WO2005109076A1 - 静電駆動型memsミラースキャナ - Google Patents

静電駆動型memsミラースキャナ Download PDF

Info

Publication number
WO2005109076A1
WO2005109076A1 PCT/JP2005/008621 JP2005008621W WO2005109076A1 WO 2005109076 A1 WO2005109076 A1 WO 2005109076A1 JP 2005008621 W JP2005008621 W JP 2005008621W WO 2005109076 A1 WO2005109076 A1 WO 2005109076A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
drive type
axis
electrostatic drive
type mems
Prior art date
Application number
PCT/JP2005/008621
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Kawakami
Kyoji Shimoda
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Priority to EP05739329A priority Critical patent/EP1746452A1/en
Priority to JP2006513043A priority patent/JPWO2005109076A1/ja
Publication of WO2005109076A1 publication Critical patent/WO2005109076A1/ja
Priority to US11/594,900 priority patent/US20070053044A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • the present invention relates to a small mirror scanner that is optimal for a laser printer capable of high-speed scanning. More specifically, the present invention relates to a micro-electro-mechanical system (hereinafter, referred to as MEMS) using a silicon substrate. ), A new electrostatic drive type MEMS mirror scanner.
  • MEMS micro-electro-mechanical system
  • a polygon mirror scanner has been used as a device used as a scanner engine in applications such as a laser printer, which can rotate a polygonal column mirror at a high speed around its axis, thereby realizing a high-speed scanning operation.
  • Patent Document 1 Patent Document 1
  • the electrostatic drive type mirror scanner is literally driven by electrostatic force, and is capable of changing a reflection path of incident light by a rotation angle around a suspension beam. Switching and scanning can be performed. However, the driving speed was much lower than that of the polygon mirror scanner, and the power could not be obtained.
  • an electromagnetically driven mirror scanner having a magnetic field generating means for generating a parallel magnetic field in the basic structure and a scanning mirror oscillatably supported by a rod-shaped torsion bar has a deflection angle at which the electromagnetic type driving force is large.
  • an electromagnetically driven type having a configuration of an optical deflector having a ginnole structure and having a deflection mirror element array in which a silicon substrate, a plurality of polyimide films, and metal films are stacked and arranged in a parallel magnetic field.
  • the mirror scanner uses a polyimide film having a mesh-like part as an elastic member, has a resonance size of 4000 Hz with a mirror size of, for example, 4.5 mm x 3.3 mm, and has a high-speed scan.
  • Patent Document 4 Patent Document 4).
  • Patent Document 1 JP-A-5-119279
  • Patent Document 2 JP 2002-311376
  • Patent Document 3 JP-A-2003-015064
  • Patent Document 4 JP-A-2003-270558
  • the MEMS mirror scanner which uses a silicon substrate to support a mirror having a size of several mm square so as to be able to swing by a suspension beam, is more easily miniaturized than a polygon mirror scanner, and has an optical system. This makes it possible to reduce the size and save the lens, eliminates the need for a rotating body, is dust-free, and offers various advantages such as power saving, quietness, low vibration, and reduced startup time.
  • An object of the present invention is to provide a configuration capable of realizing high-speed scanning equal to or higher than that of a polygon mirror scanner in an electrostatic drive type MEMS mirror scanner. It has a structure that has a flexible mirror support structure that can be driven by driving force with low electrostatic force, and increases and secures the capacitance to increase the driving force. The aim is to provide a MEMS mirror scanner that can be configured with great power.
  • the inventors have proposed a configuration of an electrostatic drive type MEMS mirror scanner for the purpose of supporting a flexible mirror that can be driven by a small driving force of electrostatic force and a configuration capable of securing a sufficient capacitance.
  • the mirror is swingably supported by a pair (two) of suspension beams in the direction of the two opposing sides, and the direction of the suspension beam (
  • a configuration in which a comb-shaped electrode is connected and arranged in the (oscillation axis direction) to provide a capacitance driving unit basically, the resonance frequency of the mirror is increased, and the capacitance of the driving unit is increased.
  • the inventors have set the dimension of the mirror in the direction orthogonal to the swing axis direction to lmm or more, and furthermore, the swing of the capacitance driving unit.
  • the maximum distance in the axis orthogonal direction (suspension beam width direction) from the axis center is 100% or less, preferably 60%, of the maximum distance in the axis orthogonal direction (mirror length direction) from the center of rotation axis (rotation center) of the mirror. It has been found that the resonance frequency of a large scanning mirror can be increased by setting the resonance frequency to at most 40%, more preferably at most 40%.
  • a mirror that is swingably supported by the pair of (two) suspension beams is a rectangular mirror rather than a square mirror and has a longer suspension beam on a longer side.
  • the frequency could be increased, and that the resonance frequency could be further increased by reducing the outermost mass as an ellipse or an oblong rather than a rectangle.
  • the present inventors have conducted various studies on a configuration in which a large scanning mirror driving force can be ensured in the above-mentioned MEMS mirror scanner, and as a result, the magnitude of the rotational oscillation direction of the capacitance driving unit was found to be large. Since it is determined by the above range, the electrostatic force of the drive unit is adjusted so that the square of the polar moment of inertia of the mirror and the deflection angle and frequency becomes the electrostatic force of the drive unit. It was found that the objective could be achieved by making the structure longer in the direction.
  • the inventors have proposed a configuration in which the resonance frequency is increased so that the rigidity of each suspension beam is not increased so that the suspension beam is provided with a torsion bar portion such as a serpentine torsion hinge or a linear torsion bar.
  • a torsion bar portion such as a serpentine torsion hinge or a linear torsion bar.
  • the device with the above configuration is housed in a vacuum package to increase the resonance Q (Q factor), and a light hole is provided on the back of the mirror.
  • Q Q factor
  • the present inventors have also found out that the resonance frequency of the mirror can be increased and the deflection angle can be increased by reducing the moment of inertia of the mirror section by using a rib structure and reducing the moment of inertia of the mirror section.
  • a scanning mirror is formed between a pair of suspension beams formed in a bar shape on the same straight line of a substrate, and the scanning mirror is swingably supported on the straight line as a driving axis.
  • the capacitance driving unit is arranged along one or both sides of the suspension beam, and the maximum distance (a / 2) in the direction perpendicular to the axis of oscillation of the scanning mirror itself in the direction perpendicular to the axis is lmm or more.
  • the thickness of the mirror itself is 50 ⁇ m or more and the maximum distance (w) in the direction perpendicular to the axis from the center of the oscillation axis of the drive unit is 100% or less of the maximum force in the direction perpendicular to the axis of the scanning mirror.
  • the scanning mirror has various configurations, such as a balta substrate itself, a horizontal H-shaped (I-beam) structure, a structure having holes and various ribs, and the overall thickness of the structure is 50 m or more.
  • the electrostatic drive type MEMS mirror scanner according to the present invention has a low electrostatic force! / A flexible scanning mirror support structure that can be driven by a driving force, and has a longer length along the suspension beam.
  • the capacitance drive unit is placed to ensure sufficient capacitance, so it can be used as a replacement for polygon mirror scanners, and because there is no rotating body, it is dust-free, making it more compact than before. This makes it possible to reduce the size of the optical system and reduce the number of lenses, as well as to save power, reduce noise, and reduce startup time.
  • the electrostatic drive type MEMS mirror scanner according to the present invention uses a large scanning mirror having a mirror length of 4 mm or more, particularly a large mirror that matches an elliptical or oblong laser light shape used in a laser printer. It can drive with a resonance frequency of 1.5 kHz or more and an amplitude of ⁇ 15 ° or more, and can achieve the 300 dpi and 600 dpi performance required for laser printers
  • the electrostatic drive type MEMS mirror scanner according to the present invention is formed on a semiconductor substrate such as silicon by using a micromachining technique such as etching and film formation, and further includes a DC power supply for electrostatic drive and control.
  • An AC power source can also be formed on the substrate, and the configuration power is simpler and more manufacturable than a polygon mirror scanner / electromagnetic drive type MEMS mirror scanner.
  • the electrostatic drive type MEMS mirror scanner according to the present invention is a component capable of using a suspension beam of the same material formed on a semiconductor substrate such as silicon without increasing the rigidity.
  • a conventional structure using a polyimide film for a torsion bar is used. Compared to the above configuration, mirror operation stability (particularly jitter) is excellent.
  • a scanning mirror is formed between a pair of suspension beams formed and arranged on the same straight line of a semiconductor substrate such as silicon.
  • the basic structure is to support the mirror so that it can swing using a straight line as the swing axis.
  • the capacitance drive unit is arranged along the suspension beam, and the maximum distance in the axis orthogonal direction from the center of the oscillation axis of the drive unit is set to the scanning mirror.
  • the center force of the driving shaft is also 100% or less, preferably 60% or less, more preferably 40% or less of the maximum distance in the direction perpendicular to the axis.
  • FIG. 1A shows an example of a configuration of the assembled MEMS device.
  • FIGS. 1B and 1C are exploded explanatory views of the structure of FIG. 1A.
  • the MEMS device 10 also has a constituent force in which the upper plate 10A and the lower plate 10B are laminated.
  • the upper plate 10A is provided with a disk-shaped scanning mirror 11 at the center, and suspension beams 13A and 13B in the X-axis (oscillation axis) direction. Supported by
  • the ends of the suspension beams 13A, 13B are connected to anchors 14A, 14H and hinges 15A, 15H having a single structure of an S-shaped (rotating) torsion bar.
  • the suspension beams 13A and 13B are provided in the beam between the connection portion 12 and the hinges 15A and 15H by a spring having an S-shaped (rotating) torsion bar structure. 15B to 15G are formed. Springs 15B to 15G are connected to anchors 14B to 14G.
  • oscillating comb teeth 18 are formed in the y-axis direction orthogonal to the x-axis (oscillating axis), and similarly, from the upper plate 10A side in the y-axis direction.
  • the extending fixed-side comb teeth 19 and the swinging-side comb teeth 18 are alternately arranged in the X-axis direction. That is, the group of oscillating comb teeth 18 and the group of fixed comb teeth 19 oscillate and drive the scanning mirror 11 via the suspension beams 13A and 13B as a capacitance driving source.
  • the lower plate 10B has a cavity 17 so that the scanning mirror 11 and the suspension beams 13A and 13B of the upper plate 10A can swing, and the lower plate 10B is further laminated with the upper plate 10A and the lower plate 10B.
  • fixing pads 16A to 16H are formed on the lower plate 10B in an island shape.
  • the lower plate 10B is provided with a number of fixed comb teeth 18B that can form a pair with the oscillating comb teeth 18 of the upper plate 10A to form a capacitance driving source.
  • the configuration example of the MEMS device 20 shown in FIGS. 2A to 2C also has a constitutional force in which an upper plate 20A and a lower plate 20B are laminated, and the upper plate 20A is provided with a disc-shaped scanning mirror 21 in the center and its X Suspension beams 23A and 23B are provided in the axial (oscillating axis) direction, and the scanning mirror 21 is supported via the connection portion 22.
  • the ends of the suspension beams 23A and 23B are hinges having an S-shaped (rotating) torsion bar structure.
  • springs 25b to 25g having the same configuration are provided along the longer side surfaces of the suspension beams 23A and 23B, and are connected to the upper plate 20A.
  • oscillating comb teeth 28 extending in the y-axis direction orthogonal to the x-axis (oscillating axis) are formed, and fixed combs provided on the lower layer plate 20B are provided.
  • the scanning mirror 21 is automatically driven by the teeth 29 via suspension beams 23A and 23B as a capacitance driving source.
  • the embodiment of the MEMS device 40 according to the present invention shown in FIG. 4A has a configuration in which an upper plate 50 and a lower plate 70 are insulated and laminated.
  • FIG. 4B and FIG. 4C show details of the upper layer plate 50.
  • an oblong scanning mirror upper layer 51 is formed on the upper layer plate 50.
  • Numerous thin V-shaped trenches are formed on the back surface of the upper layer 51 of the scanning mirror, but are not shown here.
  • a large number of grooves have a function of reducing the mass and dynamic deformation of the scanning mirror.
  • the optical resolution of the MEMS device 40 is improved by minimizing all the dynamic deformations.
  • the grooves are provided in parallel with the diameter direction of the ellipse of the scanning mirror upper layer 51, but on the outer peripheral side of the mirror away from the rotation axis direction of the scanning mirror coinciding with the diameter direction of the short circle. It is effective to be arranged.
  • the scanning mirror upper layer 51 is separated from the upper plate 50 by gaps 52A and 52B.
  • the width dimensions of the gaps 52A and 52B are designed to be larger than the misaligned parts that are formed with other fine dimensions during the formation process of the upper layer plate 50 by etching.
  • the scanning mirror upper layer 51 is supported by suspension beams 54A and 54B via a connection portion 53 provided in the diameter direction of the short circle. Due to the structure supported by the powerful suspension beams 54A and 54B, the dynamic deformation of the scanning mirror upper layer 51 is minimized.
  • the shape and number of the connection unit 53 are optimized by the finite element method.
  • Oscillating comb teeth 55 are formed and arranged on the end surfaces in the rotation axis direction of the suspension beams 54A and 54B arranged along the oscillating rotation axis.
  • Each of the swinging comb teeth 55 is formed so that the rectangular cross-sectional shape at the distal end that swings is smaller than the rectangular cross-sectional shape at the base end.
  • the suspension beams 54A and 54B are connected by hinges having an S-shaped (rotating) torsion bar structure connected to pads formed on the surface of the lower layer plate 70.
  • the distal end of the suspension beam 54A is connected to an S-shaped hinge 56a connected to the pad 57A, and the center side is connected to S-shaped hinges 56b and 56c connected to the nod 58A.
  • the distal end of the suspension beam 54B is connected to an S-shaped hinge 56f connected to the pad 57B, and the center side is connected to S-shaped hinges 56d and 56e connected to the pad 58B.
  • the suspension beams 54A and 54B are connected to S-shaped hinges 56a to 56fC which are distributed and arranged on a rotational axis of rotation set in the diameter direction of the short circle of the scanning mirror upper layer 51.
  • the suspension beams 54A, 54B are reduced in mass by holes 60 provided in the surface thereof.
  • the frequencies of all modes of the movable structure can be effectively partitioned, and the desired rocking mode is the lowest resonant mode. Designed with frequency.
  • the main resonance frequency is the lowest and the vibration frequency of other structures is far away, so that the oscillation of the scanning mirror can not lead to any other unwanted vibration modes.
  • the maximum pressure and the tension of each spring are made lower than those of a conventional scanning mirror supported by a pair of torsion beams.
  • the pressure and tension at each spring is reduced, increasing the reliability of each spring and increasing the swing angle.
  • the upper comb plate 50 is formed with fixed comb teeth 59, which are alternately inserted with the swing comb teeth 55.
  • the fixed-side comb teeth 59 are formed so as to be tapered similarly to the swing-side comb teeth 55.
  • the drive efficiency of the fixed comb teeth 59 can be increased by supplying a bias electrostatic force.
  • the fixed comb teeth 59 can drive the scanning mirror upper layer 51 by supplying an electrostatic driving force. Further, both the bias electrostatic force and the electrostatic driving force can be supplied to the fixed-side comb teeth 59.
  • the fixed comb teeth 59 are connected to an adhesive pad 61 placed on the surface of the lower layer plate 70.
  • FIG. 4D, 4E, and 4F show details of the lower plate 70.
  • FIG. The lower layer plate 70 has a mirror lower layer 73 in which a protrusion 72 is formed on an oblong plate 71.
  • a gap 74 is provided in the lower plate 70 to separate the mirror lower layer 73 from surrounding components.
  • Figure 4F shows the reflection of the elliptical plate 71.
  • a lower surface having a surface is shown, and a mark 75 for positioning the mirror at the time of assembly is provided on the outer periphery of the hole on the lower surface of the lower layer plate 70.
  • the mirror upper layer 51 is adhered to the surface of the mirror lower layer 73 to form a final scanning mirror.
  • the scanning mirror has an I-beam structure.
  • the I-beam structure reduces the mass of the mirror and strengthens the mirror. Therefore, this can minimize the dynamic deformation of the mirror underlayer surface. Minimizing the dynamic deformation of the mirror underlayer surface can improve the optical isolation of the device.
  • the structure of the I-beam can be refined by finite element analysis.
  • the lower plate 70 has a surface for fixing the movable structure adhesive pad with the upper plate 50.
  • the fixing pad 76AJ6B has a fixing surface corresponding to the bonding pads 58A and 58B.
  • the fixing pad 77 has a fixing surface corresponding to the bonding pads 57A, 57B, 61.
  • the lower layer plate 70 has fixed comb teeth 78 formed thereon, and is arranged so as to alternately enter the upper swinging comb teeth 55 outside the layer. In other words, both enter alternately when viewed from above or when the mirror swings.
  • the fixed comb teeth 78 are formed so as to be tapered similarly to the swinging comb teeth 55.
  • gap 79a between the fixed-side comb teeth 78 and the fixing pad 77, which is set wider than the gap 79b between the fixed-side comb teeth 78, and the depth to the lower plate 70 is the gap.
  • 79a is etched deeper than gap 79b. The depth of the gap 79a is set so that the swinging comb tooth 55 can swing at a larger angle without touching the lower plate 70.
  • the fixed comb teeth 78 can drive a scanning mirror by supplying an electrostatic driving force. Further, by supplying a bias electrostatic force to the fixed-side comb teeth 78, the driving efficiency can be increased. In addition, both bias electrostatic force and electrostatic driving force can be supplied.
  • the capacitance between the oscillating comb tooth 55 and the fixed-side comb tooth 78 is used for detecting the position when the scanning mirror is driven.
  • the MEMS mirror scanner having the configuration in which the scanning mirror and the upper plate on which the suspension beam is provided and the lower plate are laminated has been described.
  • the force suspension beam and the scanning mirror are formed in the same substrate in which the electrodes are formed in a comb-like structure.
  • a MEMS mirror scanner can be composed of only the upper layer plate including the drive source.
  • the dimension symbols for determining the shape are as follows.
  • n number of torsion bars
  • n number of combs
  • Wave length of light.
  • Equation 2 The inertia coefficient I around the swing axis is represented by Equation 2 for a rectangular parallelepiped (2a'2b't, x-axis dimension 2b, thickness t), and an ellipse (2a'2b't, thickness t). In the case of), there are three equations.
  • (nXc 3 / L) is determined as a numerical value proportional to the square of the frequency from the equation 1 with respect to the mirror size (dimensions a, b and I) and the natural frequency requirement. At the same time, it is necessary to satisfy the strength of the torsion bar and hinge, and the lower limit of L / c is also determined as a value proportional to the deflection angle. It should be noted here that dimensions c and L contribute in opposite directions to the deflection angle determined by the natural frequency and material strength. At the same time, there is a restriction on the amount of dynamic deformation by equation (6). Therefore, the square of the thickness should be greater than the result of multiplying a 5 Xfreq 2 by a constant.
  • the parameter one should design (n 'c 3 / L) , a three c / L and nc X w X t / ⁇ , determination should do dimension n, c, L, t, w and n.
  • n is a value determined in a certain range restricted by n, c, L, and t.
  • Equation 6 it is necessary to increase the area of the comb teeth (increase n ⁇ wt / ⁇ ) to increase the deflection angle ⁇ ⁇ ⁇ . If it becomes necessary to request force of natural frequency to increase the n 'c 3 / L is equivalent to both the product of increasing the deflection angle and to increase the natural frequency, the torque increase It is necessary to supplement the demand by the thickness of the comb teeth, the cut amount of the comb teeth, the number of combs, the increase in the voltage, and the reduction in the gap between the electrodes.
  • the central distance of the scanning mirror in the axial direction of the scanning mirror is the maximum distance (a / 2) in the direction perpendicular to the axis.
  • the force is lmm or more.
  • the thickness of the mirror must be 50 m or more. The reason is that scanning at a higher speed than that of a polygon mirror scanner can be performed.
  • the maximum distance (a / 2) in the direction perpendicular to the axis of the scanning mirror from the oscillation axis is 2 mm or more, and the thickness of the mirror is 100 ⁇ m or more.
  • the maximum distance (d) in the direction perpendicular to the axis from the center of the oscillation axis of the driving unit, on which the capacitance driving unit is arranged along one or both sides of the suspension beam is set to the value of the mirror.
  • the pivot shaft center force is also set to 100% or less, preferably 80% or less of the maximum distance (a / 2) in the direction perpendicular to the axis.
  • the natural frequency is inversely proportional to the square root of the polar moment of inertia, but the polar moment of inertia other than the scanning mirror is proportional to the cube of d (first-order approximation), so d is preferably 100% or less of a / 2.
  • the contribution per unit length can be suppressed to about 50% or less of the mirror part, preferably to about 20% or less.
  • the maximum distance in the direction perpendicular to the axis from the center of the oscillation axis of the capacitance driving unit is 40% or less of the maximum distance in the direction perpendicular to the axis of the scanning mirror in the direction perpendicular to the axis of movement. The reason is as described above. In particular, if d is set to 40% or less of a / 2, a shape in which the contribution rate per unit length can be suppressed to 7% or less of the mirror portion can be obtained.
  • the mirror width of the scanning mirror in the driving axis direction should be 50% or less of the desired mirror length (a), which should be shorter than the mirror length in the direction perpendicular to the scanning axis of the scanning mirror.
  • the mirror length a is related to the resolution in the main scanning direction of the printer
  • the width dimension b is related to the resolution in the sub-scanning direction of the printer
  • the resolution in the main scanning direction is the same as the mirror length. It depends on the frequency.
  • the mirror width b is proportional to the polar moment of inertia as shown in Equation 3, so if this is set to 50% or less, It is desirable because both the resolution requirement and the increase in the natural frequency can be satisfied in a well-balanced manner.
  • the shape of the scanning mirror a rectangle, a rhombus, a polygon, a circle, and an ellipse can be appropriately adopted. Further, the shape is preferably a polygon, a polygon rather than a rhombus, an ellipse than a circle, and more preferably a track shape.
  • the purpose of preventing the laser beam spot from deviating from the mirror is an excessive shape, and in places where it does not function, the polar inertia performance factor is increased and the natural frequency is reduced.
  • a circle is also functionally the best, but there is room since the resolution in the sub-scanning direction can be set lower than the resolution in the main scanning direction.
  • the diamond shape has a problem that the laser beam spot comes off at the tip, so that part of the light energy of the laser beam is lost and the resolution is reduced.
  • polygons and track shapes are preferable from the viewpoint that the spot of the laser beam does not deviate and the polar inertia ratio is reduced.
  • the length of the suspension beam in the axial direction is preferably 1.5 times or more the length of the mirror, which is desired to be longer than the length of the mirror. From equation (6), to increase the deflection angle, the drive torque should be increased by increasing the number of comb teeth and the voltage. It has been experimentally confirmed that it is appropriate to set the length of the suspension beam in the oscillation axis direction to 1.5 times or more the length of the mirror in order to secure the number of comb teeth at a voltage that does not cause the voltage.
  • At least one torsion bar portion is provided for each suspension beam.
  • the torsion bar portion provided on the suspension beam has one bending torsion bar or one linear torsion bar for one national county (anchor) shown in the figure.
  • a configuration having two bent torsion bars or linear torsion bars on both sides of one fixed portion (anchor) can be adopted, and the beam length can be shortened. This has the effect of increasing the resonance frequency.
  • the beam width of the torsion bar in the direction perpendicular to the rotation axis of the scanning mirror is desirably 140% or less of the substrate thickness.
  • the minimum value of the required force thickness t of the deflection angle (Equation 5) and the dynamic deformation (Equation 6) is defined and is larger.
  • the stress is proportional to the hinge width c according to Equation 4, so a smaller value is more advantageous. Therefore, it was experimentally confirmed that these relationships were appropriate when the hinge width c was 140% or less of the thickness t.
  • the electrostatic drive type MEMS mirror scanner of the embodiment is characterized in that the bending torsion bar (serpentine torsion hinge / spring) provided on the suspension beam has a force of several tens of mm or more.
  • applying the mass reducing means to the non-reflective back surface of the scanning mirror and / or each of the suspension beams can control the resonance frequency of the movable portion, achieve dynamic balance, and the like. It is effective in the case.
  • As a means of reducing mass It is advisable to select as appropriate according to the purpose and installation location, such as providing a large number of through holes and holes, or providing a multi-rib structure, a honeycomb structure, or a horizontal H-shaped (I-beam) structure at required locations.
  • an inertial performance factor reducing means For example, by reducing the mass of one part and increasing the mass of another part at the same time, the mass does not change, but the inertia efficiency of the part is reduced, and the effect of increasing the frequency and increasing the swing angle can be obtained. it can.
  • the MEMS mirror scanner can be realized with a single substrate or a laminated structure of substrates of the same or different materials.
  • the capacitance driving unit includes the suspension beam and the swing axis of the scanning mirror in the same substrate.
  • the capacitance driving unit has a comb-shaped structure in the same substrate on which the suspension beam and the scanning mirror are formed, and electrodes are arranged in the same structure. Configuration supported by
  • a structure in which the substrate on which the suspension beam and the scanning mirror are provided is used as an upper layer plate, and another substrate on which a space pattern of a required shape is formed is stacked as a lower layer plate, and a mirror swing space is formed on the lower layer plate side.
  • the capacitance driving section of the upper layer plate is composed of a comb-shaped structure in the same substrate as the suspension beam, and the lower surface of the lower plate is provided with a comb-shaped structure that is paired with the comb-shaped structure of the upper layer plate.
  • Various configurations can be adopted, such as disposing a capacity driving unit.
  • the material, thickness, and configuration of the substrate used are not particularly limited, but a single-layer substrate or a bonded substrate having a thickness of 0.05 mm or more is desired to achieve high-speed scanning.
  • a substrate can be employed as appropriate.
  • the scanning mirror may have a structure having a film formed or a bonding layer on the surface.
  • a known silicon substrate, a silicon substrate having a bonding layer, a glass substrate, and the like can also be used.
  • the thickness of the substrate on which the suspension beam and the scanning mirror are provided is desirably equal to or greater than the thickness of the scanning mirror.
  • the thickness of the substrate on which the suspension beam and the scanning mirror are provided is desirably equal to or less than the thickness of the scanning mirror.
  • the scanning mirror has a single amplitude of 20.5 ° (+ 10 °, -5 °). Obtainable.
  • an electrostatic drive type MEMS mirror scanner in which a target semiconductor substrate is provided with a mirror that is swingably supported by a suspension beam, a thin film of various materials is patterned on the substrate. It is manufactured by surface micromachining, which is manufactured by lamination, or by bulk micromachining, such as etching the substrate itself, and also performing film formation.
  • the comb-shaped electrode configuration has been described as the capacitance element of the drive source.
  • the planar electrode configuration is supplementarily used for mirror positioning and correction. It is possible to adopt.
  • a DC voltage is applied to the comb-shaped electrode for electrostatic drive so as to first match or approximate the resonance frequency of the micromirror.
  • the DC voltage value is obtained and set in the voltage control means, and then an AC voltage can be applied between the driving electrodes to swing the mirror.
  • the specific resonance frequency of the scanning mirror is determined by the configuration of the suspension beam.
  • the spring constant of the rotation axis of the mirror, the expected swinging motion pattern of the mirror, and the required amplitude of the mirror are further determined. In other words, depending on various conditions such as the rotation angle, the extent to which resonance should be performed, the force for maximizing the deflection angle, and whether to fall within a certain range are taken into consideration. It should be decided.
  • the scanning mirror had a resonance frequency of 1500 Hz and a deflection angle (one amplitude of the mechanical deflection angle) of ⁇ 15 °.
  • Modulus of elasticity 150Gpa (15000kgf / mm 2, 15300kgf / mm 2)
  • the electrostatic drive type MEMS device 30 shown in FIG. 3 basically adopts the same configuration as that of FIG. 1 described above, and adopts an elliptical shape for the scanning mirror 32 formed on the upper layer plate 31. I have.
  • each suspension beam 33A, 33B employs six torsion bars 34a to 34f, 34g to 341 each, including the hinged torsion bars 34a, 341 at the ends, and forms comb teeth groups 35, 36. This is the configuration.
  • the torsion bar close to the mirror 32 is the same, and the remaining torsion bars except for the hinge type at the force end are replaced by a structure having two spiral springs for one fixed portion. A total of eight torsion bars were provided.
  • the scanning mirror had a resonance frequency of 2000 Hz and a deflection angle (one amplitude of the mechanical deflection angle) of ⁇ 16.25 °.
  • the electrostatic drive type MEMS device shown in FIG. 5 and FIG. 6 basically adopts the same configuration as that of FIG. 1 described above, and the scanning mirror 132 formed on the upper plate 131 has each suspension beam. A long oval shape long in the 133A and 133B directions is adopted.
  • the electrostatic drive type MEMS mirror scanner includes a par code reader, a laser printer, a confocal microscope, an optical fiber network member, a projection display for a projector, a rear projection TV, a mountable display, and a vehicle-mounted device.
  • Applications include laser radar and military laser tracking and guidance systems.
  • the electrostatic drive type MEMS mirror scanner according to the present invention has a flexible scanning mirror support structure that can be driven with a small driving force with a small electrostatic force, and further has a long electrostatic capacitance drive along the suspension beam. Since the parts are arranged to secure sufficient capacitance, polygon mirror scanners can be substituted, especially large mirrors that match the elliptical or oblong laser light shapes used in laser printers. It can be driven with a resonance frequency of 1.5 kHz or more and an amplitude of 15 degrees or more, and can achieve the 300 dpi and 600 dpi performance required for laser printers.
  • FIG. 1A is an explanatory perspective view showing an embodiment of an electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 1B is an explanatory view of an upper plate of the mirror scanner of FIG. 1A.
  • FIG. 1C is an explanatory view of a lower plate of the mirror scanner of FIG. 1A.
  • FIG. 2A is an explanatory perspective view showing an embodiment of an electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 2B is an explanatory diagram of an upper plate of the mirror scanner of FIG. 2A.
  • FIG. 2C is an explanatory diagram of a lower plate of the mirror scanner of FIG. 2A.
  • FIG. 3 is an explanatory top view showing another embodiment of the electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 4A is an explanatory perspective view showing another embodiment of the electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 4B is an explanatory perspective view of an upper plate of the mirror scanner of FIG. 4A.
  • FIG. 4C is an explanatory top view of the upper layer plate of the mirror scanner in FIG. 4A.
  • FIG. 4D is an explanatory perspective view of a lower plate of the mirror scanner shown in FIG. 4A.
  • FIG. 4E is an explanatory view of a lower plate of the mirror scanner in FIG. 4A.
  • FIG. 4F is an explanatory perspective view of the lower surface side of the mirror scanner of FIG. 4A.
  • FIG. 5 is an explanatory top view showing another embodiment of the electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 6A is an explanatory perspective view showing another embodiment of the electrostatic drive type MEMS mirror scanner according to the present invention.
  • FIG. 6B is an explanatory perspective view of an upper layer plate of the mirror scanner in FIG. 5A.
  • FIG. 6C is an explanatory top view of the upper layer plate of the mirror scanner in FIG. 5A.
  • FIG. 6D is an explanatory perspective view of a lower plate of the mirror scanner shown in FIG. 5A.
  • FIG. 6E is an explanatory view of a lower plate of the mirror scanner in FIG. 5A.
  • FIG. 6F is a bottom perspective view of the mirror scanner shown in FIG. 6A.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Abstract

 この発明は、ポリゴンミラースキャナと同等以上の高速スキャニングを実現でき、静電力の少ない駆動力でも駆動可能な柔軟なミラーの支持構造を有する構成からなるMEMSミラースキャナの提供を目的とし、基板の同一直線上に棒状に形成配置される一対のサスペンションビーム間にスキャニングミラーを形成して該直線を揺動軸として該ミラーを揺動可能に支持し、かつサスペンションビームの片側または両側に沿って静電容量駆動部が配置される構成であり、静電容量駆動部の揺動軸中心から軸直交方向(サスペンションビーム幅方向)の最大距離を、該ミラーの揺動軸中心(回転中心)よりの軸直交方向(ミラー長さ方向)の最大距離の例えば60%以下、より好ましくは40%以下とすることにより、大きなスキャニングミラーの共振周波数を高めることが可能である。

Description

明 細 書
静電駆動型 MEMSミラースキャナ
技術分野
[0001] この発明は、高速スキャニングが可能なレーザープリンタ用途に最適な小型ミラー スキャナに関し、詳しくはシリコン基板を用いたマイクロ-エレクト口-メカ-カルシステ ム (micro- electro- mechanical system,以下 MEMSという)による新規な静電駆動型 MEMSミラースキャナに関する。
背景技術
[0002] 従来、レーザープリンタなどの用途でスキャナエンジンとして使用されるデバイスに 、ポリゴンミラースキャナが用いられ、これは多角柱状ミラーをその軸中心に高速回転 させることができ、高速のスキャニング動作を実現できた (特許文献 1)。
[0003] 近年、シリコンなどの半導体基板に、エッチングや成膜などのマイクロマシユング技 術を用い、例えば所要のグループを形成して構成したスキャニングミラーをサスペン シヨンビームで揺動可能に支持し、ミラー部とグループ周辺に設けた電極対により静 電力を発生させて、前記ミラーを揺動運動させる静電駆動型ミラースキャナが種々提 案されて!ヽる (特許文献 2,特許文献 3)。
[0004] 前記静電駆動型ミラースキャナ一は、文字どおり静電力で駆動され、サスペンション ビームを軸とする回動角によって、入射させた光の反射経路を変換することが可能で あり、レーザー光のスイッチングやスキャニングが実施できる。しかし、その駆動速度 は、ポリゴンミラースキャナと比較してずっと低速度し力得られな 、ものであった。
[0005] 一方、基本構造に平行磁場を発生させる磁場発生手段と、棒状トーシヨンバーで揺 動可能に支持したスキャニングミラーを有した電磁駆動型ミラースキャナは、電磁型 の駆動力が大きぐ偏向角度と動作周波数を向上させやすい利点がある。
[0006] また、ジンノ レ構造の光偏向器の構成を採り、シリコン基板と複数のポリイミド膜、金 属膜とを積層し平行磁場中に配置された偏向ミラー素子アレイとを有した電磁駆動 型ミラースキャナは、弾性部材としてのメッシュ状部を有するポリイミド膜を用いること で、例えば 4.5mm X 3.3mmのミラーサイズで 4000Hzの共振周波数を有し、高速スキヤ ユングを可能にして 、る (特許文献 4)。
特許文献 1:特開平 5-119279
特許文献 2 :特開 2002-311376
特許文献 3:特開 2003-015064
特許文献 4:特開 2003- 270558
発明の開示
発明が解決しょうとする課題
[0007] シリコン基板を用いて数 mm角寸法のミラーをサスペンションビームで揺動可能に支 持する構成の MEMSミラースキャナは、ポリゴンミラースキャナに対して、小型化が容 易であり、光学系の小型化と省レンズが可能となり、また回転体がなく発塵フリーであ り、さらに省電力、静音、低振動、起動時間短縮などさまざまなメリットが得られる。
[0008] ポリゴンミラースキャナに匹敵あるいはそれ以上の高速スキャニングを可能するには 、 MEMSミラースキャナのミラーを大型化し、高速で且つ大振幅で動作させる必要が ある。
[0009] レーザープリンタ用途としては、必要な印字分解能を得るために大きな寸法のスキ ャユングミラーが必要となり、該ミラーの大型化に伴いミラー部の慣性モーメントが大 きくなり、共振周波数が低下してしまうため、これまで静電駆動型 MEMSミラースキヤ ナが実用化されて 、る例はな 、。
[0010] また、大きなスキャニングミラーの MEMSミラースキャナを高速化 (高周波ィ匕)するには 、例えばトーシヨンバーの剛性を上げる必要がある力 トーシヨンバーの剛性を上げる と、静電型では駆動力が低いためミラーを十分な動作振幅で駆動できなくなる問題 があり、これも静電駆動型 MEMSミラースキャナが実用化されていない大きな一因で ある。
課題を解決するための手段
[0011] この発明は、静電駆動型 MEMSミラースキャナにおいて、ポリゴンミラースキャナと同 等以上の高速スキャニングを実現できる構成の提供を目的とし、例えば、静電力でも 十分な駆動が可能となるように、静電力の少な 、駆動力でも駆動可能な柔軟なミラー の支持構造を有する構成、また駆動力を増加させるために静電容量を増大、確保で きる構成力もなる MEMSミラースキャナの提供を目的としている。
[0012] 発明者らは、静電力の小さな駆動力でも駆動可能な柔軟なミラーの支持構造並び に十二分な静電容量を確保できる構成を目的に、静電駆動型 MEMSミラースキャナ の構成にっ 、て鋭意検討した結果、所要寸法の正方形スキャニングミラーを想定し た場合、ミラーを対向 2辺の方向に一対 (二本)のサスペンションビームで揺動可能に 支持し、かつサスペンションビーム方向 (揺動軸方向)に櫛歯状の電極を連接配置し て静電容量駆動部を設ける構成となすことで、基本的にミラーの共振周波数を高め、 駆動部の静電容量を増大させることが可能であることを知見した。
[0013] また、発明者らは、スキャニングミラーとサスペンションビームによる上記の構成にお いて、該ミラーの揺動軸方向に直交する方向の寸法を lmm以上とし、さらに静電容量 駆動部の揺動軸中心から軸直交方向 (サスペンションビーム幅方向)の最大距離を、 該ミラーの揺動軸中心 (回転中心)よりの軸直交方向 (ミラー長さ方向)の最大距離の 100%以下、好ましくは 60%以下、さらに好ましくは 40%以下とすることにより、大きなスキ ャユングミラーの共振周波数を高めることが可能であることを知見した。
[0014] また、発明者らは、上記の一対 (二本)のサスペンションビームで揺動可能に支持さ れるミラーは、正方形ミラーより長方形ミラーとなして長辺に長いサスペンションビーム を設けるほうがその共振周波数を高めることができ、さらに矩形より楕円や長楕円とし て最外周部の質量を落とすことで、より共振周波数を高めることができることを知見し た。
[0015] また、発明者らは、上記の MEMSミラースキャナにおいて、大きなスキャニングミラー の駆動力を確保できる構成にっ 、て種々検討した結果、静電容量駆動部の回転揺 動方向の大きさは前記範囲で決まることから、駆動部の静電気力はミラーの極慣性 モーメント (polar moment of inertia of the mirror)と振れ角及び周波数の二乗分が駆 動部の静電気力となるように、揺動軸方向の長さを長くした構造にすることで目的が 達成できることを知見した。
[0016] さらに、発明者らは、共振周波数を高める構成として、各サスペンションビームの剛 性を増加させな 、ように、サスペンションビームに屈曲型トーシヨンバー (serpentine torsion hinge)や直線型トーシヨンバーなどのトーシヨンバー部を設けることにより共振 周波数を上げることができ、またより大きな振幅が必要な場合には上記構成のデバイ スを真空パッケージに収納して共振の Q(Q factor)を上げること、ミラー部の裏面に軽 め穴を設けたり、リブ構造にしてミラー部の慣性モーメントを減少させることにより、ミラ 一の共振周波数を高めてかつ振れ角を大きくとれることを知見し、この発明を完成し た。
[0017] すなわちこの発明は、基板の同一直線上に棒状に形成配置される一対のサスペン シヨンビーム間にスキャニングミラーを形成して該直線を摇動軸としてスキャニングミラ 一を揺動可能に支持し、かつサスペンションビームの片側または両側に沿って静電 容量駆動部が配置される構成であり、スキャニングミラー自体の揺動軸中心から軸直 交方向の最大距離 (a/2)が lmm以上、スキャニングミラー自体の厚みが 50 μ m以上で あり、該駆動部の揺動軸中心から軸直交方向の最大距離 (w)を、スキャニングミラー の摇動軸中心力 軸直交方向の最大距離の 100%以下とした静電駆動型 MEMSミラ 一スキャナである。
なお、スキャニングミラーは、バルタ基板自体力 なるもの、断面が横 H型 (I-beam) 構造、穴や各種リブを有する構造など種々構成であり、その構造全体の厚みが 50 m以上である。
発明の効果
[0018] この発明による静電駆動型 MEMSミラースキャナは、静電力の少な!/、駆動力でも駆 動可能な柔軟なスキャニングミラーの支持構造を有し、さらに長 、サスペンションビー ムに沿って静電容量駆動部が配置されて十分な静電容量が確保されるため、ポリゴ ンミラースキャナの代替が可能であり、回転体がないことから発塵フリーであり、従来 に比してより小型化が可能で、光学系の小型化と省レンズ化、さらに省電力、静音化 、起動時間短縮などが実現できる。
[0019] この発明による静電駆動型 MEMSミラースキャナは、ミラー長さ 4mm以上の大きなス キヤ-ングミラー、特にレーザープリンタで使用される楕円や長楕円形状のレーザー 光形状と合致する大型ミラーを、 1.5kHz以上の共振周波数と ± 15° 以上の振幅で駆 動することができ、レーザープリンタで要求される 300dpi、 600dpiの性能を実現できる [0020] この発明による静電駆動型 MEMSミラースキャナは、シリコンなどの半導体基板にェ ツチングゃ成膜などのマイクロマシユング技術を用いて形成するものでさらに、静電 駆動や制御用の DC電源、 AC電源をも基板に形成でき、ポリゴンミラースキャナゃ電 磁駆動型 MEMSミラースキャナより、簡素且つ製造性の良い構成力もなるため、安価 に提供できる利点がある。
[0021] この発明による静電駆動型 MEMSミラースキャナは、シリコンなどの半導体基板に形 成した同材質のサスペンションビームを剛性を上げることなく利用できる構成力 なり 、例えばポリミイド膜をトーシヨンバーに使用する従来の構成に比してミラーの動作安 定性 (特にジッター)〖こ優れる。
発明を実施するための最良の形態
[0022] この発明による静電駆動型 MEMSミラースキャナは、図 1Aに示すごとぐシリコンな どの半導体基板の同一直線上に形成配置される一対のサスペンションビーム間にス キヤ-ングミラーを形成して該直線を揺動軸としてミラーを揺動可能に支持する構成 を基本構造とする。
[0023] また、この発明による静電駆動型 MEMSミラースキャナは、サスペンションビームに 沿って静電容量駆動部が配置され、該駆動部の揺動軸中心から軸直交方向の最大 距離を、スキャニングミラーの摇動軸中心力も軸直交方向の最大距離の 100%以下、 好ましくは 60%以下、さらに好ましくは 40%以下としたことを特徴とする。
[0024] 以下に図面に基づきこの発明による MEMSミラースキャナデバイス (以下単に MEMS デバイスと!/ヽぅ)の構成と設計方法につ!、て説明する。図 1Aは組み立てられた MEMS デバイスの一構成例を示す。図 1B,図 1Cは図 1Aの構成体の分解説明図である。
[0025] MEMSデバイス 10は、上層板 10Aと下層板 10Bを積層した構成力もなる。上層板 10A は、中央に円板のスキャニングミラー 11を設け、その X軸 (揺動軸)方向にサスペンショ ンビーム 13A,13Bが設けられ、接続部 12を介してスキャニングミラー 11がサスペンショ ンビーム 13A,13Bに支持される。
[0026] サスペンションビーム 13A,13Bの端は、アンカー 14A,14Hと S字型 (旋状)トーシヨンバ 一構造のヒンジ 15A,15Hと接続される。また、サスペンションビーム 13A,13Bは、接続 部 12とヒンジ 15A,15Hとの間のビーム内に、 S字型 (旋状)トーシヨンバー構造のばね 15B〜15Gが形成されている。ばね 15B〜15Gにはアンカー 14B〜14Gと接続される。
[0027] 上層板 10Aのサスペンションビーム 13A,13Bには、 x軸 (揺動軸)に直交する y軸方向 に揺動側櫛歯 18が形成され、同様に上層板 10A側から y軸方向に伸びる固定側櫛歯 19と該揺動側櫛歯 18は X軸方向に交互に配置される。すなわち、揺動側櫛歯 18群と 固定側櫛歯 19群とは、静電容量駆動源としてサスペンションビーム 13A,13Bを介して スキャニングミラー 11を揺動駆動する。
[0028] また、下層板 10Bは、上層板 10Aのスキャニングミラー 11とサスペンションビーム 13A,13Bが揺動可能なように同部を空洞 17化してあり、さらに上層板 10Aと下層板 10Bが積層される時、上層板 10Aに形成されるアンカー 14A〜14Hが固着されるように 、下層板 10Bには島状に固定用パッド 16A〜16Hが形成される。
[0029] また、下層板 10Bには、上層板 10Aの揺動側櫛歯 18と対をなして静電容量駆動源を 構成できる固定側櫛歯 18Bが多数配置されている。
[0030] 図 2A〜図 2Cに示す MEMSデバイス 20の構成例は、上層板 20Aと下層板 20Bを積層 した構成力もなり、上層板 20Aは、中央に円板のスキャニングミラー 21を設け、その X 軸 (揺動軸)方向にサスペンションビーム 23A,23Bが設けられ、接続部 22を介してスキ ャユングミラー 21が支持される。
[0031] サスペンションビーム 23A,23Bの端は、 S字型 (旋状)トーシヨンバー構造のヒンジ
25a,25hを介して上層板 20Aに接続される。また、サスペンションビーム 23A,23Bの長 手側面に沿って同様構成のばね 25b〜25g設けられて上層板 20Aに接続される。
[0032] サスペンションビーム 23A,23Bの他方長手側面には、 x軸 (揺動軸)に直交する y軸方 向に延びる揺動側櫛歯 28が形成され、下層板 20Bに設けられる固定側櫛歯 29とで静 電容量駆動源としてサスペンションビーム 23A,23Bを介してスキャニングミラー 21を摇 動駆動する。
[0033] 図 4Aに示すこの発明による MEMSデバイス 40の実施例は、上層板 50と下層板 70を 絶縁して積層した構成カゝらなる。
[0034] 図 4B,図 4Cには上層板 50の詳細が示される。上層板 50には長楕円形状のスキヤ- ングミラー上層 51が形成されている。このスキャニングミラー上層 51の裏面には細く深 V、形状の多数の溝条 (trenches)が形成されるが、ここでは図示を省略して 、る。 [0035] 多数の溝条はスキャニングミラーの質量低減と動的変形を低減する機能がある。す なわち、 MEMSデバイス 40は、その全ての動的変形を最小にすることで、光学的分解 能が向上する。例えば、溝条はスキャニングミラー上層 51の長楕円の直径方向に平 行に設けることが考えられるが、短円の直径方向と一致するスキャニングミラーの回 転軸方向から離れた該ミラーの外周側に配置されることが効果的である。
[0036] なお、多数の溝条は、上層板 50にスキャニングミラー上層 51等の各パーツをエッチ ングで形成する際に、同時にその溝幅や深さを所定値となるように制御される。ある いは、スキャニングミラー上層 51の表面以外が被覆されて当該表面に溝条をエツチン グで形成する方法も採用できる。
[0037] 溝条は、その配置や本数を有限要素法にて最適化するとよ 、。スキャニングミラー 上層 51はギャップ 52A,52Bにて上層板 50より分離される。ギャップ 52A,52Bの幅寸法 は、上層板 50のエッチングによる形成工程時に他の微細寸法で形成される 、ずれの パーツよりも大きな寸法となるよう設計されて 、る。
[0038] スキャニングミラー上層 51は、短円の直径方向に設けられる接続部 53を介してサス ペンションビーム 54A,54Bに支持される。力かるサスペンションビーム 54A,54Bに支持 される構成によりスキャニングミラー上層 51はその動的変形が最小限になる。また、接 続部 53は、その形状や数を有限要素法にて最適化される。
[0039] 揺動回転軸に沿って配置されるサスペンションビーム 54A,54Bの前記回転軸方向 の端面には、揺動側櫛歯 55が形成配置される。揺動側櫛歯 55は、それぞれ基端側 の長方形断面形状より揺動する先端側の長方形断面形状がより小さくなるよう形成さ れている。このように断面積を小さくすることで揺動側櫛歯 55の重量を低減し、全体 の慣性質量を減少させて!/、る。
[0040] 構造的な慣性を減らすことによって、このデバイスの走査速度を増大させること、駆 動電圧量を低減することがそれぞれ単独又は同時に実現できる。例えば、駆動周波 数の調整によって、揺動部の駆動効率が向上して、揺動側櫛歯 55の静電容量による ノィァス駆動力が増大することになる。また、揺動側櫛歯 55はスキャニングミラーを駆 動する静電駆動量を増大させることができる。さらには、揺動側櫛歯 55は静電容量に よるバイアス駆動力、ミラー駆動力の両方を提供できる。 [0041] サスペンションビーム 54A,54Bは、下層板 70の表面に形成されるパッドに接続される S字型 (旋状)トーシヨンバー構造のヒンジにより連結されて 、る。サスペンションビーム 54Aの遠心端は、パッド 57Aに接続する S字型ヒンジ 56aと連結され、中央側はノッド 58Aに接続される S字型ヒンジ 56b,56cと連結される。
[0042] 同様にサスペンションビーム 54Bの遠心端は、パッド 57Bに接続する S字型ヒンジ 56f と連結され、中央側はパッド 58Bに接続される S字型ヒンジ 56d,56eと連結される。サス ペンションビーム 54A,54Bは、スキャニングミラー上層 51の短円の直径方向に設定さ れる摇動回転軸に分散配置する S字型ヒンジ 56a〜56fC連結される。サスペンション ビーム 54A,54Bは、その表面に設けた穴 60により質量を軽減する。
[0043] 入念に堅さの配分とばねの位置設定を調整することによって、可動構造物のすべ てのモードの周波数は効果的に区分することができ、そして望ましい揺動モードは最 も低い共振周波数で設計される。主なレゾナンス周波数は最も低くかつ他の構造物 の振動周波数力 離れており、スキャニングミラーの揺動は他のいかなる不要な振動 モードを招来することがな 、。
[0044] 複数のばねを用いることで、各ばね毎の最大圧力と張力を従来の一対のトーシヨン ビームで支持されるスキャニングミラーよりも低くする。各ばね毎の圧力と張力は減少 して、各はねの信頼性が向上し、揺動角度が増える。
[0045] 上層板 50には、固定側櫛歯 59が形成され、揺動側櫛歯 55と交互に入り込む形態で 配置される。固定側櫛歯 59は、揺動側櫛歯 55と同様に先が細くなるよう形成されてい る。固定側櫛歯 59は、バイアス静電力を供給することで駆動効率を増大させることが できる。
[0046] また、固定側櫛歯 59は、静電駆動力を供給することで、スキャニングミラー上層 51を 駆動することができる。さら〖こ、固定側櫛歯 59には、バイアス静電力と静電駆動力の 両方を供給することができる。この固定側櫛歯 59は、下層板 70の表面に載置される 接着パッド 61に接続されて!ヽる。
[0047] 図 4D、図 4E、図 4Fは下層板 70の詳細を示す。下層板 70は、長楕円形板 71上に突 起部 72を形成してあるミラー下層 73を有して 、る。下層板 70にギャップ 74を設けてミラ 一下層 73を周囲のコンポーネントから分離している。図 4Fに、長楕円形板 71の反射 面を備えた下面を図示してあり、下層板 70下面の孔部外周には、組立時にミラーの 位置合わせを行うためのマーク 75が設けてある。
[0048] ミラー下層 73の表面には、ミラー上層 51が接着されて最終のスキャニングミラーとな る。スキャニングミラーは、 Iビーム構造を有するもので、ミラー上層 51が上面、突起部
72がウェブ、長楕円形板 71が下面を構成する。
[0049] Iビーム構造は、ミラーの多くの質量を低減してミラーを強固する。従って、これはミラ 一下層表面の動的な変形を最小限にすることができる。ミラー下層表面の動的変形 を最小限にすることで、このデバイスの光学的分離度を改善できる。 Iビームの構造は 有限要素分析によってより洗練させることができる。
[0050] 下層板 70は、上層板 50で可動構造の接着パッドを固定するための表面を有してい る。特に固定用パッド 76AJ6Bは、接着パッド 58A,58Bに対応する固定用表面を備え
、固定用パッド 77は、接着パッド 57A,57B,61に対応する固定用表面を備えている。
[0051] 下層板 70は、固定側櫛歯 78が形成され、上層の揺動側櫛歯 55と層外で交互に入り 込む形態で配置される。換言すると、上から見た時あるいはミラーが揺動した際に両 者が交互に入り込む。固定側櫛歯 78は、揺動側櫛歯 55と同様に先が細くなるよう形 成されている。
[0052] 固定側櫛歯 78と固定用パッド 77との間のギャップ 79aがあり、これは固定側櫛歯 78 間のギャップ 79bよりも広く設定され、また、下層板 70への深さはギャップ 79aはギヤッ プ 79bより深くエッチングされる。この深 、ギャップ 79aは揺動櫛歯 55が下層板 70に接 触することなくより大きな角度で揺動できるよう設定される。
[0053] 固定側櫛歯 78は、静電駆動力を供給することで、スキャニングミラーを駆動すること ができる。さらに、固定側櫛歯 78には、バイアス静電力を供給することで駆動効率を 増大させることができる。また、バイアス静電力と静電駆動力の両方を供給することが できる。揺動櫛歯 55と固定側櫛歯 78との間の静電容量は、スキャニングミラーを駆動 した際にその位置の検出に利用される。
[0054] 以上、スキャニングミラーとサスペンションビームを設ける上層板と下層板を積層し た構成の MEMSミラースキャナを説明した力 サスペンションビームとスキャニングミラ 一が形成される同一基板内の櫛歯状構造に電極が配置される構成など、静電容量 駆動源を含めて上層板のみで MEMSミラースキャナを構成できることは当然である。
[0055] ここで、図 1A〜図 1Cにおいて、形状を決める寸法記号を下記のようにとる。
a:スキャニングミラー X軸方向 (縦)寸法、
b:スキャニングミラー y軸方向 (幅)寸法、
c:卜ーシヨンノ一幅、
d:櫛歯側幅、
L:トーシヨンバー 1本の長さ (展開長さ)
n:トーシヨンバー本数、
n:櫛本数、
t:基板厚さ (但し、 t〉cと想定する)、
w:櫛切れ込み量、
δ 駆動部電極間のギャップ、
Θ 振れ角、
Κ:ばね定数 (全体)、
k:ばね定数 (トーシヨンバー 1本当たり)、
G:剪断弾性率、
Q:クオリティファクター、
形状係数 (shape factor)、
β 形状係数 (shape factor),
I:揺動軸回りの慣性能率
τ mat:材料の剪断強度、
freq:要求される周波数、固有振動数、
ε :誘電率、
V:電圧、
λ:光波長 (wave length of light)。
[0056] スキャニングミラーの形状を支配する方程式は下記のとおりである。
(1)固有振動数 (Natural frequency)
基板厚さ t力 Sスキャニングミラー縦寸法 aより十分大きい時、 (n X c3/L) OC I x freq2/G …… 1式。
[0057] なお、揺動軸回りの慣性能率 Iは、直方体 (2a'2b't、 x軸方向寸法 2b、厚さ t)の場合 は 2式、楕円 (2a '2b 't、厚さ t)の場合は 3式である。
1=1/3· p -a-b-t( 4-a2+t2) …… 2式
1=1/12· p -a-b-t(3-a2+t2) …… 3式
[0058] (2)トーシヨンヒンジの強度の制約
(j8/o;)-Gx(c/L)- 0く r mat …… 4式
[0059] (3)振り角
Θ oc V-^(Q- ε -nc-wt/ δ) …… 5式
[0060] (4)動的変形の限界
矩形 (2aX2bXt )ミラーの場合、動的変形は 6式によって表現される。
λ/3>Ό
D c freq2Xa5/t2 …… 6式
[0061] MEMSミラースキャナに対して、固有振動数 (高い方が望ましい)、振れ角 (大きい方 が望ましい)、スキャニングミラーサイズ (大きい方が望ましい)の要求がある力 この要 求をできる限り小さな寸法で設計することを想定する。
[0062] まず、ミラーサイズ (寸法 a,b及び I)及び固有振動数要求に対して 1式より、 (nXc3/L) が周波数の二乗に比例する数値として決まる。また、同時にトーシヨンバー、ヒンジの 強度を満足させる必要があり、 4式力も L/cの下限値が振れ角に比例する数値として 決まる。ここで寸法 cと Lは固有振動数と材料強度より決まる振れ角に対して反対方向 の寄与をすることに注意する必要がある。同時に、 6式によって動的変形量に対する 制約がある。そのために、厚さの平方は、 a5Xfreq2に定数を掛けた結果より大きくあ るべさである。
[0063] さらに、所望の振れ角を実現するために必要なトルクを発生させる形状として、 5式 より、下記 7式で決まる数値が増加すれば振れ角も増加することが分かる。ここで、 δ を製造上の限界カゝらある値に固定すれば、振れ角は厚さ tと電圧 V及び櫛本数 ηと共 に増加する。
D oc newt/ δ 7式 [0064] 注目すべき点の一つに、固有振動数を決定する関係式から固有振動数を大きくす るという要求とスキャニングミラーのサイズを大きくするという要求は、設計すべき寸法 に対して同じ影響を及ぼすということである。
[0065] また、設計すべきパラメータ一は (n' c3/L)、 c/L及び nc X w X t/ δの 3個であり、決定 すべき寸法は n、 c、 L、 t、 w、及び nの 6個である。但し、 nは、 n、 c、 L、及び tにより制 約を受けてある範囲に決まる値であり、これらを拘束する式は 4つあり、ここに設計の 自由度がある。この自由度を生力してミラースキャナ全体の寸法を最小にする、最適 設計が可能となる。
[0066] 評価関数として、厚さ tを最小にする、長さを最小にする (n' Lあるいは nを最小にす ることに相当)ことは、所謂コスト低減に繋がり意味のある数値である。
[0067] 6式より、振れ角 Θを大きくするには櫛歯の面積を拡大すること (n -wt/ δを大きく する)が必要となる。固有振動数の要請力も n' c3/Lを大きくすることが必要となった場 合は、固有振動数を増加させることと振れ角を大きくすることの両者の積に相当する 、トルク増大の要請を櫛歯厚さ、櫛歯切れ込み量、櫛本数、電圧増加、電極間ギヤッ プ縮小により補う必要があることが分力る。
[0068] この発明において、スキャニングミラーの摇動軸中心力 軸直交方向の最大距離 (a/2)力 lmm以上、すなわちスキャニングミラーの摇動軸に直交する方向のミラー長さ 全体が 2mm以上、該ミラーの厚みが 50 m以上であることを要件とする。その理由は 、ポリゴンミラースキャナ以上の高速スキャニングを可能するにためである。
さらに好ましくは、スキャニングミラーの揺動軸中心から軸直交方向の最大距離 (a/2)が 2mm以上、該ミラーの厚みが 100 μ m以上である。
[0069] この発明にお 、て、サスペンションビームの片側または両側に沿って静電容量駆動 部が配置される該駆動部の揺動軸中心から軸直交方向の最大距離 (d)を、ミラーの 揺動軸中心力も軸直交方向の最大距離 (a/2)の 100%以下、好ましくは 80%以下とする 。すなわち、固有振動数は極慣性能率の平方根に反比例するが、スキャニングミラー 部以外の極慣性能率は dの 3乗に比例 (一次近似)するので、 dを a/2の 100%以下、好 ましくは 80%以下とすれば、単位長さあたりの寄与率がミラー部分の約 50%以下、好ま しくは約 20%以下に押さえることができる。 [0070] さらに、静電容量駆動部の揺動軸中心から軸直交方向の最大距離は、スキヤニン グミラーの摇動軸中心力 軸直交方向の最大距離の 40%以下であることが望ましい。 その理由は上述のとおりで、特に、 dを a/2の 40%以下とすれば、単位長さあたりの寄 与率がミラー部分の 7%以下に押さえることができる形状が得られる。
[0071] また、スキャニングミラーの摇動軸方向のミラー幅は、スキャニングミラーの摇動軸に 直交方向のミラー長さよりも短い方が望ましぐミラー長さ (a)の 50%以下であることが好 ましい、その理由は、ミラー長さ aはプリンターの主走査方向の分解能に関連し、幅寸 法 bはプリンターの副走査方向の分解能に関連し、主走査方向の分解能はミラー長 さと周波数で決まることによる。さらに、副走査方向の分解能はプリンターの機能上、 主走査方向の分解能より低く設定できるため、 3式に示すようにミラー幅 bは極慣性能 率に比例するので、これを 50%以下にすると分解能要求と固有振動数を高くすること の両者をバランスよく満たすことができるので望ましい。
さらに詳述すると、スキャニングミラーの揺動軸に直交方向のミラー長さ (a)とスキヤ- ングミラーの摇動軸方向のミラー幅 (b)の関係は、(a≥b,a:b=(1.0〜2.0):l) または (aく b,a:b=l:(1.001〜2》であることが好ましい。
[0072] スキャニングミラーの形状は、矩形、菱形、多角形、円、楕円を適宜採用できる。ま た、形状は、矩形、菱形よりも多角形、円より楕円状、さらにトラック形状が好ましい。 すなわち、矩形ではレーザービームのスポットがミラーからはずれないようにする目的 力 は過剰な形状であり、機能しない箇所は極慣性能率を大きくして固有振動数を 下げてしまう。円形も機能上はべストであるが、副走査方向の分解能は主走査方向 の分解能より低く設定できることから余裕がある。菱形は先端部でレーザービームス ポットが外れるのでレーザービームの光エネルギーを一部喪失してしまうこと及び分 解能が低下するという問題がある。このように、レーザービームのスポットが外れない ということと、極慣性能率を小さくするという観点から多角形及びトラック形状が好まし い。
[0073] この発明において、サスペンションビームの摇動軸方向長さは、ミラー長さよりも長 いことが望ましぐミラー長さの 1.5倍以上であることが好ましい。なお、 6式から振れ角 を大きくするには駆動トルクは櫛の歯数及び電圧を大きくするとよいが、絶縁破壊を 起こさない電圧で櫛の歯数を確保するためサスペンションビームの揺動軸方向長さ はミラー長さの 1.5倍以上にすると適切であることを実験的に確認した。
[0074] この発明において、各サスペンションビームに少なくとも 1つのトーシヨンバー部
(serpentine torsion hinge)を備えることで、スキャニングミラーの共振周波数を上げた り所要値に制御することが可能となる。
[0075] 前述した図面に示すように、スキャニングミラーとは反対側の各サスペンションビー ム端 (サスペンションビームエンド)にトーシヨンバー部を備える構成、サスペンションビ ーム内に少なくとも 1つのトーシヨンバー部を備える構成、各サスペンションビームの 片側に沿って静電容量駆動部が配置され、各サスペンションビームの他片側に沿つ て複数のトーシヨンバー部を備えている構成が採用できる。
[0076] サスペンションビームに設けられるトーシヨンバー部は、図 3に示すように、図示の 1 つの国定郡 (アンカー)に対して 1つの屈曲型トーシヨンバーまたは直線型トーシヨンバ
~~ (serpentine
torsion hinge /spring)を備える構成の他、実施例に示すように、 1つの固定部 (アンカ 一)の両側に 2つの屈曲型トーシヨンバーまたは直線型トーシヨンバーを備える構成が 採用でき、ビーム長さを短くしながら共振周波数を上げる効果がある。
[0077] また、スキャニングミラーの摇動軸に直交方向のトーシヨンバー部のビーム幅は、基 板厚みの 140%以下であることが望ましい。すなわち、振れ角 (5式)及び動的変形 (6式) の要請力 厚さ tの最小値が規定されるとともに大きい方が有利であることが示される 。一方、強度上は 4式より応力がヒンジ幅 cに比例するので小さい方が有利である。そ こで、ヒンジ幅 cとして厚さ tの 140%以下とした場合、これらの関係が適切であることを 実験的に確認した。
[0078] 実施例の静電駆動型 MEMSミラースキャナは、サスペンションビームに設けられる屈 曲型トーシヨンバー (serpentine torsion hinge /spring)の数力 ¾以上であることを特徴と する。
[0079] この発明にお 、て、スキャニングミラーの非反射裏面または各サスペンションビーム あるいはその両方に質量軽減手段を施すことは、可動部の共振周波数を制御したり 、動的なバランスを取るなどの場合に有効である。質量軽減手段としては、微小な貫 通孔ゃ穴を多数設けたり、所要箇所に多条リブ構造、ハニカム構造、断面が横 H型 (I-beam)構造を設けるなど、目的と設置箇所に応じて適宜選定すると良い。さらに、 慣性能率軽減手段を設けることことも可能である。例えば、ある箇所の質量を減らし、 同時に他の箇所の質量を増やすことにより、質量は変化しないが、当該部部の慣性 能率が軽減されて、周波数増加や振り角の増加の効果を得ることができる。
[0080] MEMSミラースキャナは、単基板でもあるいは同材質又は異材質基板の積層構造 でも実現でき、例えば、静電容量駆動部は、サスペンションビームと同一基板内にス キヤニングミラーの揺動軸に直交方向に形成する櫛歯状構造で構成され、駆動又は 制御用電極を配置した他基板と積層する構成、
静電容量駆動部は、サスペンションビームとスキャニングミラーが形成される同一基 板内に、櫛歯状構造で構成され、同構造内に電極が配置される構成であって、該基 板が他部材に支持される構成、
サスペンションビームとスキャニングミラーを設ける基板を上層板とし、所要形状の空 間パターンを形成した他基板を下層板として積層配置し、下層板側にミラーの揺動 空間を形成した構成、
上層板の静電容量駆動部を、サスペンションビームと同一基板内に櫛歯状構造で構 成し、下層板内に上層板の櫛歯状構造と対をなす櫛歯状構造を設けて静電容量駆 動部を配置した等、種々の構成を採用することができる。
[0081] この発明において、用いる基板の材質、厚みや構成は特に限定されないが、高速 スキャニングを実現するには厚みが 0.05mm以上であることが望ましぐ単層基板また は貼り合わせ基板力もなる基板を適宜採用できる。また、スキャニングミラーは、表面 に成膜または貼り合わせ層を有する構成が採用できる。公知のシリコン基板、貼り合 わせ層を有するシリコン基板、ガラス基板などを利用することもできる。
[0082] また、基板 1枚で MEMSミラースキャナを構成する場合は、サスペンションビームとス キヤ-ングミラーを設ける基板厚みは、スキャニングミラーの厚みと同等以上であるこ とが望ましい。また、積層構造を採用する場合は、サスペンションビームとスキヤニン グミラーを設ける基板厚みは、スキャニングミラーの厚みと同等以下であることが望ま しい。 [0083] この発明にお 、て、サスペンションビーム、スキャニングミラー、静電容量駆動部の 可動部全体が真空雰囲気に配置される構成やミラーの振幅角の増幅を図るための 抵抗低減構成を採用すると、空気の粘性等を考慮することなぐ各部形状などを設計 することが可能となる。
[0084] この発明の静電駆動型 MEMSミラースキャナ一にお 、て、好ま 、実施態様を採用 することで、スキャニングミラーの片振幅が、 20.5° (+10° ,-5° )の性能を得ることが できる。
[0085] この発明にお 、て、対象とする半導体基板にサスペンションビームで揺動可能に支 持するミラーを形成した静電駆動型 MEMSミラースキャナ一は、基板上に各種材料の 薄膜をパターン加工、積層したりして製造する表面マイクロマシユング、あるいは基板 自体をエッチングカ卩ェしたり、さらには成膜を併せて行うなどのバルクマイクロマシ- ングで製造される。
[0086] この発明の静電駆動型 MEMSミラースキャナーにおいて、その駆動源の静電容量 素子として、櫛歯型電極構成を説明したが、ミラーの位置決めや補正などに補助的 に平面型電極構成を採用することが可能である。
[0087] この発明の静電駆動型 MEMSミラースキャナーにおいて、静電駆動用の櫛歯型電 極に、まずマイクロミラーの共振周波数に合致ある 、は近似するように DC電圧を印加 するため、予め該 DC電圧値を求めて電圧制御手段へ設定しておき、次に該ミラーを 揺動駆動するために駆動用の電極間に AC電圧を印加することができる。
[0088] サスペンションビームの構成によって、スキャニングミラーの固有の共振周波数が決 定されるが、さらに該ミラーの回転軸のばね定数、予定するミラーの揺動運動パター ン、必要とされるミラーの振幅すなわち回動角度などの諸条件に応じて、どの程度共 振すべきか、振れ角が最大となるようにするの力、ある範囲に収まるようにするかが考 慮されて、該 DC電圧値が決定されるとよい。
実施例
[0089] 実施例 1
前述した図 1と同様構成を採用した静電駆動型 MEMSミラースキャナとして、表 1に 示す寸法や特性を有する構成のものを作製した。 [0090] その結果、スキャニングミラーの共振周波数は 1500Hz、振れ角 (機械的振り角の片 振幅)は ± 15° の性能が得られた。
[0091] なお、シリコン基板の物性値は以下のとおりである。
密度: 2.33 X 103kg/m3(0.238 X 10— 9kgw'sec2/mm4)
弾性率: 150Gpa(15000kgf/mm2,15300kgf/mm2)
剪断弾性率: G=E/2/(l+ V )=6.538(kgf/mm2)
ポアソン比: 0.22
[0092] 実施例 2
図 3に示す静電駆動型 MEMSデバイス 30は、基本的には前述した図 1と同様の構成 を採用したものであり、上層板 31に形成したスキャニングミラー 32には長楕円形状を 採用している。また、各サスペンションビーム 33A,33Bには、その端部のヒンジ型トー シヨンバー 34a,341を含めてそれぞれトーシヨンバー 34a〜34f,34g〜341を 6個ずつ採用 し、また櫛歯群 35,36を形成した構成である。さらに実施例 2では、該ミラー 32に近いト ーシヨンバーは同じである力 端部のヒンジ型を除く残りのトーシヨンバーを、 1つの固 定部に対して 2つの旋状ばねを有する構成のものを 3個設けて、総数 8個のトーシヨン バーを設けた構成を作製した。
[0093] その結果、スキャニングミラーの共振周波数は 2000Hz、振れ角 (機械的振り角の片 振幅)は ± 16.25° の性能が得られた。
[0094] 実施例 3
図 5、図 6に示す静電駆動型 MEMSデバイスは、基本的には前述した図 1と同様の構 成を採用したものであり、上層板 131に形成したスキャニングミラー 132には各サスぺ ンシヨンビーム 133A,133B方向に長い長楕円形状を採用している。
[0095] [表 1] 寸法/特性 実施例 1 実施例 2 実施例 3
2 5 2 b 2 1.1 4 c 0.02 0.029 0.04 t 0.1 0.2 0.1
L 1.27 1.33 2.45 n 2 8 7 nc 85 218 85 w 0.57 0.7 0.7 δ 0.01 0.008 0.005 freq(Hz) 1500 2000 3000
Θ reg(deg) 15 16.25 22
K(kgf^m) 1.47 5.21X101 3.47X101
I(kgf-sec2/pm) 1.42X10-8 3.32X10-7 9.08X10-8 nXc3/L 1.26X10-5 1.47X10-4 1.83X10-4 ncXwXt/6 4.85X102 3.82X103 1.19X103 産業上の利用可能性
[0096] この発明による静電駆動型 MEMSミラースキャナは、パーコードリーダ、レーザープ リンタ、共焦点顕微鏡、光フアイノ^ネットワーク構成部材、プロジェクタ用の映写ディ スプレイ、背面映写 TV、装着可能なディスプレイ、車載レーザーレーダー及び軍事 用レーザ追跡 ·誘導システムなどの用途がある。
[0097] この発明による静電駆動型 MEMSミラースキャナは、静電力の少ない駆動力でも駆 動可能な柔軟なスキャニングミラーの支持構造を有し、さらに長 、サスペンションビー ムに沿って静電容量駆動部が配置されて十分な静電容量が確保されるため、ポリゴ ンミラースキャナの代替が可能であり、特にレーザープリンタで使用される楕円や長 楕円形状のレーザー光形状と合致する大型ミラーを、 1.5kHz以上の共振周波数と士 15° 以上の振幅で駆動することができ、レーザープリンタで要求される 300dpi、 600dpiの性能を実現できる。 図面の簡単な説明
[図 1A]この発明による静電駆動型 MEMSミラースキャナの一実施例を示す斜視説明 図である
[図 1B]図 1 Aのミラースキャナの上層板の説明図である。
[図 1C]図 1 Aのミラースキャナの下層板の説明図である。
[図 2A]この発明による静電駆動型 MEMSミラースキャナの一実施例を示す斜視説明 図である
[図 2B]図 2Aのミラースキャナの上層板の説明図である。
[図 2C]図 2Aのミラースキャナの下層板の説明図である。
[図 3]この発明による静電駆動型 MEMSミラースキャナの他の実施例を示す上面説明 図である。
[図 4A]この発明による静電駆動型 MEMSミラースキャナの他の実施例を示す斜視説 明図である
[図 4B]図 4Aのミラースキャナの上層板の斜視説明図である。
[図 4C]図 4Aのミラースキャナの上層板の上面説明図である。
[図 4D]図 4Aのミラースキャナの下層板の斜視説明図である。
[図 4E]図 4Aのミラースキャナの下層板の説明図である。
[図 4F]図 4Aのミラースキャナの下面側斜視説明図である。
[図 5]この発明による静電駆動型 MEMSミラースキャナの他の実施例を示す上面説明 図である。
[図 6A]この発明による静電駆動型 MEMSミラースキャナの他の実施例を示す斜視説 明図である。
[図 6B]図 5Aのミラースキャナの上層板の斜視説明図である。
[図 6C]図 5Aのミラースキャナの上層板の上面説明図である。
[図 6D]図 5Aのミラースキャナの下層板の斜視説明図である。
[図 6E]図 5Aのミラースキャナの下層板の説明図である。
[図 6F]図 6Aのミラースキャナの下面側斜視説明図である。
符号の説明 10,20,30,40, 100 MEMSデバイス
10A,20A,31,50,131 上層板
10B,20B,70,170 下層板
11,21,32,51, 132,151 スキャニングミラー
12,22,53,153 接続部
13A,13B,23A,23B,33A,33B,54A,54B,133A,133B,154A,154B サスペンションビー ム
14A〜14H アンカー
15A,15H,25a,25h,56a〜56f,156a〜156f ヒンジ
15B〜15G,25b〜25g ばね
16A〜16H,76A,76B,77,176A, 176B,177 固定用パッド
17 空洞、
18, 18B,28,55, 155 揺動側櫛歯
19,29,59,78, 159,178 固定側櫛歯
34a〜341, 134a〜1341 トーシヨンバー
35,36,135,136 櫛歯群
52A,52B,74,79a,79b, 152A,152B, 174, 179a, 179b ギャップ
57A,57B,58A,58B,61,157A,157B,158A,158B,161 接着パッド
60,160 穴
71, 171 長楕円形板
72,172 突起部
73,173 ミラー下層
75,175 マーク

Claims

請求の範囲
[1] 基板の同一直線上に棒状に形成配置される一対のサスペンションビーム間にスキヤ ユングミラーを形成して該直線を揺動軸 (y柳として該ミラーを揺動可能に支持し、か つサスペンションビームの片側または両側に沿って静電容量駆動部が配置される構 成であり、該ミラーの揺動軸中心から軸直交 (xli)方向の最大距離 (a/2)力 Slmm以上、 該ミラーの厚みが 50 m以上であり、該駆動部の揺動軸中心から軸直交方向の最大 距離 (w)を、ミラーの揺動軸中心から軸直交方向の最大距離 aの 100%以下とした静電 駆動型 MEMSミラースキャナ。
[2] 静電容量駆動部の揺動軸中心から軸直交方向の最大距離 (w)は、スキャニングミラ 一の揺動軸中心力 軸直交方向の最大距離 (a/2)の 60%以下である請求項 1に記載 の静電駆動型 MEMSミラースキャナ。
[3] スキャニングミラーの揺動軸に直交方向のミラー長さ (a)とスキャニングミラーの揺動軸 方向のミラー幅 (b)の関係は、(a≥b,a:b=(1.0〜2.0):l) または (aく b,a:b=l:(1.001〜2》 である請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[4] スキャニングミラーの形状は、矩形、菱形、多角形、円、楕円状である請求項 1に記載 の静電駆動型 MEMSミラースキャナ。
[5] サスペンションビームの摇動軸方向長さは、ミラー長さ (a)の 1.5倍以上である請求項 1 に記載の静電駆動型 MEMSミラースキャナ。
[6] 各サスペンションビームとスキャニングミラーとの間に孔部を有する接続部を備えてい る請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[7] スキャニングミラーとは反対側の各サスペンションビーム端にトーシヨンバー部を備え て 、る請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[8] 各サスペンションビーム内に少なくとも 1つのトーシヨンバー部を備えている請求項 1に 記載の静電駆動型 MEMSミラースキャナ。
[9] 各サスペンションビーム内に設けるトーシヨンバー部は、 1つの固定部 (アンカー)に対 して 1つの屈曲型又は直線型トーシヨンバーを備える構成、あるいは 1つの固定部の 両側に複数個の屈曲型又は直線型トーシヨンバーを備える請求項 8に記載の静電駆 動型 MEMSミラースキャナ。
[10] 各サスペンションビームの片側に沿って静電容量駆動部が配置され、各サスペンショ ンビームの他片側に沿って複数のトーシヨンバー部を備えて 、る請求項 1に記載の静 電駆動型 MEMSミラースキャナ。
[11] サスペンションビームに設けられるトーシヨンバー部の数が 3以上である請求項?〜 10 に記載の静電駆動型 MEMSミラースキャナ。
[12] スキャニングミラーの摇動軸に直交方向のトーシヨンバー部のビーム幅は、基板厚み の 140%以下である請求項?〜 11に記載の静電駆動型 MEMSミラースキャナ。
[13] スキャニングミラーの非反射裏面または各サスペンションビームあるいはその両方に 質量軽減手段又は慣性能率軽減手段が施されて!/ヽる請求項 1に記載の静電駆動型
MEMSミラースキャナ。
[14] 質量軽減手段は、貫通孔、穴、多条リブ構造のいずれ力あるいはそれらの組合せで ある請求項 13に記載の静電駆動型 MEMSミラースキャナ。
[15] 静電容量駆動部は、サスペンションビームと同一基板内にスキャニングミラーの揺動 軸に直交方向に形成する櫛歯状構造で構成され、駆動又は制御用電極を配置した 他基板と積層する請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[16] 静電容量駆動部は、サスペンションビームとスキャニングミラーが形成される同一基 板内に、櫛歯状構造で構成され、同構造内に電極が配置される請求項 1に記載の静 電駆動型 MEMSミラースキャナ。
[17] サスペンションビームとスキャニングミラーを設ける基板を上層板とし、所要形状の空 間パターンを形成した他基板を下層板として積層配置し、下層板側にミラーの揺動 空間を形成した請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[18] 上層板の静電容量駆動部は、サスペンションビームと同一基板内にスキャニングミラ 一の揺動軸に直交方向に形成する櫛歯状構造で構成され、下層板内に上層板の櫛 歯状構造と対をなす櫛歯状構造を設けて静電容量駆動部を配置した請求項 17に記 載の静電駆動型 MEMSミラースキャナ。
[19] サスペンションビームとスキャニングミラーを設ける基板は、単層基板または貼り合わ せ基板力 なる請求項 15力 請求項 17に記載の静電駆動型 MEMSミラースキャナ。
[20] サスペンションビームとスキャニングミラーを設ける基板厚みは、スキャニングミラーの 厚みと同等以上である請求項 15又は請求項 16に記載の静電駆動型 MEMSミラース キヤナ。
[21] サスペンションビームとスキャニングミラーを設ける基板厚みは、スキャニングミラーの 厚みと同等以下である請求項 17に記載の静電駆動型 MEMSミラースキャナ。
[22] スキャニングミラーは、表面に成膜または貼り合わせ層を有する請求項 15力 請求項
17に記載の静電駆動型 MEMSミラースキャナ。
[23] サスペンションビーム、スキャニングミラー、静電容量駆動部の可動部全体が真空雰 囲気に配置される請求項 1に記載の静電駆動型 MEMSミラースキャナ。
[24] スキャニングミラーの機械的振り角の片振幅が、 20.5° (+10° ,-5° )である請求項 1に 記載の静電駆動型 MEMSミラースキャナ。
PCT/JP2005/008621 2004-05-11 2005-05-11 静電駆動型memsミラースキャナ WO2005109076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05739329A EP1746452A1 (en) 2004-05-11 2005-05-11 Electrostatic drive type mems mirror scanner
JP2006513043A JPWO2005109076A1 (ja) 2004-05-11 2005-05-11 静電駆動型memsミラースキャナ
US11/594,900 US20070053044A1 (en) 2004-05-11 2006-11-09 Electrostatic drive type MEMS mirror scanner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004141092 2004-05-11
JP2004-141092 2004-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/594,900 Continuation US20070053044A1 (en) 2004-05-11 2006-11-09 Electrostatic drive type MEMS mirror scanner

Publications (1)

Publication Number Publication Date
WO2005109076A1 true WO2005109076A1 (ja) 2005-11-17

Family

ID=35320353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008621 WO2005109076A1 (ja) 2004-05-11 2005-05-11 静電駆動型memsミラースキャナ

Country Status (4)

Country Link
US (1) US20070053044A1 (ja)
EP (1) EP1746452A1 (ja)
JP (1) JPWO2005109076A1 (ja)
WO (1) WO2005109076A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197139A (ja) * 2007-02-08 2008-08-28 Ricoh Co Ltd 光走査装置
JP2009514041A (ja) * 2005-10-31 2009-04-02 アドヴァンスド ニュ−マイクロ システムズ インコ−ポレイテッド ビームのための並列ばね及びアーチ形支持体を備えたmems
JP2010244012A (ja) * 2009-03-16 2010-10-28 Ricoh Co Ltd 光走査装置及び画像形成装置
KR102343643B1 (ko) * 2021-04-23 2021-12-27 탈렌티스 주식회사 이중 soi를 이용한 광 스캐너 및 그의 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092060A2 (en) * 2007-01-26 2008-07-31 Miradia Inc. A mems mirror system for laser printing applications
JP5339752B2 (ja) * 2007-08-30 2013-11-13 キヤノン株式会社 揺動体装置及びその製造方法、光偏向器、画像形成装置
US8199389B2 (en) * 2008-03-10 2012-06-12 Ricoh Company, Ltd. Vibration elements
DE102009041995A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Optische Ablenkeinheit für scannende, ophthalmologische Mess- und Therapiesysteme
JP5844701B2 (ja) * 2012-08-10 2016-01-20 日本電信電話株式会社 マイクロミラー素子およびミラーアレイ
JP6261923B2 (ja) * 2013-09-17 2018-01-17 スタンレー電気株式会社 光偏向ミラー及びこれを用いた光偏向器
CN104570556B (zh) * 2013-10-21 2016-08-17 光宝科技股份有限公司 微投影装置以及其控制方法
US9201239B1 (en) * 2014-03-07 2015-12-01 Advanced Numicro Systems, Inc. Two-dimensional electrostatic scanner with distributed springs
US10088686B2 (en) 2016-12-16 2018-10-02 Microsoft Technology Licensing, Llc MEMS laser scanner having enlarged FOV
CN108732715B (zh) * 2017-04-18 2022-06-03 台湾东电化股份有限公司 光学系统
WO2020080868A1 (ko) * 2018-10-18 2020-04-23 엘지전자 주식회사 스캐너, 및 이를 구비한 전자기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131685A (ja) * 2000-10-25 2002-05-09 Nippon Signal Co Ltd:The アクチュエ−タ
JP2003057586A (ja) * 2001-08-20 2003-02-26 Brother Ind Ltd 光走査装置、光走査装置に用いられる振動体及び光走査装置を備えた画像形成装置
JP2003066361A (ja) * 2001-08-23 2003-03-05 Ricoh Co Ltd 光偏向器及びその製造方法、光走査モジュール、光走査装置、画像形成装置、画像表示装置
JP2003529312A (ja) * 2000-03-24 2003-09-30 オニックス マイクロシステムズ インコーポレイテッド 多層自己整列型垂直櫛形ドライブ静電アクチュエータ及びその製造方法
JP2005070791A (ja) * 2003-08-25 2005-03-17 Advanced Nano Systems Inc 微小電子機械システム(mems)走査ミラー装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529312A (ja) * 2000-03-24 2003-09-30 オニックス マイクロシステムズ インコーポレイテッド 多層自己整列型垂直櫛形ドライブ静電アクチュエータ及びその製造方法
JP2002131685A (ja) * 2000-10-25 2002-05-09 Nippon Signal Co Ltd:The アクチュエ−タ
JP2003057586A (ja) * 2001-08-20 2003-02-26 Brother Ind Ltd 光走査装置、光走査装置に用いられる振動体及び光走査装置を備えた画像形成装置
JP2003066361A (ja) * 2001-08-23 2003-03-05 Ricoh Co Ltd 光偏向器及びその製造方法、光走査モジュール、光走査装置、画像形成装置、画像表示装置
JP2005070791A (ja) * 2003-08-25 2005-03-17 Advanced Nano Systems Inc 微小電子機械システム(mems)走査ミラー装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONANT R.A. ET AL: "Dynamic deformation of scanning mirrors.", OPTICAL MEMS, 2000 IEEE/LEOS INTERNATIONAL CONFERENCE., 24 August 2000 (2000-08-24), pages 49 - 50, XP010518532 *
PATTERSON P.R. ET AL: "A SCANNING MICROMIRROR WITH ANGULAR COMB DRIVE ACTUATION.", MICRO ELECTRO MECHANICAL SYSTEMS, 2002. THE 15TH IEEE INTERNATIONAL CONFERENCE., 24 January 2002 (2002-01-24), pages 544 - 546, XP010577713 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514041A (ja) * 2005-10-31 2009-04-02 アドヴァンスド ニュ−マイクロ システムズ インコ−ポレイテッド ビームのための並列ばね及びアーチ形支持体を備えたmems
JP2008197139A (ja) * 2007-02-08 2008-08-28 Ricoh Co Ltd 光走査装置
JP2010244012A (ja) * 2009-03-16 2010-10-28 Ricoh Co Ltd 光走査装置及び画像形成装置
KR102343643B1 (ko) * 2021-04-23 2021-12-27 탈렌티스 주식회사 이중 soi를 이용한 광 스캐너 및 그의 제조 방법

Also Published As

Publication number Publication date
EP1746452A1 (en) 2007-01-24
JPWO2005109076A1 (ja) 2008-03-21
US20070053044A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2005109076A1 (ja) 静電駆動型memsミラースキャナ
JP5229704B2 (ja) 光走査装置
EP1714178B1 (en) Mems mirror driven by an electrostatic comb drive with tapered comb teeth
JP4193817B2 (ja) アクチュエータ
JP5240953B2 (ja) 光ビーム走査装置
JP3759598B2 (ja) アクチュエータ
JP2006171349A (ja) アクチュエータ
JPWO2008038649A1 (ja) 光走査装置
JP2011013401A (ja) 光ビーム走査装置
JP2014182189A (ja) 光偏向器
WO2006022967A1 (en) Mems mirror with amplification of mirror rotation angle
JP2001004952A (ja) 光偏向子
JP4766353B2 (ja) 光ビーム走査装置
WO2009011405A1 (en) Oscillator device and optical deflector using the same
JP2005308820A (ja) 静電駆動型memsミラースキャナ
JP2006018250A (ja) Memsミラースキャナ
US7402255B2 (en) MEMS scanning mirror with trenched surface and I-beam like cross-section for reducing inertia and deformation
JP2006309018A (ja) アクチュエータ
JP2006201520A (ja) Memsミラースキャナ
JP2006010715A (ja) Memsミラースキャナ
JP2006167860A (ja) アクチュエータ
JP2006309098A (ja) リブと先細櫛歯を備えたmems走査ミラーの寸法諸元
JP4123133B2 (ja) アクチュエータ
JP2001264676A (ja) 光スキャナ
JP2011197605A (ja) 2次元光スキャナ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005739329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11594900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005739329

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11594900

Country of ref document: US