WO2005100420A1 - クロロトリフルオロエチレン共重合体 - Google Patents

クロロトリフルオロエチレン共重合体 Download PDF

Info

Publication number
WO2005100420A1
WO2005100420A1 PCT/JP2005/007133 JP2005007133W WO2005100420A1 WO 2005100420 A1 WO2005100420 A1 WO 2005100420A1 JP 2005007133 W JP2005007133 W JP 2005007133W WO 2005100420 A1 WO2005100420 A1 WO 2005100420A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
ctfe
monomer
tube
ctfe copolymer
Prior art date
Application number
PCT/JP2005/007133
Other languages
English (en)
French (fr)
Inventor
Takeshi Shimono
Takahisa Aoyama
Hiroshi Torimae
Takahiro Kitahara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP05730418.0A priority Critical patent/EP1741732B1/en
Priority to JP2006512351A priority patent/JP4582091B2/ja
Priority to US11/578,066 priority patent/US9266986B2/en
Publication of WO2005100420A1 publication Critical patent/WO2005100420A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • C08F214/242Trifluorochloroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • C08F214/245Trifluorochloroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers

Definitions

  • the present invention relates to a cross-linked trifluoroethylene copolymer and a molded article.
  • PCTFE Polychloromouth trifluoroethylene
  • CTFEZPAVE copolymer obtained by copolymerizing 0.01 to 1 mol% of perfluoro (alkyl ether) [PAVE] is disclosed (for example, see Patent Document 1).
  • the copolymer of CTFE also, TFE and Z or CTFE50 ⁇ 99. 8 mol%, the fluorine-containing monomer 0.1 to 49 other than TFE and CTFE. 99 mole 0/0, and, Itakon acid, At least one compound selected from citraconic acid and their acid anhydrides 0.01 to 5 mol
  • a fluorine-containing polymer having a copolymer composition of 5% has been proposed (for example, see Patent Document 4).
  • This fluoropolymer is required to have a compound such as itaconic acid as a copolymer composition for the purpose of improving adhesive strength.
  • specific disclosure has been made on a fluoropolymer having both TFE and CTFE as a copolymer composition.
  • Patent Document 1 JP-A-3-287614
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-7732
  • Patent Document 3 JP-A-60-88078
  • Patent Document 4 European Patent Application No. 1375539
  • An object of the present invention is to provide, in view of the above-mentioned circumstances, a tri-fluoroethylene copolymer having stress crack resistance, chemical resistance, and heat resistance. Means for solving the problem
  • the present invention relates to a chlorofluoroethylene copolymer which is also composed of a chlorofluoroethylene unit, a tetrafluoroethylene unit and a unitary monomer [A] unit power.
  • the above-mentioned trifluoroethylene unit and the above-mentioned tetrafluoroethylene unit are in total.
  • the monomer (A) unit is a black hole triflate Ruo Russia ethylene copolymer containing feature that 0.5 1 to 10 mol 0/0 .
  • the present invention is a molded article obtained by using the above-mentioned trifluoroethylene copolymer.
  • the black-mouthed trifluoroethylene copolymer (hereinafter referred to as "CTFE copolymer") of the present invention includes a black-mouthed trifluoroethylene unit (CTFE unit), a tetrafluoroethylene unit (TFE unit). And a monomer [A] unit derived from a monomer [A] copolymerizable with the above.
  • CTFE unit and “TFE unit” each refer to a portion [1-CFC1-CF- ], A portion derived from tetrafluoroethylene (one CF-CF one), and the above-mentioned ⁇ monomer (A)
  • the “unit” is a portion obtained by adding the monomer [A] on the molecular structure of the CTFE copolymer.
  • the monomer [A] is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE, and may be two or more as long as it is at least one kind.
  • Ethylene [Et] bi-lidene fluoride [VdF]
  • VdF bi-lidene fluoride
  • PAVE perfluoro mouth (alkyl butyl ether)
  • X 1 , X 3 and X 4 are the same or different and represent a hydrogen atom or a fluorine atom
  • X 2 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer of 1 to 10.
  • Rf is a perfluoroalkyl group having 1 to 5 carbon atoms
  • Rf is a perfluoroalkyl group having 1 to 5 carbon atoms
  • alkyl perfluorobutyl ether derivative for example, an alkyl perfluorobutyl ether derivative.
  • the monomer [A] is preferably at least one selected from the group consisting of Et, VdF, PAVE, and the bubble monomer represented by the general formula (I).
  • the monomer [A] is a PAVE, a vinyl monomer represented by the general formula (I), and Z or an alkyl perfluorobutyl ether derivative represented by the general formula (III).
  • the conductor one kind or a combination of two or more kinds can be used.
  • the vinyl monomer represented by the above general formula (I) is not particularly limited, and examples thereof include hexafluoropropylene [HFP] and perfluoro (1,1,2-trihydro- 11 Hexene), perfluoro (1,1,5-trihydric port—1-pentene), the following general formula (IV)
  • X 5 is H, F or CF
  • Rf 5 is a perfluoroalkyl having 1 to 10 carbon atoms.
  • perfluoro (alkyl) ethylene perfluoro (butyl) ethylene is preferable.
  • Rf is preferably a perfluoroalkyl group having 1 to 3 carbon atoms.
  • H 2 -CF CF is more preferred.
  • Rf 1 represents a perfluoroalkyl group having 1 to 8 carbon atoms.
  • Rf 1 is perfluoro (alkylbutyl ether).
  • perfluoro (alkyl vinyl ether) represented by the above general formula ( ⁇ ) include perfluoro (methyl vinyl ether), perphnole mouth (ethinolevininole ethere), perphnole mouth (provinole vinylinole ether), Perfluoro (butyl vinyl ether) and the like are preferable, and among them, perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro mouth (propyl vinyl ether) are preferable.
  • CTFE and vinyl ether have tended to have poor copolymerizability.
  • the E copolymer allows copolymerization of PAVE and Z or a fluorine-free vinyl ether at a relatively high copolymerization ratio by also copolymerizing TFE.
  • an unsaturated carboxylic acid copolymerizable with CTFE and TFE may be used.
  • the unsaturated carboxylic acids are not particularly limited, and include, for example, unsaturated aliphatic carboxylic acids having 3 to 6 carbon atoms, and may be unsaturated aliphatic polycarboxylic acids having 3 to 6 carbon atoms.
  • the unsaturated aliphatic polycarboxylic acids are not particularly limited, and include, for example, maleic acid, itaconic acid, citraconic acid, and acid anhydrides thereof.
  • the above monomer (A) may be two or more kinds, but when one of them is VdF, PAVE and Z or HFP, do not use itaconic acid, citraconic acid and their acid anhydrides in combination. You may.
  • the CTFE copolymer of the present invention is obtained by adding TFE as an essential monomer and further adding the above-mentioned monomer [A] at a specific ratio as described below, and thereby has a high heat resistance. In addition, the moldability, stress crack resistance, and chemical resistance were improved.
  • CTFE copolymer also has the characteristics of the conventional polychlorinated trifluoroethylene [PCTFE]. It has not only the gas-nolia property and the low water vapor permeability, which are known as, but also the liquid low permeability such as a small chemical solution which has not been known as a property of PCTFE.
  • the monomer [A] unit is 0.1 to 10 mol%, and the CTFE unit and the TFE unit are 90 to 99.9 mol% in total. It is.
  • the monomer [A] units is less than 0.1 mole 0/0, formability and inferior Ya soon exceeds 10 mol% on the environmental stress cracking resistance and stress class click resistance, chemical-permeation Properties, heat resistance, mechanical properties, productivity, etc. tend to be poor.
  • the lower limit of the monomer [A] unit is more preferably 0.5 mol%, the more preferable upper limit is 5 mol%, and the more preferable upper limit is 3 mol %.
  • the proportion of the monomer [A] unit in the CTFE copolymer of the present invention is a value obtained by analysis such as 19 F-NMR, and specifically, NMR analysis, infrared spectrophotometer It is a value obtained by appropriately combining [IR], elemental analysis, and X-ray fluorescence analysis according to the type of monomer.
  • the CTFE unit can be selected widely from the total of the CTFE unit and the TFE unit, and more preferably, 15 to 90 mol%. More preferably, it can be 20 to 90 mol%.
  • the CTFE copolymer of the present invention has a polymer chain terminal as long as the polymer chain portion derived from the monomer is composed of the above-mentioned CTFE unit, TFE unit and monomer [A] unit. May have a different chemical structure from the above-mentioned CTFE unit, TFE unit, and monomer [A] unit.
  • the polymer chain terminal is not particularly limited, and may be, for example, an unstable terminal group described below.
  • the CTFE copolymer of the present invention when melt-molded at a molding temperature of 300
  • Ones having 10 6 per unstable terminal groups of 80 or less is preferable.
  • more than 80 per number 106 carbons susceptible to foaming during melt molding at a molding temperature is 300 ° C or higher.
  • a more preferred upper limit is 40, a still more preferred upper limit is 20, and a particularly preferred upper limit is 6. If the number of unstable terminal groups is within the above range, the lower limit can be set to 1, for example, from the viewpoint of measurement limit.
  • melt molding Temperature 300 ° C or less than the molding temperature is preferably one that is several 10 6 per unstable terminal groups the number of carbon atoms greater than 80. If melt molding Temperature: 300 ° C or less than the molding temperature, is not more than 80 number 106 per carbon, which may be adhesive decreases. A more preferred lower limit is 100, a still more preferred lower limit is 150, a particularly preferred lower limit is 180, and a most preferred lower limit is 220. When melt-molding at a molding temperature of less than 300 ° C., if the number of unstable terminal groups is within the above range, the upper limit can be set to, for example, 500 from the viewpoint of productivity.
  • the unstable terminal group is usually formed at the end of the main chain by the addition of a chain transfer agent or a polymerization initiator used during the polymerization, and has an effect on the structure of the chain transfer agent or the polymerization initiator. It is derived.
  • stable end group refers to —CF CH OH, —CONH, —COF
  • the groups include, among others, -CF CH OH, -CONH, -COF, -COOH, and
  • COOCH easily affects adhesion and foaming during melt molding.
  • the number of unstable terminal groups is a value obtained by measurement using an infrared spectrophotometer [IR]. Specifically, the number of the unstable terminal groups is determined by the thickness obtained by compression-molding the powder of the CTFE copolymer at a molding temperature 50 ° C. higher than the melting point at a molding pressure of 5 MPa. The infrared absorption spectrum of a film sheet of ⁇ 0.30 mm is analyzed, the type is determined by comparing it with the infrared absorption spectrum of a known film, and the difference spectral power is the number calculated by the following formula.
  • Table 1 shows the correction factors for the target end groups.
  • the correction coefficients in Table 1 are values determined from the infrared absorption spectrum of the model compound to calculate the terminal group per 10 ° C carbon atoms.
  • the CTFE copolymer of the present invention is subjected to melt molding or heat treatment at a temperature lower than 300 ° C, it is preferable that the CTFE copolymer has an adhesive functional group.
  • the adhesive functional group is a part of the molecular structure of the polymer contained in the CTFE copolymer, which is capable of participating in the adhesion between the CTFE copolymer and a base material.
  • the above-mentioned adhesive functional group is a concept including not only what is usually called a functional group but also a structure which is usually called a bond such as an ether bond, as long as it can participate in such adhesiveness. is there.
  • the adhesive functional group is not particularly limited as long as it can participate in the adhesiveness between the fluororesin and the substrate, and examples thereof include a carbonyl group, a hydroxyl group, and an amino group.
  • the carbonyl group is not particularly limited.
  • R 1 represents an organic group.
  • the organic group represented by R 1 in the above formula include an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms having an ether bond, and the like. It is preferably an alkyl group having 2 to 4 carbon atoms having a bond.
  • the amide group has the following general formula
  • R 2 represents a hydrogen atom or an organic group
  • R 3 represents an organic group.
  • the above-mentioned adhesive functional groups are amide groups, rubamoyl groups, water, etc., in that they are easy to introduce and that the resulting coating film has appropriate heat resistance and good adhesion at relatively low temperatures.
  • the acid groups, carboxyl groups, and carbonate groups, carbonate groups are more preferable.
  • the CTFE copolymer When the CTFE copolymer has an adhesive functional group, it may be a polymer having the adhesive functional group at either a main chain terminal or a side chain. Alternatively, a polymer having both main chain terminals and side chains may be used. When an adhesive functional group is present at the end of the main chain, it may be present at both ends of the main chain, or may be present at only one of the ends.
  • the above CTFE copolymer is In addition to or instead of a functional functional group at the end of the main chain and at the Z or side chain, when the adhesive functional group has a structure usually called a bond such as an ether bond, the adhesive functional group is used. It may have one in the main chain.
  • the above-mentioned CTFE copolymer, which is composed of a polymer having an adhesive functional group at the terminal of the main chain, is advantageous in terms of not significantly reducing mechanical properties and chemical resistance, or in terms of productivity and cost. Preferred for reasons.
  • the adhesive functional group-containing monomers are arranged in a type according to the desired fluororesin. It can be obtained by copolymerizing with a fluorine-containing monomer and a Z- or fluorine-free monomer which are mixed together.
  • the “adhesive functional group-containing monomer” means a monomer having an adhesive functional group.
  • the above-mentioned monomer having an adhesive functional group may or may not have a fluorine atom, and may or may not have a fluorine atom.
  • the body does not have an adhesive functional group, and in this respect, is conceptually distinguished from an adhesive functional group-containing monomer having an adhesive functional group.
  • the adhesive functional group-containing monomer is represented by the following general formula (IV)
  • z 2 represents a functional group having a hydroxyl group, a carboxy group or an amino group
  • X 2 and Y 2 are the same or different and represent a hydrogen atom or a fluorine atom
  • Rf 4 is a carbon atom.
  • the “functional group having a hydroxyl group, a carbonyl group or an amino group” may be a hydroxyl group, a carbonyl group, or an amino group; This means that a functional group having any of these adhesive functional groups may be used.
  • the monomer having an adhesive functional group may be an unsaturated dibasic acid monoester, vinylene carbonate, maleic anhydride, maleic acid, or the like.
  • the CTFE copolymer is a polymer having an adhesive functional group at the end of the main chain, and when the adhesive functional group is a polymer having a carbonate group, It can be obtained by a method of polymerizing using oxycarbonate as a polymerization initiator. When the above method is used, the introduction and control of the introduction of the carbonate group are very easy, and the quality and the like such as economy, heat resistance and chemical resistance are also preferable.
  • R 4 and are the same or different and each have a linear or branched monovalent saturated hydrocarbon group having 1 to 15 carbon atoms, or a carbon atom having 1 to 15 carbon atoms having an alkoxyl group at a terminal.
  • R 6 represents a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms, or an alkoxyl group at the terminal And a linear or branched divalent saturated hydrocarbon group having 1 to 15 carbon atoms having the following formula:
  • the above-mentioned peroxycarbonates include diisopropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, and bis (4-t-butylcyclohexyl) perfluorocarbonate. Oxydicarbonate, di-p-ethylhexyl carbonate, etc. are preferred!
  • the CTFE copolymer is a polymer having an adhesive functional group at the terminal of the main chain, wherein the adhesive functional group is other than a carbonate group.
  • peroxide is obtained by polymerization using a peroxide such as peroxycarbonate, peroxydicarbonate, peroxyester, or peroxyalcohol as a polymerization initiator. Can be introduced.
  • derived from peroxide means that it is directly introduced from a functional group contained in peroxide, or indirectly by converting a functional group directly introduced from a functional group contained in peroxide. Means to be introduced into
  • the amount of the polymerization initiator such as peroxycarbonate and peroxyester used varies depending on the type and composition of the intended fluororesin, the molecular weight, the polymerization conditions, the type of the initiator used, and the like.
  • a particularly preferred lower limit is preferably from 0.05 to 20 parts by mass with respect to 100 parts by mass of the polymer obtained, and a particularly preferred upper limit is 0.1 part by mass, and a particularly preferred upper limit is 10 parts by mass.
  • the polymerization method for obtaining the above CTFE copolymer is not particularly limited, and includes, for example, conventionally known polymerization methods such as solution polymerization, emulsion polymerization, bulk polymerization, and the like. And suspension polymerization in an aqueous medium using peroxycarbonate or the like as a polymerization initiator is preferred.
  • a fluorine-based solvent can be used by adding it to water.
  • the fluorinated solvent used for suspension polymerization include, for example, CH CC1F, CH CC1 F, CF CF C
  • Fluoroalkanes such as CI H, CF C1CF CFHC1, etc .; CF C1CFC1CF
  • Fluoroalkanes such as CF and CF CFC1CFC1CF; perfluorocyclobutane
  • Examples include 3 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 2 3... Perfluoroalkanes are preferred.
  • the amount of the fluorinated solvent used is preferably from 10 to: LOO mass% based on water from the viewpoint of suspendability and economy.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type and amount of the solvent used, the vapor pressure, the polymerization temperature, and the like, but may be generally from 0 to 9.8 MPaG.
  • an ordinary chain is used to adjust the molecular weight.
  • Chain transfer agents for example, hydrocarbons such as isopentane, n-pentane, n-hexane and cyclohexane; alcohols such as methanol and ethanol; halogens such as carbon tetrachloride, chloroform, methylene chloride and methyl chloride. Dani hydrocarbons and the like can be used.
  • the content of the adhesive functional group such as a terminal carbonate group derived from peroxide can be controlled by the amount of polymerization initiator such as peroxycarbonate, the amount of chain transfer agent used, the polymerization temperature and other polymerization conditions.
  • the CTFE copolymer of the present invention is not particularly limited, and examples thereof include a CTFE / TFE / HFP copolymer, a CTFEZTFEZVdF copolymer, a CTFEZTFEZPAVE copolymer, a CT FEZTFEZHFPZPAVE copolymer, a CTFEZTFEZVdFZPAVE copolymer, and a CTFEZTFAVE copolymer.
  • TFEZTFEZEt copolymer, CTFEZTFEZEtZPAVE copolymer and the like, and CTFEZTFEZPAVE copolymer is preferred! /.
  • the CTFE copolymer of the present invention may be a polymer constituting either a resin or an elastomer, but preferably constitutes a resin.
  • CTFE copolymer of the present invention those having a melt flow rate [MFR] of 0.1 to 70 (gZlO content) are preferred!
  • MFR melt flow rate
  • gZlO content a more preferred lower limit of the above MFR
  • a more preferred upper limit is 50 (gZlO content).
  • the above MFR is a value obtained by measuring the mass of the CTFE copolymer flowing out of a nozzle with an inner diameter of 2 mm and a length of 8 mm under a load of 5 kg under a temperature of 70 ° C higher than the melting point using a melt indexer under a load of 5 kg per 10 minutes. It is.
  • the CTFE copolymer of the present invention preferably has a melting point [Tm] of 150 to 300 ° C.
  • Tm melting point
  • a more preferred lower limit is 160 ° C
  • a still more preferred lower limit is 170 ° C
  • a more preferred upper limit is 290 ° C.
  • the melting point [Tm] is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° CZ using a differential scanning calorimeter [DSC].
  • the CTFE copolymer of the present invention is preferably one in which the temperature [Tx] at which 1% by mass of the CTFE copolymer subjected to the heating test decomposes is 370 ° C or more.
  • a more preferred lower limit is 380 ° C, and a still more preferred lower limit is 390 ° C.
  • the thermal decomposition temperature (Tx) is within the above range.
  • the upper limit can be, for example, 450 ° C.
  • the thermal decomposition temperature [Tx] is the temperature at which the mass of the CTFE copolymer subjected to the heating test using a differential thermogravimetric device [TG-DTA] decreases by 1% by mass. This is the value obtained from this.
  • the difference [Tx-Tm] between the above melting point [Tm] and the temperature [Tx] at which 1% by mass of the CTFE copolymer decomposes is 150 ° C or more. Is preferred. If the temperature is lower than 150 ° C, the moldable range is too narrow, and the range of choice of molding conditions is reduced. Since the above-mentioned CTFE copolymer has a wide moldable temperature range as described above, a high-melting polymer can be used as a mating material when co-extrusion molding is performed. A more preferable lower limit of the difference [Tx ⁇ Tm] is 170 ° C. If the difference [Tx ⁇ Tm] is within the above range, the upper limit can be set to, for example, 210 ° C., since the range of selection of molding conditions is sufficiently wide.
  • CTFE copolymer of the present invention 35 mass% hydrochloric acid permeability coefficient for measuring sheet 2. 5 X 10 _13 (g'cm ) / (cm 2 ' sec) as less is preferred. A more preferred upper limit of 35 wt% hydrochloric acid permeability coefficient for measuring sheet, 1. 5 X 10 _ 13 ( g'cm) Z (cm 2 ' s), still more preferred upper limit, 1. 0 X 10 _13 (g 'cm) Z (cm 2 ' s).
  • a preferable lower limit of the hydrochloric acid permeability coefficient of the measurement sheet is within the above range, for example, 0.001 ⁇ 10 ′′ 13 (g-cm) / (cm 2 ⁇ second).
  • the measurement sheet is a 0.2 mm-thick sheet obtained by compression-molding the CTFE copolymer of the present invention at a molding temperature of 50 ° C. higher than the melting point at a molding pressure of 5 MPa.
  • the CTFE copolymer of the present invention has a 35% by mass hydrochloric acid permeability coefficient [Px] of the measurement laminated tube (A) with respect to the 35% by mass hydrochloric acid permeability coefficient [Py] of the comparative single-layer tube (a).
  • [PxZPy] is preferably 0.7 or less.
  • a more preferred upper limit of the above [PxZPy] is 0.5, and a still more preferred upper limit is 0.2.
  • [PxZPy] may have a preferable lower limit of, for example, 0.001 as long as it is within the above range.
  • the multilayer tube for measurement (A) is prepared by using the CTFE copolymer of the present invention as the polymer forming the outer layer and the tetraflue when the melting point of the CTFE copolymer exceeds 210 ° C. as the polymer forming the inner layer.
  • tetrafluoroethylene Z is used as the perfluoro (propylbutyl ether) copolymer [PF A].
  • the perfluoro (methyl vinyl ether) copolymer [MFA] was put into a multi-layer extruder, and if the melting point of the CTFE copolymer exceeded 210 ° C, the cylinder temperature of the inner layer was 380 ° C. C.
  • the cylinder temperature of the outer layer is set to a temperature that is 75 to 105 ° C higher than the melting point of the CTFE copolymer of the present invention and the die temperature is 395 ° C, and the melting point of the CTFE copolymer is 210 ° C or less
  • the cylinder temperature of the inner layer was set to 270 ° C
  • the cylinder temperature of the outer layer was set to 75 to 90 ° C higher than the melting point of the CTFE copolymer of the present invention
  • the die temperature was set to 290 ° C
  • the take-up speed was 0.5 mZ min.
  • the comparative single-walled tube (a) was prepared under the same conditions as the above-mentioned laminated tube for measurement (A) except that the CTFE copolymer of the present invention was not used, and tetrafluoroethylene Z perfluoro (alkylbutyl ether) was used.
  • the CTFE copolymer of the present invention has a 35% by mass hydrochloric acid permeability coefficient [Pz] of the measurement tube (B) with respect to the 35% by mass hydrochloric acid permeability coefficient [Py] of the comparative single-layer tube (b).
  • the ratio [PzZPy] is preferably 0.7 or less.
  • a more preferred upper limit of the above [PzZPy] is 0.5, and a still more preferred upper limit is 0.2.
  • [PzZPy] can have a lower limit of, for example, 0.001 as long as it is within the above range.
  • the measurement tube (B) is a tube obtained by performing a pressure test on the measurement laminated tube (A), and the comparison single-layer tube (b) is described above. This is a tube obtained by performing a pressure test on the single-layer tube (a) for comparison.
  • the pressurization test was performed by cutting the measurement tube (A) and the comparative single-layer tube (a) to a length of 30 cm, sealing one end with a Swagelok cap and filling with pure water, A pump is connected to the other end to form a pressurizing device, and the entire pressurizing device is intermittently pressurized at 0 to 2 MPa for 1 second in a thermostatic chamber temperature-controlled to 25 ° C. This is a test that performs 100,000 cycles in the Z cycle.
  • a molded article obtained by using the above-mentioned CTFE copolymer is also one of the present invention.
  • the molded article of the present invention may be a resin molded article or rubber, but is preferably a resin molded article.
  • the shape of the molded article of the present invention is not particularly limited, and may be, for example, a hose, pipe, tube, sheet, seal, gasket, packing, film, tank, roller, bottle, container, or the like.
  • the molded article of the present invention is not particularly limited, and examples include a block molded article, a thin-film molded article, a bottle-shaped molded article, and a tank-shaped molded article obtained by using the above-mentioned CTFE copolymer.
  • Examples of the thin film-shaped molded body include a fluid packaging member, a fluid transfer member for a food production apparatus such as a lining material, a knocking, a sealing material, and a sheet of a fluid transport line used in a food production process;
  • Chemical stoppers, packaging films, and chemical transfer members such as lining materials, packing, sealing materials, and sheets for fluid transfer lines used in the chemical manufacturing process;
  • Car body carburetor flange gaskets, shaft seals, valve stem seals, sealing materials, hoses, etc. used for automotive engines and peripheral equipment, other automotive parts such as automotive brake hoses, air conditioner hoses, radiator hoses, electric wire coatings, etc .; Equipment o (square) ring, tube, packing, valve core, hose, sealing material, roll, gasket, diaphragm, joints, etc., chemical liquid transfer member for semiconductor equipment; coating roll for coating equipment, hose, tube, ink Paint for containers, etc. Ink members; Tubes for food and drink or tubes for food and drink such as hoses, belts, packings, joints and other food and drink transfer materials, food packaging materials, glass cooking equipment;
  • Tubes and hoses for waste liquid transportation such as tubes and hoses for waste liquid transportation;
  • Tubes and hoses for transporting high-temperature liquids such as high-temperature liquid transportation members
  • Anticorrosion tape for piping such as tape wrapped around piping on ship decks
  • covering materials such as electric wire covering materials, optical fiber covering materials, and transparent surface covering materials provided on the light incident side surface of photovoltaic elements of solar cells; Sliding members such as diaphragms and various packings of diaphragm pumps; Agricultural films, various roofing materials, weatherproof covers such as side walls;
  • interior materials used in the construction field coating materials for glasses such as non-combustible fire safety glass; Lining materials such as laminated steel sheets used in the home appliance field;
  • Examples of the fuel transfer member used in the fuel system of the automobile include a fuel hose, a filler hose, and an evaporative hose.
  • the fuel transfer member can also be used as a fuel transfer member for a fuel containing a gasoline additive such as a sour gasoline-resistant gasoline-resistant fuel, an alcohol-resistant fuel, and a methyl tertiary butyl ether'ammine-resistant.
  • the chemical stopper's packaging film for chemicals has excellent chemical resistance to acids and the like. Further, as the above-mentioned chemical liquid transfer member, an anticorrosion tape to be wound around a chemical plant piping can be cited.
  • Examples of the above-mentioned tank-shaped molded body include a radiator tank of an automobile, a chemical liquid tank, a bellows, a spacer, a roller, a gasoline tank, a container for transporting a waste liquid, a container for transporting a high-temperature liquid, a fishery and fish farming Tanks and the like.
  • molded article of the present invention include, for example, automobile bumpers, door trims, instrument panels, food processing equipment, cooking equipment, water- and oil-repellent glass, lighting-related equipment, display boards for OA equipment, and a lighting type. Signs, displays, crystal displays, mobile phones, printed boards, electrical and electronic components, miscellaneous goods, waste bins, bathtubs, unit baths, ventilation fans, lighting frames, etc.
  • the thin-film shaped body may be a single-layered body, or may be a laminated body including the above-described CTFE copolymer layer and other layers.
  • Examples of the other layers include a metal substrate, a resin molded product, and a rubber substrate. Among them, a resin molded product is preferable.
  • the resin molded article examples include a molded article made of a known fluorine-free resin such as a molded article made of a fluorine resin such as PTFE and PFA, and a molded article made of a polyamide.
  • a fluorine resin it is preferable to use a melt-processable fluorine resin.
  • Melt-processable fluororesins include CTFA copolymers such as PFA and ECTFE, FEP, PVDF, ETFE, MFA and the like.
  • the resin molded body may be a laminate in which the type of resin in each layer is the same or different.
  • the resin molded body may have a certain layer as a stretched body and another layer as a non-stretched body, or at least two layers under different stretching conditions. It may be a laminate obtained by laminating extension bodies.
  • the molded article of the present invention may be a CTFE copolymer containing additives such as a filler, a pigment, a conductive material, a heat stabilizer, a reinforcing agent, and an ultraviolet absorber.
  • additives such as a filler, a pigment, a conductive material, a heat stabilizer, a reinforcing agent, and an ultraviolet absorber.
  • rubber it may contain additives such as a crosslinking agent, an acid acceptor, a vulcanizing agent, a vulcanization accelerator, and a curing catalyst.
  • examples of the conductive material include carbon fibrils and the like described in US Pat. No. 4,632,330, Japanese Patent Application Laid-Open No. 3-174018, and the like.
  • Additives such as the above fillers are preferably added in a range that does not impair the properties of the CTFE copolymer.
  • the surface resistance value of the fluorine ⁇ conductive composition obtained by blending a conductive material in the CTFE copolymer is preferably 1 X 10 ° ⁇ 1 X 10 9 ⁇ 'cm.
  • a more preferred lower limit is 1 ⁇ 10 2 ⁇ 'cm, and a more preferred upper limit is 1 ⁇ 10 8 ⁇ 'cm.
  • the ⁇ surface resistance value of the CTFE copolymer conductive composition '' refers to a pellet obtained by melting and kneading the conductive material and the CTFE copolymer into a melt indexer, This is a value obtained by measuring the surface resistance value of an extruded strand obtained by heating and extruding in the melt indexer at an arbitrary temperature of 200 to 400 ° C. using a battery-type insulation resistance meter. .
  • the molded article of the present invention can be molded by a conventionally known method, for example, an injection molding method, an extrusion molding method, a blow molding method, a roto molding method, or the like.
  • a conventionally known method for example, an injection molding method, an extrusion molding method, a blow molding method, a roto molding method, or the like.
  • extrusion lamination is performed in addition to the multilayer co-extrusion molding method described below and a method using a crosshead. They may be stacked.
  • the molded article of the present invention may have a laminated structure including an inorganic film.
  • the inorganic film also has inorganic properties.
  • the inorganic film has an inorganic content of 50% by mass. Those described above are preferred. If the amount is less than 50% by mass, the gas nolia property may be poor.
  • the inorganic film has a more preferable lower limit of the inorganic content of 80% by mass, a still more preferable lower limit of 90% by mass, and particularly preferably 100% by mass. Since a small amount of organic matter may be mixed into the oil, the inorganic content may be 95% by mass or less, preferably 99% by mass or less from the viewpoint of industrial productivity.
  • the inorganic content is the content of an inorganic substance among the components contained in the inorganic film.
  • the inorganic content is a value obtained by measuring a change in mass before and after incineration when the inorganic film can be separated by thick peeling.
  • it is a value obtained by performing a surface analysis such as electron spectroscopy [ESCA] and total reflection infrared absorption [ATR-IR].
  • gas-nolia inorganic substance those capable of imparting gas-nolia property to the obtained fluorine-containing molded article (hereinafter, may be referred to as "gas-nolia inorganic substance") are preferable.
  • the gas-barrier inorganic substances include metals such as aluminum, silicon, titanium, zinc, zirconium, magnesium, tin, copper, and iron; metal compounds such as oxides, nitrides, and fluorides of the above metals; And carbon such as carbon [DLC].
  • the gas barrier inorganic substance may be one kind or two or more kinds.
  • gas nolia inorganic substances among these, aluminum oxide, silicon oxide, and DLC are preferable in terms of transparency and excellent gas barrier properties.
  • gas-barrier inorganic substance in terms of excellent gas-nolia properties, chemical resistance preferred by silicon oxide aluminum and silicon oxide silicon, and the case where the fluorine-containing molded article has a curved surface shape DLC is more preferable because it can be efficiently formed by using a plasma chemical vapor deposition method (plasma CVD method) described later.
  • the oxidized aluminum is a compound represented by AIO (X represents 0.5 to 1.5), and the oxidized silicon is SiO (y is 0.5 to 2). Is a compound represented by:
  • Examples of the material having the curved surface shape include a cylindrical shape such as a tube shape and a hose shape.
  • the inorganic film is mainly composed of hard carbon called i-carbon or hydrogenated amorphous carbon (a-C: H) mainly containing sp 3 bonds between carbon atoms.
  • a-C hydrogenated amorphous carbon
  • the structure of this DLC film can be analyzed by the following method. In the Raman spectrum, evaluating the ratio between sp 2 bonds and sp 3 bonds from relative intensity ratio of the Raman spectrum is separated into the G band near D band and 1530 cm _1 near 1390cm one 1 (I / ⁇ ). That is, I
  • the concentration of hydrogen and other elements in the DLC film that contains elements other than carbon depends on the type of the source gas used as the carbon source, the plasma generation, and the like. It is affected by the amount of impurities and the amount of additives in the atmosphere, the plasma generation conditions, the electrode arrangement method, and the like.
  • the source gas used as a carbon source contains hydrogen
  • the obtained DLC film usually contains 7% by mass or less of hydrogen.
  • oxygen in the source gas or oxygen in the air may be fixed in the DLC film.
  • Oxygen in the DLC film which is not preferable in terms of properties, is preferably 5% by mass or less.
  • the inorganic film preferably has a thickness of 5 x 10_9 to 1 x 10_6 m. 5 When X 10 _9 m is less than, might film is too thin becomes high gas permeability, and when it exceeds l X 10 _6 m, easily cracked by the shape because less flexible and flexible Gas permeability may increase. From the viewpoint of gas permeability, the inorganic film has a more preferred lower limit of 1 ⁇ 10 -8 m, a more preferred upper limit of 1 ⁇ 10 -7 m, and a still more preferred upper limit of 8 ⁇ 10 -8 m. The above inorganic film has a particularly preferable upper limit of 7 ⁇ 10 ⁇ 8 m in terms of flexibility, flexibility and transparency.
  • the thickness of the obtained fluorine-containing molded product is several tens of
  • the inorganic film is formed simultaneously with the formation of the inorganic film in the above-mentioned fluorine-containing molded body on a silicon wafer partially masked with a Kapton (registered trademark) adhesive tape. After removal, the step between the masked portion and the unmasked portion is measured using Taristep (Taylor Hobson). Silicon wafer The thickness of the inorganic film formed on the upper surface is defined as the thickness of the inorganic film in the fluorine-containing molded article.
  • the inorganic film preferably has excellent transparency depending on the use of the obtained fluorine-containing molded article.
  • the inorganic film preferably has a haze value of 30% or less, more preferably 20% or less. If the haze value is within the above range, the inorganic film may have a transparency of 0.5% or more, and may further have a haze value of 1% or more. Is also good.
  • a film having a small thickness is preferable as the above-mentioned film having excellent transparency, and a film having the above-mentioned DLC force is also preferable.
  • the above haze value is a value measured using a haze meter (manufactured by Toyo Seiki Seisaku-sho, direct reading haze meter) in accordance with JIS K 7136.
  • the molded article of the present invention is a fluid-transporting member, which can sufficiently activate the excellent properties of the CTFE copolymer of the present invention, such as chemical resistance, low liquid permeability, and heat resistance. ⁇ .
  • the “fluid transfer member” is a formed body obtained by using a CTFE copolymer, and is a member particularly suitable for transferring a fluid.
  • the fluid transfer member is not particularly limited, and includes, for example, piping materials such as tubes (tubes) and joints, and films used for diaphragm pumps.
  • the fluid transfer member usually has a portion that comes into contact with the fluid.
  • the tube is a tubular member such as a tube or a hose
  • the inside contacts with the fluid, and thus when the tubular member is a laminated member,
  • the innermost layer is in contact with a liquid such as a drug solution or food and drink.
  • the fluid transfer member may be a member made of the CTFE copolymer single layer of the present invention.
  • a laminated member of the CTFE copolymer single layer and another resin may be used.
  • the conventional high permeability and the use of a chemical solution cause problems such as corrosion of surrounding metal members.
  • problems such as the deterioration of rubber due to the transmitted chemical solution, but the resin according to the present invention was applied. If this is the case, the effect that the chemical solution that has passed through the seal portion volatilizes and corrodes the surrounding metal members can be greatly reduced, and the deterioration of the rubber material inside the resin embedding ring can be reduced.
  • Examples of the form applied here include a rubber seal material of a knurl seal and a wrapping packing, and these can be obtained by injection molding or secondary processing of an extruded product.
  • the fluid for transferring the fluid transfer member may be a gas or a liquid.
  • the liquid may be a volatile liquid or a fluid containing solid fine particles such as an abrasive. A little bit.
  • the fluid is not particularly limited, and includes, for example, foods and drinks such as milk, gas, and drug solutions.
  • the gas is not particularly limited, and includes, for example, ozone, hydrogen, oxygen, low molecular weight fluorocarbon, and the like. These exemplified gases may be gases used in the semiconductor manufacturing field.
  • the chemical is not particularly limited and includes, for example, organic acids such as acetic acid, formic acid, cresol, and phenol; inorganic acids such as hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, and hydrochloric acid; and peroxides such as aqueous hydrogen peroxide; A mixed solution of the above inorganic acids such as phosphoric acid peroxide, sulfuric acid peroxide and the like and hydrogen peroxide solution; an alkaline solution such as sodium hydroxide, potassium hydroxide, and ammonia water; alcohols such as methanol and ethanol; Amines such as ethylenediamine, diethylenetriamine and ethanolamine; amides such as dimethylacetamide; esters such as ethyl acetate and butyl acetate; hydrocarbon solvents such as xylene; chlorine solvents such as trichloroethylene; Ketones; ozone water; ultrapure water; functional water; and liquids such as a mixture of two or more
  • the fluid transfer member is not particularly limited, and includes, for example, the above-described fluid transfer member for a food manufacturing device, a drug solution transfer member, a fuel transfer member, a drug solution transfer member for a semiconductor device, a food and drink transfer member, and the like.
  • a chemical solution transfer member for a semiconductor device is preferable.
  • the fluid transfer member is a lining tube
  • the chemical solution that has passed through the lining layer is filled with gold when there is a space between the lining layer and the tube (when loosely piped). Hydrogen gas is generated by reacting with the base metal, and the pressure causes the lining layer to expand toward the inner surface There was a problem that it was impossible to secure an appropriate flow rate. If the lining layer is in close contact with the tube via an adhesive layer, the adhesive layer will be degraded and outgas will occur, causing the above-mentioned expansion problem and also corroding the metal tube. Let me do it. In the worst case, a through hole is created in the metal tube, and rainwater flows in from outside.
  • the low-permeability material according to the present invention is applied, the amount of the chemical permeating the lining layer can be greatly reduced, and the life can be extended.
  • Examples of the form applied here include a tube, a sheet, and the like. These can be obtained mainly by extrusion molding.
  • the low-permeability material according to the present invention exhibits a peel strength of 15 NZcm or more to a metal base material such as iron and SUS at an appropriate temperature by applying only a weak surface pressure.
  • the layer can be omitted, which can contribute to the cost reduction of tank production.
  • the temperature at this time is preferably 190 to 250 ° C, and heating can be performed with a hot air heater, a heating glove, or the like, but the form is not limited thereto. When pressure is applied, the use of a heating glove can simplify the process operation.
  • the pressure is preferably at least 0.05 MPa.
  • the buffer tank is generally composed of a resin alone.
  • the force that can be obtained by blow molding, rotomolding and the like is preferably such that the MFR is 1 to 3 gZlO for blow molding, and it is preferably 4 to 8 gZlO for rotomolding.
  • the volatile matter is 300 ° C and the weight loss of the volatile matter in one hour is 0.08% by mass or less.
  • the sensors are very important in controlling the chemical solution line.
  • the penetration of the chemical solution may damage the detection unit or increase the basic detection value, and the maintenance is very complicated. It is also a cost issue.
  • a pressure-sensitive sensor measures the deformation of the diaphragm installed in the bypass line of the chemical flow path using a metal pressure-sensitive device. Is detected.
  • permeation of the chemical solution corrodes the pressure-sensitive device, making normal detection difficult.
  • a chemical solution that has passed through the diaphragm damages the piezo-element, which hinders normal operation.
  • the concentration sensor for chemicals uses a spectroscopic method through a transparent tube to detect the increase or decrease in specific absorption to detect the concentration of the chemical, but when the chemical penetrates into the tube, the basic detection value is detected.
  • the temperature gradually rises and eventually goes out of the detection range.
  • the use of the low-permeation resin according to the present invention makes it possible to reduce the effects of these problems.
  • forms such as a tube, a sheet, and a diaphragm can be considered as forms provided for these uses, the form should be selected depending on a detection method, and is not limited to these.
  • the foreign matter removal by the filter is indispensable.
  • the chemical solution is often heated to a high temperature, the amount of permeation increases, and the surrounding members are increased. The damage to them will be greater.
  • a thicker molded product In order to reduce chemical permeation, a thicker molded product must be formed, but cracks are more likely to occur as the thickness increases.
  • the use of the molded article according to the present invention can reduce the permeation of a chemical solution with a thinner molded article, and has a higher elastic modulus than conventionally used PTFE, PFA, FEP, etc. Elastic deformation can be reduced.
  • Such filter housings are often formed by injection molding, but the MFR of the resin used is preferably between 10 and 20 g / 10 minutes!
  • the fluid transfer member is a laminated tube
  • the resin or the elastomer constituting each layer is melted
  • the fluid transfer member is obtained by a conventionally known multilayer coextrusion method such as a multi-mart method or a feed block method. It may be one obtained by using a crosshead for extruding the CTFE copolymer of the present invention melted on a tube prepared in advance.
  • the CTFE copolymer of the present invention can be suitably used for melt molding.
  • the CTFE copolymer of the present invention may be dissolved in an organic liquid or dispersed in water and Z or an organic liquid to be used as a liquid coating composition, or used as a powder coating composition. May be.
  • organic liquid conventionally known solvents such as hydrocarbons, esters, ethers, and ketones can be used.
  • the above-mentioned liquid coating composition or powder coating composition comprises a crosslinking agent, an acid acceptor, a vulcanizing agent, a vulcanization accelerator, a curing catalyst, a filler, a pigment, a conductive material, a heat stabilizer, a reinforcing agent, and an ultraviolet absorbing agent. It may also contain agents!
  • the powder coating may be composed of the CTFE copolymer and, if necessary, other resins other than the CTFE copolymer.
  • the other resin is not particularly limited as long as it is a resin that can be generally used in powder coatings, and may be either a thermoplastic resin or a thermosetting resin.
  • the above-mentioned other resin is preferably a heat-resistant resin.
  • the above-mentioned resin is more preferably not decomposed at a heating temperature when the CTFE copolymer is applied.
  • heat-resistant resin examples include silicone resin, fluorosilicone resin, polyamide resin, polyamideimide resin, polyimide resin, polyester resin, epoxy resin, polyphenylene sulfide resin, Examples include phenolic resin, acrylic resin, and polyethersulfone resin. One or more of the above-mentioned other resins may be used.
  • the powder coating may be used by adding additives and the like, if necessary, together with the CTFE copolymer!
  • the additive is not particularly limited as long as it is added to a general powder coating material.
  • a coloring pigment such as titanium oxide or cobalt oxide
  • Other pigments such as pigments and calcined pigments
  • conductivity-imparting materials such as conductive carbon for the purpose of imparting conductivity.
  • the additive may be a leveling agent, an antistatic agent, an ultraviolet absorber, a radical scavenger, or the like.
  • the method for producing the powder coating material of the present invention is not particularly limited, and examples thereof include a conventionally known method such as a pulverizing method, a granulating method, and a spray drying method.
  • the pulverization method include a method of pulverizing the CTFE copolymer and, if necessary, the raw material comprising the other resin and the additive using a pulverizer such as a pin mill or an impeller mill.
  • a pulverizer such as a pin mill or an impeller mill.
  • the granulation method for example, the above raw materials are mixed with a Henschel mixer, And a method of granulating using a granulator such as a speed mixer.
  • Examples of the spray drying method include a method in which the raw materials are dispersed in a solvent and sprayed into an atmosphere at a temperature equal to or higher than the melting point of the CTFE copolymer to obtain a powder.
  • the method for producing the powder coating may be a method in which the raw materials are mixed in advance by a mixer, then melt-kneaded by an ader, a melt extruder, or the like, then powder-framed, and classified if necessary. Good.
  • the particle size of the powder coating is not particularly limited, and it is generally preferable that the point force of the adhesiveness between the obtained coating film and the base material is small, but it is large for thick film. Is preferred.
  • the particle size of the powder coating may be appropriately determined according to the thickness of the target coating film, but is preferably, for example, 10 to 100111.
  • Examples of a coating film forming method for forming a coating film using the powder coating include a method including a step of applying the powder coating to a base material and performing a heat treatment.
  • the “step of applying a powder paint to a substrate and performing a heat treatment” includes simultaneously or almost simultaneously applying the powder paint to the substrate and performing the heat treatment.
  • Paint method (P) may be used!
  • a coating method (Q) in which the powder coating is applied to a substrate and then subjected to a heat treatment may be used.
  • the coating method (P) includes, for example, a method of performing a heat treatment while applying a powder coating to a substrate, such as a rotational molding method, and a method of immersing a heated substrate, such as a dipping fluid coating method, in the powder coating. Method and the like.
  • Examples of the coating method (Q) include an electrostatic powder coating method.
  • the powder coating is applied to the substrate means that the powder coating is placed in direct contact with the surface of the substrate, May be placed so that a primer layer is interposed between a coating film obtained from the powder coating material and a substrate.
  • the “primer layer” is a coating film obtained by coating a primer on a substrate.
  • the above-mentioned primer is an undercoat paint usually used for improving the adhesion between the coating film and the substrate.
  • the coating film may be in contact with the substrate.
  • the CTFE copolymer powder coating may be one in which the coating film and the base material are in contact with each other without the interposition of the primer layer.However, in order to further improve the adhesion between the coating film and the base material, This does not preclude the use of a primer layer.
  • the powder coating by not interposing the primer layer, compounds contained in the primer are decomposed and eluted, and the surface smoothness of the coating film obtained by having the primer layer is reduced. In some cases, and there is an advantage that the surface appearance of the base material such as color and pattern can be utilized depending on the application.
  • the heat treatment in the coating film forming method is preferably performed at a heating temperature that is equal to or higher than the melting point of the CTFE copolymer and equal to or lower than the decomposition temperature. If the temperature is lower than the melting point of the CTFE copolymer, the adhesiveness between the obtained coating film and the substrate may be insufficient. If the temperature exceeds the decomposition temperature of the CTFE copolymer, The performance of fluororesin may be impaired.
  • the heating temperature is preferably 300 ° C. in view of the surface smoothness, foaming and discoloration of the obtained coating film.
  • the time for performing the heat treatment varies depending on the type of the CTFE copolymer, the thickness of the coating film, and the like. However, when a coating film having a thickness of about 30 to 150 / zm is obtained, it is 15 to 60 minutes. A preferred upper limit is 30 minutes.
  • the method for forming a coating film of the present invention is for forming a coating film using the above powder coating material.
  • the method includes a step of performing a heat treatment at a heating temperature of less than 300 ° C.
  • the heating temperature can be relatively low in accordance with the heat resistance temperature of the base material. For example, even at 200 ° C, the adhesive strength and the surface smoothness can be improved. A good coating film can be obtained.
  • the substrate on which the powder coating of the CTFE copolymer is applied is not particularly limited as long as it has heat resistance at the above-mentioned heating temperature. Examples thereof include organic materials, inorganic materials, and metal materials. And the like.
  • Examples of the organic material include, among thermoplastic resins, thermosetting resins, and synthetic rubbers, those having heat resistance. Since the powder coating of the present invention has a low melting point and can be heated at a low temperature, the type of organic material that can be used as a base material is broadly selected as compared with conventional fluororesin powder coatings. be able to. The organic material may be a single type or a composite of two or more types!
  • thermoplastic resin examples include other fluorine resins other than the CTFE copolymer. Fats, polyacetal resins such as polyphenylene oxide resin [PPO], polyester resins, and
  • thermosetting resin examples include amino resin, epoxy resin, unsaturated polyester resin, phenol resin, urethane resin, silicone resin and the like.
  • Examples of the synthetic rubber include nitrile Z-butadiene rubber, isoprene rubber, styrene / butadiene rubber, black / prene / atari rubber, ethylene z propylene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene rubber, Acrylic rubber, epichlorohydrin rubber, polysulfide rubber, chlorinated polyethylene rubber and the like can be mentioned.
  • the inorganic material is not particularly limited and includes, for example, quartz; glass-based materials such as crystallized glass, foamed glass, heat-reflective glass, heat-absorbing glass, and double-layer glass; ceramics such as tiles, ceramics, and bricks. Substrate; natural stone; concrete-based or cement-based substrate; silicon such as single-crystal silicon, polycrystalline silicon, and amorphous silicon.
  • Examples of the metal material include metals such as aluminum, iron, nickel, titanium, molybdenum, magnesium, manganese, copper, silver, lead, chromium, beryllium, tungsten, and cobalt; compounds of these metals; Among them, alloys and the like which are two or more types are listed.
  • the above-mentioned base material which is also a metal material is coated with another metal by electric plating, melting plating, chromizing, siliconizing, calorizing, shirazing, thermal spraying, etc. on the metal surface for the purpose of corrosion prevention and the like. It may be one which has been subjected to the formation of a phosphate film by a phosphate treatment, the formation of a metal oxide by anodic oxidation or thermal oxidation, the electrochemical protection treatment, and the like.
  • the above-mentioned base material was subjected to sand blasting and shot blasting for the purpose of improving the adhesion to the coating film.
  • the surface may be subjected to a surface roughening treatment such as blasting, grid blasting, honing, paper scratching, wire scratching, and hair line treatment.
  • the powder coating of the CTFE copolymer can be suitably used.
  • the surface roughness (Ra) is a value obtained by a measuring method based on JIS B 1982.
  • the substrate having a surface roughness (Ra) within the above range include those not subjected to the above-mentioned surface roughening treatment.
  • the CTFE copolymer of the present invention is subjected to heat treatment at a temperature of less than 300 ° C.
  • the substrate and the obtained coating film which are not subjected to the surface roughening treatment are used.
  • it is possible to make the adhesiveness of this material practically sufficient, in order to further improve the adhesiveness between the coating film and the substrate it is not excluded that the substrate is subjected to a surface roughening treatment. What,
  • the above-mentioned powder coating material when the coating film has a treatment temperature of less than 300 ° C, the above-mentioned powder coating material may have the above-mentioned adhesive functional group. It is obtained from Since the above-mentioned coating film is obtained from the above-mentioned powder coating material, it has good adhesion to the substrate and surface smoothness, and also has heat resistance and corrosion resistance of the above-mentioned CTFE copolymer. It has characteristics such as chemical resistance, non-adhesion and the like.
  • a laminated structure composed of the base material and the coating film can be obtained.
  • the laminated structure may have the primer layer interposed between the base material and the coating film.However, since the powder coating of the present invention is used, the primer layer is interposed. Instead, the base material and the coating film can be in contact with each other.
  • the laminate of the present invention comprises a base material, and a coating film obtained by applying the powder coating material on the base material and performing a heat treatment.
  • This laminate has a laminate structure in which the base material and the coating film are in contact with each other without the above-described primer layer. Since the laminate has a coating film obtained by the powder coating force, as described above, even if the coating film is in contact with the base material, the adhesiveness between the coating film and the base material is improved. It can be sufficient for practical use.
  • Examples of the substrate include those similar to those described above for the substrate.
  • the laminate may have the base material, the coating film, and another layer on the coating film.
  • the other layer is not particularly limited, for example, an organic material, an inorganic material , Metal materials and the like, which may be used, and one or more of these may be used.
  • Examples of applications of the above-mentioned laminated structure and the laminate of the present invention include a coating for protecting a substrate from erosion by a chemical solution and the like, and a coating for imparting non-adhesiveness to the substrate surface.
  • the coating for protecting the base material from erosion by chemicals is not particularly limited, and examples thereof include semiconductor manufacturing equipment such as a knob, a tank, a diaphragm, a wafer carrier, and a wafer mounting table. ; Piping materials such as tubes, hoses and fittings; chemical and medical instruments; and applications such as corrosion-resistant linings for pipes, knobs, fittings, pumps and tanks.
  • the semiconductor manufacturing device and the components for the semiconductor manufacturing device are components constituting the semiconductor manufacturing device and Z or the semiconductor manufacturing device.
  • the piping material may be used as a component for the semiconductor manufacturing equipment.
  • Examples of the chemical include a highly corrosive chemical such as hydrofluoric acid.
  • the CTFE copolymer of the present invention can also be used as an additive such as a sliding agent and a processing aid.
  • the CTFE copolymer of the present invention has the above-described configuration, it has both stress crack resistance and low permeability of a chemical solution, and also has chemical resistance and heat resistance required during molding. A molded article is obtained.
  • CTFE copolymer A was evaluated for the following physical properties. Table 2 shows the results.
  • TG-DTA differential heat / thermogravimeter
  • DSC differential scanning calorimeter
  • the content of the monomer unit was calculated by appropriately combining NMR, FT-IR, elemental analysis, and X-ray fluorescence analysis according to the type of the component [A].
  • the content of each comonomer can be obtained by using the analysis values obtained by the 19 F-NMR method and the elemental analysis method of carbon (C), and the following formula.
  • TFE content (mol%) y: CTFE content (mol%)
  • z PPVE content (mol%)
  • Mc C content (wt%)
  • the PPVE content (z) is determined by 19 F-NMR method.
  • the carbon (C) content (Mc) is determined by elemental analysis. Using these values, the TFE content (X) and CTFE content (y) are determined.
  • the sample is left in this state, and about 1 ml is sampled from the sampling port 14 of the container 12b on the pure water side, and the chloride ion concentration Y (ppm) contained in the pure water is measured by an ion chromatograph (product name: IC7000-E). , Made by Yokogawa Electric Corporation).
  • T Elapsed time until transmission start color sampling (unit: seconds)
  • Sheet thickness Sheet thickness or tube thickness (unit: cm)
  • Cross-sectional area The area where the pure water of the sample sheet or tube comes into contact with the permeation tester, and the area (unit: cm 2 )
  • the outer layer of the tube is made of CTFE copolymer A and the inner layer is made of PFA (trade name: NEOFLON AP231SH, manufactured by Daikin Industries, Ltd.).
  • the pelletized CTFE copolymer A and the PFA pellets are supplied to the extruder for the outer layer and the inner layer, respectively, and the tube having an outer diameter of 19.lmm, an inner diameter of 15.9mm, and an outer layer thickness of 0.2mm is continuously fed. It was molded to obtain a laminated tube A.
  • Table 2 shows the temperature conditions during molding.
  • a test piece of lcm width is cut out from the laminated tube A and subjected to a 180 ° peel test at a speed of 25 mmZ using a Tensilon universal testing machine, and the maximum 5-point average in the elongation-tensile strength graph is used as the initial adhesive strength (NZcm) Asked.
  • CTFE copolymer and FEP (trade name: NEOFLON FEP NP30, manufactured by Daikin Industries, Ltd.) ⁇ ⁇ Compression molding at a molding temperature 50 to 70 ° C higher than the higher melting point of the resin and a molding pressure of 5 MPa As a result, a sheet having a total thickness of 0.5 ⁇ 0.05 mm was obtained. The obtained sheet was compression-molded at a molding pressure of 0.2 MPa and a molding temperature of 340 ° C.
  • a test piece of lcm width was cut out from the compression-molded sample of this laminated structure, and a 180 ° peel test was performed at a speed of 25 mmZ using a Tensilon universal testing machine, and the maximum 5 point average in the elongation-tensile strength graph was initially bonded. It was determined as strength (NZcm).
  • the laminated tube A was cut into a length of 30 cm, one end was sealed with a cap manufactured by Swagelok Company, filled with pure water, and a pump was connected to the other end to form a pressurizing device.
  • the entire pressurizing device was installed in a thermostat whose temperature was adjusted to 25 ° C. Subsequently, the pressurizing and depressurizing operation of 0 MPa to 2 MPa for the laminated tube A was set to be automatically controlled by the Z cycle for 1 second, and the repeated pressurization test on the laminated tube A was started. After 100,000 cycles of pressurization and decompression, the pump was stopped, the tube was removed, and the tube was dried. This was designated as laminated tube B.
  • the tube between the packings 23 was in contact with pure water, and the length of the contact portion was 18.5 cm.
  • the sample was left in this state, and about 1 ml was sampled from the sampling port 24, and the chloride ion concentration contained in the pure water was quantified using an ion chromatograph in the same manner as in the sheet transmission test.
  • the sample shape was a strip having a maximum thickness of 100 / ⁇ , an extrusion direction of 3 mm, and a circumferential direction of 1 mm.
  • Ten strip samples were prepared from one type of laminated tube. The specific gravity of these samples was measured using a density gradient tube, and the average value of 10 points was used as the specific gravity X of the laminated tube A outer layer.
  • the resin listed in Table 2 was compression-molded at a molding temperature of 50 to 70 ° C higher than the melting point of each resin and a molding pressure of 5 MPa to obtain a sheet with a total thickness of 0.2 ⁇ 0.03 mm.
  • the obtained sheet was cut into a strip having a maximum thickness of 100 m, an extrusion direction of 3 mm, and a circumferential direction of lmm.
  • Ten strip samples were prepared from one type of sheet.
  • the specific gravity of this sample was also measured using a density gradient tube in the same manner as the specific gravity X of the laminated tube, and the average value of 10 points was used as the specific gravity Y of the compression molded sheet.
  • the specific gravity change rate D was determined by the following equation.
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that CTFE was set at 19.3 kg and TFE was set at 13 kg among the initial monomer charged amounts, to obtain 20.6 kg of a powdery CTFE copolymer B. Since the obtained CTFE copolymer B had a relatively low melting point, the inner layer of the laminated tube had a lower melting point than that of PFA and was made of tetrafluoroethylene Z perfluoro, described in Comparative Example 5 below. (Methyl vinyl ether) copolymer [MFA] was used, and the adhesive strength with PTFE was measured without measuring the adhesive strength with PFA and FEP. Otherwise, the same physical property evaluation as in Example 1 was performed. Table 2 shows the results.
  • MFA Metal vinyl ether copolymer
  • a sheet with a total thickness of 0.5 ⁇ 0.05 mm was obtained by compression molding at a molding temperature and a molding pressure of 5 MPa.
  • the obtained sheet and a PT FE sheet (trade name: New Polyflon PTFE Ml 12, manufactured by Daikin Industries, Ltd.) were compression-molded at a molding pressure of 0.2 MPa and a molding temperature of 340 ° C.
  • a test piece of lcm width was cut from the compression-molded sample of this laminated structure and subjected to a 180 ° peel test at a speed of 25 mmZ using a Tensilon universal testing machine. The bond strength (NZcm) was determined.
  • CTFE was 41.5 kg and TFE was 4.6 kg of the initial monomer charge, to obtain 22.6 kg of CTFE copolymer E as granular powder.
  • the polymerization rate at this time was reduced to 71% of Example 2.
  • the obtained CTFE copolymer E was not subjected to the MIT bending life measurement and the measurement of the adhesive strength with PTFE, but was otherwise subjected to the same physical property evaluation as in Example 2. Table 2 shows the results.
  • Example 6 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that the initial monomer charge amount was changed to CTFE9.2 kg, TFE21.lkg, PPVE3.1 kg, to obtain 24.8 kg of a granular powdery CTFE copolymer F.
  • the measurement of the adhesive strength with PFA, FEP, and PTFE was not performed, and the other physical properties were evaluated as in Example 1 except for the above. Table 2 shows the results.
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that the initial monomer charge amounts were 7.1 kg of CTFE, 18.3 kg of TFE, and 31.3 kg of PPVE, to obtain 23.7 kg of CTFE copolymer G as granular powder. Was. At this time, the polymerization rate was reduced to 65% of Example 1.
  • the same physical property evaluation as in Example 2 was performed without measuring the adhesive strength with PTFE. Table 2 shows the results.
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that the initial monomer charge was 29.3 kg for CTFE, 8.6 kg for TFE, and 0.5 kg for ethylene, without using PPVE.
  • a powdery CTFE copolymer H was obtained.
  • the obtained CTFE copolymer H was not subjected to the MIT bending life measurement and the measurement of the adhesive strength with PTFE, but was otherwise subjected to the same physical property evaluation as in Example 2. Table 2 shows the results.
  • CTFE copolymer J was evaluated for physical properties in the same manner as in Example 2.
  • Table 2 shows the results Shown in
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that the initial monomer charge amount was 2.7 kg for CTFE and 22.8 kg for TFE without using PPVE, and 22.4 kg of CTFE copolymer K in granular powder was used. Got. The obtained CTFE copolymer K was not subjected to the MIT flex life measurement, the measurement of the adhesive strength with PFA, FEP, and PTFE, but the same physical property evaluation as in Example 1 was performed except for the above. Table 2 shows the results.
  • Example 2 Polymerization was carried out in the same manner as in Example 1 except that the initial monomer charge was changed to 6.6 kg for CTFE, 12.7 kg for TFE, and 69.2 kg for PPVE, but the polymerization rate was extremely slow, 20% or less of Example 2. The polymerization was stopped after 8.2 hours. It should be noted that only the composition analysis was performed on the obtained powdery CTFE copolymer, and it was confirmed that the obtained copolymer had the desired copolymer composition. Table 2 shows the analysis results.
  • Example 2 Polymerization and post-treatment were carried out in the same manner as in Example 1 except that the initial monomer charge amount was 21.8 kg for CTFE, 14.3 kg for TFE, and 2 kg for ethylene, without using PPVE. Polymer L was obtained. The melting point of the obtained CTFE copolymer L was too low, and a laminated tube could not be prepared. Table 2 shows the results.
  • Example 2 Polymerization was conducted in the same manner as in Example 1 except that the initial monomer charge was 5.4 kg, 5.8 kg TFE, and 205.1 kg HFP, without using octafluorocyclobutane and PPVE. The polymerization was stopped after 8.0 hours because the speed was extremely slow, 30% or less of that of Example 8. Note that only the composition analysis was performed on the obtained CTFE copolymer of the granular powder, and it was confirmed that the desired copolymer composition was obtained. Table 2 shows the analysis results.
  • the mixed monomer prepared to have the same composition as the desired copolymer was additionally charged so that the pressure in the tank was maintained at 0.78 MPa, and the total additional charged amount was about 100% by solvent ratio. %, The remaining gas in the tank is exhausted, and the produced polymer is taken out, washed with demineralized pure water, dried and dried in 30 kg of granular powder of tetrafluoroethylene Z perfluoro (methylbi-methyl). (MFA) copolymer was obtained. The obtained MFA was not subjected to the MIT bending life measurement and the measurement of the adhesive strength with PFA, FEP, and PTFE, and the physical properties were evaluated in the same manner as in Example 1 except for the above.
  • this MFA was not used as an outer layer material, but was used as an inner layer of a single-layer tube or a laminated tube with CTFE copolymer B, E, G, H, J or PCTFE, which has a relatively low melting point.
  • Table 2 shows the results of evaluating the physical properties of the single-walled tube in the same manner as in Example 1.
  • PCTFE pellets (trade name: NEOFLON CTFE M300P, manufactured by Daikin Industries, Ltd.), the same physical property evaluation as in Example 1 was performed except that the preparation of the laminated tube B and the measurement of the adhesive strength with PFA, FEP, and PTFE were not performed.
  • Table 2 shows the results.
  • PCTFE pellets (trade name: NEOFLON CTFE M300P, manufactured by Daikin Industries, Ltd.), the same physical property evaluation as in Example 2 was performed without measuring the adhesive strength with PTFE. Table 2 shows the results.
  • Example 1 For tetrafluoroethylene Z-perfluoro (propylbutyl ether) copolymer pellets (trade name: NEOFLON PFA AP231SH, manufactured by Daikin Industries, Ltd.), the adhesive strength with PFA, FEP, and PTFE was not measured.
  • Example 1 The same physical property evaluation was performed. However, this PFA is not used as the outer layer material, but as the inner layer of a single-layer tube or a laminated tube with CTFE copolymers A, C, D, F, I, K or PCTFE, which has a relatively high melting point. did.
  • Table 2 shows the results of evaluating the physical properties of the single-walled tube in the same manner as in Example 1.
  • the hydrochloric acid permeability coefficient of the film sheet was molded at a relatively mild molding temperature of 50 to 70 ° C higher than the melting point of CTFE copolymer, PFA, MFA, or PCTFE.
  • the transmission coefficient of the film sheet of CTFE copolymer or PCTFE is clearly about 1Z6 force of a sheet consisting of a single layer of PFA or MFA. It has been proved that it has excellent low chemical permeability. It was found that the higher the CTFE copolymer composition, the lower the transmission coefficient tends to be.
  • the CTFE copolymers A to J were laminated with a thickness of only about 0.2 mm on a PFA layer or MFA layer with a thickness of about 1.4 mm.
  • the excellent low chemical solution permeability of 1/2 to 1/50 of the PFA single-layer tube could be provided.
  • the PCTFE of Comparative Example 6 showed very low chemical permeability in the film sheet
  • the laminated tube A obtained by laminating it with PFA showed some low chemical permeability. It was found that the nature was exhibited. Bubbling was observed in the outer layer by visual inspection.
  • the stress crack property of the outer layer was tested.
  • chemical supply piping receives various stresses during actual use, so it is important that the outer layer of the laminated tube has sufficient stress crack resistance.
  • the stress is, for example, the internal pressure of the transfer chemical solution.
  • the laminated tube B maintains the permeability coefficient of the laminated tube A, the outer layer has good stress crack resistance.
  • Comparative Example 7 described above it was evident that PCTFE had good low chemical permeability as the laminated tube A. However, the permeability coefficient of the laminated tube B rapidly increased, indicating that the low chemical permeability of PCTFE itself was not exhibited as compared with the MFA monolayer.
  • the adhesiveness between the CTFE copolymer of the present invention and PFA or FEP tends to improve as the mole% of CTFE units in the CTFE copolymer of the present invention decreases.
  • the mol% of CTFE unit was 35 mol% or less, the adhesion was good, and when it was 30 mol% or less, the adhesion was stronger. From these results, when the adhesiveness between layers is required depending on the application, it is possible to achieve both excellent transmission coefficient and excellent adhesiveness within the mol% range of the CTFE unit.
  • the CTFE copolymer of the present invention has the above-described configuration, it has both stress crack resistance and low permeability of a chemical solution, and also has chemical resistance and heat resistance required during molding. A molded article is obtained.
  • the CTFE copolymer of the present invention can be suitably used, for example, as a molding material for a low-permeability tube for chemicals, and in particular, a chemical which can be co-extruded with a thermoplastic resin having a high melting point. It is suitable as a molding material for a low permeability tube.
  • FIG. 1 is a schematic view of an experimental apparatus used for a 35% by mass hydrochloric acid permeation test using a sheet.
  • FIG. 2 is a schematic view of an experimental apparatus used for a 35% by mass hydrochloric acid permeation test using a tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)

Abstract

耐ストレスクラック性と耐薬品性と耐熱性とを具備したクロロトリフルオロエチレン共重合体を提供する。 クロロトリフルオロエチレン単位、テトラフルオロエチレン単位、並びに、クロロトリフルオロエチレン及びテトラフルオロエチレンと共重合可能な単量体〔A〕に由来する単量体〔A〕単位から構成されるクロロトリフルオロエチレン共重合体であって、上記クロロトリフルオロエチレン単位及び上記テトラフルオロエチレン単位は、合計で90~99.9モル%であり、上記単量体〔A〕単位は、0.1~10モル%であることを特徴とするクロロトリフルオロエチレン共重合体である。

Description

明 細 書
クロ口トリフルォロエチレン共重合体
技術分野
[0001] 本発明は、クロ口トリフルォロエチレン共重合体及び成形体に関する。
背景技術
[0002] ポリクロ口トリフルォロエチレン〔PCTFE〕は、優れたガスバリア性や水蒸気低透過性 を有することが知られている。しカゝしながら、耐ストレスクラック性、耐熱性及び耐薬品 性が不充分であり、また、成形可能な温度範囲が狭いという問題があった。
[0003] PCTFEに而ストレスクラック性を付与するべぐクロ口トリフルォロエチレン〔CTFE〕 に種々の変性モノマーを共重合する試みがなされている。例えば、パーフルォロ(ァ ルキルビュルエーテル)〔PAVE〕を 0. 01〜1モル%共重合した CTFEZPAVE共 重合体が開示されている (例えば、特許文献 1参照。 ) o
[0004] この CTFEZPAVE共重合体では、耐ストレスクラック性が改善されているものの、耐 熱性が依然として不充分であり、熱分解温度があまり高くないので、例えば、相手材 との共押出成形を行う場合、相手材の融点によっては苛酷な成形条件に曝されるこ ととなり相手材との組み合わせが制限される不都合があった。
[0005] CTFEの共重合体としては、また、フッ化ビ-リデン 30〜60モル0 /0、テトラフルォロェ チレン〔TFE〕 10〜40モル0 /0、 CTFE10〜30モル0 /0、及び、必要に応じてパーフル ォロ(メチルビ-ルエーテル) 5〜 15モル0 /0の共重合組成を有するフルォロエラストマ 一(例えば、特許文献 2参照。)、 TFE及び Z又は CTFE (a)と、ビニルエーテル系モ ノマー(b)と、水酸基含有ビュルエーテル系モノマー(c)とを aZ (b + c)力約 40〜60 モル%となる割合で重合した水酸基含有含フッ素共重合体 (例えば、特許文献 3参 照。)等が提案されている。し力しながら、これらの CTFEの共重合体は、耐薬品性、 耐熱'性に劣る問題があった。
[0006] CTFEの共重合体としては、また、 TFE及び Z又は CTFE50〜99. 8モル%、 TFE 及び CTFE以外の含フッ素モノマー 0. 1〜49. 99モル0 /0、並びに、ィタコン酸、シト ラコン酸及びそれらの酸無水物から選択される少なくとも 1種の化合物 0. 01〜5モル %の共重合組成を有する含フッ素重合体が提案されている(例えば、特許文献 4参 照。;)。この含フッ素重合体は、接着強度向上を目的として、ィタコン酸等の化合物を 共重合組成として有することを必須としている。しかし、 TFEと CTFEとを共重合組成 として共に有する含フッ素重合体にっ 、て、具体的な開示はされて 、な 、。
[0007] 特許文献 1 :特開平 3— 287614号公報
特許文献 2:特開 2000 - 7732号公報
特許文献 3:特開昭 60 - 88078号公報
特許文献 4:欧州特許出願公開第 1375539号明細書
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、上記現状に鑑み、耐ストレスクラック性と耐薬品性と耐熱性とを具 備したクロ口トリフルォロエチレン共重合体を提供することにある。 課題を解決するための手段
[0009] 本発明は、クロ口トリフルォロエチレン単位、テトラフルォロエチレン単位、並びに、ク 来する単量体〔A〕単位力も構成されるクロ口トリフルォロエチレン共重合体であって、 上記クロ口トリフルォロエチレン単位及び上記テトラフルォロエチレン単位は、合計で
90〜99. 9モル0 /0であり、上記単量体〔A〕単位は、 0. 1〜10モル0 /0であることを特 徴とするクロ口トリフルォロエチレン共重合体である。
本発明は、上記クロ口トリフルォロエチレン共重合体を用いて得られることを特徴とす る成形体である。
以下に本発明を詳細に説明する。
[0010] 本発明のクロ口トリフルォロエチレン共重合体(以下、「CTFE共重合体」という。)は、 クロ口トリフルォロエチレン単位〔CTFE単位〕、テトラフルォロエチレン単位〔TFE単 と共重合可能な単量体〔A〕に由来する単量体〔A〕単位から構成されるものである。
[0011] 本明細書にぉ 、て、上記「CTFE単位」及び「TFE単位」は、 CTFE共重合体の分子 構造上、それぞれ、クロ口トリフルォロエチレンに由来する部分〔一 CFC1—CF―〕、 テトラフルォロエチレンに由来する部分〔一 CF -CF一〕であり、上記「単量体〔A〕
2 2
単位」は、同様に、 CTFE共重合体の分子構造上、単量体〔A〕が付加してなる部分 である。
[0012] 上記単量体〔A〕としては、 CTFE及び TFEと共重合可能な単量体であれば特に限 定されず、また、少なくとも 1種であれば 2種以上であってもよいが、エチレン〔Et〕、ビ -リデンフルオライド〔VdF〕、パーフルォ口(アルキルビュルエーテル)〔PAVE〕、下 記一般式 (I)
CX^^CX' CCF ) X2 (I)
2 n
(式中、 X1、 X3及び X4は、同一若しくは異なって、水素原子又はフッ素原子を表し、 X2は、水素原子、フッ素原子又は塩素原子を表し、 nは、 1〜10の整数を表す。)で 表されるビニル単量体、及び、下記一般式 (III)
CF =CF— OCH— Rf (III)
2 2
(式中、 Rfは、炭素数 1〜5のパーフルォロアルキル基)で表されるアルキルパーフル ォロビュルエーテル誘導体等が挙げられる。
上記単量体〔A〕は、 Et、 VdF、 PAVE及び上記一般式 (I)で表されるビュル単量体 よりなる群力も選ばれる少なくとも 1つであることが好ましい。
上記単量体〔A〕は、 PAVEとして、上記一般式 (I)で表されるビュル単量体として、 及び Z又は、上記一般式 (III)で表されるアルキルパーフルォロビュルエーテル誘 導体として、それぞれ 1種又は 2種以上を組み合わせて用いることができる。
[0013] 上記一般式 (I)で表されるビニル単量体としては特に限定されな 、が、例えば、へキ サフルォロプロピレン〔HFP〕、パーフルォロ(1, 1, 2—トリハイドロー 1一へキセン)、 パーフルォロ(1, 1, 5—トリハイド口— 1—ペンテン)、下記一般式 (IV)
H C = CX5Rf5 (IV)
2
(式中、 X5は、 H、 F又は CFであり、 Rf5は、炭素数 1〜10のパーフルォロアルキル
3
基である)で表されるパーフルォロ(アルキル)エチレン等が挙げられる。
上記パーフルォロ(アルキル)エチレンとしては、パーフルォロ(ブチル)エチレンが好 ましい。
上記一般式 (ΠΙ)で表されるアルキルパーフルォロビュルエーテル誘導体としては、 Rfが炭素数 1〜3のパーフルォロアルキル基であるものが好ましぐ CF =CF-OC
2
H -CF CFがより好ましい。
2 2 3
[0014] 上記 PAVEとしては、下記一般式 (II)
CF =CF-ORf1 (II)
2
(式中、 Rf1は、炭素数 1〜8のパーフルォロアルキル基を表す。)で表されるパーフ ルォロ(アルキルビュルエーテル)であることが更に好まし 、。上記一般式 (Π)で表さ れるパーフルォロ(アルキルビュルエーテル)としては、パーフルォロ(メチルビ-ルェ ーテノレ)、パーフノレオ口(ェチノレビニノレエーテノレ)、パーフノレオ口(プロビノレビニノレエ一 テル)、パーフルォロ(ブチルビ-ルエーテル)等が挙げられ、なかでもパーフルォロ( メチルビ-ルエーテル)、パーフルォロ(ェチルビ-ルエーテル)、又は、パーフルォ 口(プロピルビュルエーテル)が好まし 、。
[0015] 従来、 CTFEとビニルエーテルとは共重合性に劣る傾向にあった力 本発明の CTF
E共重合体は、 TFEをも共重合させることにより、 PAVE及び Z又はフッ素非含有ビ -ルエーテルを比較的高い共重合割合で共重合することを可能にしたものである。
[0016] 上記単量体〔A〕としては、また、 CTFE及び TFEと共重合可能な不飽和カルボン酸 類を用いてもよい。
上記不飽和カルボン酸類としては特に限定されず、例えば、炭素数 3〜6の不飽和 脂肪族カルボン酸類等が挙げられ、炭素数 3〜6の不飽和脂肪族ポリカルボン酸類 であってもよい。
上記不飽和脂肪族ポリカルボン酸類としては特に限定されず、例えば、マレイン酸、 ィタコン酸、シトラコン酸及びこれらの酸無水物等が挙げられる。
上記単量体〔A〕は、 2種以上であってもよいが、そのうちの 1種が VdF、 PAVE及び Z又は HFPである場合、ィタコン酸、シトラコン酸及びそれらの酸無水物と併用しなく てもよい。
[0017] 本発明の CTFE共重合体は、 TFEを必須単量体とし、更に、上記単量体〔A〕を後述 の特定割合にて付加させて得られたものであることにより、耐熱性、成形性、耐ストレ スクラック性、耐薬品性を向上することができたものである。
上記 CTFE共重合体は、また、従来ポリクロ口トリフルォロエチレン〔PCTFE〕の特徴 として知られていたガスノリア性、水蒸気低透過性のみならず、 PCTFEの性質として 従来知られていなカゝつた薬液等の液体低透過性をも有するものである。
[0018] 本発明の CTFE共重合体において、上記単量体〔A〕単位は、 0. 1〜10モル%であ り、 CTFE単位及び上記 TFE単位は、合計で 90〜99. 9モル%である。上記単量体 〔A〕単位が 0. 1モル0 /0未満であると、成形性、耐環境応力割れ性及び耐ストレスクラ ック性に劣りやすぐ 10モル%を超えると、薬液低透過性、耐熱性、機械特性、生産 性等に劣る傾向にある。
上記単量体〔A〕が PAVEである場合、上記単量体〔A〕単位のより好ま 、下限は、 0. 5モル%、より好ましい上限は、 5モル%、更に好ましい上限は、 3モル%である。
[0019] 本発明の CTFE共重合体における上記単量体〔A〕単位の割合は、 19F— NMR等の 分析により得られる値であり、具体的には、 NMR分析、赤外分光光度計 [IR]、元素 分析、蛍光 X線分析をモノマーの種類により適宜組み合わせて得られる値である。
[0020] 上記 CTFE単位は、上記 CTFE単位と TFE単位との合計の 10〜90モル0 /0であるこ とが好まし ヽ。上記 CTFE単位と TFE単位との合計に占める CTFE単位が 10モル% 未満であると、薬液低透過性が不充分となる場合があり、 90モル%を超えると、重合 速度が急激に低下し、生産性が低下するだけでなぐ耐薬品性が低下したり、耐熱 性が不充分となったりする場合がある。より好ましい下限は、 15モル%、更に好まし い下限は、 20モル%、より好ましい上限は、 80モル%、更に好ましい上限は、 70モ ル%、特に好ましい上限は、 55モル%である。
[0021] 上記 CTFE単位は、上記単量体〔A〕として PAVEを用いる場合、上記 CTFE単位と TFE単位との合計に対して幅広く選択することができ、より好ましくは、 15〜90モル %、更に好ましくは、 20〜90モル%とすることができる。
[0022] 本発明の CTFE共重合体は、単量体に由来するポリマー鎖部分が上記 CTFE単位 、 TFE単位及び単量体〔A〕単位カゝら構成されるものであれば、ポリマー鎖末端が上 記 CTFE単位、 TFE単位、及び、単量体〔A〕単位とは異なる化学構造であるもので あってよい。上記ポリマー鎖末端としては特に限定されず、例えば、後述の不安定末 端基であってもよい。
[0023] 本発明の CTFE共重合体は、 300°C以上の成形温度にて溶融成形する場合、炭素 数 106個あたり不安定末端基が 80個以下であるものが好ましい。炭素数 106個あたり 80個を超えると、成形温度が 300°C以上における溶融成形時に発泡を生じやすい。 より好ましい上限は 40個、更に好ましい上限は、 20個、特に好ましい上限は、 6個で ある。上記不安定末端基数は、上記範囲内であれば、測定限界の観点で下限を例 えば、 1個とすることができる。
300°C未満の成形温度にて溶融成形する場合、炭素数 106個あたり不安定末端基 数が 80個を超えるものが好ましい。 300°C未満の成形温度にて溶融成形する場合、 炭素数 106個あたり 80個以下であると、接着性が低下することがある。より好ましい下 限は 100個、更に好ましい下限は 150個、特に好ましい下限は 180個、最も好ましい 下限は 220個である。 300°C未満の成形温度にて溶融成形する場合、上記不安定 末端基数は、上記範囲内であれば、生産性の観点で、上限を、例えば、 500個とす ることがでさる。
[0024] 上記不安定末端基は、通常、連鎖移動剤又は重合時に用いた重合開始剤が付加し たことにより主鎖末端に形成されるものであり、連鎖移動剤又は重合開始剤の構造に 由来するものである。
本明細書において、上記「不安定末端基」は、 -CF CH OH、 -CONH 、—COF
2 2 2
、 一 COOH、 一 COOCH 、 一 CF = CF、又は、一 CF Hである。上記不安定末端
3 2 2
基としては、なかでも、 -CF CH OH、 -CONH 、 -COF,— COOH、及び、
2 2 2
COOCHが接着性、溶融成形時の発泡に影響しやすい。
3
[0025] 上記不安定末端基の数は、赤外分光光度計〔IR〕を用いて測定し得られる値である 。上記不安定末端基の数は、具体的には、上記 CTFE共重合体の粉末を融点より 5 0°C高い成形温度、 5MPaの成形圧力にて圧縮成形することにより得られた厚み 0. 25〜0. 30mmのフィルムシートを、赤外吸収スペクトル分析し、既知のフィルムの赤 外吸収スペクトルと比較して種類を決定し、その差スペクトル力 次式により算出した 個数である。
末端基の個数 (炭素数 106個あたり) = (lXK) Zt
1:吸光度
K:補正係数 t :フィルム厚(mm)
対象となる末端基の補正係数を表 1に示す。
[0026] [表 1]
Figure imgf000008_0001
[0027] 表 1の補正係数は炭素数 10°個あたりの末端基を計算するためにモデルィヒ合物の赤 外吸収スペクトルから決定する値である。
[0028] 本発明の CTFE共重合体は、 300°C未満の温度にて溶融成形あるいは加熱処理を する場合、接着機能性官能基を有するものが好ましい。本明細書において、接着機 能性官能基とは、上記 CTFE共重合体に含まれる重合体の分子構造の一部分であ つて、上記 CTFE共重合体と基材との接着性に関与し得るものを意味する。上記接 着機能性官能基は、このような接着性に関与し得るものであれば、官能基と通常称さ れるもののみならず、エーテル結合等の結合と通常称される構造をも含む概念であ る。
[0029] 上記接着機能性官能基としては、フッ素榭脂と基材との接着性に関与し得るもので あれば特に限定されず、例えば、カルボニル基、水酸基、アミノ基等が挙げられる。 本明細書において、上記「カルボニル基」は、炭素 酸素二重結合から構成される 炭素 2価の基であり、 C ( = 0)—で表されるものに代表される。上記カルボニル基 としては特に限定されず、例えば、カーボネート基、ハロゲノホルミル基、ホルミル基、 カルボキシル基、エステル結合 [ C ( = O) O ]、酸無水物結合 [ C ( = O) O C ( = 0)―]、イソシァネート基、アミド基、イミド基 [― C ( = 0)— NH— C ( = 0)―]、ゥ レタン結合 [― NH— C ( = 0) 0— ]、力ルバモイル基 [NH— C ( = O)― ]、カルバモ
2
ィルォキシ基 [NH― C ( = 0) 0— ]、ウレイド基 [NH― C ( = 0)— NH ]、ォキサ
2 2
モイル基 [NH -C ( = 0) -C ( = 0) ]等の化学構造上の一部分であるもの等が 挙げられる。
[0030] 上記カーボネート基は、— OC ( = 0) 0— R1 (式中、 R1は、有機基を表す。)で表され るものであ co=る。上記式中の R1である有機基としては、例えば炭素数 1〜20のアルキル 基、エーテル結合を有する炭素数 2〜20のアルキル基等が挙げられ、炭素数 1〜8 のアルキル基、エーテル結合を有する炭素数 2〜4のアルキル基等であることが好ま しい。上記カーボネート基としては、例えば一 OC ( = 0) OCH 、 一 OC ( = 0) OC H
3 3
、— OC ( = 0) OC H 、— OC ( = 0) OCH CH CH OCH CH等が好ましく挙げ
7 8 17 2 2 2 2 3
られる。
[0031] 上記アミド基は、下記一般式
[0032] [化 1]
[0033] (式中、 R2は、水素原子又は有機基を表し、 R3は、有機基を表す。 )で表される基で ある。
[0034] 上記アミド基、イミド基、ウレタン結合、力ルバモイル基、力ルバモイルォキシ基、ウレ イド基、ォキサモイル基等の窒素原子に結合する水素原子は、例えばアルキル基等 の炭化水素基により置換されて 、てもよ 、。
上記接着機能性官能基は、導入が容易である点、及び、得られる塗膜が適度な耐熱 性と比較的低温での良好な接着性とを有する点で、アミド基、力ルバモイル基、水酸 基、カルボキシル基、カーボネート基が好ましぐなかでも、カーボネート基がより好ま しい。
[0035] 上記 CTFE共重合体は、接着機能性官能基を有するものである場合、上記接着機 能性官能基を主鎖末端又は側鎖の何れかに有する重合体力 なるものであってもよ いし、主鎖末端及び側鎖の両方に有する重合体力もなるものであってもよい。主鎖末 端に接着機能性官能基を有する場合は、主鎖の両方の末端に有して!/ヽてもよ ヽし、 何れか一方の末端にのみ有していてもよい。上記 CTFE共重合体は、上記接着機 能性官能基を主鎖末端及び Z若しくは側鎖に有するとともに又はこれらに代え、接 着機能性官能基がエーテル結合等の結合と通常称される構造である場合、該接着 機能性官能基を主鎖中に有するものであってもよい。上記 CTFE共重合体は、主鎖 末端に接着機能性官能基を有する重合体からなるものが、機械特性、耐薬品性を著 しく低下させない理由で、又は、生産性、コスト面で有利である理由で好ましい。
[0036] 上記 CTFE共重合体は、側鎖に接着機能性官能基を有する重合体からなるもので ある場合、接着機能性官能基含有単量体を、目的のフッ素榭脂に応じた種類並び に配合のフッ素含有単量体及び Z又はフッ素非含有単量体と共重合させることによ り得ることができる。本明細書において、上記「接着機能性官能基含有単量体」とは、 接着機能性官能基を有する単量体を意味する。上記接着機能性官能基含有単量体 はフッ素原子を有して ヽてもよ ヽし有して!/、なくてもよ!ヽが、上述したフッ素含有単量 体及びフッ素非含有単量体は、接着機能性官能基を有しないものであり、この点で、 接着機能性官能基を有する接着機能性官能基含有単量体とは概念上区別される。
[0037] 接着機能性官能基含有単量体としては、下記一般式 (IV)
CX2 =CY2- (Rf4) -Z2 (IV)
2 n
(式中、 z2は、ヒドロキシル基、カルボ-ル基又はアミノ基を有する官能基を表し、 X2 及び Y2は、同一又は異なって、水素原子若しくはフッ素原子を表し、 Rf4は、炭素数 1〜40のアルキレン基、炭素数 1〜40の含フッ素ォキシアルキレン基、エーテル結 合を有する炭素数 1〜40の含フッ素アルキレン基、又は、エーテル結合を有する炭 素数 1〜40の含フッ素ォキシアルキレン基を表し、 nは、 0又は 1を表す。)で表される 不飽和化合物が好ましい。本明細書において、上記「ヒドロキシル基、カルボニル基 又はアミノ基を有する官能基」とは、ヒドロキシル基であってもよいし、カルボニル基で あってもよいし、ァミノ基であってもよいし、これらの接着機能性官能基の何れかを有 する官能基であってもよ 、ことを意味する。
上記接着機能性官能基含有単量体は、また、不飽和二塩基酸のモノエステル、ビニ レンカーボネート、無水マレイン、マレイン酸等であってもよい。
[0038] 上記 CTFE共重合体は、主鎖末端に接着機能性官能基を有する重合体であって、 上記接着機能性官能基がカーボネート基である重合体力 なるものである場合、パ 一ォキシカーボネートを重合開始剤として用いて重合する方法により得ることができ る。上記方法を用いると、カーボネート基の導入及び導入の制御が非常に容易であ ることや、経済性の面、耐熱性、耐薬品性等の品質面等力も好ましい。
[0039] 上記パーォキシカーボネートとしては、下記式
[0040] [化 2]
R4—— 0— C— 0— 0— C— 0— R5
II II
0 0
Figure imgf000011_0001
[0041] (式中、 R4及び は、同一又は異なって、炭素数 1〜15の直鎖状若しくは分岐状の 一価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数 1〜15の直鎖 状若しくは分岐状の一価飽和炭化水素基を表し、 R6は、炭素数 1〜15の直鎖状若し くは分岐状の二価飽和炭化水素基、又は、末端にアルコキシル基を有する炭素数 1 〜15の直鎖状若しくは分岐状の二価飽和炭化水素基を表す。)で表される化合物 が好ましい。
[0042] なかでも、上記パーォキシカーボネートとしては、ジイソプロピルパーォキシカーボネ ート、ジー n プロピルパーォキシジカーボネート、 t ブチルパーォキシイソプロピ ルカーボネート、ビス(4 tーブチルシクロへキシル)パーォキシジカーボネート、ジ 2—pェチルへキシルバーォキシジカーボネート等が好まし!/、。
[0043] 上記 CTFE共重合体は、主鎖末端に接着機能性官能基を有する重合体であって、 上記接着機能性官能基がカーボネート基以外である重合体力 なるものである場合 、上述のカーボネート基を導入する場合と同様に、パーォキシカーボネート、バーオ キシジカーボネート、パーォキシエステル、パーォキシアルコール等のパーォキサイ ドを重合開始剤として用いて重合することにより、パーオキサイドに由来する接着機 能性官能基を導入することができる。なお、「パーオキサイドに由来する」とは、パー オキサイドに含まれる官能基から直接導入されるか、又は、パーオキサイドに含まれ る官能基から直接導入された官能基を変換することにより間接的に導入されることを 意味する。
[0044] パーォキシカーボネート、パーォキシエステル等の上記重合開始剤の使用量は、目 的とするフッ素榭脂の種類や組成、分子量、重合条件、使用する開始剤の種類等に よって異なる力 得られる重合体 100質量部に対して 0. 05〜20質量部であることが 好ましぐ特に好ましい下限は 0. 1質量部であり、特に好ましい上限は 10質量部であ る。
[0045] 上記 CTFE共重合体を得るための重合方法としては特に限定されず、例えば、溶液 重合、乳化重合、塊状重合等の従来公知の重合方法が挙げられるが、工業的には フッ素系溶媒を用い、重合開始剤としてパーォキシカーボネート等を使用した水性 媒体中での懸濁重合が好まし 、。
[0046] 上記懸濁重合においては、フッ素系溶媒を水に添加して使用することができる。懸濁 重合に用いるフッ素系溶媒としては、例えば、 CH CC1F、 CH CC1 F、 CF CF C
3 2 3 2 3 2
CI H、 CF C1CF CFHC1等のハイド口クロ口フルォロアルカン類; CF C1CFC1CF
2 2 2 2 2
CF、 CF CFC1CFC1CF等のクロ口フルォロアルカン類;パーフルォロシクロブタン
3 3 3
、 CF CF CF CF、 CF CF CF CF CF、 CF CF CF CF CF CF等のパーフル
3 2 2 3 3 2 2 2 3 3 2 2 2 2 3 ォロアルカン類等が挙げられ、なかでも、パーフルォロアルカン類が好ましい。フッ素 系溶媒の使用量は、懸濁性及び経済性の面から、水に対して 10〜: LOO質量%が好 ましい。
[0047] 重合温度としては特に限定されず、 0〜100°Cであってよい。重合圧力は、用いる溶 媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、 通常、 0〜9. 8MPaGであってよい。
[0048] 上記 CTFE共重合体を得るための重合において、分子量調整のために、通常の連 鎖移動剤、例えば、イソペンタン、 n—ペンタン、 n—へキサン、シクロへキサン等の炭 化水素;メタノール、エタノール等のアルコール;四塩化炭素、クロ口ホルム、塩化メチ レン、塩化メチル等のハロゲンィ匕炭化水素等を用いることができる。パーオキサイド由 来の末端のカーボネート基等の接着機能性官能基の含有量は、パーォキシカーボ ネート等の重合開始剤の使用量、連鎖移動剤の使用量、重合温度等の重合条件に よって制御できる。
[0049] 本発明の CTFE共重合体としては特に限定されず、例えば、 CTFE/TFE/HFP 共重合体、 CTFEZTFEZVdF共重合体、 CTFEZTFEZPAVE共重合体、 CT FEZTFEZHFPZPAVE共重合体、 CTFEZTFEZVdFZPAVE共重合体、 C TFEZTFEZEt共重合体、 CTFEZTFEZEtZPAVE共重合体等が挙げられ、 CTFEZTFEZPAVE共重合体が好まし!/、。
本発明の CTFE共重合体は、榭脂、エラストマ一の何れを構成するポリマーであって もよいが、好ましくは、榭脂を構成するものである。
[0050] 本発明の CTFE共重合体としては、メルトフローレート〔MFR〕が 0. 1〜70 (gZlO分 )であるものが好まし!/、。 MFRが上記範囲内であると耐ストレスクラック性に優れたも のとなる。上記 MFRのより好ましい下限は、 l (gZlO分)、より好ましい上限は、 50 ( gZlO分)である。
上記 MFRは、メルトインデクサ一を用い、融点より 70°C高い温度、 5kg荷重下で内 径 2mm、長さ 8mmのノズルから 10分間あたりに流出する CTFE共重合体の質量を 測定し得られる値である。
[0051] 本発明の CTFE共重合体としては、融点〔Tm〕が 150〜300°Cであるものが好ましい 。より好ましい下限は、 160°C、更に好ましい下限は、 170°C、より好ましい上限は、 2 90°Cである。
上記融点〔Tm〕は、示差走査熱量計〔DSC〕を用いて 10°CZ分の速度で昇温したと きの融解ピークに対応する温度である。
[0052] 本発明の CTFE共重合体としては、加熱試験に供した CTFE共重合体の 1質量%が 分解する温度〔Tx〕が 370°C以上であるものが好ましい。より好ましい下限は、 380°C 、更に好ましい下限は、 390°Cである。上記熱分解温度〔Tx〕は、上記範囲内であれ ば上限を、例えば、 450°Cとすることができる。
上記熱分解温度〔Tx〕は、示差熱 ·熱重量測定装置〔TG— DTA]を用 Vヽて加熱試 験に供した CTFE共重合体の質量が 1質量%減少する時の温度を測定することによ り得られる値である。
[0053] 本発明の CTFE共重合体としては、上記融点〔Tm〕と、 CTFE共重合体の 1質量% が分解する温度〔Tx〕との差〔Tx— Tm〕が 150°C以上であることが好ましい。 150°C 未満であると、成形可能な範囲が狭すぎて成形条件の選択の幅が小さくなる。上記 CTFE共重合体は、成形可能な温度範囲が上述のように広いので、共押出成形を 行う場合、相手材として高融点ポリマーを用いることができる。上記差〔Tx— Tm〕のよ り好ましい下限は、 170°Cである。上記差〔Tx— Tm〕は、上記範囲内であれば成形 条件の選択の幅が充分に広い点で、上限を、例えば 210°Cとすることができる。
[0054] 本発明の CTFE共重合体は、測定用シートについての 35質量%塩酸透過係数が 2 . 5 X 10_13 (g'cm) / (cm2'秒)以下であるものが好ましい。測定用シートについて の 35質量%塩酸透過係数のより好ましい上限は、 1. 5 X 10_ 13 (g'cm) Z (cm2'秒) 、更に好ましい上限は、 1. 0 X 10_13 (g'cm) Z (cm2'秒)である。上記測定用シート についての塩酸透過係数は上記範囲内であれば好ましい下限を、例えば、 0. 001 X 10"13 (g-cm) / (cm2 ·秒)とすることができる。
上記測定用シートは、本発明の CTFE共重合体を、融点より 50°C高い成形温度、 5 MPaの成形圧力にて圧縮成形することにより得られた厚み 0. 2mmのシートである。
[0055] 本発明の CTFE共重合体は、比較用単層チューブ (a)についての 35質量%塩酸透 過係数〔Py〕に対する測定用積層チューブ (A)についての 35質量%塩酸透過係数 〔Px〕の割合〔PxZPy〕が 0. 7以下であるものが好ましい、上記〔PxZPy〕のより好ま しい上限は、 0. 5、更に好ましい上限は、 0. 2である。上記〔PxZPy〕は、上記範囲 内であれば好ましい下限を、例えば、 0. 001とすることができる。
[0056] 上記測定用積層チューブ (A)は、外層を形成するポリマーとして本発明の CTFE共 重合体を、内層を形成するポリマーとして、 CTFE共重合体の融点が 210°Cを超える 場合テトラフルォロエチレン Zパーフルォロ(プロピルビュルエーテル)共重合体〔PF A〕を、 CTFE共重合体の融点が 210°C以下である場合、テトラフルォロエチレン Z パーフルォロ(メチルビ-ルエーテル)共重合体〔MFA〕を、それぞれ多層押出機に 入れ、 CTFE共重合体の融点が 210°Cを超える場合は、内層のシリンダ温度を 380 。C、外層のシリンダ温度を本発明の CTFE共重合体の融点より 75〜105°C高い温 度、ダイ温度 395°Cに設定し、 CTFE共重合体の融点が 210°C以下である場合は、 内層のシリンダ温度を 270°C、外層のシリンダ温度を本発明の CTFE共重合体の融 点より 75〜90°C高い温度、ダイ温度 290°Cに設定し、引取り速度 0. 5mZ分にて多 層押出成形することにより得られたチューブであって、外層厚みがこの外層厚みと内 層厚みとの合計の 12.6%であるものである。上記比較用単層チューブ (a)は、本発 明の CTFE共重合体を用いない以外は上記測定用積層チューブ (A)と同じ条件に て、テトラフルォロエチレン Zパーフルォロ(アルキルビュルエーテル)共重合体を用 いて得られたチューブであって、上記測定用積層チューブと厚みが同じチューブで ある。
[0057] 本発明の CTFE共重合体は、比較用単層チューブ (b)についての 35質量%塩酸透 過係数〔Py〕に対する測定用チューブ (B)についての 35質量%塩酸透過係数〔Pz〕 の割合〔PzZPy〕が 0. 7以下であるものが好ましい。上記〔PzZPy〕のより好ましい 上限は、 0. 5、更に好ましい上限は、 0. 2である。〔PzZPy〕は、上記範囲内であれ ば、下限を、例えば 0. 001とすることができる。
[0058] 上記測定用チューブ (B)は、上述した測定用積層チューブ (A)に対し加圧試験を行 つたのち得られたチューブであり、上記比較用単層チューブ (b)は、上述した比較用 単層チューブ (a)に対し加圧試験を行ったのち得られたチューブである。
上記加圧試験は、上記測定用チューブ (A)及び比較用単層チューブ (a)を長さ 30c mに切断し、一端をスウェジロック社製のキャップを用いて封止して純水を満たし、も う一方の端部にポンプを接続して加圧装置を構成し、この加圧装置全体を 25°Cに温 度調整された恒温槽内で 0〜2MPaの断続的加圧操作を 1秒 Zサイクルで 10万サイ クル行う試験である。
[0059] 上記 CTFE共重合体を用いて得られる成形体もまた、本発明の一つである。
本発明の成形体は、榭脂成形体であってもよいし、ゴムであってもよいが、榭脂成形 体であることが好ましい。 [0060] 本発明の成形体の形状としては特に限定されず、例えば、ホース、パイプ、チューブ 、シート、シール、ガスケット、パッキング、フィルム、タンク、ローラー、ボトル、容器等 であってもよい。
本発明の成形体としては特に限定されず、例えば、上述の CTFE共重合体を用いて 得られるブロック成形体、薄膜状成形体、ボトル状成形体、タンク状成形体等が挙げ られる。
[0061] 上記薄膜状成形体としては、例えば、食品包装用フィルム、食品製造工程で使用す る流体移送ラインのライニング材、ノ ッキン、シール材、シート等の食品製造装置用 流体移送部材;
薬品用の薬栓、包装フィルム、薬品製造工程で使用される流体移送ラインのライニン グ材、パッキン、シール材、シート等の薬液移送部材;
自動車の燃料系統並びに周辺装置に用 、られる O (角)リング'チューブ ·パッキン、 バルブ芯材、ホース、シール材等、自動車の AT装置に用いられるホース、シール材 等の燃料移送部材;
自動車のエンジン並びに周辺装置に用いられるキャブレターのフランジガスケット、 シャフトシール、バルブステムシール、シール材、ホース等、 自動車のブレーキホース 、エアコンホース、ラジエーターホース、電線被覆材等のその他の自動車部材; 半導体製造装置の o (角)リング、チューブ、パッキン、バルブ芯材、ホース、シール 材、ロール、ガスケット、ダイヤフラム、継手等の半導体装置用薬液移送部材; 塗装設備用の塗装ロール、ホース、チューブ、インク用容器等の塗装'インク用部材; 飲食物用のチューブ又は飲食物用ホース等のチューブ、ホース、ベルト、パッキン、 継手等の飲食物移送部材、食品包装材、ガラス調理機器;
廃液輸送用のチューブ、ホース等の廃液輸送用部材;
高温液体輸送用のチューブ、ホース等の高温液体輸送用部材;
スチーム配管用のチューブ、ホース等のスチーム配管用部材;
船舶のデッキ等の配管に巻き付けるテープ等の配管用防食テープ;
電線被覆材、光ファイバ一被覆材、太陽電池の光起電素子の光入射側表面に設け る透明な表面被覆材等の各種被覆材; ダイヤフラムポンプのダイヤフラムや各種パッキン類等の摺動部材; 農業用フィルム、各種屋根材 '側壁等の耐侯性カバー;
建築分野で使用される内装材、不燃性防火安全ガラス等のガラス類の被覆材; 家電分野等で使用されるラミネート鋼板等のライニング材;
等が挙げられる。
[0062] 上記自動車の燃料系統に用いられる燃料移送部材としては、更に、燃料ホース、フィ ラーホース、エバポホース等が挙げられる。上記燃料移送部材は、耐サワーガソリン 用、耐アルコール燃料用、耐メチルターシャルブチルエーテル'耐ァミン等ガソリン添 加剤入燃料用の燃料移送部材として使用することもできる。
上記薬品用の薬栓'包装フィルムは、酸等に対し優れた耐薬品性を有する。また、上 記薬液移送部材として、化学プラント配管に巻き付ける防食テープも挙げることがで きる。
[0063] 上記タンク状成形体としては、例えば、自動車のラジェータタンク、薬液タンク、ベロ ース、スぺーサ一、ローラー、ガソリンタンク、廃液輸送用容器、高温液体輸送用容 器、漁業'養魚タンク等が挙げられる。
その他、本発明の成形体として、例えば、自動車のバンパー、ドアトリム、計器板、食 品加工装置、調理機器、撥水撥油性ガラス、照明関連機器、 OA機器の表示盤'ノヽ ウジング、電照式看板、ディスプレイ、結晶ディスプレイ、携帯電話、プリント基盤、電 気電子部品、雑貨、ごみ箱、浴槽、ユニットバス、換気扇、照明枠等も挙げられる。
[0064] 上記薄膜状成形体としては、なかでもフィルム又はチューブが好ましい。上記薄膜状 成形体は、単層体であってもよいし、上述の CTFE共重合体力 なる層とその他の層 とからなる積層体であってもよ 、。
上記その他の層としては、例えば、金属製基材、榭脂成形体、ゴム製基材等が挙げ られ、なかでも榭脂成形体が好ましい。
上記榭脂成形体としては、例えば、 PTFE、 PFA等のフッ素榭脂からなる成形体、ポ リアミドからなる成形体等の公知のフッ素非含有樹脂からなる成形体等が挙げられる 。フッ素榭脂としては、溶融加工性フッ素榭脂を用いることが好ましい。溶融加工性フ ッ素榭脂としては、 PFA、 ECTFE等の CTFE系共重合体、 FEP、 PVDF、 ETFE、 MFA等が挙げられる。
また、上記榭脂成形体は、各層の榭脂の種類が同一又は異なる積層体であってもよ い。上記榭脂成形体は、各層の榭脂の種類が同じ積層体である場合、ある層が延伸 体であり、他の層が非延伸体であってもよいし、延伸条件が異なる少なくとも 2つの延 伸体を積層してなる積層体であってもよ 、。
[0065] 本発明の成形体は、 CTFE共重合体に、充填剤、顔料、導電性材料、熱安定剤、補 強剤、紫外線吸収剤等の添加剤を含有したものであってもよいし、ゴムである場合、 架橋剤、受酸剤、加硫剤、加硫促進剤、硬化触媒等の添加剤を含有したものであつ てもよい。
このうち、上記導電性材料としては、例えば、米国特許第 46632330号明細書、特 開平 3— 174018号公報等に記載の炭素フィブリル等が挙げられる。
上記充填剤等の添加剤は、 CTFE共重合体の性質を損なわな 、範囲で添加するこ とが好ましい。
[0066] CTFE共重合体に導電性材料を配合してなるフッ素榭脂導電性組成物の表面抵抗 値は、 1 X 10°〜1 X 109 Ω 'cmであることが好ましい。より好ましい下限は、 1 X 102 Ω 'cmであり、より好ましい上限は、 1 X 108 Ω 'cmである。
本明細書において、上記「CTFE共重合体導電性組成物の表面抵抗値」は、上記導 電性材料と CTFE共重合体とを溶融混練して得られたペレットをメルトインデクサ一 に投入し、上記メルトインデクサ一中で 200〜400°Cの任意の温度で加熱して、押出 して得られた押出しストランドの表面抵抗値を、電池式絶縁抵抗計を用いて測定して 得られる値である。
[0067] 本発明の成形体は、従来公知の方法、例えば、射出成形法、押出し成形法、ブロー 成形法、ロト成形法等で成形することができる。例えば、本発明の成形体が、上述の CTFE共重合体力 なる層とポリイミド層とからなる積層体である場合、後述の多層共 押出成形法、クロスヘッドを用いる方法の他、押出ラミネーシヨンを行い積層するもの であってもよい。
[0068] 本発明の成形体は、無機膜を含む積層構造を有するものであってもよい。
上記無機膜は、無機物力もなるものである。上記無機膜は、無機含有率が 50質量% 以上であるものが好ましい。 50質量%未満であると、ガスノリア性に劣る場合がある。 上記無機膜は、ガスバリア性の点で、無機含有率のより好ましい下限が 80質量%、 更に好ましい下限が 90質量%であり、特に好ましくは 100質量%である力 上記無 機膜を形成する際に少量の有機物が混入する場合があるので、工業生産性の点で 、無機含有率が 95質量%以下、好ましくは 99質量%以下であるものであってよい。 本明細書において、上記無機含有率は、上記無機膜に含まれる成分のうち、無機物 の含有率である。本明細書において、上記無機含有率は、上記無機膜が厚ぐ剥離 して単離し得る場合、灰化前後の質量変化を測定して得られる値であり、上記無機 膜が薄ぐ剥離することができない場合、電子分光法〔ESCA〕、全反射赤外吸収法〔 ATR—IR〕等の表面分析を行うことにより得られる値である。
[0069] 上記無機物としては、得られる含フッ素成形体にガスノリア性を付与することができる もの(以下、「ガスノリア性無機物」ということがある。)が好ましい。上記ガスバリア性 無機物としては、例えばアルミニウム、ケィ素、チタニウム、亜鉛、ジルコニウム、マグ ネシゥム、錫、銅、鉄等の金属;上記金属の酸化物、窒化物、フッ化物等の金属化合 物;ダイヤモンドライクカーボン〔DLC〕等の炭素等が挙げられる。上記ガスバリア性 無機物は、 1種又は 2種以上であってよい。
[0070] 上記ガスノリア性無機物としては、なかでも、透明性を有し、ガスバリア性に優れる点 で、酸ィ匕アルミニウム、酸化ケィ素、 DLCが好ましい。上記ガスバリア性無機物として は、ガスノリア性に優れる点で、酸ィ匕アルミニウム、酸ィ匕ケィ素が好ましぐ耐薬品性 の点、及び、上記含フッ素成形体が曲面形状を有するものである場合、後述のブラ ズマ化学蒸着法〔プラズマ CVD法〕を用いて効率よく形成し得る点で、 DLCがより好 ましい。上記酸ィ匕アルミニウムは、 AIO (Xは、 0. 5〜1. 5を表す。)で表される化合 物であり、上記酸ィ匕ケィ素は、 SiO (yは、 0. 5〜2を表す。)で表される化合物である
y
。上記曲面形状を有するものとしては、例えば、チューブ状、ホース状等の円筒形状 のものが挙げられる。
[0071] 上記無機膜は、上記ガスノリア性無機物が DLCである場合、一般に、 iカーボン又は 水素化アモルファスカーボン (a— C :H)と呼ばれる硬質炭素により炭素原子間の sp3 結合を主体にして形成された炭素力 なる膜であり、非晶質で、高い屈折率を有する 非常に滑らかなモルフォロジを有しているものである。この DLCからなる膜は、通常、 以下の方法により構造を分析することができる。ラマンスペクトルにおいて、 1390cm 一1付近の Dバンドと 1530cm_1付近の Gバンドとに分離されたラマンスペクトルの相 対強度比 (I /\ )から sp2結合と sp3結合との割合を評価する。つまり、 I
D G D /\の割合
G
力 S小さ 、ほど sp3性の結合が多く存在して 、ると 、われて 、る(参考文献;山本尚之: トライボロジスト, Vol. 41, No. 9, p. 760 (1996) )。
[0072] また、一般に、 DLC膜には、炭素以外の元素が含まれている力 水素やその他の元 素が DLC膜中に含まれる濃度は、炭素源として用いる原料ガスの種類、プラズマ生 成雰囲気における不純物の量や添加物の量、プラズマ生成条件、電極の配置方法 等に影響を受ける。例えば、炭素源として用いる原料ガスに水素が含まれる場合、得 られる DLC膜には、通常、 7質量%以下の水素が含まれている。また、炭素源として 用いる原料ガスに酸素が含まれる場合やプラズマ生成時に真空度が低い場合、原 料ガス中の酸素や空気中の酸素が DLC膜中に固定されてしまうことがある力 ガス ノリア性の面で好ましくなぐ DLC膜中の酸素は、 5質量%以下が好ましい。
[0073] 上記無機膜は、厚みが 5 X 10_9〜1 X 10_6mであるものが好ましい。 5 X 10_9m未 満であると、膜が薄すぎてガス透過性が高くなる場合があり、 l X 10_6mを超えると、 柔軟性及び可撓性に劣るので形状によっては割れやすくなり、ガス透過性が高くなる 場合がある。上記無機膜は、ガス透過性の点で、より好ましい下限は 1 X 10_8mであ り、より好ましい上限は 1 X 10_7mであり、更に好ましい上限は 8 X 10_8mである。上 記無機膜は、柔軟性、可撓性及び透明性の点で、特に好ましい上限は 7 X 10_8mで ある。
[0074] 本明細書において、上記無機膜の厚みは、得られた含フッ素成形体が表面に数 10
X 10_ )m程度の凹凸や橈みを有するため、上記含フッ素成形体における実際の無 機膜の厚みを測定することが不可能であるので、以下の方法により測定して得られた 値である。即ち、カプトン (登録商標)粘着テープで一部分を予めマスキングされたシ リコンウェハー上に、上記含フッ素成形体において無機膜を形成するときに同時に 無機膜を形成する。取り出した後、マスキングされた部分とマスキングされていない部 分との段差をタリステップ (テーラーホブソン社製)を用いて測定する。シリコンウェハ 一上に形成された無機膜の厚みを上記含フッ素成形体における無機膜の厚みとす る。
[0075] 上記無機膜は、得られる含フッ素成形体の用途により、透明性に優れるものが好まし い。上記無機膜は、ヘイズ値が 30%以下であるものが好ましぐ 20%以下であるもの 力 り好ましい。上記無機膜は、ヘイズ値が上記範囲内であれば、通常求められる透 明性を保持している点で、 0. 5%以上であるものであってもよぐ更に 1%以上であつ てもよい。上記無機膜は、上記透明性に優れるものとしては、厚みが小さいものが好 ましぐ上記 DLC力もなる膜が好ましい。本明細書において、上記ヘイズ値は、 JIS K 7136に準拠し、ヘイズメーター (東洋精機製作所社製、直読ヘイズメーター)を 用いて測定した値である。
[0076] 本発明の成形体は、流体移送部材であることが本発明の CTFE共重合体の耐薬品 性、液体低透過性及び耐熱性等の優れた特性を充分に活力ゝせる点カゝら好まし ヽ。 本明細書において、上記「流体移送部材」は、 CTFE共重合体を用いて得られる成 形体であって、流体移送に特に適した部材である。
上記流体移送部材としては特に限定されず、例えば、チューブ (管)、継手等の配管 材料、ダイヤフラムポンプに用いられるフィルム等が挙げられる。
上記流体移送部材は、通常、流体と接触する部位を有するものであり、例えばチュー ブ、ホース等の管状物である場合、内側が流体と接触し、従って上記管状物が積層 部材である場合、最内層が薬液、飲食物等の液体と接触するものである。
上記流体移送部材は、本発明の CTFE共重合体単層カゝらなる部材であってもよ 、が
、上記 CTFE共重合体単層と他の樹脂との積層部材であってもよ ヽ。
[0077] 例えば薬液が使用される工程に沿って初期から列挙すると、薬液充填工程において 、継ぎ込み部のシール部材、金属管内へライニング処理した管体、金属缶体へライ ユング処理したタンク、流量を安定させる為に使用される緩衝タンク、各種センサー 部、フィルター筐体等が挙げられる。
[0078] 継ぎ込み部のヘッダー付近では従来浸透性の高 、薬液を用いるために、周辺の金 属部材が腐食するなどの問題に加え、ゴムを榭脂で包埋したリング等では榭脂を透 過した薬液がゴムを劣化させるなどの問題があつたが、本発明による榭脂を適用す ればシール部を透過した薬液が揮発して周囲の金属部材を腐食させる影響を大きく 低減できるし、榭脂包埋リングでは内部のゴム材の劣化を低減させる事が出来る。こ こで適用される形態としては、ノ レブシール、包みパッキンのゴム包材等が挙げられ 、これらは射出成形や、押出し成形品の二次加工等で得る事が出来る。
[0079] 上記流体移送部材を移送する流体としては、気体、液体の何れであってもよぐ上記 液体は、揮発性液体であってもよいし、研磨剤等の固体微粒子を含む流体であって ちょい。
上記流体としては特に限定されず、例えば、牛乳等の飲食物、ガス、薬液等が挙げ られる。
上記ガスとしては特に限定されず、例えば、オゾン、水素、酸素、低分子量フルォロ カーボン等が挙げられ、これら例示したガスは、半導体製造分野で使用されるガスで あってもよい。
上記薬液としては特に限定されず、例えば酢酸、蟻酸、クレゾール、フエノール等の 有機酸類;フッ化水素酸、硫酸、硝酸、リン酸、塩酸等の無機酸類;過酸化水素水等 の過酸化物;リン酸過水、硫酸過水等の上記無機酸類と過酸化水素水との混合液; 水酸化ナトリウム、水酸ィ匕カリウム、アンモニア水等のアルカリ溶液;メタノール、ェタノ ール等のアルコール類;エチレンジァミン、ジエチレントリァミン、エタノールアミン等 のァミン類;ジメチルァセトアミド等のアミド類;酢酸ェチル、酢酸ブチル等のエステル 類;キシレン等の炭化水素系溶剤;トリクロロエチレン等の塩素系溶剤;アセトン等の ケトン類;オゾン水;超純水;機能水;これらのうち 2種以上の混合液等の液体が挙げ られる。上記機能水は、半導体製造分野において、超純水に水素及びアンモニアを 溶存させてなる液体である。
上記流体移送部材としては特に限定されず、例えば、上述の食品製造装置用流体 移送部材、薬液移送部材、燃料移送部材、半導体装置用薬液移送部材、飲食物移 送部材等が挙げられ、なかでも、半導体装置用薬液移送部材が好ましい。
[0080] 上記流体移送部材は、ライニング管体である場合、ライニング層を透過した薬液が、 ライニング層と管体の間に空間がある場合には (ルーズに配管される場合には)、金 属基材と反応する事で水素ガスを生じ、その圧力によりライニング層を内面側に膨張 させてしまい、適当な流量を確保出来なくなるという問題があった。またライニング層 が管体に接着剤層を介して密着されてなる場合には、接着剤層を劣化させてアウト ガスを生じ、前述のような膨張問題を生じたり、同様に金属管体を腐食させてしまう。 最悪の場合には金属管体に貫通孔を生じさせ、外部より雨水の流入が発生してしま う。これに対して本発明による低透過材を適用すれば、ライニング層を透過する薬液 を大きく低減出来るために、長寿命化させることが出来る。ここで適用される形態とし ては、チューブ、シート等が挙げられる力 これらは主として押出し成形により得る事 が出来る。
[0081] ライニング缶体形態でのタンクでも、上述のように透過性の高い薬液を用いた場合に 、透過した薬液が同様の問題を生じさせるが、本発明による低透過材を適用すれば タンク寿命を長期化できる。一方で、本発明による低透過材は、鉄、 SUS等の金属 基材に対して、適当な温度下で、微弱な面圧力を与えるだけで 15NZcm以上の剥 離強度を示す事から、接着剤層を省略する事ができ、タンク製造の低コスト化に貢献 する事が出来る。この際の温度としては 190〜250°Cであることが好ましぐ熱風加熱 機、加熱小手等で加熱は出来るがその形態としてはこれらに制限されるものではな い。また加圧する際には加熱小手を使用すれば工程操作が簡略ィ匕出来る。圧力とし ては 0. 05MPa以上である事が好ましい。剥離強度の評価方法としては、 JIS C 5 016に準拠して行われる事が好まし!/、。
[0082] 緩衝用タンクは一般に榭脂単体で構成される事が多ぐこの樹脂に本発明による低 透過榭脂を適用すれば薬液の透過を低減でき、周辺部材へのダメージを軽減できる 。このようなタンクについては、ブロー成形、ロト成形等で得る事が出来る力 ブロー 成形には MFRが l〜3gZlO分のものが好ましぐロト成形には 4〜8gZlO分である 事が好ましい。また成形品の厚みをより厚く取るには、揮発分が 300°C、 1時間での 揮発分重量減少が 0. 08質量%以下である事が好ま 、。
[0083] センサー類は薬液ラインを制御する上で非常に重要である力 薬液の浸透により検 知部が損傷を受けたり、基礎検知値が上昇したりしてしまい、そのメンテナンスが非 常に煩雑でコスト的にも問題になっている。例えば感圧センサーでは薬液流路のバ ィパスラインに設置されたダイヤフラムの変形を、金属製の感圧装置を以つて測定す る事で検知している。し力しながら、薬液の透過により感圧装置が腐食してしまい、正 常な検知が困難になってしまう。同様の問題として、薄肉ダイヤフラムを極微動させる ピエゾ素子駆動型ダイヤフラムポンプ等でも、ダイヤフラムを透過した薬液がピエゾ 素子を損傷させてしまい、正常な動作に支障を来たしている。また薬液の濃度センサ 一では、透明なチューブ越しに分光法的手法にて、特定吸収の増減を検知する事で 薬液の濃度を検知するが、チューブ内に薬液が浸透してくると基礎検知値が次第に 上昇してしまい、ついには検知範囲を外れてしまうといった問題がある。本発明による 低透過榭脂を用いれば、これらの問題の影響を低減する事が可能である。これらの 用途に供される形態としてはチューブ、シート、ダイヤフラム等の形態が考えられるが 、検知手法に依存してその形態は選択されるべきであり、これらのみに制限されるも のではない。
[0084] また薬液を流通させるには、フィルターによる異物除去が不可欠である力 特にフィ ルターの筐体では薬液が高温に加熱されていることが多ぐより透過量が多くなりそ の周囲の部材が受ける損傷もより大きくなる。また薬液透過を低減させようとすればよ り肉厚の成形品を成形しなければならないが、肉厚化が進めばよりクラックを生じ易く
、自己重量での変形も無視出来なくなる。本発明による成形品を用いれば、より肉薄 な成形品にて薬液透過を低減出来、また従来用いられてきた PTFEや PFA、 FEP 等に比較して高弾性率である事から、自己重量での弾性変形が低減できる。このよう なフィルター筐体は、射出成形により成形される事が多いが、用いる榭脂の MFRは 1 0〜20g/10分力好まし!/ヽ。
[0085] 上記流体移送部材は、積層チューブである場合、各層を構成する榭脂又はエラスト マーをそれぞれ溶融させてマルチマ-ホールド法、フィードブロック法等の従来公知 の多層共押出成形法により得られたものであってもよいが、予め作成しておいた管上 に溶融した本発明の CTFE共重合体を押し出すクロスヘッドを用いて得られたもので あってもよい。
本発明の CTFE共重合体は、溶融成形に好適に用いることができる。
[0086] 本発明の CTFE共重合体は、また、有機液体に溶解、又は、水及び Z若しくは有機 液体に分散させ液状塗料組成物として用いてもょ 、し、粉体塗料組成物として用い てもよい。
上記有機液体としては、炭化水素系、エステル系、エーテル系、ケトン系等、従来公 知の溶剤を用いることができる。
上記液状塗料組成物又は粉体塗料組成物は、架橋剤、受酸剤、加硫剤、加硫促進 剤、硬化触媒、充填剤、顔料、導電性材料、熱安定剤、補強剤、紫外線吸収剤等を 含有したものであってもよ!/、。
[0087] 上記粉体塗料は、上記 CTFE共重合体と、必要に応じ、上記 CTFE共重合体以外 のその他の榭脂とからなるものであってよい。上記その他の榭脂としては、通常、粉 体塗料に用い得る榭脂であれば特に限定されず、熱可塑性榭脂又は熱硬化性榭脂 の何れであってもよい。上記その他の榭脂は、耐熱性榭脂であることが好ましぐ上 記 CTFE共重合体を塗装する際に加熱する温度で分解しな 、ものがより好ま 、。 上記耐熱性榭脂としては、例えば、シリコーン榭脂、フルォロシリコーン榭脂、ポリアミ ド榭脂、ポリアミドイミド榭脂、ポリイミド榭脂、ポリエステル榭脂、エポキシ榭脂、ポリフ ェ-レンスルフイド榭脂、フエノール榭脂、アクリル榭脂、ポリエーテルスルホン榭脂等 が上げられる。上記その他の榭脂は、 1種又は 2種以上を用いるものであってよい。
[0088] 上記粉体塗料は、上記 CTFE共重合体とともに、必要に応じ、添加剤等を添加して 用いるものであってよ!、。上記添加剤としては一般的な粉体塗料に添加されるもので あれば特に限定されず、例えば、着色を目的として、酸化チタン、酸化コバルト等の 着色顔料;防鲭等を目的として、防鲭顔料、焼成顔料等のその他の顔料;塗膜の収 縮率の低減を目的とし、また、塗膜の硬度を高めて傷付き易さを改良するために、力 一ボン繊維、ガラス繊維、ガラスフレーク、マイ力等のフィラー;導電性付与を目的とし て、導電性カーボン等の導電性付与材等が挙げられる。上記添加剤は、また、レベリ ング剤、帯電防止剤、紫外線吸収剤、ラジカル補足剤等であってもよい。
[0089] 本発明の粉体塗料の製造方法としては特に限定されず、例えば、粉砕方法、造粒方 法、スプレードライ法等の従来公知の方法等が挙げられる。上記粉砕方法としては、 例えば、上記 CTFE共重合体並びに必要に応じて上記その他の榭脂及び上記添加 剤からなる原材料をピンミル、インペラ一ミル等の粉砕機を用いて粉砕する方法等が 挙げられる。上記造粒方法としては、例えば、上記原材料をヘンシェルミキサー、ノヽ ィスピードミキサー等の造粒機を用いて造粒する方法等が挙げられる。上記スプレー ドライ法としては、例えば、上記原材料を溶媒に分散させ、上記 CTFE共重合体の融 点以上の温度の雰囲気中に噴霧して粉末にする方法等が挙げられる。上記粉体塗 料の製造方法は、上記原材料を予め混合機で混合し、次いで、エーダー、溶融押出 し機等で溶融混練した後、粉枠し、必要に応じて分級する方法であってもよい。
[0090] 上記粉体塗料の粒径としては特に限定されず、一般に、得られる塗膜と基材との接 着性の点力も小さいことが好ましいが、厚膜ィ匕のためには大きいことが好ましい。上 記粉体塗料の粒径は、目的とする塗膜の厚みに応じて適宜決定するものであってよ いが、例えば、 10〜100 111が好ましぃ。
[0091] 上記粉体塗料を用いて塗膜を形成するための塗膜形成方法としては、例えば、上記 粉体塗料を基材に塗布して加熱処理を行う工程を有するものが挙げられる。
本明細書において、上記「粉体塗料を基材に塗布して加熱処理を行う工程」は、上 記粉体塗料を基材に塗布することと、加熱処理を行うこととを同時又はほぼ同時に行 う塗装方法 (P)であってもよ!ヽし、上記粉体塗料を基材に塗布したのち加熱処理を 行う塗装方法 (Q)であってもよい。上記塗装方法 (P)としては、例えば、回転成形方 法等の粉体塗料を基材に塗布しながら加熱処理を行う方法、浸漬流動塗装方法等 の熱した基材を粉体塗料に浸漬する方法等が挙げられる。上記塗装方法 (Q)として は、例えば、静電粉体塗装方法等が挙げられる。
[0092] 本明細書にぉ 、て、上記「粉体塗料を基材に塗布して」とは、上記粉体塗料を基材 表面に直接接させて載置することと、上記粉体塗料を上記粉体塗料から得られる塗 膜と基材との間にプライマー層が介在することとなるように載置することとを含み得る 概念である。本明細書において、上記「プライマー層」は、プライマーを基材上に塗 装して得られる塗膜である。上記プライマーは、通常、塗膜と基材との接着性を向上 させるために用いられる下塗り塗料である。
[0093] 上記塗膜は、基材と接するものとすることができる。上記 CTFE共重合体の粉体塗料 はプライマー層を介在させず上記塗膜と基材とを接させるものであっても良いが、塗 膜と基材との接着性をより向上させるために、プライマー層を用いることを排除するも のではない。 [0094] 上記粉体塗料は、上記プライマー層を介在させないことにより、プライマーに含まれ る化合物等が分解して溶出したり、プライマー層を有することにより得られる塗膜の表 面平滑性が低下したりすることを防止することができる場合があり、また、用途によつ ては色、模様等の基材の表面外観を活かすことができるという長所がある。
[0095] 上記塗膜形成方法における加熱処理は、上記 CTFE共重合体の融点以上、分解温 度以下である加熱温度で行うものが好ま 、。上記 CTFE共重合体の融点未満の温 度であると、得られる塗膜と基材との接着性が不充分である場合があり、上記 CTFE 共重合体の分解温度を超える温度であると、フッ素榭脂の性能が損なわれるおそれ がある。上記加熱温度は、得られる塗膜の表面平滑性、発泡及び変色の点で、 300 °Cが好ましい上限である。
[0096] 上記加熱処理を行う時間は、上記 CTFE共重合体の種類、塗膜の厚み等によって 異なるが、 30〜 150 /z m程度の厚みの塗膜を得る場合、 15〜60分であってよぐ好 ましい上限は 30分である。
[0097] 本発明の塗膜形成方法は、上記粉体塗料を用いて塗膜を形成するためのものであ つて、上記粉体塗料を基材に塗布して上記 CTFE共重合体の融点以上、 300°C未 満である加熱温度で加熱処理を行う工程を有するものであることが好ましい。
上記加熱温度は、上記粉体塗料が低融点である場合、基材の耐熱温度に合わせて 比較的低温にすることができ、例えば 200°Cであっても、接着強度と表面平滑性とが 良好である塗膜を得ることができる。
[0098] 上記 CTFE共重合体の粉体塗料を塗布する基材としては、上述の加熱温度におい て耐熱性を有するものであれば特に限定されず、例えば、有機材料、無機材料、金 属材料等力 なるものが挙げられる。
[0099] 上記有機材料としては、例えば熱可塑性榭脂、熱硬化性榭脂、合成ゴム等のうち、 耐熱性を有するものが挙げられる。本発明の粉体塗料は、融点が低ぐ加熱温度を 低くすることが可能であるので、従来のフッ素榭脂の粉体塗料に比べて、基材として 用い得る有機材料の種類を広く選択することができる。上記有機材料は、 1種を用い たものであってもょ 、し、 2種以上からなる複合物であってもよ!/、。
[0100] 上記熱可塑性榭脂としては、例えば、上記 CTFE共重合体以外のその他のフッ素榭 脂、ポリフエ-レンオキサイド榭脂 [PPO]等のポリアセタール榭脂、ポリエステル榭脂
、ポリアミド榭脂、ポリアラミド榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、ポリカーボネ ート榭脂、アクリル系榭脂、スチレン系榭脂、アクリロニトリル Zブタジエン Zスチレン 榭脂 [ABS]、塩化ビニル系榭脂、エチレン Zビニルアルコール榭脂、セルロース系 榭脂、酢酸ビュル系榭脂、ポリエーテルエーテルケトン樹脂 [PEEK]、ポリスルホン 榭脂、ポリエーテルサルホン榭脂 [PES]、ポリエーテルイミド榭脂、ポリビュルアルコ ール榭脂、ポリフエ-レンスルフイド榭脂、変性ポリオレフイン榭脂等が挙げられる。上 記変性ポリオレフイン榭脂としては、例えばエポキシ変性ポリオレフイン榭脂等が挙げ られる。
[0101] 上記熱硬化性榭脂としては、例えば、アミノ榭脂、エポキシ榭脂、不飽和ポリエステル 榭脂、フエノール榭脂、ウレタン榭脂、シリコーン榭脂等が挙げられる。
上記合成ゴムとしては、例えば、二トリル Zブタジエンゴム、イソプレンゴム、スチレン /ブタジエンゴム、クロ口プレン/アタリ口ゴム、エチレン zプロピレンゴム、ウレタンゴ ム、シリコーンゴム、フッ素ゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、ェピ クロロヒドリンゴム、多硫ィ匕ゴム、塩素化ポリエチレンゴム等が挙げられる。
[0102] 上記無機材料としては特に限定されず、例えば、石英;結晶化ガラス、発泡ガラス、 熱線反射ガラス、熱線吸収ガラス、複層ガラス等のガラス系材料;タイル、セラミック、 レンガ等の窯業系基材;天然石;コンクリート系基材又はセメント系基材;単結晶シリ コン、多結晶シリコン、アモルファスシリコン等のシリコン等が挙げられる。
[0103] 上記金属材料としては、例えば、アルミニウム、鉄、ニッケル、チタン、モリブデン、マ グネシゥム、マンガン、銅、銀、鉛、クロム、ベリリウム、タングステン、コバルト等の金属 、これら金属の化合物、これら金属のうち 2種以上力 なる合金類等が挙げられる。
[0104] 上記金属材料力もなる基材は、腐蝕防止等を目的として、金属表面への電気メツキ、 溶融メツキ、クロマイジング、シリコナイジング、カロライジング、シヱラダイジング、溶射 等によるその他の金属による被覆、リン酸塩処理によるリン酸塩被膜の形成、陽極酸 化や加熱酸化による金属酸化物の形成、電気化学的防食処理等を行ったものであ つてもよい。
[0105] 上記基材は、塗膜との接着性を向上させることを目的として、サンドブラスト、ショット ブラスト、グリッドブラスト、ホー-ング、ペーパースクラッチ、ワイヤースクラッチ、ヘア 一ライン処理等の表面粗面化処理を行ったものであってもよい。
[0106] 上記基材は、表面粗さ (Ra)が 0. 1 μ m以下であっても上記 CTFE共重合体の粉体 塗料を好適に用いることができる。本明細書において、上記表面粗さ (Ra)は、 JIS B 1982に準拠した測定方法により得られる値である。表面粗さ (Ra)が上記範囲内 である基材としては、例えば、上述の表面粗面化処理を行っていないもの等が挙げら れる。本発明の CTFE共重合体を 300°C未満の温度にお!ヽて加熱処理する場合に おいては、上記基材に表面粗面化処理を施すことなぐ上記基材と得られる塗膜との 接着性を実用上充分なものとすることができるが、塗膜と基材との接着性をより向上さ せるために、上記基材に表面粗面化処理を施すことを排除するものではな 、。
[0107] 本発明の塗膜形成方法において、上記塗膜は、 300°C未満の処理温度である場合 には、上述の接着機能性官能基を有していてもよぐ上述の粉体塗料から得られるも のである。上記塗膜は、上述の粉体塗料カゝら得られるものであるので、基材との接着 性及び表面平滑性が良好であり、また、上述の CTFE共重合体が有する耐熱性、耐 食性、耐薬品性、非粘着性等の特性を有するものである。
[0108] 本発明の塗膜形成方法により、上記基材と、上記塗膜とからなる積層構造を得ること ができる。上記積層構造は、上記基材と上記塗膜との間に上述のプライマー層を介 在させたものであってもよいが、本発明の粉体塗料を用いるので、プライマー層を介 在させることなく上記基材と上記塗膜とが接しているものとすることができる。
[0109] 本発明の積層体は、基材と、上記基材上に上述の粉体塗料を塗布して加熱処理を 行うことにより得られた塗膜とからなるものである。この積層体は、上述したプライマー 層を介在させることなく上記基材と上記塗膜とが接している積層構造を有するもので ある。上記積層体は、上記粉体塗料力 得られる塗膜を有するものであるので、上述 したように、上記塗膜が基材と接するものであっても、塗膜と基材との接着性を実用 上充分なものとすることができる。上記基材としては、上述の基材について説明したも のと同様のものが挙げられる。
[0110] 上記積層体は、上記基材と、上記塗膜と、更に、上記塗膜上に他の層を有するもの であってもよい。上記他の層としては特に限定されず、例えば、有機材料、無機材料 、金属材料等力もなるものが挙げられ、これらの 1種又は 2種以上を用いるものであつ てよい。
[0111] 上述の積層構造及び本発明の積層体の用途としては、基材を薬液等の浸食から保 護するための被覆、基材表面に非粘着性を付与するための被覆等が挙げられる。 上記基材を薬液等の浸食カゝら保護するための被覆としては特に限定されず、例えば 、ノ レブ、タンク、ダイヤフラム、ウェハーキャリアー、ウェハー設置台等の半導体製 造装置'半導体製造装置用部品;チューブ、ホース、継手等の配管材料;化学'医療 用器具;パイプ、ノ レブ、継手、ポンプ、タンク等の耐食ライニング等の用途が挙げら れる。上記半導体製造装置 ·半導体製造装置用部品は、半導体製造装置及び Z又 は半導体製造装置を構成する部品である。上記配管材料は、上記半導体製造装置 •半導体製造装置用部品として用いるものであってもよい。上記薬液としては、フッ酸 等の高腐食性薬液等が挙げられる。
本発明の CTFE共重合体は、また、摺動剤、加工助剤等の添加剤として用いることも できる。
発明の効果
[0112] 本発明の CTFE共重合体は、上述の構成よりなるので、耐ストレスクラック性と薬液低 透過性とを両立するとともに、耐薬品性、成形時に必要とされる耐熱性をも具備した 成形体が得られるものである。
発明を実施するための最良の形態
[0113] 以下に実施例を示し、本発明を具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0114] 実施例 1
水 400kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 100kgを仕 込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次い でォクタフルォロシクロブタン 200kg、クロ口トリフルォロエチレン〔CTFE〕9. 13kg, テトラフルォロエチレン〔TFE〕 20kg,パーフルォロ(プロピルビュルエーテル)〔PPV E〕 10kgを圧入し、温度を 35°Cに調節し、攪拌を開始した。ここへ重合開始剤として ジ—n—プロピルパーォキシジカーボネート〔NPP〕の 50質量0 /0メタノール溶液を 0. 5kgを添加して重合を開始した。重合中には、所望の共重合体組成と同組成に調製 した混合モノマーを、槽内圧力が 0. 68MPaを維持するように追加仕込みしながら、 総追加仕込量が対溶媒比で約 10質量%に達するまで重合した後、槽内の残存ガス を排気して生成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて 25 . 7kgの粒状粉末の CTFE共重合体 Aを得た。得られた CTFE共重合体 Aについて 、以下のような物性評価を行った。結果を表 2に示す。
[0115] 〔熱分解開始温度〕
示差熱 ·熱重量測定装置〔TG— DTA〕(商品名: TGZDTA6200、セイコー電子社 製)を用い、試料 lOmgを昇温速度 10°CZ分で室温力 昇温し、試料が 1質量%減 少した温度をもって分解開始温度とした。
〔融点〕
示差走査熱量計〔DSC〕(商品名: RDC220、セイコー電子社製)を用いて、試料 3m gを 10°CZ分で室温から昇温し、溶融ピークの温度を融点とした。
[MFR]
ASTM D3307— 01に準拠し、メルトインデクサ一 (東洋精機社製)を用いて、融点 より 70°C高い温度、 5kg荷重で測定した内径 2mm、長さ 8mmのノズルから 10分間 あたりに流出するポリマーの質量 (gZlO分)である。
[0116] 〔各コモノマーの含量〕
NMR、 FT—IR、元素分析、蛍光 X線分析を成分〔A〕の種類によって適宜組み合わ せることでモノマー単位の含量を算出した。例えば CTFE、 TFE、 PPVEターポリマ 一の場合は、 19F— NMR法と炭素 (C)の元素分析法で得られた分析値と、以下の計 算式を用いることによって各コモノマーの含量が求められる。
[0117] [数 1]
Figure imgf000031_0001
y = 100 - x - z
χ: TFEの含量 (mol%) y: CTFEの含量 (mol%) z: PPVEの含量 (mol%) Mc: Cの含量 (wt%) [0118] 上式において、 PPVE含量(z)は19 F— NMR法により求められる。炭素(C)の含量( Mc)は元素分析によって求められる。さらにこれらの値を用いて上式力 TFE含量( X)および CTFE含量 (y)が求められる。
[0119] 〔シートの 35質量%塩酸透過係数〕
融点より 50〜70°C高い成形温度、 5MPaの成形圧力にて圧縮成形することにより、 厚み合計 0. 2 ± 0. 03mmのシートを得た。得られたシートを図 1に示す 2個のガラス 容器 12aおよび 12b (何れも容量 200ml)の中央にフッ素ゴム製の Oリング 13を用い て挟み込んだ。シートの片側の容器 12aに 35質量%の塩酸を、他方の容器 12bに 純水をそれぞれ 200mlずつ入れて、 25°Cの恒温槽内に静置した(このときサンプル シート 11の接液面は 70mm φとする)。この状態で放置し、純水側の容器 12bのサン プリング口 14から lmlほどサンプリングを行い、その純水中に含まれる塩素イオン濃 度 Y (ppm)をイオンクロマトグラフ(商品名:IC7000— E、横河電気社製)を用いて 里しァこ。
塩酸透過係数 X (g ' cm) / (cm2.秒)は、次の式を用いて計算した。
Χ= ( β X膜厚) Ζ断面積
[0120] |8 : Τに対し、 αをプロットしたとき、 αが Τに対して直線的に変化している期間 (Τ )
β の傾き
a:透過総量(単位: g) =Y X W X 10"6 (単位: gZ秒)
W :純水量(単位: ml)
T:透過開始カゝらサンプリングまでの経過時間(単位:秒)
膜厚:シートの厚み又はチューブの肉厚(単位: cm)
断面積:透過試験機にぉ 、て、サンプルシート又はチューブの純水が接して 、る部 分の面積 (単位: cm2)
[0121] 〔シートの MIT曲げ寿命〕
融点より 50〜70°C高い成形温度、 5MPaの成形圧力にて幅 13mm、厚さ 210〜23 0 mに成形した CTFE共重合体、 PFA、 PCTFEについて、 MIT耐揉疲労試験機 (東洋精機製作所製)を用い、 ASTM D— 2176に準拠した条件下で折り曲げを繰 り返し、破断するまでの回数を測定した。結果を表 2に示す。 [0122] 〔積層チューブ Aの作成〕
マルチマ-ホールドダイを装着した 2種 2層のチューブ押出し装置を用いて、チュー ブの外層が CTFE共重合体 A、内層が PFA (商品名:ネオフロン AP231SH、ダイキ ン工業社製)となるよう、外層及び内層用の押出機に、それぞれ CTFE共重合体 Aを ペレット化したものと PFAペレットとを供給して外径 19. lmm、内径 15. 9mm、外層 厚み 0. 2mmのチューブを連続して成形して積層チューブ Aを得た。成形時の温度 条件を表 2に示す。
[0123] 〔PFAとの接着強度測定〕
積層チューブ Aから lcm幅のテストピースを切り取り、テンシロン万能試験機を用い て、 25mmZ分の速度で 180° 剥離試験を行い、伸び量—引張強度グラフにおける 極大 5点平均を初期接着強度 (NZcm)として求めた。
〔FEPとの接着強度測定〕
CTFE共重合体および FEP (商品名:ネオフロン FEP NP30、ダイキン工業社製) 榭脂の融点のうち高い方の温度よりも 50〜70°C高い成形温度、 5MPaの成形圧力 にて圧縮成形することにより、厚み合計 0. 5±0. 05mmのシートを得た。得られたシ ートを 0.2MPaの成形圧力、 340°Cの成形温度にて圧縮成形した。この積層構造の 圧縮成形試料から lcm幅のテストピースを切り取り、テンシロン万能試験機を用いて 、 25mmZ分の速度で 180° 剥離試験を行い、伸び量—引張強度グラフにおける 極大 5点平均を初期接着強度 (NZcm)として求めた。
[0124] 〔積層チューブ Bの作成〕
積層チューブ Aを長さ 30cmに切断し、一端をスウェジロック社製のキャップを用いて 封止して純水を満たし、もう一方の端部にポンプを接続して加圧装置を構成した。こ の加圧装置全体を 25°Cに温度調整された恒温槽内に設置した。続いて積層チュー ブ Aに対して 0MPa〜2MPaの加減圧操作を 1秒 Zサイクルで自動制御するように 設定し、積層チューブ Aに対する繰り返し加圧試験を開始した。加減圧操作を 10万 サイクル行ったのちにポンプを停止してチューブ取りはずし、乾燥させた。これを積層 チューブ Bとした。
[0125] 〔積層チューブ A、 Bの 35質量%塩酸透過係数〕 表 2の積層チューブ A及び Bについて、図 2に示す次の方法で 35質量%塩酸透過係 数を調べた。まず積層チューブを 30cm長さに切断し、チューブ 21の片末端を熱に より溶封し、チューブ 21内に 52mlの 35質量%塩酸を入れ、もう一方のチューブ末端 も溶封した。塩酸の入ったチューブ 21をガラス管 22に挿入し、フッ素ゴム製のパツキ ン 23を用いて固定した。ついで、サンプリング口 24から純水を 110ml仕込み、 25°C の恒温槽内においた。このときパッキン 23間のチューブが純水に接液しており、接液 部分の長さは 18. 5cmであった。この状態で放置し、サンプリング口 24から lmlほど サンプリングを行い、その純水中に含まれる塩素イオン濃度をシートでの透過試験同 様にイオンクロマトグラフを用いて定量した。
[0126] 〔比重の変化率〕
表 2記載の積層チューブ Aの外層の表面から 100 m深さまでミクロトームを用いて 削ぎ取った。この時の試料形状は、最大厚みが 100 /ζ πι、押出方向 3mm、周方向 1 mmの短冊状とした。この短冊状試料を 1種類の積層チューブより 10枚作成した。こ れらの試料の比重を密度勾配管を用いて測定し、 10点の平均値をもって積層チュ ーブ A外層の比重 Xとした。また、表 2記載の榭脂について別途、各榭脂の融点より 50〜70°C高い成形温度、 5MPaの成形圧力にて圧縮成形することにより、厚み合 計 0. 2±0. 03mmのシートを得た。得られたシートを最大厚み 100 m、押出方向 3mm,周方向 lmmの短冊状に切削加工した。この短冊状試料を 1種類のシートより 10枚作成した。このサンプルについても上記積層チューブの比重 Xと同様に密度 勾配管を用いて比重を測定し、 10点の平均値をもって圧縮成形シートの比重 Yとし た。比重の変化率 Dは以下の式で求めた。
D=X /YX 100 (%)
このようにして求めた Dを表 2に示す。
[0127] 実施例 2
初期のモノマー仕込量のうち CTFEを 19. 3kg、 TFEを 13kgとした他は実施例 1と 同様にして重合及び後処理を行い、 20. 6kgの粒状粉末の CTFE共重合体 Bを得 た。得られた CTFE共重合体 Bは融点が比較的低力つたので、積層チューブの内層 を PF Aよりも融点が低い下記比較例 5記載のテトラフルォロエチレン Zパーフルォロ (メチルビ-ルエーテル)共重合体〔MFA〕とし、 PFA、 FEPとの接着強度測定を行 わず、 PTFEとの接着強度測定を行った。その他は実施例 1と同じ物性評価を行った 。結果を表 2に示す。
〔PTFEとの接着強度測定〕
CTFE共重合体の融点より 50〜70°C高!ヽ成形温度、 5MPaの成形圧力にて圧縮 成形することにより、厚み合計 0. 5±0. 05mmのシートを得た。得られたシートと PT FEシート(商品名:ニューポリフロン PTFE Ml 12、ダイキン工業社製)とを、榭脂 0. 2MPaの成形圧力、 340°Cの成形温度にて圧縮成形した。この積層構造の圧縮成 形試料から lcm幅のテストピースを切り取り、テンシロン万能試験機を用いて、 25m mZ分の速度で 180° 剥離試験を行い、伸び量 引張強度グラフにおける極大 5点 平均を初期接着強度 (NZcm)として求めた。
[0128] 実施例 3
初期のモノマー仕込量のうち CTFEを 5. 8kg、TFEを 49. 6kgとした他は実施例 1と 同様にして重合及び後処理を行い、 24. 6kgの粒状粉末の CTFE共重合体 Cを得 た。得られた CTFE共重合体 Cについて、実施例 1と同じ物性評価を行った。結果を 表 2に示す。
[0129] 実施例 4
初期のモノマー仕込量のうち CTFEを 2. 4kg、TFEを 24. 2kgとした他は実施例 1と 同様にして重合及び後処理を行い、 23. 8kgの粒状粉末の CTFE共重合体 Dを得 た。得られた CTFE共重合体 Dについて、積層チューブ Bの作成を行わず、それ以 外は実施例 1と同じ物性評価を行った。結果を表 2に示す。
[0130] 実施例 5
初期のモノマー仕込量のうち CTFEを 41. 5kg、TFEを 4. 6kgとした他は実施例 1と 同様にして重合及び後処理を行い、 22. 6kgの粒状粉末の CTFE共重合体 Eを得 た。このときの重合速度は実施例 2の 71%に低下した。得られた CTFE共重合体 E について、 MIT曲げ寿命測定、 PTFEとの接着強度測定は行わず、それ以外は実 施例 2と同じ物性評価を行った。結果を表 2に示す。
[0131] 実施例 6 初期のモノマー仕込量を、 CTFE9. 2kg、TFE21. lkg、 PPVE3. 1kgとした他は 実施例 1と同様にして重合及び後処理を行い、 24. 8kgの粒状粉末の CTFE共重合 体 Fを得た。得られた CTFE共重合体 Fについて、 PFA、 FEP、 PTFEとの接着強度 測定は行わず、それ以外は実施例 1と同じ物性評価を行った。結果を表 2に示す。
[0132] 実施例 7
初期のモノマー仕込量を、 CTFE7. lkg、TFE18. 3kg、 PPVE31. 3kgとした他は 実施例 1と同様にして重合及び後処理を行い、 23. 7kgの粒状粉末の CTFE共重合 体 Gを得た。このときの重合速度は実施例 1の 65%に低下した。得られた CTFE共 重合体 Gについて、 PTFEとの接着強度測定は行わず、実施例 2と同じ物性評価を 行った。結果を表 2に示す。
[0133] 実施例 8
PPVEを使用せず、初期のモノマー仕込量を、 CTFE29. 3kg、 TFE8. 6kg、ェチ レン 0. 5kgとした他は実施例 1と同様にして重合及び後処理を行い、 26. 3kgの粒 状粉末の CTFE共重合体 Hを得た。得られた CTFE共重合体 Hについて、 MIT曲 げ寿命測定、 PTFEとの接着強度測定は行わず、それ以外は実施例 2と同じ物性評 価を行った。結果を表 2に示す。
[0134] 実施例 9
ォクタフルォロシクロブタン及び PPVEを使用せず、初期のモノマー仕込量を、 CTF E3. 9kg、TFE20. 4kg、へキサフルォロプロピレン〔HFP〕 202kgとした他は実施 例 1と同様にして重合及び後処理を行い、 25. 8kgの粒状粉末の CTFE共重合体 I を得た。得られた CTFE共重合体 Iについて、 MIT曲げ寿命測定、 PFA、 FEP、 PT FEとの接着強度測定は行わず、それ以外は実施例 1と同じ物性評価を行った。結果 を表 2に示す。
[0135] 実施例 10
PPVEを使用せず、初期のモノマー仕込量を、 CTFE19. 3kg、 TFE13kg、 [H2P] (CH =CFCF CF CF H) 7. 4kgとした他は実施例 1と同様にして重合及び後処
2 2 2 2
理を行い、 20. 6kgの粒状粉末の CTFE共重合体 Jを得た。
得られた CTFE共重合体 Jについて、実施例 2と同じ物性評価を行った。結果を表 2 に示す。
[0136] 比較例 1
PPVEを使用せず、初期のモノマー仕込量を、 CTFE2. 7kg、 TFE22. 8kgとした 他は実施例 1と同様にして重合及び後処理を行い、 22. 4kgの粒状粉末の CTFE共 重合体 Kを得た。得られた CTFE共重合体 Kについて、 MIT曲げ寿命測定、 PFA、 FEP、 PTFEとの接着強度測定は行わず、それ以外は実施例 1と同じ物性評価を行 つた。結果を表 2に示す。
[0137] 比較例 2
初期のモノマー仕込量を、 CTFE6. 6kg、 TFE12. 7kg、 PPVE69. 2kgとした他は 実施例 1と同様にして重合を行ったが、重合速度が実施例 2の 20%以下と極端に遅 くなつたので、 8. 2時間後に重合を中止した。なお、得られた粒状粉末の CTFE共 重合体については、組成分析のみ行い、所望の共重合体組成であることは確認した 。分析結果を表 2に示す。
[0138] 比較例 3
PPVEを使用せず、初期のモノマー仕込量を、 CTFE21. 8kg、 TFE14. 3kg、ェチ レン 2kgとした他は実施例 1と同様にして重合及び後処理を行い、 23kgの粒状粉末 の CTFE共重合体 Lを得た。得られた CTFE共重合体 Lは融点が下がりすぎ、積層 チューブの作成ができなかった。結果を表 2に示す。
[0139] 比較例 4
ォクタフルォロシクロブタン及び PPVEを使用せず、初期のモノマー仕込量を、 CTF E5. 4kg、TFE5. 8kg、 HFP205. 1kgとした他は実施例 1と同様にして重合を行つ た力 重合速度が実施例 8の 30%以下と極端に遅くなつたので、 8. 0時間後に重合 を中止した。なお、得られた粒状粉末の CTFE共重合体については、組成分析のみ 行い、所望の共重合体組成であることは確認した。分析結果を表 2に示す。
[0140] 比較例 5
水 174kgを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 5 lkgを仕 込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次い でォクタフルォロシクロブタン 35kg、パーフルォロ(メチルビ-ルエーテル) 10kgを圧 入し、温度を 35°Cに調節し、攪拌を開始した。その後、 TFEを 0. 78Mpaまで圧入し 、ここへ重合開始剤として NPPの 50質量0 /0メタノール溶液を 0. 38kgを添カ卩して重 合を開始した。重合中には、所望の共重合体組成と同組成に調製した混合モノマー を、槽内圧力を 0. 78MPaを維持するように追加仕込みしながら、総追加仕込量が 対溶媒比で約 100質量%に達するまで重合した後、槽内の残存ガスを排気して生成 したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて 30kgの粒状粉末 のテトラフルォロエチレン Zパーフルォロ(メチルビ-ルエーテル)共重合体〔MFA〕 を得た。得られた MFAについて、 MIT曲げ寿命測定および PFA、 FEP、 PTFEとの 接着強度測定は行わず、それ以外は実施例 1同様の物性評価を行った。ただし、こ の MFAは外層材としては使用せず、単層チューブ又は比較的低融点である CTFE 共重合体 B、 E、 G、 H、 J又は PCTFEとの積層チューブの内層として使用した。単層 チューブの物性評価を実施例 1同様に行った結果を表 2に示す。
[0141] 比較例 6
PCTFEペレット(商品名:ネオフロン CTFE M300P、ダイキン工業社製)について 、積層チューブ Bの作成、および PFA、 FEP、 PTFEとの接着強度測定は行わず、 それ以外は実施例 1と同じ物性評価を行った。結果を表 2に示す。
[0142] 比較例 7
PCTFEペレット(商品名:ネオフロン CTFE M300P、ダイキン工業社製)について PTFEとの接着強度測定は行わず、それ以外は実施例 2と同じ物性評価を行った。 結果を表 2に示す。
[0143] 比較例 8
テトラフルォロエチレン Zパーフルォロ(プロピルビュルエーテル)共重合体ペレット ( 商品名:ネオフロン PFA AP231SH、ダイキン工業社製)について、 PFA、 FEP、 P TFEとの接着強度測定は行わず、それ以外は実施例 1同様の物性評価を行った。 ただし、この PFAは外層材としては使用せず、単層チューブ又は比較的高融点であ る CTFE共重合体 A、 C、 D、 F、 I、 K又は PCTFEとの積層チューブの内層として使 用した。単層チューブの物性評価を実施例 1と同様に行った結果を表 2に示す。
[0144] [表 2] シート及び単屠チューブ材料 ポリマー物性 シート 積層チューブ 積層チューブ B 積層チューブ Αの成形条件 又は CTFE共重合体組成 [モル%]
比重
PFAと FEPと PTFEと
35質量 ¾塩酸 ΜΙΤ曲 35莨量%塩酸 の 35質量%塩酸 シリンダ温度 チュ一 各屠の厚み の接着 の接着 の接着
熱分解 FR 透過係数 げ寿命 透過係数 変化 透過係数 ダイ ブ
¾点 強度 強度 強度
CTFE TFE PPVE Et HFP H2P 開始点 [g/10 [万回] 10"1 3 丁'3 率 1 0"1 3
[。c] [ [曰] 内層 外層 内層 温产 引取 外層 内層
[°c] 曰]
分] (g (g [%] (g [曰]
翻 [。c] [。c] [X] 速度 秒)] 秒)] 秒)] 分] 実施例 A 34.5 64.0 1.5 一 一 420 245 1.6 0.25 3~30 198 0.85 3-50 21 24 ― 0 0.89 3-50 PFA 330 380 395 0.5 0.20 1.40 実施例 2 B 61.6 37.0 1.4 - - 392 199 11 0.07 3〜30 2.1 0.29 3-50 38 0 0.48 3-50 MFA 280 270 290 0.5 0.20 1.39 実施例 3 C 24.7 73.0 2.3 - - 430 246 1.0 0.68 3~30 245 1.07 3〜50 30 43 0 0.98 3〜50 PFA 330 380 395 0.5 0.20 1.40 実施例 4 D 12.4 86 1.6 - ― 442 282 3.5 0.98 3〜30 >250 2.89 3〜50 38 48 - 1 - ― PFA 380 380 395 0.5 0.21 1.39 実施例 5 E 87 1 1.5 1.5 - 382 195 Θ 0.05 3〜30 0.22 3-50 - - 一 2 0.53 3〜50 MFA 280 270 290 0.5 0.20 1.40 実施例 6 F 35.1 64.5 0.4 - ― 410 255 1.3 0.29 3-30 45 1.03 3〜50 0 2.79 3-50 PFA 360 380 395 0.5 0.20 1.38 実施例 7 G 31.7 63.6 4.7 - - 383 206 4.3 0.42 3-30 >250 1.95 3〜50 - -4 1.83 3-50 FA 290 270 290 0.5 0.20 1.39 実施例 8 H 68.7 22 - 9.3 ― 370 172 8.0 0.09 3-30 1.03 3~50 - -6 2.26 3-50 FA 260 270 290 0.5 0.20 1.38 実施例 9 17.5 73 ― - 9.5 395 225 14 0.80 3〜30 2.58 3-50 ― - -3 2.79 3-50 PFA 320 380 395 0.5 0.20 1.38 実施例 10 J 61.1 37.4 - - - 1.5 392 202 12 0.06 3~30 >250 0.29 3-50 - - 35 0 0.38 3-50 MFA 280 270 290 0.5 0.20 1.39 比較例 1 K 29.7 70.3 - - ― 416 258 0.8 0.51 3〜30 - 2.18 3-50 0 5.9 3〜20 PFA 340 380 395 0.5 0.23 1.38 比較例 - - ― - - - 一 - - - - ― 比較例 3 し 52.9 17.1 ― 30 348 140 18 0.97 3-30 - - - - ― - 一 ―
比較例 4 38 44 - - 18 ― - ― 一 - 一 - ― - - - ― 比較例 5 FA 433 224 6.8 5.85 2〜6 ― 5.9 単層) 3-20 - 0 6.14(単層) 3~20 MFA 270 290 0.5 0.21 1.39 比較例 6 PCTFE 362 213 0.03 3-30 0.02 6.27 3-20 - -74 PFA 290 380 395 0.5 0.2 1.37 比較例 7 PCTFE 362 213 0.03 3—30 0.02 0.35 3〜50 -5 5.28 3— 20 MFA 290 270 290 0.5 0.21 1.39 比較例 a PFA 473 304 2.1 6.20 2-6 >250 6.21 単屠) 3〜20 - 0 6.1 1 (単層) 3— 20 PFA - 380 395 0.5 1.59
[0145] 表 2に示す物性評価において、フィルムシートの塩酸透過係数は、 CTFE共重合体 、 PFA、 MFA、又は、 PCTFEの融点より 50〜70°C高い温度という比較的穏やかな 成形温度で成形された場合の塩酸透過係数を表して!/ヽるが、 CTFE共重合体又は P CTFEのフィルムシートの透過係数は PFA又は MFAの単層からなるシートの約 1Z 6力ら ΙΖΙΟΟと、明らかに優れた低薬液透過性を有していることがわ力つた。 CTFE 共重合組成が高いと透過係数が低くなる傾向があることがわ力つた。次に、積層チュ ーブ Aの評価結果を観ると、 CTFE共重合体 A〜Jを厚み約 1. 4mmの PFA層又は MF A層に対してわずか約 0. 2mmの厚みで積層するだけで、 PFA単層チューブの 1/2から 1/50の優れた低薬液透過性を付与できていることがわ力つた。しかしな がら、比較例 6の PCTFEは、フィルムシートでは非常に優れた低薬液透過性を示し ているにも関わらず、 PFAと積層化して得られる積層チューブ Aにおいては、何らそ の低薬液透過性が発揮されて ヽな ヽことがわかった。外観目視では外層に発泡が見 受けられた。これは、本実施例及び比較例における共押出成形において、分解開始 温度 362°Cの PCTFEが PFAの成形に必要なダイ温度 395°Cという高温に曝される ことよって、 PCTFEが熱分解し層内に発泡が生じていることによること力 比重の変 化率により推察された。そこで、比較例 7において PCTFEをより最高成形温度が低 Vヽ MFAと共押出ししたところ、得られた積層チューブ Aは上記 CTFE共重合体に匹 敵する良好な低薬液透過性を示すことがわかった。
[0146] さらに、積層チューブ Aに動的な応力をカ卩えることにより、得られた積層チューブ Bに おいては、外層のストレスクラック性が試された。例えば薬液供給配管は実使用時に 様々な応力を受けるので、積層チューブの外層が充分な耐ストレスクラック性を有す ることが重要である。応力とは例えば移送薬液の内圧である。積層チューブ Bが、積 層チューブ Aの透過係数を維持して ヽれば外層の耐ストレスクラック性が良 、ことに なる。上述の比較例 7で PCTFEは積層チューブ Aとしては良好な低薬液透過性を 有していることがわ力つた。し力しながら、積層チューブ Bにおいては急激に透過係 数が上昇しており、 MFA単層と比較して PCTFE自体の持つ低薬液透過性を発揮 できていないことがわ力つた。これは、動的な繰り返し応力により PCTFE外層にクラ ックが生じた力もであった。外観目視でも表層の白化が見受けられた。 [0147] ところが実施例に挙げた CTFE共重合体力もなる積層チューブ Bは何れも積層チュ ーブ Aの透過係数レベルを良好に維持しており、 CTFE共重合体の有する低薬液透 過性が遺憾なく発揮されており、つまり本発明の CTFE共重合体は PCTFEと比べて 明らかに耐ストレスクラック性が改善されていることがわ力 た。
[0148] 耐ストレスクラック性を向上させるには、例えば PPVEの場合、その適量が共重合され ることが重要である。例えば PPVEを用いな ヽと比較例 1のように耐ストレスクラック性 が低下し、比較例 2のように多すぎると重合速度が大幅に低下し、生産性を損ねるこ とがわかった。
[0149] また、本発明の CTFE共重合体と PFAや FEPとの接着性は、本発明の CTFE共重 合体に占める CTFE単位のモル%が低いほど向上する傾向があることがわかった。 特に、 CTFE単位のモル%が35モル%以下では良好に接着しており、 30モル%以 下においてはさらに強固に接着していることを見出した。この結果から、用途により層 間の接着性が必要とされる場合は、上記の CTFE単位のモル%範囲にぉ 、て優れ た透過係数と接着性とを両立させることもできる。
[0150] 本発明の CTFE共重合体は、上述の構成よりなるので、耐ストレスクラック性と薬液低 透過性とを両立するとともに、耐薬品性、成形時に必要とされる耐熱性をも具備した 成形体が得られるものである。
産業上の利用可能性
[0151] 本発明の CTFE共重合体は、例えば、薬液低透過性チューブの成形材料として好 適に用いることができ、なかでも、融点が高い熱可塑性榭脂との共押出が可能な薬 液低透過性チューブの成形材料として好適である。
図面の簡単な説明
[0152] [図 1]図 1は、シートによる 35質量%塩酸透過試験に用いた実験装置の模式図であ る。
[図 2]図 2は、チューブによる 35質量%塩酸透過試験に用いた実験装置の模式図で ある。
符号の説明
[0153] 11 サンプルシート a ガラス容器(35質量%塩酸入り)b ガラス容器 (純水入り)
O—リング
サンプリング口
チューブ
ガラス管
パッキン
サンプリング口

Claims

請求の範囲
[1] クロ口トリフルォロエチレン単位、テトラフルォロエチレン単位、並びに、クロ口トリフル ォロエチレン及びテトラフルォロエチレンと共重合可能な単量体〔A〕に由来する単量 体〔A〕単位力も構成されるクロ口トリフルォロエチレン共重合体であって、 前記クロ口トリフルォロエチレン単位及び前記テトラフルォロエチレン単位は、合計で
90〜99. 9モル0 /0であり、
前記単量体〔A〕単位は、 0. 1〜10モル%である
ことを特徴とするクロ口トリフルォロエチレン共重合体。
[2] 単量体〔A〕は、エチレン、ビ-リデンフルオライド、パーフルォロ(アルキルビュルェ 一テル)、及び、下記一般式 (I)
CX^^CX' CCF ) X2 (I)
2 n
(式中、 X1、 X3及び X4は、同一若しくは異なって、水素原子又はフッ素原子を表し、 X2は、水素原子、フッ素原子又は塩素原子を表し、 nは、 1〜10の整数を表す。)で 表されるビニル単量体よりなる群力 選ばれる少なくとも 1つである
請求項 1記載のクロ口トリフルォロエチレン共重合体。
[3] 単量体〔A〕は、下記一般式 (II)
CF =CF-ORf1 (II)
2
(式中、 Rf1は、炭素数 1〜8のパーフルォロアルキル基を表す。)で表されるパーフ ルォロ(アルキルビュルエーテル)である請求項 1記載のクロ口トリフルォロエチレン共 重合体。
[4] クロ口トリフルォロエチレン単位は、前記クロ口トリフルォロエチレン単位とテトラフルォ 口エチレン単位との合計の 10〜90モル0 /0である請求項 1、 2又は 3記載のクロロトリフ ルォロエチレン共重合体。
[5] クロ口トリフルォロエチレン単位は、前記クロ口トリフルォロエチレン単位とテトラフルォ 口エチレン単位との合計の 20〜90モル0 /0である請求項 1、 2又は 3記載のクロロトリフ ルォロエチレン共重合体。
[6] メルトフローレートが 0. 1〜70 (8 10分)でぁる請求項1、 2、 3、 4又は 5記載のクロ 口トリフルォロエチレン共重合体。
[7] クロ口トリフルォロエチレン共重合体の 1質量%が分解する温度〔Tx〕が 370°C以上 である請求項 1、 2、 3、 4、 5又は 6記載のクロ口トリフルォロエチレン共重合体。
[8] 請求項 1、 2、 3、 4、 5、 6又は 7記載のクロ口トリフルォロエチレン共重合体を用いて得 られる
ことを特徴とする成形体。
[9] 流体移送部材である請求項 8記載の成形体。
PCT/JP2005/007133 2004-04-13 2005-04-13 クロロトリフルオロエチレン共重合体 WO2005100420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05730418.0A EP1741732B1 (en) 2004-04-13 2005-04-13 Chlorotrifluoroethylene copolymer
JP2006512351A JP4582091B2 (ja) 2004-04-13 2005-04-13 クロロトリフルオロエチレン共重合体
US11/578,066 US9266986B2 (en) 2004-04-13 2005-04-13 Chlorotrifluoroethylene copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-118365 2004-04-13
JP2004118365 2004-04-13

Publications (1)

Publication Number Publication Date
WO2005100420A1 true WO2005100420A1 (ja) 2005-10-27

Family

ID=35149951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007133 WO2005100420A1 (ja) 2004-04-13 2005-04-13 クロロトリフルオロエチレン共重合体

Country Status (7)

Country Link
US (1) US9266986B2 (ja)
EP (1) EP1741732B1 (ja)
JP (1) JP4582091B2 (ja)
KR (1) KR100826374B1 (ja)
CN (1) CN100455611C (ja)
TW (1) TW200536865A (ja)
WO (1) WO2005100420A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116876A1 (ja) * 2006-04-04 2007-10-18 Daikin Industries, Ltd. 熱可塑性重合体組成物および該組成物からなる成形体
WO2007142337A1 (ja) * 2006-06-09 2007-12-13 Daikin Industries, Ltd. 積層体、流動体輸送管及びチューブ
WO2008041645A1 (fr) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Réservoir de carburant et son procédé de production
WO2008041644A1 (fr) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Réservoir de carburant
WO2009020181A1 (ja) 2007-08-08 2009-02-12 Daikin Industries, Ltd. フッ素樹脂層とエラストマー層からなる積層体
JP2010030276A (ja) * 2008-03-27 2010-02-12 Daikin Ind Ltd 積層体
WO2011030858A1 (ja) 2009-09-11 2011-03-17 ダイキン工業株式会社 集光フィルム並びにその製造方法、集光素子、太陽電池、及び集光方法
WO2011099414A1 (ja) * 2010-02-09 2011-08-18 ダイキン工業株式会社 含フッ素共重合体
WO2012124728A1 (ja) 2011-03-14 2012-09-20 ダイキン工業株式会社 集光フィルム及び太陽電池モジュール
WO2013047827A1 (ja) 2011-09-30 2013-04-04 ダイキン工業株式会社 集光フィルム、太陽電池モジュール、及び、転写モールド
JP2015007218A (ja) * 2013-05-27 2015-01-15 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2019220850A1 (ja) 2018-05-14 2019-11-21 ダイキン工業株式会社 積層体およびチューブ
WO2020170025A1 (en) 2019-02-22 2020-08-27 Daikin Industries, Ltd. Laminate
TWI704050B (zh) * 2015-07-31 2020-09-11 日商日產化學工業股份有限公司 適於行動顯示器裝置之保護玻璃等的玻璃基板
WO2021172371A1 (ja) * 2020-02-26 2021-09-02 Agc株式会社 含フッ素重合体、樹脂膜及び光電子素子
WO2021172369A1 (ja) * 2020-02-26 2021-09-02 Agc株式会社 含フッ素重合体、膜、膜の製造方法および有機光電子素子
WO2022071526A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂、積層体およびチューブ
WO2022071528A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法
WO2022071529A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂、積層体、チューブおよびチューブの製造方法
WO2022071527A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂材料、積層体、チューブおよびチューブの製造方法
JP7564496B1 (ja) 2023-06-13 2024-10-09 ダイキン工業株式会社 二層チューブおよびその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569568B2 (ja) * 2004-04-13 2010-10-27 ダイキン工業株式会社 流体移送部材
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
US7147634B2 (en) 2005-05-12 2006-12-12 Orion Industries, Ltd. Electrosurgical electrode and method of manufacturing same
WO2009084483A1 (ja) * 2007-12-27 2009-07-09 Kureha Corporation 接着性フッ化ビニリデン系樹脂シート
US7984567B2 (en) * 2008-10-07 2011-07-26 Christ Bill Bertakis Apparatus for cleaning simulated hair articles
FR2944285B1 (fr) * 2009-04-09 2011-11-25 Francois Bauer Procede de fabrication de terpolymeres a base de vdf, trfe et cfe ou ctfe
JP5423214B2 (ja) * 2009-07-31 2014-02-19 旭硝子株式会社 新規な含フッ素共重合体および膜
CN102030987B (zh) * 2009-09-30 2013-12-04 E.I.内穆尔杜邦公司 抗腐蚀膜和包含该抗腐蚀膜的制品
IT1399627B1 (it) * 2010-04-20 2013-04-26 Italcementi Spa Manufatto cementizio adatto un particolare quale supporto per un modulo fotovoltaico a film sottile, e metodo per la sua produzione
CN103153615B (zh) * 2010-10-15 2016-08-31 索尔维特殊聚合物意大利有限公司 多层组件
JP5595233B2 (ja) * 2010-11-09 2014-09-24 東海ゴム工業株式会社 燃料系ホースおよびその製法
CN103249554B (zh) * 2010-11-12 2015-07-08 大金工业株式会社 层叠体
CN103826845B (zh) * 2011-09-22 2015-09-30 大金工业株式会社 层积体和层积体的制造方法
JP2013071341A (ja) 2011-09-28 2013-04-22 Du Pont Mitsui Fluorochem Co Ltd フッ素樹脂成形品
US10227484B2 (en) 2014-08-22 2019-03-12 3M Innovative Properties Company Fluorothermoplastic polymer compositions
US10087322B2 (en) 2014-08-22 2018-10-02 3M Innovative Properties Company Fluorothermoplastic polymer
US20190002656A1 (en) * 2015-08-26 2019-01-03 Bemis Company, Inc. Anti-Scalping Pharmaceutical Packaging Film
CN109562607A (zh) * 2016-09-06 2019-04-02 大金工业株式会社 层积体和共聚物
JP6857813B2 (ja) * 2018-03-05 2021-04-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
WO2023014395A1 (en) * 2021-08-05 2023-02-09 Seshadri Raju Improved volumetric flow design for conduits
CN114965423A (zh) * 2022-05-10 2022-08-30 江南大学 基于Ag-COF-COOH基底表面增强拉曼光谱检测牛奶中三聚氰胺的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE670586A (ja) * 1964-10-09 1900-01-01
JPS4825415B1 (ja) * 1969-06-23 1973-07-28
JPS54132691A (en) * 1978-04-06 1979-10-15 Asahi Glass Co Ltd Preparation of ethylene-tetrafluoroethylene copolymer
JPS63307609A (ja) * 1987-06-09 1988-12-15 Asahi Glass Co Ltd フツ素樹脂被覆電線
JP2002503744A (ja) * 1998-02-13 2002-02-05 デユネオン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 熱可塑性フルオロポリマーの混合物
JP2004277689A (ja) * 2002-06-27 2004-10-07 Asahi Glass Co Ltd 含フッ素共重合体
WO2004098880A1 (ja) * 2003-05-12 2004-11-18 Daikin Industries, Ltd. 積層体

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915509A (en) * 1956-06-25 1959-12-01 Minnesota Mining & Mfg Copolymers of trifluorochloroethylene
US3053818A (en) * 1956-07-31 1962-09-11 Minnesota Mining & Mfg Trifluorochloroethylene interpolymers
US3331811A (en) * 1964-05-18 1967-07-18 Allied Chem Stabilized trifluorochloroethylene polymers containing (a) zinc oxide and (b) hydroquinone or chloranil
EP0105328A4 (en) * 1982-03-18 1984-09-19 Gen Electric CLEANING OF SILICONE HALIDES.
JPS6088078A (ja) 1983-10-21 1985-05-17 Asahi Glass Co Ltd 塗料用組成物
US4743658A (en) 1985-10-21 1988-05-10 E. I. Du Pont De Nemours And Company Stable tetrafluoroethylene copolymers
JP2780354B2 (ja) 1989-07-04 1998-07-30 富士通株式会社 半導体メモリ装置
JP2853254B2 (ja) 1990-04-04 1999-02-03 ダイキン工業株式会社 クロロトリフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体
IT1247934B (it) * 1991-05-15 1995-01-05 Ausimont Spa Fluoroelastomeri a base di vinilidenfluoruro, dotati di superiore resistenza alle basi
DE4211095C2 (de) 1992-04-03 1994-02-17 Grammer Ag Unterbau für einen Sitz, insbes. für einen Fahrzeugsitz
EP0637509B1 (en) 1993-08-03 2002-10-23 Nitta Moore Company A tube for fuel transportation
US5969067A (en) 1996-09-13 1999-10-19 E.I. Dupont De Nemours And Company Phosphorus-containing fluoromonomers and polymers thereof
US6117508A (en) 1997-06-27 2000-09-12 Dyneon Llc Composite articles including a fluoropolymer blend
JPH11207840A (ja) 1998-01-28 1999-08-03 Mitsubishi Chemical Corp 多層管状体
US6680124B1 (en) 1998-03-06 2004-01-20 Daikin Industries Ltd. Fluorochemical adhesive material and laminate made with the same
JP2000007732A (ja) 1998-06-19 2000-01-11 Nippon Mektron Ltd フルオロエラストマーおよびその製造法
JP4228377B2 (ja) 1999-02-05 2009-02-25 旭硝子株式会社 燃料輸送用ホース
JP4590812B2 (ja) 1999-09-08 2010-12-01 ダイキン工業株式会社 含フッ素接着性材料及びそれを用いた積層体
JP2001088816A (ja) 1999-09-17 2001-04-03 Daikin Ind Ltd 含フッ素ポリマーチューブ成形体およびその製造法
BR0014430A (pt) 1999-09-30 2003-07-29 Asahi Glass Co Ltd Mangueira de combustìvel
AU775474B2 (en) * 1999-10-04 2004-08-05 Daikin Industries, Ltd. Highly weathering-resistant powder coating composition
WO2001058686A1 (fr) 2000-02-10 2001-08-16 Daikin Industries, Ltd. Resine stratifiee
US6893729B2 (en) 2000-02-18 2005-05-17 Daikin Industries, Ltd. Layered resin molding and multilayered molded article
JP4209595B2 (ja) 2000-04-24 2009-01-14 旭硝子株式会社 燃料用ホース
ES2263609T3 (es) 2000-04-24 2006-12-16 Asahi Glass Company, Limited Manguera para combustible.
IT1318700B1 (it) 2000-09-18 2003-08-27 Ausimont Spa Composizione multistrato comprendente fluoropolimeri e polimeriidrogenati.
JP2002276862A (ja) 2001-01-12 2002-09-25 Tokai Rubber Ind Ltd 低透過燃料系ホース
JP2002210892A (ja) 2001-01-12 2002-07-31 Tokai Rubber Ind Ltd 接着積層体及び燃料ホース
JP3606204B2 (ja) 2001-01-19 2005-01-05 日産自動車株式会社 樹脂製チューブ
US20020119319A1 (en) 2001-02-28 2002-08-29 Asahi Glass Company, Limited Fluorine-containing copolymer, composition and laminate
JP2002327018A (ja) 2001-02-28 2002-11-15 Asahi Glass Co Ltd 含フッ素共重合体、組成物及び積層体
JP3606213B2 (ja) 2001-03-06 2005-01-05 日産自動車株式会社 樹脂製チューブ
US7320818B2 (en) 2001-03-13 2008-01-22 Ausimont S.P.A. Multilayers of polyamides and fluorinated copolymers
WO2003048214A1 (fr) 2001-12-04 2003-06-12 Daikin Industries, Ltd. Materiau de moulage destine a des articles resistant a l'ozone et articles moules par injection resistant a l'ozone
US20030198770A1 (en) 2002-04-18 2003-10-23 3M Innovative Properties Company Composite fluoropolymer-perfluoropolymer assembly
JP2003311764A (ja) 2002-04-25 2003-11-05 Daikin Ind Ltd Ptfe中実成形体製造方法
EP1531164B1 (en) 2002-06-27 2006-09-27 Asahi Glass Company Ltd. Fluorocopolymer
JP3972917B2 (ja) 2003-05-12 2007-09-05 ダイキン工業株式会社 積層体
JP4569568B2 (ja) 2004-04-13 2010-10-27 ダイキン工業株式会社 流体移送部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE670586A (ja) * 1964-10-09 1900-01-01
JPS4825415B1 (ja) * 1969-06-23 1973-07-28
JPS54132691A (en) * 1978-04-06 1979-10-15 Asahi Glass Co Ltd Preparation of ethylene-tetrafluoroethylene copolymer
JPS63307609A (ja) * 1987-06-09 1988-12-15 Asahi Glass Co Ltd フツ素樹脂被覆電線
JP2002503744A (ja) * 1998-02-13 2002-02-05 デユネオン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 熱可塑性フルオロポリマーの混合物
JP2004277689A (ja) * 2002-06-27 2004-10-07 Asahi Glass Co Ltd 含フッ素共重合体
WO2004098880A1 (ja) * 2003-05-12 2004-11-18 Daikin Industries, Ltd. 積層体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [online] HABERMANN, KENNET R: "Laminated polymer sheets", XP008125868, accession no. STN Database accession no. 1967:38567 *
See also references of EP1741732A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116876A1 (ja) * 2006-04-04 2007-10-18 Daikin Industries, Ltd. 熱可塑性重合体組成物および該組成物からなる成形体
JP5120251B2 (ja) * 2006-04-04 2013-01-16 ダイキン工業株式会社 熱可塑性重合体組成物および該組成物からなる成形体
WO2007142337A1 (ja) * 2006-06-09 2007-12-13 Daikin Industries, Ltd. 積層体、流動体輸送管及びチューブ
JPWO2007142337A1 (ja) * 2006-06-09 2009-10-29 ダイキン工業株式会社 積層体、流動体輸送管及びチューブ
KR101047259B1 (ko) 2006-06-09 2011-07-06 다이킨 고교 가부시키가이샤 적층체, 유동체 수송관, 튜브, 반도체 제조 장치 및 약액 공급 시스템
WO2008041645A1 (fr) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Réservoir de carburant et son procédé de production
WO2008041644A1 (fr) 2006-09-29 2008-04-10 Daikin Industries, Ltd. Réservoir de carburant
WO2009020181A1 (ja) 2007-08-08 2009-02-12 Daikin Industries, Ltd. フッ素樹脂層とエラストマー層からなる積層体
JP2010030276A (ja) * 2008-03-27 2010-02-12 Daikin Ind Ltd 積層体
WO2011030858A1 (ja) 2009-09-11 2011-03-17 ダイキン工業株式会社 集光フィルム並びにその製造方法、集光素子、太陽電池、及び集光方法
WO2011099414A1 (ja) * 2010-02-09 2011-08-18 ダイキン工業株式会社 含フッ素共重合体
WO2012124728A1 (ja) 2011-03-14 2012-09-20 ダイキン工業株式会社 集光フィルム及び太陽電池モジュール
WO2013047827A1 (ja) 2011-09-30 2013-04-04 ダイキン工業株式会社 集光フィルム、太陽電池モジュール、及び、転写モールド
JP2015007218A (ja) * 2013-05-27 2015-01-15 ダイキン工業株式会社 フルオロポリマーの製造方法
US9834631B2 (en) 2013-05-27 2017-12-05 Daikin Industries, Ltd. Fluoropolymer production method
TWI704050B (zh) * 2015-07-31 2020-09-11 日商日產化學工業股份有限公司 適於行動顯示器裝置之保護玻璃等的玻璃基板
WO2019220850A1 (ja) 2018-05-14 2019-11-21 ダイキン工業株式会社 積層体およびチューブ
WO2020170025A1 (en) 2019-02-22 2020-08-27 Daikin Industries, Ltd. Laminate
US11602920B2 (en) 2019-02-22 2023-03-14 Daikin Industries, Ltd. Laminate
WO2021172369A1 (ja) * 2020-02-26 2021-09-02 Agc株式会社 含フッ素重合体、膜、膜の製造方法および有機光電子素子
WO2021172371A1 (ja) * 2020-02-26 2021-09-02 Agc株式会社 含フッ素重合体、樹脂膜及び光電子素子
WO2022071526A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂、積層体およびチューブ
WO2022071528A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法
WO2022071529A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂、積層体、チューブおよびチューブの製造方法
WO2022071527A1 (ja) 2020-09-30 2022-04-07 ダイキン工業株式会社 フッ素樹脂材料、積層体、チューブおよびチューブの製造方法
JP7564496B1 (ja) 2023-06-13 2024-10-09 ダイキン工業株式会社 二層チューブおよびその製造方法

Also Published As

Publication number Publication date
JP4582091B2 (ja) 2010-11-17
TWI366571B (ja) 2012-06-21
JPWO2005100420A1 (ja) 2008-03-06
KR20070009691A (ko) 2007-01-18
US20070219333A1 (en) 2007-09-20
CN1942492A (zh) 2007-04-04
US9266986B2 (en) 2016-02-23
TW200536865A (en) 2005-11-16
KR100826374B1 (ko) 2008-05-02
EP1741732B1 (en) 2013-06-19
CN100455611C (zh) 2009-01-28
EP1741732A4 (en) 2009-07-29
EP1741732A1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
WO2005100420A1 (ja) クロロトリフルオロエチレン共重合体
JP4569568B2 (ja) 流体移送部材
JP3948473B2 (ja) フルオロポリマー及びその組成物
EP1245657B1 (en) Fluorochemical adhesive material and layered product obtained with the same
EP1086962B1 (en) Fluorochemical adhesive material and laminate made with the same
EP2412735B1 (en) Fluororesin and riser pipe
JPWO2017082417A1 (ja) 共重合体およびこれを含む組成物
JP2000313089A (ja) パーフルオロゴム層の積層体およびその用途
JP7112010B2 (ja) フッ素樹脂、積層体およびチューブ
JP2005178297A (ja) 含フッ素成形体及び半導体製造装置
JP7041384B1 (ja) フッ素樹脂材料、積層体、チューブおよびチューブの製造方法
JP7041386B1 (ja) フッ素樹脂、積層体、チューブおよびチューブの製造方法
JP2005298702A (ja) クロロトリフルオロエチレン共重合体
WO2022071528A1 (ja) 部分フッ素化樹脂、積層体、チューブおよびチューブの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512351

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11578066

Country of ref document: US

Ref document number: 2007219333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580011187.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005730418

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067023540

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005730418

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067023540

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11578066

Country of ref document: US