality paper product and an ethanol product from bamboo
US5571703A (en) * 1993-12-23 1996-11-05 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial ethanol production process
EP0696426A1 (fr) * 1994-08-13 1996-02-14 Societe Des Produits Nestle S.A. Procédé de fabrication d'un agent de texture pour produits laitiers
JP2001514526A (ja) * 1997-03-18 2001-09-11 2ベー・アクチェンゲゼルシャフト 植物バイオマスの利用方法及びこの方法の実施のためのスクリュープレス
US6143337A (en) * 1999-04-30 2000-11-07 The United States Of America As Represented By The Secretary Of Agriculture Extraction of pectin by microwave heating under pressure
US6151799A (en) * 1999-07-27 2000-11-28 Jones; Robert Allen Citrus peel processing system
NL1012775C2 (nl) * 1999-08-04 2001-02-06 Zuivelcooperatie De Zeven Prov Met enzym behandeld gefermenteerd product, alsmede werkwijze ter bereiding daarvan.
US7244597B2 (en) * 2000-11-10 2007-07-17 Novozymes A/S Secondary liquefaction in ethanol production
US6962722B2 (en) * 2001-12-04 2005-11-08 Dawley Larry J High protein corn product production and use
US20050054064A1 (en) * 2003-09-08 2005-03-10 Srikrishna Talluri Production of alcohol from a combination of sweet sorghum and other feedstock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197688A (ja) * 1993-01-08 1994-07-19 Ajinomoto Co Inc ヨーグルト類の製造法
JP2000004786A (ja) * 1998-06-24 2000-01-11 Ajinomoto Co Inc 食感が改善されたチーズホエイ蛋白、その製造方法及びその利用
JP2002369653A (ja) * 2000-10-10 2002-12-24 Ajinomoto Co Inc 改質された原料乳の製造方法及びそれを用いた乳製品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JELEN P. ET AL: "Heat stability and use of milk with modified casein: whey protein in yogurt and cultured milk products.", MILCHWISSENSCHAFT., vol. 42, no. 7, 1987, pages 418 - 421, XP002988449 *
See also references of EP1749447A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000913A1 (en) * 2006-06-30 2008-01-03 Oy Linseed Protein Finland Ltd Improving of texture of dairy products
JP2008194024A (ja) * 2006-06-30 2008-08-28 Ajinomoto Co Inc 澱粉含有食品の製造方法及び澱粉含有食品改質用の酵素製剤
JP2012523835A (ja) * 2009-04-15 2012-10-11 フォンテラ コ−オペレイティブ グループ リミティド 乳製品およびプロセス
JP2014511176A (ja) * 2011-02-18 2014-05-15 ヴァリオ・リミテッド 乳ベースの製品およびその調製方法
JP2017093443A (ja) * 2011-02-18 2017-06-01 ヴァリオ・リミテッドValio Ltd 乳ベースの製品およびその調製方法
US10993454B2 (en) 2011-02-18 2021-05-04 Valio Ltd. Milk-based product and a method for its preparation
JP2013094076A (ja) * 2011-10-28 2013-05-20 Morinaga Milk Ind Co Ltd 発酵乳の製造方法
JP2014045739A (ja) * 2012-09-03 2014-03-17 Tsukishima Foods Industry Co Ltd 焼き菓子の製造方法
JP2016178922A (ja) * 2015-03-23 2016-10-13 トモヱ乳業株式会社 後発酵型ドリンクヨーグルトおよびその製造方法

Also Published As

Publication number Publication date
EP1749447A4 (en) 2009-04-22
EP1749447A1 (en) 2007-02-07
AU2005244349A1 (en) 2005-11-24
NZ550795A (en) 2008-06-30
US20070134374A1 (en) 2007-06-14
JP4650416B2 (ja) 2011-03-16
AU2005244349B2 (en) 2010-04-29
EP1749447B1 (en) 2014-08-27
JPWO2005110108A1 (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
WO2005110108A1 (ja) ヨーグルトの製造方法
EP2011402B1 (en) Process for producing stirred whey protein-enriched fermented milk
RU2376775C2 (ru) Сырные продукты
CA2684501A1 (en) Fermented whey preparation and method for producing the same
JP7153051B2 (ja) 発酵乳清タンパク質製品を製造するための方法
Zeashan et al. Survival and behavior of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions
NZ588904A (en) Method for improving texture of fermented milk
JP6725223B2 (ja) 変性ワキシーキャッサバデンプンを含む食品
CN108967550A (zh) 一种高稳定常温搅拌型酸豆乳及其制备方法
JPH09191863A (ja) 卵を用いた乳酸菌の発酵飲料の製造方法
CN112868765A (zh) 一种双发酵乳酸菌饮品及其制备方法
RU2447669C1 (ru) Способ получения бифидосодержащего кисломолочного продукта, обогащенного пребиотиком
JP3518652B2 (ja) 安定化乳ホエイタンパク質含有飲料及びその製造法
Liu et al. Effects of high hydrostatic pressure sterilisation and thermal sterilisation combined with glutamine transaminase treatment on the properties of yoghurt
CN105076400A (zh) 一种发酵乳及其制备方法
US20230397621A1 (en) Method for producing a solid ingredient, solid ingredient which can be obtained by implementing said production method, and uses of said ingredient
RU2465774C1 (ru) Способ получения кисломолочного напитка
CN107207551A (zh) 使用具有转半乳糖基化活性的酶生产含半乳糖和果糖部分的糖类的方法
RU2206216C2 (ru) Способ приготовления кисломолочного продукта
CN115336636A (zh) 一种自稳定乳清发酵液的制备方法
RU2207001C2 (ru) Способ получения белково-жирового концентрата из молочного сырья
CN117296921A (zh) 一种可以常温保存的酸羊奶的制备方法
Johnston Starch modified with stearic acid and xanthan gum as a stabiliser in a fermented whey beverage
CN116098206A (zh) 一种凝酪质地的常温酸奶及其制备方法
CN112293494A (zh) 一种酸奶及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513543

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005738903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005244349

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 550795

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2005244349

Country of ref document: AU

Date of ref document: 20050502

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005244349

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11559056

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005738903

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11559056

Country of ref document: US