WO2005101081A1 - 光ファイバテープユニット及び光ファイバケーブル - Google Patents

光ファイバテープユニット及び光ファイバケーブル Download PDF

Info

Publication number
WO2005101081A1
WO2005101081A1 PCT/JP2005/007103 JP2005007103W WO2005101081A1 WO 2005101081 A1 WO2005101081 A1 WO 2005101081A1 JP 2005007103 W JP2005007103 W JP 2005007103W WO 2005101081 A1 WO2005101081 A1 WO 2005101081A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
tape unit
connecting member
fiber tape
overcoat layer
Prior art date
Application number
PCT/JP2005/007103
Other languages
English (en)
French (fr)
Inventor
Takahiro Sato
Yoshihiro Kodaka
Hideyuki Nozawa
Chihiro Ohkubo
Original Assignee
Hitachi Cable, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004119187A external-priority patent/JP4412040B2/ja
Application filed by Hitachi Cable, Ltd. filed Critical Hitachi Cable, Ltd.
Priority to US11/578,333 priority Critical patent/US20080019647A1/en
Publication of WO2005101081A1 publication Critical patent/WO2005101081A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4422Heterogeneous cables of the overhead type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4482Code or colour marking

Definitions

  • the present invention relates to an optical fiber tape unit and an optical fiber cable, and more particularly to an optical fiber tape unit and an optical fiber cable in which a plurality of optical fiber core wires having a large diameter are integrated.
  • FTTH Fiber To The Home
  • Japanese Patent Application Laid-Open No. 2001-343571 discloses this type of optical fiber cable.
  • FIG. 7 shows the structure of this optical fiber cable.
  • four optical fiber dye lines (not shown) having an outer diameter of about 0.25 mm are arranged in parallel at a pitch of the outer diameter of the fiber dye dye line, and are collectively covered with an ultraviolet curable resin.
  • the tape-type optical fiber core wire 9 is used, a plurality of the tape-type optical fiber core wires 9 are assembled (tape lamination), and these are twisted and assembled at a constant pitch in one direction, and the assembly is made of plastic tape 22.
  • a sheath 20 is formed thereon.
  • two strength members 23 of steel wire force are vertically attached to the upper and lower sides of the sheath 20.
  • the support wire portion 19 is formed by forming a sheath 25 on the outer periphery of a strength member in which six steel wires are twisted around one steel wire.
  • a neck portion (not shown) having slits (not shown) at regular intervals is provided between the cable portion 18 and the support wire portion 19 so that the slack rate of the cable portion 18 with respect to the support wire portion 19 becomes 0.2% or more. Is formed.
  • the sheath 20 of the cable portion 18, the sheath 25 of the support wire portion 19, and the neck portion 24 are simultaneously formed by extruding and coating a thermoplastic resin sheath made of, for example, low-density polyethylene.
  • An object of the present invention is to easily and manually perform an operation of separating a tape-type optical fiber core consisting of a plurality of strands (single core) into strands (single core).
  • An object of the present invention is to provide an optical fiber tape unit and an optical fiber cable having excellent single-core separation performance in which a cutting accident that can easily identify an optical fiber can be prevented as much as possible during and after separation of the core.
  • An optical fiber having an outer diameter of 0.4 mm or more comprising an optical fiber consisting of an optical fiber, a primary coating layer and a secondary coating layer, and an overcoat layer formed on the outer periphery of the optical fiber.
  • the overcoat layer has a Young's modulus El, a cross-sectional area Al, a tensile strength TS1, and a tensile elongation TE1, and the connecting member has a Young's modulus E2, a cross-sectional area A2, a tensile strength TS2, and a tensile elongation TE2.
  • At least one of the overcoat layer and the connecting member may include a release agent.
  • the optical fiber may include a colored layer formed on the outer periphery of the secondary coating layer.
  • the overcoat layer and the connecting member may be made of a thermosetting resin or a thermoplastic resin.
  • the overcoat layer may be transparent.
  • the overcoat layer may be colored by mixing a coloring agent.
  • the connecting member may be transparent.
  • connection member may be colored by mixing a coloring agent.
  • connection member may include a stripe-shaped color band.
  • the connecting member may be formed on both sides corresponding to long sides of a substantially rectangular cross section formed by arranging a plurality of the optical fiber cores in parallel.
  • the connecting member may be formed on one surface corresponding to a long side of a substantially rectangular cross section formed by arranging a plurality of the optical fiber cores in parallel.
  • the connecting member may be formed only in a concave portion between the plurality of optical fiber cores arranged in parallel.
  • an optical fiber cable including the optical fiber tape unit, which is formed by assembling:! Or more optical fiber tape units.
  • the optical fiber tape unit of the present invention uses an optical fiber core wire having an outer diameter of 0.4 mm or more provided with an overcoat layer, and a plurality of the optical fiber core wires are arranged in parallel and connected by a connecting member.
  • the overcoat layer has a Young's modulus El, a cross-sectional area Al, a tensile strength TS1, and a tensile elongation TE1
  • the connecting member has a Young's modulus E2, a cross-sectional area A2, a tensile strength TS2, a tensile elongation.
  • TE2 the relationship of ⁇ 1 ⁇ ⁇ 1 ⁇ 2 ⁇ ⁇ 2, TS1 ⁇ TS2, TE1 ⁇ TE2 is satisfied.
  • the overcoat layer of the optical fiber core becomes more tough than the connecting member, so that it is possible to break only the connecting member that does not break the overcoat layer during single-core separation and perform single-core separation. is there.
  • overcoat layer and the connecting member are E1 ⁇ 100 (MPa), TS1 ⁇ 10 (MPa
  • the diameter of the optical fiber core is increased to 0.4 mm or more, it is easy to identify the optical fiber core which is easy to handle.
  • the single-core separation property is further improved.
  • the overcoat layer is made of a transparent material, identification of the optical fiber core becomes easy.
  • the overcoat layer is made of a material colored by mixing a coloring agent, it becomes easy to identify the optical fiber.
  • the connecting member is made of a transparent material, it becomes easy to identify the optical fiber core in the optical fiber tape unit.
  • the connecting member is made of a material colored by mixing a coloring agent, an optical fiber core or an optical fiber tape unit can be easily identified.
  • the optical fiber core or the optical fiber tape unit can be easily identified.
  • the optical fiber cable of the present invention uses the optical fiber tape unit, and therefore can be easily handled at the time of branching.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an optical fiber core used in an optical fiber tape unit according to the present invention.
  • FIG. 2 is a schematic sectional view showing an optical fiber tape unit in a first embodiment according to the present invention.
  • FIG. 3 is a schematic sectional view showing an optical fiber tape unit in a second embodiment according to the present invention.
  • FIG. 4 is a schematic sectional view showing an optical fiber tape unit in a third embodiment according to the present invention.
  • FIG. 5 is a schematic sectional view showing an optical fiber tape unit in a fourth embodiment according to the present invention.
  • FIG. 6 is a schematic sectional view showing an optical fiber cable in an example according to the present invention.
  • FIG. 7 is a schematic sectional view showing a conventional optical fiber cable.
  • FIG. 8 is a schematic view showing a test method for removing coating of an optical fiber core.
  • FIG. 9 is a schematic sectional view showing an optical fiber cable in another embodiment according to the present invention.
  • the Young's modulus described in this specification is a value at normal temperature (23 ° C.).
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an optical fiber core used in the optical fiber tape unit according to the present invention.
  • the optical fiber core 10 used in the present invention comprises an optical fiber 17 composed of a core and a clad, a primary coating layer 16, a secondary coating layer 15, and a coloring layer 14. And an overcoat layer 13 having an outer diameter of 0.4 mm or more.
  • the secondary coating layer may be colored by mixing a coloring agent. Further, a release agent may be mixed into the overcoat layer.
  • FIG. 2 is a schematic sectional view showing an optical fiber tape unit in the first embodiment according to the present invention.
  • the optical fiber tape unit 12 of the present embodiment is configured by arranging a plurality of optical fiber core wires 10 in parallel and connecting them by providing a connecting member 11 on the outer periphery thereof.
  • the overcoat layer and the connecting member are formed using an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, or the like.
  • a release agent may be mixed into the connecting member.
  • the overcoat layer has a Young's modulus El, a cross-sectional area Al, a tensile strength TS1, and a tensile elongation TE1
  • the connecting member has a Young's modulus E2, a cross-sectional area A2, a tensile strength TS2, and a tensile elongation TE. If you have 2,
  • FIG. 3 is a schematic sectional view showing an optical fiber tape unit in a second embodiment according to the present invention.
  • a plurality of optical fiber cores 10 are arranged in parallel, and a connecting member 11 is provided only in a concave portion between the optical fiber cores on the outer periphery. Are connected.
  • FIG. 4 is a schematic sectional view showing an optical fiber tape unit in a third embodiment according to the present invention.
  • a plurality of optical fiber cores 10 are arranged in parallel, and the outer circumference thereof is provided with a connecting member 11 having substantially the same thickness, and a connecting member 11 is provided. It is a thing.
  • FIG. 5 is a schematic sectional view showing an optical fiber tape unit in a fourth embodiment according to the present invention.
  • the optical fiber tape unit 12 of the present embodiment a plurality of optical fiber cores 10 are arranged in parallel, and the connecting member 11 is provided only in the concave portion between the optical fiber cores on one outer peripheral surface. Provided and connected.
  • the optical fiber tape unit of the present invention is not limited to the above embodiment.
  • the overcoat layer has a Young's modulus El, a cross-sectional area Al, a tensile strength TS1, and a tensile elongation TE1, and the connecting member has a Young's modulus E2. , Cross-sectional area A2, tensile strength TS2, tensile elongation TE2,
  • FIG. 6 is a schematic sectional view showing an optical fiber cable in an embodiment according to the present invention.
  • the optical fiber cable according to the present embodiment is composed of: a plurality of any one of the above-mentioned optical fiber tape units 12 (tape lamination), and twisting together with a filler 26; A cable part 18 constructed by applying a strength member 23 longitudinally and then applying a sheath 20; a sheath 2 is provided on the outer periphery of a strength member obtained by twisting six steel wires around one steel wire. 5 and a slit at regular intervals so that the slack rate of the cable portion 18 with respect to the support wire portion 19 between the cable portion 18 and the support wire portion 19 becomes 0.2% or more. It consists of the neck 24 that was set up.
  • the relationship between the Young's modulus E2, tensile strength TS2, and tensile elongation TE2 of the connecting members of the optical fiber tape unit is E2 ⁇ 300 (MPa), TS2 ⁇ 40 (MPa), and TE2 ⁇ 40 (%). It can be seen that by using the optical fiber tape unit that satisfies the condition, the single-fiber separation operation of the optical fiber tape unit can be performed manually, and an increase in transmission loss can be prevented. (Example 3)
  • the relationship between the Young's modulus El, the cross-sectional area Al, the tensile strength TS1, and the tensile elongation TEl of the overcoat layer of the optical fiber core wire and the Young's modulus E2 of the connecting member of the optical fiber tape unit are as follows. E1 ⁇ 100 (MPa), TS1 ⁇ 10 (MPa), TEl ⁇ 30 (%), E2 ⁇ 20 (MP It can be seen that by setting a), trauma to the optical fiber tape unit 12 at the time of capping the optical fiber tape unit can be suppressed.
  • the single core separation time means the time required for one operator to separate ten tape units.
  • Figure 8 shows the coating removal test method. Using an optical fiber core wire 10 with an outer diameter of 0.4 mm and 0.5 mm, a blade 28 for removing coating is placed 100 mm from the end of the optical fiber core so as not to damage the optical fiber. The overcoat layer 13 was cut in the circumferential direction, and the overcoat layer 13 was removed while being moved in a direction parallel to the optical fiber 10. Then, the maximum removing force at that time was measured by a tension measuring machine. Tables 5 and 6 show the results.
  • the connecting member transparent and color-code the optical fiber dye line. Further, when the colors of the optical fibers are all the same, a coloring agent is mixed into the connecting member itself to be colored, whereby the discrimination of the optical fibers can be improved. Further, a stripe-shaped color band may be provided on the connecting member.
  • Example 7 an optical fiber core wire used for an optical fiber tape unit was manufactured. The manufacturing method of this optical fiber is described below with reference to FIG.
  • a primary coating layer 16 and a secondary coating layer 15 made of an ultraviolet curable resin were formed on the optical fiber 17 having an outer diameter of about 0.125 mm to have an outer diameter of about 0.245 mm. Further, a colored layer 14 was provided on the outermost layer for identification, and an optical fiber having an outer diameter of about 0.255 mm was formed.
  • an overcoat layer 13 made of an ultraviolet curable resin was formed on the optical fiber, and an optical fiber core wire 10 having an outer diameter of about 0.50 mm was obtained.
  • the overcoat layer 13 has a Young's modulus of about 230 MPa, a tensile strength of about 31 MPa, a tensile elongation of about 38%, and a cross-sectional area of about 0.145 mm 2 .
  • the following two methods can be used to improve the discrimination of the cord in single-core separation.
  • a cylindrical overcoat layer having a lens effect is coated on the optical fiber. This lens effect is particularly effective when the outer diameter of the optical fiber is 0.7 mm or less (colored outer diameter Z overcoat layer outer diameter ⁇ 37%).
  • optical fiber is coated with a colored overcoat layer by mixing a coloring agent into a cylindrical shape.
  • Example 8 an optical fiber tape unit was manufactured. The manufacturing method of the optical fiber tape unit will be described below with reference to FIG.
  • the optical fiber tape unit 12 has a major axis of about 2.55 mm and a minor axis of about 0.52 mm, and the four optical fiber cores 10 are connected by an ultraviolet curable resin.
  • the connecting member 11 has a Young's modulus of about 75 MPa, a tensile strength of about 13 MPa, a tensile elongation of about 22%, and a cross-sectional area of about 0.41 lmm 2 .
  • optical fiber tape unit 12 When the optical fiber tape unit 12 is manually separated into four optical fiber cores 10 (single cores), a good single core without breaking the overcoat layer of the optical fiber cores 10 is obtained. Separation performance was obtained. Further, the optical fiber loss does not increase during the separation operation. In addition, since the optical fiber core is as thick as 0.5 mm, the optical fiber core can be easily identified during the separation operation.
  • the following four methods can be used.
  • a plurality of optical fiber cores 10 are arranged in parallel, and one side or both sides corresponding to the long sides of a substantially rectangular cross section formed by the plurality of optical fiber cores 10 are provided with an ultraviolet curable resin. Apply and cure the fat or thermosetting resin (eg, Figure 2, Figure 3, Figure 4, Figure 5).
  • a plurality of optical fiber cores 10 are arranged in parallel, and an ultraviolet curable resin, a thermosetting resin or a thermoplastic resin is covered with a pressing die and cured (for example, FIGS. 2 and 4).
  • a plurality of optical fiber cores 10 are arranged in parallel, and an adhesive resin is applied and cured on one or both sides corresponding to the long sides of the substantially rectangular cross section formed by the plurality of optical fiber cores 10. (Eg, Figure 3, Figure 5).
  • a plurality of optical fiber cores 10 are arranged in parallel, and an ultraviolet curable resin, a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin or an adhesive resin is intermittently applied and cured. (Example 9)
  • Example 9 an optical fiber tape unit was manufactured. The manufacturing method of the optical fiber tape unit will be described below with reference to FIG.
  • the sheath 20 is covered to form the cable section 18.
  • the cable section 18 has a jacket thickness of 2. Omm and an outer diameter of 9.5 mm.
  • a steel wire having a diameter of 0.7 mm is used as the tensile member 23, and a polyester fiber string having a diameter of 1.0 mm is used as the sheath tearing cord 21.
  • the supporting wire portion 19 a zinc-coated steel wire obtained by twisting seven steel wires each having a diameter of 1.4 mm is used, and a sheath 25 is formed on the outer periphery thereof. Then, a neck portion 24 having slits at regular intervals is formed between the cable portion 18 and the support wire portion 19 so that the slack rate of the cable portion 18 with respect to the support wire portion 19 becomes 0.2% or more.
  • the sheath 20 of the cable portion 18, the sheath 25 and the neck portion 24 of the support wire portion 19 are formed simultaneously by extruding low-density polyethylene as a thermoplastic resin and covering the same at once.
  • This fiber optic cable has an overall height of 17 mm.
  • FIG. 9 is a schematic sectional view showing an optical fiber cable in another embodiment according to the present invention.
  • optical drop cable A method of manufacturing this optical fiber cable (called an optical drop cable) will be described below with reference to FIG.
  • a notch 30 having a width of 1.2 mm and a depth of 0.9 mm is formed in the length direction of the cable so that the optical fiber tape unit can be easily taken out from the sheath 20 of the cable portion 18.
  • This optical drop cable has a width of 5. lmm, a thickness of 3.5 mm, and an overall cable height of 8.6 mm at the cable section 18.
  • the optical fiber tape unit of the present invention uses an optical fiber core wire provided with an overcoat layer and having an outer diameter of 0.4 mm or more, and a plurality of the optical fiber core wires are arranged in parallel and connected by a connecting member.
  • the overcoat layer has Young's modulus El, cross-sectional area Al, tensile strength TS1, tensile elongation TE1, and the connecting member has Young's modulus E2, cross-sectional area A2, tensile strength TS2, tensile elongation TE2
  • the overcoat layer of the optical fiber core becomes more tough than the connecting member, so that it is possible to break only the connecting member that does not break the overcoat layer during single-core separation and perform single-core separation. is there.
  • optical fiber cable of the present invention is composed of the above-mentioned optical fiber tape unit, it can be easily handled at the time of branching.

Abstract

光ファイバ、一次被覆層および二次被覆層から構成される光ファイバ素線と、前記光ファイバ素線の外周に形成されるオーバーコート層とから構成される0.4mm以上の外径を有する光ファイバ心線と、並列に配置される複数本の光ファイバ心線間を連結する連結部材とから構成される光ファイバテープユニット。この光ファイバテープユニットにおいて、オーバーコート層がヤング率E1、断面積A1、引張強度TS1、引張り伸びTE1を有し、連結部材がヤング率E2、断面積A2、引張強度TS2、引張り伸びTE2を有する場合、E1・A1≧E2・A2、TS1≧TS2、TE1≧TE2、E1≧100(MPa)、20≦E2≦300(MPa)、TS1≧10(MPa)、TS2≦40(MPa)、TE1≧30(%)、およびTE2≦40(%)の関係が満足される。

Description

明 細 書
光ファイバテープユニット及び光ファイバケープノレ
技術分野
[0001] 本発明は光ファイバテープユニット及び光ファイバケーブルに関し、特に、太径化 した光ファイバ心線を複数本一体化した光ファイバテープユニット及び光ファイバケ 一ブルに関するものである。
背景技術
[0002] 本出願は、 日本特許出願番号 2004— 119187に基づいており、このョ本出願の 全内容は、本出願において参照され導入される。
近年、 FTTH (Fiber To The Home)すなわち各家庭やオフィスなどに超高速、大容 量の通信ができる光ファイバケーブルが導入されている。
[0003] 特開 2001— 343571号は、この種の光ファイバケーブルを開示している。
特許文献 1 :特開 2001— 343571号図 7は、この光ファイバケーブルの構造を示す。 ケーブル部 18は、外径が約 0. 25mmの光ファイバ着色素線(図示されず)を光ファ ィバ着色素線外径のピッチで 4本並列に配置し紫外線硬化性樹脂で一括被覆して テープ型光ファイバ心線 9とし、本テープ型光ファイバ心線 9を複数枚集合 (テープ 積層)して、これを一方向に一定のピッチで撚り合せ集合し集合体をプラスチックテ ープ 22で包み、その上にシース 20を形成することにより構成される。なおシース 20 内には上下両側に鋼線力 なる 2本の抗張力体 23が縦添えされている。
[0004] 他方、支持線部 19は 1本の鋼線の廻りに 6本の鋼線を撚り合わせた抗張力体の外 周にシース 25を形成することにより構成される。
更に、ケーブル部 18と支持線部 19との間に、支持線部 19に対するケーブル部 18の 弛み率が 0. 2%以上になるように、一定間隔でスリット(図示されず)を有する首部 24 が形成される。通常、ケーブル部 18のシース 20、支持線部 19のシース 25及び首部 24は、例えば低密度ポリエチレンから成る熱可塑性榭脂シースを押し出し被覆する ことにより同時に形成される。
[0005] 図 7に示されるような従来型光ファイバケーブルが布設された後に、ケーブル中間
差替え用紙 (規 26: 部においてシース 20が剥取られ、任意の光ファイバ着色素線が取出される場合(中 間'後分岐処理)がある。この処理においてテープ型光ファイバ心線 9から光ファイバ 着色素線を分離するには、光ファイバ着色素線が約 0. 25mmと大変細い為、専用 工具が必要とされる。しかしながら、専用工具を用いても作業性は悪ぐ作業中に光 ファイバ損失増加が発生するおそれがある。最悪の場合には、光ファイバ着色素線 が断線するおそれがある。また、光ファイバ着色素線を分離した後でファイバ着色素 線を取扱う場合においても、光ファイバ着色素線が大変細い為、各光ファイバ着色素 線を識別することが困難であり、それ故、誤って光ファイバを切断してしまうおそれが ある。
[0006] 本発明の目的は、複数の素線(単心)から成るテープ型光ファイバ心線を素線(単 心)に分離する作業を手作業で容易に行うことができ、且つ、単心分離時及び分離 後においても、光ファイバの識別がし易ぐ切断事故を極力防ぐことができるという良 好な単心分離性能を有する光ファイバテープユニット及び光ファイバケーブルを提供 することにある。
[0007] 本発明の一側面に従い、
光ファイバ、一次被覆層および二次被覆層から構成される光ファイバ素線と、前記光 ファイバ素線の外周に形成されるオーバーコート層とから構成される 0. 4mm以上の 外径を有する光ファイバ心線と、
並列に配置される前記複数本の光ファイバ心線間を連結する連結部材とから構成さ れ、
[0008] 前記オーバーコート層がヤング率 El、断面積 Al、引張強度 TS1、引張り伸び TE 1を有し、前記連結部材がヤング率 E2、断面積 A2、引張強度 TS2、引張り伸び TE 2を有する場合、
[0009] Ε1 ·Α1≥Ε2 ·Α2、
TS1≥TS2、
TE1≥TE2、
El≥100 (MPa)、
20≤E2≤300 (MPa)、 TSl≥10 (MPa)、
TS2≤40 (MPa)、
TE1≥30 (%)、および
TE2≤40 (%)
の関係が満足される光ファイバテープユニットが提供される。
[0010] 前記オーバーコート層および前記連結部材の少なくとも一方は、剥離剤を含んで いても良い。
前記光ファイバ素線は、前記二次被覆層外周に形成される着色層を備え得る。 前記オーバーコート層および前記連結部材は、熱硬化性樹脂または熱可塑性樹脂 から構成され得る。
前記オーバーコート層は、透明であっても良い。
前記オーバーコート層は、着色剤を混入することにより着色されても良い。
[0011] 前記連結部材は、透明であっても良い。
前記連結部材は、着色剤を混入することにより着色されても良い。
前記連結部材は、ストライプ状の色帯を備え得る。
前記連結部材は、前記光ファイバ心線を複数本並列に並べて形成される断面略長 方形の長辺に相当する両面に形成され得る。
前記連結部材は、前記光ファイバ心線を複数本並列に並べて形成される断面略長 方形の長辺に相当する片面に形成され得る。
前記連結部材は、前記複数本並列に並べられる光ファイバ心線間の凹部にのみ形 成され得る。
[0012] 本発明の他の側面に従レ、、上記光ファイバテープユニットが:!枚以上集合してケー ブル化されて構成される光ファイバケーブルが提供される。
発明の利点
[0013] 本発明の光ファイバテープユニットは、オーバーコート層を設けて外径を 0· 4mm以 上とした光ファイバ心線を用い、該光ファイバ心線を複数本並列に配置し連結部材 で連結しており、オーバーコート層がヤング率 El、断面積 Al、引張強度 TS1、引張 り伸び TE1を有し、連結部材がヤング率 E2、断面積 A2、引張強度 TS2、引張り伸 び TE2を有する場合、 Ε1 ·Α1≥Ε2 ·Α2、 TS1≥TS2, TE1≥TE2の関係を満た す。これにより、連結部材よりも光ファイバ心線のオーバーコート層の方が強靭になる ので、単心分離時にオーバーコート層を破壊することなぐ連結部材のみを破壊して 単心分離することが可能である。
[0014] また、連結部材の強度を E2≤300 (MPa)、 TS2≤40 (MPa)、 TE2≤40 (%)の 関係を満たすようにすることにより、単心分離時に光ファイバテープユニットに大きな 荷重がかからず、手による単心分離が可能となり、伝送損失増加を防ぐことができる。
[0015] また、オーバーコート層及び連結部材を E1≥ 100 (MPa)、 TS1≥ 10 (MP
a)、 TE1≥ 30 (%)、 E2≥ 20 (MPa)を満たすようにすることにより、光ファイバテー プユニットをケープリング(ケーブル化)する際に、光ファイバテープユニット 12への外 傷などの発生を抑えることができる。
[0016] また、光ファイバ心線を 0. 4mm以上と太径化しているので、取り扱い易ぐ光フアイ バ心線の識別が容易となる。
[0017] また、オーバーコート層及び連結部材のいずれか一方又は両方に剥離剤を混入す ることで、さらに単心分離性が良好になる。
[0018] また、オーバーコート層が透明材料からなる場合、光ファイバ心線の識別が容易に なる。
[0019] また、オーバーコート層が着色剤を混入して着色した材料からなる場合、光ファイバ 心線の識別が容易になる。
[0020] また、連結部材が透明材料からなる場合、光ファイバテープユニット内の光ファイバ 心線の識別が容易になる。
[0021] また、連結部材が着色剤を混入して着色した材料からなる場合、光ファイバ心線又 は光ファイバテープユニットを容易に識別できる。
[0022] また、連結部材がストライプ状の色帯を設けられる場合、光ファイバ心線又は光ファ ィバテープユニットを容易に識別することができる。
[0023] 本発明の光ファイバケーブルは、上記光ファイバテープユニットが用いられている ので、分岐時において容易に取扱うことができる。
図面の簡単な説明 [0024] [図 1]は、本発明に従う光ファイバテープユニットに使用される光ファイバ心線の一実 施例を示す概略断面図である。
[図 2]は、本発明に従う第 1実施例における光ファイバテープユニットを示す概略断面 図である。
[図 3]は、本発明に従う第 2実施例における光ファイバテープユニットを示す概略断面 図である。
[図 4]は、本発明に従う第 3実施例における光ファイバテープユニットを示す概略断面 図である。
[図 5]は、本発明に従う第 4実施例における光ファイバテープユニットを示す概略断面 図である。
[図 6]は、本発明に従う実施例における光ファイバケーブルを示す概略断面図である
[図 7]は、従来の光ファイバケーブルを示す概略断面図である。
[図 8]は、光ファイバ心線の被覆除去試験方法を示す概略図である。
[図 9]は、本発明に従う別の実施例における光ファイバケーブルを示す概略断面図で ある。
発明を実施するための最良の形態
[0025] 以下、本発明の好適な実施例が図面を参照して詳細に説明される。
なお、本明細書中に記載されるヤング率は常温(23°C)における値である。
[0026] 図 1は、本発明に従う光ファイバテープユニットに使用される光ファイバ心線の一実 施例を示す概略断面図である。
[0027] 図 1に示されるように、本発明に使用する光ファイバ心線 10は、コア及びクラッドか らなる光ファイバ 17と、一次被覆層 16と、二次被覆層 15と、着色層 14と、オーバーコ ート層 13とからなり、 0. 4mm以上の外径を有する。なお、着色層を設ける代わりに、 二次被覆層に着色剤を混入して着色しても良い。また、オーバーコート層に剥離剤 を混入しても良い。
[0028] 図 2は、本発明に従う第 1実施例における光ファイバテープユニットを示す概略断 面図である。 図 2に示されるように、本実施例の光ファイバテープユニット 12は光ファイバ心線 10 を複数本並列に配列し、その外周に連結部材 11を設けて連結したものである。ォー バーコート層及び連結部材は紫外線硬化性樹脂、熱硬化性樹脂または熱可塑性榭 脂などを用いて形成する。連結部材に剥離剤を混入しても良い。光ファイバテープュ ニット 12は、オーバーコート層がヤング率 El、断面積 Al、引張強度 TS1、引張り伸 び TE1を有し、連結部材がヤング率 E2、断面積 A2、引張強度 TS2、引張り伸び TE 2を有する場合、
[0029] Ε1 ·Α1≥Ε2 ·Α2、
TS1≥TS2、
TE1≥TE2、
El≥100 (MPa)、
20≤E2≤300 (MPa)、
TSl≥10 (MPa)、
TS2≤40 (MPa)、
TE1≥30 (%)、および
TE2≤40 (%)
の関係を満たす。
図 3は、本発明に従う第 2実施例における光ファイバテープユニットを示す概略断面 図である。
[0030] 図 3に示されるように、本実施例の光ファイバテープユニット 12は光ファイバ心線 10 を複数本並列に並べ、その外周の光ファイバ心線間の凹部のみに連結部材 11を設 けて連結したものである。
図 4は、本発明に従う第 3実施例における光ファイバテープユニットを示す概略断面 図である。
[0031] 図 4に示されるように、本実施例の光ファイバテープユニット 12は光ファイバ心線 10 を複数本並列に並べ、その外周に厚さを略等しくして連結部材 11を設け、連結した ものである。
図 5は、本発明に従う第 4実施例における光ファイバテープユニットを示す概略断面 図である。
[0032] 図 5に示されるように、本実施例の光ファイバテープユニット 12は光ファイバ心線 10 を複数本並列に並べ、その外周片面の光ファイバ心線間の凹部のみに連結部材 11 を設けて連結したものである。
[0033] なお、本発明の光ファイバテープユニットは上記実施例に限られず、オーバーコー ト層がヤング率 El、断面積 Al、引張強度 TS1、引張り伸び TE1を有し、連結部材が ヤング率 E2、断面積 A2、引張強度 TS2、引張り伸び TE2を有する場合、
[0034] Ε1 ·Α1≥Ε2 ·Α2、
TS1≥TS2、
TE1≥TE2、
El≥100 (MPa)、
20≤E2≤300 (MPa)、
TSl≥10 (MPa)、
TS2≤40 (MPa)、
TE1≥30 (%)、および
TE2≤40 (%)
の関係を満たすものであれば良い。
図 6は、本発明に従う実施例における光ファイバケーブルを示す概略断面図である。
[0035] 図 6に示されるように、本実施例の光ファイバケーブルは:上記光ファイバテープュ ニット 12の何れ力を複数枚集合 (テープ積層)し、フィラー 26と共に撚り合せ、上下 両側に 2本の抗張力体 23を縦添えしたうえで、シース 20を施して構成されるケープ ル部 18と; 1本の鋼線の周りに 6本の鋼線を撚り合わせた抗張力体の外周にシース 2 5を施した構成の支持線部 19と;ケーブル部 18と支持線部 19との間の支持線部 19 に対するケーブル部 18の弛み率が 0. 2%以上になるように一定間隔でスリットを設 けた首部 24から構成される。
(例 1)
4心の光ファイバテープユニットを複数種試作し、単心分離作業を行ってその単心分 離評価を行った。その結果を表 1に示す。単心分離評価「X」は、単心分離時に、光 ファイバ心線のオーバーコート層の一部または全部が破壊したことを示す。
表 1
Figure imgf000010_0001
表 1の結果より、光ファイバ心線のオーバーコート層のヤング率 El、断面積 Al、引張 強度 TS1、引張り伸び TE1と、光ファイバテープユニットの連結部材 11のヤング率 E 2、断面積 A2、引張強度 TS2、引張り伸び TE2との関係を、
Ε1 ·Α1≥Ε2 ·Α2、 TS1≥TS2、 TE1≥TE2とすることで、光ファイバテープュニ ットの単心分離作業を、オーバーコート層を破壊することなく行えることがわかる。 (例 2)
4心の光ファイバテープユニットを複数種試作し、単心分離作業を行ってその単心分 離評価を行った。その結果を表 2に示す。単心分離評価「〇」は、単心分離時、工具 を使わずに手作業で単心分離可能であり、かつ、伝送損失増加が発生してなかった ことを示す
Figure imgf000011_0001
表 2の結果より、光ファイバテープユニットの連結部材に、ヤング率 E2、引張強度 TS 2、引張り伸び TE2が E2≤ 300 (MPa) , TS2≤40 (MPa)、 TE2≤ 40 (%)の関係 を満たすものを用いることにより、光ファイバテープユニットの単心分離作業を手作業 で行うことができ、かつ伝送損失の増加を防ぐことができることがわかる。 (例 3)
4心の光ファイバテープユニットを複数種試作し、ケープリング (ケーブル化)結果を 調べた。その結果を表 3に示す。ケープリング結果「X」は、光ファイバテープユニット に外傷などが発生したことを示す。
Figure imgf000012_0001
表 3の結果より、光ファイバ心線のオーバーコート層のヤング率 El、断面積 Al、引 張強度 TS1、引張り伸び TElと、光ファイバテープユニットの連結部材のヤング率 E 2との関係を、 E1≥ 100 (MPa)、 TS1≥ 10 (MPa)、 TEl≥ 30 (%)、 E2≥ 20 (MP a)とすることで、光ファイバテープユニットをケープリングする際の光ファイバテープュ ニット 12への外傷を抑えることができることがわかる。
(例 4)
4心の光ファイバテープユニットを複数種試作し、単心分離作業を行ってその単心分 離評価を行った。その結果を表 4に示す。単心分離時間とは、一人の作業者が 10本 のテープユニットを単心分離するときに要する時間を意味する。
表 4
Figure imgf000013_0001
表 4の結果より、オーバーコート層及び連結部材のいずれか一方又は両方に剥離剤 を混入することで、単心分離時間が短くなる、即ち、単心分離性能が良好になること 力 sわ力る。 (例 5)
[0037] 試作した光ファイバ心線の被覆除去力について検討を行った。被覆除去試験方法 を図 8に示す。外径 0· 4mm及び 0· 5mmの光ファイバ心線 10を用い、光ファイバ心 線端末部から 100mmのところに、被覆除去用の刃 28を、光ファイバ素線に傷をつ けないように、オーバーコート層 13の円周方向に切込み、さらに、光ファイバ心線 10 と水平になる方向に移動させながらオーバーコート層 13を除去した。そして、その時 の最大除去力を張力測定機で測定した。その結果を表 5、表 6に示す。
表 5
Figure imgf000014_0001
表 5、表 6の結果より、光ファイバ心線の被覆除去力を、 1本当り 9. 8N/100mm以 下にすることで光ファイバ素線への外傷を防ぐことができることがわかる。
(例 6)
[0038] 光ファイバ心線を各種作成し、心線識別性を検討した。心線識別試験は、同一心 線径の心線を 40本(50cm)束ね、両端を固定したものを 20歳〜 50歳までの任意の 15人に数えてもらい、その数の正解率 (識別正解率)と、要した時間(識別時間)とを 測定して行った。なお、心線径 0. 25mmは、オーバーコート層無しのものである。そ の結果を表 7、表 8に示す。
表 7 ォ—ノ -"* コ ト屬〖;:着色有りの壤合
心 径 0, 25ram 0. 4mm 0. 5瞧 0. 7mm 0, 9隱 識别正解率 81% 100% 100% 1 Q0¾ 100¾ 平均識别時闘 δ4秒 46秒 40秒 37秒 32秒 最大識 3W時間 76秒 66秒 61秒 52耖 4マ秒 表 8 オーバ^コート層透明の場合
Figure imgf000015_0001
[0039] 表 7、表 8の結果より、光ファイバ心線の外径が 0. 4mm以上であると心線識別性が 良好であることがわかる。また、オーバーコート層を透明にした場合の結果から、ォー バーコート層が透明なことによるレンズ効果の影響により、光ファイバ心線 10の外径 が 0. 4mm以上 0. 7mm以下であると心線識別性が良好であることがわ力、る。
[0040] ケープリング時の光ファイバテープユニットの識別性を良好にするために、連結部 材を透明にして光ファイバ着色素線を色分けすることが可能である。また、光ファイバ 心線の色が全て同じである場合には、連結部材自体に着色剤を混入して着色するこ とにより、心線識別性を向上させることができる。また、連結部材にストライプ状の色帯 を設けても良い。
(例 7)
[0041] 例 7として、光ファイバテープユニットに使用される光ファイバ心線を製造した。この 光ファイバ心線の製法は、図 1を参照して以下に説明される。
[0042] 外径約 0. 125mmの光ファイバ 17上に、紫外線硬化性樹脂からなる一次被覆層 1 6及び二次被覆層 15を形成して外径を約 0. 245mmにした。さらに、識別用として最 外層に着色層 14を設け、外径約 0. 255mmの光ファイバ素線を形成した。
[0043] 次に、光ファイバ素線上に紫外線硬化性樹脂からなるオーバーコート層 13を形成 し、外径約 0. 50mmの光ファイバ心線 10を得た。オーバーコート層 13は約 230MP aのヤング率、約 31Mpaの引張強度、約 38%の引張り伸び、約 0. 145mm2の断面 積を有する。 [0044] なお、単心分離時の心線識別性を良好にするため以下の 2つの方法を用いること ができる。
(1)光ファイバ素線上に、レンズ効果を有する透明のオーバーコート層を円筒状に被 覆する。このレンズ効果は特に、光ファイバ心線の外径が 0. 7mm以下の場合に有 効である(着色外径 Zオーバーコート層外径≥ 37%)。
(2)光ファイバ素線上に、着色剤を混入して着色されたオーバーコート層を円筒状に 被覆する。
(例 8)
[0045] 例 8として光ファイバテープユニットを製造した。この光ファイバテープユニットの製 法は、図 2を参照して以下に説明される。
光ファイバテープユニット 12は、長径約 2. 05mm,短径約 0. 52mmの寸法を有し、 4本の光ファイバ心線 10が紫外線硬化性樹脂で連結される。連結部材 11は、ヤング 率約 75MPa、引張強度約 13MPa、引張り伸び約 22%、断面積約 0. 41 lmm2を有 する。オーバーコート層 13のヤング率 El、断面積 Al、引張強度 TS1、引張り伸び T E1と、光ファイバテープユニットの連結部材 11のヤング率 E2、断面積 A2、引張強 度 TS2、引張り伸び TE2との関係、は、 Ε1 ·Α1 -Ε2 ·Α2 = 102. 6 >0、 TS1— TS2 = 18 >0、ΤΕ1— ΤΕ2 = 16 >0であり、力つ E1≥ 100 (MPa)、 20≤E2≤300 (M Pa)、 TSl≤10 (MPa)、 TS2≤40 (MPa)、 TE1≤30 (%)、 TE2≤40 (%)である
[0046] この光ファイバテープユニット 12を、手作業で 4本の光ファイバ心線 10 (単心)に分 離する際、光ファイバ心線 10のオーバーコート層を破壊すること無く良好な単心分離 性能が得られた。さらに、分離作業中に光ファイバ損失は増加しない。また、光フアイ バ心線は 0. 5mmと太いので、分離作業中に光ファイバ心線を容易に識別すること ができる。
[0047] なお、光ファイバテープユニット 12の製造する際、以下の 4つの方法を用いることが できる。
(1)光ファイバ心線 10を複数本並列に並べて、この複数本の光ファイバ心線 10によ り形成される断面略長方形の長辺に相当する片面または両面に、紫外線硬化性樹 脂または熱硬化性樹脂を塗布、硬化する(例えば、図 2、図 3、図 4、図 5)。
(2)光ファイバ心線 10を複数本並列に並べて、紫外線硬化性樹脂、熱硬化性樹脂 または熱可塑性樹脂を加圧ダイスにより被覆、硬化する(例えば、図 2、図 4)。
(3)光ファイバ心線 10を複数本並列に並べて、この複数本の光ファイバ心線 10によ り形成される断面略長方形の長辺に相当する片面または両面に接着性樹脂を塗布 、硬化する(例えば、図 3、図 5)。
(4)光ファイバ心線 10を複数本並列に並べて、紫外線硬化性樹脂、熱硬化性樹脂、 熱可塑性樹脂一紫外線硬化性樹脂または接着性樹脂を間欠的に塗布、硬化する。 (例 9)
[0048] 例 9として光ファイバテープユニットを製造した。この光ファイバテープユニットの製 法は、図 6を参照して以下に説明される。
[0049] 上述した光ファイバテープユニット 12を中心に 6枚、その両側に 2枚ずつ配列し、ポ リプロピレン系繊維 (フイラ一 26)と共に集合、撚合せし、綿製糸で粗卷きを施しシー ス 20を被覆し、ケーブル部 18とする。ケーブル部 18は外被厚さ 2. Omm、外径 9. 5 mmを有する。抗張力体 23として直径 0. 7mmの鋼線、シース引裂き紐 21として直 径 1. 0mmのポリエステル系繊維の紐を用いる。また、支持線部 19として直径 1. 4m mの鋼線を 7本撚りあわせた亜鉛めつき鋼撚線を使用し、その外周にシース 25を形 成する。そして支持線部 19に対するケーブル部 18の弛み率が 0· 2%以上になるよう に、ケーブル部 18と支持線部 19との間に、一定間隔でスリットを有する首部 24を形 成する。なお、ケーブル部 18のシース 20、支持線部 19のシース 25及び首部 24は、 熱可塑性樹脂である低密度ポリエチレンを押出して一括して被覆することにより同時 に形成する。この光ファイバケーブルは全体の高さ 17mmを有する。
図 9は、本発明に従う別の実施例における光ファイバケーブルを示す概略断面図で ある。
[0050] この光ファイバケーブル(光ドロップケーブルと呼ばれる)の製法が図 9を参照して 以下に説明される。
[0051] ケーブル部 18として上述した光ファイバテープユニット 12を中心に 2枚配列し、抗 張力体 23として直径 0. 7mmの鋼線を用い、支持線 19として直径 2. 3mmの鋼線を 用レ、、熱可塑性樹脂である低密度ポリエチレンを押出してそれらを一括して被覆する
。さらに、ケーブル部 18のシース 20から光ファイバテープユニットが容易に取出され るように、ケーブルの長さ方向に幅 1 · 2mm、深さ 0· 9mmのノッチ 30を形成する。こ の光ドロップケーブルは、ケーブル部 18において幅 5. lmm、厚さ 3. 5mm,全体の ケーブル高さ 8. 6mmを有する。
産業上の利用の可能性
[0052] 本発明の光ファイバテープユニットは、オーバーコート層を設けて外径を 0. 4mm以 上とした光ファイバ心線を用い、該光ファイバ心線を複数本並列に配置し連結部材 で連結しており、オーバーコート層がヤング率 El、断面積 Al、引張強度 TS1、引張 り伸び TE1を有し、連結部材がヤング率 E2、断面積 A2、引張強度 TS2、引張り伸 び TE2を有する場合、 Ε1 ·Α1≥Ε2 ·Α2、 TS1≥TS2, TE1≥TE2の関係を満た す。これにより、連結部材よりも光ファイバ心線のオーバーコート層の方が強靭になる ので、単心分離時にオーバーコート層を破壊することなぐ連結部材のみを破壊して 単心分離することが可能である。
本発明の光ファイバケーブルは、上記光ファイバテープユニットから構成されるので、 分岐時にぉレ、て容易に取扱うことができる。
[0053] 本発明は完全で明確な開示のための特定の実施例について述べられているが、 添付の特許請求の範囲はこれらの実施例には限定されず、当業者にとって想到し得 る、本明細書に説明された基本的教示の範囲内に適正に含まれる全ての変更およ び代替的構成を具体化するものとして解釈されるべきである。

Claims

請求の範囲
[1] 光ファイバ、一次被覆層および二次被覆層から構成される光ファイバ素線と、前記光 ファイバ素線の外周に形成されるオーバーコート層とから構成される 0. 4mm以上の 外径を有する光ファイバ心線と、
並列に配置される前記複数本の光ファイバ心線間を連結する連結部材とから構成さ れ、
前記オーバーコート層がヤング率 El、断面積 Al、引張強度 TS1、引張り伸び TE 1を有し、前記連結部材がヤング率 E2、断面積 A2、引張強度 TS2、引張り伸び TE 2を有する場合、
Ε1 ·Α1≥Ε2 ·Α2、
TS1≥TS2、
TE1≥TE2、
El≥100 (MPa)、
20≤E2≤300 (MPa)、
TSl≥10 (MPa)、
TS2≤40 (MPa)、
TE1≥30 (%)、および
TE2≤40 (%)
の関係が満足される光ファイバテープユニット。
[2] 前記オーバーコート層および前記連結部材の少なくとも一方は剥離剤を含んで成る 、請求項 1に記載の光ファイバテープユニット。
[3] 前記光ファイバ素線は前記二次被覆層外周に形成される着色層を備える、請求項 1 または 2に記載の光ファイバテープユニット。
[4] 前記オーバーコート層および前記連結部材は熱硬化性樹脂または熱可塑性樹脂か ら構成される、請求項 1〜3のいずれ力 1項に記載の光ファイバテープユニット。
[5] 前記オーバーコート層は透明である、請求項:!〜 4のいずれか 1項に記載の光フアイ ノ テープユニット。
[6] 前記オーバーコート層は着色剤により着色される、請求項 1〜4のいずれ力、 1項に記 載の光ファイバテープユニット。
[7] 前記連結部材は透明である、請求項 1〜6のいずれ力 4項に記載の光ファイバテー プユニット。
[8] 前記連結部材は着色剤により着色される、請求項:!〜 6のいずれか 1項に記載の光 ファイバテープユニット。
[9] 前記連結部材はストライプ状の色帯を備える、請求項 1〜6のいずれかに記載の光フ アイバテープユニット。
[10] 前記連結部材は、前記光ファイバ心線を複数本並列に並べて形成される断面略長 方形の長辺に相当する両面に形成される、請求項 1〜9のいずれ力 1項に記載の光 ファイバテープユニット。
[11] 前記連結部材は、前記光ファイバ心線を複数本並列に並べて形成される断面略長 方形の長辺に相当する片面に形成される、請求項 1〜9のいずれ力、 1項に記載の光 ファイバテープユニット。
[12] 前記連結部材は、前記複数本並列に並べられる光ファイバ心線間の凹部にのみ形 成される、請求項 10または 11に記載の光ファイバテープユニット。
[13] 請求項 1〜: 12のいずれ力 4項に記載の光ファイバテープユニットが:!枚以上集合して ケーブル化される光ファイバケーブル。
PCT/JP2005/007103 2004-04-14 2005-04-12 光ファイバテープユニット及び光ファイバケーブル WO2005101081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/578,333 US20080019647A1 (en) 2004-04-14 2005-04-12 Optical Fiber Tape Unit And Optical Fiber Cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-119187 2004-04-14
JP2004119187A JP4412040B2 (ja) 2004-04-07 2004-04-14 光ファイバテープユニット及び光ファイバケーブル

Publications (1)

Publication Number Publication Date
WO2005101081A1 true WO2005101081A1 (ja) 2005-10-27

Family

ID=35150141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007103 WO2005101081A1 (ja) 2004-04-14 2005-04-12 光ファイバテープユニット及び光ファイバケーブル

Country Status (4)

Country Link
US (1) US20080019647A1 (ja)
KR (1) KR20070010149A (ja)
CN (1) CN1942799A (ja)
WO (1) WO2005101081A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056653A1 (en) * 2004-04-14 2008-03-06 Takahiro Sato Optical Fiber Tape Unit and Optical Fiber Cable
US9120693B2 (en) * 2010-11-08 2015-09-01 Corning Incorporated Multi-core optical fiber ribbons and methods for making the same
WO2013024822A1 (ja) * 2011-08-12 2013-02-21 株式会社フジクラ 光ファイバ構造体、照明装置、内視鏡、および、光ファイバ構造体の製造方法
MX2018001285A (es) 2015-07-31 2018-04-30 Corning Optical Communications LLC Cinta de fibra optica enrollable.
EP3491441B1 (en) * 2016-07-27 2020-05-27 Prysmian S.p.A. Flexible optical-fiber ribbon
MX2019006178A (es) 2016-11-29 2019-08-29 Corning Optical Communications LLC Cinta flexible sinterizada por laser.
CN111175887A (zh) * 2020-02-13 2020-05-19 江苏亨通光电股份有限公司 光纤带、光缆以及光纤带的制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152405A (ja) * 1987-12-09 1989-06-14 Furukawa Electric Co Ltd:The 光フアイバテープ心線
JPH06258557A (ja) * 1993-03-04 1994-09-16 Sumitomo Electric Ind Ltd 被覆光ファイバユニット
JPH09197213A (ja) * 1996-01-17 1997-07-31 Mitsubishi Cable Ind Ltd 光ファイバテープ及び光ファイバ単心線の分離方法
JPH10332996A (ja) * 1997-06-03 1998-12-18 Sumitomo Wiring Syst Ltd プラスチック光ファイバコード
JPH11109192A (ja) * 1997-10-06 1999-04-23 Furukawa Electric Co Ltd:The 光海底ケーブル用光ファイバユニット
EP0964280A2 (de) * 1998-06-12 1999-12-15 Alcatel Optische Faser und Verfahren zum Kennzeichnen einer optischen Faser
JP2000231042A (ja) * 1999-02-09 2000-08-22 Sumitomo Electric Ind Ltd 分割型光ファイバテープ心線
EP1139135A1 (en) * 2000-03-29 2001-10-04 Alcatel Identification scheme for splittable ribbon products
JP2002107590A (ja) * 2000-09-29 2002-04-10 Sumitomo Electric Ind Ltd 光ファイバテープ心線及びその製造方法
JP2002341208A (ja) * 2001-05-16 2002-11-27 Sumitomo Electric Ind Ltd 光ファイバテープ心線および光ファイバケーブル
JP2003029048A (ja) * 2001-07-19 2003-01-29 Fujikura Ltd 光ファイバ素線の被覆除去力の推算方法
JP2003262770A (ja) * 2002-03-11 2003-09-19 Sumitomo Electric Ind Ltd 光ファイバテープ心線

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715675B2 (en) * 2003-07-18 2010-05-11 Corning Incorporated Optical fiber coating system and coated optical fiber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152405A (ja) * 1987-12-09 1989-06-14 Furukawa Electric Co Ltd:The 光フアイバテープ心線
JPH06258557A (ja) * 1993-03-04 1994-09-16 Sumitomo Electric Ind Ltd 被覆光ファイバユニット
JPH09197213A (ja) * 1996-01-17 1997-07-31 Mitsubishi Cable Ind Ltd 光ファイバテープ及び光ファイバ単心線の分離方法
JPH10332996A (ja) * 1997-06-03 1998-12-18 Sumitomo Wiring Syst Ltd プラスチック光ファイバコード
JPH11109192A (ja) * 1997-10-06 1999-04-23 Furukawa Electric Co Ltd:The 光海底ケーブル用光ファイバユニット
EP0964280A2 (de) * 1998-06-12 1999-12-15 Alcatel Optische Faser und Verfahren zum Kennzeichnen einer optischen Faser
JP2000231042A (ja) * 1999-02-09 2000-08-22 Sumitomo Electric Ind Ltd 分割型光ファイバテープ心線
EP1139135A1 (en) * 2000-03-29 2001-10-04 Alcatel Identification scheme for splittable ribbon products
JP2002107590A (ja) * 2000-09-29 2002-04-10 Sumitomo Electric Ind Ltd 光ファイバテープ心線及びその製造方法
JP2002341208A (ja) * 2001-05-16 2002-11-27 Sumitomo Electric Ind Ltd 光ファイバテープ心線および光ファイバケーブル
JP2003029048A (ja) * 2001-07-19 2003-01-29 Fujikura Ltd 光ファイバ素線の被覆除去力の推算方法
JP2003262770A (ja) * 2002-03-11 2003-09-19 Sumitomo Electric Ind Ltd 光ファイバテープ心線

Also Published As

Publication number Publication date
CN1942799A (zh) 2007-04-04
KR20070010149A (ko) 2007-01-22
US20080019647A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2005101080A1 (ja) 光ファイバテープユニット及び光ファイバケーブル
WO2005101081A1 (ja) 光ファイバテープユニット及び光ファイバケーブル
WO2017131117A1 (ja) 光ファイバケーブル
JP6009045B1 (ja) 光ファイバテープ及び光ファイバケーブル
JP4412040B2 (ja) 光ファイバテープユニット及び光ファイバケーブル
JP3902201B2 (ja) 光ファイバ素線及び光ファイバテープ心線
JP2004206048A (ja) 光ファイバテープ心線及びその製造方法
JP4442296B2 (ja) 光ファイバテープユニット及び光ファイバケーブル
JP4907909B2 (ja) 光ファイバケーブルの外被除去方法
JP2005165363A (ja) 光ファイバテープ心線
JP2005043877A (ja) 光ファイバケーブル
JP4249202B2 (ja) 光ファイバテープおよび光ケーブル
JP4850732B2 (ja) 光ファイバテープおよび光ケーブル
JP6413593B2 (ja) 光ファイバケーブル
JP2013254001A (ja) 光ファイババンドルおよび光ファイバケーブル
JP2005222080A (ja) 光ファイバテープ心線及び光ファイバテープ心線の製造方法
CN109716192B (zh) 光纤单元和光纤线缆
JP2006208940A (ja) 光ファイバテープおよび光ケーブル
JPH06313827A (ja) 光ファイバテープ心線
JP4144613B2 (ja) 光ファイバ心線、それを用いた光ファイバテープユニットおよび光ファイバケーブル
WO2023167093A1 (ja) 光ケーブル、リップコードの脱落方法及び光ファイバの口出し方法
JPH11202174A (ja) 光ファイバテープ心線
JP2005352510A (ja) 光ファイバテープユニット及び光ファイバケーブル
KR20230032891A (ko) 광케이블
JP2004252003A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580011148.4

Country of ref document: CN

Ref document number: 1020067021289

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11578333

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11578333

Country of ref document: US