WO2005108303A1 - Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern - Google Patents

Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern Download PDF

Info

Publication number
WO2005108303A1
WO2005108303A1 PCT/EP2005/005032 EP2005005032W WO2005108303A1 WO 2005108303 A1 WO2005108303 A1 WO 2005108303A1 EP 2005005032 W EP2005005032 W EP 2005005032W WO 2005108303 A1 WO2005108303 A1 WO 2005108303A1
Authority
WO
WIPO (PCT)
Prior art keywords
complexes
anion exchanger
weakly basic
basic anion
uranyl
Prior art date
Application number
PCT/EP2005/005032
Other languages
English (en)
French (fr)
Inventor
Wolfgang HÖLL
Günther Mann
Original Assignee
Atc Dr. Mann E.K.
Rohm And Haas Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atc Dr. Mann E.K., Rohm And Haas Company filed Critical Atc Dr. Mann E.K.
Priority to CA2565637A priority Critical patent/CA2565637C/en
Priority to US11/579,489 priority patent/US8137644B2/en
Priority to EP05736327A priority patent/EP1742883A1/de
Publication of WO2005108303A1 publication Critical patent/WO2005108303A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0265Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries extraction by solid resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a process for the separation of uranium (VI) species from water by means of weakly basic anion exchangers based on polyacrylics, the uranium (VI) species being in the form of uranyl complexes as dissolved uranyl.
  • Uranium is a common, radioactive and reactive heavy metal on Earth. Because of its responsiveness, it is not found in nature as a pure metal. Uranium compounds can be a natural component of rocks and minerals as well as water, soil and air. Uranium enters the natural hydrological cycle e.g. through weathering of rock. It also reaches rivers, lakes and the ocean via water. How high the concentrations in natural waters are depends on various factors, e.g. Duration of contact between water and the rock, uranium content in the rock itself, redox conditions, availability of complexing ions in the water, etc.
  • Uranium In addition to the natural input, uranium also enters the environment through human activities. Sources are, for example, old tailings piles from uranium mining and the processing industry, but also the combustion of fuels and coal as well as the spreading of uranium-containing phosphate fertilizers and emissions from the nuclear industry. Uranium occurs in nature in various valences (+2, +3, +4, +5 and +6), but usually in its hexavalent form, bound to oxygen as uranyl ion (UO 2 2+ ), especially in Form of uranyl complex species, in particular they are present as carbonato or sulfato complex species.
  • UO 2 2+ uranyl ion
  • Uranium complex species of hexavalent uranium can be very effectively eliminated with conventional strongly basic anion exchangers (usually based on polystyrene with conditioning with chloride or sulfate ions) because, apart from iron, most impurities do not form anionic complex species (YJ Song, Y. Wang, LH Wang, CX Song, ZZ Yang, A. Zhao, Recovery of Uranium from carbonate Solutions using strongly basic anion exchanger. 4. Column Operation and quantitative analysis, Reactive & Functional Polymers 39 (1999), 245-252). In natural waters, which usually contain species of carbonic acid, there are practically predominantly carbonato complex species, since they have greater stability than, for example, sulfato complexes. The experiments described in the literature (e.g.
  • the uranium species preferentially accumulate at the filter inlet.
  • the mean loading of the exchange material was about 35.7 g / L (as U 3 O 8 ).
  • the corresponding activity was 7.8 ⁇ 10 4 pCi / g dry resin.
  • Loads are achieved which are comparable to those when ingesting carbonato complex species.
  • the high loadings and long running times "in the sorption of both carbonato and sulfato complex species result from the extremely high selectivity of the exchangers, especially for the tetravalent negative uranyl species.
  • the regeneration or elution of the uranium species from the strongly basic anion exchangers must be carried out with solutions of NaCl, NaNO 3 or (NH 4 ) 2 CO 3 . Depending on the concentration and added volumes, removal rates of 40 to 90% are achieved. Uranium concentrations of up to 5 g / L (as U) are reached in the eluates. The uranium is then precipitated from the regenerates. For this, the solution must either be mixed with strong acids or bases, or the uranium compounds must be reduced with hydrogen or precipitated by stripping with steam.
  • Strongly basic anion exchangers allow a very effective elimination of uranyl complex species in exchange for chloride ions, and in exceptional cases also for sulfate ions.
  • the disadvantage of using these strongly basic exchangers is that they reversibly change the water composition and absorb and release both sulfate and (hydrogen) carbonate ions, so that the product water composition does not remain constant. These fluctuations have a negative impact on waterworks. Waterworks with large storage tanks may allow buffering, but this causes additional effort and costs. Smaller plants, however, cannot compensate for the fluctuations.
  • Another disadvantage of the strongly basic exchangers is regeneration. NaCI, NaNO 3 or (NH 4 ) 2 CO 3 solutions are required for this, of which only NaCI can be used for cost reasons. However, concentrated solutions in a substantially stoichiometric excess must be added, which results in larger volumes of concentrated salt solutions as waste, which are difficult to dispose of. This is especially true for smaller waterworks.
  • the invention is therefore based on the object of developing a process for separating uranium (VI) species from water which does not have the disadvantages and limitations of the prior art mentioned.
  • a method is to be provided with which only the uranyl complex species are separated without thereby changing the composition of the rest of the water.
  • the method according to the invention is based on the fact that uranium occurs predominantly in its hexavalent oxidation state and thus in the form of negatively charged uranyl complex species.
  • the uranyl is complexed in aqueous solution depending on the pH and the presence of appropriate ligands.
  • dominant species are uranyl carbonate complexes. Accordingly, it is preferred to remove uranyl carbonate complex species with the structures UO 2 (CO 3 ) 2 2 " and UO 2 (CO 3 ) 3 4 ⁇ in the water.
  • uranyl complexes for example, also as sulfato complex species such as UO 2 (SO 4 ) 2 2 " and UO 2 (SO 4 ) 3 4" or as phosphate complexes such as UO 2 (HPO 4 ) 2 2 " are also available as chlorides or fluorides.
  • Cationic uranium species can only be found in reduced water. However, since such waters generally contain iron, which must be removed by ventilation or oxidation and filtration before contact with ion exchangers, it can be assumed that the cationic uranium species will also be converted to the anionic uranyl complex species.
  • the method according to the invention is aimed in particular at removing uranyl complex species with the general formula [UO 2 (X)] y_ , where X
  • the object of the invention is achieved in that weakly basic anion exchangers based on polyacrylics are used in the free base form to separate uranium (VI) species in the form of uranyl complexes from water.
  • a weakly basic anion exchanger based on polyacrylamide is preferably used for the uranyl complex elimination. According to the invention, it is preferably a weakly basic polyacrylamide-based exchanger of the general formula
  • R- (NR ' 2 .H 2 O) where R acts as a polyacrylic exchange matrix and R' represents hydrogen, substituted or unsubstituted alkyl (C, - C 8 ) or substituted or unsubstituted aryl, preferably tertiary amines act as exchange-active groups.
  • the exchanger is a modified tert-amine-acrylic copolymer, particularly preferably a tert-amine-acrylic-divinylbenzene copolymer.
  • the weakly basic anion exchanger is particularly preferably in the form of a gel.
  • the exchangers used according to the invention are further preferably of a total capacity of> 1.6 mol / L (free base form), a moisture content of 56 to 65% (free base form), and a density of 1, 030 to 1, 090 (free base form ) and have a preferred bulk density of 700 g / L.
  • Preferred grain sizes of the weakly basic anion exchanger are characterized by the following features: harmonic means 500-750 ⁇ m, coefficient of equality ⁇ 1.8; Fine particle fraction ⁇ 0.300 mm: 3.0% max; Large balls> 1, 180 mm: 5.0% max; or harmonics 700-950 ⁇ m, equality coefficient £ 1.7; Fine particle content ⁇ 0.355 mm: 0.5% max; Large balls> 1.180 mm: 5.0-25.0% max.
  • the use of the weakly basic anion exchangers according to the invention has the advantage that separation takes place on one side and there is no exchange except for water constituents.
  • the conventional filter arrangement is preferred for practical reasons.
  • Other arrangements, such as a stirred tank with a flow through it, are also conceivable in principle.
  • weakly basic anion exchangers in pure base form without additional conditioning has the further great advantage that the regeneration of the Exchanger can only be carried out using NaOH. This takes advantage of the fact that weakly basic exchangers are not protonated at high pH values and therefore cannot absorb anions. Because of the strong deprotonation at high pH values, only small volumes of regenerates are obtained, which are easy to dispose of.
  • NaOH is easy to use and there is no conditioning of the exchanger. Instead of regeneration, the loaded filter material can also be disposed of directly.
  • the present process is used to remove uranium (VI) species, especially in waters that are used for drinking water production. This is preferably groundwater or surface water.
  • weakly basic anion exchangers based on polyacrylics used according to the invention which can be used in free base form without any conditioning, high loads and long running times for the sorption, in particular of carbonato and sulfato complex species, are achieved.
  • phosphato complexes and chloride and fluoride compounds can also be successfully eliminated.
  • the results result from the extremely high selectivity of the exchangers used according to the invention, in particular for the uranium (VI) species.
  • the uranyl complex species can be removed effectively at pH values between 5.8 and 8.0.
  • the efficiency corresponds to the elimination with conditioned ⁇ strongly basic exchangers based on polystyrene in this area, which is particularly important for drinking water treatment, or shows improved values in comparison to the strongly basic polystyrene ion exchangers, which are known to be used.
  • the successful possibility of using weakly basic exchangers based on polyacrylics in free base form has further advantages in addition to those already mentioned.
  • the Regeneration or elution of the uranium species from the chess-based anion exchangers is carried out by adding NaOH; uranium can be eluted almost completely. Uranium concentrations of up to A of the concentrations on the adsorber material were reached in the eluates.
  • a filter with an inner diameter of 12.5 cm was filled with 9.7 liters (L) of a modified tertiary amine-acrylic copolymer (Amberlite® IRA67 from Rohm and Haas Company), which is a weakly basic exchange material according to the invention based on polyacrylamide , filled up to a dumping height of 79 cm and flowed through with natural groundwater containing uranium at a throughput of 60 L / h.
  • the uranium concentration of the natural groundwater was about 9 to 17 ⁇ g / L. After four months of operation and a total throughput of 17,600 bed volumes, which corresponds to a volume of approx. 169 m 3 , the drainage concentration of uranium was still below 0.1 ⁇ g / L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Abtrennung von Uran(VI)-species aus Wässern mittels schwach basischer Anionenaustauscher auf Polyacrylbasis, wobei die Uran(VI)-species in Form von Uranylkomplexen als gelöstes Uranyl vorliegen.

Description

Verfahren zur Entfernung von Uran(VI)-species in Form von Uranylkomplexen aus Wässern
Beschreibung
Die Erfindung betrifft ein Verfahren zur Abtrennung von Uran(VI)-species aus Wässern mittels schwach basischer Anionenaustauscher auf Polyacrylbasis, wobei die Uran(VI)- species in Form von Uranylkomplexen als gelöstes Uranyl vorliegen.
Uran ist ein auf der Erde weit verbreites, radioaktives und reaktionsfreudiges Schwermetall. Wegen dieser Reaktionsfreudigkeit wird es in der Natur als reines Metall nicht angetroffen. Uranverbindungen können natürlicher Bestandteil von Gesteinen und Mineralien sowie von Wasser, Boden und Luft sein. In den natürlichen hydrologischen Kreislauf gelangt Uran z.B. durch Verwitterung von Gestein. Über das Wasser gelangt es auch in Flüsse, Seen und in die Ozeane. Wie hoch die Konzentrationen in natürlichen Wässern sind, hängt von verschiedenen Faktoren ab, z.B. Kontaktdauer zwischen Wasser und dem Gestein, Urangehalt im Gestein selber, Redoxbedingungen, Verfügbarkeit an komplexierenden Ionen im Wasser usw.
Neben dem natürlichen Eintrag gelangt Uran auch durch menschliche Aktivitäten in die Umwelt. Quellen sind z.B. alte Abraumhalden des Uranbergbaus und der weiterverarbeitenden Industrie, aber auch die Verbrennung von Treibstoffen und Kohle sowie die Ausbringung uranhaltigen Phosphatdüngers und Emissionen der Atomindustrie. Uran kommt in der Natur in verschiedenen Wertigkeiten vor (+2, +3, +4, +5 und +6), gewöhnlich aber in seiner sechswertigen From, gebunden an Sauerstoff als Uranyl-Ion (UO2 2+), vor allem in Form von Uranyl-Komplexspecies, insbesondere liegen sie als Carbonato- bzw. Sulfatokomplexspecies vor.
Urankomplexspecies des sechswertigen Urans lassen sich mit konventionellen stark basischen Anionenaustauschern (in der Regel auf Polystyrolbasis unter Konditionierung mit Chlorid oder Sulfationen) sehr effektiv eliminieren, da, abgesehen von Eisen, die meisten Verunreinigungen keine anionischen Komplexspecies bilden (Y. J. Song, Y. Wang, L. H. Wang, C. X. Song, Z. Z. Yang, A. Zhao, Recovery of Uranium from carbonate Solutions using strongly basic anion exchanger. 4. Column Operation and quantitative analysis, Reactive & Functional Polymers 39 (1999), 245 - 252). In natürlichen Wässern, die üblicherweise Species der Kohlensäure aufweisen, liegen praktisch überwiegend Carbonato-Komplexspecies vor, da sie eine größere Stabilität aufweisen als z.B. Sulfato-Komplexe. Die in der Literatur (z.B. bei T. Sorg, Methods for removing uranium from drinking water, J. AWWA 1988, 105 - 111 ) beschriebenen Experimente zur Elimination von Uranyl-Komplexspecies aus natürlichen Wässern haben nachgewiesen, dass stark basische Anionenaustauscher in Chloridform eine sehr große Aufnahmekapazität für Urancarbonato-Komplexspecies aufweisen. Bei Rohwasserkonzentrationen von 22 - 104 μg/L konnten 9 000 bis 60 000 Bettvolumina Wasser durch entsprechende Filter durchgesetzt werden, bevor die Ablaufkonzentration 1 μg/L überstieg. Bei Rohwassergehalten von 300 μg/L betrug der Durchsatz bis zum Überschreiten der 1 μg/L-Grenze 9 000 Bettvolumina.
Entsprechend den allgemeinen Gesetzmäßigkeiten des lonenaustauschs reichern sich die Uranspecies bevorzugt am Filtereinlauf an. Wie entsprechende Untersuchungen gezeigt haben, betrug dabei die mittlere Beladung des Austauschermaterials etwa 35,7 g/L (als U3O8). Die entsprechende Aktivität betrug 7,8 x 104 pCi/g trockenes Harz.
Auch Untersuchungen in den USA (S. W. Hanson, D. B. Wilson, N. N. Gunaji, S. W. Hathaway, Removal of uranium from drinking water by ion exchange and chemical clarification, US-EPA Report EPA/600/S2-87/076, 1987) konzentrieren sich auf die Verwendung von stark, basischen Austauscherharzen auf Polystyrolbasis in der Chloridform. Formal lässt sich die Sorption am Beispiel von Carbonatokomplexen wie folgt darstellen: «* R-UO2(CO3) 2- + 2C1
Figure imgf000003_0001
R-(Cr) + UO2(CO3)3*- ** R-Up2(GO3)J* +4Cl
mit R als Austauschermatrix mit der funktionellen Gruppe Chorid. Die überstrichenen Symbole bezeichnen hier die Austauscherphase. Das in Klammern gesetzte Symbol (CI") verdeutlicht die stöchiometrische Menge an Chloridionen.
Analoge Erfahrungen wurden bei der Urangewinnung gewonnen, wo praktisch ausschließlich die Uranylcarbonat-Species sorbiert wurden und der Austauscher nach Erschöpfung praktisch vollständig damit beladen war. Die erreichten Beladungen lagen bei ca. 80 g/L trockenes Harz (als U3O8).
Für die Entfemungvon Uranylsulfatokomplexen werden auch stark basische Anionenaustauscher bevorzugt auf Polystyrolbasis in Sulfat-Form eingesetzt:
Figure imgf000004_0001
R-UO2(SO4) 2- +S0| R-(Sθ5-)2 +UO2(SO4)t- <» R-UO2(SO4)^" +2Sθt~ R-(Sθf-) + UO2SO4 «» R-UO2(SO4) _
Dabei werden Beladungen erreicht, die denen bei der Aufnahme von Carbonato- Komplexspecies vergleichbar sind. Die hohen Beladungen und die langen Laufzeiten" sowohl bei der Sorption von Carbonato- als auch von Sulfato-Komplexspecies resultieren aus der extrem hohen Selektivität der Austauscher insbesondere für die vierwertig negativen Uranylspecies.
Die Regeneration bzw. Elution der Uranspecies von den stark basischen Anionenaustauschem muss bekanntermaßen mit Lösungen von NaCI, NaNO3 oder (NH4)2CO3 erfolgen. Dabei werden, je nach Konzentration und zugegebenen Volumina, Entfernungsleistungen- von 40 bis 90 % erreicht. In den Eluaten werden Urankonzentrationen von bis zu 5 g/L (als U) erreicht. Aus den Regeneraten wird das Uran anschließend ausgefällt. Hierzu muss die Lösung entweder mit starken Säuren oder Basen versetzt werden oder die Uranverbindungen müssen mit Wasserstoff reduziert oder durch Strippen mit Dampf ausgefällt werden.
Stark basische Anionenaustauscher erlauben zwar eine sehr wirkungsvolle Elimination von Uranyl-Komplexspecies im Austausch gegen Chloridionen, im Ausnahmefall auch gegen Sulfationen. Nachteilig am Einsatz dieser stark basischen Austauscher ist aber, dass sie reversibel die Wasserzusammensetzung verändern und sowohl Sulfat- als auch (Hydrogen-)Carbonationen aufnehmen und wieder abgeben, so dass die Produktwasserzusammensetzung nicht konstant bleibt. Diese Schwankungen wirken sich nachteilig in Wasserwerken aus. Wasserwerke mit großen Speicherbehältern gestatten zwar gegebenenfalls ein Abpuffern, jedoch verursacht das zusätzlichen Aufwand und Kosten. Kleinere Werke können jedoch die Schwankungen nicht ausgleichen. Ein weiterer Nachteil der stark basischen Austauscher ist die Regeneration. Hierfür werden NaCI-, NaNO3- oder (NH4)2CO3-Lösungen benötigt, von denen aus Kostengründen nur NaCI in Frage kommt. Es müssen jedoch konzentrierte Lösungen in erheblich stöchiometrischem Überschuss zugegeben werden, wodurch größere Volumina von konzentrierten Salzlösungen als Abfall anfallen, die schlecht zu entsorgen sind. Das gilt insbesondere für kleinere Wasserwerke.
Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren zur Abtrennung von Uran(VI)-species aus Wasser zu entwickeln, das die genannten Nachteile und Einschränkungen des Standes der Technik nicht aufweist. Insbesondere soll ein Verfahren bereitgestellt werden, mit dem nur die Uranylkomplexspecies abtrennt werden, ohne dass hierdurch die Zusammensetzung des übrigen Wassers verändert wird.
Die Erfindung wird durch das in Patentanspruch 1 beschriebene Verfahren gelöst. In den abhängigen Ansprüchen werden bevorzugte Ausgestaltungen des Verfahrens angegeben.
Das erfindungsgemäße Verfahren basiert darauf, dass Uran vorwiegend in seiner sechswertigen Oxidationsstufe und damit in Form von negativ geladenen Uranyl- Komplexspecies auftritt. Die Komplexierung des Uranyls erfolgt in wässriger Lösung in Abhängigkeit des pH-Werts und dem Vorhandensein entsprechender Liganden. In CO3 2-- haltigem Wasser sind dominante Species Uranylcarbonatkomplexe. Bevorzugt handelt es sich demzufolge in den Wässern um zu entfernende Uranylcarbonatokomplexspecies mit den Strukturen UO2(CO3)2 2" und UO2(CO3)3 4\
Darüber hinaus sind in natürlichen Wässern weitere Liganden enthalten, so dass die Uranylkomplexe z.B. auch als Sulfatokomplexspecies wie z.B. UO2(SO4)2 2" und UO2(SO4)3 4" bzw. als Phosphatkomplexe wie z.B. UO2(HPO4)2 2" vorliegen aber auch als Chloride oder Fluoride.
Kationische Uranspecies sind nur in reduzierten Wässern anzutreffen. Da solche Wässer aber in der Regel Eisen enthalten, das vor dem Kontakt mit Ionenaustauschern durch Belüftung bzw. Oxidation und Filtration entfernt werden muss, kann davon ausgegangen werden, dass hierbei die kationischen Uranspecies ebenfalls zu den anionischen Uranyl- Komplexspecies umgewandelt werden. Das erfindungsgemäße Verfahren ist insbesondere auf die Entfernung von Uranylkomplexspecies mit der allgemeinen Formel [UO2(X)]y_ gerichtet, wobei X
Anionen natürlicher Wässer darstellen, vorzugsweise Cl", F", CO3 2", (HCO3)", (SO4)2", (HPO4)2", und y vorzugsweise 1 bis 4 bedeutet.
Die Aufgabe der Erfindung wird dadurch gelöst, dass zur Abtrennung von Uran(VI)- species in Form von Uranylkomplexen aus Wässern schwach basische Anionenaustauscher auf Polyacrylbasis in der freien Basenform eingesetzt werden.
Für die Uranyl-Komplexelimination wird bevorzugt ein schwach basischer Anionenaustauscher auf der Basis von Polyacrylamid eingesetzt. Gemäß der Erfindung handelt es sich bevorzugt um einen schwach basischen Austauscher auf Polyacrylamidbasis der allgemeinen Formel
R- (NR'2 .H2O) wobei R als Polyacrylaustauschermatrix fungiert und R' Wasserstoff, substituiertes oder nicht substituiertes Alkyl (C, - C8) oder substituiertes oder nicht substituiertes Aryl darstellt, vorzugsweise fungieren tertiäre Amine als austauschaktive Gruppen. In einer bevorzugten Ausführungsvariante der Erfindung ist der Austauscher ein modifiziertes tert.-Amin-Acryl-Copolymer, besonders bevorzugt ein tert.-Amin-Acryl-Divinylbenzol- Copolymer.
Besonders bevorzugt liegt der schwach basische Anionenaustauscher als Geltyp vor.
Die erfindungsgemäß verwendeten Austauscher sind weiterhin vorzugsweise durch eine totale Kapazität von > 1 ,6 mol/L (freie Basenform), einen Feuchtigkeitsgehalt von 56 bis 65 % (freie Basenform), und eine Dichte von 1 ,030 bis 1 ,090 (freie Basenform) gekennzeichnet und weisen ein bevorzugtes Schüttgewicht von 700 g/L auf.
Bevorzugte Korngrößen des schwach basischen Anionenaustauschers sind durch die folgenden Merkmale charakterisiert: Harmonische Mittel 500-750 μm, Gleichheitskoeffizient < 1,8; Feinpartikel-Anteii < 0,300 mm : 3,0 % max; Große Kugeln > 1 ,180 mm : 5,0 % max; oder Harmonische Mittel 700-950 μm, Gleichheitskoeffizient £ 1,7; Feinpartikel-Anteil < 0,355 mm : 0,5 % max; Große Kugeln > 1,180 mm : 5,0-25,0 % max.
Besonders bevorzugt werden schwach basische lonenaustauscherharze der Firma Rohm und Haas Company eingesetzt, welche unter dem Namen Amberlite® IRA67 und IRA67RF vertrieben werden. Mit den bevorzugt verwendeten Anionenaustauschern, welche in der freien Basenform ohne zusätzliche Konditionierung eingesetzt werden können, erfolgt eine Sorption der Uranylkomplexspecies ohne Abgabe von z.B. Chlorid oder Sulfationen, wie das bei Verwendung konditionierter stark basischer Austauscher des Standes der Technik der Fall ist. Überraschend erfolgt eine nahezu ausschließliche Aufnahme der Uranylkomplexspecies, wobei aufgrund der größeren Stabilität die Carbonatokomplexe überwiegen. Die ablaufende Reaktion wird deshalb anhand von Uranylcarbonatokomplexen verdeutlicht:
R-( R2 -H2O) + UO2(CO3)i- «* R-UO2(CO3)|- +2H20 R-( R2 H2O) + Ü02(CO3)3^ <=> R -UO2(CO3)3*- +4H20
wobei R und R' die o.g. Bedeutungen besitzen.
Die erfindungsgemäße Verwendung der schwach basischen Anionenaustauscher hat den Vorteil, dass eine Abtrennung einseitig erfolgt und außer Wasserinhaltsstoffen kein Austausch stattfindet. Zur technischen Durchführung des Verfahrens kommt aus praktischen Erwägungen bevorzugt die konventionelle Filteranordnung in Frage. Andere Anordnungen wie zum Beispiel ein durchströmter Rührkessel sind prinzipiell ebenfalls denkbar.
Die Verwendung von schwach basischen Anionenaustauschern in reiner Basenform ohne zusätzliche Konditionierung hat den weiteren großen Vorteil, dass die Regeneration des Austauschers ausschließlich mittels NaOH durchgeführt werden kann. Dabei wird ausgenutzt, dass schwach basische Austauscher bei hohen pH-Werten nicht protoniert sind und daher keine Anionen aufnehmen können. Wegen der starken Deprotonierung bei hohen pH-Werten fallen nur kleine Volumina an Regeneraten an, die leicht zu entsorgen sind.
Die Regeneration am Beispiel Carbonatokomplex kann formal dargestellt werden als
R -UO2(C03) +(NaOH) «* R-(NR2 •H2O)+( a+) + UO2(CO3)i- R -UO2(CO3)r +(NaOH) '<=> R-(NR2 •H2O) + (Na+) + UO2(CO3)3-
NaOH ist technologisch einfach zu handhaben und es findet keine Konditionierung des Austauschers statt. An Stelle einer Regeneration kann auch eine direkte Entsorgung des beladenen Filtermaterials treten.
Verwendung findet das vorliegende Verfahren zur Entfernung von Uran(VI)-species vor allem in Wässern, die zur Trinkwassergewinnung eingesetzt werden. Dabei handelt es sich vorzugsweise um Grund- oder Oberflächenwasser.
Mit den erfindungsgemäß verwendeten schwach basischen Anionenaustauschern auf Polyacrylbasis, die in freier Basenform ohne jegliche Konditionierung eingesetzt werden können, werden hohe Beladungen und lange Laufzeiten für die Sorption insbesondere von Carbonato- und Sulfato-Komplexspecies erreicht. Aber auch Phosphatokomplexe und Chlorid- sowie Fluoridverbindungen können erfolgreich eliminiert werden.
Die Ergebnisse resultieren aus der extrem hohen Selektivität der erfindungsgemäß eingesetzten Austauscher insbesondere für die Uran(Vl)-species. Die Uranyl- Komplexspecies lassen sich bei pH-Werten zwischen 5,8 und 8,0 wirkungsvoll entfernen. Die Effizienz entspricht der Elimierung mit konditionierteπ stark basischen Austauschern auf Polystyrolbasis in diesem für die Trinkwasseraufbereitung besonders wichtigen Bereich bzw. zeigt verbesserte Werte im Vergleich zu den stark basischen Polystyrolionenaustauschern, die bekanntermaßen Verwendung finden. Jedoch weist die erfolgreiche Möglichkeit der Verwendung von schwach basischen Austauschern auf Polyacrylbasis in freier Basenform neben den bereits genannten weitere Vorteile auf. Die Regeneration bzw. Elution der Uranspecies von den schach basischen Anionenaustauschern erfolgt durch Zugabe von NaOH, Uran kann nahezu vollständig eluiert werden. In den Eluaten wurden Urankonzentrationen von bis zu A der Konzentrationen auf dem Adsorbermaterial erreicht.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.
Beispiel
Ein Filter mit einem Innendurchmesser von 12,5 cm wurde mit 9,7 Litern (L) eines modifizierten tertiären Amin-Acryl-Copolymers (Amberlite® IRA67 der Rohm und Haas Company), das ein erfindungsgemäßes schwach basisches Austauschermaterial auf der Basis von Polyacrylamid darstellt, bis zu einer Schütthöhe von 79 cm befüllt und mit Uran-haltigem natürlichen Grundwasser bei einem Durchsatz von 60 L/h durchströmt. Die Urankonzentration des natürlichen Grundwassers betrug etwa 9 bis 17 μg/L. Nach viermonatiger Laufzeit und einem Durchsatz von insgesamt 17 600 Bettvolumina, was einem Volumen von ca. 169 m3 entspricht, lag die Ablaufkonzentration an Uran noch immer unterhalb von 0,1 μg/L.

Claims

Patentansprüche:
1. Verfahren zur Entfernung von Uran(VI)-species in Form von Uranylkomplexen aus Wässern, dadurch gekennzeichnet, dass die Uranylkomplexe enthaltenden Wässer mit mindestens einem schwach basischen Anionenaustauscher auf Polyacrylbasis in freier Basenform in Kontakt gebracht werden, wobei die Uranylkomplexe adsorbiert werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die zu entfernenden Uranylkomplexe Carbonatokomplexe, Sulfatokomplexe, Phosphatokomplexe, Chlorid- und Fluoridkomplexe sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein schwach basischer Anionenaustauscher auf Polyacrylamidbasis eingesetzt wird, vorzugsweise mit der Formel R- (NR'2 .H2O) wobei R als Polyacrylaustauschermatrix fungiert und R' Wasserstoff, substituiertes oder nicht substituiertes Alkyl (C, - C8 ) oder substituiertes oder nicht substituiertes Aryl darstellt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Anionenaustauscher auf Polyacrylamidbasis ein modifiziertes tert.-Amin-Acryl-Copolymer, bevorzugt ein tert.-Amin-Acryl-Divinylbenzol-Copolymer ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der schwach basische Anionenaustauscher als Geltyp vorliegt.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der schwach basische Anionenaustauscher eine totale Kapazität von > 1 ,6 mol/L (freie Basenform), einen Feuchtigkeitsgehalt von 56 bis 65 % (freie Basenform), und eine Dichte von 1 ,030 bis 1 ,090 (freie Basenform) aufweist.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der schwach basische Anionenaustauscher ein Schüttgewicht von 700 g/L aufweist.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Korngröße des schwach basischen Anionenaustauschers durch folgende Merkmale charakterisiert ist: Harmonische Mittel 500-750 μm, Gleichheitskoeffizient < 1 ,8; Feinpartikel-Anteil < 0,300 mm : 3,0 % max; Große Kugeln > 1 ,180 mm : 5,0 % max.
9. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Korngröße des schwach basischen Anionenaustauschers durch folgende Merkmale charakterisiert ist: Harmonische Mittel 700-950 μm, Gleichheitskoeffizient 1 ,7; Feinpartikel-Anteil < 0,355 mm : 0,5 % max; Große Kugeln > 1 ,180 mm : 5,0-25,0 % max.
10. Verfahren nach einem der Ansprüche 1 oder 9, dadurch gekennzeichnet, dass Wässer Grund- oder Oberflächenwässer sind, die zur Trinkwassergewinnung eingesetzt werden.
11. Verfahren nach einem der Ansprüche 1 oder 10, dadurch gekennzeichnet, dass der schwach basische Anionenaustauscher in einer Filteranordnung eingesetzt und von dem Wasser, welches die zu entfernenden Uranylkomplexspecies enthält, durchströmt wird.
PCT/EP2005/005032 2004-05-05 2005-05-04 Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern WO2005108303A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2565637A CA2565637C (en) 2004-05-05 2005-05-04 A method for the removal of uranium(vi) species in the form of uranyl complexes from waters
US11/579,489 US8137644B2 (en) 2004-05-05 2005-05-04 Method for the elimination of uranium (VI) species in the form of uranyl complexes from waters
EP05736327A EP1742883A1 (de) 2004-05-05 2005-05-04 Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004022705.5 2004-05-05
DE102004022705A DE102004022705B4 (de) 2004-05-05 2004-05-05 Verfahren zur Abtrennung von Uranspecies aus Wasser und Verwendung eines schwachbasischen Anionenaustauschers hierfür

Publications (1)

Publication Number Publication Date
WO2005108303A1 true WO2005108303A1 (de) 2005-11-17

Family

ID=34969854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005032 WO2005108303A1 (de) 2004-05-05 2005-05-04 Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern

Country Status (5)

Country Link
US (1) US8137644B2 (de)
EP (1) EP1742883A1 (de)
CA (1) CA2565637C (de)
DE (2) DE102004022705B4 (de)
WO (1) WO2005108303A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046973A1 (de) * 2008-09-12 2010-03-18 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Beseitigung von Verunreinigungen aus Wasser
CN109929215B (zh) * 2019-03-25 2021-03-30 南京大学 一种酚醛-聚丙烯酸系互贯结构的高机械强度阴离子交换树脂及其制备方法
CN113387412A (zh) * 2021-05-19 2021-09-14 中核四0四有限公司 一种用于硝酸和碳酸混合体系下含铀废水处理的离子交换装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118457A (en) * 1975-06-03 1978-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Redox uranium isotope separation using anion exchangers
US4199470A (en) * 1977-05-13 1980-04-22 Koei Chemical Co., Ltd. Material for recovering uranium and method for recovering a uranium solution of high purity and high concentration, using the same
US6333078B1 (en) * 1998-12-14 2001-12-25 Japan Atomic Energy Research Institute Collector of dissolved metal from sea water having an amidoxime group and a hydrophilic group, a method for production thereof
US20030191201A1 (en) * 2002-04-04 2003-10-09 Lothar Feistel Process for producing coarse-particle anion-exchanger gels

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845957A (en) * 1956-10-15 1958-08-05 Draper Corp Automatic bobbin replenishing loom
DE1270504B (de) * 1964-05-12 1968-06-12 Goetzelmann K G Industrieabwas Verfahren zur Aufbereitung von schwermetallkomplexhaltigen Abwaessern
US3813434A (en) * 1972-06-06 1974-05-28 Grace W R & Co Preparation of pure glycine
US4359537A (en) * 1978-09-19 1982-11-16 Rohm And Haas Company Emulsion copolymer anion exchange resins
DE3144974C2 (de) * 1981-11-12 1986-01-09 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur Abtrennung von Aktinoidenionen aus wäßrigen, basischen, carbonathaltigen Lösungen
DE3428877A1 (de) * 1984-08-04 1986-02-13 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur trennung von grossen mengen uran von geringen mengen von radioaktiven spaltprodukten, die in waessrigen basischen, karbonathaltigen loesungen vorliegen
JP3026234B2 (ja) * 1991-04-16 2000-03-27 佐竹技研株式会社 放射性物質含有水の処理方法
DE19505045C1 (de) * 1995-02-15 1996-07-18 Urt Umwelttechnik Gmbh Verfahren zur Abtrennung von Uran, Radium und Arsen aus Lösungen ihrer Verbindungen
FR2744930B1 (fr) * 1996-02-15 1998-03-13 Commissariat Energie Atomique Procede pour separer au moins un metal present dans une solution par fixation sur un chitosane
DE19704651A1 (de) * 1996-09-11 1998-03-12 Fraunhofer Ges Forschung Suprastrukturiertes Chitin/Chitosan, Derivate und Konfektionen davon für die umweltverträgliche Materialtechnik, Hochleistungsverbundwerkstoffe und bionische Werkstoffe
DE19810094A1 (de) * 1998-03-10 1999-09-16 Nukem Nuklear Gmbh Adsorptionsmittel für Radionuklide
US6210078B1 (en) * 1999-06-02 2001-04-03 Southern Company Services Methods for the in situ removal of a contaminant from soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118457A (en) * 1975-06-03 1978-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Redox uranium isotope separation using anion exchangers
US4199470A (en) * 1977-05-13 1980-04-22 Koei Chemical Co., Ltd. Material for recovering uranium and method for recovering a uranium solution of high purity and high concentration, using the same
US6333078B1 (en) * 1998-12-14 2001-12-25 Japan Atomic Energy Research Institute Collector of dissolved metal from sea water having an amidoxime group and a hydrophilic group, a method for production thereof
US20030191201A1 (en) * 2002-04-04 2003-10-09 Lothar Feistel Process for producing coarse-particle anion-exchanger gels

Also Published As

Publication number Publication date
DE102004022705A1 (de) 2005-12-15
EP1742883A1 (de) 2007-01-17
CA2565637A1 (en) 2005-11-17
US20080112863A1 (en) 2008-05-15
DE102004022705B4 (de) 2012-05-31
US8137644B2 (en) 2012-03-20
DE202004021710U1 (de) 2010-09-30
CA2565637C (en) 2012-11-20

Similar Documents

Publication Publication Date Title
DE2639045C3 (de) Verfahren zur Oxydation des in Abwässern enthaltenen Fe2+
DE68915591T2 (de) Verfahren zum Entfernen von Metallionen aus wässrigen Systemen.
DE2810995C2 (de) Magnetisches Adsorbens und Verfahren zu seiner Herstellung
WO1999046779A1 (de) Adsorptionsmittel für radionuklide
DE68903026T2 (de) Ethylencopolymere als sorbentien fuer metallische ionen aus fluessigkeiten.
DE4312341A1 (de) In-situ-Regeneration von kontaminierten Böden und Grundwasser unter Verwendung von Calciumchlorid
DE2515795A1 (de) Verfahren zur behandlung radioaktiver konzentrate
DE3242819A1 (de) Abwasserbehandlungsverfahren zur verringerung der restmetallkonzentration in schwermetallkomplexhaltigen abwaessern
WO2005108303A1 (de) Verfahren zur entfernung von uran(vi)-species in form von uranylkomplexen aus wässern
DE10005681B4 (de) Verfahren und Vorrichtung zur Dekontamination metallhaltiger Wässer
DE2143505A1 (de) Verfahren zum Dekontaminieren von radioaktiven Flüssigkeiten
DE3744544C2 (de)
DE4000193A1 (de) Filterkoerper und verfahren zur herstellung eines filterkoerpers
AT521985B1 (de) Verfahren zur Isolierung von Quecksilber aus der Lösung sowie Vorrichtung zur Durchführung dieses Verfahrens
DE4241559A1 (de) Verfahren zur Effektivitätserhöhung der Fällung von Radium aus mit Natururan und seinen natürlichen Zerfallsprodukten kontaminierten Wässern
DE4117234A1 (de) Praeparat zur biosorption von schwermetallen sowie dessen herstellung und anwendung
DE1467338B2 (de) Verfahren zum Abtrennen radioaktiver Zerfallsprodukte
DE2301486A1 (de) Verfahren zum reinigen von abwaessern, insbesondere von radioaktiv kontaminiertem wasser
DE202010011603U1 (de) System und Anordnung zur Regeneration von Anionenaustauschern
EP0062804B1 (de) Verfahren zur Entfernung von Molybdän aus wässrigen Salzlösungen
DE10005240B4 (de) Verfahren zur Fällung von Uran, Schwermetallen und toxischen Metallen aus karbonat-/hydrogenkarbonathaltigen Wässern, insbesondere aus durch Natururan und seine natürlichen Zerfallsprodukte radioaktiv kontaminierten Wässern
AT143455B (de) Verfahren zur Reinigung von Siel- und ähnlichen Abwässern.
Khalid et al. Chemical transformations of cadmium and zinc in Mississippi River sediments as influenced by pH and redox potential
DE202023105753U1 (de) Eine Zusammensetzung und ein System zur Vorbereitung und Charakterisierung von enzyminduziertem, mit Calcit ausgefälltem, verändertem Boden
DE3009618A1 (de) Verfahren zur grundwasserwiederherstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2565637

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005736327

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005736327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579489

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11579489

Country of ref document: US